The use of TLS in Censorship Circumvention

Sergey Frolov
University of Colorado Boulder
sergey.frolov@colorado.edu

Abstract—TLS, the Transport Layer Security protocol, has
quickly become the most popular protocol on the Internet, already
used to load over 70% of web pages in Mozilla Firefox. Due
to its ubiquity, TLS is also a popular protocol for censorship
circumvention tools, including Tor and Signal, among others.

However, the wide range of features supported in TLS makes
it possible to distinguish implementations from one another by
what set of cipher suites, elliptic curves, signature algorithms, and
other extensions they support. Already, censors have used deep
packet inspection (DPI) to identify and block popular circumven-
tion tools based on the fingerprint of their TLS implementation.

In response, many circumvention tools have attempted to
mimic popular TLS implementations such as browsers, but this
technique has several challenges. First, it is burdensome to keep
up with the rapidly-changing browser TLS implementations, and
know what fingerprints would be good candidates to mimic.
Second, TLS implementations can be difficult to mimic correctly,
as they offer many features that may not be supported by the
relatively lightweight libraries used in typical circumvention tools.
Finally, dependency changes and updates to the underlying li-
braries can silently impact what an application’s TLS fingerprint
looks like, making it difficult for tool maintainers to keep up.

In this paper, we collect and analyze real-world TLS traffic
from over 11.8 billion TLS connections over 9 months to identify
a wide range of TLS client implementations actually used on
the Internet. We use our data to analyze TLS implementations
of several popular censorship circumvention tools, including
Lantern, Psiphon, Signal, Outline, TapDance, and Tor (Snowflake
and meek pluggable transports). We find that the many of these
tools use TLS configurations that are easily distinguishable from
the real-world traffic they attempt to mimic, even when these tools
have put effort into parroting popular TLS implementations.

To address this problem, we have developed a library, uTLS,
that enables tool maintainers to automatically mimic other pop-
ular TLS implementations. Using our real-world traffic dataset,
we observe many popular TLS implementations we are able to
correctly mimic with uTLS, and we describe ways our tool can
more flexibly adapt to the dynamic TLS ecosystem with minimal
manual effort.

I. INTRODUCTION

The Transport Layer Security (TLS) protocol is quickly
becoming the most popular protocol on the Internet, securing
network communication from interference and eavesdropping.
Already, 70% of page loads by Firefox users make use of

Network and Distributed Systems Security (NDSS) Symposium 2019
24-27 February 2019, San Diego, CA, USA

ISBN 1-891562-55-X

https://dx.doi.org/10.14722/ndss.2019.2351 1
www.ndss-symposium.org

Eric Wustrow
University of Colorado Boulder
ewust@colorado.edu

TLS [54], and adoption continues to grow as more websites,
services, and applications switch to TLS.

Given the prevalence of TLS, it is commonly used by
circumvention tools to evade Internet censorship. Because
censors can easily identify and block custom protocols [30],
circumvention tools have turned to using existing protocols.
TLS offers a convenient choice for these tools, providing
plenty of legitimate cover traffic from web browsers and
other TLS user, protection of content from eavesdroppers, and
several libraries to choose from that support it.

However, simply using TLS for a transport protocol is
not enough to evade censors. Since TLS handshakes are not
encrypted, censors can identify a client’s purported support for
encryption functions, key exchange algorithms, and extensions,
all of which are sent in the clear in the first Client Hello
message.

In fact, popular tools such as Tor have already been
blocked numerous times due to its distinctive SSL/TLS fea-
tures [49], [1], [42], [13], [60], [50], [51]. Even tools that
successfully mimicked or tunneled through other popular TLS
implementations have suffered censorship. For example, in
2016, Cyberoam firewalls were able to block meek, a pop-
ular pluggable transport used in Tor to evade censors, by
fingerprinting its TLS connection handshake [21]. Although
meek used a genuine version of Firefox bundled with Tor,
this version had become outdated compared to the rest of the
Firefox user population, comprising only a 0.38% share of
desktop browsers, compared to the more recent Firefox 45
comprising 10.69% at the time [53]. This allowed Cyberoam
to block meek with minimal collateral damage.

The problem was temporarily corrected by updating to
Firefox 45, but only a few months later, meek was blocked
again in the same manner, this time by the FortiGuard firewall,
which identified a combination of SNI extension values sent by
meek and otherwise matching the signature of Firefox 45 [22].
At that time, Firefox 47 had been released, supporting a
distinguishable set of features. The rapid pace of new imple-
mentations and versions is a difficult task to keep up with.

Another motivating example of these challenges is found
in the Signal secure messaging application [57]. Until recently,
Signal employed domain fronting to evade censorship in sev-
eral countries including Egypt, Saudi Arabia, and the United
Arab Emirates [25], [41]. However, due to a complicated
interaction with the library it used to implement TLS, we
find that Client Hello messages sent by Signal while domain
fronting differ from their intended specification, ultimately
allowing them to be distinguished from the implementations

they attempted to mimic and easy for censors to block’.

These examples demonstrate the difficulties in making
TLS implementations robust against censorship. To further
study this problem, we collect and analyze real-world TLS
handshakes, and compare them to handshakes produced by
several censorship circumvention tools. Our study examines
TLS connections from a 10 Gbps tap at the University of
Colorado Boulder, serving over 33,000 students and 7,000
faculty. We collected over 11 billion TLS connections over
a 9 month period. For each connection, we generate a hash
(fingerprint) [47], [34] over unchanging parts of the Client
Hello message, allowing us to group connections that were
made by the same implementation together. We also collect
information on corresponding Server Hello messages, and
anonymized SNI and destination IPs to assist further analysis.

Using our data, we find several problems across many
circumvention tools we analyze, including Signal, Lantern, and
Snowflake, and uncover less serious but still problematic issues
with Psiphon and meek. To enable other researchers to use our
dataset, we have released our data through a website, available
at https://tlsfingerprint.io.

To address the challenge faced by existing circumvention
tools, we have developed a client TLS library, uTLS, purpose
built to provide fine-grained control over TLS handshakes.
uTLS allows developers to specify arbitrary cipher suites
and extensions in order to accurately mimic other popular
TLS implementations. Moreover, we integrate our dataset with
uTLS to allow developers to copy automatically-generated
code from our website to configure uTLS to mimic popular
fingerprints we have observed.

We describe and overcome several challenges in correctly
mimicking implementations, and we implement multiple eva-
sion strategies in uTLS including mimicry and randomized
fingerprints, and finally evaluate each of these strategies using
our dataset. In addition, we have worked with several existing
circumvention tools to integrate our uTLS library into their
systems.

In our data collection, we have made sure to collect
only aggregates of potentially sensitive data to protect user
privacy. We have applied for and received IRB exemption
from our institution for this study, and worked closely with
our institution’s networking and security teams to deploy our
system in a way that protects the privacy of user traffic. Our
findings were disclosed responsibly to the projects and tools
impacted by our results.

Our contributions are as follows:

e We collect and analyze over 11 billion TLS Client
Hello messages over a 9 month period, as well as
5.9 billion TLS Server Hellos over several months.
We intend to continue collecting future data.

e We analyze existing censorship circumvention projects
that use or mimic TLS, finding that many are trivially
identifiable in practice, and potentially at risk of being
blocked by censors.

I'Signal has since phased out domain fronting for unrelated reasons

e We develop a library, uTLS, that allows developers
to easily mimic arbitrary TLS handshakes of popular
implementations, allowing censorship circumvention
tools to better camouflage themselves against censors.
We use our collected data to enhance uTLS, allowing
automated mimicry of popular TLS implementations.

e We release our dataset through a website?, allowing
researchers to browse popular TLS implementation
fingerprints, search for support of ciphers, extensions,
or other cryptographic parameters, and compare the
TLS fingerprints generated by their own applications
and devices.

We present background in Section II, the design of our
collection infrastructure in Section III, and high level results
from our dataset as it pertains to censorship in Section IV.
We present our analysis and findings on circumvention tools
in Section V, and present defenses and lessons in Section VI.
We go on to describe our uTLS library in Section VII, discuss
future and related work in Sections IX and X, and finally
conclude in Section XI.

II. BACKGROUND

Client Client Hello Server

Server Hello

Certificate

Key Exchange

Key Exchange

Change Cipher Spec
Finished

Change Cipher Spec
Finished

Fig. 1. TLS Handshake— The TLS handshake contains several messages
sent unencrypted, including the Client Hello. This allows us to fingerprint
client implementations by the features and parameters they send in this initial
message.

TLS typically takes place over a TCP connection between

a client and server?.

After a TCP connection is established, the client and server
perform a TLS handshake that allows them to authenticate
identities and agree on keys, ciphers, and other cryptographic
parameters to be used in the connection. The remainder of the
connection is encrypted with the agreed upon methods and
secrets. Figure 1 shows an overview of the TLS 1.2 handshake.

The first message in the TLS handshake is a Client Hello
message. This message is sent in the clear, and allows the
client to specify features and parameters that it supports. This
includes what versions of TLS the client supports, a list of
supported cipher suites and compression methods, a random

Zhttps://tlsfingerprint.io
3 Although TLS can happen on top of other protocols (such as UDP), for
the purposes of this paper, we focus on TLS over TCP.

nonce to protect against replay attacks, and an optional list
of extensions. Extensions allow clients and servers to agree
on additional features or parameters. While there are over 20
extensions specified by various TLS versions, we pay extra
attention to the contents of few of them in this paper, which
we use as part of the Client Hello fingerprint.

Server Name Indication (SNI) allows a client to specify
the domain being requested in the Client Hello, allowing the
server to send the correct certificate if multiple hosts are
supported. As this is sent before the handshake, SNIs are sent
unencrypted.

Supported Groups This extension specifies a list of sup-
ported mathematical groups that the client can use in key
exchanges and for authentication. For example, the client can
specify support for groups such as x25519, secp256k1 to
specify support for Curve25519 and the NIST P-256 Koblitz
curve for use in ECDHE key exchanges.

