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Adapting Google DeepVariant to 
Ultima Genomics Reads for Improved 
Variant Calling

Abstract

DeepVariant is a deep learning-based approach for 
variant calling which has been successfully applied 
across many varying sequencing technologies. We 
optimized DeepVariant for the recently introduced 
Ultima Genomics sequence data by improving the 
candidate generation step and extending input data 
representation to more fully accommodate the rich 
quality data information encoded in Ultima’s data 
format. Following these improvements, DeepVariant 
demonstrates high variant calling accuracy on 
Genome-in-a-Bottle reference samples: F1=99.8% for 
SNPs and  F1=97.8% for Indels in homopolymers up 
to length 10 across the vast majority (>98%) of the 
defined high-confidence regions of these samples. 
The complementarity between the results of 
DeepVariant and GATK suggest room for additional 
integration and optimization of both approaches.

Introduction

We recently introduced a novel sequencing 
platform1 by Ultima Genomics (UG) with innovative 
components that enable scalable, high-throughput 
DNA sequencing and significantly reduce the 
consumable cost of a sequencing run, bringing 
the sequencing cost down to $1/Gb in the first 
implementation, with potential for even lower costs 
in the not distant future.

DeepVariant2 is a deep learning-based variant 
caller that analyzes pileup image tensors containing 
several layers of information from reads overlapping 
with candidate variants. DeepVariant has been 
demonstrated to be a versatile method that can 
be readily adapted to yield superior variant calling 
performance to new sequencing technologies.3 
In this report, we describe the development of a 
modified DeepVariant algorithm optimized for UG 
data and assess the quality of the variant calls by 
comparing them to reference Genome-in-a-Bottle 
(GIAB) samples and their corresponding truth sets.4

Ultima Genomics sequencing data

The UG sequencer employs a novel mostly natural 
sequencing-by-synthesis (mnSBS) chemistry in 
which each flow cycle consists of a single base 
from a mostly natural nucleotide (MNN) mix of 
fluorescently labeled, and unlabeled, non-terminated 
nucleotides. In each sequencing cycle beads 
containing identical clonal DNA templates are 
exposed to the MNN mix and polymerase extension 
is performed to incorporate 0, 1, or a few bases of a 
single nucleotide base type (dA, dC, dG or dT) into 
each growing strand, depending on the length of 
the respective homopolymer in the corresponding 
template. mnSBS avoids quenching of fluorescent 
signals from adjacent labels and instead produces 
signals proportional to the lengths of homopolymers 
up to approximately 12 bases.1

To generate sequence reads from the optical 
signal generated per bead by mnSBS, the UG base 
calling algorithm employs a deep convolutional 
neural network (CNN) for homopolymer length 
classification per cycle (i.e 0-12) and outputs the 
most likely homopolymer sequence as well as 
probabilities of alternative homopolymer lengths 
per cycle. This information is used to generate base 
quality scores calibrated for the specific run. The 
sequencing base calling error modes produced by 
mnSBS chemistry differs from standard reversible 
terminator SBS chemistry. The base substitution 
error for this type of chemistry is expected to be 
extremely low since substitution errors could only be 
generated as a combination of two or more adjacent 
homopolymer errors, while the dominant errors are 
homopolymer length misclassifications. Typically, 
homopolymer calling accuracy is at 99.5% for 
homopolymer lengths of 1-2 and decreases to 90% at 
homopolymer lengths of 8.

For accurate calling of germline short variants 
from Whole Genome Sequencing (WGS) data, a 
variant calling algorithm should be calibrated to the 
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specific sequencing errors and biases in the raw 
data. Hence, standard variant calling methods that 
were developed specifically for reversible terminator 
chemistry need to be adapted for accurate analysis 
of UG data.

Adapting Google’s DeepVariant to the 
Ultima Genomics reads

DeepVariant (DV) is a deep learning-based approach 
for variant calling. Like other variant callers, the 
approach is split into two main components: Initially, 
many potential candidate variants are generated, 
with emphasis on a high recall, then the candidate 
calls are filtered to optimize separation between true 
and false positives. In DV an image classification CNN 
is used in this latter step to classify each candidate as 
Homozygous reference (Ref), Heterozygous variant 
(Het), or Homozygous variant (Hom). The DV calling 
pipeline consists of three steps: make-examples, 
call-variants and post-processing. In make-examples, 
candidate variants are detected (in a similar fashion 
to GATK’s HaplotypeCaller5) using very lenient 
calling thresholds, and an image containing base-
calling and alignment information is generated for 
the neighborhood of each candidate. Different layers 
of information (e.g., bases, base qualities etc.) are 
stored in different image channels (similar to the way 
color images are represented in RGB channels). In 
call-variants images are inputted into a trained CNN 
and classified into one of Ref/Het/Hom classes. Each 
class is assigned a probability score corresponding 
to the network’s confidence in its classification. In the 
final post-processing step, the encoded variants and 

their classifications are analyzed by a script which 
outputs the VCF file with variant calls and quality.

Two aspects of DV were modified for optimized 
performance on UG data: First, parameters for 
detection of candidate variants were tuned. Second, 
custom UG information channels were encoded to 
provide the network with additional information 
unique to UG data.

