
Hold-On: Protecting Against On-Path DNS
Poisoning

Haixin Duan∗, Nicholas Weaver†¶, Zongxu Zhao∗, Meng Hu∗, Jinjin Liang∗, Jian Jiang∗, Kang Li‡ and Vern Paxson†§
∗ Tsinghua University, Beijing, CN
duanhx@tsinghua.edu.cn

† International Computer Science Institute, Berkeley, CA, USA
‡ University of Georgia, Athens, GA, USA
§ University of California, Berkeley, CA, USA
¶ University of California San Diego, CA, USA

Abstract—Several attacks on DNS inject forged DNS replies
without suppressing the legitimate replies. Current implementa-
tions of DNS resolvers are vulnerable to accepting the injected
replies if the attacker’s reply arrives before the legitimate one.
In the case of regular DNS, this behavior allows an attacker
to corrupt a victim’s interpretation of a name; for DNSSEC-
protected names, it enables denial-of-service.

We argue that the resolver should wait after receiving an initial
reply for a “Hold-On” period to allow a subsequent legitimate
reply to also arrive. We evaluate the feasibility of such an
approach and discuss our implementation of a prototype stub
resolver/forwarder that validates DNS replies using Hold-On. By
validating the IP TTL and the timing of the replies, we show
that the resolver can identify DNS packets injected by a nation-
state censorship system, and that it functions without perceptible
performance decrease for undisrupted lookups.

I. INTRODUCTION

The Domain Name System (DNS) provides a critical net-
work service, and faces a variety of attacks ranging from
blind packet injection to active man-in-the-middle attacks. One
attack of concern regards DNS poisoning based on packet
injection, where an attacker who can observe and inject traffic
inserts fake replies to queries. Several types of adversaries
can employ such attacks, including attackers using systems on
shared WiFi networks, ISPs seeking to impose content-based
usage polices, and government censorship [1].

One particular design choice of DNS makes these attacks
easy. The DNS standard recommends that a DNS resolver
returns an answer as soon as it receives a matching reply [2],
in order to provide a reply as quickly as possible. In addition,
even DNSSEC-validating resolvers likely will suffer a denial-
of-service attack upon receipt of an injected reply: the non-
validating response leads the resolver to return a response of
“Bogus” [3] unless it continues to wait for a reply that properly
validates.

We explore the opportunity of countering DNS injection
attacks based on the observation that packet injection (rather
than full man-in-the-middle attacks) cannot suppress the re-
ceipt of legitimate replies. Thus, if resolver receives a reply
sooner than expected, instead of returning the result imme-
diately, it can wait for a “Hold-On” interval to see whether
additional responses arrive.

The key questions for this approach are (1) to what degree
such ambiguous replies occur in normal traffic, which will lead
to Hold-On introducing different resolver behavior than occurs
today, and (2) how much extra delay users encounter due to
the use of Hold-On. Our evaluation shows that receiving two
differing replies to the same question occurs only very rarely
in normal traffic, which establishes that this condition allows
for effective anomaly detection. We also present preliminary
results suggesting that the extra delay imposed on users is quite
minor. We have implemented a DNS proxy that uses Hold-
On and evaluate its effectiveness against a widely deployed
network censorship tool. We find that our prototype can
effectively filter out fake DNS replies, and does not appear
to introduce any perceptible increase in delay.

II. OVERVIEW OF THE PROBLEM SPACE

A. Taxonomy of attacks

Attackers against DNS fall into three categories: off-path,
on-path, and in-path.

An off-path adversary lacks the ability to observe DNS
queries and responses. Such an attacker will generally employ
some means to trigger specific DNS lookups, but must guess
the transaction ID [4], [5] and any other entropy (such as
the source port and 0x20 encoding [6]) in the request to
forge a reply that the resolver will accept. Off-path adversaries
generally generate numerous packets in hopes of matching
the request. Additionally, because resolvers do not issue new
queries for a name that is already cached, off-path adversaries
have difficulty targeting stub resolvers, since stubs, unlike
recursive resolvers, do not generally accept and promote glue
entries (the behavior leveraged by [5]).

