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ABSTRACT
Microblogging services such as Twitter are an increasingly im-
portant way to communicate, both for individuals and for groups
through the use of hashtags that denote topics of conversation. How-
ever, groups can be easily blocked from communicating through
blocking of posts with the given hashtags. We propose #h00t, a
system for censorship resistant microblogging. #h00t presents an
interface that is much like Twitter, except that hashtags are replaced
with very short hashes (e.g., 24 bits) of the group identifier. Nat-
urally, with such short hashes, hashtags from different groups may
collide and #h00t users will actually seek to create collisions. By
encrypting all posts with keys derived from the group identifiers,
#h00t client software can filter out other groups’ posts while mak-
ing such filtering difficult for the adversary. In essence, by leverag-
ing collisions, groups can tunnel their posts in other groups’ posts.
A censor could not block a given group without also blocking the
other groups with colliding hashtags. We evaluate the feasibility
of #h00t through traces collected from Twitter, showing that a
single modern computer has enough computational throughput to
encrypt every tweet sent through Twitter in real time. We also use
these traces to analyze the bandwidth and anonymity tradeoffs that
would come with different variations on how group identifiers are
encoded and hashtags are selected to purposefully collide with one
another.

1. INTRODUCTION
Recent events in Egypt, Tunisia, and many other countries have

shown that social networking sites (Facebook, Twitter, and presum-
ably others) played a non-trivial role in helping people organize
themselves, plan protests, and distribute videos and other news to
the outside world. Egypt was notable in that they eventually cut
themselves off from the entire Internet, in a belated and ultimately
ineffectual attempt to turn the tide. While it’s difficult to draw over-
arching conclusions about the centrality of social networking ver-
sus more traditional means of communication in these important
world events, it is clear that social media played a non-trivial role.
Many other countries’ leaders may well be worried of copycat rev-
olutionaries. Other such countries may well try to censor or other-
wise tamper with their citizens’ use of social networking. To pick
a current example: Syria appears to be attempting a nationwide
man-in-the-middle attack against Facebook [8].

As a first step towards improving social network systems for
such environments, we seek to enable the use strong cryptographic
primitives overlaid on existing microblogging systems like Twit-

.

ter, adding both encryption and integrity to tweets (Twitter mes-
sages) among groups. Keys must be shared to enable secure group
communication, but we should not rely on pre-arranged public key
hierarchies or complex protocols for key exchange. Users should
be able to find tweets from their group easily and then be able to
receive those tweets with some anonymity. Groups that may be tar-
geted for their activities, even when tweets are encrypted, should
be offered plausible deniability that they could be participating in
another group instead.

To achieve these goals, we propose #h00t, a system for censorship-
resistant microblogging. Our design features an interface in which
most users never see or concern themselves with cryptographic
keys. Instead, one of our key insights is that we can overload
Twitter’s hashtag mechanism as a way of deriving cryptographic
key material. #h00t can be built on top of Twitter or another
microblogging system without modifying the underlying system.
Through careful design, encrypting and decrypting hoots (#h00t
messages) and bandwidth overhead should be acceptably small at
both the server and client sides. #h00t makes it very difficult for
the censor to distinguish between the hoots of a group with the
hoots of a select number of other groups.

Hashtags are widely used in Twitter to label topics which others
will then subscribe to and follow. For example, most Usenix con-
ferences adopt the tag #usenix, allowing attendees to discuss the
conference with one another in real time. Political protests might
end up using several different tags (e.g., Egyptian discussions hap-
pen under #tahrir, #jan25, #25jan, and #egypt, among
others). Hashtags searches are generally case-insensitive.

Some tags have staggering volumes of messages. To pick a no-
table example, pop singer Justin Bieber asked his roughly 9 million
followers to discuss his movie, Never Say Never using the hashtag
#nsn3d. At its peak, roughly 1% of Twitter’s traffic mentioned
this tag1. Since the movie’s release in February 2011, there have
been roughly 164 thousand tweets using #nsn3d, an average of
1.6 per minute with significantly higher peaks. 500 recent tweets
on this hashtag generated 346 thousand impressions, reaching an
audience of 212 thousand followers within a 24 hour period (mea-
sured in mid-April 2011).

Of course, not all tags are as popular. We will show later, in Sec-
tion 5, that hashtag usage follows a power-law distribution; a small
number of hashtags are incredibly widely used and large numbers
of tags are used very rarely or only once. We would like to de-
sign a system that can leverage these communications to create
cover traffic for other, more sensitive messages, but without sim-
ply reusing the popular hashtag for other content. This will require
converting hashtags into cryptographic keys and arranging for them

1Statistics via Trendistic, Topsy, and HashTracking.
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to collide in some fashion, such that a query for #nsn3d and a
query for a more sensitive tag are indistinguishable to an observer,
thus providing some measure of deniability to group subscribers
(“Protests? I’m just a fan of Justin Bieber!”). We also need to give
some amount of control to the organizers of the sensitive commu-
nications, allowing them to select any popular hashtag with which
they might prefer to collide.

Ultimately, we see two main paths to designing our system. One
option would be to send encrypted messages that include the real
#nsn3d tag, perhaps engineering some sort of steganographic pro-
cess that tries to hide the plaintext within messages that are statisti-
cally similar to other posts from Bieber’s fan, but it seems inappro-
priate to produce false messages like this. The other possibility is to
imagine that all Twitter messages are encrypted in a uniform way,
where knowing the plaintext of the hashtags would enable the de-
cryption of a message. (It’s easy to see a proxy server, of some sort,
providing an “encrypted” interface to Twitter in this fashion.) This
is the design we chose to pursue. In this setup, we can encrypt and
MAC every message with a random session key, which can be de-
crypted if the user knows the proper hashtag. “Encrypted” hashtags
can also be generated by hashing the plaintext hashtags and trun-
cating those hashes. (We address this unwieldy vocabulary when
we present our design in Section 3.1.) Consequently, two different
plaintext hashtags can collide with each other with a probability
related to the number of bits in the truncated hash.

