
2019
Web Almanac

HTTP Archive’s annual
state of the web report

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Table of Contents

Introduction

Foreword ..iii

Part I. Page Content

Chapter 1: JavaScript ..1

Chapter 2: CSS ...21

Chapter 3: Markup ...55

Chapter 4: Media ..73

Chapter 5: Third Parties ..99

Chapter 6: Fonts .. 113

Part II. User Experience

Chapter 7: Performance ... 131

Chapter 8: Security ... 151

Chapter 9: Accessibility .. 175

Chapter 10: SEO .. 193

Chapter 11: PWA .. 213

Chapter 12: Mobile Web .. 227

Part III. Content Publishing

Chapter 13: Ecommerce ... 241

Chapter 14: CMS ... 261

Part IV. Content Distribution

Chapter 15: Compression .. 285

Chapter 16: Caching .. 299

Chapter 17: CDN ... 327

Chapter 18: Page Weight ... 361

Chapter 19: Resource Hints .. 375

Table of Contents

2019 Web Almanac by HTTP Archive i

Chapter 20: HTTP/2 ... 383

Appendices

Methodology .. 403

Contributors ... 413

Table of Contents

ii 2019 Web Almanac by HTTP Archive

Foreword
The open web is an amazingly complex, evolving network of technologies. Entire industries and

careers are built on the web and depend on its vibrant ecosystem to succeed. As critical as the

web is, understanding how it’s doing has been surprisingly elusive. Since 2010, the mission of

the HTTP Archive project has been to track how the web is built, and it’s been doing an amazing

job of it. However, there has been one gap that has been especially challenging to close:

bringing meaning to the data that the HTTP Archive project has been collecting and enabling

the community to easily understand how the web is performing. That’s where the Web

Almanac comes in.

The mission of the Web Almanac is to take the treasure trove of insights that would otherwise

be accessible only to intrepid data miners, and package it up in a way that’s easy to understand.

This is made possible with the help of industry experts who can make sense of the data and tell

us what it means. Each of the 20 chapters in the Web Almanac focuses on a specific aspect of

the web, and each one has been authored and peer reviewed by experts in their field. The

strength of the Web Almanac flows directly from the expertise of the people who write it.

Many of the findings in the Web Almanac are worthy of celebration, but it’s also an important

reminder of the work still required to deliver high-quality user experiences. The data-driven

analyses in each chapter are a form of accountability we all share for developing a better web.

It’s not about shaming those that are getting it wrong, but about shining a guiding light on the

path of best practices so there is a clear, right way to do things. With the continued help of the

web community, we hope to make this an annual tradition, so each year we can track our

progress and make course corrections as needed.

There is so much to learn in this report, so start exploring and share your takeaways with the

community so we can collectively advance our understanding of the state of the web.

— Rick Viscomi, Web Almanac Editor-in-Chief

Foreword

2019 Web Almanac by HTTP Archive iii

iv 2019 Web Almanac by HTTP Archive

Part I Chapter 1

JavaScript

Written by Houssein Djirdeh
Reviewed by David Fox, Paul Calvano, Mathias Bynens, and Rick Viscomi
Analyzed by Rick Viscomi
Edited by David Fox

Introduction

JavaScript is a scripting language that makes it possible to build interactive and complex

experiences on the web. This includes responding to user interactions, updating dynamic

content on a page, and so forth. Anything involving how a web page should behave when an

event occurs is what JavaScript is used for.

The language specification itself, along with many community-built libraries and frameworks

used by developers around the world, has changed and evolved ever since the language was

created in 1995. JavaScript implementations and interpreters have also continued to progress,

making the language usable in many environments, not only web browsers.

The HTTP Archive1 crawls millions of pages2 every month and runs them through a private

instance of WebPageTest3 to store key information of every page. (You can learn more about

1. https://httparchive.org/
2. https://httparchive.org/reports/state-of-the-web#numUrls
3. https://webpagetest.org/

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 1

https://httparchive.org/
https://httparchive.org/reports/state-of-the-web#numUrls
https://webpagetest.org/

this in our methodology). In the context of JavaScript, HTTP Archive provides extensive

information on the usage of the language for the entire web. This chapter consolidates and

analyzes many of these trends.

How much JavaScript do we use?

JavaScript is the most costly resource we send to browsers; having to be downloaded, parsed,

compiled, and finally executed. Although browsers have significantly decreased the time it

takes to parse and compile scripts, download and execution have become the most expensive

stages4 when JavaScript is processed by a web page.

Sending smaller JavaScript bundles to the browser is the best way to reduce download times,

and in turn improve page performance. But how much JavaScript do we really use?

Figure 1.1 above shows that we use 373 KB of JavaScript at the 50th percentile, or median. In

other words, 50% of all sites ship more than this much JavaScript to their users.

Looking at these numbers, it’s only natural to wonder if this is too much JavaScript. However in

terms of page performance, the impact entirely depends on network connections and devices

used. Which brings us to our next question: how much JavaScript do we ship when we compare

Figure 1.1. Distribution of JavaScript bytes per page.

4. https://v8.dev/blog/cost-of-javascript-2019

Part I Chapter 1 : JavaScript

2 2019 Web Almanac by HTTP Archive

https://v8.dev/blog/cost-of-javascript-2019
https://v8.dev/blog/cost-of-javascript-2019
https://almanac.httparchive.org/static/images/2019/javascript/fig1.png
https://almanac.httparchive.org/static/images/2019/javascript/fig1.png

mobile and desktop clients?

At every percentile, we’re sending slightly more JavaScript to desktop devices than we are to

mobile.

Processing time

After being parsed and compiled, JavaScript fetched by the browser needs to processed (or

executed) before it can be utilized. Devices vary, and their computing power can significantly

affect how fast JavaScript can be processed on a page. What are the current processing times

on the web?

We can get an idea by analyzing main thread processing times for V8 at different percentiles:

Figure 1.2. Distribution of JavaScript per page by device.

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 3

https://almanac.httparchive.org/static/images/2019/javascript/fig2.png
https://almanac.httparchive.org/static/images/2019/javascript/fig2.png

At every percentile, processing times are longer for mobile web pages than on desktop. The

median total main thread time on desktop is 849 ms, while mobile is at a larger number: 2,437

ms.

Although this data shows how much longer it can take for a mobile device to process JavaScript

compared to a more powerful desktop machine, mobile devices also vary in terms of computing

power. The following chart shows how processing times on a single web page can vary

significantly depending on the mobile device class.

Figure 1.3. V8 Main thread processing times by device.

Part I Chapter 1 : JavaScript

4 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/javascript/fig3.png
https://almanac.httparchive.org/static/images/2019/javascript/fig3.png

Number of requests

One avenue worth exploring when trying to analyze the amount of JavaScript used by web

pages is the number of requests shipped. With HTTP/2, sending multiple smaller chunks can

improve page load over sending a larger, monolithic bundle. If we also break it down by device

client, how many requests are being fetched?

Figure 1.4. JavaScript processing times for reddit.com. From The cost of JavaScript in 20195.

5. https://v8.dev/blog/cost-of-javascript-2019

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 5

https://almanac.httparchive.org/static/images/2019/javascript/js-processing-reddit.png
https://almanac.httparchive.org/static/images/2019/javascript/js-processing-reddit.png
https://v8.dev/blog/cost-of-javascript-2019

At the median, 19 requests are sent for desktop and 18 for mobile.

First-party vs. third-party

Of the results analyzed so far, the entire size and number of requests were being considered. In

a majority of websites however, a significant portion of the JavaScript code fetched and used

comes from third-party sources.

Third-party JavaScript can come from any external, third-party source. Ads, analytics and social

media embeds are all common use-cases for fetching third-party scripts. So naturally, this

brings us to our next question: how many requests sent are third-party instead of first-party?

Figure 1.5. Distribution of total JavaScript requests.

Part I Chapter 1 : JavaScript

6 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/javascript/fig5.png
https://almanac.httparchive.org/static/images/2019/javascript/fig5.png

For both mobile and desktop clients, more third-party requests are sent than first-party at

every percentile. If this seems surprising, let’s find out how much actual code shipped comes

from third-party vendors.

Figure 1.6. Distribution of first and third-party scripts on desktop.

Figure 1.7. Distribution of first and third party scripts on mobile.

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 7

https://almanac.httparchive.org/static/images/2019/javascript/fig6.png
https://almanac.httparchive.org/static/images/2019/javascript/fig6.png
https://almanac.httparchive.org/static/images/2019/javascript/fig7.png
https://almanac.httparchive.org/static/images/2019/javascript/fig7.png

At the median, 89% more third-party code is used than first-party code authored by the

developer for both mobile and desktop. This clearly shows that third-party code can be one of

the biggest contributors to bloat. For more information on the impact of third parties, refer to

the “Third Parties” chapter.

Figure 1.8. Distribution of total JavaScript downloaded on desktop.

Figure 1.9. Distribution of total JavaScript downloaded on mobile.

Part I Chapter 1 : JavaScript

8 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/javascript/fig8.png
https://almanac.httparchive.org/static/images/2019/javascript/fig8.png
https://almanac.httparchive.org/static/images/2019/javascript/fig9.png
https://almanac.httparchive.org/static/images/2019/javascript/fig9.png

Resource compression

In the context of browser-server interactions, resource compression refers to code that has

been modified using a data compression algorithm. Resources can be compressed statically

ahead of time or on-the-fly as they are requested by the browser, and for either approach the

transferred resource size is significantly reduced which improves page performance.

