
Scrambling for lightweight censorship resistance

Joseph Bonneau and Rubin Xu

University of Cambridge

Abstract. In this paper we propose scrambling as a lightweight method
of censorship resistance, in place of the traditional use of encryption. We
consider a censor which can only block banned content by scanning it
while in transit (for example using deep-packet inspection), instead of at-
tacking the communication endpoints (for example using address filtering
or taking servers offline). Our goal is to greatly increase the workload of
the censor by scrambling all data during communication, while main-
taining reasonable workloads for the endpoints of the communication
network. In particular, our goal is to make it impossible for the censor
to effectively accelerate the de-scrambling procedure over what may be
achieved by commodity PCs or mobile phones at the endpoints, a goal
which we term high-inertia scrambling. We also aim to achieve this us-
ing the standard JavaScript runtime environment of modern browsers,
requiring no distribution or installation of censorship-resistance software.

1 Introduction

Traditional approaches to censorship resistance include steganography and cryp-
tography (including anonymity networks which usually bypass censorship by en-
crypting all data). Each has the fundamental problem of requiring some meta-
data to be communicated in the clear prior to communication of potentially
censored content, namely the steganographic or cryptographic software which is
not normally built in to web browsers.

Several proposals exist for censorship resistance through steganography, or
careful hiding of banned content amongst innocuous content [8,5,4]. All of these
proposals require special software for communicating parties. Steganography’s
drawbacks also include poor efficiency and a lack of robustness against a censor
who may alter communications.

Other proposals involve the use of cryptography for censorship resistance,
making it computationally infeasible for a censor to distinguish between banned
and innocuous content. Proposals include storage and publication systems which
“entangle” different types of content, making it impossible to delete banned con-
tent only [14], or overlay networks which protect all traffic cryptographically [3].
A general-purpose anonymity-network like Tor [7] can also be used for censorship
resistance, as all traffic is encrypted.

While cryptographic solutions offer strong resistance to censorship, the pro-
tocols are complex and again require special client software and secure distribu-
tion of a set of trusted public keys to end-users. For example, censors in Iran

have recently attempted to block Tor by blocking the bit sequence of its public
Diffie-Hellman parameters. The global Certificate Authority system underpin-
ning TLS/SSL encryption, which is built-in to all web browsers, has recently
been called into question for anti-censorship purposes due to the large number
of government-controlled CAs and the recently-leaked existence of commercially
available equipment to perform real-time middleperson attacks on TLS sessions
given access to a CA’s private key [12].

We focus on resisting passive censors, who will merely try to halt the trans-
mission of banned content, and active censors, who may try to investigate and
intimidate the end-points of communication. Cryptography frustrates passive
censorship by making it computationally infeasible for censors to tell the differ-
ence between banned information and legal information. However, encryption is
not strictly necessary for resisting passive censorship if secrecy of the banned
content is not important. Cryptography may also be insufficient because, as we
have outlined, it still requires distribution of trusted keys and decryption can
often be accelerated by a censor (which is of considerable importance for censor-
ship to scale to deep packet inspection of significant levels of Internet traffic).

Against a passive adversary who has potentially compromised the root of
trust for cryptographic communication, we propose censorship without encryp-
tion but with simpler scrambling. We only require that endpoints have a trust-
worthy computation environment (for example, a modern web browser) which
can compute a publicly available de-scrambling algorithm, which in practice can
be transmitted as in-page JavaScript which de-scrambles data received through
AJAX requests. This is similar to the function of many existing dynamic web
pages.

Faced with a large volume of such scrambled messages (whether encrypted
or due to simpler scrambling), a censor will be unable to block its desired set
of data without either de-scrambling all data or over-censoring. Thus, a scram-
bling function which is sufficiently difficult to de-scramble can frustrate a central
censor while not preventing endpoints from communicating. We are particularly
interested in scrambling which cannot be practically accelerated, which we term
high-inertia scrambling. That is, the censor must do as much work as all commu-
nication endpoints are willing to do and cannot “cheat” by investing in custom
hardware. Another way of framing the problem is that we want de-scrambling
to be optimised to run in the web browsers of commodity PCs, and have no
significantly faster implementation on another platform.