An on-path adversary has the ability to passively observe
the actual lookups requested by a resolver. On-path adversaries
can directly forge DNS replies that match the full set of criteria
used by the resolver to validate answers (other than use of
DNSSEC). As long as a forged reply arrives at the resolver
before the legitimate one, the resolver will accept the injected
answer and become poisoned.

Absent a denial-of-service attack on legitimate servers, both
off-path and on-path adversaries lack the ability to suppress le-

gitimate responses. Thus, both of these adversaries necessarily
create an observable artifact: the victim, if it waits sufficiently
long, will receive both the attacker’s packet and the legitimate
reply. (We employed a similar form of this anomaly to detect
TCP reset injection attacks [7].) Only an in-path adversary,
capable of blocking and modifying packets, can prevent the
legitimate reply from reaching the victim.

Although in-path approaches have more power, on-path ap-
proaches have several advantages, making their use appealing
for attackers. Censorship tools commonly use on-path rather
than in-path techniques to ease deployment and to make the
system failure and load tolerant, as the censorship system
can then operate on a traffic mirror rather than the live
traffic.1 Similarly, on-path WiFi packet injection works without
modifying drivers, but suppressing legitimate replies requires
hardware-specific access to the low-level air interface to detect
and squelch a broadcast in flight.

B. Vulnerability of current implementations

Systems that implement the DNS standard [2], [8] are
vulnerable to on-path spoofing, despite the presence of the
later legitimate reply, because the resolver attempts to “get
the answer as quickly as possible” [2]. Upon receiving a reply,
the resolver checks the ID field in the header and then will
“verify that the question section corresponds to the information
currently desired” [8]. Clearly, these steps do not provide
sufficient diligence, as the design goal of quickly returning
an answer causes the resolver to return the attacker’s value.

DNSSEC adds cryptographic authentication to prevent the
acceptance of invalid DNS replies [9], [10], [3]. Although
attackers cannot redirect victims using spoofed replies, they
can still perform denial-of-service attack, which will often
suffice to satisfy a censor’s objective. DOS occurs because
the resolver will attempt to process the attacker’s packet,
determine that the DNSSEC signature is absent or invalid,
and immediately return “Bogus”, depriving the client from
the ability to connect to the host corresponding to the name.
Because of this behavior, DNSSEC does not suffice as a
replacement for a mechanism such as Hold-On: resolvers need
to maintain an open port for a period of time in order to
attempt to validate all responses received for a query, not just
the first.

C. Other related work

DNS has a long history of poisoning attacks [4], [5], [11],
[12]. Beside those mentioned above, several previous efforts
counter DNS poisoning attack by increasing the difficulty of
blindly injecting DNS answers [13], [14], [6], [15]. These
efforts focus on deterring off-path injection by increasing the
information entropy required to match a valid DNS reply.
Our work, however, addresses the threat from attackers that

1TCP traffic control tools also have used this vantage point. For example,
Comcast deployed Sandvine’s Policy Traffic Switch devices to disrupt BitTor-
rent traffic in an on-path configuration [7], even though the devices themselves
supported in-path operation.

can observe queries, which allows them to circumvent these
previous defenses.

Poisoning attacks based on on-path injection are not limited
to DNS. Malicious injection, such as TCP RST and ICMP
unreachable messages, have been used in both individual
attacks [7] and ISP-scale censorship [16], [17]. Similar to
DNS poisoning, traffic sent from the remote peer of the
legitimate communication will still arrive at the victim after
these malicious injections. Therefore, the use of Hold-On
mechanisms similar to those explored here will likely have
applicability to deter these malicious injections as well.

