Turbo Tunnel, a good way to design
censorship circumvention protocols

David Fifield

Abstract

This paper advocates for the use of an interior session and
reliability layer in censorship circumvention systems—some
protocol that provides a reliable stream interface over a pos-
sibly unreliable or transient carrier protocol, with sequence
numbers, acknowledgements, and retransmission of lost data.
The inner session layer enables persistent end-to-end session
state that is largely independent of, and survives disruptions
in, the outer obfuscation layer by which it is transported.

The idea—which I call Turbo Tunnel—is simple, but has
many benefits. Decoupling an abstract session from the spe-
cific means of censorship circumvention provides more design
flexibility, and in some cases may increase blocking resistance
and performance. This work motivates the concept by explor-
ing specific problems that a Turbo Tunnel design can solve,
describes the essential components of such a design, and re-
flects on the experience of implementation in the obfs4, meek,
and Snowflake circumvention systems, as well as a new DNS
over HTTPS tunnel.

1 A common need

My purpose in writing this paper is to make the case that cen-
sorship circumvention systems should incorporate an interior
session and reliability layer, independent of the obfuscation
layer that provides blocking resistance. Circumvention sys-
tems of all kinds stand to benefit from a design that decouples
session and obfuscation, whether in increased performance
or better resistance to blocking. More importantly, the flex-
ibility afforded by such a design facilitates new and daring
circumvention designs that are not easy to realize today.

The need for a session layer separate from obfuscation has
been felt, if not stated, by the developers of diverse circum-
vention systems over many years. In most systems, the obfus-
cation layer does double duty, being both a vehicle of evasion
and a frame for the user’s session. This unnecessary fusion of
responsibilities causes a number of practical problems, ma-
jor and minor, which, when not ignored, are typically dealt

user streams e.g. HTTP, chat, Tor, VPN
e.g. KCP, QUIC, SCTP

e.g. obfs4, meek, Snowflake, FTE

session/reliability
obfuscation

Figure 1: A Turbo Tunnel design uses a session/reliability
layer in the middle of the protocol stack, between the user’s
application streams and the obfuscated network connection
responsible for evasion. The session/reliability layer is an
internal layer, not exposed to the censor. Using QUIC, for
example, does not mean that QUIC UDP packets are observ-
able on the wire; instead, those packets are encapsulated and
transmitted inside the blocking-resistant obfuscated tunnel.

with uniquely within each system. One of the contributions
of this work is to call attention to a common challenge. The
solution I propose is to insert a dedicated session/reliability
protocol—not necessarily tailored to circumvention—into the
middle of the circumvention protocol stack, a design pattern
I call Turbo Tunnel. See Figure 1.

To motivate the discussion, let us first outline a few specific
problems facing circumvention systems and see how a Turbo
Tunnel design can help. These examples will be treated in
more detail in Section 3.

Problem: Censors can disrupt obfs4 by terminating TCP
connections. obfs4, like many circumvention protocols, re-
lies essentially on an underlying TCP connection [30 §0].
There is no “session” apart from the TCP connection; when it
ends, all end-to-end state is lost and a new connection must be
started from scratch. This characteristic makes obfs4 vulnera-
ble to attacks on the underlying TCP connection, like the ones
that occurred in Iran in 2013, where certain connections were
dropped [7] or throttled [2 §4.4] after 60 seconds. Protocols
like HTTP that use short connections were hardly affected,
while circumvention tunnels had to be constantly restarted.
The attack has not recurred, but it remains a potential danger
to protocols like obfs4 that rely on a single long-lived TCP
connection.

The problem is solved by the introduction of a separate,
“virtual” session that outlives any one TCP connection. When
one obfs4-protected TCP connection is terminated or throttled,
the client may reconnect and resume the session on another.
The session protocol provides continuity by retransmitting
any information lost during the transition. A TCP connec-
tion ceases to be the indispensable backbone of a session,
becoming merely a transient and replaceable carrier of bytes.

Problem: meek is half-duplex. meek creates a bidirec-
tional stream by stringing together a sequence of HTTP re-
quests and responses [10 §5]. meek already has the notion of a
session: each HTTP request is tagged with a session identifier
so that the server can associate requests from the same client.
Since requests are independent at the HTTP layer, they must
somehow be kept in order. The Tor deployment of meek main-
tains ordering by permitting only one outstanding request: the
client waits for the response to its previous request before
making another, giving rise to a “ping-pong” communication
pattern in which only one side may send at a time.

The situation is helped by having HTTP requests and re-
sponses contain encapsulated packets of a session protocol
with sequence numbers. The client may make a request when-
ever it has something to send. Both peers buffer and reorder
incoming packets before passing their contents to an upper
layer. The stream multiplexing feature of HTTP/2 means that
interleaved requests do not block each other, even if they
happen to use the same TCP connection.