Candidate generation parameter tuning
The parameters for candidate generation were tuned 
as follows. Thresholds for minimum-base-quality 
and for density of realignment windows, which 
were previously defined based on different data 
with distinctive characteristics, were both tuned to 
minimize the number of false-positive variants in the 
candidate generation stage. This led to an overall 
increase in recall with a slight decrease in precision. 
Additionally, an increase in the minimal fraction of 
reads supporting indels helped to improve precision.

Custom information channels
UG base-qualities are encoded in the standard SAM 
format, providing probabilities for classification 
error in homopolymer length in the default base 
quality (BQ) field, the direction of error (i.e., more 
likely increase or decrease in length) encoded in 
a custom SAM tag called TP, and the probability 
for missed signal in any flow with zero length 
in a custom T0 tag. The TP and T0 tags are not 
utilized in the generic DV base quality (BQ) channel 
implementation and this channel was therefore 
replaced with three custom channels in the UG-
specific implementation (Figure 1):

Figure 1. 8 channels in the UG implementation of DV, including the 3 custom channels (del, ins, t0)
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• homopolymer-insertion and homopolymer-
deletion channels: Instead of directly converting 
the BQ information into a single input channel, 
BQ and TP data are combined into two separate 
channels encoding separate probabilities for 
a homopolymer deletion and homopolymer 
insertion errors. 

• non-hmer-insertion (t0) channel: To complete 
the representation of possible errors, the t0 flag 
is encoded as is. This channel thus represents 
the probability of missing one or more additional 
bases between every two called bases in each 
read.

Variant calling of Genome-in-a-Bottle 
reference samples

To assess the quality of the variant calls using 
DeepVariant, we used the reference dataset of 
seven standard Genome-in-a-Bottle (GIAB)4 

reference samples HG001-HG007. We trained the 
UG-optimized DV model using HG001 data and 
evaluated our performance with HG002-HG007 
samples (see Methods).  To control for overfitting, the 
model was trained on chr1-19, and tested on chr20.

We assessed the quality of the variant calls by 
comparing them to reference GIAB truth sets using 
the respective high-confidence regions (HCR).4 To 
focus only on sequencing accuracy, we excluded 
homopolymer regions of length≥11, low-complexity 
regions, and tandem-repeats and low mappability 
regions. In total, we maintain 98.2% of the original 
HCR, (referred to as UG-HCR, see Methods). 

The overall concordance of SNP variant calls 
over the UG-HCR was F1=99.8% (recall=99.7%, 
precision=99.9%) and of indel variant calls it was 
F1=97.8% (recall=97.1%, precision=98.6%). Variant 
calling accuracy in the entire GIAB-HCR (excluding 
homopolymers of length ≥11) was F1=99.2% for SNPs 

Table 1. Variant Calling performance of UG-modified GATK and DV algorithms on GIAB reference samples. HG001 is not 
included since it was used to train the DV model

GIAB-HCR (excludes HP>=11bp) UG-HCR

GATK INDEL SNP INDEL SNP

F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

HG002 90.4% 94.5% 86.6% 99.0% 99.4% 98.6% 96.6% 96.8% 96.4% 99.6% 99.6% 99.6%

HG003 90.8% 95.0% 87.0% 99.0% 99.4% 98.6% 96.8% 97.1% 96.6% 99.6% 99.6% 99.6%

HG004 89.9% 93.9% 86.2% 99.1% 99.4% 98.7% 95.9% 96.4% 95.4% 99.7% 99.6% 99.7%

HG005 91.5% 94.4% 88.7% 99.1% 99.4% 98.8% 96.5% 97.0% 96.0% 99.7% 99.6% 99.7%

HG006 89.9% 93.3% 86.8% 99.0% 99.3% 98.6% 96.1% 96.2% 95.9% 99.6% 99.6% 99.6%

HG007 91.0% 94.3% 87.9% 99.1% 99.4% 98.8% 96.3% 96.7% 96.0% 99.7% 99.6% 99.7%

Average of GATK 90.6% 94.2% 87.2% 99.0% 99.4% 98.7% 96.4% 96.7% 96.0% 99.6% 99.6% 99.7%

GATK INDEL SNP INDEL SNP

F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

HG002 91.6% 97.1% 86.6% 99.1% 99.8% 98.5% 97.7% 98.5% 96.9% 99.8% 99.9% 99.6%

HG003 92.0% 97.3% 87.2% 99.1% 99.8% 98.5% 97.9% 98.6% 97.1% 99.8% 99.9% 99.6%

HG004 91.9% 97.0% 87.3% 99.2% 99.8% 98.6% 97.7% 98.5% 96.9% 99.8% 99.9% 99.7%

HG005 93.3% 97.2% 89.6% 99.2% 99.8% 98.6% 98.0% 98.7% 97.4% 99.8% 99.9% 99.7%

HG006 92.0% 97.3% 87.2% 99.1% 99.8% 98.5% 97.6% 98.5% 96.8% 99.8% 99.9% 99.6%

HG007 92.9% 97.3% 88.9% 99.2% 99.8% 98.6% 98.0% 98.7% 97.4% 99.8% 99.9% 99.7%

Average of DV 92.2% 97.2% 87.8% 99.2% 99.8% 98.6% 97.8% 98.6% 97.1% 99.8% 99.9% 99.7%
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and F1=92.3% for indels, suggesting that a significant 
fraction of the variant calling errors in this region are 
indeed related to low-complexity DNA and can likely 
be improved by optimizing the clonal amplification 
protocol (Table 1).