There are multiple text-compression algorithms, but only two are mostly used for the

compression (and decompression) of HTTP network requests:

• Gzip6 (gzip): The most widely used compression format for server and client

interactions

• Brotli7 (br): A newer compression algorithm aiming to further improve

compression ratios. 90% of browsers8 support Brotli encoding.

Compressed scripts will always need to be uncompressed by the browser once transferred.

This means its content remains the same and execution times are not optimized whatsoever.

Resource compression, however, will always improve download times which also is one of the

most expensive stages of JavaScript processing. Ensuring JavaScript files are compressed

correctly can be one of the most significant factors in improving site performance.

How many sites are compressing their JavaScript resources?

6. https://www.gzip.org/
7. https://github.com/google/brotli
8. https://caniuse.com/#feat=brotli

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 9

https://www.gzip.org/
https://github.com/google/brotli
https://caniuse.com/#feat=brotli

The majority of sites are compressing their JavaScript resources. Gzip encoding is used on

~64-67% of sites and Brotli on ~14%. Compression ratios are similar for both desktop and

mobile.

For a deeper analysis on compression, refer to the “Compression” chapter.

Open source libraries and frameworks

Open source code, or code with a permissive license that can be accessed, viewed and modified

by anyone. From tiny libraries to entire browsers, such as Chromium9 and Firefox10, open source

code plays a crucial role in the world of web development. In the context of JavaScript,

developers rely on open source tooling to include all types of functionality into their web page.

Regardless of whether a developer decides to use a small utility library or a massive framework

that dictates the architecture of their entire application, relying on open-source packages can

make feature development easier and faster. So which JavaScript open-source libraries are

used the most?

Figure 1.10. Percentage of sites compressing JavaScript resources with Gzip or Brotli.

9. https://www.chromium.org/Home
10. https://www.openhub.net/p/firefox

Part I Chapter 1 : JavaScript

10 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/javascript/fig10.png
https://almanac.httparchive.org/static/images/2019/javascript/fig10.png
https://www.chromium.org/Home
https://www.openhub.net/p/firefox

jQuery11, the most popular JavaScript library ever created, is used in 85.03% of desktop pages

and 83.46% of mobile pages. The advent of many Browser APIs and methods, such as Fetch12

Figure 1.11. Top JavaScript libraries on desktop and mobile.

Library Desktop Mobile

jQuery 85.03% 83.46%

jQuery Migrate 31.26% 31.68%

jQuery UI 23.60% 21.75%

Modernizr 17.80% 16.76%

FancyBox 7.04% 6.61%

Lightbox 6.02% 5.93%

Slick 5.53% 5.24%

Moment.js 4.92% 4.29%

Underscore.js 4.20% 3.82%

prettyPhoto 2.89% 3.09%

Select2 2.78% 2.48%

Lodash 2.65% 2.68%

Hammer.js 2.28% 2.70%

YUI 1.84% 1.50%

Lazy.js 1.26% 1.56%

Fingerprintjs 1.21% 1.32%

script.aculo.us 0.98% 0.85%

Polyfill 0.97% 1.00%

Flickity 0.83% 0.92%

Zepto 0.78% 1.17%

Dojo 0.70% 0.62%

11. https://jquery.com/
12. https://developer.mozilla.org/docs/Web/API/Fetch_API

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 11

https://jquery.com/
https://developer.mozilla.org/docs/Web/API/Fetch_API

and querySelector13, standardized much of the functionality provided by the library into a native

form. Although the popularity of jQuery may seem to be declining, why is it still used in the vast

majority of the web?

There are a number of possible reasons:

• WordPress14, which is used in more than 30% of sites, includes jQuery by default.

• Switching from jQuery to a newer client-side library can take time depending on

how large an application is, and many sites may consist of jQuery in addition to

newer client-side libraries.

Other top used JavaScript libraries include jQuery variants (jQuery migrate, jQuery UI),

Modernizr15, Moment.js16, Underscore.js17 and so on.

Frameworks and UI libraries

As mentioned in our methodology, the third-party detection library used in HTTP Archive

(Wappalyzer) has a number of limitations with regards to how it detects certain tools. There is an open

issue to improve detection of JavaScript libraries and frameworks18, which will have impacted the

results presented here.

In the past number of years, the JavaScript ecosystem has seen a rise in open-source libraries

and frameworks to make building single-page applications (SPAs) easier. A single-page

application is characterized as a web page that loads a single HTML page and uses JavaScript to

modify the page on user interaction instead of fetching new pages from the server. Although

this remains to be the main premise of single-page applications, different server-rendering

approaches can still be used to improve the experience of such sites. How many sites use these

types of frameworks?

13. https://developer.mozilla.org/docs/Web/API/Document/querySelector
14. https://wordpress.org/
15. https://modernizr.com/
16. https://momentjs.com/
17. https://underscorejs.org/
18. https://github.com/AliasIO/wappalyzer/issues/2450

Part I Chapter 1 : JavaScript

12 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/API/Document/querySelector
https://wordpress.org/
https://modernizr.com/
https://momentjs.com/
https://underscorejs.org/
https://github.com/AliasIO/wappalyzer/issues/2450

Only a subset of popular frameworks are being analyzed here, but it’s important to note that all

of them either follow one of these two approaches:

• A model-view-controller19 (or model-view-viewmodel) architecture

• A component-based architecture

Although there has been a shift towards a component-based model, many older frameworks

that follow the MVC paradigm (AngularJS20, Backbone.js21, Ember22) are still being used in

thousands of pages. However, React23, Vue24 and Angular25 are the most popular component-

based frameworks (Zone.js26 is a package that is now part of Angular core).

Differential loading

JavaScript modules27, or ES modules, are supported in all major browsers28. Modules provide the

capability to create scripts that can import and export from other modules. This allows anyone

Figure 1.12. Most frequently used frameworks on desktop.

19. https://developer.chrome.com/apps/app_frameworks
20. https://angularjs.org/
21. https://backbonejs.org/
22. https://emberjs.com/
23. https://reactjs.org/
24. https://vuejs.org/
25. https://angular.io/
26. https://github.com/angular/zone.js
27. https://v8.dev/features/modules
28. https://caniuse.com/#feat=es6-module

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 13

https://almanac.httparchive.org/static/images/2019/javascript/fig12.png
https://almanac.httparchive.org/static/images/2019/javascript/fig12.png
https://developer.chrome.com/apps/app_frameworks
https://angularjs.org/
https://backbonejs.org/
https://emberjs.com/
https://reactjs.org/
https://vuejs.org/
https://angular.io/
https://github.com/angular/zone.js
https://v8.dev/features/modules
https://caniuse.com/#feat=es6-module

to build their applications architected in a module pattern, importing and exporting wherever

necessary, without relying on third-party module loaders.

To declare a script as a module, the script tag must get the type="module" attribute:

<script type="module" src="main.mjs"></script>

How many sites use type="module" for scripts on their page?

Browser-level support for modules is still relatively new, and the numbers here show that very

few sites currently use type="module" for their scripts. Many sites are still relying on

module loaders (2.37% of all desktop sites use RequireJS29 for example) and bundlers (webpack30

for example) to define modules within their codebase.

If native modules are used, it’s important to ensure that an appropriate fallback script is used

for browsers that do not yet support modules. This can be done by including an additional script

with a nomodule attribute.

Figure 1.13. Percentage of sites utilizing type=module.

29. https://github.com/requirejs/requirejs
30. https://webpack.js.org/

Part I Chapter 1 : JavaScript

14 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/javascript/fig13.png
https://almanac.httparchive.org/static/images/2019/javascript/fig13.png
https://github.com/requirejs/requirejs
https://webpack.js.org/

<script nomodule src="fallback.js"></script>

When used together, browsers that support modules will completely ignore any scripts

containing the nomodule attribute. On the other hand, browsers that do not yet support

modules will not download any scripts with type="module" . Since they do not recognize

nomodule either, they will download scripts with the attribute normally. Using this approach

can allow developers to send modern code to modern browsers for faster page loads31. So, how

many sites use nomodule for scripts on their page?

Similarly, very few sites (0.50%-0.80%) use the nomodule attribute for any scripts.

Preload and prefetch

Preload32 and prefetch33 are resource hints which enable you to aid the browser in determining

what resources need to be downloaded.

• Preloading a resource with <link rel="preload"> tells the browser to

Figure 1.14. Percentage of sites using nomodule.

31. https://web.dev/serve-modern-code-to-modern-browsers/
32. https://developer.mozilla.org/docs/Web/HTML/Link_types/preload
33. https://developer.mozilla.org/docs/Web/HTTP/Link_prefetching_FAQ

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 15

https://web.dev/serve-modern-code-to-modern-browsers/
https://almanac.httparchive.org/static/images/2019/javascript/fig14.png
https://almanac.httparchive.org/static/images/2019/javascript/fig14.png
https://developer.mozilla.org/docs/Web/HTML/Link_types/preload
https://developer.mozilla.org/docs/Web/HTTP/Link_prefetching_FAQ

download this resource as soon as possible. This is especially helpful for critical

resources which are discovered late in the page loading process (e.g., JavaScript

located at the bottom of your HTML) and are otherwise downloaded last.