Problem: Snowflake can use only one temporary proxy.
Snowflake [24] is built on browser-based proxies. Each proxy
connection is reliable and in order while it lasts, but a proxy
may disappear at any time, leaving the user with a broken
session. Because proxies are run by volunteers and assigned
to clients randomly, even a working proxy may, by chance,
simply be too slow to use tolerably.

An independent session layer solves this problem by en-
abling a Snowflake client to persist a session through a se-
quence of disjoint proxy connections—or even to use many
proxies at once, splitting traffic across them, as a hedge against
one of them being slow. The session layer retransmits what-
ever is lost when a proxy disappears, and reassembles inter-
leaved packet sequences that arrive over different proxies.

Problem: DNS does not guarantee order nor delivery.
DNS over HTTPS [14] has potential as a circumvention tun-
nel, because HTTPS encryption hides the protocol features
that otherwise make DNS tunnels detectable. But any DNS
tunnel requires some form of sequencing layer, because the
DNS protocol is unreliable. DNS over HTTPS is reliable
only up to the first recursive resolver: after that, the recursive
queries use plain old UDP-based DNS, which may drop or
reorder messages.

Contemporary DNS tunnels use a variety of custom reli-
ability schemes [9]. The Turbo Tunnel approach is to treat
reliability as a separable and solved problem. DNS messages
can contain encapsulated packets of an existing, tested and
debugged, session/reliability protocol. One part of the code
can be devoted purely to encoding and decoding DNS mes-
sages, while another part builds a reliable channel on top of
them, similar to how TCP builds on IP.

The DNS example hints at what is perhaps the greatest
advantage of a Turbo Tunnel design: more freedom to the
developer. The design of circumvention systems is a creative
activity, demanding the flexibility to combine protocols in
original and unexpected ways. Separating the concerns of
session management and censorship evasion reduces concep-
tual complexity, empowering the designer to attempt more
ambitious ideas. Imagine, for example, a system that permits
switching between different obfuscation strategies, without
losing end-to-end session state.

2 Implementing a Turbo Tunnel design

The essential component of a Turbo Tunnel design is an inter-
nal protocol that takes care of segmenting an outgoing stream
into packets, attaching sequence numbers, and deciding when
to retransmit unacknowledged data; and on the receiving side,
acknowledging received data and reassembling packets back
into a stream. The protocol must, of course, be realized in
code as some sort of library. The core requirement on the
library is that it must permit abstracting its network opera-
tions. It must not, for example, insist on sending its own UDP
datagrams, but should provide hooks for the calling applica-
tion to send and receive the library’s packets in whatever way
is appropriate for the obfuscation layer. The session layer
uses the obfuscation layer as a censor-resistant network inter-
face: whenever it would do a socket operation, it calls into the
obfuscation layer instead.

In late 2019 1 did a small survey [19 #14] to find protocols
and libraries suited to implementing Turbo Tunnel designs.
I focused on libraries written in Go, because it is commonly
used among circumvention developers. The survey turned up
two good candidate protocols, KCP [23] and QUIC [16], with
implementations in the kcp-go [28] and quic-go [4] libraries.
How the protocols work hardly concerns us; what matters is
they provide the right interfaces. For our purposes they are
basically interchangeable, and in fact most of the implementa-
tions in Section 3 were done twice, once with kcp-go and once
with quic-go. KCP does not conform to any external standard,
but is fairly simple and battle-tested. By itself, KCP provides
a single reliable stream, but the related smux [29] library adds
support for multiple streams. QUIC is in the process of being
standardized [15]. In its usual UDP-encapsulated form, QUIC
is the basis of HTTP/3 [3], and already accounts for a notable
fraction of web traffic. QUIC is complex, has built-in support
for multiple streams, and mandates the use of TLS.

https://github.com/net4people/bbs/issues/14

user > session/ [JOCID

11111111 -
1111111

O0OD session/) user

streams (1 reliability (O] °Pfuscation Z v~ obfuscation 558 reliability ——— streams

streams packets

censor-proof obfuscation

packets streams

carrying encapsulated packets

Figure 2: An end-to-end Turbo Tunnel design. The session/reliability layer transforms outgoing streams into packets, and
incoming packets back into streams. The obfuscation layer is responsible for encapsulating the session/reliability layer’s packets
and transporting them in a way that will not be blocked by a censor.

