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Abstract

We examine WebRTC’s suitability as a means of Inter-
net censorship circumvention. WebRTC is a framework
and suite of protocols for peer-to-peer communication
between web browsers. We analyze the implementa-
tion differences in instantiations of WebRTC that make
it possible to “fingerprint” implementations—potentially
distinguishing circumvention-related uses from ordinary
ones. This question is relevant to Snowflake, an upcom-
ing circumvention system that uses WebRTC to turn web
browsers into temporary peer-to-peer proxies. We con-
duct a manual analysis of WebRTC-using applications in
order to map the space of distinguishing implementation
features. We run a fingerprinting script on a day’s worth
of network traffic in order to quantify WebRTC’s preva-
lence and diversity. Throughout, we find pitfalls that in-
dicate that resisting fingerprinting in WebRTC is likely
to be non-trivial.

1 Background

The job of an Internet censor is essentially that of traffic
classification. The censor observes traffic and decides,
perhaps on a per-packet or per-stream basis, whether to
block or allow it. The censor incurs a cost whenever it
classifies incorrectly, whether by overblocking (block-
ing what what should be allowed, thereby diminishing
the utility of the Internet), or by underblocking (allowing
what should be blocked, thus failing in the task of censor-
ship). Circumvention attempts to increase the difficulty
of the classification problem, by making forbidden traffic
look like allowed traffic and causing the censor to mis-
classify more often. This task requires that the forbidden
traffic resemble the allowed traffic in every aspect that
is easily observable to the censor—otherwise the censor
can easily separate the wheat from the chaff.

∗Authors are listed in alphabetical order.

Even a naive censor will block direct access to for-
bidden resources, for example web sites. Therefore
circumvention systems typically employ some kind of
proxy that provides indirect access to blocked resources.
The challenge for the censor, then, is to discover and
block communication with proxies. Perhaps the biggest
challenge in disguising proxy access is camouflaging
addressing information, such as the destination IP ad-
dresses. The IP addresses of proxies must not be eas-
ily distinguishable as belonging to circumvention, or else
the censor’s classification task is very easy: it can de-
cide what to block or allow based on nothing more than
the destination. There are several systems that aim to
solve this IP-blocking problem, The one we focus on is
Snowflake [19], now under development, which takes the
approach of running proxies inside of web browsers. The
browsers serve as a source of cheap and unpredictable IP
addresses.

Suppose that Snowflake adequately solves the prob-
lem of IP blocking. There remains another challenge,
network protocol classification. which is classification
by the network protocol used to communicate with prox-
ies. Snowflake is based on WebRTC [1], a peer-to-peer
framework built into web browsers. The question we ad-
dress is whether Snowflake’s use of WebRTC protocols
stands out from other applications’, and whether there is
enough use of WebRTC in the wild that a censor cannot
easily just block it wholesale.

Snowflake has two components that use WebRTC: the
proxy, implemented in JavaScript for a browser; and the
client, which uses a headless standalone implementation
of WebRTC. Because of the requirements of the circum-
vention design, when establishing a WebRTC connec-
tion, the proxy is the initiator and the client is the re-
ceiver; i.e., the proxy plays the role of a WebRTC client
and the client plays the role of a server.

http://arxiv.org/abs/1605.08805v1


1.1 WebRTC

WebRTC is a rather complicated set of protocols and an
API for building communications applications. It was
originally designed for applications such as voice and
video chat—the “RTC” stands for real-time communi-
cations. In addition to the transport of media streams,
WebRTC offers TCP-like reliable and UDP-like unreli-
able data channels. WebRTC has only recently become
commonly available and well supported in web browsers.
What makes WebRTC interesting for circumvention is its
built-in support for traversal of network address transla-
tion (NAT). A lack of NAT traversal was a major im-
pediment to the adoption of flash proxy [4], an earlier,
TCP-based system that also used in-browser proxies.

WebRTC incorporates a bundle of related protocols. It
uses Interactive Connectivity Establishment (ICE) [17]
for NAT traversal. ICE itself uses the NAT-traversal tech-
nologies STUN [18] and TURN [10]. Data channels
are implemented as a transport layer atop Datagram TLS
(DTLS) [15]. Media streams are carried over the Secure
Real-time Transport Protocol (SRTP)[3], however usu-
ally using a DTLS key exchange in a process known as
DTLS-SRTP [13]. Some WebRTC applications that use
SRTP make use of an older type of key exchange called
SDES [2]—in this case no DTLS handshake occurs.