• Using <link rel="prefetch"> tells the browser to take advantage of any idle

time it has to fetch these resources needed for future navigations

So, how many sites use preload and prefetch directives?

For all sites measured in HTTP Archive, 14.33% of desktop sites and 14.84% of mobile sites use

<link rel="preload"> for scripts on their page.

For prefetch, we have the following:

Figure 1.15. Percentage of sites using rel=preload for scripts.

Part I Chapter 1 : JavaScript

16 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/javascript/fig15.png
https://almanac.httparchive.org/static/images/2019/javascript/fig15.png

For both mobile and desktop, 0.08% of pages leverage prefetch for any of their scripts.

Newer APIs

JavaScript continues to evolve as a language. A new version of the language standard itself,

known as ECMAScript, is released every year with new APIs and features passing proposal

stages to become a part of the language itself.

With HTTP Archive, we can take a look at any newer API that is supported (or is about to be)

and see how widespread its usage is. These APIs may already be used in browsers that support

them or with an accompanying polyfill to make sure they still work for every user.

How many sites use the following APIs?

• Atomics34

• Intl35

• Proxy36

Figure 1.16. Percentage of sites using rel=prefetch for scripts.

34. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Atomics
35. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Intl
36. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Proxy

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 17

https://almanac.httparchive.org/static/images/2019/javascript/fig16.png
https://almanac.httparchive.org/static/images/2019/javascript/fig16.png
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Atomics
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Intl
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Proxy

• SharedArrayBuffer37

• WeakMap38

• WeakSet39

Atomics (0.38%) and SharedArrayBuffer (0.20%) are barely visible on this chart since they are

used on such few pages.

It is important to note that the numbers here are approximations and they do not leverage

UseCounter40 to measure feature usage.

Source maps

In many build systems, JavaScript files undergo minification to minimize its size and

transpilation for newer language features that are not yet supported in many browsers.

Moreover, language supersets like TypeScript41 compile to an output that can look noticeably

different from the original source code. For all these reasons, the final code served to the

browser can be unreadable and hard to decipher.

Figure 1.17. Usage of new JavaScript APIs.

37. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
38. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
39. https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
40. https://chromium.googlesource.com/chromium/src.git/+/master/docs/use_counter_wiki.md
41. https://www.typescriptlang.org/

Part I Chapter 1 : JavaScript

18 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WeakMap
https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/WeakSet
https://almanac.httparchive.org/static/images/2019/javascript/fig17.png
https://almanac.httparchive.org/static/images/2019/javascript/fig17.png
https://chromium.googlesource.com/chromium/src.git/+/master/docs/use_counter_wiki.md
https://www.typescriptlang.org/

A source map is an additional file accompanying a JavaScript file that allows a browser to map

the final output to its original source. This can make debugging and analyzing production

bundles much simpler.

Although useful, there are a number of reasons why many sites may not want to include source

maps in their final production site, such as choosing not to expose complete source code to the

public. So how many sites actually include sourcemaps?

For both desktop and mobile pages, the results are about the same. 17-18% include a source

map for at least one script on the page (detected as a first-party script with

sourceMappingURL).

Conclusion

The JavaScript ecosystem continues to change and evolve every year. Newer APIs, improved

browser engines, and fresh libraries and frameworks are all things we can expect to happen

indefinitely. HTTP Archive provides us with valuable insight on how sites in the wild use the

language.

Without JavaScript, the web would not be where it is today, and all the data gathered for this

article only proves this.

Figure 1.18. Percentage of sites using source maps.

Part I Chapter 1 : JavaScript

2019 Web Almanac by HTTP Archive 19

https://almanac.httparchive.org/static/images/2019/javascript/fig18.png
https://almanac.httparchive.org/static/images/2019/javascript/fig18.png

Author

Houssein Djirdeh

@hdjirdeh housseindjirdeh https://houssein.me

Houssein is a Developer Advocate at Google working on speed, performance and

the web framework ecosystem. He tweets at @hdjirdeh and blogs at

https://houssein.me/.

Part I Chapter 1 : JavaScript

20 2019 Web Almanac by HTTP Archive

https://twitter.com/hdjirdeh
https://github.com/housseindjirdeh
https://houssein.me/
https://twitter.com/hdjirdeh
https://houssein.me/

Part I Chapter 2

CSS

Written by Una Kravets and Adam Argyle
Reviewed by Eric A. Meyer and Chen Hui Jing
Analyzed by Rick Viscomi
Edited by Rachel Costello

Introduction

Cascading Style Sheets (CSS) are used to paint, format, and layout web pages. Their capabilities

span concepts as simple as text color to 3D perspective. It also has hooks to empower

developers to handle varying screen sizes, viewing contexts, and printing. CSS helps developers

wrangle content and ensure it’s adapting properly to the user.

When describing CSS to those not familiar with web technology, it can be helpful to think of it

as the language to paint the walls of the house; describing the size and position of windows and

doors, as well as flourishing decorations such as wallpaper or plant life. The fun twist to that

story is that depending on the user walking through the house, a developer can adapt the house

to that specific user’s preferences or contexts!

In this chapter, we’ll be inspecting, tallying, and extracting data about how CSS is used across

the web. Our goal is to holistically understand what features are being used, how they’re used,

and how CSS is growing and being adopted.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 21

Ready to dig into the fascinating data?! Many of the following numbers may be small, but don’t

mistake them as insignificant! It can take many years for new things to saturate the web.

Color

Color is an integral part of theming and styling on the web. Let’s take a look at how websites

tend to use color.

Color types

Hex is the most popular way to describe color by far, with 93% usage, followed by RGB, and

then HSL. Interestingly, developers are taking full advantage of the alpha-transparency

argument when it comes to these color types: HSLA and RGBA are far more popular than HSL

and RGB, with almost double the usage! Even though the alpha-transparency was added later

to the web spec, HSLA and RGBA are supported as far back as IE942, so you can go ahead and use

them, too!

Figure 2.1. Popularity of color formats.

42. https://caniuse.com/#feat=css3-colors

Part I Chapter 2 : CSS

22 2019 Web Almanac by HTTP Archive

https://caniuse.com/#feat=css3-colors
https://almanac.httparchive.org/static/images/2019/css/fig1.png
https://almanac.httparchive.org/static/images/2019/css/fig1.png

Color selection

There are 148 named CSS colors43, not including the special values transparent and

currentcolor . You can use these by their string name for more readable styling. The most

popular named colors are black and white , unsurprisingly, followed by red and blue .

Language is interestingly inferred via color as well. There are more instances of the American-

style “gray” than the British-style “grey”. Almost every instance of gray colors44 (gray ,

lightgray , darkgray , slategray , etc.) had nearly double the usage when spelled with an

“a” instead of an “e”. If gr[a/e]ys were combined, they would rank higher than blue, solidifying

themselves in the #4 spot. This could be why silver is ranked higher than grey with an “e”

in the charts!

Color count

How many different font colors are used across the web? So this isn’t the total number of

unique colors; rather, it’s how many different colors are used just for text. The numbers in this

chart are quite high, and from experience, we know that without CSS variables, spacing, sizes

Figure 2.2. Top named colors.

43. https://www.w3.org/TR/css-color-4/#named-colors
44. https://www.rapidtables.com/web/color/gray-color.html

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 23

https://www.w3.org/TR/css-color-4/#named-colors
https://almanac.httparchive.org/static/images/2019/css/fig2.png
https://almanac.httparchive.org/static/images/2019/css/fig2.png
https://www.rapidtables.com/web/color/gray-color.html

and colors can quickly get away from you and fragment into lots of tiny values across your

styles. These numbers reflect a difficulty of style management, and we hope this helps create

some perspective for you to bring back to your teams or projects. How can you reduce this

number into a manageable and reasonable amount?

Color duplication

Well, we got curious here and wanted to inspect how many duplicate colors are present on a

page. Without a tightly managed reusable class CSS system, duplicates are quite easy to create.

It turns out that the median has enough duplicates that it could be worth doing a pass to unify

them with custom properties.

Figure 2.3. Distribution of colors per page.

Part I Chapter 2 : CSS

24 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig3.png
https://almanac.httparchive.org/static/images/2019/css/fig3.png

Units

In CSS, there are many different ways to achieve the same visual result using different unit

types: rem , px , em , ch , or even cm ! So which unit types are most popular?

Figure 2.4. Distribution of duplicate colors per page.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 25

https://almanac.httparchive.org/static/images/2019/css/fig4.png
https://almanac.httparchive.org/static/images/2019/css/fig4.png

Length and sizing

Unsurprisingly, in Figure 2.5 above, px is the most used unit type, with about 95% of web

pages using pixels in some form or another (this could be element sizing, font size, and so on).

However, the em unit is almost as popular, with about 90% usage. This is over 2x more popular

than the rem unit, which has only 40% frequency in web pages. If you’re wondering what the

difference is, em is based on the parent font size, while rem is based on the base font size set

to the page. It doesn’t change per-component like em could, and thus allows for adjustment of

all spacing evenly.

When it comes to units based on physical space, the cm (or centimeter) unit is the most

popular by far, followed by in (inches), and then Q . We know these types of units are

specifically useful for print stylesheets, but we didn’t even know the Q unit existed until this

survey! Did you?

An earlier version of this chapter discussed the unexpected popularity of the Q unit. Thanks to the

community discussion45 surrounding this chapter, we’ve identified that this was a bug in our analysis

and have updated Figure 2.5 accordingly.