In common with steganographic and cryptographic censorship-resistance schemes,
scrambling can only be effective if some non-banned content is scrambled as well,
preventing the censor from simply blocking any content which looks scrambled.
However, scrambling possesses two potential advantages for web content. First,
a large amount of content is already effectively scrambled in the form of ob-
fuscated Javascript which unpacks page content dynamically in client browsers.
Second, due to the ability of all current web browsers to de-scramble content, a
large site such as Google or Wikipedia could scramble all served content without

seriously inconveniencing any of its users. This would make blocking such a large
site effectively all-or-nothing for the censor.

2 Scrambling

For our purposes, a scrambling function S is any function1 which takes an input
x and produces an output y from which no information about x can be recovered
more efficiently than running the de-scrambling function S−1. Encryption can be
thought of as a special type of scrambling for which S−1 is intractable to compute
without the secret key k. We are instead interested, however, in scrambling
functions for which S−1 is either obvious2 or is transmitted as a header along
with the scrambled data y, enabling data to be transmitted in scrambled form
without any key management.

2.1 Required properties of a scrambling function

– One-way An adversary given y = S(x) should not be able to compute any
information about x in a more efficient way than completely running S−1(y).

– Randomised Computing y1 = S(x, r1) and y2 = S(x, r2) with different
random seeds r1 6= r2 must produce different outputs y1 6= y2. Given y1 and
y2, an adversary should be unable to determine if they represent the same
input by any more efficient method than computing S−1. If one-wayness
is satisfied this implies an indistinguishability property, namely that an
adversary given y1, y2 cannot determine if S−1(y1) = S−1(y2) without com-
puting both de-scramblings.

– Universal and compact de-scrambling S−1 must be computable from a
compact description on a widely available computing platform. This ensures
that code for S−1 can be transmitted along with y to enable the scheme to be
used by clients with no special set-up. In practice, JavaScript is an obvious
choice due to its ubiquitousness and common use to de-pack websites.

– Difficult to accelerate It should not be possible for an adversary seeking
to compute S−1 on n inputs y1 . . . yn to do so using less than Θ(n) times
more resources than an ordinary user computing S−1 once on commodity
hardware. This should include resources of electricity, power, memory, and
computation time. Fortunately, bulk hardware acceleration for JavaScript is
not an active area of research.

– Variable strength It should be possible to parameterise S such that the
resulting S−1 can require any desired amount of resources to compute. Given
with the difficulty of acceleration, this enables users to devote any available
idle resources to computing S−1 and force the censor to perform as much
work as possible.

1 Technically speaking, S is likely not to be a true mathematical function but a ran-
domised multivalued function which can map the same input to many possibly out-
puts.

2 A classic scrambling function is ROT-13, a Caesar cipher with a fixed alphabetic
shift of 13 which is used to hide “spoilers” in online forums.

– Asymmetric cost Computing S should be significantly cheaper than com-
puting S−1. This is necessary to prevent bottlenecks if many users are access-
ing content from one server and to effectively push out all work the censor
is being forced to do to the network edges.

– Adjustable resource usage To avoid the problems of proof-of-work sys-
tems, for which adversaries can realistically expend more computation time
than legitimate users [9], it may be desirable to make computing S−1 utilise
other resources. In particular, memory latency-bound functions [6] are con-
siderably more difficult for an adversary to compute relative to most end-user
machines.

– Human-interactive de-scrambling A particularly useful example of the
above idea is to require human computational abilities in addition to stan-
dard machine computation to compute S−1. This can be achieved by incor-
porating CAPTCHA-solving into S−1. This is not a complete solution, as
CAPTCHA-farming and other attacks exist, but puts additional burden on
the censor.

