
OPTIMAL TRANSPORT AND CURVATURE

ALESSIO FIGALLI AND CÉDRIC VILLANI

Introduction

These notes record the six lectures for the CIME Summer Course held by the second author
in Cetraro during the week of June 23-28, 2008, with minor modifications. Their goal is to
describe some recent developements in the theory of optimal transport, and their applications
to differential geometry. We will focus on two main themes:

(a) Stability of lower bounds on Ricci curvature under measured Gromov–Hausdorff conver-
gence.

(b) Smoothness of optimal transport in curved geometry.

The main reference for all the material covered by these notes (and much more) is the recent
book of the second author [45].

These notes are organized as follows:

• In Section 1 we recall some classical facts of metric and differential geometry; then in Section
2 we study the optimal transport problem on Riemannian manifolds. These sections introduce
the basic objects and the notation.

• In Section 3 we reformulate lower bounds on Ricci curvature in terms of the “displacement
convexity” of certain functionals, and deduce the stability. Then in Section 4 we address the
question of the smoothness of the optimal transport on Riemannian manifold. These two sec-
tions, focusing on Problems (a) and (b) respectively, constitute the heart of these notes, and
can be read independently of each other.

• Section 5 is devoted to a recap and the discussion of a few open problems; finally Section 6
gives a selection of the most relevant references.

1. Bits of metric geometry

The apparent redundancy in the title of this section is intended to stress the fact that we
shall be concerned with geometry only from the metric point of view (rather than from the
topological, or differential point of view), be it either in some possibly nonsmooth metric space,
or in a smooth Riemannian manifold.

1.1. Length. Let (X, d) be a complete separable metric space. Given a Lipschitz curve γ :
[0, T ] → X, we define its length by

L(γ) := sup

{

N
∑

i=0

d(γ(ti), γ(ti+1))
∣

∣

∣
0 = t0 ≤ t1 ≤ . . . ≤ tN+1 = T

}

.

It is easily checked that the length of a curve is invariant by reparameterization.
1
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In an abstract metric space the velocity γ̇(t) of a Lipschitz curve does not make sense; still
it is possible to give a meaning to the “modulus of the velocity”, or metric derivative of γ, or
speed:

|γ̇(t)| := lim sup
h→0

d(γ(t+ h), γ(t))

|h|

For almost all t, the above limsup is a true limit [1, Theorem 4.1.6], and the following formula
holds:

L(γ) =

∫ T

0
|γ̇(t)| dt. (1.1)

1.2. Length spaces. In the previous subsection we have seen how to write the length of curves
in terms of the metric d. But once the length is defined, we can introduce a new distance on X:

d′(x, y) := inf
{

L(γ)
∣

∣

∣
γ ∈ Lip([0, 1],X), γ(0) = x, γ(1) = y

}

.

By triangle inequality, d′ ≥ d. If d′ = d we say that (X, d) is a length space. It is worth
recording that (X, d′) defined as above is automatically a length space.

Example 1.1. Take X = S
1 ⊂ R

2, and d(x, y) = |x− y| the standard Euclidean distance in R
2;

then d′(x, y) = 2 arcsin |x−y|
2 , so (X, d) is not a length space. More generally, if X is a closed

subset of R
n then (X, d) is a length space if and only if X is convex.

1.3. Geodesics. A curve γ : [0, 1] → X which minimizes the length, among all curves with
γ(0) = x and γ(1) = y, is called a geodesic, or more properly a minimizing geodesic.

The property of being a minimizing geodesic is stable by restriction: if γ : [0, 1] → X is a
geodesic, then for all a < b ∈ [0, 1], γ|[a,b] : [a, b] → X is a geodesic from γ(a) to γ(b).

A length space such that any two points are joined by a minimizing geodesic is called a
geodesic space.

Example 1.2. By the (generalized) Hopf–Rinow theorem, any locally compact complete length
space is a geodesic space [4].

It is a general fact that a Lipschitz curve γ can be reparameterized so that |γ̇(t)| is constant [1,
Theorem 4.2.1]. Thus, any geodesic γ : [0, 1] → X can be reparameterized so that |γ̇(t)| = L(γ)
for almost all t ∈ [0, 1]. In this case, γ is called a constant-speed minimizing geodesic. Such
curves are minimizers of the action functional

A(γ) :=
1

2

∫ 1

0
|γ̇(t)|2 dt.

More precisely, we have:

Proposition 1.3. Let (X, d) be a length space. Then

d(x, y) = inf
γ(0)=x, γ(1)=y

√

∫ 1

0
|γ̇(t)|2 dt ∀x, y ∈ X.

Moreover, if (X, d) is a geodesic space, then minimizers of the above functional are precisely
constant-speed minimizing geodesics.
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Sketch of the proof. By (1.1) we know that

d(x, y) = inf
γ(0)=x, γ(1)=y

∫ 1

0
|γ̇(t)| dt ∀x, y ∈ X.

By Jensen’s inequality,
∫ 1

0
|γ̇(t)| dt ≤

√

∫ 1

0
|γ̇(t)|2 dt,

with equality if and only if |γ̇(t)| is constant for almost all t. The conclusion follows easily.
�

1.4. Riemannian manifolds. Given an n-dimensional C∞ differentiable manifoldsM , for each
x ∈M we denote by TxM the tangent space to M at x, and by TM := ∪x∈M ({x} × TxM) the
whole tangent bundle of M . On each tangent space TxM , we assume that is given a symmetric
positive definite quadratic form gx : TxM×TxM → R which depends smoothly on x; g = (gx)x∈M
is called a Riemannian metric, and (M,g) is a Riemannian manifold.

A Riemannian metric defines a scalar product and a norm on each tangent space: for each
v,w ∈ TxM

〈v,w〉x := gx(v,w), |v|x :=
√

gx(v, v).

Let U be an open subset of R
n and Φ : U → Φ(U) = V ⊂M a chart. Given x = Φ(x1, . . . , xn) ∈

V , the vectors ∂
∂xi := ∂Φ

∂xi
(x1, . . . , xn), i = 1, . . . , n, constitute a basis of TxM : any v ∈ TxM can

be written as v =
∑n

i=1 v
i ∂
∂xi . We can use this chart to write our metric g in coordinates inside

V :

gx(v, v) =

n
∑

i,j=1

gx

(

∂

∂xi
,
∂

∂xj

)

vivj =

n
∑

i,j=1

gij(x)v
ivj,

where by definition gij(x) := gx
(

∂
∂xi ,

∂
∂xj

)

. We also denote by gij the coordinates of the inverse

of g: gij = (gij)
−1; more precisely,

∑

j g
ijgjk = δik, where δik denotes Kronecker’s delta:

δik =

{

1 if i = k,
0 if i 6= k.

In the sequel we will use these coordinates to perform many computations. Einstein’s con-
vention of summation over repeated indices will be used systematically: akb

k =
∑

k akb
k,

gijv
ivj =

∑

i,j gijv
ivj , etc.

1.5. Riemannian distance and volume. The notion of “norm of a tangent vector” leads to
the definition of a distance on a Riemannian manifold (M,g), called Riemannian distance:

d(x, y) = inf
γ(0)=x, γ(1)=y

∫ 1

0

√

gγ(t)
(

γ̇(t), γ̇(t)
)

dt

= inf
γ(0)=x, γ(1)=y

√

∫ 1

0
gγ(t)

(

γ̇(t), γ̇(t)
)

dt ∀x, y ∈ X.

This definition makes (M,d) a length space.
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A Riemannian manifold (M,g) is also equipped with a natural reference measure, the Rie-
mannian volume:

vol(dx) = n-dimensional Hausdorff measure on (M,d) =
√

det(gij) dx
1 . . . dxn.

This definition of the volume allows to write a change of variables formula, exactly as in R
n (see

for instance [45, Chapter 1]).

1.6. Differential and gradients. Given a smooth map ϕ : M → R, its differential dϕ : TM →
R is defined as

dϕ(x) · v :=
d

dt

∣

∣

∣

∣

t=0

ϕ(γ(t)),

where γ : (−ε, ε) → M is any smooth curve such that γ(0) = x, γ̇(0) = v (this definition is
independent of the choice of γ). Thanks to the Riemannian metric, we can define the gradient
∇ϕ(x) at any point x ∈M by the formula

〈

∇ϕ(x), v
〉

x
:= dϕ(x) · v.

Observe carefully that ∇ϕ(x) is a tangent vector (i.e. an element of TxM), while dϕ(x) is a
cotangent vector (i.e. an element of T ∗

xM := (TxM)∗, the dual space of TxM). Using coordinates
induced by a chart, we get

gij(∇ϕ)ivj = (dϕ)iv
i =⇒ (∇ϕ)i = gij(dϕ)j .

1.7. Geodesics in Riemannian geometry. On a Riemannian manifold, constant-speed min-
imizing geodesics satisfy a second order differential equation:

γ̈k + Γkij γ̇
iγ̇j = 0, (1.2)

where Γkij are the Christoffel symbols defined by

Γkij =
1

2
gkℓ
(

∂gjℓ
∂xi

+
∂giℓ
∂xj

−
∂gij
∂xℓ

)

.

Exercise 1.4. Prove the above formula.
Hint. Consider the action functional A(γ) = 1

2

∫ 1
0 gγ(t)

(

γ̇(t), γ̇(t)
)

dt for a geodesic γ and, working
in charts, make variations of the form A(γ + εh), with h vanishing at the end points. Then use
d
dε |ε=0A(γ + εh) = 0 and the arbitrariness of h.

1.8. Exponential map and cut locus. ¿From now on, by a geodesic we mean a solution of
the geodesic equation (1.2), and we will explicitly mention whether it is or not minimizing. We
also assume M to be complete, so that geodesics are defined for all times.

The exponential map exp : TM →M is defined by

expx(v) := γx,v(1),

where γx,v : [0,+∞) → M is the unique solution of (1.2) starting at γx,v(0) = x with velocity
γ̇x,v(0) = v.

We observe that the curve (expx(tv))t≥0 is a geodesic defined for all times, but in general is

not minimizing for large times (on the other hand, it is possible to prove that expx(tv) is always
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minimizing between x and expx(εv) for ε > 0 sufficiently small). We define the cut time tc(x, v)
as

tc(x, v) := inf
{

t > 0 | s 7→ expx(sv) is not minimizing between x and expx(tv)
}

.

Example 1.5. On the sphere Sn, the geodesics starting from the north pole N = (0, . . . , 0, 1)
with unit speed describe great circles passing through the south pole S = (0, . . . , 0,−1). These
geodesics are minimizing exactly until they reach S after a time π. Thus tc(N, v) = π for any
v ∈ TNM with unit norm. By homogeneity of the sphere and time-rescaling, we get tc(x, v) = π

|v|x

for any x ∈ S
n, v ∈ TxM \ {0}.

Given two points x, y ∈M , if there exists a unique minimizing geodesic (expx(tv))0≤t≤1 going

from x to y in time 1, we will write (with a slight abuse of notation) v = (expx)
−1(y).

Given x ∈M , we define the cut locus of x as

cut(x) :=
{

expx
(

tc(x, ξ)ξ
)

| ξ ∈ TxM, |ξ|x = 1
}

We further define
cut(M) := {(x, y) ∈M ×M | y ∈ cut(x)}.

Example 1.6. On the sphere S
n, the cut locus of a point consists only of its antipodal point,

i.e. cut(x) = {−x}.

It is possible to prove that, if y 6∈ cut(x), then x and y are joined by a unique minimizing
geodesic. The converse is close to be true: y 6∈ cut(x) if and only if there are neighborhoods
U of x and V of y such that any two points x′ ∈ U , y′ ∈ V are joined by a unique minimizing
geodesic. In particular y 6∈ cut(x) if and only if x 6∈ cut(y).

1.9. First variation formula and (super)differentiability of squared distance. Exactly
as in the computation for the geodesic equations (Exercise 1.4), one can compute the first
variation of the action functional at a geodesic: let γ : [0, 1] →M be a constant-speed minimizing
geodesic from x to y, and let x′ ≃ x+ δx to y′ ≃ y+ δy be perturbations of x and y respectively.
(When δx ∈ TxM with |δx| ≪ 1, x+ δx is an abuse of notation for, say, expx(δx), or for h(1),

where h(s) is any smooth path with h(0) = x and ḣ(0) = δx.) The formulation of first
variation states that

A(γ′) = A(γ) +
(

〈γ̇(1), δy〉y − 〈γ̇(0), δx〉x
)

+O(|δy|2) +O(|δx|2).

