
Towards a Scalable Censorship-Resistant Overlay
Network based on WebRTC Covert Channels

Diogo Barradas, Nuno Santos
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

{diogo.barradas,nuno.m.santos}@tecnico.ulisboa.pt

Abstract
In many regions of the world, nation-states enforce Inter-
net censorship policies that prevent unrestricted access to
information and services by their citizens. Over the years,
many censorship circumvention tools have been proposed
which, however, require either the deployment of a dedi-
cated infrastructure within trusted ISPs, or are vulnerable
to state-of-the-art traffic analysis techniques. To fill this gap,
we propose to build a practical censorship-circumvention ser-
vice that exhibits strong resistance against traffic analysis
attacks. By relying on a recent proposal for creating covert
channels through WebRTC streams, we discuss the design
of a distributed system named Censorship-Resistant Overlay
Network (CRON). CRON aims at offering to the users lo-
cated in censored regions a set of services that allow them
to locate proxies positioned in the free Internet region, and
set up secure covert tunnels for accessing arbitrary sites on
the Internet. We present the key challenges and explore the
solutions in making CRON robust against state-level attacks.

CCS Concepts: • Security and privacy → Network secu-
rity; • Social and professional topics → Censorship.

Keywords: Censorship circumvention; Social networks; Traf-
fic analysis; Trust; WebRTC

ACM Reference Format:
Diogo Barradas, Nuno Santos. 2020. Towards a Scalable Censorship-
Resistant Overlay Network based on WebRTC Covert Channels. In
1st International Workshop on Distributed Infrastructure for Com-
mon Good (DICG’20), December 7–11, 2020, Delft,Netherlands.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3428662.3428788

1 Introduction
Many states worldwide implement strict censorship policies
that prevent their citizens from freely accessing informa-
tion on the Internet [21]. In countries such as China, Russia,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
DICG’20, December 7–11, 2020, Delft,Netherlands
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8197-0/20/12.
https://doi.org/10.1145/3428662.3428788

or Iran, this level of control can be enforced by the use of
network-level censorship techniques such as URL keyword
filtering [10], the blocking of Internet destinations [20] or by
thwarting selected networking protocols, e.g., Tor [12]. To
overcome such barriers and give Internet users free access to
blocked content, it is important to devise censorship-resistant
communication tools that not only can effectively circumvent
state-of-the-art Internet content blocking techniques but also
prevent a state-level adversary from detecting the usage of
such tools and put potential users under high risk of reprisal.

However, despite the numerous Internet censorship circum-
vention systems proposed over the years [17], many systems
have struggled to satisfy both these conditions for two main
reasons. On the one hand, an existing class of systems re-
quires the deployment of dedicated proxy / routing infras-
tructures by third-party ISPs or other trusted organizations
which constitutes a significant hurdle to the widespread adop-
tion of these tools [22]. On the other hand, many existing
systems have been found to be vulnerable to DPI [16] and
sophisticated machine learning (ML)-based traffic analysis
attacks [3]. Such systems rely on some form of covert chan-
nel to stealthily transmit sensitive data through an apparently
innocuous carrier medium, e.g., the encrypted media streams
of videoconferencing applications such as Skype [2, 18].

This paper presents a preliminary design of Censorship-
Resistant Overlay Network (CRON), a distributed system that
aims at allowing common Internet users to bypass network-
level censorship while i) precluding the need to depend on a
dedicated ISP infrastructure, and ii) providing strong resis-
tance against traffic analysis attacks. CRON’s central idea is to
leverage an emerging ecosystem of WebRTC-enabled stream-
ing applications as a carrier infrastructure. WebRTC [23] is
a W3C standardization initiative for protocols and APIs that
enables secure real-time communication between browsers.
Currently supported by all major browsers, WebRTC is used
by many popular video conferencing services for making real-
time video calls, e.g., Whereby (https://whereby.com). Our
idea is then to use network covert channels established over
encrypted WebRTC streams, generated during typical video
calls, to tunnel arbitrary payload traffic to the open Internet.