Building a Turbo Tunnel-based circumvention system is
a matter of marrying some form of obfuscation with a ses-
sion/reliability library like kcp-go or quic-go. Essentially, it’s
a lot of glue code; see Figure 2 for how the pieces fit. The
user’s streams are fed into the session layer, not directly into
the obfuscation layer. The session layer produces discrete
packets, which must be encapsulated into the obfuscation
layer such that they may be recovered at the other end. The
details of encapsulation depend on the particulars of the obfus-
cation channel, which may itself be packet-oriented, stream-
oriented, or something else entirely. The encapsulation must
also associate with each packet a session identifier, a unique
value that enables the recipient to distinguish packets belong-
ing to different sessions, analogous to the four-tuple in TCP.
The session identifier, being decoupled from any network ad-
dress, enables roaming by the client, as in Mosh [27 §2.2] and
WireGuard [5 §1I-A]. The details of roaming depend on the
obfuscation, but generally, a server receiving upstream pack-
ets tagged with a certain session identifier from a particular
network address assumes that downstream packets for that
session may be sent to that same network address.

Naively implemented, a Turbo Tunnel design may increase
a circumvention system’s susceptibility to traffic analysis;
that is, detection based on packet sizes and timing. The head-
ers of the session layer impose additional structure on the
tunnelled data, and the sending of acknowledgement and
keepalive packets may result in distinctive timing patterns.
Geddes et al. showed how effective this kind of attack can
be, identifying acknowledgement packets through timing and
selectively interfering with them to disrupt a circumvention
tunnel [13 §4.3]. This style of detection has not, so far, been
a serious problem for deployed circumvention systems, but it
is wise to allow room in the design for manipulating of traffic
features. This means, for example, that the packet encapsu-
lation scheme should allow for padding. It may also mean
not sending a complete packet as soon as it is available, but
delaying sends and consolidating or splitting packets so that
the on-the-wire packet boundaries do not reflect the packet
boundaries of the session layer.

The case studies of the next section have source code avail-
able that provides examples of implementing Turbo Tunnel.
I have also prepared a simplified example that focuses only
on the essential elements at https://www.bamsoftware.com/
papers/turbotunnel/example/.

3 Case studies

My process for developing the Turbo Tunnel concept has
been to implement it in disparate circumvention systems. The
process culminated in the creation of a new DNS tunnel built
to take advantage of the possibilities of DNS over HTTPS,
with high performance compared to other DNS tunnels. The
descriptions here are only sketches; see the “history and avail-
ability” section for links to source code and more details.

3.1 obfs4

obfs4 [30] is a randomized protocol that works over TCP.
There is a one-to-one relationship between user streams and
obfuscated TCP connections: the obfs4 session begins and
ends where the TCP connection does.

My goal was to make obfs4 resistant to TCP termination
attacks. To this end, the client of the Turbo Tunnel version
of obfs4 does not open just one TCP connection for each
new user session, but rather starts a loop that connects to
the obfs4 server and reconnects whenever a connection is
terminated for any reason. The outgoing packets produced by
the session layer are sent over whatever TCP connection is
current (or buffered temporarily during reconnection). Packets
are encapsulated by prefixing them with a 16-bit length header
and concatenating them on the current TCP connection. The
client generates a random session identifier and sends it at the
beginning of all its connections. By convention, all packets
on a single connection share the same session identifier.

The obfs4 server runs a typical TCP accept loop as always,
but instead of piping incoming connections directly to an up-
stream server, it decapsulates the contained packets and feeds
them into a single, global instance of the session protocol. The
session protocol produces “new session” and “new stream”
events, which are what drive upstream forwarding. The obfs4
server makes no distinction between its many incoming TCP
connections; each is an interchangeable conduit for exchang-
ing packets. When the server needs to send a packet for a
given session identifier, it sends the packet on the TCP con-
nection from which it most recently received a packet tagged
with that session identifier.

Testing through a proxy that terminates connections af-
ter 20 seconds showed that a session could persist, despite
constant disconnections.

https://www.bamsoftware.com/papers/turbotunnel/example/
https://www.bamsoftware.com/papers/turbotunnel/example/

protocol time

TCP-encapsulated QUIC 10.6 s
traditional meek 233s
meek with encapsulated QUIC 349 s

Table 1: Time for simultaneous upload and download of
a 10 MB file over different varieties of meek, with TCP-
encapsulated QUIC for comparison.

3.2 meek

meek builds a tunnel over a chain of HTTP requests and re-
sponses [10 §5]. As currently deployed in Tor, meek transmits
unstructured chunks of data in each request or response body,
each endpoint simply concatenating the chunks it receives.
Because there is no framing to enforce the order of chunks,
meek uses a half-duplex communication style, with the client
and server taking turns sending data.