Here γ′ can be any curve from x′ to y′, geodesic or not, the important point is that γ′ be a C1

perturbation of γ. Below is a more rigorous statement:

Proposition 1.7. Let γ : [0, 1] → M be a constant-speed minimizing geodesic from x to y.
Consider a C1 family of curves γε : [0, 1] → M , ε ∈ (−ε0, ε0) with γ0 = γ, and let X be the
vector field along γ defined by X(t) = (d/dε)|ε=0γ

ε(t). Then

d

dε

∣

∣

∣

∣

ε=0

A(γε) = 〈γ̇(1),X(1)〉y − 〈γ̇(0),X(0)〉x.

The proof of this fact is analogous to the proof of the formula of the geodesic equation, with
the only exception that now the variation we consider do not vanish at the boundary points,
and so when doing integration by parts one has to take care of boundary terms.
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We can now compute the (super)differential of the squared distance; the result is most
conveniently expressed in terms of the gradient. Fix x0 ∈ M , and consider the function
F (x) := 1

2d(x0, x)
2.

Proposition 1.8. If x0 and x are joined by a unique minimizing geodesic, then F is differentiable
at x and ∇F (x) = −(expx)

−1(x0).

Sketch of the proof. Let γ : [0, 1] →M be the unique constant-speed minimizing geodesic from
x0 to x, and let xε ≃ x+εw be a perturbation of x. Let γε be a minimizing geodesic connecting x0

to xε; so γε(t) = expx0
(tvε) for some vε ∈ Tx0M . Up to extraction of a subsequence, γε converges

to some minimizing geodesic, which is necessarily γ, and vε converges to (expx0
)−1(x). So γε(t)

is a C1 perturbation of γ, and the first variation formula yields

F (xε) = A(γε) = A(γ) + ε〈γ̇(1), w〉x +O(ε2) = F (x) − ε
〈

(expx)
−1(x0), w

〉

x
+O(ε2).

�

In case x0 and x are joined by several minimizing geodesics, the above argument fails. On
the other hand, one still has superdifferentiability: there exists p ∈ TxM such that

F (x′) ≤ F (x) + 〈p, δx〉x +O(|δx|2).

Proposition 1.9. For any x ∈M , F is superdifferentiable at x.

Sketch of the proof. Let γ : [0, 1] → M be a constant-speed minimizing geodesic from x0 to
x. Then, for any perturbation x′ ≃ x + δx of x, we can perturb γ into a smooth path γ′ (not
necessarily minimizing!) connecting x0 to x′. The first variation formula yields

F (x′) ≤ A(γ′) = A(γ) + 〈γ̇(1), δx〉x +O(|δx|2),

so γ̇(1) is a supergradient for F at x. �

By the above proposition we deduce that, although the (squared) distance is not smooth, its
only singularities are upper crests. By the above proof we also see that F is differentiable at x if
and only if x0 and x are joined by a unique minimizing geodesic. (Indeed, a superdifferentiable
function F is differentiable at x if and only if F has only one supergradient at x.)

1.10. Hessian and second order calculus. Let ϕ : M → R be a smooth function. The
Hessian ∇2ϕ(x) : TxM → TxM is defined by

〈∇2ϕ(x) · v, v〉x :=
d2

dt2

∣

∣

∣

∣

t=0

ϕ(γ(t)),

where γ(t) = expx(tv). Observe that, when we defined the differential of a function, we could
use any curve starting from x with velocity v. In this case, as the second derivative of ϕ(γ(t))
involves γ̈(0), we are not allowed to choose an arbitrary curve in the definition of the Hessian.

1.11. Variations of geodesics and Jacobi fields. Let us consider a family (γθ)−ε≤θ≤ε of
constant-speed geodesics γθ : [0, 1] → M . Then, for each t ∈ [0, 1], we can consider the vector
field

J(t) :=
∂

∂θ

∣

∣

∣

∣

θ=0

γθ(t) ∈ Tγ(t)M.
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The vector field J is called a Jacobi field along γ = γ0. By differentiating the geodesic equations
with respect to θ, we get a second order differential equation for J :

∂

∂θ

(

γ̈kθ + Γkij(γθ)γ̇
i
θγ̇
j
θ

)

= 0

gives

J̈k +
∂Γkij
∂xℓ

Jℓγ̇iγ̇j + 2Γkij J̇
iγ̇j = 0.

This complicated equation takes a nicer form if we choose time-dependent coordinates deter-
mined by a moving orthonormal basis {e1(t), . . . , en(t)} of Tγ(t)M , such that

ėkℓ (t) + Γkij(γ(t))e
i
ℓ(t)γ̇

j(t) = 0

(in this case, we say that the basis is parallel transported along γ). With this choice of the
basis, defining J i(t) := 〈J(t), ei(t)〉γ(t) we get

J̈i(t) +Rji (t)Jj(t) = 0.

For our purposes it suffices to know that Rji is a symmetric matrix; in fact one can show that

Rji (t) = 〈Riem(γ̇, ei) · γ̇, ej〉, where Riem denotes the Riemann tensor of (M,g).
We now write the Jacobi equation in matrix form: let J(t) = (J1(t), . . . , Jn(t)) be a matrix

of Jacobi fields, and define Jij(t) := 〈Ji(t), ej(t)〉γ(t), with {e1(t), . . . , en(t)} parallel transported
as before. Then

J̈(t) +R(t)J(t) = 0,

where R(t) is a symmetrix matrix involving derivatives of the metric gij(γ(t)) up to the second
order, and such that (up to identification) R(t)γ̇(t) = 0.

1.12. Sectional and Ricci curvatures. The matrix R appearing in the Jacobi fields equation
allows to define the sectional curvature in a point x along a plane P ⊂ TxM : let {e1, e2} be
an orthonormal basis of P , and consider γ the geodesic starting from x with velocity e1. We
now complete {e1, e2} into an orthonormal basis of TxM , and we construct {e1(t), . . . , en(t)} as
above. Then the sectional curvature at x along P is given by

Sectx(P ) := R22(0)

Remark 1.10. The sectional curvature has the following geometric interpretation: given v,w ∈
TxM unit vectors, with (non-oriented) angle θ,

d
(

expx(tv), expx(tw)
)

=
√

2(1 − cos θ)t

(

1 −
σ cos2(θ/2)

6
t2 +O(t4)

)

, (1.3)

where σ is the sectional curvature at x along the plane generated by v and w. Thus the
sectional curvatures infinitesimally measure the tendency of geodesics to converge (σ > 0) or
diverge (σ < 0). We observe that formula (1.3) implies Gauss’s Theorema Egregium, namely
that the sectional curvature is invariant under local isometry.
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The Ricci curvature at point x ∈ M is a quadratic form on the tangent space defined as
follows: fix ξ ∈ TxM , and complete ξ to an orthonormal basis {ξ = e1, e2, . . . , en}. Denoting by
[ei, ej ] the plane generated by ei and ej for i 6= j, we define

Ricx(ξ, ξ) :=

n
∑

j=2

Sectx([e1, ej ]).

Another equivalent definition consists in considering the geodesic starting from x with velocity
ξ, take {e1(t), . . . , en(t)} obtained by parallel transport, and define Ricx(ξ, ξ) = tr

(

R(0)
)

.

1.13. Interpretation of Ricci curvature bounds. In this paragraph we give a geometric
interpretation of the Ricci curvature. For more details we refer to [45, Chapter 14] and references
therein.

Let ξ be a C1 vector field (i.e. ξ(x) ∈ TxM) defined in a neighborhood of {γ(t) | 0 ≤ t ≤ 1},
and consider the map

Tt(x) := expx
(

tξ(x)
)

.

We want to compute the Jacobian of this map.
Think of dxTt : TxM → TTt(x)M as an array (J1(t), . . . , Jn(t)) of Jacobi fields. Expressed in

an orthonoral basis {e1(t), . . . , en(t)} obtained by parallel transport, we get a matrix J(t) which

solves the Jacobi equations J̈ + RJ = 0. Moreover, since T0(x) = x and Ṫ0(x) = ξ(x), we have
the system







J̈ +RJ = 0,
J(0) = In,

J̇(0) = ∇ξ,

where ∇ξ is defined as

〈∇ξ · ei, ej〉 :=
d

ds

∣

∣

∣

∣

s=0

〈

ξ
(

expx(sei)
)

, ej
(

expx(sei)
)

〉

expx(sei)
,

and ej
(

expx(sei)
)

is obtained by parallel transport along s 7→ expx(sei).
We now define J (t) := JacxTt = detJ(t). Then

d

dt
log J (t) = tr

(

J̇(t)J(t)−1
)

as long as det J(t) > 0. Let U(t) := J̇(t)J(t)−1. Using the Jacobi equation for J , we get

U̇(t) = −R(t) − U(t)2.

Taking the trace, we deduce the important formula

d

dt
tr
(

U(t)
)

+ tr
(

U(t)2
)

+ Ricγ(t)(γ̇(t), γ̇(t)) = 0.

Remark 1.11. The above formula is nothing else than the Lagrangian version of the celebrated
Bochner formula, which is Eulerian in nature:

−∇ ·
(

(ξ · ∇)ξ
)

+ ξ · ∇
(

∇ · ξ
)

+ tr
(

(∇ξ)2
)

+ Ric(ξ, ξ) = 0.
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Assume now that U(0) is symmetric (this is the case for instance if ξ = ∇ψ for some function
ψ, as U(0) = ∇2ψ). In this case, since R is symmetric, U and U∗ solves the same differential
equation with the same initial condition, and by uniqueness U(t) is symmetric too. We can
therefore apply the inequality

tr
(

U(t)2
)

≥
1

n

[

tr
(

U(t)
)]2

(a version of the Cauchy–Schwarz inequality). Combining all together we arrive at:

Proposition 1.12. If Tt(x) = expx
(

t∇ψ(x)
)

, then J (t) = JacxTt satisfies

d2

dt2
log J (t) +

1

n

(

d

dt
log J (t)

)2

+ Ricγ(t)(γ̇(t), γ̇(t)) ≤ 0.

¿From this proposition, we see that lower bounds on the Ricci curvature estimate the averaged
tendency of geodesics to converge (in the sense of the Jacobian determinant).

The above proposition can be reversed, and one can prove for instance

Ric ≥ 0 throughout M ⇐⇒
d2

dt2
log Jacx

(

expx(t∇ψ(x))
)

≤ 0 ∀ψ, (1.4)

where ψ is arbitrary in the class of semiconvex functions defined in the neighborhood of x, such
that Jacx

(

expx(t∇ψ)
)

remains positive on [0, 1]. A more precise and more general discussion
can be found in [45, Chapter 14].

1.14. Why look for curvature bounds? Sectional upper and lower bounds, and Ricci lower
bounds, turn out to be very useful in many geometric applications. For instance, Ricci bounds
appears in inequalities relating gradients and measures, such as:

• Sobolev inequalities;
• heat kernel estimates;
• compacteness of families of manifolds;
• spectral gap;
• diameter control.

For example, the Bonnet–Myers theorem states

Ricx ≥ Kgx, K > 0 =⇒ diam(M) ≤ π

√

n− 1

K
,

while Sobolev’s inequalities on n-dimensional compact manifolds say that, if Ricx ≥ Kgx for
some K ∈ R, then

‖f‖L(n−1)/n(dvol) ≤ C(n,K,diam(M))
(

‖f‖L1(dvol) + ‖∇f‖L1(dvol)

)

∀ f.

1.15. Stability issue and (measured) Gromov–Hausdorff convergence. Sectional and
Ricci curvatures are nonlinear combinations of derivatives of the metric g up to the second order.
Therefore it is clear that if a sequence of Riemannian manifolds (Mk, gk) converges (in charts)
in C2-topology to a Riemannian manifold (M,g), then both sectional and Ricci curvatures pass
to the limit.