To achieve this goal, CRON will leverage a recently pro-
posed system named Protozoa [4] which allows the creation of
secure point-to-point covert channels over WebRTC streams.
Using Protozoa, a user located in a censored region will be

https://doi.org/10.1145/3428662.3428788
https://doi.org/10.1145/3428662.3428788
https://doi.org/10.1145/3428662.3428788


able to call a second (trusted) user placed in the free Inter-
net region – a proxy – and exchange covert IP traffic with
an arbitrary Internet destination while the encrypted video
call takes place. Protozoa is able to deliver high performance
and provide strong resistance to traffic analysis. However, the
scalability of this system is currently impaired by the absence
of mechanisms for finding trusted peers to engage in circum-
vention. Specifically, an isolated user that does not have a
direct acquaintance outside a censored region will be unable
to leverage Protozoa for accessing blocked Internet content.
In addition, Protozoa cannot deal with a range of state-level
attacks, such as the deployment of Sybil (fake) users, the
usage of WebRTC streaming applications controlled by an
adversary, or long-term user profiling attempts which may tip
off an adversary about unusual WebRTC connection patterns.

CRON introduces a new system design which, in addi-
tion to overcoming these limitations, lays the groundwork
for building a whole range of distributed censorship-resistant
applications. First, CRON will allow isolated users to reach
out to remote proxies through a multi-hop chain of trusted
nodes through the establishment of end-to-end covert chan-
nels (named circuits) for accessing arbitrary Internet destina-
tions. In this paper, we characterize the main threats that can
be launched by a state-level adversary, and propose defenses
to be developed in the future. Second, CRON will provide
a common API to allow the development of extensions and
third-party applications that may benefit from the underly-
ing covert channel circuitry, for instance for the delivery of
delay-tolerant content (e.g., in a CDN-like fashion) or the
deployment of a distributed censorship-resistant filesystem.

2 Background on WebRTC Covert Tunnels
The general operation of Protozoa [4] can be grasped with the
help of Figure 1 which shows two Internet users. One of them
(the client) is located in a censored region where the access to
certain content or services (e.g., Youtube) is blacklisted by a
state-level censor who can inspect and control all the network
communications within its perimeter of influence. The client
intends to overcome these restrictions and access blocked
content without the censor’s awareness. This will be achieved
with the help of a trusted user (e.g., a family member) located
in the free Internet region who will act as a proxy.

To this end, Protozoa creates a high-performance covert
channel (≈1.4Mbps) between the client and the proxy such
that the former is able to transparently tunnel through all
the IP traffic generated between local networked applications
(e.g., a web browser) and remote Internet destinations (e.g.,
Youtube). To create such a covert tunnel, the two users must
establish a video call using a WebRTC-enabled streaming
website, such as Whereby (https://whereby.com). As it is
common in such services, one of the users must first create a
chatroom, obtain a corresponding URL identifier, and share
that URL with the other user via some out-of-band medium

Censored Region Free Region

Alice (Client) Bob (Proxy)

Covert Channel
WebRTC media stream

Signaling
Signaling

SIP	servers

Packet eavesdrop and
active manipulation

Censor

Figure 1. WebRTC covert tunnel over a Whereby call.

(e.g., SMS or email). Upon receiving that URL, the invited
user can then join the chatroom and a video call is initiated.
At this point, the WebRTC stack implementation of each of
the users’ browsers engages with the Whereby servers into
the execution of WebRTC-specific signalling protocols that
guarantee the authentication of both communicating peers and
the integrity and confidentiality of the ensuing peer-to-peer
encrypted video transmission between them.