2. THREAT MODEL AND SYSTEM GOALS
In this section, we briefly outline our threat model and then de-

scribe the goals of our design.

2.1 Threat model
#h00t is designed to provide censorship resistance against an

adversary who can observe all #h00t traffic and can block any
tweets it chooses. In practice, the adversary may only block tweets
being received by a subset of users, but this does not affect our
model. The adversary seeks to identify and block tweets discussing
a small set of topics, based on the identity of the sender, keywords
in the content, or the hashtag itself. The adversary blocks SSL ac-
cess to the service or acts as a man-in-the-middle to enable eaves-
dropping and selective blocking. However, our adversary does not
want to disable the entire service, nor does our adversary want to
disable popular but innocuous discussion threads; such crude cen-
sorship might then generate additional unrest in the population.

We argue that some governments will be interested in this level
of censorship, in which the microblogging service is allowed in
a restricted fashion. We note that some countries are currently
censoring services such as Facebook and Twitter in their entirety.
As microblogging services become an increasingly important form
of communication, however, we believe that most countries will
find complete censorship of these services to be incompatible with
operating in the modern world. It is possible that blocking all
microblogging services could be seen as heavy-handed as block-
ing email would be today. Furthermore, Kuppusamy and Shan-
mugam [12] showed that information technology and communica-
tion leads to greater economic growth. Broad censorship reduces
the utility of the entire system, which is presumably used for eco-
nomic activities more valuable than discussing teenage pop stars.

The adversary has moderate computing power and can perform a
brute force key space search over a reasonable space. We describe
how to address stronger adversaries in Section 3.2.

We assume that the #h00t server does not cooperate with the
adversary. We also assume that the adversary has no insiders in the
group who leak the group’s secrets. Likewise, we assume the ad-

versary has no avenues to attack users, such as setting up a covert
keylogger on a group member’s machine or coercing a group mem-
ber to divulge a secret. We concede that such attacks would effec-
tively undermine #h00t’s censorship resistance. Note that this
serves as a practical bound on any attack; if it would be easier to
establish an insider in the group or subvert one of the client systems
than to perform a computational attack, we will consider our design
to be successful. We further discuss mitigations to such attacks in
Section 6.

2.2 System goals
Our goal is to allow a user to send a secure message to a private

group of individuals, allowing only the group members to read the
plain-text message, and to accomplish this with a user interface that
looks and feels much like the vanilla Twitter interface. Ultimately,
this creates a variety of constraints and challenges.

Simple key distribution. To make the system as easy to use as
possible, keys should be simple to create, distribute, and use.
We therefore rule out any cryptographic key hierarchy such
as a public key infrastructure or PGP/GPG key signing par-
ties. Instead we wish to have keys that can literally be passed
via word-of-mouth, from person to person in the group. We
propose to derive keys from the group’s plaintext hashtag,
which effectively serves as the membership password. When
a user subscribes to a given plaintext hashtag, she inputs the
hashtag into her #h00t client, and the client derives the nec-
essary keys.

Confidentiality of tweets. Since the plaintext hashtag is being used
to generate encryption keys, it should have sufficient entropy
to protect against dictionary attacks and brute force. This is
in tension with our desire to have the plaintext hashtags be
easily memorized and shared between users, ideally by voice
alone.

Censorship resistance and denial of service. While we do not at-
tempt to defeat censorship of the #h00t service in its en-
tirety, we seek to defeat attempts to censor specific groups
and keywords. Perng et al. [19] define censorship suscept-
ability as the probability that the adversary can block a tar-
geted message while allowing at least one other message to
be received. This is a difficult requirement to meet in our
system. We instead aim to allow only heavy-handed censor-
ship, which we define as censorship of a group only through
censorship of multiple, unrelated groups. By censoring these
groups together, the adversary lowers the utility of the sys-
tem as a whole. This is similar to the resistance provided by
document-based systems like Tangler and Dagster [28, 26].

Recipient anonymity. To achieve censorship resistance, we rely
on being able to protect recipient anonymity. Adapting the
definition from Pfitzmann and Hansen [20], we require that
the recipients of the tweets, i.e. the group members, not
be identifiable from among a larger set of possible recipi-
ents. #h00t makes this possible by mapping plaintext hash-
tags, which identify the groups, to short hashtags that can be
made to collide with those of other groups. All of the recip-
ients in all groups with colliding hashtags form a recipient
anonymity set, with the tweets from other colliding groups
providing cover traffic. #h00t can also be said to provide
subscriber anonymity, as introduced by Mislove et al. in their
description of AP3 [17]. Hordes [13] and P5 [25] have sim-
ilar requirements. The main additional feature of subscriber



anonymity over recipient anonymity is that the act of sub-
scribing should not reveal information that could be used to
break recipient anonymity.

Recipient deniability. If a #h00t user is under physical threat
to reveal what hashtags she subscribes to, it’s important that
she can offer a convincing lie. Through careful selection of
groups with colliding hashtags, she could name the hashtag
of an innocuous group that could reasonably be of interest
to members of the target group. Suitable choices can in-
clude trending topics (e.g., the Justin Bieber movie hash-
tag #nsn3d), socially-appropriate discussion groups (e.g.
#Bible or #Quran), or topics that related to other innocu-
ous professional or personal interests.

