
Voiceover: Censorship-Circumventing Protocol Tunnels with Generative Modeling

Watson Jia
Princeton University

Joseph Eichenhofer
Dropbox

Liang Wang
Princeton University

Prateek Mittal
Princeton University

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license visit
https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain
View, CA 94042, USA.
Free and Open Communications on the Internet 2023(1), 67-80
© 2023 Copyright held by the owner/author(s).

https://creativecommons.org/licenses/by/4.0/

Voiceover: Censorship-Circumventing Protocol Tunnels
with Generative Modeling

Watson Jia
Princeton University

Joseph Eichenhofer
Dropbox

Liang Wang
Princeton University

Prateek Mittal
Princeton University

Abstract
Censorship regimes are continuously adopting and deploying
state-of-the-art techniques to detect and prosecute open com-
munication on the internet. Multimedia protocol tunneling
seeks to disguise covert data communication by processing
it directly through a legitimate audio/video communication
system. Systems like VoIP and video streaming services use
variable bitrate encoding schemes, which leak characteristics
of the content they carry through packet sizes and timing. In
what is called a content mismatch attack, censors can distin-
guish between a channel carrying legitimate media content
and one carrying covert data content. We address content
mismatch attacks by introducing a novel traffic-shaping tech-
nique that models the normal media content and applies its
properties to the covert content. We constructed a generative
machine learning model to restrict covert data transmission
such that its timing properties match properties learned from
real two-person conversations. Our evaluation finds that mod-
eling the timing properties in the application layer content
reduces distinguishing features in the encrypted network traf-
fic. This mitigates content mismatch attacks on coarse-grained
timing properties.

1 Introduction

Censoring regimes rely on a number of techniques ranging
from simple address matching to advanced machine-learning
classifiers on deep packet inspection traces [1] to enable In-
ternet censorship. In response, researchers have designed and
implemented many different tools to enable access to the inter-
net even under powerful censorship. Particularly, multimedia
protocol tunneling is the most recent development towards
unobservable communication [2–4]. However, these methods
can be easily identified by censors [5] (section 2). In particu-
lar, censors can infer properties of covert data even when it is
encoded and transmitted through another protocol.

In this paper, we present the next novel development in
making indistinguishable censorship circumvention commu-
nication. Our key insight is that we can learn and model the

properties of the content carried by multimedia protocol tun-
nels. With this technique, we reduce the mismatch between
covert content and true content when transmitting through a
multimedia protocol tunnel. By doing so, we reduce the distin-
guishing properties present in the network traffic and decrease
the censor’s ability to identify and censor transmissions.

Voiceover, our approach to this problem, is an audio-based
multimedia protocol tunnel much like previous work. We
transmit data as audio by processing it with convolutional
coding and quadrature amplitude modulation. That audio is
carried by a Skype audio call between two endpoints to cross
a censor’s border. Our novel approach to improve indistin-
guishability is a generative adversarial network that learns
and models the distribution of conversation timing proper-
ties. This model shapes the audio that Voiceover transmits
through Skype such that the timing properties of our covert
protocol tunnel transmission match the timing properties of
a true Skype call’s audio. This mitigates a censor’s ability
to identify differences between Skype connections carrying
normal audio and Skype connections carrying covert data.

Our key contributions are presented in this paper:
(1) We propose a novel design to mitigate content mismatch

attacks in censorship circumventing protocol tunnels using
generative modeling.

(2) We fully implement this design as an open-source pro-
totype for evaluation and to facilitate future work.

(3) We evaluate the security improvement of Voiceover
versus a baseline implementation similar to existing tech-
niques. A classifier trained on network traces for the existing
technique could identify the protocol tunnels with an auROC
of 0.98 and an aucPR of 0.96, while a classifier trained to
identify our Voiceover protocol tunnel could achieve only an
auROC of 0.68 and aucPR of 0.48.

2 Background and Related Work

This section defines the threat model we use for censorship in
this paper and summarizes the key points in recent work that
led to the problem we address in this paper.

Censored
Network

Uncensored
Networks

Censoring
Technology

• Address/Port
• Headers and Flags
• Plaintext Matching
• Regex Matching
• ML Classifiers

Figure 1: Threat model

Threat model. As in Figure 1 we assume that the censor can
apply a wide range of techniques to detect and block censored
servers and applications (e.g., anti-censorship tools). How-
ever, the censor does not block certain services for economic
or political reasons, and will perform sophisticated traffic anal-
ysis to detect the “abuse” of those allowed services. However,
we do not consider an adversary with unlimited computation-
al/storage resources. Rather, we consider the adversary as a
network device that is attempting to classify network flows in
real time by processing packet-level features associated with
a given packet flow. Unique to our work, we also assume that
this adversary is memory limited, which caps the number of
overall consecutive packets that can be considered at once for
the purposes of flow classification. These adversary charac-
teristics inform our evaluation of Voiceover in section 4.

Obfuscation. Early work on protocol obfuscation techniques
primarily aimed to remove all distinguishing features from
covert traffic. Examples of obfuscators include Dust and
ScrambleSuit [6,7]. Tor instantiated this idea as the obfsproxy
pluggable transport and several iterations of such obfuscation
proxies have since been developed, including obfs2, obfs3,
obfs4, and obfs5 [8–11]. However, Wang et al. showed that
obfuscation techniques such as this could be cheaply identi-
fied by entropy analysis [12]. Generally speaking, this type of
obfuscated traffic has artificially high entropy, which means
the injected noise and entropy itself become a distinguishing
feature.

Protocol mimicry The next logical iteration for disguising
protocol behavior was to mimic some uncensored protocol.
Instead of simply removing features, this technique shapes
covert traffic features to match those of another innocuous
protocol in order to make it more difficult to censor covert
traffic. Examples of this technique in the literature include
SkypeMorph and StegoTorus [13, 14]. SkypeMorph learns
the distribution of packet size and timing for Skype voice
and conforms the covert traffic packets to fit this distribution.
StegoTorus similarly aims to mimic innocuous traffic, namely
HTTP or VoIP protocols like Skype and Ventrilo, by apply-
ing steganography. Both SkypeMorph and StegoTorus were
designed to disguise Tor traffic. An example of a standalone
protocol mimicry system is CensorSpoofer, which aims to
mimic VoIP traffic to hide covert web traffic [15]. Another

approach to protocol mimicry is called Format Transforming
Encryption. This approach specifies a regular expression to
represent the target protocol’s packet properties, and format
transforming encryption produces Tor packets that match the
regular expressions [16, 17].

Houmansadr et al. demonstrated a key observation that gen-
erally defeated all attempts at protocol mimicry [18]. They
show that a protocol mimicry approach must perfectly re-
implement all features of the target protocol, not just the sta-
tistical or syntactic properties of its traffic. Taking Skype and
SkypeMorph as an example, the authors could trivially de-
tect SkypeMorph due to observations like missing control
channels, lack of communication to login servers, reaction
to blocked default ports, etc. Furthermore, they showed that
even a correct implementation of the complex distributed
system could potentially be identified, because it didn’t in-
corporate bugs that were found in the real Skype protocol
implementation.