Figure 2.5. Popularity of unit types.

45. https://discuss.httparchive.org/t/chapter-2-css/1757/6

Part I Chapter 2 : CSS

26 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig5.png
https://almanac.httparchive.org/static/images/2019/css/fig5.png
https://discuss.httparchive.org/t/chapter-2-css/1757/6

Viewport-based units

We saw larger differences in unit types when it comes to mobile and desktop usage for

viewport-based units. 36.8% of mobile sites use vh (viewport height), while only 31% of

desktop sites do. We also found that vh is more common than vw (viewport width) by about

11%. vmin (viewport minimum) is more popular than vmax (viewport maximum), with about

8% usage of vmin on mobile while vmax is only used by 1% of websites.

Custom properties

Custom properties are what many call CSS variables. They’re more dynamic than a typical static

variable though! They’re very powerful and as a community we’re still discovering their

potential.

We felt like this was exciting information, since it shows healthy growth of one of our favorite

CSS additions. They were available in all major browsers since 2016 or 2017, so it’s fair to say

they’re fairly new. Many folks are still transitioning from their CSS preprocessor variables to

CSS custom properties. We estimate it’ll be a few more years until custom properties are the

norm.

Selectors

ID vs class selectors

CSS has a few ways to find elements on the page for styling, so let’s put IDs and classes against

each other to see which is more prevalent! The results shouldn’t be too surprising: classes are

more popular!

Figure 2.6. Percent of pages using custom properties.

5%

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 27

A nice follow up chart is this one, showing that classes take up 93% of the selectors found in a

stylesheet.

Figure 2.7. Popularity of selector types per page.

Figure 2.8. Popularity of selector types per selector.

Part I Chapter 2 : CSS

28 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig7.png
https://almanac.httparchive.org/static/images/2019/css/fig7.png
https://almanac.httparchive.org/static/images/2019/css/fig8.png
https://almanac.httparchive.org/static/images/2019/css/fig8.png

Attribute selectors

CSS has some very powerful comparison selectors. These are selectors like

[target="_blank"] , [attribute^="value"] , [title~="rad"] , [attribute$="-
rad"] or [attribute*="value"] . Do you use them? Think they’re used a lot? Let’s

compare how those are used with IDs and classes across the web.

Figure 2.9. Popularity of operators per ID attribute selector.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 29

https://almanac.httparchive.org/static/images/2019/css/fig9.png
https://almanac.httparchive.org/static/images/2019/css/fig9.png

These operators are much more popular with class selectors than IDs, which feels natural since

a stylesheet usually has fewer ID selectors than class selectors, but still neat to see the uses of

all these combinations.

Classes per element

With the rise of OOCSS, atomic, and functional CSS strategies which can compose 10 or more

classes on an element to achieve a design look, perhaps we’d see some interesting results. The

query came back quite unexciting, with the median on mobile and desktop being 1 class per

element.

Figure 2.10. Popularity of operators per class attribute selector.

Figure 2.11. The median number of class names per class attribute (desktop and mobile).

1

Part I Chapter 2 : CSS

30 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig10.png
https://almanac.httparchive.org/static/images/2019/css/fig10.png

Layout

Flexbox

Flexbox46 is a container style that directs and aligns its children; that is, it helps with layout in a

constraint-based way. It had a quite rocky beginning on the web, as its specification went

through two or three quite drastic changes between 2010 and 2013. Fortunately, it settled and

was implemented across all browsers by 2014. Given that history, it had a slow adoption rate,

but it’s been a few years since then! It’s quite popular now and has many articles about it and

how to leverage it, but it’s still new in comparison to other layout tactics.

Quite the success story shown here, as nearly 50% of the web has flexbox usage in its

stylesheets.

Grid

Like flexbox, grid47 too went through a few spec alternations early on in its lifespan, but without

changing implementations in publicly-deployed browsers. Microsoft had grid in the first

versions of Windows 8, as the primary layout engine for its horizontally scrolling design style. It

was vetted there first, transitioned to the web, and then hardened by the other browsers until

Figure 2.12. Adoption of flexbox.

46. https://developer.mozilla.org/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox
47. https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 31

https://developer.mozilla.org/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox
https://almanac.httparchive.org/static/images/2019/css/fig12.png
https://almanac.httparchive.org/static/images/2019/css/fig12.png
https://developer.mozilla.org/docs/Web/CSS/CSS_Grid_Layout

its final release in 2017. It had a very successful launch in that nearly all browsers released their

implementations at the same time, so web developers just woke up one day to superb grid

support. Today, at the end of 2019, grid still feels like a new kid on the block, as folks are still

awakening to its power and capabilities.

This shows just how little the web development community has exercised and explored their

latest layout tool. We look forward to the eventual takeover of grid as the primary layout

engine folks lean on when building a site. For us authors, we love writing grid: we typically reach

for it first, then dial our complexity back as we realize and iterate on layout. It remains to be

seen what the rest of the world will do with this powerful CSS feature over the next few years.

Writing modes

The web and CSS are international platform features, and writing modes offer a way for HTML

and CSS to indicate a user’s preferred reading and writing direction within our elements.

Figure 2.13. Percent of websites using grid.

2%

Figure 2.14. Popularity of direction values.

Part I Chapter 2 : CSS

32 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig14.png
https://almanac.httparchive.org/static/images/2019/css/fig14.png

Typography

Web fonts per page

How many web fonts are you loading on your web page: 0? 10? The median number of web

fonts per page is 3!

Popular font families

A natural follow up to the inquiry of total number of fonts per page, is: what fonts are they?!

Designers, tune in, because you’ll now get to see if your choices are in line with what’s popular

or not.

Figure 2.15. Distribution of the number of web fonts loaded per page.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 33

https://almanac.httparchive.org/static/images/2019/css/fig15.png
https://almanac.httparchive.org/static/images/2019/css/fig15.png

Open Sans is a huge winner here, with nearly 1 in 4 CSS @font-family declarations

specifying it. We’ve definitely used Open Sans in projects at agencies.

It’s also interesting to note the differences between desktop and mobile adoption. For example,

mobile pages use Open Sans slightly less often than desktop. Meanwhile, they also use Roboto

slightly more often.

Font sizes

This is a fun one, because if you asked a user how many font sizes they feel are on a page, they’d

generally return a number of 5 or definitely less than 10. Is that reality though? Even in a design

system, how many font sizes are there? We queried the web and found the median to be 40 on

mobile and 38 on desktop. Might be time to really think hard about custom properties or

creating some reusable classes to help you distribute your type ramp.

Figure 2.16. Top web fonts.

Part I Chapter 2 : CSS

34 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig16.png
https://almanac.httparchive.org/static/images/2019/css/fig16.png

Spacing

Margins

A margin is the space outside of elements, like the space you demand when you push your arms

out from yourself. This often looks like the spacing between elements, but is not limited to that

effect. In a website or app, spacing plays a huge role in UX and design. Let’s see how much

margin spacing code goes into a stylesheet, shall we?

Figure 2.17. Distribution of the number of distinct font sizes per page.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 35

https://almanac.httparchive.org/static/images/2019/css/fig17.png
https://almanac.httparchive.org/static/images/2019/css/fig17.png

Quite a lot, it seems! The median desktop page has 96 distinct margin values and 104 on

mobile. That makes for a lot of unique spacing moments in your design. Curious how many

margins you have in your site? How can we make all this whitespace more manageable?

Logical properties

We estimate that the hegemony of margin-left and padding-top is of limited duration,

soon to be supplemented by their writing direction agnostic, successive, logical property

syntax. While we’re optimistic, current usage is quite low at 0.67% usage on desktop pages. To

us, this feels like a habit change we’ll need to develop as an industry, while hopefully training

new developers to use the new syntax.

z-index

Vertical layering, or stacking, can be managed with z-index in CSS. We were curious how

Figure 2.18. Distribution of the number of distinct margin values per page.

Figure 2.19. Percent of desktop and mobile pages that include logical properties.

0.6%

Part I Chapter 2 : CSS

36 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig18.png
https://almanac.httparchive.org/static/images/2019/css/fig18.png

many different values folks use in their sites. The range of what z-index accepts is

theoretically infinite, bounded only by a browser’s variable size limitations. Are all those stack

positions used? Let’s see!

Popular z-index values

From our work experience, any number of 9’s seemed to be the most popular choice. Even

though we taught ourselves to use the lowest number possible, that’s not the communal norm.

So what is then?! If folks need things on top, what are the most popular z-index numbers to

pass in? Put your drink down; this one is funny enough you might lose it.

Figure 2.20. Distribution of the number of distinct z-index values per page.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 37

https://almanac.httparchive.org/static/images/2019/css/fig20.png
https://almanac.httparchive.org/static/images/2019/css/fig20.png

Figure 2.21. Most frequently used z-index values.

Figure 2.22. The largest known z-index value.

999
999
999
999
999
999
999
999
999
999
999
999
999
999
999
999

9999999999999999999999999999 !important

Part I Chapter 2 : CSS

38 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig21.png
https://almanac.httparchive.org/static/images/2019/css/fig21.png

Decoration

Filters

Filters are a fun and great way to modify the pixels the browser intends to draw to the screen.