Sender anonymity or deniability. Along those lines, we can only
provide limited protection to a sender. A sender should gain
some plausible deniability against a passive attacker, in that
she could be tweeting about any possible topic that collides
with her post. If, however, we must resist physical attacks
against a sender, coercing them to decrypt a posted message,
our core #h00t design will not protect them. Instead, mes-
sage senders who need to remain anonymous or who require
the ability to deny having posted a given message must use
external means, such as Tor, to connect to the #h00t service
for posting messages. (If a decentralized or P2P transport
mechanism was used for microblogging, like BirdFeeder [23],
such a system could be extended to have anonymous posting
features. For this specific research, we are generally target-
ing a centralized service more like Twitter.)

Replay attacks. It’s possible that a malicious user, or even a ma-
licious microblogging service, could not only remove mes-
sages but could also replay old messages, possibly with telling
side effects (e.g. “Meet in the town square at noon.”). We
must have mechanisms to reject duplicates.

Statistical and traffic analysis. Even if the adversary cannot de-
crypt messages, it may be able to learn things by scanning
large populations of hoots. While we make no explicit at-
tempt to hide who the sender of a message might be (see
“sender anonymity,” above), we do want to provide a strong
degree of resistance to traffic analysis that might otherwise
bind senders to receivers. Our system should make it difficult
or impossible for observers to reconstruct the social graph.

Secret informers and coerced users. If a group member, whether
sender or recipient, is an insider for the adversary or if the
plaintext hashtag is stolen through a keylogger or coersion,
the key is compromised and the group’s messages will be-
come readable and censorable to the adversary. While we
cannot stop such attacks, we clearly need some form of key
agility, to allow group organizers to distribute new hashtags
to replace older, compromised hashtags.

Compatibility. We want to ensure that #h00t can be layered on
top of Twitter, using existing Twitter mechanisms to search
for and follow desired messages. We also must ensure that
real Twitter users could incrementally migrate to using #h00t
as a service above the existing Twitter. To that end, we must
demonstrate that we can implement efficient proxy servers,
converting Twitter to #h00t to bootstrap an effective #h00t
rollout.

One goal that we do not seek to achieve is membership con-
cealment, which Vasserman et al. define as hiding the fact that

the members are participating in the system [27]. The rationale
for membership concealment is that employing a tool designed to
circumvent the censor will draw unwanted attention to the user.
By building #h00t on top of a popular communications medium
(Twitter), ideally with many groups using #h00t in place of nor-
mal hashtags, we argue that #h00t could be deployed in such a
way that users are typically not aiming to circumvent censorship.
Since #h00t also provides message privacy, authentication, in-
tegrity, and receiver anonymity, groups have other reasons to use it
instead of plaintext tweets besides censorship resistance. If #h00t
is widely adopted over Twitter for typical group communication, a
censor that blocks other systems for censorship-resistance (such as
Tor bridges), might not be willing to block all hoots.

Whether this is the case in the real world is hard to discern. China
appears to have blocked iTunes for about 10 days in 2008 due to a
pro-Tibet album; however, it restored service while blocking the al-
bum page itself [11]. Further, there was not a China-specific iTunes
service at the time. If the colliding groups are popular in the coun-
try under censorship, then blocking results in the censorship being
widely seen inside the country and raises awareness of censorship.
Google discloses to users in China when their searches have been
modified2, providing a similar type of awareness.

3. DESIGN & SECURITY ANALYSIS
In this section, we describe the #h00t protocol and analyze its

security.

3.1 Design
We now describe #h00t in detail. After giving a brief overview

of the #h00t protocol, we describe how hashtags are generated to
provide collisions with other groups and how the message header
and body are constructed to enable efficient searching.

Protocol overview. A complete hoot consists of a header and a
message body. The header contains a group identifier (a Twitter-
style hashtag), an encryption key and a MAC key, both encrypted
with a session key, and finally a MAC over the ciphertext of the
message (see Figure 2). As in Twitter, hoots do not name their re-
cipients. Anyone who knows the secret hashtag associated with a
hoot can decrypt and read the message as well as validate its in-
tegrity. We also need an efficient discovery mechanism. Rather
than attempting to treat every message posted to Twitter as a po-
tential group message, and thus being required to fetch and attempt
decryption of every single message, the #h00t protocol places an
identifier into every hoot as a hashtag so a fellow group member
can simply search for the identifier to see all potential messages.
With a constant group identifier, readers can also publicly follow
that identifier like any other hashtag on Twitter.

Group identifiers. To create a hashtag for use as the group identi-
fier, #h00t derives a fixed-length bitstring from the secret hashtag.
We must do this in such a way as to give an attacker no informa-
tion about the shared secret itself. A cryptographic hash function
serves this purpose well, but makes brute force very easy. We rec-
ommend a more expensive key derivation function, such as scrypt,
which works well against brute force even against optimized hard-
ware [18]. Percival estimates that it would require $610,000 of spe-
cialized hardware to crack an 8-character, scrypt-secured password
that included only lower-case letters. We call the secret hashtag a
plain tag, which is comparable to a normal Twitter hashtag, though
it should have enough entropy to prevent the adversary from guess-

2See http://googleblog.blogspot.com/2006/02/
testimony-internet-in-china.html

http://googleblog.blogspot.com/2006/02/testimony-internet-in-china.html
http://googleblog.blogspot.com/2006/02/testimony-internet-in-china.html


FIND-TAG(prefix, target,N,k) :
for i← [0,N), in random order

do
PlainTag← prefix .suffix
ShortTag← H(PlainTag).bits(0 . . .k−1)
if ShortTag = H(target).bits(0 . . .k−1)

then return(PlainTag,ShortTag)

Figure 1: Pseudocode for tag collision searching.

ing it. The result of the key derivation function H is referred to as
the long tag, i.e.: LongTag← H (PlainTag).