III. HOLD-ON AND DILIGENT VALIDATION

As a consequence of the inability for on-path attackers
to suppress legitimate replies, we investigate the benefits of
stub resolvers or forwarders waiting for a “Hold-On” period
to allow subsequent legitimate replies to arrive. Part of this
procedure entails validating replies with more diligence when
a resolver receives two or more replies for the same question.
This improvement effectively protects against DNS injections
in the case of non-disruptive attacks, where the attacker lacks
the ability to to block either the resolver’s request or the
authority’s response.

A. Assumptions

We predicate our approach on the following assumptions,
which we view as reasonable based on our experience with
censorship activity that employs on-path injectors:

(1) The user under attack or censorship is able to access
a trustworthy recursive resolver outside of the attacked or
censored networks, such as Google Public DNS [18] and
OpenDNS [19], which they frequently use. In particular, in
the censorship case, we assume that the censor does not
block access to this resolver, which we argue is a plausible
assumption given the large number (158,364 in January 2012)
of known open resolvers [20].

(2) The attacker/censor injects fake responses according to
a blacklist rather than a whitelist. That is, the user knows
some non-sensitive domain names that can be used to measure
normal (non-interfered by the attacker) communication be-
tween the client (stub resolver) and the DNS server (recursive
resolver).

(3) The attacker injects fake replies as quickly as possible
in order to ensure that the replies arrive earlier than the
legitimate ones. Hence, the injection mechanism will transmit
immediately upon seeing the client’s request. The mechanism
cannot wait for the arrival of the legitimate reply from the
server because by doing so, the injection may arrive after it,
and fail to work.

(4) The attacker cannot construct a properly signed
DNSSEC response.

Based on these assumptions, the stub resolver can estimate
when it expects legitimate replies to arrive, in order to discern
between injected replies and correct ones.

Stub Resolver Injector Recursive Resolver

DNS QueryInjected Reply
 TTL=231

Injected Reply
 TTL=8

Legitimate Reply
TTL=20

Hold-On
Timer

15 seconds

expected reply:
TTL:20; timing: after 200ms

arrives after 10ms
TTL mismatch, ignore

arrives after 250 ms
TTL match; accept

stop Hold-On Timer

arrives after 50ms
TTL mismatch, ignore

Fig. 1. Hold-On while waiting for a legitimate DNS reply.

B. Hold-On and Validation

The stub resolver or forwarder needs to first learn the
expected RTT and hop-count distance (in terms of expected
TTL) associated with communication involving its remote
recursive resolver, which it does using active measurement.
(Recall that we presume the remote resolver lies outside of
the censored network.) Upon start-up, the resolver issues a
series of non-sensitive queries to measure the initial RTT and
TTL seen on arriving replies for entries cached at the remote
resolver by repeatedly querying for the same name. During this
period, the resolver maintains an open port for an additional
period to validate that an on-path adversary has not tampered
with these initial measurements by injecting replies. During
normal operation, the stub resolver also continually updates
these values based on passive measurements of its ongoing
traffic.

Given estimates of the legitimate RTT and TTL, the resolver
works as shown in Figure 1:

(1) After issuing a DNS query, the resolver starts its Hold-
On timer. A natural setting for the timer would be 15 seconds,
as this reflects the default timeout value for both the BIND
resolver [21, p. 108] and Microsoft Windows [22]. Naturally,
in most cases the resolver will return much sooner, unless the
remote resolver is unreachable.

(2) When the resolver expects a DNSSEC-protected re-
sponse, for each reply it performs a local signature validation.
It returns to the client the first fully validated reply. If it
finds all replies as either Insecure, Bogus, or Indeterminate [3,
p. 20], and the Hold-On timer expires, the resolver returns a
DNSSEC error.

(3) Without DNSSEC, upon receiving a reply before the
Hold-On timer expires, the resolver performs two additional
validations:

• Timing. Does the reply arrives too early? The test we
use here is for replies that arrive sooner than half of
the expected (measurement-derived) RTT. We note that
the resolver could also determine this threshold more
precisely by measuring known injections in the resolver’s

actual environment by generating queries for censored
names to non-existent resolvers.