Comparing DeepVariant performance with the UG-
modified GATK HaplotypeCaller algorithm1 on the 
same reference dataset demonstrates slightly better 
accuracy in SNP calling, but significantly better indel 
calling performance (both in recall and precision) 
with F1 increasing on average by 1.4%

A common mode of error of both tools was an error 
in genotyping (when a homozygous variant was 
called as heterozygous or vice versa) or in allele 
calling (when a slightly different allele was called 
instead of a true one, e.g., insertion of AAT instead 
of AT). Specifically, in DV call-sets 32-37% of errors 
were genotyping errors and additional 8-10% of 
errors were allele calling errors. In the GATK call-
sets 30-45% of errors were genotyping errors and 
12-14% of errors were allele calling errors. We believe 
that many of these errors can be corrected by 
downstream analysis.

Interestingly, many of the FN and FP events are 
observed by only one of the methods, suggesting 
that an integrated approach may combine the unique 
advantages of both methods can improve results 
even further (Figure 2).

The numbers of false positive variants and false 
negative variants that are unique to each caller 
(or common to both) were counted in the HG003 
genome. In order to focus on variant detection 
ability, the classification did not consider the 
assignment of genotypes.

Summary and Discussion

DeepVariant is a deep learning-based approach 
for variant calling which has been demonstratively 
adaptable for use over a range of sequencing 
technologies with widely varying characteristics. As 
such, it is not surprising that this framework is readily 
extensible to accommodate data from the new UG 
sequencing platform.

Extending the input channels of DeepVariant to 
accommodate the rich quality information encoded 
in the UG data format allows the neural network to 
fully take advantage of the unique attributes of the 
technology in a way that surpasses the performance 
of the default network structure.

Using the extended representation, applying 
DeepVariant variant calling to GIAB standard 
reference genomes HG002-7 demonstrates high 
sequencing accuracy for SNPs (99.8%) and Indels 
in homopolymers up to length 10 (97.8%) across the 
vast majority (>98%) of the defined high-confidence 
regions of these samples.

While this performance already compares favorably 
to other variant calling methods, there is clearly 
room for additional optimization. Specifically, the 
difference in erroneous calls (both false positives 
and false negatives) produced by DV and GATK 
suggests that the complementarity between the two 
approaches can be exploited by integrated methods 
that combine unique data models as well as generic 
deep learning methodologies.
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Figure 2. Numbers of false positive variants and false negative variants that are unique to each caller (or common 
to both) were counted in the HG003 genome. In order to focus on variant detection ability, the classification did not 
consider the assignment of genotypes.
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Methods

DeepVariant training
A customized version of DeepVariant v1.3 which 
can generate examples with UG custom channels 
was used to train a DeepVariant inception model 
on chromosomes 1-19 of HG001 (40X coverage) 
and validated on chr21: 10000000-20000000. 
Training and validation examples were generated on 
GIAB_4.2 high-confidence regions and ground truth 
vcf file. DeepVariant’s make-examples stage was run 
with the following non-default parameters --min_
base_quality 5,  --vsc_min_fraction_indels 0.12, 
--dbg_min_base_quality 0. The model was trained 
for eight epochs with learning-rate of 0.005, and the 
best checkpoint was selected according to maximal 
accuracy on the validation set. The selected model 
was used to generate vcf files of HG001-HG007 
GIAB samples. In inference, the same parameters 
and channels are used except for an additional 
parameter: --ws_min_windows_distance 20.

Variant Calling Performance Evaluation
Variant calling performance (recall, precision F1), was 
calculated using vcfeval6 to compare single sample 
variant callset (vcf) with GIAB truth set (v4.2.1)4 for 
reference samples HG001-7. 

The evaluation region was defined as the 
corresponding GIAB high-confidence region (HCR 
v4.2.1), with the following exclusions [% of full HCR]:

• GIAB-HCR (total 99.6% of full HCR):

 – Homopolymer regions of length 11 and higher + 
4 flanking bases [0.4%]

• UG-HCR (total 98.2% of full HCR):

 – Homopolymer regions of length 11 and higher + 
4 flanking bases [0.4%]

 – AT-rich regions: all 40 bp regions with 95% or 
higher AT content [0.3%]

 – Short tandem repeats regions, with specific 
defined thresholds [0.3%]

 – Low mappability and coverage: 50bp regions 
with mean mappable coverage>15X in 90 
independent samples [1.1%]

Bed Files containing specific exclusion areas will be 
available as supplementary material.

Supplementary Materials

Supplementary data will be made available in the 

near future at www.ultimagenomics.com/support 
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