The #h00t protocol could simply use the long tag as an identi-
fier, but this choice leads to several problems. First, to achieve our
design goal of keeping identifiers short and to fit within Twitter’s
140 character limit, it is less than ideal to use the full output of a key
derivation function (e.g. 128 bits). Secondly, a good key derivation
function, much like a cryptographic hash function, produces virtu-
ally no collisions for reasonable numbers of groups. As described
in Section 2.2, we propose that different groups’ identifiers collide
with each other for recipient anonymity and plausible deniability.

To generate a collision, we need to shorten the long tag, gener-
ating a short tag of k bits. The short tag will, by design, induce
collisions between unrelated plain tags. The shorter the short tag,
the higher the collision rate will be and the less sure an observer can
be as to what topic a #h00t reader is actually following. With this
greater anonymity comes more computational work: since more
group messages will now belong to the same identifier, a follower
must download and decrypt more messages to find the desired ones.

Given a consistent system-wide short tag length, a group can
choose a tag that will collide with a popular tag, allowing for a
predictably high amount of cover traffic as well as providing a cover
story for followers of that tag.

This algorithm searches for a tag collision, where the PlainTag
suffix is a number between 0 and N, and the ShortTag is k bits long.
What should be reasonable values for N and k?

k determines the length of the ShortTag. As discussed above,
the value for k trades off anonymity versus search overhead for a
receiver. k will likely need to be a constant shared widely across
the space of #h00t users.

N is bounded by how large a PlainTag string can be reasonably
passed among potential #h00t participants. If the communica-
tion of the PlainTag must happen by word of mouth, N will be
bounded, perhaps, by the number of digits that can be memorized
by most humans (so if humans can remember around seven dec-
imal digits [16], then N would be 107). Equivalently, we could
search over some other memorizable namespace with suitably high
entropy, like a short string of characters found on a keyboard. Re-
gardless, the group creator would use a FIND-TAG procedure (see
Figure 1) to search over all possible suffixes to identify collisions.
Note that the search should be done randomly, rather than in-order,
to increase the attacker’s difficulty in conducting brute force at-
tacks. Also not that process is only necessary once, when a tag is
first created.

To further increase the entropy of the plain tag, we can imagine
a number of options that would still be amenable to human mem-
orization. For example, the short tag’s prefix could be chosen ran-
domly from a large dictionary or replaced with a full phrase. NIST
estimates a 40-character pass phrase with no checks or restrictions

M ← plaintext message, includingPlainTag

LongTag ← H(PlainTag)

ShortTag ← LongTag .bits(0 . . .k−1)
ktag ← LongTag .bits(k . . .)

kenc,kmac ← randombits

C ← Ekenc(M)

HooT ←
(

ShortTag,Ektag (kenc,kmac) ,MACkmac(C),C
)

Figure 2: Structure of a hoot.

to have about 56 bits of entropy [1]. If we were willing to relax our
desire to have human-memorizable plain tags, then the whole plain
tag could be selected at random. Certainly, this yields excellent
resistance to brute force searching attacks, but it also creates ad-
ditional complexity for organizers wishing to prevent leaks, since
these plain tags will need to be written down or saved and shown
on a mobile device.

Message header and body. In addition to the ShortTag, the header
contains a pair of session keys for message body encryption (kenc)
and integrity verification (kmac).

For every hoot, these session keys are randomly generated. Since
we intend to use efficient symmetric key ciphers and hash-based
message authentication functions. The session keys are then en-
crypted with a tag key derived from the long tag, using different
bits than the k bits used when deriving the short tag. Given a long
tag of 160 bits, if we assume half of those bits are used in the short
tag, the remaining 80 bits give us 280 possible keys that an attacker
must potentially brute force, which is certainly greater than the en-
tropy in the plaintext tag. (In Section 5, we flesh this out in more
detail.) Of course, if we ever reached a point where the encryption
and MAC session keys required more bits than we can get from
carving up the long tag, we could always use the long tag to initial-
ize a suitably strong pseudo-random number generator, getting us
all the derived bits we might ever want.

So far, we have specified a hoot structure with exactly one plain
tag. This technique can easily be generalized to support multiple
plain tags. For each one, a separate long tag can be generated, re-
sulting in multiple tag keys (ktag), each of which is used to encrypt
the same session keys. The final #h00t would have multiple short
tags and multiple encryptions of the session keys, but only one ci-
phertext message payload.

For illustration, Table 1 shows how a few plain-text tweets might
be converted into their corresponding hoots. The first two mes-
sages are regular tweets from popular hashtags: #bieber and #Char-
lieSheen. The third is a hoot where receiver anonymity is critical,
but it’s short tag, #2p7, does not collide with anything else, and
thus subscribers to #2p7 might risk discovery. The fourth message
shows how the same group might alter their plain tag so they can
deliberate collide with #bieber, which maps to the same short
tag (#9tx).

3.2 Security analysis
Based on the threat model defined in Section 2.1 and the system

design goals described in Section 2.2, we now analyze the security
of the proposed #h00t protocol.

Message security. We begin with a brief analysis of the security
of the message protocol itself.

First, note that the session keys are generated randomly and in-



Table 1: This table shows how several tweets might be converted to hoots, showing the long tag, the short tag, and the final hoot. The
fourth message in this list demonstrates how a group could take advantage of the #h00t system to collide its hoots with those of an
unrelated tag used for non-controversial messages.

Tweet Long Tag Short Tag Hoot
1 Its all bout the #bieber 100%Belieber 9txrq71tfn8 9tx #9tx Xrtfn...
2 Don’t be a drag; just be a queen whether you’re broke or #CharlieSheen 7prQnd121f2 7pr #7pr n771r...
3 #free-egypt We’ll meet at the usual, 11pm. 2p7rtfx9pa1 2p7 #2p7 pp76a...
4 #free-egypt-9rqt We’ll meet at the usual, 11pm. 9tx79srpLtt 9tx #9tx 18yyQ...

dependently for each hoot. Consequently, two identical plaintext
messages will have different ciphetexts. If the encryption scheme
in use requires an initialization vector (e.g., CBC mode), this could
be safely included in the message header. For other encryption
schemes, such as counter mode, no IV is necessary and the random-
ness of the key will ensure the non-determinism of the ciphertext.