Protocol tunneling. Various protocols have been used as the
tunnel for covert communication [19–26] and we focus on
multimedia protocol tunnels in this paper. In a multimedia pro-
tocol tunnel, the censored data is first encoded into the media
normally communicated by the target audio/video protocol
(e.g., modulated into an audio signal) and then transmitted
through a running instance of the target protocol. The first
instantiation of this idea is FreeWave [27]. The FreeWave
protocol tunnel designs a modem-based proxy that could com-
municate IP traffic through an audio channel. That audio
channel is carried by a Skype VoIP call between the client in
a censored network and a server in the uncensored network.
By using the actual Skype application to carry the data, Free-
Wave guarantees that the semantics of the protocol is truly
indistinguishable from a normal Skype phone call. This ef-
fectively eliminates the problems with protocol mimicry, but
reduces throughput and increases latency. Video-based multi-
media protocol tunnels, which encode covert data into video
streams, include Facet, CovertCast, DeltaShaper, Protozoa,
and Stegozoa [2–4, 22, 28].

Geddes et al. demonstrated how protocol tunnels are sub-
ject to content mismatch attacks [5]. Nearly all multimedia
communication protocols use variable bitrate encoding to re-
duce network usage by adapting their data transmission rate
based on the properties of the media content. For example,
the OPUS codec (used by many VoIP applications including
Skype) can adjust its bitrate between 6 kbps and 510 kbps
depending on factors including network conditions and audio
quality and drastically reduces bitrate during silence or back-
ground noise [29]. This effectively leaks information related
to the content carried by the variable-bitrate-encoded and en-
crypted voice channel [30]. This observation can be exploited
to distinguish true Skype conversations from FreeWave trans-
missions, for example.

This type of content mismatch attack has been identified
both for audio-based protocol tunnels and video-based proto-

2

Voice Ac�vity
Detec�on

Train GAN

Sample

M
odem

Fill Template

TX Data
Skype

Call

M
od

em

Generate
Audio

Play into
Skype

Record Skype
Output

Demodulate
Audio

RX Data

Figure 2: This is the complete Voiceover architecture, includ-
ing model training, data transmission, and data reception. The
topmost portion (Voice Activity Detection and Train GAN)
presumably will happen only once or very rarely. The model
produced by that training can be used repeatedly to generate
sample conversation templates. The remainder of the diagram
will be repeated for every transmission (e.g., for every VoIP
call to transmit and receive some data).

col tunnels, where variable bitrate encoding is leaking infor-
mation about what content is being tunneled. When combined
with machine learning classification techniques, this exploit
allows a censor to identify new tunnels without needing to
manually determine the distinguishing properties [31]. Our
work on Voiceover attempts to mitigate content mismatch
attacks in multimedia protocol tunnels.

3 Voiceover Design

In this section, we present the design of Voiceover, an audio-
based protocol tunnel that uses generative models to mitigate
content mismatch attacks. The architecture of Voiceover is
shown in Figure 2. Our key insight follows naturally from
observations about content mismatch attacks:

Content mismatch attacks. Content mismatch attacks ex-
ploit the fact that differences between two classes of media
content cause differences in the network traffic that carries
that content. The attack works because there exists some dis-
tribution of properties for the “real” class of content (e.g.,
an actual human conversation). Content carried by protocol
tunnels does not have properties that fit within that distribu-
tion. Therefore, the network traffic produced by a protocol
tunnel does not fit within the distribution of network traffic
produced by normal use of the protocol. Our goal is to encode
our covert data into media content that possesses properties
within that existing “real content” distribution; the natural
tool for this is generative machine learning models.

Learning the distribution. The most immediately apparent
form of data leakage by variable bitrate voice codecs is often
the difference between speaking and not speaking. This is
due to the widespread usage of the OPUS codec, which uses
a “discontinuous transmission” mode to send only one frame

time

Speaker One

Speaker Two

Figure 3: Conversation timing is encoded as a two-
dimensional array. Each row is a speaker, and each column is
a unit of time. The value in each cell encodes either speech or
silence as either positive or negative one.

every 400 milliseconds during silence or background noise
[29]. For our initial design, we target this specific leakage
by trying to learn the cadence and timing of speakers in real
two-person conversations.

Generative adversarial networks (GANs) have shown great
results in learning “realistic” image distributions and generat-
ing new random samples which are statistically and visually
similar to the training images [32]. Our learning model will
be a reduction of this same problem, where we structure our
data in a format similar to an image. To learn the cadence
and timing of a conversation, we will operate on conversation
templates, visualized in Figure 3. We define a conversation
template as a two-dimensional array: each row represents one
speaker and each column represents one unit of time. In each
cell of this template, the value will be +1 or −1 to repre-
sent silence or speech. In this format, temporal locality in the
conversation is translated into spatial locality in the template.
We use a deep convolutional generative adversarial network
(DCGAN) and Figure 4 visualizes the final DCGAN architec-
ture for our model. The DCGAN architecture was tuned by
experiments on the training data.

We use a mix of linguistics data collected in various stud-
ies over the years on telephone conversations for training.
These datasets consist of two-person conversations primarily
in English with varying lengths between five minutes and
thirty minutes. The datasets are listed in Table 1. In order
to transform these audio recordings into our learnable for-
mat, we use a state-of-the-art voice activity detection (VAD)
implementation to determine for each time period whether
or not each speaker is speaking. We modified a sliding win-
dow voice activity detection algorithm based on the VAD
module implemented for WebRTC [33, 34]. Since the GAN
requires a constant-sized format, we split the conversations
into 5-minute samples at a resolution of 1-second time peri-
ods. These parameters are tunable for future experiments to
determine the effects of both lower-order and higher-order
timing properties. The result of this process is a collection of
samples in the format described above with dimensions of 2
by 300. The impact of the quantity and quality of this data is
discussed in section 5.

Encoding and modulating the data. Our protocol tunnel
must deliver binary data through an audio channel and persist
through errors caused by noise, compression, and transcoding.
We view this challenge as a classic data transmission problem

3

Data Desc.
CALLHOME Speech Corpus [35] 120 * 30 min
Linguistic Data Consortium Switchboard [36] 2400 * <15 min
2011 NIST Language Recognition [37] 400 * 5/10 min

Table 1: The original linguistic dataset used to train our model
contains approximately 400 hours of two-person conversa-
tions.

2 2
2

Project and
Reshape

Convolu�on:
1 x 1 Kernel

Convolu�on:
3 x 5 Kernel

2 2
2

Fla�en to
Dense Layer

Generator

Discriminator

Convolu�on:
5 x 5 Kernel
2 x 2 Stride

Convolu�on:
5 x 5 Kernel
2 x 2 Stride

Figure 4: The generator (top) and discriminator (bottom) for
learning the data distribution of conversation timing is derived
from existing DCGAN architectures from the image domain.

in signal processing. Naturally, the solution that follows is
a coding and modulation scheme designed around the noisy
channel. Similarly to how radio frequency transmissions are
modulated to establish wireless network connections, we will
use quadrature amplitude modulation (QAM). Specifically,
we will follow a similar configuration to that used in the
FreeWave paper [27]. In this configuration, we combine two
common signal-processing techniques: convolutional coding
and phase shift keying. Voiceover applies convolutional cod-
ing to a given plaintext before applying QAM to modulate
the encoded data into an audio signal.