To create a covert channel between client and proxy, Proto-
zoa instruments the browser’s WebRTC stack and replaces the
encoded frames pertaining to the carrier video with informa-
tion of the covert payload. This replacement is performed such
that the size of the encrypted RTP (SRTP) multimedia packets
sent to the network retain their original size and timing prop-
erties, making Protozoa flows hardly distinguishable from
unmodified WebRTC streams using existing ML-based traffic
classifiers [3, 4]. Moreover, since all unencrypted packet fields
remain intact, Protozoa tunnels cannot be detected through
DPI. By acting at the WebRTC layer, Protozoa can leverage
any WebRTC-powered application to transmit covert data
without additional supporting infrastructure. To block Proto-
zoa traffic, a censor could ultimately block all WebRTC traffic
within the censored region. However, this is highly discour-
aged as it would bring about extensive collateral damage due
to ever-greater dependence on video streaming applications.

Despite its considerable advances, Protozoa is only the
first step towards obtaining a scalable platform for enabling
widespread censorship-resistant communication. In fact, Pro-
tozoa assumes a limited threat model which may hamper the
scalability of the system to a vast range of users and does not
defend against other sophisticated state-level attacks beyond
the ML-based analysis of individual flows. First, presupposing
that a user knows some contact outside the censored region
may be unrealistic for many users, and Protozoa does not
facilitate the discovery of trusted peers. Second, Protozoa’s
covert channels are prone to be compromised in cases where
an adversary controls the carrier WebRTC application and
is able to decrypt and inspect media traffic. Third, an adver-
sary may eavesdrop and profile users during large periods
of time and later pinpoint WebRTC interactions that deviate
from this profile. Next, we present a system design aimed at
overcoming these limitations and offering additional services.



3 The CRON System Model
In the interest of enabling a vast amount of users located
within censored regions to access arbitrary Internet content,
our goal is then to build a Censorship-Resistant Overlay
Network (CRON). As shown in Figure 2, we conceptualize
CRON as a distributed system of Internet nodes that allows
the creation of (possibly) multi-hop covert channels – named
covert circuits – enabling clients located within a censored
region to access the free Internet through proxies deployed
outside the censored region. Nodes can exchange covert data
within small trusted social groups by leveraging the videocon-
ferencing services of WebRTC-enabled applications. CRON
will provide the necessary support for helping clients to dis-
cover available proxies based on a chain of trust, set up covert
circuits, and sustain the transmission of covert data for differ-
ent workloads. Next, we present a system model decoupling
all aspects involving the formation of social groups from
network-level connectivity and data transmission issues.

3.1 Chatrooms and Social Circles
We envision the CRON overlay network to be organically
formed on top of a communication abstraction commonly
offered by WebRTC-enabled streaming services, namely the
notion of chatroom. A chatroom allows a group of users to
stream real-time video from their local camera devices to
one another. A chatroom is explicitly created on a given web
streaming service by a user who can then invite other users
to join the chatroom by sharing a unique URL generated by
the streaming service. This URL serves both as a chatroom
identifier and as an access control token. All users that accept
the invitation become chatroom members and have the ability
to send / receive video feeds to / from other members.

Typically, users share invitations within their circle of con-
tacts or relationships (personal, professional, or others). Con-
sidered globally, this network of relationships forms a social
graph, where each node represents a user and the edges the re-
lationships between users. It expresses the real-world network
of social contacts that can be partially or fully supported by
different systems, e.g., email, mobile apps such as Whatsapp,
OSNs, etc. An edge exists between 𝑢1 and 𝑢2 if 𝑢1 has the
contact of 𝑢2 on some particular system (e.g., email). We use
the term social circle of a given user (𝑢1) to identify all the
direct contacts known to the user, i.e., all nodes 𝑢2, that have
a unidirectional edge from 𝑢1. Social circles will provide the
foundations for building trust amongst CRON nodes in the
establishment of covert circuits (see in Section 4.3).

3.2 Covert Circuits and Data Transmission
This section describes the generation of communication chan-
nels in CRON, which leverages the chatroom functionality
presented above to build covert circuits. Each CRON user
will locally run a piece of software that turns its local com-
puter into a node of the CRON overlay network (Figure 2).

N1

Censored Region

Free Region

N6

N3 N9

N10
N4

Proxy

Client

Rendezvous

N5

Relay

N7
WebRTC Covert Channel

N2

CRON Circuit

Chatroom

N8
a)

b)

c)

d)

Figure 2. CRON’s system model. Nodes participating in the same
chatroom are assumed to be part of the same social circle.