However much more is true: lower bounds on these quantities pass to the limit under much
weaker notions of convergence (which is an indication of the stability/robustness of these bounds).
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To make an analogy, consider the notion of convexity: a C2 function φ : R
n → R is convex if

and only if ∇2φ ≥ 0 everywhere. In particular if a sequence of convex functions φk converges to
a φ is C2-topology, then φ is convex. However it is well-known that convexity pass to the limit
under much weaker notions of convergence (for instance, pointwise convergence).

In a geometric context, a powerful weak notion of convergence is the Gromov–Hausdorff
convergence:

Definition 1.13. A sequence (Xk, dk)k∈N of compact length spaces is said to converge in the
Gromov–Hausdorff topology to a metric space (X, d) if there are functions fk : Xk → X and
positive numbers εk → 0, such that fk is an εk-approximate isometry, i.e.







|d(fk(x), fk(y)) − dk(x, y)| ≤ εk ∀x, y ∈ Xk,

distd(f(Xk),X) ≤ εk.

Here distd(A,B) denotes the distance between two sets A,B ⊂ X measured with respect to
d, namely distd(A,B) = max(supx∈A infy∈B d(x, y), supy∈B infx∈A d(x, y)).

One pleasant feature of the Gromov–Hausdorff convergence is that a limit of length spaces is a
length space, and a limit of geodesic spaces is a geodesic space. The key property is summarized
in the following:

Exercise 1.14. Let γk be a geodesic in Xk for each k ∈ Xk. Prove that, although fk ◦ γk is a
priori a discontinuous curve in X, up to extraction fk ◦ γk converges to a geodesic in X.
Hint. Argue by contradiction.

In a Riemannian context, by abuse of notation one will say that a sequence of compact
Riemannian manifolds (Mk, gk) converges to a Riemannian manifold (M,g) if (Mk, dk) converges
to (M,d), where dk (resp. d) is the geodesic distance on (Mk, gk) (resp. (M,g)). It is remarkable
that sectional curvature bounds do pass to the limit under Gromov–Hausdorff convergence [4]),
however weak the latter notion:

Theorem 1.15. Let (Mk, gk) be a sequence of Riemannian manifolds converging in the Gromov–
Hausdorff topology to a Riemannian manifold (M,g). If all sectional curvatures of (Mk, gk) are
all bounded from below by some fixed number κ ∈ R, then also the sectional curvatures of (M,g)
are bounded from below by κ.

A slightly weaker notion of convergence takes care not only of the distances, but also of the
measures; it is the measured Gromov–Hausdorff convergence, introduced in the present
form by Fukaya (related notions were studied by Gromov):

Definition 1.16. A sequence (Xk, dk, µk)k∈N of compact length spaces, equipped with reference
Borel measures µk, is said to converge in the measured Gromov–Hausdorff topology to a mea-
sured metric space (X, d, µ) if there are functions fk : Xk → X, and positive numbers εk → 0,
such that fk is an εk-approximate isometry, and (fk)#µk converge in the weak topology to µ.

By abuse of notation, we shall say that a sequence of compact Riemannian manifolds (Mk, gk)
converges to another Riemannian manifold (M,g) in the measured Gromov–Hausdorff topology
if (Mk, dk, volk) converges to (M,d, vol), where dk and volk (resp. d and vol) are the geodesic
distance and volume measure associated to (Mk, gk) (resp. (M,g)). After these preparations,
we can state the stability result on Ricci lower bounds, which will be proved in Section 3 using
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elements of calculus of variations, optimal transport, and its relation to Ricci curvature. The
following statement is a particular case of more general results proved independently in [28] and
[38, 39]:

Theorem 1.17. Let (Mk, gk) be a sequence of compact Riemannian manifolds converging in the
measured Gromov–Hausdorff topology to a compact Riemannian manifold (M,g). If the Ricci
curvature of (Mk, gk) is bounded below by K gk, for some number K ∈ R independent of k, then
also the Ricci curvature of (M,g) is bounded from below by K g.

2. Solution of the Monge problem in Riemannian geometry

2.1. The Monge problem with quadratic cost. Let (M,g) be a Riemannian manifold,
d its geodesic distance, and let P (M) denote the space of probability measures on M . The
Monge problem with quadratic cost on M is the following: given µ, ν ∈ P (M), consider
the minimization problem

inf
T#µ=ν

∫

M
d(x, T (x))2 dµ(x).

Here the infimum is taken over all measurable maps T : M →M such that the push-forward
T#µ of µ by T (i.e. the Borel probability measure defined by T#µ(A) := µ(T−1(A)) for all Borel
subsets A of M) coincides with ν.

This problem has a nice engineering interpretation: if we define c(x, y) = 1
2d(x, y)

2 to be the
cost to move a unit mass from x to y, then the above minimization problem simply consists in
minimizing the total cost (=work) by choosing the destination T (x) for each x.

It is also possible to give an equivalent probabilistic interpretation of the problem:

inf
{

E[c(X,Y )] | law(X) = µ, law(Y = ν)
}

,

so that we are minimizing a sort of correlation of two random variables, once their law is given.

Example 2.1. If c(x, y) = −x · y in R
n × R

n, then we are just maximizing the correlation of
the random variables X and Y , in the usual sense.

2.2. Existence and uniqueness on compact manifolds. In [32], McCann generalized Bre-
nier’s theorem [3] to compact Riemannian manifolds (see [12] or [45, Chapter 10] for the case of
more general cost functions on arbitrary Riemannian manifolds). McCann proved:

Theorem 2.2. Let (M,g) be a compact connected Riemannian manifold, let µ(dx) = f(x)vol(dx)
and ν(dy) = g(y)vol(dy) be probability measures on M , and consider the cost c(x, y) = 1

2d(x, y)
2.

Then

(1) There exists a unique solution T to the Monge problem.

(2) T is characterized by the structure T (x) = expx
(

∇ψ(x)
)

for some d2

2 -convex function
ψ : M → R.

(3) For µ0-almost all x, there exists a unique minimizing geodesic from x to T (x), which is
given by t 7→ expx

(

t∇ψ(x)
)

.

(4) JacxT = f(x)
g(T (x)) µ-almost everywhere.

In the sequel of this section we shall explain this statement, and provide a sketch of the proof;
much more details are in [45, Part I].
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2.3. c-convexity and c-subdifferential. We recall that a function ϕ : R
n → R ∪ {+∞} is

convex and lower semicontinuous convex if and only if

ϕ(x) = sup
y∈Rn

[

x · y − ϕ∗(y)
]

,

where

ϕ∗(x) := sup
x∈Rn

[

x · y − ϕ(x)
]

.

This fact is the basis for the definition of c-convexity, where c : X × Y → R is an arbitrary
function:

Definition 2.3. A function ψ : X → R ∪ {+∞} is c-convex if

∀x ψ(x) = sup
y∈Y

[

ψc(y) − c(x, y)
]

,

where

∀y ψc(y) := inf
x∈X

[

ψ(x) + c(x, y)
]

.

Moreover, for a c-convex function ψ, we define its c-subdifferential at x as

∂cψ(x) :=
{

y ∈ Y |ψ(x) = ψc(y) − c(x, y)
}

With this general definition, when c(x, y) = −x · y, the usual convexity coincides with the
c-convexity and the usual subdifferential coindides with the c-subdifferential.

Remark 2.4. In the case of the Euclidean R
n, a function ψ is d2

2 -convex if and only if ψ(x)+ |x|2

2
is convex.

The following facts are useful (see [45, Chapter 13]):

Proposition 2.5. Let M be a compact Riemannian manifold. Then

(a) If ψ : M → R is d2

2 -convex, then ψ is semiconvex (i.e. in any chart can be written as
the sum of a convex and a smooth function).

(b) There exists a small number δ(M) > 0 such that any function ψ : M → R with

‖ψ‖C2(M) ≤ δ(M) is d2

2 -convex.

(c) If ψ : M → R is a d2

2 -convex function of class C2, then

∇2ψ(x) +
∇2
xd
(

x, expx(∇ψ(x))
)2

2
≥ 0,

where ∇2
xd(x, y)

2 denotes the second derivative of the function d2(x, y) with respect to
the x variable.

Remark 2.6. A natural question is whether condition (c) is also sufficient for d2

2 -convexity (at

least for C2 functions). As we will see in Subsection 4.5, this is the case under a suitable (forth

order) condition on the cost function d2

2 .
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2.4. Sketch of the proof Theorem 2.2. There are several ways to establish Theorem 2.2.
One possibility is to go through the following five steps:

Step 1: Solve the Kantorovich problem
In [20, 21], Kantorovich introduced a notion of weak solution of the optimal transport problem:
look for transport plans instead of transport maps. A transport map between two probability
measures µ and ν is a measurable map T such that T#µ = ν; while a transport plan is a
probability measure π on M ×M whose marginals are µ and ν, i.e.

∫

M×M
h(x) dπ(x, y) =

∫

M
h(x) dµ(x),

∫

M×M
h(y) dπ(x, y) =

∫

M
h(y) dν(y),

for all h : M → R bounded continuous. Denoting by Π(µ, ν) the set of transport plans between
µ and ν, the new minimization problem becomes

inf
π∈Π(µ,ν)

{
∫

M×M
d(x, y)2 dπ(x, y)

}

. (2.1)

A solution of this problem is called an optimal transport plan. The connection between the
formulation of Kantorovich and that of Monge is the following: any transport map T induces the
plan defined by (IdX ×T )#µ which is concentrated on the graph of T . Conversely, if a transport
plan is concentrated on the graph of a measurable function T , then it is induced by this map.

By weak compactness of the set Π(µ, ν) and continuity of the function π 7→
∫

d(x, y)2 dπ, it
is simple to prove the existence of an optimal transport plan π̄; so to prove the existence of a
solution to the Monge problem it suffices to show that π̄ is automatically concentrated on the
graph of a measurable map T , i.e.

y = T (x) for π̄-almost every (x, y).

Once this fact is proved, the uniqueness of optimal maps will follow from the observation that,
if T1 and T2 are optimal, then π1 := (IdX ×T1)#µ and π2 := (IdX ×T2)#µ are both optimal

plans, so by linearity π̄ = 1
2(π1 + π2) is optimal. If it is concentrated on a graph, this implies

T1 = T2 µ-almost everywhere

Step 2: The support of π̄ is c-cyclically monotone
A set S ⊂M×M is called c-cyclically monotone if, for all N ∈ N, for all {(xi, yi)}0≤i≤N ⊂ S,
one has

N
∑

i=0

c(xi, yi) ≤

N
∑

i=0

c(xi, yi+1),

where by convention yN+1 = y0.
The above definition heuristically means that, sending the point xi to the point yi for

i = 0, . . . , N is globally less expensive than sending the point xi to the point yi+1. It is therefore
intuitive that, since π̄ is optimal, its support is c-cyclically monotone (see [17] or [45, Chapter
5] for a proof).

Step 3: Any c-cyclically monotone set is contained in the c-subdifferential of a c-
convex function
A proof of this fact (which is due to Rockafellar for c(x, y) = −x · y, and Rüschendorf for the
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general case) consists in constructing explicitly a c-convex function which does the work: given
S c-cyclically monotone, we define

ψ(x) := sup
N∈N

sup
{(xi,yi)}1≤i≤N⊂S

{

[

c(x0, y0)−c(x1, y0)
]

+
[

c(x1, y1)−c(x2, y1)
]

+. . .+
[

c(xN , yN )−c(x, yN )
]

}

,

where (x0, y0) is arbitrarily chosen in S. We leave as an exercise for the reader to check that
with this definition ψ is c-convex, and that S ⊂ ∂cψ(x) := ∪x∈M({x} × ∂cψ(x)).

Step 4: π̄ is concentrated on a graph
Applying Steps 2 and 3, we know that the support of π̄ is contained in the c-subdifferential of

a c-convex function ψ̄. Moreover, as said in Proposition 2.5, c-convex functions with c = d2

2

are semiconvex. In particular ψ̄ is Lipschitz, and so it is differentiable vol-almost everywhere.
Since µ is absolutely continuous with respect to vol, we deduce that ψ̄ is differentiable µ-almost
everywhere. This further implies that, for π̄-almost every (x, y), ψ̄ is differentiable at x.