Signature Algorithms Clients can specify combinations of
hash and signature algorithms they support for authenticating
their peers. Traditionally these have come in the form of a
signature and hash algorithm pair, such as rsa_sha256 or
ecdsa_shab512. More recently, signature algorithms have
been expanded to specify alternate padding schemes (such as
RSA PSS).

Elliptic Curve Point Format specifies the encoding for-
mats supported by the client when sending or receiving elliptic
curve points.

Application Layer Protocol Negotiation (ALPN) allows
clients to negotiate the application protocols they support
on top of TLS. For instance, a web browser could specify
HTTP/1.1, HTTP2 [7], and SPDY [15]. As these are a list
of arbitrary strings, unlike most other extensions, there is no
standard set of possible application protocols.

GREASE (Generate Random Extensions And Sustain
Extensibility) is a TLS mechanism intended to discourage
middleboxes and server implementations from “rusting shut”
due to ubiquitous static use of TLS extensibility points [8]. If
clients only ever send a subset of TLS extension values, subpar
(but still widely deployed) implementations may be tempted
to hardcode those values or parse for them specifically. If this
happens, later versions or implementations of TLS that attempt
to include additional extensions may find that they cannot
complete a TLS connection through buggy middlebox imple-
mentations. To discourage this, GREASE specifies that clients
may send “random” extensions, cipher suites, and supported
groups. Google has deployed GREASE in recent versions
of Chrome, discouraging buggy server implementations that
reject unknown extensions, cipher suites, or supported groups.
Instead, such buggy implementations would be quickly discov-
ered to not work with Google Chrome, prompting maintainers
to fix the server or middlebox before it was widely deployed.

III. MEASUREMENT ARCHITECTURE

Our institution’s network consists of a full-duplex 10 Gbps
link for the main campus network, including campus-wide
WiFi traffic, lab computers, residence halls, and web services.
In cooperation with our university’s networking and IT sup-
port, we deployed a single 1U server with a dual-port Intel

X710 10GbE SFP+ network adapter, with an Intel Xeon E5-
2643 CPU and 128 GB of RAM. We received a “mirror” of
the bi-directional campus traffic from an infrastructure switch.

Of the packets that reach our server, we suffer a modest drop
rate below 0.03%.

We used PF_RING to process packets from the NIC and
load balance them across 4-cores (processes). We wrote our
packet processing code in 1400 lines of Rust. We ignored
packets that were not TCP port 443 or had incorrect TCP
checksums, and kept an internal flow record of each new
connection. Upon seeing a TCP SYN, we recorded the 4-tuple
(source/destination IP/port) in a flow record table, and waited
for the first TCP packet carrying data in the connection. We
attempted to parse this data as a TLS Client Hello message,
which succeeded 96.7% of the time. We note that this method
will miss out-of-order or fragmented Client Hello messages.

A. Collected Data

In our study, we collected 3 kinds of information from
the network, including counts and coarse grained times-
tamps of unique Client Hello messages, a sample of SNI
and anonymized connection-specific metadata for each unique
Client Hello, and Server Hello responses. We applied for and
received IRB exemption for our collection, and worked with
our institution’s network and IT staff to ensure protection of
user privacy.

Client Hellos For successfully parsed Client Hellos, we
extracted the TLS record version, handshake version, list of
cipher suites, list of supported compression methods, and list
of extensions. When present, we extracted data from several
specific extensions, including the server name indication, el-
liptic curves (supported groups), EC point formats, signature
algorithms, and application layer protocol negotiation (ALPN).
We then formed a fingerprint ID from this data, by taking
the SHA1 hash of the TLS record version, handshake version,
cipher suite list, compression method list, extension list, elliptic
curve list, EC point format list, signature algorithm list, and
ALPN list*. We truncated the SHA1 hash to 64-bits to allow it
to fit a native type in our database. Assuming no adversarially-
generated fingerprints, the probability of any collision (given
by the birthday paradox) in a dataset of up to 1,000,000 unique
fingerprints is below 10~7. For each fingerprint, we recorded
a count of the number of connections it appeared in for each
hour in a PostgreSQL database.

Connection-specific information To provide more context
for identifying fingerprints, we also recorded the destination
server IP, server name indication (if present), and anonymized
client IP /16 network from a small sample of connections,
along with the corresponding Client Hello fingerprint. This
sample data helps us determine the source implementation or
purpose of a particular fingerprint.

Server Hellos In addition to Client Hello messages, we
also collected the corresponding server hello in each connec-
tion, allowing us to see what cipher suite and extensions were
negotiated successfully. For each Server Hello message, we
parsed the TLS record version, handshake version, cipher suite,
compression method, and list of extensions. We also included

4We specifically exclude server name from our fingerprint

10 Gbps Tap

Track TLS
Flows

-

PF_RING

Client Hello
Server Hello ¢

Update DB

04 Fingerprint 2

Thread > @

Postgres

Fig. 2. Collection Architecture— We implemented our 10 Gbps collection infrastructure using PF_RING and 1400 lines of Rust, utilizing 4 processes. TLS
client and ServerHello fingerprints and counts were aggregated and periodically written to a PostgreSQL database in a separate thread to avoid blocking the

main packet parsing loop.

the data from the supported groups (elliptic curves), EC point
format, and ALPN extensions.

Figure 2 shows a high level overview of our collection
architecture.

BrowserStack In order to help link fingerprints to their im-
plementations, we used BrowserStack—a cloud-based testing
platform—to automatically conscript over 200 unique browser
and platform combinations to visit our site, where we linked
user agents to captured Client Hello fingerprints. Combined
with normal web crawling bots and manual tool tests, our
website collected over 270 unique fingerprints, with over 535
unique user agents.

3500 1
3000
2500
2000
1500 |

1000 f

Connections / second

500

Fig. 3. Connections observed — We collected 9 months of TLS connections
on our 10 Gbps campus network, observing over 11 billion connections.
Noticeable is the diurnal pattern of traffic, as well as a decrease in traffic
on weekends and holiday breaks.

B. Collection Details

Multiple Fingerprints Some TLS implementations gen-
erate several fingerprints. For example, Google Chrome gen-
erates at least 4 fingerprints, even from the same device.
This is due to sending different combinations of extensions
depending on the context and size of TLS request. Due to
a server bug in the popular F5 Big IP load balancer, Client
Hello messages between 256 and 511 bytes cause the device
to incorrectly assume the message corresponds to an SSLv2
connection, interrupting the connection. When Google Chrome
detects it would generate a Client Hello in this size range (for
example by including a long TLS session ticket or server name
value), it pads the Client Hello to 512 bytes using an additional
padding TLS extension.

Browsers can also send different fingerprints from default
due to end-user configurations or preferences. For example,

Google Chrome users can disable cipher suites via a command
line option [20].

We discuss clustering similar fingerprints in Section IV.

GREASE Because GREASE adds “random” extensions,
cipher suites, and supported groups, implementations that
support it would create dozens of unique fingerprints unless
we normalize them. The specification provides 16 values that
can be used as extension IDs, cipher suites, or supported
groups, ranging from 0xQ0a0a to Oxfafa. While BoringSSL,
used by Google Chrome, chooses these values randomly, we
find their position is deterministic (e.g. first in the cipher suite
list, and first and last in the extension list). We normalize
these values in our dataset by replacing them with the single
value 0x0a0a, which preserves the fact that an implementation
supports GREASE while removing the specific random value
that would otherwise generate unique fingerprints.

IV. HIGH-LEVEL RESULTS

We collected TLS Client Hello fingerprints for approxi-
mately 9 months between late October 2017, and early Au-
gust 2018 (ongoing). From December 28, 2017 onward, we
additionally collected SNIs, destination IPs and anonymized
source IPs from a sample of traffic, and we collected Server
Hello messages starting on January 24, 2018.

Overall, we successfully collected and parsed over 11 bil-
lion TLS Client Hello messages. A small fraction (about
3.3%) of TLS connections failed to produce a parseable Client
Hello, most commonly due to the first data received in a
connection not parsing as a TLS record or Client Hello. This
can happen for packets sent out of order or TCP fragments.
We also ignored packets with incorrect TCP checksums, which
happened with negligible frequency (0.00013%)°.

Our collection suffered two major gaps, first starting on
February 5 we only received partial traffic, and second between
March 28 and April 19 we lost access to the tap due to a
network failure. Figure 3 shows the number of Client Hello
messages parsed over time, showing our gaps as well as the
diurnal/weekend/holiday pattern of traffic.

Long tail fingerprint distribution

Our 11 billion TLS Client Hellos comprised over 230,000
unique fingerprints, a surprisingly high amount if we naively

SDue to a bug in the underlying pnet packet library, as many as 10% of
packets were falsely reported to have incorrect checksums. We fixed this bug
on January 25, 2018, but believe it had minimal impact on data-carrying TCP
packets

250000

200000

150000

100000

Total Unique Fingerprints

50000

Fig. 4. Total Unique Fingerprints — The number of unique TLS ClientHello
fingerprints observed rises slowly but steadily over time, reaching over 152,000
by May 2018. This rise is punctuated by short but rapid increases in the number
of unique fingerprints, which we determined came from a small set of Internet
scanners sending seemingly random ClientHello messages.

assume each fingerprint corresponds to a unique implementa-
tion. Figure 4 shows the total number of unique fingerprints
over time, rising from an initial 2145 to 230,000 over the
course of several months.

Immediately visible are large steps in the number of
unique fingerprints, signifying discrete events that produced
a large number of fingerprints. We discover that these events
correspond to a single monthly Internet scanner that produces
very few connections, but appears to be sending a significant
number of random unique fingerprints. In fact, over 206,000
of these fingerprints were only seen a single time, generally
from the same /16 network subnet. While this scanner had
a large impact on the number of unique fingerprints, its
impact on connections was negligible. In the remainder of
this paper, we report on the percent of connections that a
fingerprint or fingerprints comprise, effectively allowing us
to highlight common fingerprints without influence from this
single scanner.