• TTL. Does the TTL field in the IP header have the
expected value(s)? We assume that the route between the
remote DNS server and the client is stable in at least short
periods (such as 5 minutes), so we can get and update
the expected TTLs by periodical measurement.

Upon observing either of the above mismatches, the resolver
ignores the response and continues to wait. If on the other hand
a reply arrives before the Hold-On time expires and validates
based on the above tests, the resolver accepts the new reply
and returns it to the client.

If the stub resolver receives no valid reply before the Hold-
On timer expires, it returns the latest non-validating reply it
observed. Doing so means that in the presence of significantly
changed network conditions, users experience delay, but not
inadvertent blocking of their access.

In most cases, the resolver will not wait until the Hold-
On timer timing out; it will stop waiting upon receipt of a
legitimate response. Thus, generally this approach will not
cause extra delay, except in the case that network conditions
have changed such that legitimate replies now return sooner
and without DNSSEC protection.

IV. FEASIBILITY ASSESSMENT

To assess the viability of our approach, we investigate the
phenomenon of observing multiple replies for a single DNS
query in both a censored network and a non-censored network.
In the latter, we look at whether normal DNS traffic generates
such replies; that is, whether Hold-On and validation could
cause significant false positives. In the censored network,
we assess how different the injected replies appear from the
legitimate ones, which indicates whether the approach could
suffer from significant false negatives.

A. Observation in an uncensored network

We can view use of the Hold-On approach as a form of
anomaly detector, looking for a condition that represents an
attack. Although it is clear that a packet-injection based DNS

attack must create an anomaly where the client receives two
distinct replies, we must ensure that normal DNS traffic does
not generate these anomalies, as, in some cases, there may
be no effective resolution beyond simply noting the attack
and returning no valid answer if it proves impossible to
heuristically distinguish an attacker’s packet from a legitimate
non-DNSSEC signed reply. If the resolver simply ignores
replies it cannot validate (and returns the last such, if no valid
replies are received), then such anomalies arising in legitimate
traffic will not in fact cause any problems. If, however, the
resolver flags such replies as reflecting an attack, then these
false positives will incur a degree of collateral damage.

We developed a Bro [23] IDS policy script to directly
detect anomalous secondary DNS replies. This script operates
by tracking all DNS requests and matching replies, checking
any subsequent reply that arrives within a 1-minute timeout2

to determine whether the number of records in the reply
and the contents of each are unchanged. We validated that
this script accurately detects attack packets using traces of
injected packets we captured by sending DNS query requests
that transited a network that uses DNS-based packet-injection
censorship.

We ran this script against 6 days of normal DNS traffic
captured at ICSI’s border, consisting of 11,700,000 DNS
requests.3 During this period we observed no DNS anomalies
that would create a false positive, only deliberate testing
intended to trigger a DNS censorship system.

Running on a 1.5 hour trace gathered in August 2011
at the UC Berkeley campus border (a total of 15.2M DNS
transactions,4 both inbound and outbound), we observed two
benign authorities that triggered the basic anomaly detector.
The first server, an authority server for the BBC, returned two
distinct replies for the same query for several names. Although
distinct in value, both values were within the same /24 subnet.

The second, an authority for businessinsider.com, returned
two values for the same query. The first reply was a CNAME
to an external domain with the root authority information
included in the reply, while the second was a SERVFAIL
containing the same CNAME but no authority or additional
fields, triggering the alert.

We also observed both multiple incidents of DNS censorship
(caused by local users configured to use resolvers in a censored
country) and a few false-positives due to script bugs that would
not disrupt a Hold-On resolver.

B. Observation in a censored network

To assess potential false negatives, we trigger a DNS censor-
ship system to inject DNS replies with sensitive domain names
(such as twitter.com). We generated these measurements from
within the censored network, communicating with destinations
outside the censored network. To differentiate the legitimate
from the injected replies, we first query a non-existent DNS

2We chose a longer timeout to be conservative in this analysis, attempting
to detect potential anomalies that would not affect a resolver using Hold-On.