Now, let us fix a point (x̄, ȳ) ∈ supp(π) such that ψ̄ is differentiable at x̄. To prove that π̄ is
concentrated on a graph, it suffices to prove that ȳ is uniquely determined as a function of x̄.
To this aim, we observe that:

(a) Since the support of π̄ is contained in the c-subdifferential of ψ̄, we have ȳ ∈ ∂cψ̄(x̄),
and this implies that the function x 7→ ψ̄(x) + c(x, ȳ) is subdifferentiable at x̄ (and 0
belongs to the subdifferential).

(b) As shown in Subsection 1.9, c(x, ȳ) = 1
2d(x, ȳ)

2 is superdifferentiable everywhere.

(c) ψ̄ is differentiable at x̄.

The combination of (a), (b) and (c) implies that c(x, ȳ) is both upper and lower differentiable
at x = x̄, hence it is differentiable at x̄. Since x̄ was an arbitrary point where ψ̄ is differentiable,
this proves that

∇ψ̄(x) + ∇xc(x, y) = 0 for π̄-almost every (x, y).

By the first variation formula and the discussion in Subsection 1.9, this implies that there exists
a unique geodesic joining x to y, and ∇ψ̄(x) = (expx)

−1(y). Thus we conclude that, for π̄-almost
every (x, y),







y = expx
(

∇ψ̄(x)
)

(in particular y is a function of x),

t 7→ expx
(

t∇ψ̄(x)
)

is the unique minimizing geodesic between x and y.

Step 5: Change of variable formula
Here we give just a formal proof of the Jacobian equation, and we refer to [45, Chapter 11] for
a rigorous proof.

Since π has marginals µ and ν, and is concentrated on the graph of T , for all bounded
continuous functions ζ : M → R we have

∫

M
ζ(y) dν(y) =

∫

M×M
ζ(y) dπ(x, y) =

∫

M
ζ(T (x)) dµ(x),

that is T#µ = ν. Recalling that µ = fvol and ν = gvol, we get, by change of variables,
∫

M
ζ(T (x))f(x) dvol(x) =

∫

M
ζ(y)g(y) dvol(y) =

∫

M
ζ(T (x))g(T (x))|det(dxT )| dvol(x).
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By the arbitrariness of ζ we conclude that f(x) = g(T (x))|det(dxT )| µ-almost everywhere.

2.5. Interpretation of the function ψ̄. The function ψ̄ appearing in the formula for the
optimal transport map has an interpretation as the solution of a dual problem:

sup
ψ

[
∫

M
ψc(y) dν(y) −

∫

M
ψ(x) dµ(x)

]

.

The above maximization problem has the following economical interpretation: ψ(x) is the price
at which a “shipper” buys material at x, while ψc(y) is the price at which he sells back the
material at y. Then, since

ψc(y) = inf
x

[

ψ(x) + c(x, y)
]

= sup
{

ϕ(y) |ϕ(y) ≤ ψ(x) + c(x, y)
}

,

this means that ψc(y) is the maximum selling price which is below the sum “buy price +
transportation cost”, that is the maximum price to be “competitive”. In other words, the
shipper is trying to maximize his profit.

To prove that ψ̄ solves the above maximization problem, we observe that:

1) ψ̄c(y) − ψ̄(x) = c(x, y) on supp(π̄) for an optimal plan π̄.
2) For any c-convex function ψ, ψc(y) − ψ(x) ≤ c(x, y) on M ×M .

Combining these two facts, we get
∫

M
ψ̄c(y) dν −

∫

M
ψ̄(x) dµ =

∫

M×M

[

ψ̄c(y) − ψ̄(x)
]

dπ̄(x, y) =

∫

M×M
c(x, y) dπ̄(x, y)

≥

∫

M×M

[

ψc(y) − ψ(x)
]

dπ̄(x, y) =

∫

M
ψc dν −

∫

M
ψ dµ,

and so ψ̄ is a maximizer.

3. Synthetic formulation of Ricci bounds

As we have seen in the last section, the optimal transport allows to construct maps T (x) =
expx

(

∇ψ(x)
)

, with ψ : M → R globally defined. Moreover it involves a Jacobian formula for
T . For this reason, it turns out to be a natural candidate for a global reformulation of Ricci
curvature bounds. More precisely, Ricci curvature bounds can be reformulated in terms of
convexity inequalities for certain nonlinear functionals of the density, along geodesics of optimal
transport. This fact will provide the stability of such bounds, and other applications.

3.1. The 2-Wasserstein space. Let (M,g) be a compact Riemannian manifold, equipped with
its geodesic distance d and its volume measure vol. We denote with P (M) the set of probability
measures on M . Let

W2(µ, ν) := min
π∈Π(µ,ν)

{
∫

M×M
d2(x, y) dπ(x, y)

}
1
2

.

The quantity W2(µ, ν) is called the Wasserstein distance of order 2 between µ and ν. It is
well-known that it defines a finite metric on P (M), and so one can speak about geodesic in the
metric space P2(M) := (P (M),W2). This space turns out to be a geodesic space (see e.g. [45,
Chapter 7]). We denote with P ac2 (M) the subset of P2(M) that consists of the Borel probability
measures on M that are absolutely continuous with respect to vol.
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3.2. Geodesics in P2(M). Given µ0, µ1 ∈ P2(M), we want to construct a geodesic between
them. In general the geodesic is not unique, as can be seen considering µ0 = δx and µ1 = δy,
where x and y can be joined by several minimizing geodesics. Indeed if γ : [0, 1] → M is a
geodesic form x to y, then µt := δγ(t) is a Wasserstein geodesic from δx to δy. (Check it!)

On the other hand, if µ0 (or equivalently µ1) belongs to P ac2 (M), this problem has a simple
answer (see [45, Chapter 7] for a general treatment):

Proposition 3.1. Assume µ0 ∈ P ac2 (M), and let T (x) = expx
(

∇ψ(x)
)

be the optimal map
between µ0 and µ1. Then the unique geodesic from µ0 to µ1 is given by µt := (Tt)#µ0, with
Tt(x) := expx

(

t∇ψ(x)
)

.

Proof. To prove that µt is a geodesic, we observe that

W2(µs, µt)
2 ≤

∫

M
d
(

expx
(

s∇ψ(x)
)

, expx
(

t∇ψ(x)
))

dµ0(x)

= (s− t)2
∫

M
|∇ψ(x)|2x dµ0(x) = (t− s)2W2(µ0, µ1)

2.

This implies that W2(µs, µt) ≤ |t − s|W2(µ0, µ1) for all s, t ∈ [0, 1], so the length of the path
(µt)0≤t≤1 satisfies

L
(

(µt)0≤t≤1

)

≤W2(µ0, µ1).

But since the converse inequality is always true, we get L
(

(µt)0≤t≤1

)

= W2(µ0, µ1), so that µt
is a geodesic.

The fact that µt is the unique geodesic is a consequence Theorem 2.2(c), together with the
general fact that any Wasserstein geodesic takes the form µt = (et)#Π, where Π is a probability
measure on the set Γ of minimizing geodesics, and et : Γ →M is the evaluation map at time t:
et(γ) := γ(t) (see [45, Theorem 7.21 and Corollary 7.23]). �

Remark 3.2. One can write down the geodesic equations for P2(M), which has to be understood
in a suitable weak sense (see [45, Chapter 13]):



















∂µt
∂t

+ div(µt∇ψt) = 0,

∂ψt
∂t

+
|∇ψt|

2

2
= 0.

3.3. Approximate geodesics in Wasserstein space. A key property of the Wasserstein
space is that it depends continuously on the basis space, when the topology is the Gromov–
Hausdorff topology. The following statement is proven in [28, Proposition 4.1]: If fk : Mk →M
are εk-approximate isometries, with εk → 0, then (fk)# : P2(Mk) → P2(M) are ε̃k-approximate
isometries, with ε̃k → 0.

3.4. Reformulation of Ric ≥ 0. Let

H(µ) := Hvol(µ) =







∫

M
ρ log(ρ) dvol if µ = ρvol,

+∞ otherwise.
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This is the Boltzmann H functional, or negative of the Boltzmann entropy. As shown in
[37] (as a development of the works in [36, 9]), the inequality Ric ≥ 0 can be reformulated in
terms of the convexity of H along Wasserstein geodesics:

Theorem 3.3. Let (M,g) be a compact Riemannian manifold. Then Ric ≥ 0 if and only if
t 7→ H(µt) is a convex function of t ∈ [0, 1] for all Wasserstein geodesics (µt)0≤t≤1.

More generally, Ric ≥ K g if and only if, for all µ0, µ1 ∈ P ac2 (M),

H(µt) ≤ (1 − t)H(µ0) + tH(µ1) −K
t(1 − t)

2
W2(µ0, µ1)

2 ∀t ∈ [0, 1], (3.1)

where (µt)0≤t≤1 is the Wasserstein geodesic between µ0 and µ1.

Sketch of the proof. Let us consider just the case K = 0. By using the Jacobian equation
(Theorem 2.2(d)), we get

H(µt) =

∫

M
ρt(x) log

(

ρt(x)
)

dvol(x) =

∫

M
ρt(Tt(x)) log

(

ρt(Tt(x))
)

JacxTt dvol(x)

=

∫

M
ρ0(x) log

(

ρ0(x)

JacxTt

)

dvol(x) = H(µ0) −

∫

M
log Jacx

(

expx(t∇ψ)
)

dµ0.

Then the direct implication follows from (1.4). The converse implication is obtained also
from (1.4), using Proposition 2.5(b) to explore all tangent directions by minimizing geodesics in
Wasserstein space. Details appear e.g. in [45, Chapter 17]. �

3.5. Application: stability. Let us give a sketch of the proof of Theorem 1.17; we refer to
[28] and [45, Chapters 28 and 29] for details.

First of all, we reformulate the inequality Ric(Mk) ≥ K gk in terms of the convexity inequality
(3.1); the goal is to prove that the inequality (3.1) holds on the limit manifold M .

Let µ0 = ρ0vol, µ1 = ρ1vol ∈ P ac2 (M), and define on Mk the probability measures

µk0 :=
ρ0 ◦ fkvolk

∫

Mk

ρ0 ◦ fk dvolk

, µk1 :=
ρ1 ◦ fkvolk

∫

Mk

ρ1 ◦ fk dvolk

,

where fk : Mk →M are the approximate isometries appearing in the definition of the measured
Gromov–Hausdorff convergence. Let (µkt )0≤t≤1 be the Wasserestein geodesic between µk0 and
µk1 . Up to extraction of a subsequence, (fk)#µ

k
t converges, uniformly in t ∈ [0, 1], to a geodesic

µt in P2(M) between µ0 and µ1 (recall Exercise 1.14). It remains to show that the inequality
(3.1) passes to the limit. Let us consider separately the three terms in this inequality

(a) The term Hk(µ
k
0) passes to the limit

By an approximation argument, it suffices to consider the case ρ0 ∈ C(M). Then

Zk :=

∫

Mk

ρ0 ◦ fk dvolk =

∫

M
ρ0 d(fk)#volk −→

∫

M
ρ0 dvol = 1,
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so that (with obvious notation)

Hk(µ
k
0) =

∫

Mk

(

ρ0 ◦ fk
Zk

)

log

(

ρ0 ◦ fk
Zk

)

dvolk ≃

∫

Mk

ρ0 ◦ fk log(ρ0 ◦ fk) dvolk

=

∫

M
ρ0 log(ρ0) d(fk)#volk −→

∫

M
ρ0 log(ρ0) dvol = H(µ0).

The case of Hk(µ
k
1) is analogous.

(b) The term W2(µ
k
0, µ

k
1)

2 passes to the limit
This follows from the fact that (fk)# are ε̃k-approximate isometries, and the Wasserstein distance
on a compact manifold metrizes the weak convergence: so

W2(µ
k
0 , µ

k
1) ≃W2

(

(fk)#µ
k
0 , (fk)#µ

k
1

)

−→W2(µ0, µ1).