Figure 5 shows the CDF of connections seen per fingerprint
for the most popular 5,000 fingerprints (for both Client and
Server hello messages). 99.96% of all connections use one of
top 5000 Client Hello fingerprints, and one of top 1310 Server
Hello fingerprints.

Many of the top ten fingerprints (shown in Table I) are
variants generated by the same TLS implementation: for exam-
ple, Google Chrome 65 generates two fingerprints (with and
without the padding extension), ranked 1st and 4th over the
past week in our dataset. Chrome may also optionally include
ChannellD extensions depending on if the connection is made
directly or via an AJAX connection.

Fingerprint clusters

As mentioned, some implementations generate multiple
TLS fingerprints, due to buggy middlebox workarounds, types
of TLS connection, or user preferences. This raises the ques-
tion of how many fingerprints does a typical implementation
produce? We compared fingerprints by performing a basic
Levenshtein distance over the components we extracted in the
Client Hello. For example, two fingerprints that only differ
by the presence of the padding extension would have a

CDF of connections

. i i i
1 10 100 1000
Fingerprint rank (logscale)

Fig. 5. CDF of connections per fingerprint— While we observed over
152,000 ClientHello fingerprints, most connections were comprised of a small
number of fingerprints: over half the connections were of one of the top 12
fingerprints, and the top 3000 fingerprints make up 99.9% of connections
observed. For servers, only 4,700 fingerprints were observed, with half of the
connections using one of the top 19 server fingerprints.

August 2018

Rank Client % Connections
1 Chrome 65-68 16.51%
2 i0OS 11/macOS 10.13 Safari 5.95%
3 MS Office 2016 (including Outlook) 5.34%
4 Chrome 65-68 (with padding) 4.62%
5 Edge 15-18, IE 11 4.05%
6 Firefox 59-61 (with padding) 3.62%
7 Safari 11.1 on Mac OS X 2.82%
8 i0S 10/macOS 10.12 Safari 2.49%
9 iOS 11/macOS 10.13 Safari (with padding) 2.42%
10 Firefox 59-61 2.22%
December 2018
Rank Client % Connections
1 Chrome 70 (with padding) 8.49%
2 i0S 12/macOS 10.14 Safari 7.55%
3 iOS 12/macOS 10.14 Safari (without ALPN) 4.15%
4 Chrome 70 4.10%
5 i0S 12/macOS 10.14 Safari (with padding) 4.09%
6 Edge 15-18, IE 11 3.27%
7 MS Office 2016 (including Outlook) 3.01%
8 iOS 10/macOS 10.12 Safari 2.72%
9 i0S 11/macOS 10.13 Safari 2.68%
10 Chrome 71 (with padding) 2.48%
TABLE 1. ToP 10 IMPLEMENTATIONS. — MOST FREQUENTLY SEEN

FINGERPRINTS IN OUR DATASET AND THE IMPLEMENTATIONS THAT
GENERATE THEM, FOR A WEEK IN AUGUST AND DECEMBER 2018.
DESPITE BEING ONLY 4 MONTHS APART, TOP 10 FINGERPRINTS CHANGED
SUBSTANTIALLY, AS NEW BROWSER RELEASES QUICKLY TAKE THE PLACE
OF OLDER VERSIONS.

Levenshtein distance of 1, while a pair of fingerprints that
differed by a dozen cipher suites would have a distance of 12.

To determine the prevalence of multiple fingerprint vari-
ants, we generated clusters of popular fingerprints. We looked
at the 6629 fingerprints that were seen more than 1000 times
in our dataset (accounting for 99.97% of all connections), and
clustered them into groups if they were within a Levenshtein
distance of 5 from another fingerprint in the group. This
clustering resulted in 1625 groups, with the largest group
having 338 fingerprints in it, corresponding to variants of
Microsoft Exchange across several versions. Google Chrome
65 appeared in a cluster with 117 fingerprints, containing two
weakly-connected sub-clusters. Half of this cluster represents
fingerprints corresponding to an early TLS 1.3 draft, and the
other half the current standard. Unsurprisingly, these finger-
prints are long-tailed, with the top 10 fingerprints in the group

responsible for 96% of the connections from the cluster.

Fingerprint churn

1 precgecens peeeenenans . pereemresntsitiizeneas seeees seeees STTPPP
H H H H H Blocked connections

Blocked fingerprints -

Fraction blocked

Fig. 6. Fingerprint turnover — Shows fraction of connections/fingerprints
not seen during the first week. This roughly models the fraction that censor
would overblock, if they took a static fingerprint snapshot and whitelisted it.

To measure how quickly fingerprints change and how this
would impact a censor, we developed a simple heuristic. We
compile a list of all fingerprints seen at least 10 times in the
first week, and in subsequent weeks, compare fingerprints that
were seen a substantial amount (10,000) times. This models
the rate at which new fingerprints (with non-negligible use) are
observed, and for a censor that employs a whitelist approach,
describes the fraction of connections they would inadvertently
block if they did not update their whitelist from an initial
snapshot.

Figure 6 shows the increase in both fingerprints and con-
nections blocked over time as new fingerprints are observed
compared to an initial whitelist composed on the first week. In
the steady state prior to March, the weekly average increase
in blocked connections is approximately 0.03% (0.33% by
fingerprints), suggesting that the rate of new fingerprints is
steady but small. However, in March, both Google Chrome
and i0S deployed updates that included new support for TLS
features, creating a substantial increase in connections using
new fingerprints. As a result, a non-adaptive whitelist censor
would end up blocking over half of all connections after just
6 months.

Such large events could present a difficult situation for
a whitelist censor, as new versions would be blocked until
new rules were added. We conclude that whitelisting TLS
implementations for a censor may be feasible, but requires
a potentially expensive upkeep effort to avoid large collateral
damage.

SNI

Subject Name Indication is a widely used TLS extension
that lets the client specify the hostname they are accessing.
Because it is sent in the clear in the Client Hello message,
SNIs can be another feature that censors use to block. Many
tools have different strategies for setting the SNI. Some use
domain fronting, and set the SNI to a popular service inside
the cloud provider (e.g. maps.google.com), while others choose
to omit the SNI for ease of implementation or compatibility
reasons.

As of August 2018, we observe only 1.41% of connections
do not send the SNI extension, indicating that the circumven-
tion strategy of omitting SNIs may potentially stand out and
be easy to block. Indeed, the most popular SNI-less fingerprint
in our dataset (accounting for 0.20% of all connections)
sends a very unique cipher suite list not seen in any other
fingerprints. This result impacts many circumvention tools,
including Psiphon and Lantern that both produce Client Hello
messages that do not include the SNI extension, suggesting
that these connections may be easy for censors to block.

V. CENSORSHIP CIRCUMVENTION TOOLS

Many censorship circumvention tools use TLS as an
outer layer protocol. For example, domain fronting uses TLS
connections to popular CDN providers with cleartext SNIs
suggesting the user is connecting to popular domains hosted
there [25]. Inside the TLS connection, the user specifies a
proxy endpoint located at the CDN as the HTTP Host, relying
on the CDN’s TLS terminator and load balancer to route
their traffic to the intended destination. As censors only see
the unencrypted SNI, they cannot distinguish domain fronting
connections from benign web traffic to these CDNs. Psiphon,
meek and Signal use this technique to conceal their traffic
from would-be censors [17], [32], [57]. However, mimicking
connections in this manner is difficult in practice: any devia-
tions from the behavior of true browsers that typically access
these CDNs allows a censor to detect and block this style of
proxy [30].

Other tools such as Psiphon and Lantern use TLS in a more
natural way, connecting directly to endpoint proxies. These
tools must also take care to mimic or otherwise hide their
connections to look normal or face blocking.

Two different versions of meek were found to be detectable
by Cyberoam [21] and Fortiguard [22] firewalls, which finger-
printed the Client Hello of meek and blocked it. At the time
of incident with Cyberoam, meek was mimicking Firefox 38,
which had over time dwindled in users, reducing overall
collateral damage from blocking meek. Notably, censors were
able to substantially reduce collateral damage by combining
TLS fingerprinting with simple host blocking: blocking was
limited to clients that both looked like Firefox 38 and tried to
access specific domains used for fronting. Subsequently, meek
started mimicking the newer Firefox 45, but was ultimately
blocked by Fortiguard in the same manner when Firefox 45
became less popular.

Given the importance of Client Hello messages in identi-
fying and potentially blocking censorship circumvention tools,
we analyzed the fingerprints generated by several popular
circumvention tools, and compared the relative popularity of
those fingerprints in our dataset. Fingerprints that were seen
much more frequently should in theory be more difficult for
censors to block outright without collateral damage, while
those that we rarely see in our dataset may be at risk of easy
blocking. In this analysis, we assume that our dataset contains
negligible traffic from these tools, as our institution is not in
a censored region and users have little motivation to use them
en mass.

We also provide a mechanism to easily test and analyze
any application by submitting a pcap file to our website:

https://tlsfingerprint.io/pcap. Our website will list all the fin-
gerprints extracted from the pcap file, and provide links with
more details about their features, popularity, any user agents
observed using these fingerprints, and similar fingerprints that
can be compared.

A. Signal

Until recently, the Signal secure messaging application
used domain fronting to circumvent censorship in Egypt, the
United Arab Emirates, Oman, and Qatar [41]. Signal used
Google App Engine as a front domain until April 2018,
when Google disabled domain fronting on their infrastruc-
ture [39]. Signal switched to domain fronting via the Amazon-
owned souq.com, but shortly after, Amazon disallowed domain
fronting on their infrastructure, and notified Signal that it was
in violation of its terms of service [38], [39]. Signal has
since stopped using domain fronting, and direct access is now
blocked in the above countries.

However, Signal still serves as one of the largest deploy-
ments of domain fronting, and we analyze both when it used
Google and when it used Amazon.

When Signal was using Google for domain fronting, we
analyzed both the iOS and Android versions of the application
on real devices and collected the TLS fingerprints it generated
when we signed up with phone numbers in the previously
mentioned censored countries, triggering its domain fronting
logic. For i0S, we found it generates the native iOS fingerprint,
which appears in 2.14% of connections, making it the 11th
most popular in our dataset at the time. It is unlikely a censor
would be able to block Signal iOS from its Client Hello
fingerprints alone.