If a client and a proxy are members of the same chatroom,
they both can exchange covert content through the WebRTC
streams operated by the chatroom’s web streaming applica-
tion. In this case, we say that a direct covert circuit can be
established between the client and the proxy (Figure 2a).

If there is no potential proxy that a client can choose from
within its social circle (e.g., someone located outside the
censored region), a covert tunnel can only be established with
the help of one (or multiple) mediator node(s). A mediator
node can simply play the role of rendezvous, i.e., one that is
part of the social circles of client and proxy alike, and can put
them in contact by inviting them both to a common chatroom.
Once they all join that chatroom, a direct covert circuit can
be established between client and proxy (Figure 2b).

Alternatively, a mediator node can play the role of a relay.
It bridges the communication between client and proxy by
joining two different chatrooms – one shared with the client,
and another with the proxy – and by relaying covert traffic
across them (Figure 2c). Client and proxy will then be con-
nected by a 1-hop covert circuit. In N-hop covert circuits,
client and proxy are bridged by N relays, chained together by
a sequence of segments which consist of pair-wise WebRTC
connections between client-relay, relay-relay, and relay-proxy.
Each segment reflects a real-time media streaming transmis-
sion held between two parties in an independent chatroom
which, in addition, may have been moderated by a specific
rendezvous node. In a direct covert circuit, N=0, and there is
a single segment connecting client and proxy.

We envision two models of covert data transmission. If all
N relays of a covert circuit are simultaneously available and
the corresponding N+1 segments are operational, then it is
possible to synchronously tunnel real-time traffic between
client and proxy. Otherwise, if at least one segment of the
circuit is disconnected and cannot transmit covert data, the
transmission must be staged, i.e., the relays must temporarily
store pending data requests and responses on a local cache,
and defer the data delivery until the connectivity is reestab-
lished (Figure 2d). Thus, while real-time mode allows for the
transmission of interactive traffic, the staged mode is suited
only for delay-tolerant workloads, e.g., CDN applications,
distributed file systems, or key-value stores.



4 Thwarting State-Level Attacks
In this section, we discuss important attacks that can be
launched by a state-level adversary to detect covert traffic
and identify the intervening parties, despite the fact that Pro-
tozoa point-to-point covert channels are secure. We describe
such attacks by increasing order of mitigation difficulty and
discuss our ideas for making CRON robust against them.

4.1 Analysis of WebRTC Connection Patterns
In addition to analyzing pairwise WebRTC streams, an ad-
versary may compute alternative statistics that enable it to
profile the regular traffic patterns of users over a long period
of time and pinpoint potential CRON users that display abnor-
mal WebRTC connection patterns. Such long-term statistical
attacks were already applied in other domains, for instance
for detecting users’ actions in anonymity networks [9].

We identify three types of WebRTC statistics (Sx) through
user profiling to pinpoint abnormal patterns in the generic
usage of WebRTC, regardless of how legitimate the traffic
characteristics of a single flow look like: (S1) existence of
simultaneous video calls, (S2) existence of uncommon call
parties, and (S3) existence of uncommon call times, frequency,
and duration. As for S1, nodes connected simultaneously to
multiple chatrooms (i.e., relays) are prone to be easily spotted
since users do not typically conduct more than one video-
call simultaneously. Regarding S2, nodes that suddenly start
placing a large amount of WebRTC video calls to nodes which
have so far seen little connection to may be seen as abnormal
to an adversary. Lastly, S3 may reveal atypical WebRTC video
calls when compared with a user’s past behaviour, e.g., during
times of the day where they do not usually make video calls.