3We excluded lookups issues by an ICSI measurement tool.
4Excluding a known high-volume DNS crawler used for research.

Fig. 2. Comparison of arrival times for legitimate packets (green cross) and
packets injected by censor (red plus)

Fig. 3. Comparison of TTLs for legitimate packets (green cross) and packets
injected by censor (red plus)

server outside the censored network with sensitive names, and
we receive only injected replies. We then query an open DNS
server with non-sensitive names (such as www.mit.edu), by
which we receive only legitimate replies.

With this method, we collected a data trace including
≈ 100,000 queries and corresponding replies over 9 days.
Figures 2 and 3 show comparisons of RTTs and TTLs observed
of legitimate DNS packets and injected packets by the DNS
censor. It appears not difficult to identify the legitimate packets
from injected. Most injected packets arrive much earlier than
legitimate ones because the injector and the client reside within
the same ISP, while the DNS server resides in another country.
We found the values of IP TTL from the legitimate DNS
responses are quite stable over a period of 9 days (either 44
or 42), but the TTL value of the injected packets varied in the
range of [0–255], presumably to avoid simple filtering.

In another 10-hour trace, we select one pair of (RTT, TTL)
every 5 minutes, and use this as the expected RTT and TTL
to validate other packets in the following time window. In
our experiment, we change the threshold of TTL and RTT

Stub Resolver
(End User)

DNS
Forwarder

DNS
proxy

Recursive
Resolver

Attacker
(Injector)

Fig. 4. Environment of DNS proxy

to evaluate the false positive rate and false negative rate,
as shown in Table I. For example, if we set the threshold
of TTL to 1 (that is, the reply is valid only if TTL ∈
[expected TTL−1, expected TTL+1]) and set the threshold
of RTT to 0.5 · expected RTT (that is, the reply is valid only
if it does not arrive 0.5 · expected RTT earlier than expected),
then the approach does not generate any false positives or
negatives.

TTL threshold RTT threshold FP (%) FN (%)
0-2 0.5 0 0
3 0.5 0 0.01
4 0.5 0 0.06
5 0.5 0 0.07
6 0.5 0 0.10
7 0.5 0 0.11
2 0.1 5.96 0
2 0.2 1.53 0
2 0.3-0.8 0 0
2 0.9 0 0.31

TABLE I
FALSE POSITIVE (FP) AND FALSE NEGATIVE (FN) RATES

CORRESPONDING TO DIFFERENT THRESHOLDS FOR IP TTL AND RTT
DIFFERENCES.

V. IMPLEMENTATION AND EVALUATION

We implemented a DNS proxy to explore how Hold-On
works in practice. The proxy operates as a DNS forwarder that
aims to protect against DNS injection by on-path adversaries,
as illustrated in Figure 4.

A. Design and implementation of a DNS proxy

To estimate the expected RTT and TTL to/from the remote
recursive resolver, the proxy issues requests upon start-up
for non-sensitive names.5 To estimate the RTT, the resolver
queries the same name multiple times, selecting the minimum
of RTT observed. The resolver excludes the first query, be-
cause it might include additional time consumed by the server
to resolve the name recursively, rather than answering from its
cache. The expected TTL(s) should typically remain constant,
but could vary due to routing changes.6 We assume that the set
of expected TTLs does not vary in a measurement period (see

5It could instead simply monitor initial queries for duplicate replies, and
formulate its estimates from those that engender only a single reply. Doing so
would also help with combating injection from attackers who have different
goals than censorship.

6A potentially pathological case would be replies that vary across a set
of arriving TTL values due to the use of per-flow load-balancing that causes
different replies to take different routes.