However, on Android, the situation is drastically worse.
Even on the same device, Signal Android generates up to
four unique fingerprints when using domain fronting. Some
of these fingerprints were never seen in our dataset, making it
trivial for a censor to detect and block. Even the most popular
fingerprint was seen in only 0.06% of connections, making it
ranked 130th in popularity. It appears to be used by a small
fraction of Android 7.0 clients that access googleapis.com.
We confirmed these findings using two devices: a Google
Pixel running Android 7.1 with Signal version 4.12.3, and a
Samsung G900V running Android 6.0.1 with Signal version
4.11.5.

Signal on Android uses the okhttp® library to create TLS
connections with three different “connection specs” that define
the cipher suites and TLS version to be used in the Client
Hello. Signal attempted to mimic 3 different clients for 3
fronts it used: Google Maps, Mail and Play. However, we
identify two problems: First, the okhttp library disables certain
cipher suites by default such as DHE and RC4 ciphers, which
are specified in Signal’s connection specs [12]. Although the
library supports them, okhttp disallows their use without an
explicit API call, which Signal did not use. Instead, the okhttp
library silently drops these ciphers from the Client Hello it
sends, causing it to diverge from the intended connection spec.

Second, even when the desired cipher suite list is unaltered,
these cipher suites still correspond to unpopular clients, due

Ohttps://square.github.io/okhttp/

to differences in other parts of Client Hello. For example,
the GMAIL_CONNECTION_SPEC’s cipher suite list is most
commonly sent by Android 6.0.1, and is seen in only 0.17%
of connections. However, the Signal Client Hello is trivially
distinguishable from the Android 6.0.1 fingerprint, as Signal
does not specify support for HTTP/2 in its ALPN extension,
while Android does.

By April 2018, Signal switched to using the Amazon-
owned souq.com, and changed the TLS configuration to only
use a single connection spec. This configuration still included
3 DHE cipher suites, which are ignored and not sent by
the okhttp library. We also noticed that despite only the
single spec, Signal generates two distinct TLS fingerprints,
differing in which signature algorithms they list. Each of these
fingerprints are seen in fewer than 100 times (<0.000001% of
connections).

As of May 2018, Signal no longer uses domain fronting,
making these issues moot. Nevertheless, these examples illus-
trate several challenges in mimicking popular TLS implemen-
tations. First, libraries are not currently purpose-built for the
task of mimicry, emphasizing security over an application’s
choice of cipher suites. Second, in addition to cipher suites,
an application also must specify extensions and their values in
order to properly mimic other implementations.

B. meek

meek is a domain fronting-based pluggable transport used
by Tor to circumvent censorship [14], [16], [17]. meek tunnels
through the Firefox ESR (Extended Support Release) version
that is bundled with the Tor Browser. Unfortunately, the
Client Hello of Firefox and Firefox ESR may diverge, which
eventually makes the fingerprint of ESR versions relatively
uncommon, allowing meek to be blocked with smaller collat-
eral damage. As of August 2018, meek uses Firefox 52 ESR
whose corresponding Client Hello is the 42nd most popular
fingerprint in our dataset, seen in approximately 0.50% of
connections. The majority of regular Firefox users have mi-
grated to Firefox versions 59+, whose most popular fingerprint
is ranked 6th in our dataset seen in 3.64% of connections.

Thus, meek is using a version of Firefox that is once
again approaching obsolescence, potentially allowing censors
to block it without blocking many normal users. Unfortunately,
meek must wait for updates to the underlying Tor Browser to
receive updated TLS features, making it relatively inflexible in
its current design.

C. Snowflake

Snowflake [18] is a pluggable transport for Tor that relies
on a large number of short-lived volunteer proxies, similar
to Flashproxy [24]. Clients connect to a broker via domain
fronting, and request information about volunteers running
browser proxies, and then connect to and uses those proxies
over the WebRTC protocol.

Snowflake is under active development, and its authors
were aware of potential TLS fingerprintability issues. Indeed,
we find that Snowflake (built from git master branch on April
17, 2018) generates a fingerprint that is close to, but not exactly
the same as the default Golang TLS fingerprint. In particular,

it diverges by including the NPN and ALPN extensions, and
offers a different set of signature algorithms. As a result,
this fingerprint is seen in fewer than 0.0008% of connections,
making it susceptible to blocking.

D. Outline

Outline is a private self-hosted proxy based on Shad-
owsocks, a randomized protocol that attempts to look like
nothing. Outline provides a GUI interface that guides the user
through the Shadowsocks setup process, including purchase of
a VM on DigitalOcean. During the purchase, the installation
script uses TLS, leveraging the Electron framework (based on
Chromium). As of our tests in May 2018, we find that Outline’s
TLS fingerprint matches that of Chrome version 58-64.

While this fingerprint is decreasing in popularity with the
release of Chrome 65, it still remains common: We observed
it in 2.10% connections in the first week of May (vs. 8.76%
of connections over our full dataset). As of August 2018, the
weekly rate of connections with this fingerprint has fallen to
1.72%. Still, the Outline installation process is unlikely to be
blocked based on the generated TLS fingerprint in the short
term, though it must take care to update before use of this
fingerprint wanes further.

We did not evaluate the rest of the communication proto-
cols used by Outline after installation, as it does not use TLS.

E. TapDance

TapDance [65] uses refraction networking to circumvent
censors, placing proxies at Internet service providers (ISPs)
outside censoring countries, and having clients communicate
with them by establishing a TLS connection to a reachable site
that passes the ISP. As it connects to innocuous websites, the
TapDance client must make its TLS connection appear normal
to the censor while it covertly communicates with the on-path
ISP.

As of May 2018, TapDance uses a randomized Client
Hello, which protects it against straightforward blacklisting.
However, the randomized fingerprints generated by TapDance
are not found in our dataset of real-world fingerprints, which
could allow a censor to block it by distinguishing randomized
Client Hellos from typical ones, or by simply employing a
whitelist of allowed TLS Client Hello messages.

F. Lantern

Lantern uses several protocols to circumvent censorship,
mainly relying on the randomized Lampshade pluggable trans-
port [43]. However, as of February 2018, several parts of
Lantern still use TLS as a transport, allowing us (and censors)
to capture its fingerprint.

We observed that Lantern uses a Golang TLS variant
that sends a Session Ticket extension, and doesn’t send the
server name extension. This variant does appear in our dataset,
however, at a very low rate: approximately 0.0003% of con-
nections, ranked 1867 in terms of popularity.

Lantern uses the Session Ticket to communicate infor-
mation covertly out-of-band to their server. However, this
use makes their fingerprint differ from the default Golang

TLS, illustrating that application-level demands may result in
observably different handshakes, ultimately allowing a censor
to block them.

G. Psiphon

Similar to Lantern, Psiphon also uses several circumvention
transports, including domain fronting over TLS. We obtained a
version of the Psiphon Android application that only connects
using TLS from the app’s developers, allowing us to collect
TLS fingerprints generated by it. Psiphon cycles through
different Chrome and Android fingerprints until it finds an
unblocked one that allows them to connect to their servers.
Such a diverse set of fingerprints may help evade censorship,
even if most fingerprints get blocked. However, a censor with
a stateful DPI capability may also be able to use this feature
to detect (and ultimately block) Psiphon users.

We find Psiphon successfully mimics Chrome 58-64, gen-
erating two fingerprints ranked in the top 20 in our dataset, but
is less successful at mimicking legacy Android: fingerprints
supposedly targeting Android were seen in fewer than 50
connections out of the 11 billion. We also determined that
Psiphon sometimes mimics Chrome without an SNI to evade
SNI-based blocking, generating a blockable fingerprint seen in
fewer than 0.0002% of connections.

H. VPNs

We analyzed OpenVPN and 3 services that advertised
an ability to circumvent censorship: IVPN, NordVPN and
privateinternetaccess.com. VPNs tend to use UDP by default
for performance benefits, which we did not collect in our
measurement system. However, we extracted the cipher suites
and extensions from OpenVPN’s UDP TLS handshake, and
found that the combination is rare in our (TCP-based) dataset.
This may suggest that OpenVPN has a distinctive fingerprint,
given the unique set of features in its fingerprint (85 cipher
suites, 13 groups, 14 signature algorithms, and rare set of
extensions), but we cannot be sure without collecting UDP
TLS connections.

We did recover one TCP TLS fingerprint from NordVPN,
which is a circumvention plugin in Google Chrome. However,
this plugin uses the API of the host browser to make TLS
requests, making it indistinguishable from the version of
Google Chrome it is installed in.

I. Vendor Response

We notified the authors of the censorship circumvention
tools about respective fingerprintability issues, and provided
additional data about fingerprints as well as potential defenses.

In response to our disclosure, developers of Psiphon,
Lantern, and TapDance integrated our uTLS library described
in Section VII to take advantage of alternative mimicry options
and have greater control over TLS features. The Snowflake
and meek authors were aware that the current fingerprint was
not ideal, but didn’t have immediate plans to fix it. Snowflake
is still in active development; and meek will keep tunneling
through Firefox ESR in short term, due to the effort involved
in changing it, but is considering going back to mimicking,
rather than tunneling. We disclosed our findings to Signal via

Tool Version/Date Rank [all time] % Connections

Psiphon Jan 2018 1 8.76%
9 2.42%
62 0.25%
198 0.04%
203 0.04%
500 0.01%
2190 0.0002%
14397 0.0000%
16814 0.0000%
Outline May 2018 1 8.76%
meek TBB 7.5 42 0.50%
Snowflake April 2018 1378 0.0008%
Lantern 4.6.13 1867 0.0003%
TapDance May 2018 random -
Signal 4.193 11468 0.0000%
12982 0.0000%

TABLE II. TOOL FINGERPRINTABILITY — SUMMARY OF ALL TLS
FINGERPRINTS GENERATED BY CENSORSHIP CIRCUMVENTION TOOLS AND
THEIR RANK AND PERCENT OF CONNECTIONS SEEN IN OUR DATASET AS
OF EARLY AUGUST 2018. HIGHLIGHTED IN RED ARE FINGERPRINTS SEEN
IN RELATIVELY FEW (< 0.1%) CONNECTIONS, PUTTING THEM AT RISK OF
BLOCKING BY A CENSOR.

email and a GitHub issue prior to their removal of domain
fronting, but did not receive any response besides the GitHub
issue being silently deleted.