It’s a post-processing effect that is done against a flat version of the element, node, or layer that

it’s being applied to. Photoshop made them easy to use, then Instagram made them accessible

to the masses through bespoke, stylized combinations. They’ve been around since about 2012,

there are 10 of them, and they can be combined to create unique effects.

We were excited to see that 78% of stylesheets contain the filter property! That number

was also so high it seemed a little fishy, so we dug in and sought to explain the high number.

Because let’s be honest, filters are neat, but they don’t make it into all of our applications and

projects. Unless!

Upon further investigation, we discovered FontAwesome48’s stylesheet comes with some

filter usage, as well as a YouTube49 embed. Therefore, we believe filter snuck in the back

door by piggybacking onto a couple very popular stylesheets. We also believe that -ms-
filter presence could have been included as well, contributing to the high percent of use.

Blend modes

Blend modes are similar to filters in that they are a post-processing effect that are run against a

flat version of their target elements, but are unique in that they are concerned with pixel

convergence. Said another way, blend modes are how 2 pixels should impact each other when

they overlap. Whichever element is on the top or the bottom will affect the way that the blend

mode manipulates the pixels. There are 16 blend modes -- let’s see which ones are the most

popular.

Figure 2.23. Percent of pages that include a stylesheet with the filter property.

78%

48. https://fontawesome.com
49. https://youtube.com

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 39

https://fontawesome.com/
https://youtube.com/

Overall, usage of blend modes is much lower than of filters, but is still enough to be considered

moderately used.

In a future edition of the Web Almanac, it would be great to drill down into blend mode usage to

get an idea of the exact modes developers are using, like multiply, screen, color-burn, lighten,

etc.

Animation

Transitions

CSS has this awesome interpolation power that can be simply used by just writing a single rule

on how to transition those values. If you’re using CSS to manage states in your app, how often

are you employing transitions to do the task? Let’s query the web!

Figure 2.24. Percent of pages that include a stylesheet with the *-blend-mode property.

8%

Figure 2.25. Distribution of the number of transitions per page.

Part I Chapter 2 : CSS

40 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig25.png
https://almanac.httparchive.org/static/images/2019/css/fig25.png

That’s pretty good! We did see animate.css as a popular library to include, which brings in a

ton of transition animations, but it’s still nice to see folks are considering transitioning their UIs.

Keyframe animations

CSS keyframe animations are a great solution for your more complex animations or transitions.

They allow you to be more explicit which provides higher control over the effects. They can be

small, like one keyframe effect, or be large with many many keyframe effects composed into a

robust animation. The median number of keyframe animations per page is much lower than CSS

transitions.

Media queries

Media queries let CSS hook into various system-level variables in order to adapt appropriately

for the visiting user. Some of these queries could handle print styles, projector screen styles,

and viewport/screen size. For a long time, media queries were primarily leveraged for their

viewport knowledge. Designers and developers could adapt their layouts for small screens,

large screens, and so forth. Later, the web started bringing more and more capabilities and

queries, meaning media queries can now manage accessibility features on top of viewport

features.

Figure 2.26. Distribution of the number of keyframes per page.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 41

https://almanac.httparchive.org/static/images/2019/css/fig26.png
https://almanac.httparchive.org/static/images/2019/css/fig26.png

A good place to start with media queries, is just about how many are used per page? How many

different moments or contexts does the typical page feel they want to respond to?

Popular media query breakpoint sizes

For viewport media queries, any type of CSS unit can be passed into the query expression for

evaluation. In earlier days, folks would pass em and px into the query, but more units were

added over time, making us very curious about what types of sizes were commonly found

across the web. We assume most media queries will follow popular device sizes, but instead of

assuming, let’s look at the data!

Figure 2.27. Distribution of the number of media queries per page.

Part I Chapter 2 : CSS

42 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig27.png
https://almanac.httparchive.org/static/images/2019/css/fig27.png

Figure 2.28 above shows that part of our assumptions were correct: there’s certainly a high

amount of phone specific sizes in there, but there’s also some that aren’t. It’s interesting also

how it’s very pixel dominant, with a few trickling entries using em beyond the scope of this

chart.

Portrait vs landscape usage

The most popular query value from the popular breakpoint sizes looks to be 768px , which

made us curious. Was this value primarily used to switch to a portrait layout, since it could be

based on an assumption that 768px represents the typical mobile portrait viewport? So we

ran a follow up query to see the popularity of using the portrait and landscape modes:

Figure 2.28. Most frequently used snap points used in media queries.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 43

https://almanac.httparchive.org/static/images/2019/css/fig28.png
https://almanac.httparchive.org/static/images/2019/css/fig28.png

Interestingly, portrait isn’t used very much, whereas landscape is used much more. We

can only assume that 768px has been reliable enough as the portrait layout case that it’s

reached for much less. We also assume that folks on a desktop computer, testing their work,

can’t trigger portrait to see their mobile layout as easily as they can just squish the browser.

Hard to tell, but the data is fascinating.

Most popular unit types

In the width and height media queries we’ve seen so far, pixels look like the dominant unit of

choice for developers looking to adapt their UI to viewports. We wanted to exclusively query

this though, and really take a look at the types of units folks use. Here’s what we found.

Figure 2.29. Adoption of media query orientation modes.

Part I Chapter 2 : CSS

44 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig29.png
https://almanac.httparchive.org/static/images/2019/css/fig29.png

min-width vs max-width

When folks write a media query, are they typically checking for a viewport that’s over or under

a specific range, or both, checking if it’s between a range of sizes? Let’s ask the web!

Figure 2.30. Adoption of units in media query snap points.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 45

https://almanac.httparchive.org/static/images/2019/css/fig30.png
https://almanac.httparchive.org/static/images/2019/css/fig30.png

No clear winners here; max-width and min-width are nearly equally used.

Print and speech

Websites feel like digital paper, right? As users, it’s generally known that you can just hit print

from your browser and turn that digital content into physical content. A website isn’t required

to change itself for that use case, but it can if it wants to! Lesser known is the ability to adjust

your website in the use case of it being read by a tool or robot. So just how often are these

features taken advantage of?

Figure 2.31. Adoption of properties used in media query snap points.

Part I Chapter 2 : CSS

46 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig31.png
https://almanac.httparchive.org/static/images/2019/css/fig31.png

Page-level stats

Stylesheets

How many stylesheets do you reference from your home page? How many from your apps? Do

you serve more or less to mobile vs desktop? Here’s a chart of everyone else!

Figure 2.32. Adoption of the all, print, screen, and speech types of media queries.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 47

https://almanac.httparchive.org/static/images/2019/css/fig32.png
https://almanac.httparchive.org/static/images/2019/css/fig32.png

Stylesheet names

What do you name your stylesheets? Have you been consistent throughout your career? Have

you slowly converged or consistently diverged? This chart shows a small glimpse into library

popularity, but also a large glimpse into popular names of CSS files.

Figure 2.33. Distribution of the number of stylesheets loaded per page.

Part I Chapter 2 : CSS

48 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig33.png
https://almanac.httparchive.org/static/images/2019/css/fig33.png

Look at all those creative file names! style, styles, main, default, all. One stood out though, do

you see it? BfWyFJ2Rl5s.css takes the number four spot for most popular. We went

researching it a bit and our best guess is that it’s related to Facebook “like” buttons. Do you

know what that file is? Leave a comment, because we’d love to hear the story.

Stylesheet size

How big are these stylesheets? Is our CSS size something to worry about? Judging by this data,

Figure 2.34. Most frequently used stylesheet names.

Stylesheet name Desktop Mobile

style.css 2.43% 2.55%

font-awesome.min.css 1.86% 1.92%

bootstrap.min.css 1.09% 1.11%

BfWyFJ2Rl5s.css 0.67% 0.66%

style.min.css?ver=5.2.2 0.64% 0.67%

styles.css 0.54% 0.55%

style.css?ver=5.2.2 0.41% 0.43%

main.css 0.43% 0.39%

bootstrap.css 0.40% 0.42%

font-awesome.css 0.37% 0.38%

style.min.css 0.37% 0.37%

styles__ltr.css 0.38% 0.35%

default.css 0.36% 0.36%

reset.css 0.33% 0.37%

styles.css?ver=5.1.3 0.32% 0.35%

custom.css 0.32% 0.33%

print.css 0.32% 0.28%

responsive.css 0.28% 0.31%

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 49

our CSS is not a main offender for page bloat.

See the Page Weight chapter for a more in-depth look at the number of bytes websites are

loading for each content type.

Libraries

It’s common, popular, convenient, and powerful to reach for a CSS library to kick start a new

project. While you may not be one to reach for a library, we’ve queried the web in 2019 to see

which are leading the pack. If the results astound you, like they did us, I think it’s an interesting

clue to just how small of a developer bubble we can live in. Things can feel massively popular,

but when the web is inquired, reality is a bit different.

Figure 2.35. Distribution of the number of stylesheet bytes (KB) loaded per page.

Part I Chapter 2 : CSS

50 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig35.png
https://almanac.httparchive.org/static/images/2019/css/fig35.png

This chart suggests that Bootstrap50 is a valuable library to know to assist with getting a job.

Look at all the opportunity there is to help! It’s also worth noting that this is a positive signal

chart only: the math doesn’t add up to 100% because not all sites are using a CSS framework. A

little bit over half of all sites are not using a known CSS framework. Very interesting, no?!