The meek Turbo Tunnel integration permits the client to
send (i.e., make an HTTP request) any time it has data avail-
able, without waiting for the response to its previous request.
When the client has a packet to send, it encapsulates the packet
into an HTTP request body, along with any other packets that
are immediately available. The HTTP request also contains
the client’s session identifier, which applies to all packets in
the request. The server, on receiving an HTTP request, decap-
sulates all the packets it contains and feeds them into its own
session layer, which, as in obfs4, creates the virtual network
events to drive upstream connections. The logic for sending
downstream data is simple. The server maintains a queue of
outgoing packets for each session identifier. When an HTTP
request arrives bearing a certain session identifier, the server
is entitled to send data addressed to that session identifier in
the corresponding HTTP response.

The meek implementation was a success as far as permit-
ting the client to send data at any time, but disappointingly
decreased performance in a test of bulk upload and download.
See Table 1. The cause of the performance loss is uncertain,
but informal experiments show that the performance is sen-
sitive to changes in parameters such as the maximum HTTP
body size and the number of request threads.

3.3 Snowflake

Snowflake [24] circumvents address-based blocking using
temporary volunteer proxies. Proxies are not expected to re-
main constantly online. Until recently, there was no way to
bridge a session from one proxy another. If your proxy dis-
appeared while you were using it, the session would die, and
you would have to restart Snowflake.

The changes required for Turbo Tunnel in Snowflake were
similar to what was required in obfs4. The Snowflake client
runs a loop of requesting a temporary proxy from the central
Snowflake broker, exchanging packets through it until it stops

working, then requesting a new proxy. As in obfs4, each new
proxy connection begins with a session identifier; and as in
meek, for each session identifier the server maintains a queue
of outgoing packets. If two or more proxy connections have
the same session identifier, they all draw simultaneously from
the same queue of outgoing packets on the server. This opens
the door to using more than one Snowflake proxy at a time,
though this feature is not yet implemented.

The Snowflake implementation has graduated from proto-
type status and is now deployed to users in the alpha release of
Tor Browser. The Tor anti-censorship team evaluated Turbo
Tunnel in Snowflake using both kcp-go and quic-go. Both
worked well, but the team decided to deploy the kcp-go ver-
sion, based on considerations of API stability and number of
dependencies.

3.4 DNS over HTTPS tunnel

The last Turbo Tunnel experiment is not a modification of an
existing system, but an entirely new piece of software, a DNS
tunnel called dnstt [8] that can use DNS over HTTPS [14].
DNS tunnels are generally disdained for censorship circum-
vention because they are considered easily detectable: they
generate unusual DNS messages, and each message must con-
tain the domain name of the tunnel server in plaintext. But
DNS over HTTPS changes everything,everything, because its
messages are encrypted.

DNS is a query—response protocol not unlike HTTP, so the
architecture of dnstt is like that of meek. Upstream packets
are encoded as DNS names, and downstream packets are con-
tained in TXT responses. Because payload space is tightly
constrained in DNS queries (only about 140 bytes are avail-
able [9]), the dnstt client does not try to bundle more than one
packet per query. Responses allow about 900 bytes of pay-
load, so the server tries to bundle multiple outgoing packets if
possible. DNS over HTTPS uses the same message format as
UDP-based DNS, but the messages are sent in HTTPS bodies
rather than in UDP datagrams. dnstt uses KCP. QUIC is not
directly usable because it can require sending packets of up
to 1200 bytes [15 §8.1], too large to fit in a DNS message.

Neither the ordering nor the delivery of DNS messages is
guaranteed, in either direction. The session protocol in dnstt
guarantees that lost packets will be retransmitted and packets
put in order before reassembly. Delegating these responsibili-
ties to a dedicated session protocol simplifies the design of
the system and permits higher performance. It depends on
the resolver, but dnstt achieved download speeds of 130 KB/s
using the Google and Cloudflare DNS over HTTPS resolvers,
and 30 KB/s using the Quad9. For comparison, iodine [6], the
best-known classical DNS tunnel, did not exceed 2 KB/s of
download with the UDP resolvers of the same operators.

4 Toward a reusable library?

I have resisted positioning Turbo Tunnel as an importable
library, preferring to present it as a general design pattern or
a way to think about circumvention protocols. This was to
avoid the risk of settling on a programming interface before
first understanding all the requirements. The integrations of
Section 3 each were each done as if starting from scratch,
sometimes borrowing previously written code but not making
use of a shared Turbo Tunnel module. With the experience of
having implemented the same idea several times, I am skep-
tical of whether a truly modular “libturbotunnel” is possible.
Circumvention designs often demand breaking abstractions
and accessing low-level protocol details. Some aspects of the
interaction between the session and obfuscation layers, like
the encoding of session identifiers into protocol messages,
defy easy factorization into a library.