VI. DEFENSES & LESSONS

While the TLS protocol provides plenty of cover traffic for
circumvention tools, there are many challenging details that
tools must get right in order to successfully evade censorship.
There are two high-level detection evasion strategies that cir-
cumvention tools employ when choosing protocols [59]: first,
they may try to mimic one or more existing implementations,
making it difficult to distinguish them and increasing the col-
lateral damage to blocking connections that look like the tool.
Second, tools may try to generate random protocol features,
to prevent censors from being able to identify and block the
tool with a blacklist approach. In this section, we investigate
how these techniques can be applied to TLS implementations
in censorship circumvention tools.

Mimicking Clients that choose to mimic other TLS imple-
mentations face several challenges. First, tools must identify a
popular implementation to mimic, which is typically done by
choosing a popular web browser. However, it may also be done
by choosing a large number of individually less-popular but
collectively popular implementations, and mimicking among
them. Second, the tool must support the cipher suites, exten-
sions, and features present in the popular implementation(s).
For instance, if a tool mimics Chrome and sends but does not
actually support a CHACHAZ20 cipher suite, the server may
select that cipher suite for the connection, causing the tool to
abort the connection. Not only does this cause compatibility
issues, it gives an observant censor a way to identify users of
a tool.

We note that this problem can be partially mitigated if
the server is controlled by the tool maintainer, as they can
choose to select only cipher suites and extensions that they
know their tool to support. However, this is not the case in tools
that do not control both endpoints, such as domain fronting,
refraction networking’, and tools that generate cover traffic
to other servers. In addition, intricacies of the circumvention

Tformerly decoy routing

protocol may limit the features that a tool can use, even if
implemented. For example, some domain fronting tools cannot
send the SNI extension to certain CDNS.

Finally, the tool must maintain support, as the popular
implementations they mimic change over time, as do the
features they support due to automated patches and updates.
For example, although meek has been successful at mimick-
ing multiple versions of Firefox, it has lagged behind the
Sisyphean task of keeping pace with updates to the Firefox
TLS implementation.

Randomizing Tools that randomize their generated TLS
Client Hello messages have the advantage that they do not
have to identify or track support for popular implementations.
However, this strategy can only work if there is a sufficient
number of similar-looking connections that prevent the censor
from distinguishing it. For instance, Figure 6 demonstrates
the rate at which new connections would hamper a censor’s
ability to use a whitelist. Censors could also distinguish
randomized Client Hello messages by capturing distributions
or other heuristics that are not properly mimicked by a tool’s
randomized fingerprint. For example, if the tool naively picks
from a set of supported extensions, a censor may notice that no
other implementation supports a particular pair of extensions
simultaneously. When the circumvention tool randomly selects
both extensions in this pair, the censor can identify and block
the user. Thus, the random fingerprint strategy must carefully
mimic the distribution of the global TLS implementation
population.

We note that all tools must implement these features either
by creating their own libraries or using existing ones that are
generally ill-suited to the task of fine-grained control over the
TLS handshake. This challenge is illustrated by Signal’s use
of the okhttp library, which silently removed cipher suites that
Signal specified. Other TLS libraries may ignore supported
cipher suite order, making it difficult for applications to
produce specific TLS handshakes. In the following section,
we describe our library that is purpose-built for providing
applications control over their TLS connection.

VII. UTLS

TLS fingerprinting remains a looming threat for anti-
censorship tools, and as we have shown, even tools that attempt
to defend against it can often fall short. Indeed, mimicking
is hard to get right: there are lots of features to keep track
of and implement, the mimicked fingerprint could rapidly go
obsolete, or the tool’s underlying library could silently change
the fingerprint.

There may also be unexpected or complicated dependen-
cies that prevents simply parroting Client Hello messages seen.
For example, GREASE values generated by Google Chrome
used to be deterministic and depend on the value of the Client
Random, but this was changed in favor of random values. In
addition, cipher suites can influence other parts of the header
(or server response), such as by having a special meaning
(SCSV cipher suites), by defining what TLS version is used,
or triggering the inclusion of an extension. Finally, extensions
may affect each other, for example, the presence and size of
padding extension can depend on the size of the Client Hello.

An implementation that failed to mimic these subtleties could
be identified by a censor.

To assist censorship circumvention tools, we created a
TLS library® that aims to protect against TLS fingerprinting
and (among other features) allows developers to easily mimic
arbitrary Client Hello messages. We develop our library as a
fork of Golang’s native TLS library crypto/tls, adding
over 2200 new lines of code.

As of August 2018, three circumvention tools have adopted
uTLS library: Psiphon, Lantern, and TapDance all use uTLS
to allow them greater control over TLS features, and make it
easier to mimic popular implementations.

A. Design

uTLS is designed to be an addition to the standard
crypto/tls library and minimizes changes to core Go files,
enabling us to easily auto-merge from upstream. This allows us
to keep uTLS up-to-date with the underlying standard library,
and adopt any new features and bug fixes that come in the
future. In addition, this allows us to rely on the performance
and security of crypto/tls: uTLS simply fills the Client
Hello and leaves execution of the TLS handshake up to the
standard functionality.

Our choice of Golang as the language for uTLS is moti-
vated by several reasons. First, it is a popular language used
in several censorship circumvention tools, including Lantern,
meek, Psiphon, Snowflake, and TapDance, allowing easier
integration. For tools that are not written in Go, integration
should still be possible via Go’s language bindings [35].
Second, Golang is memory safe (bounds checked), decreasing
our worry of introducing control flow vulnerabilities into tools
that integrate uTLS, despite containing network serialization
code.

a) Low-level access to the handshake: uTLS provides
write access to any fields of the Client Hello message, allowing
implementations to specify their own cipher suites, compres-
sion methods, client random, extensions, etc. Developers can
compose a Client Hello using uTLS structures, or by manually
specifying the bytes of a raw Client Hello for uTLS to use. In
addition, uTLS provides structured read access to handshake
state, including the Server Hello, Master Secret, and key
stream.

b) Mimicry: Users can also select from a set of preset
built-in Client Hello messages. As of August 2018, uTLS
includes defaults for Chrome 64, Firefox 58, and iOS 11, and
we plan to add support for new versions of browsers, operating
systems, and other popular devices. Mimicking could be hard
to get right, but we verified uTLS’ ability to mimic popular
clients by comparing the fingerprints it generated to those in
our dataset.

We note that when uTLS mimics a Client Hello of another
implementation, it may potentially advertise support for fea-
tures it does not actually implement. For instance, it may send
a cipher suite that, if selected, uTLS will be unable to use. We
measure this risk in Section VII-B.

¢) Randomized fingerprints: Given the long tail dis-
tribution of Client Hello fingerprints in our dataset, uTLS
also supports generating random fingerprints. Although these
are unlikely to correspond to popular implementations and
fingerprints seen, censors may have a hard time constructing a
comprehensive whitelist of TLS fingerprints, making it difficult
to block random ones. Similar techniques have been used by
other randomized protocols for censorship circumvention, such
as obfsproxy [5] and ScrambleSuit [64], which attempt to look
like no protocol at all. Our random fingerprints extends this
idea at the TLS layer, ensuring that packets are valid TLS
messages, but making it difficult for censors to blacklist the
specific implementation.

d) Using multiple fingerprints: Mimicking multiple fin-
gerprints makes it possible for a circumvention tool to operate
even when a subset of its fingerprints are blocked. To support
this, uTLS can optionally cycle through a popular set of
fingerprints in its handshakes until an unblocked working
one is found. Thus, if uTLS is able to properly mimic even
one implementation, it will be more difficult for a censor to
block this strategy. uTLS automatically retries the latest work-
ing fingerprint when reconnecting to minimize unnecessary
changes to its fingerprint. An example usage may be found
in Appendix, Listing 1.

Automatic code generation While uTLS makes it easy
to manually specify parts of the Client Hello, we provide
an additional feature to make this even easier. Our website
produces automatically-generated code for each fingerprint in
our dataset, allowing developers to simply copy and paste
to configure uTLS to mimic a given fingerprint. This fea-
ture allows developers to easily keep their tools up-to-date,
and could even allow this to potentially be fully-automated:
continuous integration scripts could watch for changes in
fingerprint popularity, and either alert developers or possibly
automatically pull in new code to use more recent fingerprints.

We note that automated fingerprint code may generate
Client Hellos that uTLS does not yet fully support, potentially
causing the handshake to fail if the server supports those
features. We explicitly identify and warn the developer when
this is the case, as our automated code tracks the features uTLS
supports.

Fake Session Tickets uTLS provides the ability to send
arbitrary session tickets, including fake ones. This is useful
when the tool developer also controls the server, which must
accept the fake session ticket or generate a real one for further
out-of-band distribution. This technique allows servers to save
a round trip time and avoid sending a Certificate or Key
Exchange message, giving the censor fewer messages and
information to block on. To support mimicking, we track
commonly used Session Ticket sizes on our website’.

B. Measuring feature support

To enable mimicking other TLS implementations, uTLS
allows the developer to advertise support for TLS extensions
and cipher suites that are not actually supported by our library.
If the server does not select or use these cipher suites or
extensions, the connection will function normally. However,

8https://github.com/refraction-networking/utls

“https://tlsfingerprint.io/session-tickets

if the server selects a cipher suite that is not implemented
by uTLS, the connection will visibly break. These risks do
not impact tools that make connections to servers under the
developers’ control, as those unsupported features can be easily
disabled server side.