Message integrity is validated with a symmetric-key message
authentication code such as HMAC-SHA1. Because the MAC is
computed over the ciphertext, and the MAC key is generated at
randomly and independently from the encryption key, the MAC
leaks absolutely no information about the plaintext. The MAC ver-
ification process also serves the purpose of identifying whether a
prospective hoot matches the plain tag in question (for which mul-
tiple other plain tags will collide in the short tags), or whether a
message is irrelevant to the user’s plain tag search query and should
be dropped.

Replay attacks can be defeated by treating the session keys (kenc,
kmac) as nonces. It’s highly unlikely that two different hoots will
share the same session keys.

Brute force attacks. Provided an attacker knows a targeted group’s
prefix and the alphabet out of which they generate the suffix, our
scheme is amenable to brute force searching attacks. Table 2 shows
how fast a modern computer can decrypt hoots: between 217 and
218 per second. Clearly, plain tags must be selected with far more
entropy than this. If the attacker has 210 CPU cores and we want
a plain tag to survive one week of analysis (just over 219 seconds)
before a plain tag is “burned” and needs to be replaced, then plain
tags would require a minimum of 47 bits of entropy (e.g., 15 deci-
mal digits).

If we limited plain tags to a word from a reasonably large dictio-
nary (40,000 entries) plus 7 decimal digits, then we only get 38.5
bits of entropy. Our hypothetical attacker with 210 CPU cores could
brute force a plain tag in 20 minutes.

If a plain tag was composed of two dictionary words and 7 dec-
imal digits, yielding 53.8 bits of entropy, then our hypothetical at-
tacker would need over two years of computation to brute force a
plain tag. While this is certainly pushing the boundaries of what
might be memorable without being written down, it’s not incon-
ceivable.

Traffic analysis and adaptive censorship. Consider the case
where an attacker can see what queries are subscribed to by each in-
dividual user within their country. The attacker suspects that there
is hidden traffic on a particular short tag, based on the prevalence
of queries for it, so the attacker proceeds to twist some arms and
finds what appears to be a sudden and inexplicable rise in domestic
fandom for a teenage pop star from a foreign country.

Is this falsifiable? Ironically, the locals who have chosen the
foreign pop star for their cover traffic can best cover themselves by
immersing themselves in the pop star’s oeuvre. Still, the pop star’s
genuine traffic is no secret. The attacker could censor the short

tag, in its entirety, accepting the false positives and causing outrage
among the pop star’s true fandom. Alternately, the attacker could
censor the hoots on the short tag that do not match the pop star’s
known plain tag. Of course, this would also have false positives
with legitimate and innocuous traffic, but it would definitely force
the organizers to shift their traffic to a different short tag, creating
something of a game of cat-and-mouse.

We note that the pop star could choose to surreptitiously help
his overseas “fans” by regularly adding new plain tags under which
he implores his genuine fans to discuss new topics (e.g., his new
haircut, his new hit single, his guest appearance on a talk show, and
so forth). The local organizers could then take advantage of this by
running FIND-TAG to discover tags that collide with each one. No
actual communication between the foreign pop star and his local
“fans” would ever be necessary.

4. IMPLEMENTATION
In this section we describe our prototype #h00t implementa-

tion, which we use for performance experiments (see Section 5).
Additionally, our discussion in this section helps to illustrate the
design choices and trade-offs available in the #h00t approach.

Generating a Hoot The #h00t protocol allows for a variety of
different encryption, hashing, and message authentication schemes.
Our prototype client, implemented in Python using the PyCrypto3

library, takes the following steps to construct a hoot:

• We generate a long tag by taking a SHA-1 hash of the plain
tag.4 This provides 32 bits for the short tag and 128 bits for
the tag key, ktag, to encrypt the session keys.

• Using PyCrypto’s cryptographically-strong random number
generator, we generate a random 128-bit encryption key, kenc,
and a random 128-bit MAC key, kmac. These keys are con-
catenated together and then encrypted with the tag key using
AES in counter mode with a fixed initial counter of 0. (The
randomly chosen encryption key for AES ensures a suitable
level of non-determinism in its ciphertext.)

• We encrypt the plaintext message with kenc, again using AES
in counter mode, and use kmac to generate an HMAC-SHA1
message authentication code over the encrypted plaintext of
the message.

• We print the hoot, consisting of a # symbol, the short tag, a
space, the encrypted keys, the HMAC digest, and the cipher-
text.

3http://www.dlitz.net/software/pycrypto/
4Unfortunately, we did not have time to implement and test with
scrypt. Scrypt runs much slower, but can be tuned for different
trade-offs of speed and security [18].

http://www.dlitz.net/software/pycrypto/


(We describe a prototype of FIND-TAG in Section 5.2.)

Message length. We wish to render hoots in a format that can be
transmitted via Twitter. The primarily difficulty we face is Twitter’s
140 character limit. We must also ensure that the short tags are
rendered in standard Twitter hashtag format (i.e., preceded with a
# character and followed by whitespace) such that standard Twitter
searching mechanisms will efficiently find them.

Interestingly, Twitter has a very broad definition of a character.
Based on our testing, we believe that Twitter limits tweets to 140
Unicode (UTF-8) glyphs. While we could certainly take advantage
of this to squeeze the longest possible hoots into a single tweet,
particularly if we were willing to restrict plaintext messages to 7-bit
ASCII, we chose not to pursue this for our initial implementation.
Instead, we went with a standard Base64 encoding (the letters A-Z,
a-z, 0-9, +, and /), yielding only six bits per glyph.