Reset utilities

CSS reset utilities intend to normalize or create a baseline for native web elements. In case you

didn’t know, each browser serves its own stylesheet for all HTML elements, and each browser

gets to make their own unique decisions about how those elements look or behave. Reset

utilities have looked at these files, found their common ground (or not), and ironed out any

differences so you as a developer can style in one browser and have reasonable confidence it

will look the same in another.

Figure 2.36. Percent of pages that include a given CSS library.

Library Desktop Mobile

Bootstrap 27.8% 26.9%

animate.css 6.1% 6.4%

ZURB Foundation 2.5% 2.6%

UIKit 0.5% 0.6%

Material Design Lite 0.3% 0.3%

Materialize CSS 0.2% 0.2%

Pure CSS 0.1% 0.1%

Angular Material 0.1% 0.1%

Semantic-ui 0.1% 0.1%

Bulma 0.0% 0.0%

Ant Design 0.0% 0.0%

tailwindcss 0.0% 0.0%

Milligram 0.0% 0.0%

Clarity 0.0% 0.0%

50. https://getbootstrap.com/

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 51

https://getbootstrap.com/

So let’s take a peek at how many sites are using one! Their existence seems quite reasonable, so

how many folks agree with their tactics and use them in their sites?

Turns out that about one-third of the web is using normalize.css , which could be

considered a more gentle approach to the task then a reset is. We looked a little deeper, and it

turns out that Bootstrap includes normalize.css , which likely accounts for a massive

amount of its usage. It’s worth noting as well that normalize.css has more adoption than

Bootstrap, so there are plenty of folks using it on its own.

@supports and @import

CSS @supports is a way for the browser to check whether a particular property-value

combination is parsed as valid, and then apply styles if the check returns as true.

Figure 2.37. Adoption of CSS reset utilities.

Part I Chapter 2 : CSS

52 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/css/fig37.png
https://almanac.httparchive.org/static/images/2019/css/fig37.png
https://necolas.github.io/normalize.css
https://necolas.github.io/normalize.css

Considering @supports was implemented across most browsers in 2013, it’s not too

surprising to see a high amount of usage and adoption. We’re impressed at the mindfulness of

developers here. This is considerate coding! 30% of all websites are checking for some display

related support before using it.

An interesting follow up to this is that there’s more usage of @supports than @imports ! We

did not expect that! @import has been in browsers since 1994.

Conclusion

There is so much more here to datamine! Many of the results surprised us, and we can only

hope that they’ve surprised you as well. This surprising data set made the summarizing very fun,

and left us with lots of clues and trails to investigate if we want to hunt down the reasons why

some of the results are the way they are.

Which results did you find the most alarming? Which results make you head to your codebase

for a quick query?

We felt the biggest takeaway from these results is that custom properties offer the most bang

for your buck in terms of performance, DRYness, and scalability of your stylesheets. We look

forward to scrubbing the internet’s stylesheets again, hunting for new datums and provocative

chart treats. Reach out to @una or @argyleink in the comments with your queries, questions,

Figure 2.38. Popularity of CSS “at” rules.

Part I Chapter 2 : CSS

2019 Web Almanac by HTTP Archive 53

https://almanac.httparchive.org/static/images/2019/css/fig38.png
https://almanac.httparchive.org/static/images/2019/css/fig38.png
https://twitter.com/una
https://twitter.com/argyleink

and assertions. We’d love to hear them!

Authors

Una Kravets

@una una http://una.im

Una Kravets is a Brooklyn-based international public speaker, technical writer, and

Developer Advocate for Material Design at Google. Una hosts the Designing the

Browser51 web series and the Toolsday52 developer podcast. Follow her on Twitter53

to find her musings on creative CSS, user experiences, and web development best

practices.

Adam Argyle

@argyleink argyleink https://nerdy.dev

Adam Argyle is a Google Chrome developer relations member focused on CSS;

He’s a web addict with an insatiable lust for great UX & UI; Find him on the web

@argyleink or checkout his website https://nerdy.dev.

51. https://www.youtube.com/watch?v=YK8GZBx3hpg
52. https://spec.fm/podcasts/toolsday
53. https://twitter.com/una

Part I Chapter 2 : CSS

54 2019 Web Almanac by HTTP Archive

https://twitter.com/una
https://github.com/una
http://una.im/
https://www.youtube.com/watch?v=YK8GZBx3hpg
https://www.youtube.com/watch?v=YK8GZBx3hpg
https://spec.fm/podcasts/toolsday
https://twitter.com/una
https://twitter.com/argyleink
https://github.com/argyleink
https://nerdy.dev/
https://twitter.com/argyleink
https://nerdy.dev/

Part I Chapter 3

Markup

Written by Brian Kardell
Reviewed by Simon Pieters, Tommy Hodgins, and Matthew Phillips
Analyzed and edited by Rick Viscomi

Introduction

In 2005, Ian “Hixie” Hickson posted some analysis of markup data54 building upon various

previous work. Much of this work aimed to investigate class names to see if there were

common informal semantics that were being adopted by developers which it might make sense

to standardize upon. Some of this research helped inform new elements in HTML5.

14 years later, it’s time to take a fresh look. Since then, we’ve also had the introduction of

Custom Elements55 and the Extensible Web Manifesto56 encouraging that we find better ways to

pave the cowpaths by allowing developers to explore the space of elements themselves and

allow standards bodies to act more like dictionary editors57. Unlike CSS class names, which

might be used for anything, we can be far more certain that authors who used a non-standard

element really intended this to be an element.

54. https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
55. https://developer.mozilla.org/docs/Web/Web_Components/Using_custom_elements
56. https://extensiblewebmanifesto.org/
57. https://bkardell.com/blog/Dropping-The-F-Bomb-On-Standards.html

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 55

https://web.archive.org/web/20060203035414/http://code.google.com/webstats/index.html
https://developer.mozilla.org/docs/Web/Web_Components/Using_custom_elements
https://extensiblewebmanifesto.org/
https://bkardell.com/blog/Dropping-The-F-Bomb-On-Standards.html

As of July 2019, the HTTP Archive has begun collecting all used element names in the DOM for

about 4.4 million desktop home pages, and about 5.3 million mobile home pages which we can

now begin to research and dissect. (Learn more about our Methodology.)

This crawl encountered over 5,000 distinct non-standard element names in these pages, so we

capped the total distinct number of elements that we count to the ’top’ (explained below) 5,048.

Methodology

Names of elements on each page were collected from the DOM itself, after the initial run of

JavaScript.

Looking at a raw frequency count isn’t especially helpful, even for standard elements: About

25% of all elements encountered are <div> . About 17% are <a> , about 11% are --

and those are the only elements that account for more than 10% of occurrences. Languages are

generally like this58; a small number of terms are astoundingly used by comparison. Further,

when we start looking at non-standard elements for uptake, this would be very misleading as

one site could use a certain element a thousand times and thus make it look artificially very

popular.

Instead, as in Hixie’s original study, what we will look at is how many sites include each element

at least once in their homepage.

Note: This is, itself, not without some potential biases. Popular products can be used by several sites,

which introduce non-standard markup, even “invisibly” to individual authors. Thus, care must be taken

to acknowledge that usage doesn’t necessarily imply direct author knowledge and conscious adoption

as much as it does the servicing of a common need, in a common way. During our research, we found

several examples of this, some we will call out.

Top elements and general info

In 2005, Hixie’s survey listed the top few most commonly used elements on pages. The top 3

were html , head and body which he noted as interesting because they are optional and

created by the parser if omitted. Given that we use the post-parsed DOM, they’ll show up

universally in our data. Thus, we’ll begin with the 4th most used element. Below is a comparison

of the data from then to now (I’ve included the frequency comparison here as well just for fun).

58. https://www.youtube.com/watch?v=fCn8zs912OE

Part I Chapter 3 : Markup

56 2019 Web Almanac by HTTP Archive

https://www.youtube.com/watch?v=fCn8zs912OE

Elements per page

Figure 3.1. Comparison of the top elements from 2005 to 2019.

2005 (per site) 2019 (per site) 2019 (frequency)

title title div

a meta a

img a span

meta div li

br link img

table script script

td img p

tr span option

Figure 3.2. Distribution of Hixie’s 2005 analysis of element frequencies.

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 57

https://almanac.httparchive.org/static/images/2019/markup/hixie_elements_per_page.png
https://almanac.httparchive.org/static/images/2019/markup/hixie_elements_per_page.png

Comparing the latest data in Figure 3.3 to that of Hixie’s report from 2005 in Figure 3.2, we can

see that the average size of DOM trees has gotten bigger.

Figure 3.3. Element frequencies as of 2019.

Figure 3.4. Histogram of Hixie’s 2005 analysis of element types per page.

Part I Chapter 3 : Markup

58 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/markup/fig3.png
https://almanac.httparchive.org/static/images/2019/markup/fig3.png
https://almanac.httparchive.org/static/images/2019/markup/hixie_element_types_per_page.png
https://almanac.httparchive.org/static/images/2019/markup/hixie_element_types_per_page.png

We can see that both the average number of types of elements per page has increased, as well

as the maximum numbers of unique elements that we encounter.

Custom elements

Most of the elements we recorded are custom (as in simply ’not standard’), but discussing which

elements are and are not custom can get a little challenging. Written down in some spec or

proposal somewhere are, actually, quite a few elements. For purposes here, we considered 244

elements as standard (though, some of them are deprecated or unsupported):

• 145 Elements from HTML

• 68 Elements from SVG

• 31 Elements from MathML

In practice, we encountered only 214 of these:

• 137 from HTML

• 54 from SVG

• 23 from MathML

Figure 3.5. Histogram of element types per page as of 2019.