We measure how many fingerprints in our dataset uTLS
can support without this risk. We classify a fingerprint as
“fully supported” if uTLS is able to handle every feature
in it (e.g. the server could select any cipher suite, curve, or
extension, and the connection would succeed). We classify a
second group of “optionally supported” fingerprints that are
also supported by uTLS but may include weaker ciphers, such
as such as TLS_RSA_WITH_AES_256_CBC_SHA256, that
were disabled by the underlying Golang library. uTLS users
may choose whether to enable those weaker ciphers, or to let
the connections fail if the weaker ciphers are chosen by a
server.

Note that a fingerprint not being fully supported doesn’t
always lead to unsupported feature getting chosen by server:
it might be a low-priority, or not supported by the server either.
Weaker ciphers are only likely to be picked in the wild if the
client communicates with an outdated server.

As of August 2018, uTLS fully supports 21940 fingerprints
(9.3%), which were seen in 5.9% of connections collectively.
The top ranked fully supported fingerprint is the 9th (all-
time) most popular fingerprint in our dataset, which is a
fingerprint generated by Chrome 61-64. If weaker “optionally
supported” CBC ciphers are allowed, then uTLS supports
22616 fingerprints (9.6%), which were seen in 37.3% of
collective connections. This includes 30 fingerprints in the top
100, including the 3rd most popular fingerprint (generated by
Outlook 2016). As mentioned, uTLS code for using all of these
fingerprints can be automatically generated by our website,
requiring minimal effort from the developer.

We also use our data to learn which additional features
would give uTLS the most additional coverage in terms of
supported fingerprints, to know which features we might want
to focus on adding to the library next. As of August 2018,
supporting the ChannellD extension alone will allow us to
fully support 245 more fingerprints which would account for
an additional 20% of connections seen. We note that these
fingerprints could be mimicked in uTLS now, as the Channel
ID is unlikely to be supported by servers: only 2.9% of Server
Hello messages used the extension. This extension aims to
secure connections by cryptographically authenticating client
to the server, allowing to bind cookies and tokens to particular
client’s channel, which has to be explicitly implemented and
integrated with the application layer on the server.

C. TLS 1.3

As of March 2018, TLS 1.3 [45] has been standardized and
is being rolled out in major browsers. TLS 1.3 offers several
advantages over previous versions, including decreased net-
work round trips in new connections (improving performance),
and encrypted handshakes (improving privacy).

Our motivation to support TLS 1.3 in uTLS is twofold: first,
several features such as encrypted certificates and encrypted

SNI'” (ESNI) may prove useful for evading censors [23]. Sec-
ond, as popular browsers begin to implement and send TLS 1.3
handshakes, circumvention tools will soon want to mimic them
to continue blending in with popular implementations.

Interestingly, TLS 1.3 Client Hellos look similar to those
in TLS 1.2: in fact, TLS 1.3 still sends a handshake version
corresponding to TLS 1.2 to allow implementations to work
in the presence of buggy middleboxes and servers that cannot
handle other values. TLS 1.3 instead adds functionality via
several new extensions in the Client and Server Hello mes-
sages.

Although our fingerprints already include the presence and
order of all extensions in a given Client Hello, we only parse
and include a handful of extensions’ data in our fingerprint.
This means if many implementations send the same set of
extensions but include different data, we would mistakenly
classify them as the same fingerprint. This is particularly a
concern for TLS 1.3 handshakes, which heavily rely on new
data-carrying extensions. To address this, we reviewed the new
extensions in TLS 1.3, and added the body data of popular
extensions that do not change per-connection. For example,
supported_versions contains a list of supported TLS
versions ordered by preference. As different implementations
can announce different versions they support, we add this
data to our fingerprint. So far, we have observed 40 distinct
values of this extension announcing support for the various
TLS versions and drafts. Table III shows the most popular
extensions we have collected as of December 2018, and
highlights the ones whose data we include in our fingerprint.

Extension Conns Extension Conns
supported_groups 99.4% GREASE 30.2%
server_name 99.3% psk_key_exchange_modes* 28.7%
signature_algorithms 97.8% supported_versions* 28.7%
ec_point_formats 96.9% key_share* 28.6%
extended_master_secret 86.8% NPN 27.3%
status_request 85.7% compressed_certificate* 24.8%
renegotiation_info ~ 81.9% ChannellD 20.5%
ALPN 71.9% heartbeat 5.0%
signed_certificate_timestamp ~ 66.9% token_binding 3.9%
SessionTicket 56.0% pre_shared_key* 3.1%
padding 32.3% record_size_limit 2.5%

TABLE III. Top EXTENSIONS — WHILE WE INCLUDE THE PRESENCE
AND ORDER OF ALL EXTENSIONS IN OUR FINGERPRINT, BOLD DENOTES
EXTENSIONS WHOSE DATA WE ADDITIONALLY PARSE AND INCLUDE IN
OUR FINGERPRINT; * MARKS EXTENSIONS NEW IN TLS 1.3.

As uTLS is built on Golang’s crypto/tls library, we were
able to merge its TLS 1.3 support into uTLS, allowing us to
mimic Firefox 63 and Chrome 70, which both send TLS 1.3
handshakes. With some additional implementation work to
support new extensions, we expect to be able to fully support
over 8% of all TLS connections automatically (up from 5%
currently), and optionally support over 37% if we enable weak
ciphers.

VIII. OTHER RESULTS

In this section, we present on other findings from our TLS
dataset that are relevant to censorship circumvention tools.

10Not yet standardized

A. Server Hello Analysis

As of August 2018, we collected approximately 5,400
unique Server Hello fingerprints, substantially fewer than the
number of unique Client Hello fingerprints. This is in part due
to Server Hello messages having less content, as it specifies
only a single cipher suite and compression method, rather
than the full list that the server supports. On the other hand,
while a client implementation might generate a single or small
collection of Client Hello fingerprint, servers can potentially
generate distinct fingerprints in response to different Client
Hello messages. For example, the single most popular external
IP address (corresponding to Google) sent 199 unique server
fingerprints from 1494 Client Hello fingerprints sent to it.
Looking at the responses to only the most popular Client Hello
message, there are 750 different Server Hello fingerprints,
suggesting that the actual number of distinct TLS server
implementations and configurations that these clients talk to
may be close to this value.

Selected Ciphers

Using our collected information on Server Hello messages,
we can compare the set of offered cipher suites by clients, and
discover what cipher suites are actually selected and used in
practice by servers. This is useful for circumvention tools as it
provides evidence of many unselected cipher suites that clients
can offer without having to actually support.

Excluding the long tail of fingerprints seen only once, in
our Client Hello fingerprints, there were over 7900 unique sets
of unique cipher suites. These sets enumerate 522 cipher suite
values, which is greater than the number of standardized cipher
suites, for reasons described in Section VIII-B.

Analyzing the unique cipher suites that are selected by
servers, however, we find just 70 cipher suites ever selected,
with the top 10 accounting for over 93% of all connections.
Interestingly, the most popular cipher suite across all Client
Hellos (TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA) is
only selected in approximately 1% of connections. This shows
there are many cipher suites that servers will rarely or never
choose, and circumvention tools are free to present them in
their Client Hello messages without having to support those
cipher suites.

B. Non-standard parameters

Our collection tool ignores malformed Client Hellos that
cannot be parsed, but even well-formed Client Hello messages
may still contain invalid parameters. For example, of the 65536
possible values for 2-byte cipher suites, only 338 values are
recognized and standardized by the Internet Assigned Numbers
Authority (IANA) [46], with the remainder either unassigned
or reserved for private use. Similarly, only 28 values are
defined for the 2-byte extension field. We note that TLS 1.3
proposes values for an additional 5 cipher suites and 10
extensions, which we include in our analysis.

This allows us to locate TLS Client Hello fingerprints that
specify non-standard extensions or cipher suites. In total, over
138,000 fingerprints accounting for 13.14% of connections
contained at least one non-standardized cipher suite or ex-
tension value. The commonality of support for non-standard
features suggests it may be difficult for a censor to fully

% Connections
10.626%

Fingerprints
TLS 1.3 draft ciphers 1002

Legacy ciphers 82992 1.392%
GOST ciphers 95548 0.051%
Outdated SSL ciphers 106439 0.097%
Unknown ciphers 137999 0.039%
Total non-standard ciphers 143060 12.106%
TLS 1.3 draft extensions 715 10.626%
Legacy Extensions 441 0.154%
Extended Random 340 1.445%
Unknown extensions 367 0.899%
Total non-standard extensions 1404 11.677%

TABLE IV. NON-STANDARD PARAMETERS — BREAKDOWN OF THE
NUMBER OF UNIQUE CLIENT HELLOS (FINGERPRINTS) AND THE SHARE
OF CONNECTIONS THEY APPEAR IN THAT SEND NON-STANDARD CIPHER
SUITES OR EXTENSIONS. WHILE TLS 1.3 DRAFT CIPHERS AND
EXTENSIONS ARE THE MAJORITY, WE STILL FIND UNKNOWN CIPHERS AND
EXTENSIONS IN USE.

Fingerprints % Connections
DES 191459 0.90%
3DES 236859 67.0%
EXPORT 194418 0.66%
RC4 223900 8.19%
MDS5 (Cipher) 200608 7.15%
MDS5 (Sigalg) 4385 0.74%
SHAI (Sigalg) 114615 97.6%
TLS_FALLBACK 787 0.03%

TABLE V. WEAK CIPHERS — WE ANALYZED THE PERCENT OF
CONNECTIONS OFFERING KNOWN WEAK CIPHER SUITES. WE ALSO
INCLUDE TLS_FALLBACK_SCSV, WHICH INDICATES A CLIENT THAT IS
FALLING BACK TO AN EARLIER VERSION THAN IT SUPPORTS DUE TO THE
SERVER NOT SUPPORTING THE SAME VERSION.

understand or whitelist all commonly-used fingerprints, as
many do not strictly conform to the standard. Table IV shows
the breakdown of non-standard parameters.