Nevertheless, a few common patterns have emerged that
are amenable to modularization and may form the basis of a
reusable library. The two main abstractions that have proved
useful in every integration are (to use their dnstt names)
QueuePacketConn and RemoteMap. QueuePacketConn is
an adapter that transforms the “push” interface of kcp-go
and quic-go into a “pull” interface. The WriteTo method of
QueuePacketConn stores outgoing packets in a queue, so that
the obfuscation layer may process them at its own pace. (Per-
haps batching several packets into one send operation, for ex-
ample.) The ReadFrom method of QueuePacketConn draws
from a queue of incoming packets, which is replenished by the
obfuscation layer as encapsulated packets arrive. RemoteMap
manages a mapping of session identifiers to outgoing queues.
It is used in servers to buffer outgoing packets for each ongo-
ing session until there is an opportunity to send them. (For
instance, the meek server must hold onto packets until it gets
an HTTP request to which it may respond, and the dnstt server
must similarly wait for a DNS query.)

kcp-go and quic-go are adequate for the task of implement-
ing a Turbo Tunnel design, but they require a fair amount of
adaptation to make them work in the way required. A ses-
sion protocol designed for embedding in a circumvention
system would work somewhat differently. Here is a rough
list of features I found myself wishing for while working on
implementations:

e A “pull” interface, not a “push” interface. Instead of
calling a WriteTo callback whenever it wants to send
a packet, the session library could buffer the stream of
outgoing data, only breaking it up on demand, when the
calling code requests a packet. The session library would
still decide what actually goes in each packet—how to
set the acknowledgement field, for example. It would
be the caller’s responsibility to poll the session library
frequently enough to put packets on the network in a
timely manner. Such a “pull” interface would remove
the need for the QueuePacketConn adapter.

e A variable maximum size per packet. kcp-go permits set-
ting a global maximum packet size, which is handy for
limited-space contexts like DNS messages. It would be
even more useful if the maximum size were not global,
but could be specified for each packet as it is requested.
A good interface would be “give me a packet of at most
n bytes, or, if none is available, return immediately with
nothing.” A motivating case for this feature is DNS,
in which different resolvers may have different packet
length limits. The best one can do with a global maxi-
mum packet size is set it conservatively to a low value
that is appropriate for all resolvers. An adaptive limit
would allow more efficient use of space.

e No built-in cryptography. End-to-end encryption and
authentication are, generally speaking, good features to
have in a session protocol, but the cryptographic facil-
ities of KCP and QUIC are not a good match for the
Turbo Tunnel model. kcp-go supports an optional layer
of symmetric-key encryption, which is unfortunately not
useful in the common circumvention setting of a single
proxy server accessed by mutually untrusting clients:
they all know each other’s key. QUIC mandates TLS for
every connection, which is burdensome to set up and
provide a user interface for, which is needless when the
user-level protocol is something like Tor that provides
its own end-to-end security.

e Few dependencies. Every added dependency is a bur-
den on maintenance. The deployment of Snowflake in
Tor Browser patches out unused cryptographic and error-
correction code from kcp-go, solely to eliminate depen-
dencies and ease maintenance.

5 Related work

Session-like layers have appeared many times in circumven-
tion systems, usually out of necessity in those that are not
built on a reliable channel like TCP. Code Talker Tunnel
builds a reliable channel atop UDP by including sequence
and acknowledgement numbers [18 §6.2]. OSS similarly em-
beds sequence and acknowledgement numbers into HTTP
URLs [11 §4]. The StegoTorus chopper breaks a stream into
packets that may be sent over disparate steganographic chan-
nels and arrive out of order [26 §3]; however each channel
must itself be reliable, as the chopper does not do retrans-
mission. Conflux proposes to improve the performance of
Tor by splitting traffic across multiple simultaneous circuits;
circuits are associated with a session identifier, and Tor cells
contain a sequence number to permit reassembly at the exit
router [1 §3]. The Camouflage system splits traffic across
multiple cover channels: different streams may be assigned
to different cover channels, but each stream can use only one
cover channel at a time [31 §3]. TapDance prepends a session

identifier to each covert flow [25 §3.2] that enables a central
proxy to concatenate a sequence of short-lived flows into one
long-lived session.

Some circumvention systems support tunnelling over
QUIC, with optional obfuscation. Psiphon can run QUIC
packets through a stream cipher before sending, so that they
are not identifiable as QUIC [22]. V2Ray can transform QUIC
packets to resemble other UDP-based protocols, like SRTP
and DTLS [21]. These applications of QUIC may be viewed
as limited implementations of Turbo Tunnel, where the ses-
sion/reliability layer is QUIC, and the obfuscation layer is
lightweight packet-by-packet transformation.