Handling application-layer transformations. Since
Voiceover is an audio-based multimedia protocol channel, the
integrity of the message data is dependent on the integrity
of the audio signal transmitted over the protocol channel.
However, many voice codecs will distort audio signals that are
not similar to human speech [38]. Since Voiceover transmits
a QAM-modulated audio signal, it is important for the sake
of the reliability of the censorship circumventing protocol
to be able to recover from application-layer distortions and
transformations of the transmitted audio signal.

To recover from these application-layer transformations,
we take an approach inspired by notions of framing and en-
capsulation in networking. To transmit a plaintext message,
we first break up the plaintext into smaller substrings and
add headers to these substrings to create a ’message frame.’
We then modulate each of these message frames into audio
signals, which we treat as ’audio frames.’ Rather than sending
one continuous audio signal containing the entire plaintext,
we send an audio signal composed of these smaller audio
frames which are modulated from smaller portions of the

plaintext. To verify the integrity of the contents of the mes-
sage frame, we include a CRC32 checksum of the encoded
message frame as part of the message frame header which
can be verified by the receiver during decoding. If a message
frame integrity check has failed, Voiceover determines that
an application-layer transformation of the audio signal has
occurred and ignores that message frame when reconstruct-
ing the full plaintext. Besides, Voiceover sends each frame
k times (where k is the redundancy factor) in case of packet
loss. To facilitate potential user-driven retransmission of these
message frames, Voiceover includes a two-byte frame number
as part of the header for each encoded message frame. In total,
there are 6 bytes of overhead per message frame: 4 bytes for
a CRC32 checksum and 2 bytes for a message frame number.

Applying the model. Voiceover can create realistic timing
templates for a voice conversation and transmit data as an
audio waveform. Next, we discuss how to combine these com-
ponents. We focus on the scenario where both ends of the
channel have either a pre-shared template or the same genera-
tive model and a pre-shared seed for producing the template.
Each endpoint must also choose a unique row of the template.
This bootstrapping process will need to be designed based on
specific use cases and corresponding security assumptions.
At this point, each endpoint will behave symmetrically.

Scanning over the single row of the template, Voiceover
will determine the length of each uninterrupted “speaking”
period. Based on the parameters of the encoding and mod-
ulation, Voiceover computes the number of bytes to send
which will produce exactly that duration of audio. During
“silent” periods in the template, Voiceover simply does not
transmit any audio. During “overlapping” periods in which
both endpoints are ’speaking,’ Voiceover will modulate null
bytes which will be discarded during demodulation. This was
done to improve goodput as audio interference could cause
application-layer transformations of the transmitted audio sig-
nal. Concurrently, Voiceover will record all audio received
from the VoIP channel and process it with the receiving side
of the demodulation and decoding process. This forms the
base audio protocol tunnel through which we can transmit
and receive binary data.

4 Prototype Implementation and Evaluation

Voiceover implementation. We implemented the GAN com-
ponent in Python using the Keras framework based on an
open source reference implementation [39, 40]. The encod-
ing and modulation logic was constructed in Python using a
signal processing library based on several samples of QAM
designs [41, 42]. The protocol tunnel was chosen to be Skype
for Web. We automate many aspects of the audio transmis-
sion process for Voiceover using Linux pulseaudio and virtual
audio cable, and Selenium. To improve the performance of
the Voiceover demodulation process, we divide the received

4

audio signal into its constituent audio signal frames, and par-
allelize the demodulation of the audio signal frames among
all processor cores present on a Voiceover receiver endpoint.
This change improves demodulation runtime by a constant
factor. There are five audio modulation parameters that we
expose to the user to allow for finer tuning of a modulated
audio signal: sampling frequency, carrier frequency, baud rate
(or equivalently, symbol period), message frame length, and
message frame redundancy factor. See Appendix B for more
details. The full implementation source is made available on
GitHub.

Strawman baseline implementation. Without access to any
implementations of prior work on audio-based protocol tun-
nels (which are not publicly available), we must implement
our own baseline to represent the existing techniques. For this
evaluation, we simply need this strawman implementation
to be an audio-based protocol tunnel that does not attempt
to shape the audio it transmits. As such, we can create the
strawman implementation using the same Voiceover architec-
ture but with a template that indicates continuous speech in
both directions. Each side of the tunnel will be continuously
transmitting as if exchanging covert data.

Data collection Our testing platform consists of two Skype
endpoints, each running in its own virtual machine on a single
host. The virtual machines are connected to an isolated virtual
network with access to the internet through a NAT. One of
the virtual machines also runs tcpdump during transmissions
to collect the raw packet traces. For this data collection, the
operating system chosen for the virtual machines was Ubuntu
18.04. Two endpoints are coordinated to use Skype for Web
to play the audio.

The real conversation data is based on audio recordings
from our original training data in Table 1. We then apply a
randomly GAN-generated template to the real data to create
Voiceover audio. For strawman, we use a template allowing
constant simultaneous transmission as described above to
generate the audio file. We collect the data by splitting each
conversation into isolated speaker channels and playing one
channel on each virtual machine. In total, we collected 4 hours
of each real, strawman, and Voiceover transmission.

4.1 Modeling the Adversary

Next, we evaluate the efficiency of Voiceover against a real-
time ML-based network traffic classifier. The classifier plays
the role of a memory-limited adversary whose goal is to iden-
tify protocol tunnels in real-time through machine-learning
classification of network flows using packet-level features.
Here, we represent the memory limitation of the adversary
in the number of consecutive packets that it will be able to
consider during network flow classification. We limit this to
1000 packets per flow, but we also evaluate Voiceover when
this limit is decreased to 500 packets.

The classifier leverages various information commonly
used in traffic analysis [43, 44]: time, packet size, and packet
direction (+/-1). We extend the nPrint [45] framework to au-
tomatically extract features from a packet. Each packet is rep-
resented with 18 features and each set of 1000 packets is thus
represented as a sample containing 18,000 features. This fea-
ture representation similarly applies to sets of 500 packets. We
automated the process of feature selection, model selection,
and hyperparameter tuning using automated machine learn-
ing (AutoML). We used the AutoGluon-Tabular implemen-
tation which is bundled with the nPrint framework [45, 46].
The models chosen are from the AutoGluon implementation,
which includes neural networks, random forests, and CatBoost
trees, to name a few [46]. We model the adversary as any ma-
chine learning classifier trained by AutoGluon-Tabular. We
use AutoGluon-Tabular to train machine learning models on
two binary classification cases: real vs. strawman and real vs.
Voiceover.