Algorithm 1 Hold-On and Validation for DNS Proxy
Timeout← 5
while GetDNSRequestFromClient(request) do
retry ← 1; gotAnyReply ← false
repeat

ForwardRequestToResolver(Resolver, request);
StartHoldOnTimer(retry · Timeout);
while NOT Timeout and GetDNSReply(replyPkt)
do

gotAnyReply ← true { from server or injector}
if ValidateDNSSEC OK(replyPkt) then

SendDNSReplyToClient(replyPkt.msg)
StopHoldOnTimer()
return

else if ValidateTTL OK(replyPkt.ipTTL)
and ValidateRTT OK(replyPkt.RTT) then

SendDNSReplyToClient(replyPkt.msg)
StopHoldOnTimer()
return

else
DropAndLog(replyPkt)

end if
end while
retry ← retry + 1

until retry == 3
if gotAnyReply then
{No valid reply, return the latest non-validating reply}
SendDNSReplyToClient(replyPkt.msg)

end if
end while

below). In our current implementation, the set has only one
value. During its normal operation, a separate thread repeats
this measurement (see § IV-B) periodically (such as every
5 minutes) and updates the expected RTT and TTL values
adapted to potential change of network status.

Algorithm 1 details how the proxy processes with DNS
requests and replies. When the proxy receives a DNS request
from its client (end user or DNS forwarder), it forwards the
request to the remote recursive resolver and starts the Hold-On
timer. We set the initial value of the timer to 5 seconds; if no
legitimate reply after the timer expires, we reset the timer to
10s for the second try, and similarly to 15s for the third try.

If the proxy receives a DNS reply (from either the remote re-
cursive resolver, or an injector), it validates both TTL and RTT
against the expected values (the expected TTLs could include
multiple values because of multiple paths to the resolver).
If the request is DNSSEC enabled, the corresponding reply
should also be checked with DNSSEC options (not imple-
mented yet in our prototype). For DNSSEC-disabled requests,
ValidateDNSSEC OK always returns false. ValidateRTT OK
and ValidateTTL OK return true if:
expected RTT − replyPkt.RTT < 0.5 · expected RTT
replyPkt.ipTTL ∈ expectedTTLs

Fig. 5. For cached names, compare of the query time with Hold-On enabled
(green square) and Hold-On disabled (red cross). Most of the points in the
two set overlap, so only a green line is shown.

B. Evaluation

To evaluate the delay increased by Hold-On, we use two
sets of domain names for cached or uncached queries. For
the first set, we used a fixed prefix (“www”) with different
levels of domains appended (“.” or “null”, “com”, “org”, “net”,
“cn”, “jp”, “de”, “google.com”, “mit.edu”). For the first set,
we query each name first, let the recursive resolver cache
the result, and then measure the query time for subsequent
queries. As shown in Figure 5, the time needed for each query
approximates the RTT.

We generated the second randomly using a nonsense prefix
again with different level of domains appended. We query each
name only once.

Because the resolver must fully resolve the name for
each query, the query time includes RTT (from the proxy
to the recursive resolver) as well as the subsequent time
consumed by the resolver (from recursive resolver to au-
thoritative name servers). As shown in Figure 6, the time
varies considerably for different level of domain. For exam-
ple, it is much faster to resolve “nonsense12847.google.com”
than “nonsense2132323.de” because the resolver (in our case,
Google Public DNS) has a low-latency path to a google.com
authority, but a higher latency path to the .de authority.

As shown in Figure 5 and 6, in both cases (cached or
uncached query) Hold-On and validation do not introduce any
apparent delay.

VI. DISCUSSION

The current Hold-On implementation operates as a stub
resolver to a known-uncensored remote recursive resolver,
which enables accurate initial measurement of RTT and TTL
to enable subsequent detection of unexpected replies. Without
DNSSEC, it relies on attack packets exhibiting significant
differences in IP TTL or RTT in order to distinguish them
from legitimate replies.

Fig. 6. For uncached names, compare of query time with Hold-On enabled
(green square) and Hold-On disabled (red cross).