MASQUE [17] is a proposal to colocate proxy servers
with web servers over HTTP/2 (TLS/TCP) or HTTP/3
(QUIC/UDP), such that proxy traffic looks like ordinary web
traffic. Despite the use of QUIC, MASQUE is not really an
example of the Turbo Tunnel idea—the key difference is that
it puts QUIC on the outside of the protocol stack, not the in-
side. To put it in terms of this paper, MASQUE uses QUIC as
an obfuscation layer, not a session/reliability layer. However,
thanks to the fact that QUIC works well for both purposes,
MASQUE could be adapted into a Turbo Tunnel design in
two ways. First, one could run some other session protocol
through the MASQUE tunnel, treating MASQUE as just an-
other obfuscated proxy. Alternatively, one could encapsulate
MASQUE’s QUIC packets into some other obfuscation layer
(obfs4, say, or even another instance of MASQUE) and use
MASQUE as an inner session layer.

History and availability

Resources related to this paper, including a worked example
of converting a client—server system to a Turbo Tunnel de-
sign, are available at https://www.bamsoftware.com/papers/
turbotunnel/.
The Turbo Tunnel idea was developed in a series of posts
to the Net4People BBS circumvention discussion forum [19]:
#9 Aug. 2019 Manifesto
#14 Oct. 2019 Protocol evaluation and obfs4
#21 Dec. 2019 meek
#30 Apr. 2020 DNS over HTTPS tunnel
#35 May 2020 Snowflake

obfs4. The changes to obfs4 remain in private branches.
https://gitlab.torproject.org/dcf/obfs4/tree/reconnecting-kcp
https://gitlab.torproject.org/dcf/obfs4/tree/reconnecting-quic

meek. The changes to meek remain in private branches.
https://gitweb.torproject.org/pluggable-transports/meek.git/
log/?h=turbotunnel-kcp
https://gitweb.torproject.org/pluggable-transports/meek.git/
log/?h=turbotunnel-quic

Snowflake. Turbo Tunnel-enabled Snowflake is part of the
alpha release of Tor Browser since version 9.5a13 for desktop
and 10.0al for Android. The Turbo Tunnel code has been
merged into the main development branch.
https://www.torproject.org/download/alpha/
https://gitweb.torproject.org/pluggable-transports/snowflake.
git/

dnstt. The home page has downloads and documentation.
https://www.bamsoftware.com/software/dnstt/

Acknowledgements

Much of my Turbo Tunnel research and development was
conducted under a contract with Xiao Qiang and the Counter-
Power Lab at the University of California, Berkeley. I am
grateful for communication with Cecylia Bocovich, Arlo
Breault, Roger Dingledine, Vinicius Fortuna, Sergey Frolov,
Ian Goldberg, Rod Hynes, Trevor Perrin, David Schinazi,
Student Main, Loup Vaillant-David, ValdikSS, Zack Wein-
berg, and Eric Wustrow. This paper was shepherded for FOCI
by Michalis Polychronakis. My implementations have bene-
fited from the use of several free software packages, notably
kcp-go [28] and smux [29] by xtaci; quic-go [4] by Lucas
Clemente, Marten Seemann, and others; and the Flynn imple-
mentation [12] of the Noise protocol framework [20].

References

[1] Mashael Alsabah, Kevin Bauer, Tariq Elahi, and Ian
Goldberg. The path less travelled: Overcoming Tor’s
bottlenecks with traffic splitting. In Privacy Enhancing
Technologies Symposium. Springer, 2013. https://www.
cypherpunks.ca/~iang/pubs/conflux-pets.pdf.

[2] Simurgh Aryan, Homa Aryan, and J. Alex Halder-
man. Internet censorship in Iran: A first look.
In Free and Open Communications on the Internet.
USENIX, 2013. https://www.usenix.org/conference/
focil3/workshop-program/presentation/aryan.

[3] Mike Bishop. Hypertext Transfer Protocol version 3
(HTTP/3). Internet-Draft draft-ietf-quic-http-29, June
2020. https://tools.ietf.org/html/draft-ietf-quic-http-29.

[4] Lucas Clemente, Marten Seemann, et al. quic-go, July
2020. https://github.com/lucas-clemente/quic-go.