C. Weak Ciphers

We observe a small fraction of clients continue to offer
weak or known-broken ciphers, including DES [27], [58],
Triple-DES (3DES) [10], and RC4 [2], [61]. More concerning,
we still see clients supporting export-grade encryption, which
negotiates intentionally weakened keys and has been recently
found to enable modern vulnerabilities [9], [6].

TLS can also employ hash functions with known collisions,
such as MD5 [55], [52] and SHA1 [63], [56]. While collisions
may not enable attacks when used in the HMAC construction
employed by TLS cipher suites, they can introduce problems
when used in signature algorithms, as collisions there can allow
an attacker to forge CA permissions [52]. This means that
MD5 and SHA1 may not be problematic as cipher suites, but
are when offered as a signature algorithm. We present both
uses for completeness.

Clients can also signal that they have fallen back to a lower
version of TLS by sending the TLS_FALLBACK_SCSV cipher
suite [40]. While its presence does not indicate a weakness in
a client, it does indicate a suboptimal mismatch between client
and server versions.

Table V summarizes the fingerprints and percent of con-
nections we observed clients offering these weak cipher suites
and signature algorithms. While circumvention tools would
likely avoid using such weak cipher suites (lest it enable
a censor to successfully break their TLS connections), this
further demonstrates the wide range of TLS implementations

present on the modern Internet, once again showing how long
legacy code can remain in use.

IX. RELATED WORK
A. Passive TLS Measurements

Several studies have measured TLS (and SSL) by passively
observing traffic as we have in our study. However, the vast
majority of these studies focus mainly on certificates and
the Certificate Authority ecosystem. For example, in 2011
Holz et al. analyzed 250 million TLS/SSL connections and
extracted certificates in order to study the existing landscape
of certificate validation [29]. In addition to uncovering the
“sorry state” of the X.509 certificate PKI, they briefly analyzed
selected cipher suites, finding that RC4-128, AES-128, and
AES-256 were the most popular cipher suites used at the time,
with TLS_RSA_WITH_RC4_128_MD)5 selected in between
20 and 30% of connections. Today, 7 years later, we find that
same cipher is selected in only 0.001% of connections, and
offered by clients in only 8.4% of connections. Later, Holz
et al. studied the use of TLS in email clients [28]. Lee et al.
performed active scans of a sample of TLS/SSL servers in
order to study ciphers supported and certificates in 2007 [36].
In 2012 the SSL Notary studied TLS/SSL certificates collected
from live traffic [3]. The SSL Notary continues to run today'!,
though still mainly focused on certificates and servers rather
than clients. In 2014, Huang et al. described a way to detect
forged SSL certificates via a flash plugin that could observe
the raw certificate sent to the user [31].

B. Client Hello Fingerprinting

Several studies have used Client Hello messages to fin-
gerprint TLS implementations. Most notably, in 2009, Ristié
described how to fingerprint SSL/TLS clients by analyzing
parameters in the handshake, including the cipher suites and
extensions list [47], [34], [48]. Several works have since
observed that these fingerprints can be used to identify and
fingerprint third-party library use in Android applications [44],
and detect malware [11], [4]. Durumeric et al. used TLS finger-
prints and compared them to browser-provided user agents on
a popular website to detect HTTPS interception by antiviruses
and middleboxes [19].

While these works used Client Hello message to identify
clients, we analyze the distribution of clients, ciphers and tls
versions used, and fingerprintability of censorship circumven-
tion tools, which to our knowledge has not been studied in this
context.

C. Traffic Obfuscation Analysis

There are 2 general techniques [59] that censorship circum-
vention tools employ to avoid identification: mimic allowed
type of content, or randomize the traffic shape to prevent
blacklisting. In the former case, developers would have to elim-
inate all disparities between circumvention circumvention tool
and imitated protocol, and will protect against whitelisting, as
long as mimicked application is popular or important enough
to avoid blocking. Houmansadr et al. demonstrated [30] that
it is very difficult to successfully mimic application layer

https://notary.icsi.berkeley.edu/

application. Randomized protocols, such as obfs4, while not
being able to defend against whitelist approach, may counter
blacklisting, which is used more commonly. Study by Liang
Wang et al. examined attacks based on semantics, entropy,
timing and packet headers [62], and demonstrated efficiency
of entropy-based classifier in detecting obfs3 and obfs4. In
2013, tunneling loss-intolerant protocols over loss-tolerant
cover channels, was shown[26] to allow censors to interfere
with the channel safely, without disrupting intended use of
cover-protocol. For details on observability and traffic analysis
resistance of existing anti-censorship tools, reader can refer to
Systematizations of Knowledge[33], [59].

libeerate [37] is a library, that takes alternative approach,
and instead of hiding the traffic, it features numerous tech-
niques that use bugs in DPI to evade identification. Even
though all proposed evasion techniques are susceptible to
countermeasures, it might be cheaper for anti-censorship com-
munity to integrate and update libeerate, than for censors to
fix all the bugs in DPI boxes.

X. DISCUSSION
A. Ethical Considerations

Studying real-world Internet traffic requires care to ensure
user privacy. We designed our collection infrastructure to
anonymize or discard potentially sensitive data. For example,
we collected only the /16 subnet of the source IP address and
SNI value for each connection. This allows us to tell if a
connection originated on our campus, but not what individual
user generated it. For connections originated externally, we
often cannot even determine what AS the source was located
in.

We applied for and received IRB exemption for our collec-
tion methodology, and we worked closely with our institution’s
IT and networking staff, who approved the specifics of our
collection methods. We have responsibly disclosed our findings
regarding the observability of the censorship circumvention
tools, and are continuing to work with their respective devel-
opers to discuss and offer potential solutions.

B. Dataset Limitations

Although we have captured billions of TLS connections,
there are limitations to what our infrastructure can collect.
For example, fragmented TLS messages and out-of-order TCP
packets are not parsed by our system. In addition, because
we received the full-duplex 10 Gbps mirror of campus traffic
on a single (half-duplex) port, it is possible for our copy of
network traffic to saturate when the combined bi-directional
traffic exceeds 10 Gbps. This occurs for several hours each
day during peak load. We performed a simple experiment to
quantify how this impacts our collection of TLS fingerprints.

Every hour, we made 100 TLS connections through our
campus with a unique TLS fingerprint that did not appear
in our dataset. This allowed us to see at what time of day
we dropped fingerprints: any hour where we received fewer
than 100 of these fingerprints indicated data loss. Over 88%
of the hours we ran our experiment recorded all 100 of our test
connections. However, during peak hours, which lasted approx-
imately 5 hours per weekday, the minimum number captured

in an hour was 43, and the median was 80. We conclude that
the only times we do not capture TLS fingerprints is when the
tap switch cannot forward us packets due to congestion, and
all other times we receive and properly record practically all
connections.

C. Future Work

Client Hello messages provide a rich amount of features
useful in fingerprinting TLS implementations, but there are
other messages in the TLS connection that could be used to
detect or block tools. For instance, once the connection is
established and sends encrypted records, the lengths of these
encrypted records may reveal differences between implementa-
tions [62]. Collecting and better understanding the distribution
of these (in conjunction with the information gleaned from
Client Hello messages) could greatly help circumvention tools
be more robust.

Another direction could be to study user behavior to
better understand if existing tools that pretend to be users
visiting popular CDNs or websites (e.g. in domain fronting or
refraction networking) are easily distinguishable by the pattern
or timing of connections they make.

Beyond TLS over TCP, measuring UDP TLS may be useful
in performing similar analysis on DTLS protocols, such as
those used by the VPN tools we investigated.

XI. CONCLUSION

We have analyzed real-world TLS traffic in the context of
censorship circumvention tools, focusing on the first protocol
messages sent between clients and servers that may allow
censors to identify tools and implementations. We analyzed
several circumvention tools that use TLS in various ways,
and find problems with nearly all of them. To address these
systemic problems, we have developed the uTLS library,
designed to generated arbitrary Client Hello messages and
provide applications full control over the TLS handshake,
enabling them evade identification and blocking with minimal
developer effort. We release our collected data, combined with
tools to facilitate further analysis at https://tlsfingerprint.io.

ACKNOWLEDGEMENTS

We would like to thank the University of Colorado IT and
Network Security team, particularly Dan Jones and Conan
Moore for their valuable assistance and feedback in setting
up our tap infrastructure. We thank J. Alex Halderman for
his feedback in early drafts of this work. We also thank
the developers at the circumvention projects we contacted,
including Rod Hynes from Psiphon, and Ox Cart from Lantern,
and David Fifield for their discussion on uTLS. Finally, we are
deeply grateful to Alphabet Jigsaw, particularly Ben Schwartz,
who helped to design and implement uTLS at the initial stages
of the project and continued discussion thereafter.

REFERENCES

[1] Sadia Afroz and David Fifield. Timeline of Tor censorship. http://
www l.icsi.berkeley.edu/~sadia/tor_timeline.pdf.

[2] Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson, Bertram
Poettering, and Jacob CN Schuldt. On the security of RC4 in TLS. In
USENIX Security Symposium, pages 305-320, 2013.

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

Bernhard Amann, Matthias Vallentin, Seth Hall, and Robin Sommer.
Extracting certificates from live traffic: A near real-time SSL notary
service. Technical Report TR-12-014, 2012.

Blake Anderson, Subharthi Paul, and David McGrew. Deciphering
malwares use of tls (without decryption). Journal of Computer Virology
and Hacking Techniques, pages 1-17, 2016.

arma. Obfsproxy: the next step in the censorship arms race. https:/
blog.torproject.org/obfsproxy-next-step-censorship-arms-race, 2012.

Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger,
Maik Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex
Halderman, Viktor Dukhovni, Emilia Kédsper, Shaanan Cohney, Susanne
Engels, Christof Paar, and Yuval Shavitt. DROWN: Breaking TLS with
SSLv2. In 25th USENIX Security Symposium, August 2016.

Mike Belshe, Martin Thomson, and Roberto Peon. Hypertext transfer
protocol version 2 (http/2). 2015.