Stub
Resolver

 Query

Injector Recursive
Resolver

ReplyInjection

Fig. 7. The attacker carefully crafts the packets’ TTL and injects them with
the expected timing

If the attacker carefully crafts the attack packets’ TTLs, and
only injects them just before the likely arrival of the legitimate
reply (see Figure 7), our Hold-On technique without DNSSEC
will fail to distinguish between the legitimate reply and the
attack packet.7 However, the resolver can still detect that an at-
tack has likely occurred (due to the differing responses). If the
resolver cannot correctly determine the legitimate response, it
should conservatively not return any answer—though doing so
still enables attackers to impose denial-of-service. Hold-On
can provide a robust defense against on-path injection only
when combined with DNSSEC.

Extending our implementation to recursive resolvers will
take some additions. However, most recursive resolvers al-
ready maintain estimated RTTs to different authority servers
in order to select between nameservers. This timing data,
combined with tracking of TTLs, can enable detection (if not
protection) of injected packets.

In addition, as developed so far, our particular Hold-On
mechanism does not suffice to protect against on-path adver-
saries operating in environments that users only occasionally

7The adversary must take the risk that the injected packets arrive later than
the legitimate ones.

visit, such as public WiFi hotspots; we lack knowledge of
“non-sensitive” domains to look up in order to obtain estimates
of RTT and TTL in the presence of non-injection. In such
environments, we can in principle instead look for symptoms
of injection (not only for DNS, but potentially for DHCP, ARP,
and TCP), alert the user in some fashion, and terminate any
associated connections. Clearly, developing a robust, workable
approach along these lines will take significant investigation.

Finally, a recursive resolver should also continue to listen
for replies even after it processes and forwards an answer,
in order to detect attacks. If the resolver detects an attack,
it could revert to a more paranoid mode (performing active
measurements of RTTs and TTLs for all new resolvers to
detect subsequent attacks). In addition, it can flush all cache
entries associated with the attack if it is unable to distinguish
between the legitimate reply and the attack. (If it can tell that
the later reply is the legitimate one, the resolver can use it to
replace the cache entry.) Doing so limits the damage from the
injected packet to the improperly returned question. It also
means that the user, upon noticing a failure or redirection
for a potentially censored site, can simply attempt to reload
the site, this time receiving the valid reply for their answer,
circumventing the censorship. Finally, the extended recursive
resolver can also itself issue an additional response (with the
second reply’s contents) in response to the client’s query, so
that any client or stub that also detects mismatched replies will
be aware of the attack.

VII. CONCLUSION

Packet injection by on-path adversaries poses a particular
threat against DNS. One particular use of such injection
comes from those building DNS-based censorship tools. Even
DNSSEC-validating implementations may be vulnerable, as
injected packets can cause denial-of-service if the resolver fails
to wait for the legitimate reply before returning “Bogus”.

Such adversaries cannot however block the receipt of the
legitimate DNS reply in addition to their injection. We show
that this artifact—differing replies to the same question—
appears to occur only very rarely outside of an actual attack.
Thus, stub resolvers can use its presence to detect when packet
injection occurs.

In addition, unless censors take additional steps, imperfec-
tions in their packet injection tools can allow resolvers to not
only detect injection attacks, but also to potentially distinguish
between legitimate replies and injected answers based on
artifacts in the IP header’s TTL field and in the round-trip time
when receiving replies. Accordingly, we propose that resolvers
should utilize a Hold-On period, waiting for additional replies.
If a reply arrives too early, with an unexpected IP TTL,
or fails to validate (if DNSSEC validation occurs), the stub
waits for the potential arrival of a subsequent legitimate reply
before proceeding. For censors who take steps to match the
TTL and RTT of their injections with those expected for
legitimate replies, Hold-On still allows detection that injection
has occurred; and, for DNSSEC-enabled resolution, prevents

the censor from imposing denial-of-service on obtaining the
correct reply.