Assuming a single short tag of two Base64 glyphs (12 bits), the
maximum plain text message with our prototype implementation
would be 31 single-byte characters. (We would need 79 glyphs to
represent the message header, including one short tag, leaving 61
glyphs for the message, which could then be at most 45 bytes of
plain text.)

If, however, we were to implement a more efficient Unicode
packing, we could certainly do much better. UTF-8 allows for just
over 1 million values in a single glyph, not all of which are cur-
rently in use5. As such, a Unicode packer should be able to achieve
20 bits per glyph. With this, the entire #h00t header, with one
short tag, could be encoded in 26 glyphs, leaving 114 glyphs for
the ciphertext. For users used to Twitter’s 140-character length re-
striction, this is likely to be reasonable (moreso if they limit them-
selves to 7-bit ASCII characters). Of course, we could also build
any compression scheme into the #h00t protocol, perhaps adding
a few bits to the header to indicate a language group, and thus ini-
tialize the compression system with a corpus of common words and
phrases. This would radically improve the efficiency of the com-
pression scheme and thus the amount of data that could be encoded
in a #h00t, while still respecting Twitter’s 140-character maxi-
mum.

We note that Twitter is not the only microblogging system that
we could leverage for #h00t traffic. #h00t could just as easily be
built atop Google Buzz, which doesn’t have Twitter’s 140 character
limit.6

5. EXPERIMENTS
In this section, we describe the results of our analysis of the

#h00t system with the 2008 Twitter dataset collected by San-
dler and Wallach [23]. This data contains 10,766,525 tweets with
255,833 hashtag references. Additionally, we show the results of
experiments using our prototype to examine the computational over-
head of implementing #h00t over all Twitter traffic.

5.1 Cover traffic
We first show that Twitter groups provide good possibilities for

cover traffic that #h00t can leverage to hide groups seeking plau-
sible deniability.

In Figure 4, we show the distribution of tweet volume for each
hashtag in the 2008 dataset, ordered by activity volume in a log-log

5Wikipedia has a reasonably good discussion on this topic: http:
//en.wikipedia.org/wiki/UTF-8.
6The 140 character limit is an artifact of Twitter’s original intent to
support SMS cellular telephone messaging as a way of delivering
tweets. This unfortunate design decision was originally made in
1985 and still haunts us today [15].

Table 2: #h00t computation rate for encryption and decryp-
tion.

Action Average hoots per second
Encryption 3610
Decryption 15590

scatter plot. The distribution appears to follow a standard power
law distribution, with a few very active hashtags and many hashtags
with few tweets. A large cluster of hashtags appear only once in our
dataset.

This distribution shows us that there is a large spectrum of sub-
scriber anonymity set sizes that can be leveraged by #h00t. To
get a high degree of anonymity, a group organizer can choose a
plain tag whose short tag collides with a popular tag (and, thanks
to the power-law distribution, we can be confident there will always
be a reasonable distribution of plain tags, with varying popularity,
to choose from). Among other benefits, a group organizer has the
ability to dial in pretty much any amount of cover traffic for their
group.

5.2 Finding tags
To explore the feasibility of finding a plain tag that collides with

an existing short tag, we built a tool called the collider in C and
OpenMP 3.0, using the open source CommonCrypto7 library pro-
vided by Apple. The collider implements the FIND-TAG algorithm
described in Figure 1 and is trivially parallelizable by partitioning
the search space.

As expected, the runtime scales exponentially with the length of
the desired collision. Performance is limited by the performance
of SHA-1 of our computer— roughly 1.9 million ( 221) hashes per
second per core. Consequently, finding a collision in a short tag
that’s only three Base64 digits (18 bits) takes a fraction of a second.
Finding a collision in four digits takes only a few seconds. Even
with our parallelized implementation, it is currently infeasible for
a single PC to do an exhaustive search for a suffix greater than six
Base64 digits (36 bits) in less than a day. Note that performance
would be slower if scrypt or any other slow key derivation function
was used in place of SHA-1.

5.3 Overall #h00t performance
Adoption of #h00t requires that the overhead for encryption

and decryption be minimal. For example, one path to adoption
would have Twitter or another microblogging service offer #h00t
semantics over their entire existing service. We thus consider com-
putation overhead in the context of encrypting all Twitter traffic as
a worst case. In March 2011, Twitter stated that the site receives
140 million tweets per day or 1620 tweets per second on average8.
Twitter also stated that the maximum number tweets per second
ever was 6939. These numbers act as rough upper bounds to the
number of hoots per second the system would need to keep up with.

To study the amount of computation required to support #h00t
over Twitter, we modified our Python script to perform the en-
cryption process 500,000 times running on a MacBook Air with a
1.86 GHz Intel Core 2 Duo using Base64 encoding to demonstrate
how the performance would be on a typical end user’s laptop. This
also gives us a lower bound for performance on modern hardware.
We also independently performed the decryption process 500,000

7http://www.opensource.apple.com/source/CommonCrypto/
8http://blog.twitter.com/2011/03/numbers.html

http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-8
http://www.opensource.apple.com/source/CommonCrypto/
http://blog.twitter.com/2011/03/numbers.html
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Figure 3: Runtime for the collider to search for all matching
tags with suffixes of length L = 3,4,5 base-64 digits on a PC
with dual quad-core Intel i5 processors.
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Figure 4: 2009 Twitter hashtag activity distribution on a log-log
scale.

times. Table 2 demonstrates that the computational overhead for
#h00t cryptography is negligible for Twitter; the average compu-
tational load can be handled by a single computer and the peak load
might require only two computers. Clearly, the issue for Twitter or
a comparable service wouldn’t be cryptographic costs, it would be
bandwidth. That overhead would be entirely dependent on the se-
lection of the short tag on the part of the various #h00t organizers.