David Benjamin. Applying grease to tls extensibility. https://tools.ietf.
org/html/draft-davidben-tls-grease-01, September 2016.

Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-
Lavaud, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-
Yves Strub, and Jean Karim Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In Security and Privacy
(SP), 2015 IEEE Symposium on, pages 535-552. IEEE, 2015.

Karthikeyan Bhargavan and Gaétan Leurent. On the practical (in-)
security of 64-bit block ciphers: Collision attacks on HTTP over TLS
and OpenVPN. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 456-467. ACM, 2016.

Lee Brotherston. Stealthier attacks and smarter defending with tls
fingerprinting, 2015.

Emil Burzo. No ability to use a supported (but not enabled) cipher
suite. https://github.com/square/okhttp/issues/2698, 2016.

Roger Dingledine and Jacob Appelbaum. How governments have tried
to block tor. 2012.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The
second-generation onion router. Technical report, Naval Research Lab
Washington DC, 2004.

Chromium Developer Documentation. SPDY: An experimental protocol
for a faster web. https://www.chromium.org/spdy/spdy-whitepaper,
2009.

Tor documentation. Tor: Pluggable Transports. https://www.torproject.
org/docs/pluggable-transports.html.

Tor documentation. meek: pluggable transport, an obfuscation layer
for tor designed to evade internet censorship. https://trac.torproject.org/
projects/tor/wiki/doc/meek, 2018.

Tor documentation. Snowflake: pluggable transport that proxies traffic
through temporary proxies using webrtc. https://trac.torproject.org/
projects/tor/wiki/doc/Snowflake, 2018.

Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick
Sullivan, Elie Bursztein, Michael Bailey, J Alex Halderman, and Vern
Paxson. The security impact of https interception. In Proc. Network
and Distributed System Security Symposium (NDSS), 2017.

Frank Ehlis. How to disable ssl ciphers in google chrome, 2013.

David Fifield. Cyberoam firewall blocks meek by TLS signature. https://
groups.google.com/forum/\#!topic/traffic-obf/BpFSCVgi5rs/, 2016.

David Fifield. Fortiguard firewall blocks meek by TLS signature. https://
groups.google.com/forum/\#!topic/traffic-obf/fw AN-WWz2Bk, 2016.

David Fifield. Anticipating a world of encrypted SNI: risks, oppor-
tunities, how to win big . https://groups.google.com/d/msg/traffic-obf/
UyaLc9jPNmY/ovNImKSHEQAIJ, August 2018.

David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan
Boneh, Roger Dingledine, and Phil Porras. Evading censorship with
browser-based proxies. In International Symposium on Privacy En-
hancing Technologies Symposium, pages 239-258. Springer, 2012.

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern
Paxson. Blocking-resistant communication through domain fronting.
Proceedings on Privacy Enhancing Technologies, 2015(2):46-64, 2015.

John Geddes, Max Schuchard, and Nicholas Hopper. Cover your acks:
Pitfalls of covert channel censorship circumvention. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security, pages 361-372. ACM, 2013.

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]
[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

John Gilmore. Cracking DES: Secrets of encryption research. Wiretap
Politics & Chip Design, 272, 1998.

Ralph Holz, Johanna Amann, Olivier Mehani, Matthias Wachs, and
Mohamed Ali Kaafar. TLS in the wild: an internet-wide analysis of tls-
based protocols for electronic communication. CoRR, abs/1511.00341,
2015.

Ralph Holz, Lothar Braun, Nils Kammenhuber, and Georg Carle. The
SSL landscape: a thorough analysis of the X.509 PKI using active and
passive measurements. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, pages 427-444. ACM,
2011.

Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The parrot
is dead: Observing unobservable network communications. In Security
and Privacy (SP), 2013 IEEE Symposium on, pages 65-79. IEEE, 2013.

Lin Shung Huang, Alex Rice, Erling Ellingsen, and Collin Jackson.
Analyzing forged ssl certificates in the wild. In Security and privacy
(sp), 2014 ieee symposium on, pages 83-97. IEEE, 2014.

Psiphon Inc. Psiphon — uncensored internet access for windows and
mobile. https://www.psiphon3.com, 2018.

Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M Swanson,
Steven J Murdoch, and Ian Goldberg. Sok: Making sense of censorship
resistance systems. Proceedings on Privacy Enhancing Technologies,
2016(4):37-61, 2016.

SSL Labs. HTTP client fingerprinting using SSL handshake analysis.
https://www.ssllabs.com/projects/client-fingerprinting/, 2009.

The Go Programming Language. cgo, 2018.

Homin K Lee, Tal Malkin, and Erich Nahum. Cryptographic strength
of SSL/TLS servers: current and recent practices. In Proceedings of
the 7th ACM SIGCOMM conference on Internet measurement, pages
83-92. ACM, 2007.

Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki, Arian Akhavan
Niaki, David Choffnes, Phillipa Gill, and Alan Mislove. lib erate,(n): A
library for exposing (traffic-classification) rules and avoiding them effi-
ciently. In Proceedings of the 2017 Internet Measurement Conference,
pages 128-141. ACM, 2017.

Colm MacCarthaigh. Enhanced domain protections for amazon
cloudfront requests. https://aws.amazon.com/blogs/security/enhanced-
domain-protections-for-amazon-cloudfront-requests/, 2018.

Moxie Marlinspike. Amazon threatens to suspend signal’s aws account
over censorship circumvention. https://signal.org/blog/looking-back-on-
the-front/, 2018.

Bodo Moller, Thai Duong, and Krzysztof Kotowicz. This poodle bites:
exploiting the ssl 3.0 fallback. Security Advisory, 2014.

moxie0. Doodles, stickers, and censorship circumvention for Signal
Android. https://signal.org/blog/doodles-stickers-censorship/, 2016.

phobos. Update on internet censorship in Iran. https://blog.torproject.
org/update-internet-censorship-iran, 2011.

Lantern Project. Lampshade: a transport between Lantern clients and
proxies. https://godoc.org/github.com/getlantern/lampshade.

Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez,
Srikanth Sundaresan, Johanna Amann, and Phillipa Gill. Studying tls
usage in android apps. 2017.

Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446, August 2018.

Eric Rescorla. Transport Layer Security (TLS) parameters. https:/
www.iana.org/assignments/tls- parameters/tls-parameters.xhtml, 2018.
Ivan Ristié. HTTP client fingerprinting using SSL handshake analy-
sis. https://blog.ivanristic.com/2009/06/http-client- fingerprinting-using-
ssl-handshake-analysis.html, 2009.

Ivan Risti¢. sslhaf: Passive ssl client fingerprinting using handshake
analysis. https://github.com/ssllabs/sslhaf, 2009.

Runa. Ethiopia introduces deep packet inspection. https://blog.
torproject.org/ethiopia-introduces-deep-packet-inspection, 2012.

runa. Kazakhstan uses DPI to block Tor. https://trac.torproject.org/
projects/tor/ticket/6140, 2012.

runa. Uae uses DPI to block Tor. https://trac.torproject.org/projects/tor/
ticket/6246, 2012.

Alexander Sotirov, Marc Stevens, Jacob Appelbaum, Arjen K Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger. MD5 considered

harmful today, creating a rogue CA certificate. In 25th Annual Chaos
Communication Congress, number EPFL-CONF-164547, 2008.

[53] statcounter. Browser version market share worldwide, 2016.

[54] Let’s Encrypt Stats. Percentage of Web Pages Loaded by Firefox Using
HTTPS. https://letsencrypt.org/stats/#percent-pageloads, 2018.

[55] Marc Stevens. Fast collision attack on MDS5. IACR Cryptology ePrint
Archive, 2006:104, 2006.

[56] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and
Yarik Markov. The first collision for full sha-1. In Annual International
Cryptology Conference, pages 570-596. Springer, 2017.

[57] Open Whisper Systems. Signal - private messenger. https://signal.org/.

[58] Inc. ToorCon. crack.sh — the world’s fastest des cracker. https:/
crack.sh/.

[59] Michael Carl Tschantz, Sadia Afroz, Vern Paxson, et al. Sok: Towards
grounding censorship circumvention in empiricism. In Security and
Privacy (SP), 2016 IEEE Symposium on, pages 914-933. 1IEEE, 2016.

[60] twilde. Knock Knock Knockin’ on Bridges’ Doors. https://blog.
torproject.org/knock-knock-knockin-bridges-doors, 2012.

[61] Mathy Vanhoef and Frank Piessens. All your biases belong to us:
Breaking RC4 in WPA-TKIP and TLS. In USENIX Security Symposiumn,
pages 97-112, 2015.

[62] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Ristenpart, and
Thomas Shrimpton. Seeing through network-protocol obfuscation. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 57-69. ACM, 2015.

[63] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions
in the full sha-1. In Annual international cryptology conference, pages
17-36. Springer, 2005.

[64] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scramblesuit: A
polymorphic network protocol to circumvent censorship. In Proceedings
of the 12th ACM workshop on Workshop on privacy in the electronic
society, pages 213-224. ACM, 2013.

[65] Eric Wustrow, Colleen Swanson, and J Alex Halderman. Tapdance:
End-to-middle anticensorship without flow blocking. In 23rd USENIX
Security Symposium, August 2014.

APPENDIX A
MULTIPLE FINGERPRINTS USAGE

We show the ease of using uTLS as compared to using
the standard crypto/t1s library (which provides no control
over TLS). In this configuration, uTLS will mimic popular
browsers until an unblocked one is found.

utlsRoller, err := tls.NewRoller ()
if err != nil {
return err

}

conn, err := utlsRoller.Dial ("tcp",
"10.1.2.3:443", "golang.org")
if err != nil {

return err

}
conn.Write([]byte("Hello, Golang!"))

Listing 1. Dialing with utls.Roller

tlsConf := tls.Config{
ServerName: "golang.org",

}

conn, err = tls.Dial("tcp",
"10.1.2.3:443", &tlsConf)

if err != nil {
return err

}

conn.Write([]byte("Hello, Golang!"))

Listing 2. Dialing with standard crypto/tls and no mimicry

