

FAO Guide to Ranking Food Safety Risks

Dr Kang Zhou

Food Safety Officer Agrifood System and Food Safety Division Food and Agriculture Organization of the United Nations (FAO)

FAO's Food Safety Priorities

- Vision: Safe food for all people at all times
- Mission: To support Members in continuing to improve food safety at all levels by
 - providing scientific advice and
 - strengthening their food safety capacities

for efficient, inclusive, resilient and sustainable agrifood systems

If it is not safe, it is not food

ESF - Food Safety

NO Poverty

2 ZERO HUNGER

ESF - Food Safety STRATEGIC STRATEGIC OUTCOME 2 Sound scientific advice **FAO Strategic** coordination Maintain and improve, advice and approach, foster understanding, emerging, database priorities for food safety within the FAO strategic framework **STRATEGIC STRATEGIC** 2022-2031 **OUTCOME 3 OUTCOME 4** National food control systems Capacity development, Codex, standards and policy, data, new technology

OUTCOME 1

Inter-governmental and multi-stakeholder engagement in intersectoral

Codex, one-health, communication

Public and private stakeholder collaboration

Governments and food chain actors, tool and resources, lesson from national/regional level, training and curricula

Risk Analysis for Food Safety

- Risk analysis is internationally accepted as a key component to support decision-making around food safety.
- Risk analysis is defined by Codex Alimentarius Commission (CAC) as "a process consisting of three components: risk assessment, risk management and risk communication"
- Risk analysis can happen in multiple scenarios (food safety, environment, public health, etc) in different level (international, regional, national, even personal!).

Generic Risk Management Framework

Preliminary risk management activities

- Identify food safety issue
- Develop risk profile
- Establish goals of the risk management
- Decide on need for risk assessment
- Establish risk assessment policy
- Commission risk assessment
- Consider resulte of risk assessment
- Rank risks
- Identification and selection of risk management options
- Implementation of risk management decision
- Monitoring and review

Food safety risk ranking is the systematic analysis and ordering of foodborne hazards and/or foods in terms of public health risks, based on the likelihood and severity of adverse impacts on human health in a target population.

10 FOOD SAFETY AND QUALIT SERIES

FAO GUIDE TO RANKING FOOD SAFETY RISKS AT THE NATIONAL LEVEL

Risk Ranking ≠ Risk Prioritization

An approach to ranking risks in foods based on their public health impact

STEP 1 Define the scope STEP 2 Develop the approach STEP 3 Conduct the risk ranking analysis and report results

Why Risk Ranking?

- Limited resources, impossible to address everything;
- Identification of national and regional **priorities** is basis of any public health policy;
- Identify **most important** food safety policy goals;
- Make informed regulatory decisions, enhance disease surveillance;
- **Prioritize** risk mitigation options taking into consideration feasibility, efficacy, cost, etc.

Need to establish a 'priority' list of important food safety issues = Risk Ranking:

informs where to focus attention

Step 1. Define the Scope

The purpose

- risk management questions Statement of Concern
- goals for the risk ranking Statement of Purpose and Objectives

	Hazard	Food	Example								
Why	outbreak	surveillance	 outbreak, recall, surveillance and/or new 								
Where	whole supply chain	domestic and international	 domestic and/or international; whole supply chain, or just production, processing or consumption 								
Who	microbiological and chemical	all	all, subpopulation, or specificmicrobiological, chemical or others								
What	general	general	 focus on likelihood and/or severity, or general 								
When	new	existing	 existing, new, or emerging intention, legal, and/or changing by time 								

Step 1. Define the Scope

Select what will be ranked (hazard:commodities)

 Typically, a risk assessments focus on one hazard/one food, whereas risk ranking analyses typically consider multiple hazards, multiple foods, or multiple hazards and multiple foods

Meat/bacteria vs beef/E.coli
Chicken salad vs chicken

FIGURE 4. HYPOTHETICAL REPRESENTATION OF THE POSSIBLE FOCUS OF A RISK RANKING

- Single hazard (c) in all foods (r-z)
- Single hazard (e) in multiple foods (w-z)
- Multiple hazards (i-m) in a single food (s)

- All hazards (a-o) in a single food (u)
 Multiple hazards (j-n) in multiple foods (w-y)
- All hazards (a-o) in all foods (r-z)