Our work is a preliminary step towards anticipating
how successful WebRTC-based circumvention is likely
to be. We investigate these questions:

1. How much WebRTC exists in the wild?

2. What kind of diversity is there in naturally occur-
ring WebRTC fingerprints?

3. Is it feasible to mimic the fingerprint of an applica-
tion that is important enough to resist blocking?

1.2 Threat model

In our threat model, the censor controls a perimeter
around a censored user. All a user’s communication is
mediated by the censor, who decides what to block or al-
low according to its own policy and capabilities. The
censor, however, does not control the user’s personal
computer. The user’s goal is to reach some blocked net-
work resource outside the censor’s control. The censor
is free to block, modify, replay, or inject any traffic ac-
cording to its own wishes. We assume, however, that the
censor seeks to avoid overblocking; the potential for cir-
cumvention increases the more this assumption holds.

2 Candidate features

Here we identify a number of WebRTC protocol features
that we expect to be useful for fingerprinting.

STUN and TURN The STUN and TURN NAT-
traversal protocol are valuable in several ways.
Messages contain a list of attributes whose or-
der and contents are left up to the implementer,
including a SOFTWARE attribute that explicitly
identifies the implementation, like the User-Agent
header in HTTP. Not only client traffic but also
server traffic is distinguishable. We can evaluate
the type of server that the application connects to;
also, the selection of what STUN servers to use is
a choice made by the client application. The type
of packets being sent can be used as a fingerprint.
The majority of applications send only Binding
requests, successful Binding responses, Allocate
requests, and successful Allocate responses. The
minority send, in addition, CreatePermission re-
quests and responses, and send indication packets.
Some applications force the use of UDP relaying
using TURN, against the guidelines of WebRTC.

DTLS The DTLS layers has several features that con-
tribute to fingerprinting, mostly inherited from TLS.
These include the DTLS version (DTLSv1.0 and
DTLSv1.2 are the possibilities), the ordered lists of
cipher suites and extensions offered by the client,
the cipher suite chosen by the servers, and the
server’s extensions. The certificate offered by the
server has interesting details too, including the
“common name” field and the period of validity.

Media vs. data transport Snowflake, at its current
stage of development, always uses reliable Web-
RTC data channels, meaning that the on-the-
wire protocol seen by the censor is DTLS. Other
WebRTC-based applications use media channels,
which use DTLS-SRTP or SRTP with SDES.
Though all these protocol are encrypted, it is easy
to distinguish one from another.

3 Prior work

Nick Mathewson wrote in 2012 on the difficulty of dis-
guising Tor’s TLS connections [12]:

“At this point, we hadn’t actually learned very
much about TLS internals: we were treat-
ing TLS as an idealized black-block encrypted
transport. Obviously, this was a mistake on our
part.”

This early lack of understanding was the cause of some
regrettable design decisions: Tor’s use of TLS is more
complicated than necessary because of incrementally
added fingerprinting mitigations. Our research aims to
pre-empt these difficulties when building with WebRTC,
by understanding the issues thoroughly at the start.
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DTLS is an adaptation of TLS for datagram transports,
and therefore inherits the fingerprintability of TLS. Ma-
jkowski [11] built a TLS client fingerprinting plugin for
p0f, the passive OS fingerprinting tool. It used as features
the TLS version, client ciphersuites and extensions, and
other implementation quirks. Fifield et al. [5] empha-
sized the importance of matching a browser’s fingerprint
when using HTTPS for circumvention.

Houmansadr et al. in their influential “parrot is dead”
paper [8] argue that superficial protocol imitation is fun-
damentally flawed, due to the great many details one
must get exactly right in order to remain indistinguish-
able. Subtle protocol details, such as endpoints’ behavior
in the face of errors, are enough to unmask naive protocol
mimicry. As WebRTC is a large framework consisting of
complicated protocols, imitation by mimicry should be
especially infeasible.

uProxy [20] is a circumvention system that can,
among other things, route censored users’ traffic through
the browsers of their friends using data channels and
WebRTC. uProxy can additionally obfuscate the DTLS
layer using transformation programs that hide the fact
that DTLS is in use [21]. This is possible for uProxy,
and not for Snowflake, because uProxy is a browser ex-
tension that has extra capabilities compared to an ordi-
nary web application.