(c) The term Hk(µ
k
t ) is lower semicontinuous under weak convergence

This comes from the following general property: If U : R
+ → R is convex and continuous, then

• P2(M) × P2(M) ∋ (µ, ν) 7−→
∫

U
(

dµ
dν

)

dν is a convex lower semicontinuous functional.

•

∫

U

(

d(f#µ)

d(f#ν)

)

d(f#ν) ≤ U

(

dµ

dν

)

dν for any function f : M →M .

Combining these two facts, we get

H(µt) ≤ lim inf
k→∞

H(fk)#volk

(

(fk)#µ
k
t

)

≤ lim inf
k→∞

Hvolk

(

µkt
)

,

which is the desired inequality.

4. The smoothness issue

Let (M,g) be a compact connected Riemannian manifold, let µ(dx) = f(x)vol(dx) and
ν(dy) = g(y)vol(dy) be probability measures on M , and consider the cost c(x, y) = 1

2d(x, y)
2.

Assume f and g are C∞ and strictly positive on M . Is the optimal map T smooth?
A positive answer to this problem has been given in the Euclidean space [43, 10, 5, 6, 7, 44]

and in the case of the flat torus [8], but the general question of Riemannian manifolds remained
open until the last years. Only recently, after two key papers of Ma, Trundinger and Wang [30]
and Loeper [24], did specialists understand a way to attack this problem; see [45, Chapter 12]
for a global picture and references.

There are several motivations for the investigation of the smoothness of the optimal map:

• It is a typical PDE/analysis question.
• It is a step towards a qualitative understanding of the optimal transport map.
• If it is a general phenomenon, then nonsmooth situations may be treated by regulariza-

tion, instead of working directly on nonsmooth objects.

Moreover, as we will see, the study of this regularity issue allows to understand some geometric
properties of the Riemannian manifold itself.
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4.1. The PDE. Starting from the Jacobian equation

∣

∣det(dxT )
∣

∣ =
f(x)

g(T (x))
,

and the relation T (x) = expx
(

∇ψ(x)
)

, we can write a PDE for ψ. Indeed, since

∇ψ(x) + ∇xc(x, T (x)) = 0,

differentiating with respect to x and using the Jacobian equation we get

det
[

∇2ψ(x) + ∇2
xc
(

x, expx
(

∇ψ(x)
))

]

=
f(x)

g(T (x))
∣

∣det(d∇ψ(x) expx)
∣

∣

.

(Observe that, since ψ is c-convex, the matrix appearing in the left-hand side is positive definite
by Proposition 2.5(c).)

We see that ψ solves a Monge–Ampère type equation with a perturbation ∇2
xc
(

x, expx
(

∇ψ(x)
))

which is of first order in ψ. Unfortunately, for Monge–Ampère type equations lower order terms
do matter, and it turns out that it is exactly the term ∇2

xc
(

x, expx
(

∇ψ(x)
))

which can create
obstructions to the smoothness.

4.2. Obstruction I: Local geometry. We now show how negative sectional curvature is an
obstruction to regularity (indeed even to continuity) of optimal maps. We refer to [45, Theorem
12.4] for more details on the construction given below.

Let M = H
2 be the hyperbolic plane (or a compact quotient thereof). Fix a point O as

the origin, and fix a local system of coordinates in a neighborhood of O such that the maps
(x1, x2) 7→ (±x1,±x2) are local isometries (it suffices for instance to consider the model of the
Poincaré disk, with O equal to the origin in R

2). Then define the points

A± = (0,±ε), B± = (±ε, 0) for some ε > 0.

Take a measure µ symmetric with respect to 0 and concentrated near {A+}∪{A−} (say 3/4 of the
total mass belongs to a small neighborhood of {A+} ∪ {A−}), and a measure ν symmetric with
respect to 0 and concentrated near {B+}∪{B−}. Moreover assume that µ and ν are absolutely
continuous, and have strictly positive densities everywhere. We denote by T the unique optimal
transport map, and we assume by contradiction that T is continuous. By symmetry, we deduce
that T (O) = O. Then, by counting the total mass, we deduce that there exists a point A′ close
to A+ which is sent to a point B′ near, say, B+.

But, by negative curvature (if A′ andB′ are close enough to A andB respectively), Pythagore’s
Theorem becomes an inequality: d(O,A′)2 + d(O,B′)2 < d(A′, B′)2, and this contradicts the
c-cyclical monotonicity of the support of an optimal plan (see Step 2 of Theorem 2.2).

4.3. Obstruction II: Topology of the c-subdifferential. Let ϕ : R
n → R be a convex

function; its differential ∂ϕ(x) is given by

∂ϕ(x) =
{

y ∈ R
n |ϕ(x) + ϕ∗(y) = x · y

}

=
{

y ∈ R
n |ϕ(z) − z · y ≥ ϕ(x) − x · y ∀ z ∈ R

n
}

.

Then ∂ϕ(x) is a convex set, a fortiori connected.

If we now consider ψ : M → R a c-convex function, c = d2

2 , then (see Subsection 2.3)

∂cψ(x) =
{

y ∈M |ψ(x) = ψc(y)−c(x, y)
}

=
{

y ∈M |ψ(z)+c(z, y) ≥ ψ(x)+c(x, y) ∀z ∈M
}

.
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In this generality there is no reason for ∂cψ(x) to be connected — and in general, this is not
the case!

Following the construction given in [30, Section 7.3], Loeper showed that under adequate as-
sumptions the connectedness of the c-subdifferential is a necessary condition for the smoothness
of optimal transport [24] (see also [45, Theorem 12.7]):

Theorem 4.1. Assume that there exist x̄ ∈M and ψ : M → R c-convex such that ∂cψ(x̄) is not
(simply) connected. Then one can construct f and g, C∞ strictly positive probability densities
on M , such that the optimal map T from fvol to gvol is discontinuous.

4.4. Conditions for the connectedness of ∂cψ. We now wish to find some simple enough
conditions implying the connectedness of sets ∂cψ.

First attempt: Let us look at the simplest c-convex functions:

ψ(x) := −c(x, y0) + a0.

Assume that x̄ 6∈ cut(y), and let ȳ ∈ ∂cψ(x̄). Then the function ψ(x) + c(x, ȳ) achieves its
minimum at x = x̄, so x̄ 6∈ cut(ȳ) (see the argument in Step 4 of Theorem 2.2) and

−∇xc(x̄, y0) + ∇xc(x̄, ȳ) = 0.

Thus (expx̄)
−1(y0) = (expx̄)

−1(ȳ) (see Subsection 1.9), which implies ȳ = y0. In conclusion
∂cψ(x̄) = {y0} is a singleton, automatically connected — so we do not learn anything!

Second attempt: The second simplest example of c-convex functions are

ψ(x) := max
{

−c(x, y0) + a0,−c(x, y1) + a1

}

.

Take a point x̄ 6∈ cut(y) belonging to the set {−c(x, y0)+a0 = −c(x, y1)+a1}, and let ȳ ∈ ∂cψ(x̄).
Since ψ(x) + c(x, ȳ) attains its minimum at x = x̄, we get

0 ∈ ∇−
x̄

(

ψ + c(·, ȳ)
)

,

or equivalently

−∇xc(x̄, ȳ) ∈ ∇−ψ(x̄)

(recall that by Proposition 2.5(a) ψ is a semiconvex function, so that its subgradient ∇−ψ(x̄),
which is defined in charts as the set {p |ψ(x̄ + δx) ≥ ψ(x̄) + 〈p, δx〉 + o(|δx|)}, is convex and
non-empty). ¿From the above inclusion we deduce that ȳ ∈ expx̄

(

∇−ψ(x̄)
)

(see Subsection 1.9).
Moreover, it is not difficult to see that

∇−ψ(x̄) = {(1 − t)v0 + tv1 | t ∈ [0, 1]}, vi := ∇xc(x̄, yi) = (expx̄)
−1(yi), i = 0, 1.

Therefore, denoting by [v0, v1] the segment joining v0 and v1, we have proved the inclusion

∂cψ(x̄) ⊂ expx̄
(

[v0, v1]
)

.

The above formula suggests the following definition of c-segment:

Definition 4.2. Let x̄ ∈ M , y0, y1 6∈ cut(x̄). Then we define the c-segment from y0 to y1 with
base x̄ as

[y0, y1]x̄ :=
{

yt = expx̄
(

(1 − t)(expx̄)
−1(y0) + t(expx̄)

−1(y1)
)

| t ∈ [0, 1]
}

.
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In [24], Loeper proved (a sligtly weaker version of) the following result (see [45, Chapter 12]
for the general result):

Theorem 4.3. The following conditions are equivalent:

(1) For any ψ c-convex, for all x̄ ∈M , ∂cψ(x̄) is connected.
(2) For any ψ c-convex, for all x̄ ∈M , (expx̄)

−1
(

∂cψ(x̄) \ cut(x̄)
)

is convex.
(3) For all x̄ ∈M , for all y0, y1 6∈ cut(x̄), if [y0, y1]x̄ = {yt}t∈[0,1] does not meet cut(x̄), then

d(x, yt)
2 − d(x̄, yt)

2 ≥ min
[

d(x, y0)
2 − d(x̄, y0)

2, d(x, y1)
2 − d(x̄, y1)

2
]

(4.1)

for all x ∈M , t ∈ [0, 1].
(4) For all x̄ ∈M , for all y 6∈ cut(x̄), for all η, ξ ∈ Tx̄M with ξ ⊥ η,

d2

ds2

∣

∣

∣

∣

s=0

d2

dt2

∣

∣

∣

∣

t=0

d
(

expx̄(tξ), expx̄(p+ sη)
)2

≤ 0,

where p = (expx̄)
−1(y).

Moreover, if these conditions are not satisfied, C1 c-convex functions are not dense in Lipschitz
c-convex functions.

x̄
M

yt

y0 y1

Figure 1. Property (3): the mountain grown from yt emerges exactly at the
pass between the mountains centered at y0 and y1.

Sketch of the proof. We give here only some elements of the proof.

(2) ⇒ (1): since (expx̄)
−1
(

∂cψ(x̄) \ cut(x̄)
)

is convex, it is connected, and so its image by expx̄
is connected too.
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(1) ⇒ (2): for ψx̄,y0,y1 := max
{

−c(·, y0)+c(x̄, y0),−c(·, y1)+c(x̄, y1)
}

we have (expx̄)
−1
(

∂cψ(x̄)
)

⊂

[(expx̄)
−1(y0), expx̄)

−1(y1)], which is a segment. Since in this case connectedness is equivalent
to convexity, if (1) holds we obtain ∂cψx̄,y0,y1 = [y0, y1]x̄.

In the general case, we fix y0, y1 ∈ ∂cψ(x̄). Then it is simple to see that

∂cψ(x̄) ⊃ ∂cψx̄,y0,y1(x̄) = [y0, y1]x̄,

and the result follows.

(2) ⇔ (3): condition (4.1) is equivalent to ∂cψx̄,y0,y1 = [y0, y1]x̄. Then the equivalence between
(2) and (3) follows arguing as above.

(3) ⇒ (4): fix x̄ ∈ M , and let y := expx̄(p). Take ξ, η orthogonal and with unit norm, and
define

y0 := expx̄(p − εη), y1 := expx̄(p+ εη) for some ε > 0 small.

Moreover, let

h0(x) := c(x̄, y0) − c(x, y0), h1(x) := c(x̄, y1) − c(x, y1), ψ := max
{

h0, h1

}

= ψx̄,y0,y1 .