Potential Microbiological Hazards

Bacteria		Parasites		
Bacillus cereus	Mycobacterium bovis	Anisakis spp.		
Brucella spp.*	Salmonella enterica—serotype Paratyphi A	Ascaris spp.		
Campylobacter spp.	<i>Salmonella enterica</i> —serotype Typhi	Clonorchis sinensis		
Clostridium botulinum	Salmonella spp.—non-typhoidal	Cyclospora cayetanensis		
Clostridium perfringens	Shigella spp.	Cryptosporidium spp.		
Coxiella burnetii	Staphylococcus aureus	Echinococcus granulosus		
Cronobacter sakazakii	Streptococcus spp. group A, foodborne	Echinococcus multilocularis		
<i>E. coli</i> —Enteropathogenic (EPEC)	Vibrio cholerae	Entamoeba histolytica		
<i>E. coli</i> —Enterotoxigenic (ETEC)	Vibrio parahaemolyticus	Fasciola spp.		
<i>E. coli</i> —Shiga-toxin producing (STEC)	Vibrio vulnificus	Giardia spp.		
Francisella tularensis	Yersinia enterocolitica	Intestinal flukes		
<i>Leptospira</i> spp.	Yersinia pseudotuberculosis	Opisthorchis spp.		
Listeria monocytogenes		Paragonimus spp.		
Virus		Taenia saginata		
Hepatitis A virus		Taenia solium		
Norovirus	Toxoplasma gondii			
Rotavirus	Trichinella spp.			
Hepatitis E virus	Other			
		Prions		

Potential Chemical Hazards

Metals

- Aluminium
- Arsenic**
- Cadmium**
- Chromium
- Lead**
- Selenium
- Silver, Colloidal
- Methylmercury*
- Tin

Other Inorganic Compounds

- Fluoride
- Nitrate/Nitrite compounds
- Perchlorate
- Sulfites

Other Chemicals

- Melamine
- Radionuclides and depleted uranium
- Pesticides
- Nicotine
 Allergens
- Peanut, tree nut, egg, crustacea,

milk, soy, cereal, fish, sesame

<u>Toxins</u>

- Azaspiracid shellfish poison
- Brevotoxins (NSP)
- Buffalo fish toxin
- Cassava cyanide*
- Curcurbitacin toxin
- Domoic Acid
- Escolar toxin
- Grayanotoxins
- Hypoglycin A toxin
- Marine Biotoxins ciguatoxin
- Marine Biotoxins—muscle-paralyzing toxin
- Mycotoxins (Aflatoxin, Fumonisin, Ochratoxin)
- Mushroom toxins
- Okadaic acid (DSP)
- Patulin
- Puffer fish tetrodotoxin
- Saxitoxin (PSP)
- Tetrodotoxin
- Wax esters (from fish)

Vitamins/Proteins

- Niacin (over exposure)
- Lectins

Antibiotics and antifungals

- Aminoglycosides Antibiotics
- 2- and 4-methylimidazoles
- Flumequine

Organic Compounds

- Acrylamide
- Benzene
- Chloropropanols
- DDT
- Dioxin* (PCDDs)
- Ethyl Carbamate
- Furans (PCDFs)
- Heterocyclic amines
- Methanol
- Methomyl (insecticide)
- Organohalogens
- PAHs/PHAHs
- PBDEs
- PCBs
- Polydimethylsiloxane

Food Categorization (FAO)

- 1. Cereals and Cereal Products
- 2. Roots and Tubers and Derived Products
- 3. Sugar Crops and Sweeteners and Derived Products
- 4. Pulses and Derived Products
- 5. Nuts and Derived Products
- 6. Oil-Bearing Crops and Derived Products
- 7. Vegetables and Derived Products
- 8. Fruits and Derived Products
- 9. Fibres of Vegetable and Animal Origin
- 10. Spices

- 11. Fodder Crops and Products
- 12. Stimulant Crops and Derived Products
- 13. Tobacco and Rubber and Derived Products
- 14. Vegetable and Animal Oils and Fats
- 15. Beverages
- 16. Livestock
- 17. Products from Slaughtered Animals 18.
 Products from Live Animals
- 19. Hides and Skins
- 20. Other Livestock Products

Step 2. Develop the Approach - 1) Select the Risk Ranking Method

• Qualitative

Outcomes without numerical values (e.g. low, medium, high)

• Semi-Quantitative

Numerical outcome without a unit of measurement (e.g. ranking scores, risk ratios)

• Quantitative

Numerical outcomes with specific units (e.g. DALYs, QALYs, COI)