To cope with user profiling threats, we propose two alter-
native models of functioning for CRON: passive, and active.
Passive mode: This is the most risk-averse strategy, where
CRON provisions covert circuits exclusively without modify-
ing any of the statistics S1, S2, or S3. To achieve this, it will
monitor in background the usual video calls made by a user,
and identify windows of opportunity for the establishment of
a covert circuit. Such a window occurs if, in the course of an
ongoing video call, there is at least another participant in that
same chatroom running a CRON node. If such a participant
runs a relay or a proxy node, there is the possibility for the lo-
cal CRON node to run as a client and connect with the former
via a direct covert circuit. The local user can then be given the
opportunity to tunnel real-time payload traffic while the video
call takes place. Similar occasions can also be leveraged for
fetching delay-tolerant traffic from an immediately connected
relay or proxy. Hence, CRON’s passive mode allows users to
stealthily access sensitive content (with the cooperation of a
trusted party outside the censored region) while engaging in
their routinely professional or personal virtual encounters.
Active mode: In addition to exploiting the passive mode’s
connectivity chances, a local node will have some room for

making new or longer WebRTC video calls with the pur-
pose of increasing the opportunities to exchange covert traffic.
Since users’ social interactions are rather dynamic [5], the S1
and S2 statistical patterns of a typical user are characterized
not by a set of fixed-value features but by a range of plausible
values. In CRON’s active mode, we want to take advantage of
this variability so as to increase the connectivity opportunities
of a node while keeping the pattern deviations in S1 and S2
below some acceptable threshold. This can be achieved, for
instance, by placing calls to different rendezvous contacts
or introducing bounded variability in call times, frequency,
and duration. Our approach is marginally inspired by exist-
ing obfuscation techniques based in the addition of noise to
thwart the generation of accurate user profiles [7]. Since the
establishment of multiple simultaneous WebRTC video calls
is highly atypical in “normal” user profiles, in CRON, the
establishment of N-hop covert circuits (N≥1) will serve the
purpose of transmission of delay-tolerant traffic only.

4.2 Control of Carrier WebRTC Services
Internet users of certain censored regions may generally be
constrained to using videoconferencing services controlled
by the state. In such cases, a state-level adversary is able to
mount two new attacks. First, by controlling the WebRTC sig-
nalling phase, it can hijack the identity of legitimate CRON
nodes and launch MITM attacks. As such, it can detect if
any of the interlocutors request or deliver covert data to their
counterpart. This detection would be straightforward since
CRON’s vanilla covert data encoding technique (see Sec-
tion 2) fully replaces the video payload with an apparently
random covert data signal that results in a scrambled video
image at the receiver’s endpoint. Second, by controlling the
data transmission, an adversary is able to decrypt SRTP pack-
ets’ payload and decode the enclosed video frames, e.g., by
leveraging WebRTC gateways to record, inspect, or re-encode
media on-the-fly [1]. So here, by replaying the video, it is
possible to obtain clear evidence of video manipulation.

To counter such attacks, we can devise an additional type
of covert circuits named stego circuits. The main difference
between stego circuits and regular (i.e., vanilla) ones is the
incorporation of two security mechanisms. First, instead of
replacing the encoded video frames with covert data, stego
circuits will embed the covert data into the encoded video
frames in such a way as to maintain the visual characteristics
of the video feed transmitted by each endpoint. To this end,
we can employ video steganography algorithms that operate at
the compressed data domain [26]. Second, to further prevent
MITM attacks, the steganographic decoding algorithm can
be protected with a secret key. By securing this key with
standard public-key encryption and exchanging the public
keys out-of-band, CRON nodes can be properly authenticated
when setting up stego circuits. Assessing the performance
penalties of stego circuits will require further experiments.



4.3 Deployment of Sybil Nodes
It is expected that, in a real-world setting, a state-level adver-
sary will likely attempt to infiltrate state-controlled agents
into the network who can offer fake proxying or relaying ser-
vices, or issue fake client requests in an attempt to track down
legitimate CRON nodes. To make matters worse, the adver-
sary may actively coerce honest users of the CRON overlay to
act on the adversary’s behalf. Thus, the CRON system must
provide defence mechanisms against Sybil nodes.