We now define γ(t) as a curve contained in the set {h0 = h1} such that γ(0) = x̄, γ̇(0) = ξ. (See
Figure 2.)

p

η

ξ

y0

y1

y

x̄

(h0 = h1)

p + εηp − εη

Figure 2. Proof of (3) ⇒ (4); y belongs to the c-segment with base x and
endpoints y0, y1; ξ is tangent to the local hypersurface (h0 = h1).
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Since y ∈ [y0, y1]x̄, by (3) we get y ∈ ∂cψ(x̄), so that

1

2

[

h0(x̄)+h1(x̄)
]

+c(x̄, y) = ψ(x̄)+c(x̄, y) ≤ ψ(γ(t))+c(γ(t), y) =
1

2

[

h0(γ(t))+h1(γ(t))
]

+c(γ(t), y),

where we used that h0 = h1 along γ. Recalling the definition of h0 and h1, we deduce

1

2

[

c(γ(t), y0) + c(γ(t), y1)
]

− c(γ(t), y) ≤
1

2

[

c(x̄, y0) + c(x̄, y1)
]

− c(x̄, y),

so the function t 7→ 1
2

[

c(γ(t), y0) + c(γ(t), y1)
]

− c(γ(t), y) achieves its maximum at t = 0. This
implies

d2

dt2

∣

∣

∣

∣

t=0

[1

2

(

c(γ(t), y0) + c(γ(t), y1)
)

− c(γ(t), y)
]

≤ 0,

i.e.
〈

[1

2

(

∇2
xc(x̄, y0) + ∇2

xc(x̄, y1)
)

−∇2
xc(x̄, y)

]

· ξ, ξ
〉

≤ 0

(here we used that ∇xc(x̄, y) = 1
2

[

∇xc(x̄, y0) + ∇xc(x̄, y1)
]

). Thus the function

η 7→
〈

∇2
xc
(

x̄, expx̄(p+ η)
)

· ξ, ξ
〉

is concave, and proves (4). �

The above theorem leads to the definition of the regularity property:

Definition 4.4. The cost function c = d2

2 is said to be regular if the properties listed in Theorem
4.3 are satisfied.

To understand why the above properties are related to smoothness, consider properties (3) in
Theorem 4.3. It says that, if we take the function ψx̄,y0,y1 = max

{

−c(·, y0)+ c(x̄, y0),−c(·, y1)+

c(x̄, y1)
}

, then we are able to touch the graph of this function from below at x̄ with the family of
functions {−c(·, yt)+c(x̄, yt)}t∈[0,1]. This suggests that we could use this family to regularize the
cusp of ψx̄,y0,y1 at the point x̄, by slightly moving above the graphs of the functions −c(·, yt) +
c(x̄, yt). (See Figure 1.) On the other hand, if (3) does not holds, it is not clear how to regularize
the cusp preserving the condition of being c-convex.

By what we said above, we see that the regularity property seems mandatory to develop a
theory of smoothness of optimal transport. Indeed, if it is not satisfied, we can construct C∞

strictly positive densities f, g such that the optimal map is not continuous. The next natural
question is: when is it satisfied?

4.5. The Ma-Trudinger-Wang tensor. As we have seen in Theorem 4.3, the regularity of

c = d2

2 is equivalent to

d2

ds2

∣

∣

∣

∣

s=0

d2

dt2

∣

∣

∣

∣

t=0

c
(

expx(tξ), expx(p+ sη̃)
)

≤ 0, (4.2)

for all p, ξ, η̃ ∈ TxM , with ξ and η̃ orthogonal, p = (expx)
1(y) for some y 6∈ cut(x).

Introduce a local system of coordinates (x1, . . . , xn) around x, and a system (y1, . . . , yn)
around y. We want to express the above condition ony in terms of c, using the relation ∇xc(x, y)+
(expx)

−1(y) = 0. By the definition of gradient (see Subsection 1.6), this relation is also equivalent
to

−dxc(x, y) = 〈(expx)
−1(y), ·〉x. (4.3)
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We now start to write everything in coordinates. We will write cj = ∂c
∂xj , cjk = ∂2c

∂xj∂xk , ci,j =
∂2c

∂xi∂yj , and so on; moreover (ci,j) will denote the coordinates of the inverse matrix of (ci,j). Then

(4.3) becomes

−ciξ
i = gjkp

jξk ∀ξ ∈ TxM.

Differentiating at y in a direction η ∈ TyM we get

−ci,jξ
iηj = gij [(dp expx)

−1(η)]jξi.

Thus we get a formula for −d2
x,yc : TxM × TyM → R:

−ci,j(x, y) = gik(x)[(dp expx)
−1(η)]kj , y = expx(p). (4.4)

As shown in [23], −d2
x,yc defines a pseudo-metric on TxM × TyM , which coincides with g

along the diagonal {x = y}, and it is possible to interpret the regularity condition for the cost
in terms of this pseudo-metric.

1. Rewriting the orthogonality condition
The operator −d2

x,yc can be used to transport tangent vectors at y in cotangent vectors at x, and

viceversa. In particular, if we consider the covector η̃i := −ci,jη
j (η ∈ TyM), the orthogonality

condition gx(ξ, η̃) = 0 appearing in the definition of the regularity of the cost is equivalent to
η̃iξ

i = 0, i.e.

0 = −ci,jξ
iηj .

Thanks to (4.4), we have the formula η = dp expx(η̃). (Note: η is not the parallel transport
of η̃ along the geodesic expx(tp)!) In particular, if the sectional curvature of the manifold in
non-negative everywhere, then the exponential map is 1-Lipschitz, and so |η|y ≤ |η̃|x.
2. Rewriting the Ma–Trudinger–Wang condition
Equation (4.2) can also be written as

∂2

∂p2
η

∂2

∂x2
ξ

c(x, y) ≤ 0. (4.5)

The meaning of the left-hand side in (4.5) is the following: first freeze y and differentiate c(x, y)
twice with respect to x in the direction ξ ∈ TxM . Then, considering the result as a function of
y, parameterize y by p = −∇xc(x, y), and differentiate twice with respect to p in the direction
η ∈ TyM (see the discussion in the next paragraph). By the relation pi = −ci(x, y) we get
∂pi

∂yj = −ci,j , which gives ∂yk

∂pℓ
= −ck,ℓ. Then, using −ci,j and −ci,j to raise and lower indices

(ηk = −ck,lηi, etc.), it is just a (tedious) exercise to show that the expression in (4.5) is equal to
∑

ijklrs

(cij,kl − cij,rc
r,scs,kl) ξ

iξjηkηl,

where we used the formula d(M−1) ·H = −M−1HM−1.
We can now define the Ma-Trudinger-Wang tensor (in short MTW tensor):

S(x,y)(ξ, η) :=
3

2

∑

ijklrs

(cij,rc
r,scs,kl − cij,kl) ξ

iξjηkηl.
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In terms of this tensor, the regularity condition for the cost functions becomes

S(x,y)(ξ, η) ≥ 0 whenever (x, y) ∈ (M ×M) \ cut(M), − ci,jξ
iηj = 0.

4.6. Invariance of S. By the computations of the last paragraph, we have seen that S is
constructed by the expression in (4.5). Since that expression involves second derivatives (which
are not intrinsic and depend on the choice of the coordinates), it is not a priori clear whether
S depends or not on the choice of coordinates. On the other hand, we can hope it does not,
because of the (intrinsic) geometric interpretation of the regularity.

To see that S is indeed independent of any choice of coordinates (so that one does not even
need to use geodesic coordinates, as in (4.2)), we observe that, if we do a change of coordinates
and compute first the second derivatives in x, we get some additional terms of the form

Γkij(x)ck(x, y) = −Γkij(x)pk(x, y) = Γkij(x)gkℓ(x)p
ℓ(x, y).

But when we differentiate twice with respect to p, this additional term disappears.

4.7. Relation to curvature. Let ξ, η ∈ TxM two orthogonal unit vectors, and consider the
functions

F (t, s) :=
d
(

expx(tξ), expx(sη)
)2

2
.

As ∂
∂s |s=0F (t, s) and ∂

∂t |t=0F (t, s) identically vanish, we have the Taylor expansion

F (t, s) ≃ At2 +Bs2 + Ct4 +Dt2s2 + Es4 + . . .

Since F (t, 0) = t2 and F (0, s) = s2 we deduce A = B = 1 and C = E = 0. Hence by (1.3) we
recover the identity

S(x,x)(ξ, η) = −
3

2

∂2

∂s2

∣

∣

∣

∣

s=0

∂2

∂t2

∣

∣

∣

∣

t=0

F (t, s) = Sectx([ξ, η]),

first proved by Loeper [24]. This fact shows that the MTW tensor is a non-local version of the
sectional curvature. In fact, as shown by Kim and McCann [23], S is the sectional curvature
of the manifold M ×M , endowed with the pseudo-metric −d2

xyc. Combining the above identity
with Theorems 4.1 and 4.3, we get the following important negative result:

Theorem 4.5. Let (M,g) be a (compact) Riemannian manifolds, and assume that there exist
x ∈ M and a plane P ⊂ TxM such that Sectx(P ) < 0. Then there exist C∞ strictly positive
probability densities f and g such that the optimal map is discontinuous.

After this negative result, one could still hope to develop a regularity theory on any manifold
with non-negative sectional curvature. But such is not the case: as shown by Kim [22], the reg-
ularity condition is strictly stronger than the condition of nonnegativity of sectional curvatures.

4.8. The Ma-Trudinger-Wang condition.

Definition 4.6. We say that (M,g) satisfies the MTW(K) condition if, for all (x, y) ∈ (M ×
M) \ cut(M), for all ξ ∈ TxM , η ∈ TyM ,

S(x,y)(ξ, η) ≥ K|ξ|2x|η̃|
2
x whenever − ci,j(x, y)ξ

iηj = 0,

where η̃i = −gi,k(x)ck,j(x, y)η
j ∈ TxM .
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Some example of manifolds satisfying the Ma-Trudinger-Wang condition are given in [24, 25,
23, 15]:

• R
n and T

n satisfy MTW(0).
• S

n and its quotients satisfy MTW(1).
• Products of spheres satisfy MTW(0).

We observe that the MTW condition is a nonstandard curvature condition, as it is fourth
order and nonlocal. Therefore an important open problem is whether this condition is stable
under pertubation. More precisely, we ask for the following

Question: assume that (M,g) satisfies the MTW(K) condition for K > 0, and let gε be a
C4-perturbation of g. Does (M,gε) satisfy the MTW(K ′) condition for some K ′ > 0?

The answer to this question is easily seen to be affirmative for manifolds with nonfocal cut-
locus like the projective space RP

n (see [26]). Moreover, as proven by Rifford and the first
author [15], the answer is affirmative also for the 2-dimensional sphere S

2.
The next property, called Convexity of Tangent Injectivity Loci, or (CTIL) in short, is

useful to prove regularity and stability results [26, 15]:

Definition 4.7. We say that (M,g) satisfies CTIL if, for all x ∈M , the set

TIL(x) := {tv ∈ TxM | 0 ≤ t < tc(x, v)} ⊂ TxM

is convex.

As shown by the second author [46], if CTIL is satisfied, then the MTW condition is stable
under Gromov–Hausdorff convergence:

Theorem 4.8. Let (Mk, gk) be a sequence of Riemannian manifolds converging in the Gromov–
Hausdorff topology to a Riemannian manifold (M,g). If (Mk, gk) satisfy MTW(0) and CTIL,
then also (M,g) satisfies MTW(0).

The proof of this result uses that, under CTIL, MTW(0) is equivalent to the connectedness of
the c-subdifferential of all c-convex functions ψ which solve the dual Kantorovich problem (see
Subsection 2.5).

4.9. Local to global. Under CTIL, one can prove that the MTW(0) condition is equivalent to
the regularity condition (4.1) (see [46]).

Here we want to show that an “improved” MTW condition allows to prove an “improved”
regularity condition, which in turns implies (Hölder) continuity of the optimal map.

Definition 4.9. Let K,C ≥ 0. We say that (M,g) satisfies the MTW(K,C) condition if for all
(x, y) ∈ (M ×M) \ cut(M), for all ξ ∈ TxM , η ∈ TyM ,

S(x,y)(ξ, η) ≥ K|ξ|2x|η̃|
2
x − C

∣

∣〈ξ, η̃〉x
∣

∣|ξ|x|η̃|x,

where η̃i = −gi,k(x)ck,j(x, y)η
j ∈ TxM .

We observe that the second term appearing in the right hand side vanishes if −ci,j(x, y)ξ
iηj =

0. Moreover, by the Cauchy–Schwarz inequality and S(x,x)(ξ, ξ) = 0, we must have C ≥ K.
Next, if MTW(K,C) holds for some K > 0, then the sectional curvatures are bounded from
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below by K, and so by Bonnet–Myers’s Theorem the manifold is compact. We finally remark
that, in a subset of M ×M where c is smooth, a compactness argument shows that MTW(K)
implies MTW(K,C) for some C > 0 [26, Lemma 2.3]. So the refinement from MTW(K) to
MTW(K,C) is interesting only when the cost function loses its smoothness, i.e. close to the cut
locus.