The website webrtchacks.com has done reverse-
engineering and discussion of WebRTC applications,
which we found useful in our own investigation.

4 Manual fingerprint analysis

We began by analyzing several WebRTC implementa-
tions in web applications. Using Wireshark to capture
the traffic, we attempted to discover notable features or
idiosyncrasies in these implementations. We studied the
DTLS connections, as well the STUN/TURN packets
and DNS lookups of STUN/TURN servers, by manually
analyzing the traces.

We analyzed traces from browser-to-browser Face-
book Messenger, Google Hangouts, OpenTokRTC,
Sharefest, and Snowflake. We chose Facebook Messen-
ger and Google Hangouts because they are popular appli-
cations that were discovered [7, 6] to be using WebRTC.
We chose OpenTokRTC because of its advertised usage
of WebRTC. We chose to study Sharefest as it is a data-
only connection, rather than the voice and video services
of the prior applications.

4.1 Google Hangouts

Google Hangouts (https://hangouts.google.com/) video
chat begins with STUN binding requests made to the

Google STUN server. This is followed by Bind-
ing success responses. Through the chrome://webrtc-
internals display in Chrome, we see “DtlsSrtpKeyAgree-
ment:false”, meaning that the key is exchanged through
SDES rather than through DTLS. DTLS is not present in
this implementation.

4.2 Facebook Messenger

Facebook Messenger (https://www.messenger.com/)
uses WebRTC with DTLS for browser-to-browser
communication but uses WebRTC with SDES for any
communication involving a mobile device. Messenger
begins with Binding requests sent to both a Facebook
STUN server and a Facebook TURN server, but then
only sends Allocate requests and CreatePermission re-
quests to the TURN server, indicating that Facebook has
forced TURN usage. Several additional send indication
TURN packets are sent, some over TCP, others over
UDP. These are used to forward data to a peer through
the TURN server.

Next, the DTLS connection begins. The DTLS client
hello contained several potentially fingerprintable at-
tributes: DTLSv1.0 was used, nine cipher suites were of-
fered, there was a null compression method, the usesrtp
extension was present, and there were two elliptic curves
offered. The server hello responds with the cipher
suite TLSECDHE RSA WITH AES 256 CBC SHA.
The server’s certificate includes the common name
“WebRTC”. The certificate has a validity period of 30
days. The connection continues with an SRTP-based
connection.

4.3 OpenTokRTC

OpenTokRTC (https://opentokrtc.com/) is a WebRTC-
based chat demo. WebRTC begins in OpenTok with
STUN binding requests and successes to TURN Tokbox
servers. Several Allocate requests follow, many of which
error. The error response code is consistently 401, mean-
ing unauthorized. The response packets include two no-
table attributes. First, they carry a REALM attribute with
the contents tokbox.com. Second, their SOFTWARE at-
tribute identifies the server as “Citrix-3.2.5.1 ‘Marshal
West”’. This is defined as an identifier for a free TURN
server [16]. When the Allocate requests succeed, they
provide a username.

The DTLS connection begins with DTLSv1.0. 73
cipher suites are offered by the client, many of
them outdated and attackable. We do not ex-
pect this to appear on other WebRTC DTLS con-
nections. The hello also includes a null compres-
sion method, the usesrtp extension, and a heart-
beat extension. The server hello chose cipher
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suite TLSECDHE RSA WITH AES 256 CBC SHA.
The server key was exchanged using elliptic key curve
secp256r1. The certificate includes the common name
“WebRTC”. The certificate also had a validity period of
30 days. Following the establishment of the DTLS con-
nection, the video chat continued over SRTP.

4.4 Sharefest

Sharefest (https://sharefest.me/) is a file sharing service
that uses WebRTC to transmit over a data channel. Our
trace of Sharefest began with a STUN connection to one
of Google’s STUN server. Only STUN binding requests
and binding successes were sent.

The Sharefest DTLS connection began with two client
hellos. The two hellos were identical, except for differ-
ent IP header identification values and different sequence
numbers. The client used DTLSv1.0, offered nine differ-
ent cipher suites, a null compression method, the usesrtp
extension, and two elliptic curves. The server hello
chose TLSECDHE RSA WITH AES 256 CBC SHA,
and included the usesrtp extension. The server certifi-
cate has the common name “WebRTC” and a validity pe-
riod of exactly 30 days. Additionally, the named elliptic
curve was secp256r1. The DTLS connection transmitted
the entirety of the data, which differed from the previous
services.