3 Outline of a practical implementation

We imagine a practical implementation will be built using the AJAX architec-
ture used in many modern dynamic web pages. A site with some potentially
censored material will include JavaScript which will fetch the banned material
M in multiple blocks, compute S−1(M) and display the results.

A key design tool is to use a package transform [11], which makes it impossible
to compute any information about M until all blocks are available. While we
are not aware of any implementations of package transform in pure JavaScript3,
one can be constructed relatively by computing the BEAR-encryption [2] of
M using an all-zero key. This can be implemented using standard symmetric
primitives like AES and SHA, for which widely-used JavaScript libraries are
now available [13].

As a first pass, the server simply computes:

G1, G2, . . . Gn = BEAR0(M1,M2, ...Mn)

And sends the G blocks to the client using individual AJAX requests. The client
can undo the package transform once all of the G blocks are fetched.

This proposal already serves are a simple scrambling system as the cleartext
blocks of M are not transmitted, but any client can still de-scramble M . By
artificially delaying the transmission of the blocks, this system can force a censor
to maintain a significant amount of state, as all blocks from all active transfers
must be cached to enable de-scrambling. However, it is still not asymmetric or
variable in cost, and admits significant acceleration by hardware implementation
of the cryptographic primitives.

3 Practical desktop libraries do exist for all-or-nothing encryption based using package
transforms [10].

Package Transform

Input Message Blocks

Block Splitting

Shuffle &
Delay

CAPTCHA encryption

Brute force

Memory bound

Transmitted Blocks

Fig. 1. Multi-stage scrambling of an input message. The package transform ensures
that all steps must be undone to recover the original message.

To add these properties, we use a technique similar to that proposed by An-
derson to enable multi-party decryption [1]. Any transform applied to any of the
G blocks must be undone prior to inverting the package transform and recover-
ing the original message. This enables each block to be scrambled in a different
way, allowing us to compose an arbitrary number of scrambling techniques.

A solid implementation would first perform a computationally-intensive scram-
bling for one or more blocks. This can be easily done in an asymmetric way by
encrypting the block with a random 128-bit AES key, discarding 20 of the bits
and transmitting the rest, forcing the de-scrambling routine to search over the
rest. Another block could be transmitted encrypted by an AES key which is de-
rived from the result of a CAPTCHA (likely with additional key-strengthening
to frustrate brute-force of the input space). A third block could be transmit-
ted encrypted by a key computed by a memory-bound function. Finally, some

blocks could be transmitted with a de-scrambling function making heavy use of
quirks in JavaScript as well as its built-in floating point, date, and string pro-
cessing libraries, forcing a censor to implement all of these in any accelerated
environment. A diagram of this implementation is shown in Figure 1.

3.1 Future desirable properties

We believe our simple proposal can be improved upon in many interesting and
exotic ways. We propose two here as areas for future exploration:

– Busy beaver traps Assuming the censor will attempt to compute S−1 for
a large amount of content seen, it may be useful to introduce some func-
tions S−1 into the system which in fact contain infinite loops and will never
terminate. It can be assumed that end-users will simply give up on these
and re-communicate the desired content, or perhaps will have agreed out-of-
band on some messages to ignore. If some important content is scrambled
with intentionally very high de-scrambling cost, then it may be difficult for
the censor to detect which content will result in infinite loops. The exis-
tence of busy beaver functions in complexity theory which do an enormous
amount of work before terminating despite their short descriptions indicates
the difficulty for a censor detecting these traps.

– Re-scrambling It may be very useful if scrambled content y can be re-
scrambled by a re-scrambling function S′, such that if y = S(x) and y′ =
S′(y), we have both x = S−1(y) and x = S−1(y′). Ideally, computing S−1(y)
or S−1(y′) will be of similar difficulty and an adversary cannot determine
that y and y′ are scramblings of the same input without computing S−1. Such
re-scrambling would fit nicely with the existing theory of mix networks and
re-mailers. If re-scrambling is considerably cheaper than initial scrambling,
then it may also be a technique for asymmetric strength scrambling, as a
server could scramble x once and then repeatedly re-scramble each time it
must be transmitted.