[5] Jason A. Donenfeld. WireGuard: Next gener-
ation kernel network tunnel. In Network and
Distributed System Security. The Internet Society,
2017. https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/wireguard-next-generation-kernel-
network-tunnel/.

https://www.bamsoftware.com/papers/turbotunnel/
https://www.bamsoftware.com/papers/turbotunnel/
https://github.com/net4people/bbs/issues/9
https://github.com/net4people/bbs/issues/14
https://github.com/net4people/bbs/issues/21
https://github.com/net4people/bbs/issues/30
https://github.com/net4people/bbs/issues/35
https://gitlab.torproject.org/dcf/obfs4/tree/reconnecting-kcp
https://gitlab.torproject.org/dcf/obfs4/tree/reconnecting-quic
https://gitweb.torproject.org/pluggable-transports/meek.git/log/?h=turbotunnel-kcp
https://gitweb.torproject.org/pluggable-transports/meek.git/log/?h=turbotunnel-kcp
https://gitweb.torproject.org/pluggable-transports/meek.git/log/?h=turbotunnel-quic
https://gitweb.torproject.org/pluggable-transports/meek.git/log/?h=turbotunnel-quic
https://blog.torproject.org/new-release-tor-browser-95a13
https://blog.torproject.org/new-release-tor-browser-100a1
https://www.torproject.org/download/alpha/
https://gitweb.torproject.org/pluggable-transports/snowflake.git/
https://gitweb.torproject.org/pluggable-transports/snowflake.git/
https://www.bamsoftware.com/software/dnstt/
https://www.cypherpunks.ca/~iang/pubs/conflux-pets.pdf
https://www.cypherpunks.ca/~iang/pubs/conflux-pets.pdf
https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://tools.ietf.org/html/draft-ietf-quic-http-29
https://github.com/lucas-clemente/quic-go
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/wireguard-next-generation-kernel-network-tunnel/

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Erik Ekman, Bjorn Andersson, et al. iodine, June 2014.
https://code.kryo.se/iodine/.

Nima Fatemi. Iran. tor-dev mailing list, May
2013. https://lists.torproject.org/pipermail/tor-dev/2013-
May/004787.html.

David Fifield. dnstt, May 2020.
bamsoftware.com/software/dnstt/.

https://www.

David Fifield. Survey of techniques to encode data in
DNS messages, July 2020. https://www.bamsoftware.
com/software/dnstt/survey.html.

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,
and Vern Paxson. Blocking-resistant communication
through domain fronting. Privacy Enhancing Technolo-
gies, 2015(2), 2015. https://www.bamsoftware.com/
papers/fronting/.

David Fifield, Gabi Nakibly, and Dan Boneh. OSS: Us-
ing online scanning services for censorship circumven-
tion. In Privacy Enhancing Technologies Symposium.
Springer, 2013. https://www.bamsoftware.com/papers/
oss.pdf.

Flynn. Go implementation of the Noise protocol frame-
work, March 2018. https://github.com/flynn/noise.

John Geddes, Max Schuchard, and Nicholas Hopper.
Cover your ACKs: Pitfalls of covert channel censor-
ship circumvention. In Computer and Communications
Security. ACM, 2013. https://www-users.cs.umn.edu/
~hopper/ccs13-cya.pdf.

Paul Hoffman and Patrick McManus. DNS queries
over HTTPS (DoH). RFC 8484, October 2018. https:
/Itools.ietf.org/html/rfc8484.

Jana Iyengar and Martin Thomson. QUIC: A UDP-
based multiplexed and secure transport. Internet-Draft
draft-ietf-quic-transport-27, February 2020. https://tools.
ietf.org/html/draft-ietf-quic-transport-27.

Adam Langley, Alistair Riddoch, Alyssa Wilk, Anto-
nio Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fe-
dor Kouranov, lan Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamil-
ton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
The QUIC transport protocol: Design and Internet-
scale deployment. In SIGCOMM. ACM, 2017. https:
//dl.acm.org/doi/10.1145/3098822.3098842.

Multiplexed Application Substrate over QUIC Encryp-
tion (MASQUE) working group, February 2020. https:
//datatracker.ietf.org/wg/masque/about/.

(18]

(19]
(20]

(21]

(22]

(23]

[24]
[25]

(26]

(27]

(28]

[29]
(30]

(31]

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad
Derakhshani, and Ian Goldberg. SkypeMorph: Protocol
obfuscation for Tor bridges. In Computer and Communi-
cations Security. ACM, 2012. https://www.cypherpunks.
ca/~iang/pubs/skypemorph-ccs.pdf.

Net4People BBS. https://github.com/net4people/bbs.

Trevor Perrin. The Noise protocol framework, revi-
sion 34, July 2018. https://noiseprotocol.org/noise.html.

Project V. QUIC, November 2018. https://www.v2fly.
org/en/configuration/transport/quic.html.