While multiple systems have tackled the problem of trust
and reputation in P2P networks [15], CRON’s usage sce-
nario demands special consideration. In fact, existing auto-
mated Sybil detection approaches are generally only able to
wield probabilistic guarantees on the possibility of contact-
ing / timely evicting of Sybil nodes from the network. In our
context, however, minimizing the amount of node-specific
information propagated across the network is highly com-
mendable to reduce the exposure of legitimate nodes [8].

For these reasons, to decrease the chances of interaction
between honest CRON users and Sybil nodes, we substitute
an automatic reputation scoring system with a discretionary
system where the ultimate choice to connect to a particular
node is left to CRON users. In a nutshell, CRON’s trust es-
tablishment system is centred around each user (𝑢) and it is
organized into two rings of trust. The inner and most critical
ring of trust corresponds to 1st degree trustees. These consist
of the users that belong to 𝑢’s social circle (i.e., the nodes in
the social graph that 𝑢 is immediately connected to). For each
of these users,𝑢 can essentially tell the CRON system whether
a particular user can be deemed to be trusted when acting in
each of several possible roles: client, rendezvous, relay, or
proxy. CRON will ensure that any given covert circuit will
only be created if all involved nodes are mutually trusted. An
additional outer ring corresponds to 2nd degree trustees, i.e.,
“the friends of a friend”. This allows 𝑢 to delegate to individ-
ual 1st degree trustees the possibility that some of its “friends”
can collaborate in the creation of N-hop circuits with 𝑢. This
two-ringed trust system constitutes our working hypothesis
which we believe strikes a good balance between security,
and complexity, and flexibility. Nevertheless, our trust system
requires further validation, e.g., through the study of existing
trust models and usability assessments.

5 Envisioned CRON Architecture
To build CRON in such a way as to incorporate all the ideas
presented above, we propose a preliminary architecture de-
picted in Figure 3. A CRON node consists of a server built on
top a browser runtime engine featuring a modified WebRTC
implementation stack. Through a user interface installed as
an extension of the browser runtime, the local user is able to
configure the system, e.g., set it up to run in different roles
(i.e., client, proxy, etc.), assign a level of trust to other users,
and manage covert circuit sessions.

CRON Node
Browser Runtime Engine

Circuit Layer

Legacy Network
 Applications

Security 
Monitor

WebRTC Hooks

SOCKS API CRON API

User 
Interface

WebRTC App

Legacy Network
 Applications

Legacy Network
 Applications

File 
SystemCDN Key-Value

Store

WebRTC Engine

Figure 3. CRON software stack.

The covert channel services are internally structured in a
layered fashion. From bottom-up, a set of WebRTC hooks in-
tercepts the WebRTC streams generated by a guest client-side
web streaming application, and creates point-to-point covert
channels accordingly. This basic functionality is leveraged
by the circuit layer which sits on top of the browser runtime
engine. This layer deals with all major challenges involving
the establishment of end-to-end N-hop covert circuits, the mit-
igation of user profiling attacks (i.e., passive and active mode
support), and the management of regular and stego covert
circuits. The circuit layer exposes two external interfaces: a
SOCKS proxy interface for tunnelling local IP traffic, and an
API for building custom CRON applications, such as CDNs,
distributed file systems, or key-value stores.

The security monitor performs all major security checks
upon the establishment of CRON circuits. For instance, it
checks that all the nodes that participate in the circuit are
trusted by the user. It also enforces some safety conditions,
in particular, that proxies are not located in the censored re-
gion. To this end, we plan to explore recent techniques which
generate location proofs for proxy servers [25]. Additionally,
when the local node runs as a proxy or as a relay, the security
monitor provides support for whitelisting policies so as to
block all potential clients’ requests to access illegal content
that would make proxy operators liable to prosecution in their
own countries (e.g., accessing to child pornography).