4.2 Evaluation Results

We compare the performance of the AutoGluon-Tabular mod-
els trained on the real vs. strawman case to that of the
AutoGluon-Tabular models trained on the real vs. Voiceover
case for the 1000 packet setting by comparing their precision-
recall (PR) curves and receiver operating characteristic (ROC)
curves. Given the processed packet capture data described
above, the AutoGluon-Tabular models for the real vs. straw-
man case were trained on 2,160 samples, validated on 500
samples, and tested on 1,140 samples; the AutoGluon-Tabular
models for the real vs. Voiceover case were trained on 2,197
samples, validated on 500 samples, and tested on 1,157 sam-
ples. The evaluation metric for the AutoGluon-Tabular train-
ing process for both real vs. strawman and real vs. Voiceover
cases was chosen to be accuracy. In the remainder of this
section, we refer to an adversary trained to identify strawman
transmissions as meaning an adversary using the machine
learning models trained by AutoGluon-Tabular on the real vs.
strawman case. We use similar language meant to describe an
adversary trained to identify Voiceover transmissions.

An adversary using a classifier to identify the strawman
transmissions could do so with far greater certainty than
using a classifier to identify Voiceover transmissions. Fig-
ure 5 compares the PR curves of the best-performing model
trained by AutoGluon-Tabular for the real vs. strawman case,
referred to as the strawman classifier, to that of the best-
performing model trained by AutoGluon-Tabular for the real
vs. Voiceover case, referred to as the Voiceover classifier. We
observe that the adversary is capable of classifying strawman
transmissions with extremely high precision and recall. How-
ever, the adversary does not achieve the same performance in
classifying Voiceover transmissions, as the Voiceover classi-
fier incurs a significant decrease in precision even when
the recall rate is at 0.1. Now comparing the ROC curves of

5

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
isi

on
Classifier PR Curves for Identifying Strawman or Voiceover Protocol Tunnels

Strawman (aucPR = 0.959)
Voiceover (aucPR = 0.482)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Classifier ROC Curves for Identifying Strawman or Voiceover Protocol Tunnels

Strawman (auROC = 0.981)
Voiceover (auROC = 0.682)

Figure 5: The Precision-Recall (Upper) and ROC curves
(Lower) of the best-performing attacks against Strawman
and Voiceover. The dashed line represents random guessing.

the best performing models of the strawman and Voiceover
classifiers in Figure 5, we observe that with an extremely
small false positive rate, the adversary could identify nearly
all of the strawman transmissions. On the other hand, for the
same false positive rate, the adversary could identify less than
20% of Voiceover transmissions and the Voiceover classifier
must incur more false positives to achieve a higher true
positive rate. This discrepancy is also evident in the auROC
for each classifier, where the auROC for identifying Voiceover
is less than 0.7 while the auROC for identifying the strawman
transmissions is nearly 1.0.

The bar charts given in Figure 6 represent the raw confu-
sion matrix values of the top three performing models that
AutoGluon-Tabular evaluated for the real vs. strawman and
real vs. Voiceover cases each as percentages of all tested sam-
ples. We can see that for the top three models trained to
identify strawman transmissions, the top three models
trained to identify Voiceover transmissions all incurred a
large increase in false negatives, indicating that the models
had more difficulty in being able to distinguish Voiceover
transmissions from real transmissions.

Lastly, we evaluate the performance of Voiceover when the
number of consecutive packets that the adversary is allowed
to consider for flow classification is varied. We evaluated
the performance of Voiceover when this limit was decreased
to 500 packets. This changes the classification problem but
varies the amount of information that the adversary is allowed

WeightedEnsemble_L2 NeuralNetFastAI CatBoost
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

27.28 27.28 26.58

70.26 70.18 70.09

1.84 1.93 2.020.61 0.61 1.32

Performance of Top 3 Strawman Classifier Models
True Positives
True Negatives
False Positives
False Negatives

WeightedEnsemble_L2 NeuralNetFastAI LightGBMXT
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

4.67 4.67
0.69

67.59 67.59 70.35

3.11 3.11 0.35

24.63 24.63
28.61

Performance of Top 3 Voiceover Classifier Models
True Positives
True Negatives
False Positives
False Negatives

Figure 6: The top three models against Strawman (Upper)
and Voiceover (Lower).

of Packets 500 1000
Strawman aucPR 0.93 0.96
Voiceover aucPR 0.50 0.48
Strawman auROC 0.97 0.98
Voiceover auROC 0.68 0.68

Table 2: The efficiency of the best-performing attacks when
using different numbers of packets for attacks.

to access in each packet flow sample.
For the 500 packet setting, the AutoGluon-Tabular models

for the real vs. strawman case were trained on 4,822 samples,
validated on 536 samples, and tested on 2,297 samples. The
AutoGluon-Tabular models for the real vs. Voiceover case
were trained on 4,888 samples, validated on 544 samples,
and tested on 2,329 samples. The evaluation metric for the
AutoGluon-Tabular training process for both real vs. straw-
man and real vs. Voiceover cases in the 500 packet setting
was again accuracy. Table 2 gives the area under ROC curves
of the best-performing model trained by AutoGluon-Tabular
for the real vs. strawman case compared to that of the model
trained by AutoGluon-Tabular for the real vs. Voiceover case
when the packet limit is varied. The results show that even
when the number of packets the adversary is allowed to
consider is varied, Voiceover reduced classification accu-
racy.

These results support both of our hypotheses and illus-
trate the value of the audio-shaping component of Voiceover
in decreasing classification accuracy for machine-learning

6

Figure 7: We compare the histogram distribution of speaking
states between generated samples and truly observed training
samples. Here the right/blue bars represent the count of time
periods for each speaking state (Neither Speaker, Speaker A,
Speaker B, and Both Speakers).

classifiers. First, the machine learning classifiers trained by
AutoGluon-Tabular were able to identify a substantial portion
the strawman transmissions with minimal consequences in
falsely identifying the real conversations. Second, applying
Voiceover’s GAN to shape audio transmissions made the per-
formance of the AutoGluon-Tabular classifiers significantly
worse.

4.3 GAN Output Distribution
We evaluate the output distribution of Voiceover’s GAN out-
put timing templates. Training the GAN model over 10,000
tandem epochs using an Adam optimizer on the discrimina-
tor’s binary cross-entropy loss, we create a model that pro-
duces realistic templates fitting within the distribution of the
real training data templates. As a high-level test of this model,
we study the distribution of speaking states between gener-
ated samples and training samples. The four possible states
of speaking in a two-person conversation are None, Person
A, Person B, and Both. Figure 7 shows a comparison of the
distributions. Here we can see that the GAN model is generat-
ing samples that reasonably fit within the distribution of real
training samples.