On the client side, our experiments show that a modern computer
can decrypt hoots significantly faster than Twitter’s peak message
rate for the entirety of its traffic. (Even better, the MAC can be
validated before the message ciphertext needs to be decrypted, pro-
viding a shortcut to skip undesired cover traffic.) Again, compu-
tational overhead isn’t going to be the limiting factor. Instead, the
only issue will be bandwidth.

Group organizers must then take client bandwidth into account
when selecting collisions. An international pop music star might
make for an excellent cover story, but he might simply be too pop-
ular for clients, particularly if the they are using cellular phone
networks that haven’t been brought up to the latest multi-megabit
speeds. This is the one place where the short size of Twitter mes-
sages actually works in our favor. A modest data pipe of 128
kbits/sec can transmit roughly 114 tweets per second. This is well
within the regular bounds of most any short tag selected by the
group organizers.

Assuming the entire peak load 7000-or-so tweets per second ends
up split uniformly across short tags with three base-64 digits (i.e.,
18 bit short tags), the average number of tweets per second per short
tag is only 0.02 (i.e., only 1.6 hoots per minute). That’s well within
any realistic bandwidth constraint.

6. DISCUSSION
In this section, we discuss a variety of issues and future exten-

sions of the #h00t design.

6.1 Deployment
There are two different paths through which #h00t could be

deployed. First, it would be straightforward to implement a proxy
service, whether operated by Twitter or by an independent third

party, that reads every tweet, encrypts it, and provides a Twitter-
like interface to the stream of hoots. This would incur non-trivial
monetary costs for the bandwidth and computation resources, but
it is still well within the means of many organizations. A deeper
concern is that any country could simply block traffic to or from
the #h00t proxy server.

Alternately, the proxy server could read every normal tweet, en-
crypt it, and post it back to Twitter. This, naturally, would double
the number of tweets, which makes it something that Twitter would
probably insist on doing themselves rather than accepting from a
third-party service. A Twitter-internal implementation might in-
stead, for example, precompute the short tags for every tweet but
regenerate hoots on the fly rather than storing two copies.

Any strategy in which hoots are injected by a proxy has the prop-
erty that the hoot need not necessarily specify the original sender’s
Twitter username. Breaking the binding between the sender and the
public #h00t message would greatly improve sender anonymity,
but it would also allow any user who knows the relevant plain tag
to impersonate any other member. We could imagine a variety of
ways to add some sort of digital signature or hash-chaining layer
into the hoot format to differentiate users with “read-only” versus
“posting” privileges. We leave this for future work.

Regardless, a critical question is whether the plain tag for a hoot
should ever be sent to Twitter. For users with dedicated clients, the
users’ plain tags could be stored locally, avoiding any issue where
a compromise of Twitter’s server becomes a single point of failure
for #h00t’s confidentiality and integrity. This would clearly be the
preferred modality for #h00t usage, but that may not be feasible
for a large number of potential #h00t users.

It’s important to note that Twitter’s web interface offers full SSL
encryption. Twitter’s dedicated smartphone clients currently use
OAuth signatures, protecting message integrity but not privacy. Full
encryption would be desirable for smartphone clients to defeat ac-
tive adversaries who might use deep packet inspection to detect
#h00t messages in transit and close the connection.

A few other considerations are worth noting:

• If Twitter could be convinced to directly support #h00t,
then they could certainly stretch the 140-character limit to al-



low #h00t plaintext messages to be as long as regular Twit-
ter messages.

• If #h00t users were connected to Twitter’s web interface,
then it would be essential for hoots to be decrypted in the
browser, via client-side JavaScript, rather than on the server.
We want every hoot matching a short tag query to be trans-
mitted over the network to ensure that passive network eaves-
droppers, will only see traffic patterns corresponding to those
short tags. Sending just the hoots matching a particular plain
tag could leak the group’s traffic pattern, even over an SSL-
encrypted connection [14].

• Regardless, an adversary conducting traffic analysis might be
able to distinguish a subscription to a #h00t short tag from a
subscription to something else, solely based on hoots’ timing
and size. This could be addressed by having all Twitter users
receive #h00t cover traffic for a randomly selected #h00t
short tag, which their clients would then ignore. It could also
be addressed by hacking normal Twitter clients from unsus-
pecting users to treat any request to follow a hashtag by hav-
ing them follow the corresponding #h00t short tag, instead.

• At some point, Twitter may deploy content-aware advertis-
ing on its services. Advertising should never be allowed to
operate based on a decrypted #h00t, as the advertiser could
well be the adversary, and could possibly use analysis of ad-
vertisement metrics to violate #h00t users’ privacy.

• Twitter may not have any interest in #h00t or anything like
it. See Section 6.4 for a discussion of alternative backend
designs.

6.2 Usability
In essence, #h00t requires its users to manually negotiate a

group cryptographic key management system. Even though the use
case for #h00t looks and feels much like “normal” Twitter hash-
tags, we are still putting a non-trivial amount of trust into a protocol
that requires users to use literal gossip to spread key material. Even
highly motivated users could well make mistakes, and any small er-
ror would result in the inability to decrypt the desired hoots. In par-
ticular, a significant amount of entropy is required for adequate se-
curity, causing #h00t plain tags to push the boundaries on human
memorability. In effect, a good #h00t plain tag is comparable to a
strong account password. #h00t’s use of machine-generated plain
tags would have comparable issues with organizations that require
users to have strong passwords that are never written down and fre-
quently changed. And, unlike such organizations which can adopt
a variety of “two factor” authentication technologies to reduce their
reliance on passwords, #h00t fundamentally needs plain tags as
strong as strong user passwords.