Psiphon. ObfuscatedPacketConn, April 2020.
https://github.com/Psiphon-Labs/psiphon-tunnel-core/
blob/v2.0.11/psiphon/common/quic/obfuscator.go.

skywind3000. KCP - a fast and reliable ARQ proto-
col, January 2020. https://github.com/skywind3000/
kep/blob/1.7/README.en.md.

Snowflake. https://snowflake.torproject.org/.

Benjamin VanderSloot, Sergey Frolov, Jack Wampler,
Sze Chuen Tan, Irv Simpson, Michalis Kallitsis, J. Alex
Halderman, Nikita Borisov, and Eric Wustrow. Run-
ning refraction networking for real. Privacy Enhancing
Technologies, 2020(3), 2020. https://petsymposium.org/
2020/files/papers/issue4/popets-2020-0073.pdf.

Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran,
Linda Briesemeister, Steven Cheung, Frank Wang, and
Dan Boneh. StegoTorus: A camouflage proxy for the Tor
anonymity system. In Computer and Communications
Security. ACM, 2012. https://www.frankwang.org/files/
papers/ccs2012.pdf.

Keith Winstein and Hari Balakrishnan. Mosh:
An interactive remote shell for mobile clients. In
Annual Technical Conference. USENIX, 2012.
https://www.usenix.org/conference/atc 12/technical-
sessions/presentation/winstein.

xtaci. kep-go, July 2020. https://github.com/xtaci/kcp-
go.

xtaci. smux, July 2020. https://github.com/xtaci/smux.

Yawning Angel and Philipp Winter. obfs4 (the ob-
fourscator). https://gitlab.com/yawning/obfs4/-/blob/
obfs4proxy-0.0.11/doc/obfs4-spec.txt.

Apostolis Zarras. Leveraging Internet services to
evade censorship. In Information Security Confer-
ence. Springer, 2016. https://dke.maastrichtuniversity.
nl/zarras/files/Camouflage.pdf.

https://code.kryo.se/iodine/
https://lists.torproject.org/pipermail/tor-dev/2013-May/004787.html
https://lists.torproject.org/pipermail/tor-dev/2013-May/004787.html
https://www.bamsoftware.com/software/dnstt/
https://www.bamsoftware.com/software/dnstt/
https://www.bamsoftware.com/software/dnstt/survey.html
https://www.bamsoftware.com/software/dnstt/survey.html
https://www.bamsoftware.com/papers/fronting/
https://www.bamsoftware.com/papers/fronting/
https://www.bamsoftware.com/papers/oss.pdf
https://www.bamsoftware.com/papers/oss.pdf
https://github.com/flynn/noise
https://www-users.cs.umn.edu/~hopper/ccs13-cya.pdf
https://www-users.cs.umn.edu/~hopper/ccs13-cya.pdf
https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://tools.ietf.org/html/draft-ietf-quic-transport-27
https://dl.acm.org/doi/10.1145/3098822.3098842
https://dl.acm.org/doi/10.1145/3098822.3098842
https://datatracker.ietf.org/wg/masque/about/
https://datatracker.ietf.org/wg/masque/about/
https://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
https://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
https://github.com/net4people/bbs
https://noiseprotocol.org/noise.html
https://www.v2fly.org/en/configuration/transport/quic.html
https://www.v2fly.org/en/configuration/transport/quic.html
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/v2.0.11/psiphon/common/quic/obfuscator.go
https://github.com/Psiphon-Labs/psiphon-tunnel-core/blob/v2.0.11/psiphon/common/quic/obfuscator.go
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://snowflake.torproject.org/
https://petsymposium.org/2020/files/papers/issue4/popets-2020-0073.pdf
https://petsymposium.org/2020/files/papers/issue4/popets-2020-0073.pdf
https://www.frankwang.org/files/papers/ccs2012.pdf
https://www.frankwang.org/files/papers/ccs2012.pdf
https://www.usenix.org/conference/atc12/technical-sessions/presentation/winstein
https://www.usenix.org/conference/atc12/technical-sessions/presentation/winstein
https://github.com/xtaci/kcp-go
https://github.com/xtaci/kcp-go
https://github.com/xtaci/smux
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.11/doc/obfs4-spec.txt
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.11/doc/obfs4-spec.txt
https://dke.maastrichtuniversity.nl/zarras/files/Camouflage.pdf
https://dke.maastrichtuniversity.nl/zarras/files/Camouflage.pdf

	A common need
	Implementing a Turbo Tunnel design
	Case studies
	obfs4
	meek
	Snowflake
	DNS over HTTPS tunnel

	Toward a reusable library?
	Related work