As for the next steps, we aim to implement a prototype of
CRON as a middleware component for major web browsers
(e.g., Firefox), while adhering to the existing WebRTC stan-
dards [23]. This component will expose an API that can be
used for building generic distributed applications on top of
the CRON censorship-resistant overlay network. For evalu-
ating our prototype with regard to long-term user profiling
(Section 4.1), the traffic-analysis resistance of circuits (Sec-
tion 4.2), and the resistance to Sybil attacks (Section 4.3),
we plan to collect and analyse network data produced within
our university’s campus network. To assess whether these
properties can indeed be helpful in pinpointing endpoints en-
gaged in circumvention will be a significant contribution of
our future work. We intend to release the produced datasets
to the community after proper anonymization.



6 Related Work
We can find in the literature a large body of work with the
goal of evading state-level censors [17]. In contrast to CRON,
refraction networking requires the deployment of tailored
routers in the network paths between clients and overt des-
tinations [22]; these routers, managed by cooperating ISPs,
redirect client traffic to blocked destinations.

A different class of techniques that does not require a dedi-
cated infrastructure holds in the general idea of obfuscating
covert traffic. Randomization tools like Obfsproxy [11] trans-
form covert traffic into random bytes to evade protocol black-
lists, while protocol imitation systems aim at mimicking pro-
tocols allowed across a censor’s borders [18]. Unfortunately,
imitation systems are prone to multiple network attacks [16].

Other approaches tunnel covert data through a protocol’s
application layer in order to better cope with the intricacies of
the carrier protocol [2, 14]. Cache browsing allows the access
to censored content cached in CDNs’ edge servers [27]. Mass-
Browser [19] leverages cache browsing to split covert traffic
amongst volunteer proxies. However, many of these systems
have been found to be vulnerable to traffic analysis [3, 24] and
ineffective in the presence of protocol whitelisting [11, 19].

Lastly, works complementary to ours redirect unobfuscated
covert traffic through short-lived proxies [13], or invalidate
the state of connections tracked by censors’ firewalls [6].

7 Conclusions
This paper presented CRON, a distributed system of nodes in-
terlinked by WebRTC video streaming channels. These nodes
will be able to tunnel covert traffic through ongoing WebRTC
streams. Some nodes are located within the censored region
(clients) and others in the free region (proxies). Acting glob-
ally and in a coordinated fashion, the nodes will assist each
other in providing uncensored access to Internet resources.
Acknowledgments: We thank the anonymous reviewers for
their insightful comments. This work was partially supported
by national funds through Fundação para a Ciência e a Tec-
nologia (FCT) via the SFRH/BD/136967/2018 grant, and the
UIDB/50021/2020 projects.

References
[1] Alessandro Amirante, Tobia Castaldi, Lorenzo Miniero, and Si-

mon Pietro Romano. 2015. Performance analysis of the Janus WebRTC
gateway. In Proc. of AWes.

[2] Diogo Barradas, Nuno Santos, and Luís Rodrigues. 2017. DeltaShaper:
Enabling Unobservable Censorship-resistant TCP Tunneling over
Videoconferencing Streams. In Proc. of PETS.

[3] Diogo Barradas, Nuno Santos, and Luís Rodrigues. 2018. Effective
Detection of Multimedia Protocol Tunneling using Machine Learning.
In Proc. of USENIX Security.

[4] Diogo Barradas, Nuno Santos, Luís Rodrigues, and Vítor Nunes. 2020.
Poking a Hole in the Wall: Efficient Censorship-Resistant Internet
Communications by Parasitizing on WebRTC. In Proc. of CCS.

[5] Fabrício Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virgílio
Almeida. 2009. Characterizing user behavior in online social networks.
In Proc. of SIGCOMM.

[6] Kevin Bock, George Hughey, Xiao Qiang, and Dave Levin. 2019.
Geneva: Evolving Censorship Evasion Strategies. In Proc. of CCS.

[7] Richard Chow and Philippe Golle. 2009. Faking contextual data for
fun, profit, and privacy. In Proc. of WPES.

[8] Ian Clarke, Oskar Sandberg, Matthew Toseland, and Vilhelm Verendel.
2010. Private communication through a network of trusted connections:
The dark freenet. Network.