Example 4.10. As proved in [15], the sphere S
n and its quotients satisfy MTW(K,K) for some

K > 0, and C4-perturbations of S
2 satisfy MTW(K,C) for some K,C > 0.

We now show that MTW(K,C) with K > 0 implies an “improved” regularity inequality. For
simplicity, here we give a simpler version of the lemma, where we assume that (M,g) satisfies
CTIL (otherwise one would need to apply an approximation lemma proved by the authors in
[16]). (See Figure 3.)

Lemma 4.11. Let (M,g) satisfies CTIL and MTW(K,C) with K > 0. For any x̄ ∈ M , let
(pt)0≤t≤1 be a C2 curve drawn in TIL(x̄), and let yt = expx̄(pt); let further x ∈M . If

|p̈t|x̄ ≤ ε0 d(x̄, x)|ṗt|
2
x̄, (4.6)

then there exists λ = λ(K,C, ε0) > 0 such that, for any t ∈ (0, 1),

d(x, yt)
2 − d(x̄, yt)

2 ≥ min
(

d(x, y0)
2 − d(x̄, y0)

2, d(x, y1)
2 − d(x̄, y1)

2
)

+ 2λt(1 − t)d(x̄, x)2|p1 − p0|
2
x̄. (4.7)

qt

0
(x)

p0
p1

(y0)
(y1)

(x)

(yt)

q
t

Figure 3. Lemma 4.11: p0, p1 are tangent vectors at x̄; qt, q̄t are tangent at yt = expx pt.

This result, first proved by Loeper and the second author [26], and then sligthly modified by
Rifford and the first author [15], is a refinement of the proof given by Kim and McCann [23] for
the implication (4) ⇒ (3) in Theorem 4.3.

Sketch of the proof. Define the function

h(t) := −c(x, yt) + c(x̄, yt) + δt(1 − t),
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with c = d2

2 . We want to prove that, for δ = λd(x̄, x)2|p1 − p0|
2
x̄, if λ is small enough then

h(t) ≤ max
(

h(0), h(1)
)

. The idea of the proof is by the maximum principle: if we show that

ḧ > 0 whenever ḣ = 0, this will imply the result.
Define qt := (expyt

)−1(x), q̄t := (expyt
)−1(x̄), η := qt − q̄t. Then, since

ẏit = ci,j ṗj ,

ÿit = −ci,kck,ℓjc
ℓ,rcj,sṗrṗs − ci,rp̈r,

(everything being evaluated at (x̄, yt)), after some computations one obtains

ḣ(t) = −ci,j(x̄, yt)η
iẏjt + δ(1 − 2t),

ḧ(t) = −
(

[c,ij(x, yt) − c,ij(x̄, yt)] − ηkck,ij(x̄, yt)
)

ẏitẏ
j
t + ci,jη

icj,rp̈r − 2δ. (4.8)

We now observe that the first term in the right hand side can be written as

Φ(qt) − Φ(q̄t) − dq̄tΦ · (qt − q̄t),

with Φ(q) := c,ij
(

expyt
(q), yt

)

ẏitẏ
j
t ; therefore it is equal to

∫ 1

0

d2

ds2
Φ(sqt + (1 − s)q̄t) ds = −

2

3

∫ 1

0
S(yt,xs)(ẏt, η) ds

with xs := expyt

(

sqt + (1 − s)q̄t
)

, and we get

ḧ(t) =
2

3

∫ 1

0
S(yt,xs)(ẏt, η) ds + ci,jη

icj,rp̈r − 2δ

≥
2

3
K|η̃|2yt

|ẏt|
2
yt
−

2

3
C
∣

∣〈η̃, ẏt〉yt

∣

∣|ẏt|yt |η̃|yt + ci,j(x̄, yt)η
icj,rp̈r − 2δ,

where η̃ := (dpt expyt
)−1(η) = (dpt expyt

)−1(qt − q̄t). To understand now why the result is true,

we remark that for δ = 0 the condition ḣ = 0 means 〈η̃, ẏt〉yt = −ci,j(x̄, yt)η
iẏjt = 0, which gives

ḧ(t) ≥
2

3
K|η̃|2yt

|ẏt|
2
yt

+ ci,jη
icj,rp̈r,

and thanks to the assumption of smallness on |p̈|x̄ one gets ḧ > 0.

In the general case δ > 0 small, the condition ḣ = 0 gives |ci,j(x̄, yt)η
iẏjt | ≤ δ, and using that

|η̃|x̄ ≥ |η|yt ≥ d(x, x̄) (since the sectional curvature of the manifold is non-negative) one obtains
the desired result. �

Remark 4.12. This local-to-global argument can also be used to give a differential characteri-
zation of c-convex functions (see Proposition 2.5). More precisely one has: assume that (M,g)
satisfies MTW(0) and CTIL. Then ψ ∈ C2(M) is c-convex if and only if

∇2ψ(x) +
∇2
xd
(

x, expx(∇ψ(x))
)2

2
≥ 0 ∀x ∈M.
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4.10. A smoothness result.

Theorem 4.13. Let (M,g) be a (compact) Riemannian manifold satifying MTW(K,C) with
K > 0. Assume morever that all TIL(x) are uniformly convex, and let f and g be two probability
densities on M such that f ≤ A and g ≥ a for some A, a > 0. Then the optimal map between
µ = f vol and ν = g vol, with cost function c = d2/2, is continuous.

As shown by Loeper [24], this theorem can be refined into a Hölder regularity for the transport
map. The argument of the proof, originally due to Loeper, has been simplified first by Kim and
McCann [23], and then by Loeper and the second author [26]. The argument we present is
borrowed from [26].

Proof. By Theorem 2.2, we know that the optimal map T can be written as expx(∇ψ(x)), so
it suffices to prove that ψ is C1. Since ψ is semiconvex, we need to show that the subgradient
∇−ψ(x) is a singleton for all x ∈M . The proof is by contradiction.

Assume that there is x̄ ∈ M and p0, p1 ∈ ∇−ψ(x̄). Let y0 = expx̄ p0, y1 = expx̄ p1. Since the
cost is regular, we have yi ∈ ∂cψ(x̄) for i = 0, 1, that is

ψ(x̄) + c(x̄, yi) = min
x∈M

[

ψ(x) + c(x, yi)
]

, i = 0, 1.

In particular

c(x, yi) − c(x̄, yi) ≥ ψ(x̄) − ψ(x), i = 0, 1. (4.9)

For ε ∈ (0, 1), we define Dε ⊂ TIL(x̄) as follows: Dε consists of the set of points p ∈ T ∗
x̄M

such that there exists a path (pt)0≤t≤1 ⊂ TIL(x̄) from p0 to p1 such that, if we define yt =
π1 ◦ φ

H
1 (x̄, pt), we have p̈t = 0 for t 6∈ [1/4, 3/4], |p̈t|yt ≤ εη0|ẏt|

2
yt

for t ∈ [1/4, 3/4], and p = pt
for some t ∈ [1/4, 3/4] (this is like a “sausage”, see Figure 4).
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x̄

0

v0

v1

Tx̄M

TCL(x̄)

y0

y1

cut(x̄)

Figure 4. Proof of Theorem 4.13: the volume of the ball B(x̄, ε) is much
smaller than the volume of the “sausage” with base x̄, endpoints y0, y1 and
width O(ε); TCL(x̄) is the tangent cut locus at x̄.
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By uniform convexity of TIL(x̄), if η0 is sufficiently small then Dε lies a positive distance σ
away from the tangent cut locus TCL(x̄) = ∂

(

TIL(x̄)
)

, with σ ∼ |p0 − p1|
2
x̄. Thus all paths

(pt)0≤t≤1 used in the definition of Dε satisfy

|ẏt|yt ≥ c|p0 − p1|x̄ ∀ t ∈ [1/4, 3/4].

Moreover condition (4.6) is satisfied if η0 ≤ ε0 and d(x̄, x) ≥ ε. By simple geometric consid-
eration, we see that Dε contains a parallelepiped Eε centered at (p0 + p1)/2 with one side of
length ∼ |p0 − p1|x̄, and the other sides of length ∼ ε|p0 − p1|

2
x̄, such that all points y in this

parallelepiped can be written as yt for some t ∈ [1/3, 2/3], with yt as in the definition of Dε.
Therefore

L n(Eε) ≥ c(M,η0, |p0 − p1|x̄)ε
n−1,

with L n denoting the Lebesgue measure on Tx̄M . Since Eε lies a positive distance from
∂
(

TIL(x̄)
)

, we obtain

vol(Yε) ∼ L n(Eε) ≥ c(M,η0, |p0 − p1|x̄)ε
n−1, Yε := expx̄(Eε).

We wish to apply Theorem 4.13 to the paths (pt)0≤t≤1 used in the definition of Dε. Since p0, p1

belong to TIL(x̄) but not necessarily to TIL(x̄), we first apply the theorem with (θpt)0≤t≤1 with
θ < 1, and then we let θ → 1; in the end, for any y ∈ Yε and x ∈M \Bε(x̄),

d(x, y)2 − d(x̄, y)2 ≥ min
(

d(x, y0)
2 − d(x̄, y0)

2, d(x, y1)
2 − d(x̄, y1)

2
)

+ λε2|p0 − p1|
2
x̄,

for some λ > 0. Combining this inequality with (4.9), we conclude that

for any y ∈ Yε, y 6∈ ∂cψ(x) ∀x ∈M \Bε(x̄).

This implies that all the mass brought into Yε by the optimal map comes from Bε(x̄), and so

µ(Bε(x̄)) ≥ ν(Yε).

Since µ(Bε(x̄)) ≤ Avol(Bε(x̄)) ∼ εn and ν(Yε) ≥ avol(Yε) & εn−1, we obtain a contradiction as
ε→ 0. �

5. Recap and perspectives

In these notes, we have seen two different connections of optimal transport to curvature:

1. Ricci curvature: the optimal transport is a way to give a syntethic formulation of lower
Ricci curvature bounds

2. Sectional curvature: a regularity theory for optimal transport on a manifold depends on
the MTW condition, which reinforces non-negative sectional curvature.

We remark that, in both cases, the optimal transport goes well with lower bounds only.
A good thing is that in both cases there is a “soft” reformulation in terms of optimal transport:

Ric ≥ 0 ⇐⇒ t 7→ H(µt) is convex, ∀ (µt)0≤t≤1 geodesic in P2(M);

S ≥ 0 ⇐⇒ ∂cψ(x) is connected, ∀ψ solution of the dual Kantorovich problem.

Observe that these reformulations have the advantage of being very stable, and at the same time
can be used to generalize some differential concepts out of the Riemannian setting.
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5.1. The curvature-dimension condition. As we already said, while the sectional curvature
gives a pointwise control on distances, the Ricci curvature gives an averaged control, and is
related to Jacobian estimates with respect to a reference measure (which in Section 3 was
always the volume measure). For this reason, a natural general setting where one can study
Ricci bounds is the one of measured metric spaces (X, d, ν) (see Subsection 1.15).

As an example, consider the measured metric spaces (Mn, g, e−V vol), with V ∈ C2(M).
Modify the classical Ricci tensor into RicN,ν := Ric + ∇2V − ∇V⊗∇V

N−n for N ≥ n (where by

convention 0
0 = 0, and N plays the role of an “effective” dimension). Then the curvature-

dimension condition CD(K,N), classically used in probability theory and geometry, consists
in RicN,ν ≥ K. Exactly as Ric ≥ K, also this more general condition can be reformulated
in terms of optimal transport. Up to minor variations, the following definition was introduced
independently by Sturm [38, 39] and by Lott and the second author [28, 29] (recall the definition
of H from Subsection 3.4):

Definition 5.1. A compact measured metric space (X, d, ν) is said to satisfy CD(K,∞) if, for
all µ0, µ1 ∈ P2(X), there exists a Wasserstein geodesic (µt)0≤t≤1 between µ0 and µ1 such that

Hν(µt) ≤ (1 − t)Hν(µ0) + tHν(µ1) −K
t(1 − t)

2
W2(µ0, µ1)

2 ∀t ∈ [0, 1].