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 59

https://almanac.httparchive.org/static/images/2019/markup/fig5.png
https://almanac.httparchive.org/static/images/2019/markup/fig5.png

In the desktop dataset we collected data for the top 4,834 non-standard elements that we

encountered. Of these:

• 155 (3%) are identifiable as very probable markup or escaping errors (they contain

characters in the parsed tag name which imply that the markup is broken)

• 341 (7%) use XML-style colon namespacing (though, as HTML, they don’t use actual

XML namespaces)

• 3,207 (66%) are valid custom element names

• 1,211 (25%) are in the global namespace (non-standard, having neither dash, nor

colon)

• 216 of these we have flagged as possible typos as they are longer than 2 characters

and have a Levenshtein distance of 1 from some standard element name like

<cript> , <spsn> or <artice> . Some of these (like <jdiv>), however, are

certainly intentional.

Additionally, 15% of desktop pages and 16% of mobile pages contain deprecated elements.

Note: A lot of this is very likely due to the use of products rather than individual authors continuing to

manually create this markup.

Figure 3.6 above shows the top 10 most frequently used deprecated elements. Most of these

Figure 3.6. Most frequently used deprecated elements.

Part I Chapter 3 : Markup

60 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/markup/fig6.png
https://almanac.httparchive.org/static/images/2019/markup/fig6.png

can seem like very small numbers, but perspective matters.

Perspective on value and usage

In order to discuss numbers about the use of elements (standard, deprecated or custom), we

first need to establish some perspective.

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 61

In Figure 3.7 above, the top 150 element names, counting the number of pages where they

appear, are shown. Note how quickly use drops off.

Figure 3.7. Top 150 elements (full detail).

Part I Chapter 3 : Markup

62 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/markup/fig7_full.png
https://almanac.httparchive.org/static/images/2019/markup/fig7_full.png
https://almanac.httparchive.org/static/images/2019/markup/fig7_full.png

Only 11 elements are used on more than 90% of pages:

• <html>

• <head>

• <body>

• <title>

• <meta>

• <a>

• <div>

• <link>

• <script>

•

•

There are only 15 other elements that occur on more than 50% of pages:

•

•

• <p>

• <style>

• <input>

•

• <form>

• <h2>

• <h1>

• <iframe>

• <h3>

• <button>

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 63

• <footer>

• <header>

• <nav>

And there are only 40 other elements that occur on more than 5% of pages.

Even <video> , for example, doesn’t make that cut. It appears on only 4% of desktop pages in

the dataset (3% on mobile). While these numbers sound very low, 4% is actually quite popular

by comparison. In fact, only 98 elements occur on more than 1% of pages.

It’s interesting, then, to see what the distribution of these elements looks like and which ones

have more than 1% use.

Part I Chapter 3 : Markup

64 2019 Web Almanac by HTTP Archive

Figure 3.8 shows the rank of each element and which category they fall into. I’ve separated the

data points into discrete sets simply so that they can be viewed (otherwise there just aren’t

Figure 3.8. Element popularity categorized by standardization.

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 65

https://rainy-periwinkle.glitch.me/scatter/html
https://rainy-periwinkle.glitch.me/scatter/html

enough pixels to capture all that data), but they represent a single ’line’ of popularity; the

bottom-most being the most common, the top-most being the least common. The arrow points

to the end of elements that appear in more than 1% of the pages.

You can observe two things here. First, the set of elements that have more than 1% use are not

exclusively HTML. In fact, 27 of the most popular 100 elements aren’t even HTML - they are SVG!

And there are non-standard tags at or very near that cutoff too! Second, note that a whole lot of

HTML elements are used by less than 1% of pages.

So, are all of those elements used by less than 1% of pages “useless”? Definitely not. This is why

establishing perspective matters. There are around two billion web sites on the web59. If

something appears on 0.1% of all websites in our dataset, we can extrapolate that this

represents perhaps two million web sites in the whole web. Even 0.01% extrapolates to two

hundred thousand sites. This is also why removing support for elements, even very old ones

which we think aren’t great ideas, is a very rare occurrence. Breaking hundreds of thousands or

millions of sites just isn’t a thing that browser vendors can do lightly.

Many elements, even the native ones, appear on fewer than 1% of pages and are still very

important and successful. <code> , for example, is an element that I both use and encounter a

lot. It’s definitely useful and important, and yet it is used on only 0.57% of these pages. Part of

this is skewed based on what we are measuring; home pages are generally less likely to include

certain kinds of things (like <code> for example). Home pages serve a less general purpose

than, for example, headings, paragraphs, links and lists. However, the data is generally useful.

We also collected information about which pages contained an author-defined (not native)

.shadowRoot . About 0.22% of desktop pages and 0.15% of mobile pages had a shadow root.

This might not sound like a lot, but it is roughly 6.5k sites in the mobile dataset and 10k sites on

the desktop and is more than several HTML elements. <summary> for example, has about

equivalent use on the desktop and it is the 146th most popular element. <datalist> appears

on 0.04% of homepages and it’s the 201st most popular element.

In fact, over 15% of elements we’re counting as defined by HTML are outside the top 200 in the

desktop dataset . <meter> is the least popular “HTML5 era” element, which we can define as

2004-2011, before HTML moved to a Living Standard model. It is around the 1,000th most

popular element. <slot> , the most recently introduced element (April 2016), is only around

the 1,400th most popular element.

59. https://www.websitehostingrating.com/internet-statistics-facts/

Part I Chapter 3 : Markup

66 2019 Web Almanac by HTTP Archive

https://www.websitehostingrating.com/internet-statistics-facts/

Lots of data: real DOM on the real web

With this perspective in mind about what use of native/standard features looks like in the

dataset, let’s talk about the non-standard stuff.

You might expect that many of the elements we measured are used only on a single web page,

but in fact all of the 5,048 elements appear on more than one page. The fewest pages an

element in our dataset appears on is 15. About a fifth of them occur on more than 100 pages.

About 7% occur on more than 1,000 pages.

To help analyze the data, I hacked together a little tool with Glitch60. You can use this tool

yourself, and please share a permalink back with the @HTTPArchive along with your

observations. (Tommy Hodgins has also built a similar CLI tool61 which you can use to explore.)

Let’s look at some data.

Products (and libraries) and their custom markup

For several non-standard elements, their prevalence may have more to do with their inclusion

in popular third-party tools than first-party adoption. For example, the <fb:like> element is

found on 0.3% of pages not because site owners are explicitly writing it out but because they

include the Facebook widget. Many of the elements Hixie mentioned 14 years ago62 seem to

have dwindled, but others are still pretty huge:

• Popular elements created by Claris Home Page63 (whose last stable release was 21

years ago) still appear on over 100 pages. <x-claris-window> , for example,

appears on 130 pages.

• Some of the <actinic:*> elements from British ecommerce provider Oxatis64

appear on even more pages. For example, <actinic:basehref> still shows up on

154 pages in the desktop data.

• Macromedia’s elements seem to have largely disappeared. Only one element,

<mm:endlock> , appears on our list and on only 22 pages.

• Adobe Go-Live’s <csscriptdict> still appears on 640 pages in the desktop

dataset.

• Microsoft Office’s <o:p> element still appears on 0.5% of desktop pages, over 20k

60. https://rainy-periwinkle.glitch.me
61. https://github.com/tomhodgins/hade
62. https://web.archive.org/web/20060203031245/http://code.google.com/webstats/2005-12/editors.html
63. https://en.wikipedia.org/wiki/Claris_Home_Page
64. https://www.oxatis.co.uk

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 67

https://rainy-periwinkle.glitch.me/
https://twitter.com/HTTPArchive
https://github.com/tomhodgins/hade
https://web.archive.org/web/20060203031245/http://code.google.com/webstats/2005-12/editors.html
https://en.wikipedia.org/wiki/Claris_Home_Page
https://rainy-periwinkle.glitch.me/permalink/28b0b7abb3980af793a2f63b484e7815365b91c04ae625dd4170389cc1ab0a52.html
https://rainy-periwinkle.glitch.me/permalink/28b0b7abb3980af793a2f63b484e7815365b91c04ae625dd4170389cc1ab0a52.html
https://www.oxatis.co.uk/
https://rainy-periwinkle.glitch.me/permalink/30dfca0fde9fad9b2ec58b12cb2b0271a272fb5c8970cd40e316adc728a09d19.html
https://rainy-periwinkle.glitch.me/permalink/30dfca0fde9fad9b2ec58b12cb2b0271a272fb5c8970cd40e316adc728a09d19.html
https://rainy-periwinkle.glitch.me/permalink/836d469b8c29e5892dedfd43556ed1b0e28a5647066858ca1c395f5b30f8485c.html
https://rainy-periwinkle.glitch.me/permalink/836d469b8c29e5892dedfd43556ed1b0e28a5647066858ca1c395f5b30f8485c.html
https://rainy-periwinkle.glitch.me/permalink/579abc77652df3ac2db1338d17aab0a8dc737b9d945510b562085d8522b18799.html
https://rainy-periwinkle.glitch.me/permalink/579abc77652df3ac2db1338d17aab0a8dc737b9d945510b562085d8522b18799.html

pages.