4.4 Packet Size Analysis
While packet size was leveraged as a feature in our machine
learning evaluation component, we also found that Skype for
Web is a protocol tunnel that is immune to packet size
analysis. We collected packet traces from only one Voiceover
endpoint that is transmitting an outgoing signal. We then cal-
culated the cumulative distribution function (CDF) of packet
sizes associated with Skype network traffic using packet traces
collected from outgoing Voiceover audio transmissions and
compared it to the CDF of packet sizes associated with Skype
network traffic using packet traces collected from outgoing

Figure 8: The packet size CDFs of Voiceover transmissions
and real conversations across different operating systems is
shown.

real audio transmissions. Qualitatively, unobservability is
achieved when the CDF of packet size from the real audio
transmission is practically identical to that of the Voiceover
audio transmission. We compared packet size CDFs across
different operating systems to further show that these results
hold even on different OS platforms. We further elaborate on
our experimental design choices and compared packet size
CDFs across different Voiceover audio modulation parameters
in Appendix C.

In our operating systems comparison, the operating systems
were chosen to be Ubuntu 18.04 and Windows 10. We fixed
Voiceover modulation parameters to their default values and
fixed the timing template used to shape the covert audio signal.
The covert plaintext messages to be transmitted by Voiceover
were randomly generated. We collected over 2 hours worth
of packet traces for each operating system and over 4 hours
worth of packet traces of real audio transmissions. The CDF
of packet sizes for each type of audio transmission in this
experiment is shown in Figure 8.

We find that across different operating systems and differ-
ent Voiceover modulation parameters (the latter results are
given in Appendix C), the CDFs of packet sizes are nearly
identical to each other which suggests that Skype for Web
provides for a protocol tunnel resistant to packet size
analysis. Moreover, since the packet size CDFs are identical
across different operating systems, this bolsters the usability
of Voiceover across popular OS platforms.

4.5 Throughput Analysis
We evaluate the overall usability of Voiceover as a communi-
cation tool by analyzing its goodput. Since Voiceover breaks
up plaintext messages into message frames for modulation,
we focus on the throughput of solely the plaintext message
(i.e. goodput) since each message frame possesses overhead.
Voiceover transmits shaped audio signals that have a maxi-
mum duration of five minutes. Assuming that no audio shap-
ing is applied, that is, a strawman transmission, the good-

7

Parameter Goodput (bytes/s)
Skype Theoretical Limit 750 - 63,750
Strawman w/ Defaults 62.32
Strawman w/ No Redundancy 124.68
Strawman w/ Redundancy Factor = 3 41.56
Strawman w/ Frame Length = 3 36.92
Strawman w/ Frame Length = 12 84.96
Voiceover w/ Defaults 31.16
Voiceover w/ No Redundancy 62.32
Voiceover w/ Redundancy Factor = 3 20.78
Voiceover w/ Frame Length = 3 18.46
Voiceover w/ Frame Length = 12 42.48

Table 3: Goodput in bytes under different parameters.

put of Voiceover with default audio modulation parameters
and default reliability layer parameters will be 62.32 bytes
per second. However, Voiceover will shape audio signals by
adding periods of silence when a message is being modulated
into an audio signal. Thus, the goodput of Voiceover will be
strictly less than 62.32 bytes per second. The actual goodput
of Voiceover will be dependent on the timing template used,
since the timing template determines when Voiceover will
transmit the signal and when it will transmit silence.

There are certain tradeoffs and optimizations that could in-
crease goodput. For example, one could forego the application
of redundancy in the reliability layer to increase throughput at
the expense of message recovery. Since the default setting is
to add one redundant frame, removing this redundancy would
lead to a doubling of goodput. Conversely, adding more redun-
dant frames would decrease goodput. Another tradeoff is the
size of each frame. If one were to choose larger frame sizes,
goodput would increase as their per-frame overhead would
decrease. On the other hand, if one were to choose smaller
frame sizes to improve message recoverability, goodput would
decrease as more frames would be required to modulate an
entire signal, leading to an increase in per-frame overhead.

It is worth mentioning that since Voiceover uses Skype as
an audio protocol tunnel, the throughput of Voiceover will
have a theoretical limit equal to that of the Skype audio proto-
col. For the Skype audio codec, the limit is between 6 and 510
kilobits per second, or equivalently, between 750 and 63,750
bytes per second [29]. These throughput results suggest that
Voiceover is more suitable for less-demanding applications
in terms of data throughput. A summary of this throughput
analysis showing different trade-offs is given in Table 3.

5 Limitations and Future Work

Use realistic training data. Our preliminary analysis uses
telephone conversations captured from several separate lin-
guistic studies to approximate VoIP conversations. Our future
work considers collecting a large number of real VoIP conver-
sations for evaluation.

Consider advanced adversaries. Our work mostly focuses

on content mismatch caused by timing, while there are more
advanced content mismatch attacks (e.g., inferring the phrases
or words that were spoken [47]). We will consider advanced
attacks and perform a more rigorous security analysis. Addi-
tionally, we will examine the trade-off between resource usage
and attack efficiency to justify the assumption of memory-
limited adversaries.

Improve throughput. We plan to further reduce performance
overhead to improve the throughput of Voiceover, by tuning
the parameters discussed in Appendix B. Note that every
multimedia protocol tunnel is strictly limited to a through-
put below the throughput of the target protocol so Voiceover
is not suitable for high-throughput applications. That said,
Voiceover is useful, e.g., as an out-of-band channel for shar-
ing secret keys for censorship circumvention tools.

6 Conclusion

This paper presents Voiceover, a censorship circumventing
protocol tunnel that mitigates content mismatch attacks us-
ing generative modeling. Our technique acknowledges that a
mismatch of media properties in a protocol tunnel will cause
distinguishing features in the network traffic produced by that
tunnel. We address this by constructing a generative machine-
learning model that learns the distribution of timing properties
from real two-person conversations. This generative model
acts as a template to conform our protocol tunnel transmis-
sions to fit within a distribution of realistic conversations.
Voiceover, therefore, resists detection not only by analysis
of the protocol implementation but also resists detection by
censors employing more advanced traffic analysis techniques
that leverage machine learning. We provide open-source ac-
cess to our prototype implementation and contribute part of
our signal processing implementation to a widely used re-
search library. With this prototype, we show that a protocol
tunnel without generative modeling can be reliably identified
by machine-learning classifiers and that when Voiceover in-
troduced conversation modeling based on timing properties,
classifier performance decreased.

7 Acknowledgments

We would like to thank Vinod Yegneswaran and the anony-
mous reviewers for their constructive feedback. This work
was supported in part by the National Science Foundation
under grants CNS-1553437, CNS-1704105, CNS-2131938,
the Open Technology Fund, and by the United States Air
Force and DARPA under Contract No. FA8750-19-C-0079.
Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Air Force,
DARPA, or any other sponsoring agency.

8

References

[1] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishna-
murthy, “Your state is not mine: a closer look at evading
stateful internet censorship,” in Proceedings of the 2017
Internet Measurement Conference, 2017, pp. 114–127.

[2] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming
over videoconferencing for censorship circumvention,”
in Proceedings of the 13th Workshop on Privacy in the
Electronic Society, 2014, pp. 163–172.