1) Select the Risk Ranking Method

Qualitative Methods

- Situations where time is critical
- Limited resources and data
- Could be first step in a long-term risk ranking strategy
- Outputs can be easily used by risk managers
- Disadvantages: Uncertainty, needs clear definitions, how to combine different pieces of evidence
- *Example*: Decision tree for foodborne hazards in poultry

1) Select the Risk Ranking Method

Semi-Quantitative Methods

- Require moderate resource and data availability
- Scores allow to rank items but do not provide a direct measure of the risk.
- Considered to provide relative ranking outcomes.
- Can be also qualitative
- Risks are categorized based on their relative severity and likelihood
- Can be implemented quickly

 Risk matrix, Multi-criteria decision analysis, and risk ranger

1) Select the Risk Ranking Method

Quantitative Methods

- Require the development mathematical methods
- Are robust and able to provide estimates of risk and magnitude of difference between items being ranked.
- However, more complex, require greater technical expertise and resources
- Expert opinion can be incorporated to fill data gaps.
- Burden of disease methods, quantitative risk assessment

Select the Risk Ranking Method

2) Select the metrics for ranking risks

Question	Metric										
Death	mortality rates	Select the Select									
Highest burden	 population health 	Risk Metrics									
Food risk	sampling data	Method									
	 probability of sequelae from the published literature; or 										
Microbial	 hospitalization and mortality rates; or 	Collect and Evaluate Data									
	• surveillance										
	 acceptable daily intake (ADI) or reference dose (RfD); or 										
Chemical	• lethal dose for 50 percent of the population (LD50): or acute toxicity endpoints										

Summary measures of population health, such as DALYs and quality-adjusted life years (QALYs), are often the preferred metrics for estimating risk because they incorporate likelihood (e.g. the number of cases) and severity (e.g. DALY/case).

Approaches to assessing risk

Step 2. Develop the Approach - 3) Collect and evaluate appropriateness of data

- Quality of data, reliable, scientifically valid, repeatable and transparent. Need representative data.
- The data requirements for a risk ranking vary according to the approach, the method, the hazards being considered, and the metrics selected.
- Accuracy and precision of the data. Uncertainty.

3) Collect and evaluate appropriateness of data

Sources of Data

- Country active surveillance systems
- Reported cases and published literature
- Sources attribution studies
- Modelling to estimate likelihood and severity

Addressing Data Gaps

- Use of regional or international data as surrogate
 - WHO FERG estimates of burden of diseases
- Expert elicitation
 - Expert-based estimate of concentration, prevalence, source attribution, etc...

Step 3. Conduct the risk ranking analysis and report results

- Results from a risk ranking exercise must be interpreted with caution, taking into consideration the bias, uncertainty and variability inherent in the metrics, the data and method used in the analysis.
- Plotting the severity and likelihood metrics into a twodimensional graph is a very effective way to present results.
- Assumptions and limitations need to be clearly described.

							i													
E.coli			Salmonella spp		Shigella spp	Lm	S. aureus		Chloramphenicol			Tetracycline								
Cost	Shoon	Coat	Horso	Chickon	Dork	Cattle	Coat	Cattle	Dork	Goat	Cost	Shoon	Cattle	Chickon	Shoon	Cattle	Horso	Shoon	Cattle	Horco
Guat	Sheep	Guat	погзе	CHICKEN	PUIK	Cattle	Guat	Cattle	POIK	Guat	Guat	Sheep	Cattle	CHICKEH	Sheep	Cattle	погзе	Sheep	Calle	погзе
														<mark>46.6</mark>						
															<mark>40.4</mark>					
	<mark>44.0</mark>		<mark>40.6</mark>	<mark>40.6</mark>		<mark>40.6</mark>														
<mark>40.4</mark>								<mark>46.1</mark>												
						42.0										20.0				
						<mark>43.8</mark>										39.8				
<mark>43.0</mark>						38.6	<mark>48.3</mark>		<mark>44.3</mark>	<mark>47.0</mark>	<mark>44.3</mark>	<mark>44.3</mark>	<mark>44.3</mark>						35.6	
	<mark>44.4</mark>																			
	<mark>/13 0</mark>	<u>40 2</u>	<u>/12 O</u>		<u>//2 0</u>	<u> 42 0</u>				18 7	<u>46 0</u>									
	3.0	_ -0.2	2.0		72.0	<u></u>	_ <mark>-J.4</mark>				-0.0		<u>/1 2</u>							
													<u>41.3</u>							
							<mark>41.7</mark>													

Thank you!