About the only good news in this process is the growing ubiquity
of smartphones, typically having a variety of methods to commu-
nicate with other phones nearby. This would allow a set of plain
tags to be quickly and painlessly shared via means including two-
dimensional barcodes (displayed on one phone’s screen, read with
another phone’s camera), a variety of close-range networking tech-
nologies (near-field communication, Bluetooth, ad-hoc WiFi, or
infrared file transfer), or even acoustic transfer from one phone’s
speaker to another phone’s microphone. If, in fact, the predominant
modality for #h00t plain tag sharing is one of these mechanisms,
then plaintag memorizability becomes a non-issue. Plain tags can
then be implemented with general-purpose securely-chosen ran-
dom numbers.

A related usability question is the process for selecting the de-
sired external hash tag with which to collide a #h00t plain tag.
Earlier in this paper, we cavalierly suggested that famous pop singers
helpfully provide all the cover traffic we might ever want. However,
this process ultimately needs to be handled with care, since recip-
ient deniability requires the human recipient to have a convincing
story under coercive pressure, and many people may not be able
to convincingly demonstrate their admiration for an overseas pop
sensation. A #h00t proxy or other site could facilitate this by
providing information about the popularity of different short tags,
including which ones are trending well in a given country or region.

6.3 Adaptability and scalability
Since #h00t benefits from and encourages collisions in the short

tag space, there will come a point when there are simply too many
collisions, i.e., the ratio of desired messages to cover traffic will
eventually become too small to be practical for the proxy or client
software to decrypt and filter through. The seemingly obvious so-
lution is to adjust the length of short tags. Adding one character to
the tag length would greatly decrease the chance of random colli-
sions (by 1

|A| for alphabet A). However, modifying the tag length
while the system is in use would not be straightforward for groups.
Groups could rely on group leaders to facilitate the process, e.g. by
announcing a new tag to use or giving out multiple plain tags in ad-
vance. Alternatively, the system operators could initially set tags to
be long enough to prevent most random collisions and have groups
emphasize chosen collisions in their plain tag generation.

6.4 Alternate backends
Even though our protocol was designed with Twitter in mind, it

is extensible to other systems and platforms. The #h00t protocol
describes a secure way to transfer short messages (with low en-
cryption overhead) across virtually any publicly available content
distribution network. All that #h00t requires is efficient search
primitives for each message’s short tag or tags. Everything else is
handled by client-side software.

Consequently, if Twitter had no interest in #h00t or concluded
that it would not be supportable, then #h00t could just as eas-
ily work with a variety of centralized or distributed network ser-
vices. To pick one possibility, #h00t could use the BitTorrent
“distributed tracker”, or any other large and public distributed hash
table (DHT) service, to store messages with the short tags used to
name the DHT nodes responsible for their storage. FeedTree [22] is
one of many systems that have attempted to support micropublish-
ing on a DHT. (Other DHT-based ideas are discussed in Section 7.)

7. RELATED WORK
Censorship resistance has been carefully investigated in the con-

text of publishing documents and file-sharing [2, 5, 4, 3, 29, 28,
26]. Anderson proposed the Eternity Service, which would make
documents available for download and not allow any party to delete
any document [2]. Censorship resistance is provided by replicating
each document over many servers across many legal jurisdictions.
By anonymizing the system’s communications, the service would
prevent linking plaintext files to the encrypted versions stored on
the servers by those who did not have the decryption key. Free
Haven [5], FreeNet [4], and GNUnet [3] provide similar proper-
ties in the context of peer-to-peer file-sharing, as well as attempt-
ing to hide which peers are hosting which files. Publius [29] ex-
tends these approaches by employing Shamir secret sharing [24]
to make it harder to determine what each server is storing. Tan-
gler [28] and Dagster [26] cryptographically intertwine data from
different documents in such a way that the censor can only force the



system to delete controversial documents by deleting “legitimate”
documents and thereby degrading the system as a whole. This pro-
vides a censorship-resistance property similar to one provided by
#h00t: prevention of fine-grained censorship rather than preven-
tion of heavy-handed censorship.

Censorship resistance has also been studied in the context of
communication more broadly. Some systems aim to evade auto-
mated filters. Feamster et al. propose Infranet, which passes in-
formation over covert channels with the help of participating Web
servers [9]. In another work, Feamster et al. point out that In-
franet and other proxy-based solutions to censorship evasion face
the problem of finding the proxies [10]. To address this problem,
Feamster et al. require clients to solve cryptographic puzzles to find
a proxy. The Tor anonymity system faces a similar problem. It has
a widely-distributed list of servers [7] and thus the censor could
block Tor by blocking access to the servers on the list. Tor uses
bridges, nodes that allow users to connect to Tor through them, to
evade such blocking [6]. Although the bridges are not published
as widely, they must be disseminated to users and can be discov-
ered through the same channels by the censors. In particular, China
blocks access to Tor not only through blocking servers but bridges
as well [21].

In not relying on proxies, #h00t has the advantage of being
easier to use (since it doesn’t require puzzles or CAPTCHAs) and
of providing plausible deniability, whereas the use of proxy-based
censorship resistance tools is likely to be inherently unacceptable
to the censor and could lead to the user being harassed or worse if
found out.

8. CONCLUSIONS
To provide censorship resistance and anonymity for groups wish-

ing to communicate over a microblogging service like Twitter, we
proposed #h00t. Hoots are private messages that are publicly
posted but tagged with an identifier, allowing interested parties to
efficiently find and decrypt them. By allowing many hash tags to
collide with the same identifier, we protect recipient anonymity and
use unrelated traffic as cover traffic. We found that #h00t can be
added to a service like Twitter with little additional computational
resources and reasonable additional bandwidth costs. We showed
that users can have a experience that’s virtually identical to a stan-
dard Twitter user, yet with radically better privacy. We also showed
how it would be straightforward for Twitter to adopt #h00t and
deploy it via web interfaces or via custom clients.
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