[3] D. Barradas, N. Santos, and L. Rodrigues, “Deltashaper:
Enabling unobservable censorship-resistant tcp tunnel-
ing over videoconferencing streams,” Proceedings on
Privacy Enhancing Technologies, vol. 2017, no. 4, pp.
5–22, 2017.

[4] R. McPherson, A. Houmansadr, and V. Shmatikov,
“Covertcast: Using live streaming to evade internet cen-
sorship,” Proceedings on Privacy Enhancing Technolo-
gies, vol. 2016, no. 3, pp. 212–225, 2016.

[5] J. Geddes, M. Schuchard, and N. Hopper, “Cover your
acks: Pitfalls of covert channel censorship circumven-
tion,” in Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security, 2013,
pp. 361–372.

[6] B. Wiley, “Dust: A blocking-resistant internet transport
protocol,” Technical rep ort. http://blanu. net/Dust. pdf,
2011.

[7] P. Winter, T. Pulls, and J. Fuss, “Scramblesuit: A poly-
morphic network protocol to circumvent censorship,” in
Proceedings of the 12th ACM workshop on Workshop
on privacy in the electronic society, 2013, pp. 213–224.

[8] “Tor project, obfsproxy2.” [Online]. Available: https:
//gitweb.torproject.org/pluggable-transports/obfsproxy.
git/tree/doc/obfs2/obfs2-protocol-spec.txt

[9] “Tor project, obfsproxy3.” [Online]. Available: https:
//gitweb.torproject.org/pluggable-transports/obfsproxy.
git/tree/doc/obfs3/obfs3-protocol-spec.txt

[10] “Tor project, obfsproxy4.” [Online]. Available: https:
//github.com/Yawning/obfs4/blob/master/doc/obfs4-s
pec.txt

[11] “Racecar project, obfsproxy5.” [Online]. Available:
https://racecar.cs.georgetown.edu/software/

[12] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and
T. Shrimpton, “Seeing through network-protocol ob-
fuscation,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
2015, pp. 57–69.

[13] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg, “Skypemorph: Protocol obfuscation for tor
bridges,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp.
97–108.

[14] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeis-
ter, S. Cheung, F. Wang, and D. Boneh, “Stegotorus: a
camouflage proxy for the tor anonymity system,” in Pro-
ceedings of the 2012 ACM conference on Computer and
communications security, 2012, pp. 109–120.

[15] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr,
and N. Borisov, “Censorspoofer: asymmetric commu-
nication using ip spoofing for censorship-resistant web
browsing,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp.
121–132.

[16] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimp-
ton, “Protocol misidentification made easy with format-
transforming encryption,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, 2013, pp. 61–72.

[17] K. P. Dyer, S. E. Coull, and T. Shrimpton, “Marionette:
A programmable network traffic obfuscation system,” in
24th {USENIX} Security Symposium ({USENIX} Secu-
rity 15), 2015, pp. 367–382.

[18] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The
parrot is dead: Observing unobservable network com-
munications,” in 2013 IEEE Symposium on Security and
Privacy. IEEE, 2013, pp. 65–79.

[19] “Tor project, meek.” [Online]. Available: https:
//gitlab.torproject.org/legacy/trac/-/wikis/doc/meek

[20] “Tor project, snowflake.” [Online]. Available: https:
//gitlab.torproject.org/tpo/anti-censorship/pluggable-t
ransports/snowflake/-/wikis/home

[21] D. Fifield, “Turbo tunnel, a good way to design cen-
sorship circumvention protocols,” in 10th {USENIX}
Workshop on Free and Open Communications on the
Internet ({FOCI} 20), 2020.

[22] D. Barradas, N. Santos, L. Rodrigues, and V. Nunes,
“Poking a hole in the wall: Efficient censorship-resistant
internet communications by parasitizing on webrtc,” in
Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 35–
48.

[23] W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov,
“Sweet: Serving the web by exploiting email tunnels,”
arXiv preprint arXiv:1211.3191, vol. 13, 2012.

9

https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://racecar.cs.georgetown.edu/software/
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/meek
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/home
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/home
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/wikis/home

[24] C. Brubaker, A. Houmansadr, and V. Shmatikov, “Cloud-
transport: Using cloud storage for censorship-resistant
networking,” in International Symposium on Privacy
Enhancing Technologies Symposium. Springer, 2014,
pp. 1–20.

[25] B. Hahn, R. Nithyanand, P. Gill, and R. Johnson, “Games
without frontiers: Investigating video games as a covert
channel,” in 2016 IEEE European Symposium on Secu-
rity and Privacy (EuroS&P). IEEE, 2016, pp. 63–77.

[26] P. Vines and T. Kohno, “Rook: Using video games as
a low-bandwidth censorship resistant communication
platform,” in Proceedings of the 14th ACM Workshop
on Privacy in the Electronic Society, 2015, pp. 75–84.

[27] A. Houmansadr, T. J. Riedl, N. Borisov, and A. C. Singer,
“I want my voice to be heard: Ip over voice-over-ip
for unobservable censorship circumvention.” in NDSS,
2013.

[28] G. Figueira, D. Barradas, and N. Santos, “Stegozoa: En-
hancing webrtc covert channels with video steganogra-
phy for internet censorship circumvention,” in Proceed-
ings of the 2022 ACM on Asia Conference on Computer
and Communications Security, 2022, pp. 1154–1167.

[29] J. M. Valin, K. Vos, and T. Terriberry, “Definition of
the opus audio codec,” Internet Requests for Comments,
RFC Editor, RFC 6716, 9 2012. [Online]. Available:
https://tools.ietf.org/html/rfc6716

[30] C. Perkins and J. M. Valin, “Guidelines for the use
of variable bit rate audio with secure rtp,” Internet
Requests for Comments, RFC Editor, RFC 6562, 3 2012.
[Online]. Available: https://tools.ietf.org/html/rfc6562

[31] D. Barradas, N. Santos, and L. Rodrigues, “Effective
detection of multimedia protocol tunneling using ma-
chine learning,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 169–185.

[32] A. Radford, L. Metz, and S. Chintala, “Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks,” arXiv preprint arXiv:1511.06434,
2015.

[33] Google, “Webrtc,” https://webrtc.org/.

[34] wiseman, “py-webrtcvad,” https://github.com/wiseman
/py-webrtcvad/releases/tag/2.0.10.

[35] A. Canavan, D. Graff, and G. Zipperlen, “Callhome
american english speech,” https://catalog.ldc.upenn.
edu/LDC97S42.

[36] J. J. Godfrey and E. Holliman, “Switchboard-1 release
2,” https://catalog.ldc.upenn.edu/LDC97S62.

[37] C. Greenberg, A. Martin, D. Graff, K. Walker, K. Jones,
and S. Strassel, “2011 nist language recognition evalua-
tion test set,” https://catalog.ldc.upenn.edu/LDC2018S
06.

[38] A. Dhananjay, A. Sharma, M. Paik, J. Chen, T. K. Kup-
pusamy, J. Li, and L. Subramanian, “Hermes: data trans-
mission over unknown voice channels,” in Proceedings
of the sixteenth annual international conference on Mo-
bile computing and networking, 2010, pp. 113–124.