Acknowledgements

We thank Steven Murdoch for providing inspiration for this project, as well as
Ross Anderson and Richard Clayton for helpful comments.

References

1. Ross Anderson. The Dancing Bear: A New Way of Composing Ciphers. In Bruce
Christianson, Bruno Crispo, James Malcolm, and Michael Roe, editors, Security
Protocols, volume 3957 of Lecture Notes in Computer Science, pages 231–238.
Springer Berlin / Heidelberg, 2006. 10.1007/11861386 26.

2. Ross Anderson and Eli Biham. Two practical and provably secure block ciphers:
BEAR and LION. In Dieter Gollmann, editor, Fast Software Encryption, vol-
ume 1039 of Lecture Notes in Computer Science, pages 113–120. Springer Berlin /
Heidelberg, 1996. 10.1007/3-540-60865-6 48.

3. Michael Backes, Marek Hamerlik, Alessandro Linari, Matteo Maffei, Christos Try-
fonopoulos, and Gerhard Weikum. Anonymity and Censorship Resistance in Un-
structured Overlay Networks. In Proceedings of the Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009 on On the Move to Meaning-
ful Internet Systems: Part I, OTM ’09, pages 147–164, Berlin, Heidelberg, 2009.
Springer-Verlag.

4. Arati Baliga, Joe Kilian, and Liviu Iftode. A web based covert file system. In
Proceedings of the 11th USENIX workshop on Hot topics in operating systems,
pages 12:1–12:6, Berkeley, CA, USA, 2007. USENIX Association.

5. Sam Burnett, Nick Feamster, and Santosh Vempala. Chipping away at censorship
firewalls with user-generated content. In Proceedings of the 19th USENIX con-
ference on Security, USENIX Security’10, pages 29–29, Berkeley, CA, USA, 2010.
USENIX Association.

6. Jon Crowcroft, Tim Deegan, Christian Kreibrich, Richard Mortier, and Nicholas
Weaver. Lazy Susan: dumb waiting as proof of work. Technical Report UCAM-
CL-TR-703, University of Cambridge, 2007.

7. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The next-generation
onion routern. In USENIX 07: Proceedings of 13th USENIX Security Symposium.
USENIX Association, 2004.

8. Nick Feamster, Magdalena Balazinska, Greg Harfst, Hari Balakrishnan, and David
Karger. Infranet: Circumventing Web Censorship and Surveillance. In Proceedings
of the 11th USENIX Security Symposium, pages 247–262, Berkeley, CA, USA, 2002.
USENIX Association.

9. Ben Laurie and Richard Clayton. Proof-of-work proves not to work. WEIS 04:
The Third Workshop on the Economics of Information Security, 2004.

10. Barath Raghavan. Staple project. http://sysnet.cs.williams.edu/staple/,
2009.

11. Ronald L. Rivest. All-or-Nothing Encryption and the Package Transform. In
Proceedings of the 4th International Workshop on Fast Software Encryption, FSE
’97, pages 210–218, London, UK, 1997. Springer-Verlag.

12. Christopher Soghoian and Sid Stamm. Certified Lies: Detecting and Defeating Gov-
ernment Interception Attacks Against SSL . http://ssrn.com/abstract=1591033,
2010.

13. Emily Stark, Michael Hamburg, and Dan Boneh. Symmetric Cryptography in
Javascript. In Proceedings of the 2009 Annual Computer Security Applications
Conference, ACSAC ’09, pages 373–381, Washington, DC, USA, 2009. IEEE Com-
puter Society.

14. Marc Waldman and David Mazières. Tangler: a censorship-resistant publishing
system based on document entanglements. In Proceedings of the 8th ACM confer-
ence on Computer and Communications Security, CCS ’01, pages 126–135, New
York, NY, USA, 2001. ACM.

http://sysnet.cs.williams.edu/staple/
http://ssrn.com/abstract=1591033

	Scrambling for lightweight censorship resistance