[9] George Danezis and Andrei Serjantov. 2004. Statistical disclosure or
intersection attacks on anonymity systems. In International Workshop
on Information Hiding. Springer.

[10] A. Darer, O. Farnan, and J. Wright. 2017. FilteredWeb: A framework
for the automated search-based discovery of blocked URLs. In Proc of.
TMA.

[11] Roger Dingledine. 2012. Obfsproxy: the next step in the censorship
arms race. https://blog.torproject.org/blog/obfsproxy-next-step-
censorship-arms-race. Accessed: 2020-09-21.

[12] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas
Weaver, and Vern Paxson. 2015. Examining How the Great Firewall
Discovers Hidden Circumvention Servers. In Proc. of IMC.

[13] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan
Boneh, Roger Dingledine, and Phil Porras. 2012. Evading Censorship
with Browser-based Proxies. In Proc. of PETS.

[14] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern
Paxson. 2015. Blocking-resistant Communication through Domain
Fronting. In Proc. of PETS.

[15] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. 2009. A survey
of attack and defense techniques for reputation systems. ACM CSUR.

[16] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The
Parrot Is Dead: Observing Unobservable Network Communications. In
Proc. of S&P.

[17] Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M Swanson,
Steven J Murdoch, and Ian Goldberg. 2016. SoK: Making Sense of
Censorship Resistance Systems. In Proc. of PETS.

[18] Hooman Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. 2012. SkypeMorph: Protocol Obfuscation for Tor Bridges.
In Proc. of CCS.

[19] Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. 2020. Mass-
Browser: Unblocking the Censored Web for the Masses, by the Masses.
In Proc. of NDSS.

[20] Arian Akhavan Niaki, Shinyoung Cho, Zachary Weinberg,
Nguyen Phong Hoang, Abbas Razaghpanah, Nicolas Christin,
and Phillipa Gill. 2020. ICLab: A Global, Longitudinal Internet
Censorship Measurement Platform. In Proc. of S&P.

[21] Rafal Rohozinski Ronald Deibert, John Palfrey and Jonathan Zittrain
(Eds.). 2010. Access Controlled: The Shaping of Power, Rights, and
Rule in Cyberspace. MIT Press.

[22] Benjamin VanderSloot, Sergey Frolov, Jack Wampler, Sze Chuen Tan,
Irv Simpson, Michalis Kallitsis, J Alex Halderman, Nikita Borisov, and
Eric Wustrow. 2020. Running Refraction Networking for Real. Proc.
of PETS (2020).

[23] W3C. 2020. WebRTC 1.0. https://www.w3.org/TR/webrtc/. Ac-
cessed: 2020-09-21.

[24] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas Ristenpart, and
Thomas Shrimpton. 2015. Seeing Through Network-Protocol Obfusca-
tion. In Proc. of CCS.

[25] Zachary Weinberg, Shinyoung Cho, Nicolas Christin, Vyas Sekar, and
Phillipa Gill. 2018. How to catch when proxies lie: Verifying the
physical locations of network proxies with active geolocation. In Proc.
of IMC.

[26] Pei Xie, Hong Zhang, Weike You, Xianfeng Zhao, Jianchang Yu, and
Yi Ma. 2019. Adaptive VP8 Steganography Based on Deblocking
Filtering. In Proc. of IH&MMSec.

[27] Hadi Zolfaghari and Amir Houmansadr. 2016. Practical censorship
evasion leveraging content delivery networks. In Proc. of CCS.

https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://www.w3.org/TR/webrtc/

	Abstract
	1 Introduction
	2 Background on WebRTC Covert Tunnels
	3 The CRON System Model
	3.1 Chatrooms and Social Circles
	3.2 Covert Circuits and Data Transmission

	4 Thwarting State-Level Attacks
	4.1 Analysis of WebRTC Connection Patterns
	4.2 Control of Carrier WebRTC Services
	4.3 Deployment of Sybil Nodes

	5 Envisioned CRON Architecture
	6 Related Work
	7 Conclusions
	References