A similar definition for CD(0, N) is obtained by choosing K = 0 and replacing the nonlinearity

r log r by −r1−1/N . There is also a more complicated definition which works for the general
CD(K,N) criterion [39, 45].

Example 5.2. (Rn, | · |, e−|x|2/2dx) satisfies CD(1,∞); (Rn, ‖ · ‖, dx) satisfies CD(0, N) for any
norm ‖ · ‖.

Ohta [33] recently performed some exploration of Finsler geometry along these lines.

5.2. Open problem: locality. A natural question is whether the above definition of Ric∞,ν ≥
K is local or not. As shown in [38, 39] and [45, Chapter 30], this question has an affirmative
answer if geodesics are non-branching, but it is open in the general case. The answer would
however be affirmative if the following (elementary but tricky) conjecture from [45] were true:

Conjecture 5.3. Let 0 < θ < 1, 0 ≤ α ≤ π, and assume that f : [0, 1] → R
+ satisfies

f
(

(1 − λ)t+ λt′
)

≥ (1 − λ)

(

sin
(

(1 − λ)α|t − t′|
)

(1 − λ) sin
(

α|t− t′|
)

)θ

f(t) + λ

(

sin
(

λα|t− t′|
)

λ sin
(

α|t− t′|
)

)θ

f(t′)

for |t− t′| small. Then the above inequality holds true for all t, t′ ∈ [0, 1].

5.3. Ricci and diffusion equations. The non-negativity of the Ricci curvature is important to
get contraction properties of solutions of the heat equation on a manifold. Indeed the following
result holds (see [35, 36, 37]):

Theorem 5.4. (M,g) satisfies Ric ≥ 0 if and only if, for all µt and µ̃t solutions of the heat
equation, W2(µt, µ̃t) is non-increasing in time.

Another way to state this theorem is to say that Ric ≥ 0 if and only if (et∆)t≥0 is a contraction
in P2(M).
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Recalling that Ric ≥ 0 is equivalent to the convexity of the entropy functional H(µt) (see
Subsection 3.4), the above equivalence if formally explained by the Jordan-Kinderlehrer-Otto
theorem [18]: the heat flow is the gradient flow of H in P2(M). A generalization of the above
result has been given McCann and Topping [31] (see also [27]):

Theorem 5.5. A family of Riemannian metric g(t) are super-solutions of the backward Ricci-

flow ∂gt

∂t ≤ 2Ricgt if and only if, for all µt and µ̃t solutions of the heat equation in (M,gt) (i.e.
∂tµt = ∆gtµt), W2(µt, µ̃t) is non-increasing in time.

Let us also notice that Lott [27] and Topping [40] have recently studied properties of the
Ricci flow with the help of the optimal transport, and they can for instance recover Perelman’s
monotonicity formula.

5.4. Discretization. A natural question in probability theory and statistical mechanics is how
to define a notion of curvature on discrete spaces. The optimal transport allows to answer to
this question: the idea is to “discretize the synthetic formulation”:

- replace length space by δ-length space, etc.
- allow for errors, either in the heat formulation (Markov kernels, etc.) as done by Ollivier

[34] and Joulin [19], or in the optimal transport formulation as done by Bonciocat and
Sturm [2].

Example 5.6. Consider the metric space {0, 1}N endowed with the Hamming metric (i.e. each
edge is of length 1). Then Ric & 1

N at scale O(1) (see [34, Example 8]).

5.5. Smoothness. Regarding the smoothness of the optimal transport map, two main questions
arise:

- Find further examples of manifolds satisfying the MTW conditions. (Recall S
n and its

quotients, RP
n and its perturbations, perturbations of S

2, products of spheres.)
- Find results yielding regularity in terms of the MTW condition, the shape of the cut

locus, assumptions on µ and ν...

As an example, the following theorem was proven by Loeper and the second author [26]:

Theorem 5.7. Let (M,g) be a compact Riemannian manifold such that there is no focaliza-
tion at the cut locus (i.e., dtc(x,v)v expx is invertible for all x, v). Assume that (M,g) satisfies
MTW(K) for some K > 0, and let f and g be two probability densities on M such that f ≤ A
and g ≥ a for some A, a > 0. Then the optimal map T is C0,α, with α = 1

4n−1 .

Examples of manifold satifying the assumptions of the above theorem are the projective space
RP

n and its perturbations, and a challenge is to understand what happens when one removes
the “no-focalization” assumption.

The following conjecture was formulated in [26]:

Conjecture 5.8. MTW implies CTIL.

This conjecture has been proved by Loeper and the second author [26] under MTW(K) with
K > 0, and the no-focalization assumption. Using a variant of the MTW condition, Rifford and
the first author proved the following result [15]:

Theorem 5.9. If (M,g) is a C4-perturbation of S
2, then CTIL holds.
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Through these considerations we see that the MTW condition, originally introduced as a way
to explore the regularity of optimal transport, turns out to give a new kind of geometric infor-
mation on the manifold (compare with the Bonnet–Myers theorem, or with classical theorems
on the rectifiability or local description of the cut locus).

6. Selected references

This section provides a list of references which seem to us the most significant. To this list
should be added the book [45], which is attempts at providing a synthetic overview of all the
links between geometry and optimal transport.

6.1. Links between optimal transport and Ricci curvature. The reference [36] by Otto–
Villani may be considered as the founding paper for this topic. A body of technical tools was
developed in a parallel work by Cordero-Erausquin–McCann–Schmuckenschläger [9], which made
progress on these issues, and solved some of the open problems stated in [36]. At that time the
emphasis was rather on applications from calculus of variations and functional inequalities.

Later the interest of these links for geometric applications was realized, and explicitly noted by
von Renesse–Sturm [37]. The synthetic theory of Ricci curvature bounds in the general setting of
metric-measure spaces was developed independently by Sturm [38, 39] and by Lott–Villani [28].

6.2. Optimal transport and Ricci flow. The links between these objects were suspected for
some time, and hinted for by a preliminary result by McCann–Topping [31]. Finally this link
was made precise in contributions of Lott [27] and Topping [40].

6.3. Discrete Ricci curvature. This theory is in construction with preliminary works by
Joulin and Ollivier; one may consult in particular [34] by the latter.

6.4. Smoothness of optimal transport, cut locus and MTW tensor. After the land-
mark papers by Ma–Trudinger–Wang [30] and Loeper [24], the theory was partly simplified
and rewritten by Kim–McCann [23]. Applications to the geometry of the cut locus were first
investigated by Loeper–Villani [26], and further developed by Figalli–Rifford [15].
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[11] P. Delanoë and Y. Ge: Regularity of optimal transportation maps on compact, locally nearly spherical,
manifolds. J. Reine Angew. Math., to appear.

[12] A. Fathi and A. Figalli: Optimal transportation on non-compact manifolds. Israel J. Math., 175 (2010), no.
1, 1–59.

[13] A. Figalli, Y. H. Kim and R. J. McCann: Continuity and injectivity of optimal maps for non-negatively
cross-curved costs. Preprint, 2009.

[14] A. Figalli and G. Loeper: C
1 regularity of solutions of the Monge–Ampère equation for optimal transport in

dimension two. Calc. Var. Partial Differential Equations, 35 (2009), no. 4, 537–550.
[15] A. Figalli and L. Rifford: Continuity of optimal transport maps on small deformations of S

2. Comm. Pure
Appl. Math., 62 (2009), no. 12, 1670–1706.

[16] A. Figalli and C. Villani: An approximation lemma about the cut locus, with applications in optimal transport
theory. Methods Appl. Anal., 15 (2008), no. 2, 149–154.

[17] W. Gangbo and R.J. McCann: The geometry of optimal transportation. Acta Math. 177 (1996), no. 2,
113–161.

[18] R. Jordan, D. Kinderlehrer and F. Otto: The variational formulation of the Fokker-Planck equation. SIAM
J. Math. Anal. 29 (1998), no. 1, 1–17.

[19] A. Joulin: A new Poisson-type deviation inequality for Markov jump process with positive Wasserstein
curvature. Bernoulli 15 (2009), no. 2, 532–549.

[20] L. V. Kantorovich: On mass transportation. Reprinted from C. R. (Doklady) Acad. Sci. URSS (N.S.) 37
(1942), no. 7-8.

[21] L. V. Kantorovich: On a problem of Monge. Reprinted from C. R. (Doklady) Acad. Sci. URSS (N.S.) 3
(1948), no. 2.

[22] Y. H. Kim: Counterexamples to continuity of optimal transportation on positively curved Riemannian man-
ifolds. Int. Math. Res. Not. IMRN 2008, Art. ID rnn120, 15 pp.

[23] Y. H. Kim and R. J. McCann: Continuity, curvature, and the general covariance of optimal transportation.
J. Eur. Math. Soc., to appear.

[24] G. Loeper: On the regularity of solutions of optimal transportation problems. Acta Math., 202 (2009), no.
2, 241–283.

[25] G. Loeper: Regularity of optimal maps on the sphere: The quadratic cost and the reflector antenna. Arch.
Ration. Mech. Anal., to appear.

[26] G. Loeper and C. Villani: Regularity of optimal transport in curved geometry: the nonfocal case. Duke Matk.
J., 151 (2010), no. 3, 431–485.

[27] J. Lott: Optimal transport and Perelman’s reduced volume. Calc. Var. Partial Differential Equations 36
(2009), no. 1, 49–84.

[28] J. Lott and C. Villani: Ricci curvature via optimal transport. Ann. of Math. 169 (2009), 903–991
[29] J. Lott and C. Villani: Weak curvature conditions and functional inequalities. J. Funct. Anal. 245 (2007),

no. 1, 311–333.
[30] X. N. Ma, N. S. Trudinger and X. J. Wang: Regularity of potential functions of the optimal transportation

problem. Arch. Ration. Mech. Anal., 177 (2005), no. 2, 151–183.
[31] R. J. McCann and P. Topping: Ricci flow, entropy and optimal transportation. Amer. J. Math., to appear.
[32] R. J. McCann: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001), no. 3,

589–608.
[33] S.-I. Ohta: Finsler interpolation inequalities. Calc. Var. Partial Differential Equations 36 (2009), 211–249.
[34] Y. Ollivier: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256 (2009), no. 3, 810–864.
[35] F. Otto: The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial

Differential Equations 26 (2001), no. 1-2, 101–174.
[36] F. Otto and C. Villani: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev

inequality. J. Funct. Anal. 173 (2000), no. 2, 361-400.



OPTIMAL TRANSPORT AND CURVATURE 35

[37] M.-K. von Renesse and K.-T. Sturm: Transport inequalities, gradient estimates, entropy, and Ricci curvature.
Comm. Pure Appl. Math. 58 (2005), no. 7, 923–940.

[38] K.-T. Sturm: On the geometry of metric measure spaces. I. Acta Math. 196 (2006), no. 1, 65–131.
[39] K.-T. Sturm: On the geometry of metric measure spaces. II. Acta Math. 196 (2006), no. 1, 133–177.
[40] P. Topping: L-optimal transportation for Ricci flow. J. Reine Angew. Math., to appear.
[41] N. Trudinger and X. J. Wang: On the second boundary value problem for Monge-Ampère type equations

and optimal transportation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), no. 1, 143–174.
[42] N. S. Trudinger and X. J. Wang: On strict convexity and continuous differentiability of potential functions

in optimal transportation. Arch. Ration. Mech. Anal. 192 (2009), no. 3, 403–418.
[43] J. I. E. Urbas: Regularity of generalized solutions of Monge–Ampére equations. Math. Z., 197 (1988), no. 3,

365–393.
[44] J. I. E. Urbas: On the second boundary value problem for equations of Monge–Ampère type. J. Reine Angew.

Math., 487 (1997), 115–124.
[45] C. Villani: Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences], Vol. 338, Springer-Verlag, Berlin-New York, 2009.
[46] C. Villani: Stability of a 4th-order curvature condition arising in optimal transport theory. J. Funct. Anal.

255 (2008), no. 9, 2683–2708.