[39] eriklindernoren, “Keras-GAN,” https://github.com/erikl
indernoren/Keras-GAN.

[40] TensorFlow Core Tutorials, “Deep convolutional
generative adversarial network.” [Online]. Available:
https://www.tensorflow.org/tutorials/generative/dcgan

[41] V. Taranalli, “CommPy: Digital Communication with
Python,” https://github.com/veeresht/CommPy.

[42] “Baseband signal upconversion and iq modulation and
demodulation.” [Online]. Available: https://dspillustrat
ions.com/pages/posts/misc/baseband-up-and-downcon
version-and-iq-modulation.html

[43] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep
fingerprinting: Undermining website fingerprinting de-
fenses with deep learning,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 1928–1943.

[44] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangad-
hara, and M. Wright, “Tik-tok: The utility of packet
timing in website fingerprinting attacks,” Proceedings
on Privacy Enhancing Technologies, vol. 2020, no. 3,
2020.

[45] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New
directions in automated traffic analysis,” 2021.

[46] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Lar-
roy, M. Li, and A. Smola, “Autogluon-tabular: Robust
and accurate automl for structured data,” arXiv preprint
arXiv:2003.06505, 2020.

[47] A. M. White, A. R. Matthews, K. Z. Snow, and F. Mon-
rose, “Phonotactic reconstruction of encrypted VoIP con-
versations: Hookt on fon-iks,” in 2011 IEEE Symposium
on Security and Privacy. IEEE, 2011, pp. 3–18.

A Per-Model Evaluation of Voiceover

We present the PR and ROC curves for all machine learn-
ing classifiers trained by AutoGluon-Tabular for the real vs.
strawman and real vs. Voiceover classification cases in the

10

https://tools.ietf.org/html/rfc6716
https://tools.ietf.org/html/rfc6562
https://webrtc.org/
https://github.com/wiseman/py-webrtcvad/releases/tag/2.0.10
https://github.com/wiseman/py-webrtcvad/releases/tag/2.0.10
https://catalog.ldc.upenn.edu/LDC97S42
https://catalog.ldc.upenn.edu/LDC97S42
https://catalog.ldc.upenn.edu/LDC97S62
https://catalog.ldc.upenn.edu/LDC2018S06
https://catalog.ldc.upenn.edu/LDC2018S06
https://github.com/eriklindernoren/Keras-GAN
https://github.com/eriklindernoren/Keras-GAN
https://www.tensorflow.org/tutorials/generative/dcgan
https://github.com/veeresht/CommPy
https://dspillustrations.com/pages/posts/misc/baseband-up-and-downconversion-and-iq-modulation.html
https://dspillustrations.com/pages/posts/misc/baseband-up-and-downconversion-and-iq-modulation.html
https://dspillustrations.com/pages/posts/misc/baseband-up-and-downconversion-and-iq-modulation.html

Figure 9: These PR curves represent the possible tradeoffs
between recall and precision when identifying the strawman
transmission or the Voiceover transmission. The dashed line
represents a precision rate of 50% while a perfect classifier
would be a horizontal line with a precision of 1. These results
indicate a substantial decrease in the performance of the ad-
versary when Voiceover introduces the conversation modeling
on top of the strawman technique.

1000 packet setting. The results are given in Figure 9, Fig-
ure 10, Figure 11, and Figure 12. Note that AutoML did not
train an XGBoost model in the real vs. strawman classifica-
tion case. However, we do not expect the XGBoost model
to perform significantly worse than the other models trained
in the real vs. strawman classification case, as XGBoost has
previously been shown to have been effective in classifying
other multimedia-based protocol tunnels [31].

The results show that for the real vs. Voiceover classifi-
cation case, each model trained by AutoGluon-Tabular ex-
perienced a degradation in performance compared to its
corresponding model trained by AutoGluon-Tabular for the
real vs. strawman classification case. This is attributable to
Voiceover’s GAN component that is applying audio shaping
based on timing properties.

B Voiceover Parameters

There are five audio modulation parameters that we expose to
the user to allow for finer tuning of a modulated audio signal:
sampling frequency, carrier frequency, baud rate (or equiva-
lently, symbol period), message frame length, and message
frame redundancy factor. The default sampling frequency, car-
rier frequency, and symbol period were chosen to be 8 kHz,
2 kHz and 0.625 ms, respectively. A carrier frequency of 2
kHz ensures that the lowest sample rate of the OPUS codec
will still fully capture the signal (see the Nyquist-Shannon
sampling theorem). The 0.625ms symbol period aims to max-
imize throughput in transmission over the VoIP channel. The
message frame length is the length in characters of a plain-

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Per-Model ROC Curves for Identifying Strawman Protocol Tunnels

KNeighborsUnif (auROC = 0.474)
KNeighborsDist (auROC = 0.479)
LightGBMXT (auROC = 0.978)
LightGBM (auROC = 0.976)
RandomForestGini (auROC = 0.956)
RandomForestEntr (auROC = 0.974)

CatBoost (auROC = 0.981)
ExtraTreesGini (auROC = 0.968)
ExtraTreesEntr (auROC = 0.977)
NeuralNetFastAI (auROC = 0.985)
WeightedEnsemble_L2 (auROC = 0.981)

Figure 10: These ROC curves represent the possible tradeoffs
between false positives and true positives when identifying
the strawman transmission or the Voiceover transmission. The
dashed line represents random guessing while a perfect clas-
sifier would be a horizontal line at 100% true positive rate.
These results indicate a substantial decrease in the perfor-
mance of the adversary when Voiceover introduces the con-
versation modeling on top of the strawman technique.

text substring that will be modulated into an audio frame as
described in section 3. Note that message frame length refers
to the message payload, not the full length of the message
frame in bytes. This value was set to 6, which is roughly the
average length of an English word plus a space character. The
message frame redundancy factor determines the number of
modulated audio frames that will be sent after a plaintext sub-
string has been modulated into an audio frame as described
in the previous subsection. This value was set to 2, meaning
the original audio frame as well as a copy of that frame will
be sent as part of the full audio signal for transmission.

C Voiceover Parameter Packet Size Analysis

We present packet size CDF graphs for Voiceover transmis-
sions while varying Voiceover audio modulation parameters.
In these experiments, we only consider outgoing Voiceover
transmissions, that is, a Voiceover transmission in which only
one endpoint is transmitting. This allows us to isolate the net-
work traffic associated with a Voiceover endpoint for the pur-
poses of analyzing packet sizes. All of these experiments were
conducted using Skype for Web on Ubuntu 18.04. For these
experiments, we relaxed the requirement that each Voiceover
transmission be 5 minutes long (the full length of a timing
template sampled from Voiceover’s GAN) and instead have
each transmission be 30 seconds long. This was done in order
to collect sufficiently large amounts of packet trace data on

11

Figure 11: These PR curves represent the possible tradeoffs
between recall and precision when identifying the strawman
transmission or the Voiceover transmission. The dashed line
represents a precision rate of 50% while a perfect classifier
would be a horizontal line with a precision of 1. These results
indicate a substantial decrease in the performance of the ad-
versary when Voiceover introduces the conversation modeling
on top of the strawman technique.

unique Voiceover transmissions. This does not impact the reli-
ability of our results, as we are only concerned with obtaining
enough packet size data from Skype traffic. We calculated
packet size CDFs varying four different Voiceover modulation
parameters: carrier frequency, sampling frequency, baud rate,
and message frame length. These parameters were chosen for
evaluation as changing these parameters results in changes
to a Voiceover-modulated audio signal which could create
opportunities for content mismatch.