4.5 Snowflake

Snowflake begins its WebRTC connection with STUN
Binding requests sent to Google’s STUN server. The
STUN Binding requests and success responses continue.
A DTLS connection begins with a client hello with
DTLSv1.0 and server hello version of DTLSv1.2. This
is the first connection we have seen willing to support
DTLSv1.2. The client hello offers 17 cipher suites. The
client hello also offers a null compression method, a sig-
nature algorithms extension, the usesrtp extension, and
the renegotiation info extension.

The DTLS server hello chooses DTLSv1.2. Snowflake
is the only one of the applications we analyzed to use
version 1.2. The server hello chose cipher suite
TLS ECDHE RSA WITH AES 128 GCM SHA256,
which is distinct from all of the other WebRTC appli-
cations. Also included was the usesrtp extension. The
server certificate includes the common name “WebRTC”
with a validity period of 30 days.

4.6 Observations

Manual analysis gave us a list of factors that could influ-
ence a DTLS fingerprint. These include the list of client

extensions, the cipher suites and elliptic curves, the cer-
tificate validity and common name. We discovered that
Facebook Messenger and Google Hangouts did not use
WebRTC for text-based chats, only for video chats. We
also determined that Hangouts did not use DTLS to ex-
change keys.

5 DTLS fingerprinting in a large traffic
trace

We wrote a DTLS fingerprinting script for Bro [14]. For
every DTLS handshake, the script captures the times-
tamp; a unique ID; the DTLS version; the client’s lists of
cipher suites, extensions, and elliptic curves; the server’s
chosen cipher suite, elliptic curve, compression method,
and list of extensions; and the interval of validity of
the server certificate. We combine these features into a
fingerprint consisting of a long text string. The script
records a log line whenever a DTLS connection is suc-
cessfully established, or when there is a TLS alert mes-
sage terminating the handshake.

The script captures only one part of the WebRTC pro-
tocol stack, DTLS. DTLS is used for all WebRTC data
channels, and some media channels; other media chan-
nels, however, used SDES for key exchange and would
go undetected by our script. It also does not capture any
features related to ICE/STUN/TURN.

We ran the script on a day’s worth of network traffic
from Lawrence Berkeley National Laboratory. The script
found only seven DTLS handshakes, with three unique
client fingerprints and three unique server fingerprints.
This is less than we expected, and indicates that there
may not be all that much WebRTC traffic in which to
hide. Part of the reason may be that Google Hangouts,
which we guessed would be the biggest contributor to
WebRTC usage, does not use DTLS.

6 Future work

We hope to expand this project by continuing to run
the Bro script on other large traffic traces, improving
the fingerprint found by this script, and creating auto-
mated scripts to fingerprint the STUN and TURN. We
ran the DTLS fingerprint script on only one day of traf-
fic. We plan to run the script for longer periods of time,
and on more traffic. The Bro script should also be im-
proved. There is occasionally an anomaly present in
DTLS connections, which we haven’t been able to ex-
plain yet, where two consecutive client hellos are sent.
These two packets are exactly the same, except for the
sequence numbers, which are “0” then “1”. Bro improp-
erly handles these client hellos, leading to inaccurate re-
sults and missed logging of DTLS connections. Resolv-

4

https://sharefest.me/


ing this issue will go far in improving our knowledge of
DTLS connections. Additionally, the STUN/TURN ser-
vice should be analyzed on a large scale. This may in-
volve creating another Bro script which checks for UDP
connections to the STUN port (3478), then records the
type of STUN packet and other features.

Snowflake uses data channels, while most of the appli-
cations we surveyed use media channels. Though both
types of channel are encrypted, they are distinguishable
because one uses DTLS while the other uses SRTP. This
leaves open the possibility that a censor could block only
data channels, without blocking WebRTC entirely, re-
sulting in smaller amount of false-positive-related cost to
the censor. It may be possible to abuse media channels to
instead send binary data, akin to what Houmansadr et al.
did with Freewave [9], which modulated a data stream
into an acoustic signal to be transmitted over VoIP. This
would entail extra implementation difficulties such as the
need to layer a reliable transport layer onto the unreliable
media channels, but it would make Snowflake’s streams
not trivially distinguishable from those of other applica-
tions.

7 Acknowledgments
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8 Availability

Our DTLS fingerprinting Bro script is available from
https://github.com/miagilepner/DTLS-fingerprint.
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