Finally, we developed a DNS forwarder that implements
Hold-On, and demonstrated that this forwarder is effective
at distinguishing legitimate replies from those injected by a
widely deployed network censorship system. Our evaluation
found that use of such forwarding imposes minimal additional
latency on undisrupted DNS queries, and thus Hold-On has
promise for enabling more robust DNS resolution in the face
of on-path censorship.

VIII. ACKNOWLEDGMENTS

This work was sponsored in part by NSF grants 0831780,
0905631, and CNS-1015835. Special thanks to Robin Sommer
for assistance with the UC Berkeley network traces.

REFERENCES

[1] G. Lowe, P. Winters, and M. L. Marcus, “The Great DNS Wall of China,”
Dec. 2007. http://cs.nyu.edu/%7Epcw216/work/nds/final.pdf.

[2] P. Mockapetris, “Domain Names—Concepts and Facilities, RFC 1034.”
http://www.ietf.org/rfc/rfc1034.txt.

[3] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“Protocol Modifications for the DNS Security Extensions,” 2005.
http://www.ietf.org/rfc/rfc4035.txt.

[4] S. M. Bellovin, “Using the Domain Name System for System Break-
ins,” in Proceedings 5th USENIX Security Symposium, 1995.

[5] D. Kaminsky, “Black ops 2008: It’s the end of the cache as we know
it,” Black Hat USA, 2008.

[6] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee, “Increased
DNS Forgery Resistance Through 0x20-bit Encoding: security via leet
queries,” in Proceedings of the 15th ACM conference on Computer and
communications security, pp. 211–222, ACM, 2008.

[7] N. Weaver, R. Sommer, and V. Paxson, “Detecting Forged TCP Reset
Packets,” in NDSS’09, 2009.

[8] P. Mockapetris, “Domain Names—Implementation and Specification,
RFC 1035.” http://www.ietf.org/rfc/rfc1035.txt.

[9] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirement,” 2005.
http://www.ietf.org/rfc/rfc4033.txt.

[10] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“Resource Records for the DNS Security Extensions,” 2005.
http://www.ietf.org/rfc/rfc4034.txt.

[11] D. Dagon, N. Provos, C. Lee, and W. Lee, “Corrupted DNS Resolution
Paths: The Rise of a Malicious Resolution Authority,” in Proceedings
of Network and Distributed Security Symposium, 2008.

[12] P. Roberts, “Chinese DNS Tampering A Big Threat To Internet Security,”
2010. https://threatpost.com/en%5Fus/blogs/chinese-dns-tampering-big-
threat-internet-security-112410.

[13] J. G. Høy, “Anti DNS Spoofing-Extended Query ID (XQID).”
http://www.jhsoft.com/dns-xqid.htm, 2008.

[14] D. Atkins and R. Austein, “Threat Analysis of the Domain Name System
(DNS),” RFC3833, 2004.

[15] B. Hubert and R. Mook, “Measures for Making DNS
More Resilient against Forged Answers, RFC 5452,” 2009.
http://tools.ietf.org/html/rfc5452.

[16] R. Clayton, S. Murdoch, and R. Watson, “Ignoring the great firewall of
china,” in Privacy Enhancing Technologies, pp. 20–35, Springer, 2006.

[17] J. R. Crandall and E. Barr, “Conceptdoppler: A weather tracker for
internet censorship,” in 14th ACM Conference on Computer and Com-
munications Security, 2007.

[18] “Google Public DNS.” http://code.google.com/speed/public-dns/.
[19] “OpenDNS Homepage.” http://www.opendns.com/.
[20] “DNS Survey: Open Resolvers.” http://dns.measurement-

factory.com/surveys/openresolvers.html.
[21] P. Albitz and C. Liu, DNS and BIND, 5th Edition. O’Reilly, 2006.
[22] “DNS: The forwarding timeout value should be 2 to 10 seconds,” 2010.

http://technet.microsoft.com/en-us/library/ff807396(WS.10).aspx.
[23] V. Paxson, “Bro: a system for detecting network intruders in real-time,”

Computer Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