We also calculated packet size CDFs for bidirectional
Voiceover communication, that is, collecting packet trace data
in the situation where two Voiceover endpoints are communi-
cating with each other, rather than only looking at the outgoing
traffic for one Voiceover endpoint. This experiment aims to
evaluate Voiceover in a simulated real-world setting.

For all graphs, we also give the CDF of packet sizes from
a real audio transmission as a comparison to demonstrate
unobservability. For all experiments, 4 hours worth of real
audio transmission packet trace data was collected.

C.1 Carrier Frequency

In our carrier frequency comparison, we compared carrier
frequencies of 1, 2, and 3 KHz. We fixed all other Voiceover
modulation parameters to their default values and fixed the
timing template used to shape the audio signal. The covert
plaintext messages to be transmitted by Voiceover were ran-
domly generated. We collected roughly 1 hours worth of
packet traces for each carrier frequency variable. The CDF of
packet sizes for this experiment is shown in Figure 13.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Per-Model ROC Curves for Identifying Voiceover Protocol Tunnels

KNeighborsUnif (auROC = 0.507)
KNeighborsDist (auROC = 0.506)
LightGBMXT (auROC = 0.616)
LightGBM (auROC = 0.508)
RandomForestGini (auROC = 0.562)
RandomForestEntr (auROC = 0.554)

CatBoost (auROC = 0.507)
ExtraTreesGini (auROC = 0.633)
ExtraTreesEntr (auROC = 0.650)
NeuralNetFastAI (auROC = 0.682)
XGBoost (auROC = 0.489)
WeightedEnsemble_L2 (auROC = 0.682)

Figure 12: These ROC curves represent the possible tradeoffs
between false positives and true positives when identifying
the strawman transmission or the Voiceover transmission. The
dashed line represents random guessing while a perfect clas-
sifier would be a horizontal line at 100% true positive rate.
These results indicate a substantial decrease in the perfor-
mance of the adversary when Voiceover introduces the con-
versation modeling on top of the strawman technique.

C.2 Sampling Frequency

In our sampling frequency comparison, we compared sam-
pling frequencies of 8 and 16 KHz. We fixed all other
Voiceover modulation parameters to their default values and
fixed the timing template used to shape the audio signal. The
covert plaintext messages to be transmitted by Voiceover were
randomly generated. We collected roughly 1 hours worth of
packet traces for each sampling frequency variable. The CDF
of packet sizes for this experiment is shown in Figure 14.

C.3 Baud Rate

In our baud rate comparison, we compared baud rates of 750
and 1500 symbols per second. We fixed all other Voiceover
modulation parameters to their default values and fixed the
timing template used to shape the audio signal. The covert
plaintext messages to be transmitted by Voiceover were ran-
domly generated. Since the baud rate affects the amount of a
plaintext message that can be modulated in a given second,
the message lengths of the random plaintexts cannot be kept
constant across the baud rate variables (each Voiceover trans-
mission must be roughly 30 seconds long by our experimental
design). However, we expect that differing message lengths
will have no effect on the packet size distribution. Further
note that we did not compare the default baud rate of 1599
symbols per second. Baud rates of 750 and 1500 symbols
per second were chosen to make setting plaintext message

12

Figure 13: The packet size CDFs of Voiceover transmissions
across different carrier frequencies is shown. The CDF of real
conversations is also shown as a comparison. We can see that
the packet size CDFs for all three carrier frequencies closely
matches that of the packet size CDF of a real conversation.

Figure 14: The packet size CDFs of Voiceover transmissions
across different sampling frequencies is shown. The CDF of
real conversations is also shown as a comparison. We can
see that the packet size CDFs for both sampling frequencies
closely matches that of the packet size CDF of a real conver-
sation.

lengths easier in order to generate 30-second Voiceover trans-
missions. Regardless, we do not expect that a baud rate of
1599 symbols per second would generate different results. We
collected roughly 1 hours worth of packet traces for each baud
rate. The CDF of packet sizes for this experiment is shown in
Figure 15.

C.4 Frame Length

In our message frame length comparison, we compared mes-
sage frame lengths of 3, 6, and 12 characters. We fixed all
other Voiceover modulation parameters to their default values
and fixed the timing template used to shape the audio signal.
The covert plaintext messages to be transmitted by Voiceover
were randomly generated. Since the message frame length
parameter affects the overall length of a Voiceover transmis-

Figure 15: The packet size CDFs of Voiceover transmissions
across different baud rates is shown. The CDF of real conver-
sations is also shown as a comparison. We can see that the
packet size CDFs for both baud rates closely matches that of
the packet size CDF of a real conversation.

Figure 16: The packet size CDFs of Voiceover transmissions
across different message frame lengths is shown. The CDF of
real conversations is also shown as a comparison. We can see
that the packet size CDFs for all three message frame length
parameters closely matches that of the packet size CDF of a
real conversation.

sion due to per-frame overhead, the message lengths of the
random plaintexts cannot be kept constant across the message
frame length variables (each Voiceover transmission must be
roughly 30 seconds long by our experimental design). How-
ever, we expect that differing message lengths will have no
effect on the packet size distribution. We collected roughly 1
hours worth of packet traces for each message frame length.
The CDF of packet sizes for this experiment is shown in
Figure 16.

C.5 Bidirectional Communication

In this experiment, we aim to simulate real-world usage of
Voiceover, in which two Voiceover endpoints are simulta-
neously communicating with each other using Voiceover-
modulated audio transmissions. Audio modulation param-

13

eters were set to their defaults for both endpoints. The timing
templates were randomly sampled from the GAN to simulate
real usage of Voiceover. The covert plaintext messages to be
transmitted by Voiceover were randomly generated, and we
do not relax the duration of Voiceover transmissions - each
Voiceover audio transmission is 5 minutes long. We collected
roughly 4 hours worth of packet traces in this setting. The
CDF of packet sizes for this experiment is shown in Figure 17.

Figure 17: The packet size CDFs of real conversations and
bidirectional Voiceover transmissions are shown. In bidirec-
tional communication, one endpoint was arbitrarily set to be
a client and the other was arbitrarily set to be the server. Each
endpoint’s corresponding packet size CDF was generated
from the packet traces collected at that endpoint. We can see
that the packet size CDFs of both directions of Voiceover
transmission closely match that of the packet size CDF of a
real conversation.

14