But there are plenty of newcomers that weren’t in Hixie’s original report too, and with even

bigger numbers.

• <ym-measure> is a tag injected by Yandex’s Metrica analytics package65. It’s used

on more than 1% of desktop and mobile pages, solidifying its place in the top 100

most used elements. That’s huge!

• <g:plusone> from the now-defunct Google Plus occurs on over 21k pages.

• Facebook’s <fb:like> occurs on 14k mobile pages.

• Similarly, <fb:like-box> occurs on 7.8k mobile pages.

• <app-root> , which is generally included in frameworks like Angular, appears on

8.2k mobile pages.

Let’s compare these to a few of the native HTML elements that are below the 5% bar, for

perspective.

You could discover interesting insights like these all day long.

Figure 3.9. Popularity of product-specific and native elements under 5% adoption.

65. https://www.npmjs.com/package/yandex-metrica-watch

Part I Chapter 3 : Markup

68 2019 Web Almanac by HTTP Archive

https://rainy-periwinkle.glitch.me/permalink/e8bf0130c4f29b28a97b3c525c09a9a423c31c0c813ae0bd1f227bd74ddec03d.html
https://rainy-periwinkle.glitch.me/permalink/e8bf0130c4f29b28a97b3c525c09a9a423c31c0c813ae0bd1f227bd74ddec03d.html
https://www.npmjs.com/package/yandex-metrica-watch
https://rainy-periwinkle.glitch.me/permalink/a532f18bbfd1b565b460776a64fa9a2cdd1aa4cd2ae0d37eb2facc02bfacb40c.html
https://rainy-periwinkle.glitch.me/permalink/a532f18bbfd1b565b460776a64fa9a2cdd1aa4cd2ae0d37eb2facc02bfacb40c.html
https://rainy-periwinkle.glitch.me/permalink/2e2f63858f7715ef84d28625344066480365adba8da8e6ca1a00dfdde105669a.html
https://rainy-periwinkle.glitch.me/permalink/2e2f63858f7715ef84d28625344066480365adba8da8e6ca1a00dfdde105669a.html
https://rainy-periwinkle.glitch.me/permalink/5a964079ac2a3ec1b4f552503addd406d02ec4ddb4955e61f54971c27b461984.html
https://rainy-periwinkle.glitch.me/permalink/5a964079ac2a3ec1b4f552503addd406d02ec4ddb4955e61f54971c27b461984.html
https://rainy-periwinkle.glitch.me/permalink/6997d689f56fe77e5ce345cfb570adbd42d802393f4cc175a1b974833a0e3cb5.html
https://rainy-periwinkle.glitch.me/permalink/6997d689f56fe77e5ce345cfb570adbd42d802393f4cc175a1b974833a0e3cb5.html
https://almanac.httparchive.org/static/images/2019/markup/fig9.png
https://almanac.httparchive.org/static/images/2019/markup/fig9.png

Here’s one that’s a little different: popular elements could be caused by outright errors in

products. For example, <pclass="ddc-font-size-large"> occurs on over 1,000 sites.

This was thanks to a missing space in a popular “as-a-service” kind of product. Happily, we

reported this error during our research and it was quickly fixed.

In his original paper, Hixie mentions that:

However, as mentioned above, this is not universal. Over 25% of the non-standard elements

that we captured don’t use any kind of namespacing strategy to avoid polluting the global

namespace. For example, here is a list of 1157 elements like that from the mobile dataset66.

Many of those, as you can see, are likely to be non-problematic as they have obscure names,

misspellings and so on. But at least a few probably present some challenges. You’ll note, for

example, that <toast> (which Googlers recently tried to propose as <std-toast>) appears

in this list.

There are some popular elements that are probably not so challenging:

• <ymaps> from Yahoo Maps appears on ~12.5k mobile pages.

• <cufon> and <cufontext> from a font replacement library from 2008, appear

on ~10.5k mobile pages.

• The <jdiv> element, which appears to be injected by the Jivo chat product,

appears on ~40.3k mobile pages,

Placing these into our same chart as above for perspective looks something like this (again, it

varies slightly based on the dataset)

The good thing, if we can be forgiven for trying to remain optimistic in the face

of all this non-standard markup, is that at least these elements are all clearly

using vendor-specific names. This massively reduces the likelihood that

standards bodies will invent elements and attributes that clash with any of

them. "

66. https://rainy-periwinkle.glitch.me/permalink/53567ec94b328de965eb821010b8b5935b0e0ba316e833267dc04f1fb3b53bd5.html

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 69

https://rainy-periwinkle.glitch.me/permalink/53567ec94b328de965eb821010b8b5935b0e0ba316e833267dc04f1fb3b53bd5.html
https://www.chromestatus.com/feature/5674896879255552
https://www.chromestatus.com/feature/5674896879255552
https://rainy-periwinkle.glitch.me/permalink/2ba66fb067dce29ecca276201c37e01aa7fe7c191e6be9f36dd59224f9a36e16.html
https://rainy-periwinkle.glitch.me/permalink/2ba66fb067dce29ecca276201c37e01aa7fe7c191e6be9f36dd59224f9a36e16.html
https://rainy-periwinkle.glitch.me/permalink/5cfe2db53aadf5049e32cf7db0f7f6d8d2f1d4926d06467d9bdcd0842d943a17.html
https://rainy-periwinkle.glitch.me/permalink/5cfe2db53aadf5049e32cf7db0f7f6d8d2f1d4926d06467d9bdcd0842d943a17.html
https://rainy-periwinkle.glitch.me/permalink/5cfe2db53aadf5049e32cf7db0f7f6d8d2f1d4926d06467d9bdcd0842d943a17.html
https://rainy-periwinkle.glitch.me/permalink/976b0cf78c73d125644d347be9e93e51d3a9112e31a283259c35942bda06e989.html
https://rainy-periwinkle.glitch.me/permalink/976b0cf78c73d125644d347be9e93e51d3a9112e31a283259c35942bda06e989.html

The interesting thing about these results is that they also introduce a few other ways that our

tool can come in very handy. If we’re interested in exploring the space of the data, a very

specific tag name is just one possible measure. It’s definitely the strongest indicator if we can

find good “slang” developing. However, what if that’s not all we’re interested in?

Common use cases and solutions

What if, for example, we were interested in people solving common use cases? This could be

because we’re looking for solutions to use cases that we currently have ourselves, or for

researching more broadly what common use cases people are solving with an eye toward

incubating some standardization effort. Let’s take a common example: tabs. Over the years

there have been a lot of requests for things like tabs. We can use a fuzzy search here and find

that there are many variants of tabs67. It’s a little harder to count usage here since we can’t as

easily distinguish if two elements appear on the same page, so the count provided there

conservatively simply takes the one with the largest count. In most cases the real number of

pages is probably significantly larger.

There are also lots of accordions68, dialogs69, at least 65 variants of carousels70, lots of stuff about

Figure 3.10. Other popular elements in the context of product-specific and native elements with
under 5% adoption.

67. https://rainy-periwinkle.glitch.me/permalink/c6d39f24d61d811b55fc032806cade9f0be437dcb2f5735a4291adb04aa7a0ea.html
68. https://rainy-periwinkle.glitch.me/permalink/e573cf279bf1d2f0f98a90f0d7e507ac8dbd3e570336b20c6befc9370146220b.html
69. https://rainy-periwinkle.glitch.me/permalink/0bb74b808e7850a441fc9b93b61abf053efc28f05e0a1bc2382937e3b78695d9.html
70. https://rainy-periwinkle.glitch.me/permalink/651e592cb2957c14cdb43d6610b6acf696272b2fbd0d58a74c283e5ad4c79a12.html

Part I Chapter 3 : Markup

70 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/markup/fig10.png
https://almanac.httparchive.org/static/images/2019/markup/fig10.png
https://rainy-periwinkle.glitch.me/permalink/c6d39f24d61d811b55fc032806cade9f0be437dcb2f5735a4291adb04aa7a0ea.html
https://rainy-periwinkle.glitch.me/permalink/e573cf279bf1d2f0f98a90f0d7e507ac8dbd3e570336b20c6befc9370146220b.html
https://rainy-periwinkle.glitch.me/permalink/0bb74b808e7850a441fc9b93b61abf053efc28f05e0a1bc2382937e3b78695d9.html
https://rainy-periwinkle.glitch.me/permalink/651e592cb2957c14cdb43d6610b6acf696272b2fbd0d58a74c283e5ad4c79a12.html

popups71, at least 27 variants of toggles and switches72, and so on.

Perhaps we could research why we need 92 variants of button related elements that aren’t a

native button73, for example, and try to fill the native gap.

If we notice popular things pop up (like <jdiv> , solving chat) we can take knowledge of things

we know (like, that is what <jdiv> is about, or <olark>) and try to look at at least 43 things

we’ve built for tackling that74 and follow connections to survey the space.

Conclusion

So, there’s lots of data here, but to summarize:

• Pages have more elements than they did 14 years ago, both on average and max.

• The lifetime of things on home pages is very long. Deprecating or discontinuing

things doesn’t make them go away, and it might never.

• There is a lot of broken markup out there in the wild (misspelled tags, missing

spaces, bad escaping, misunderstandings).

• Measuring what “useful” means is tricky. Lots of native elements don’t pass the 5%

bar, or even the 1% bar, but lots of custom ones do, and for lots of reasons. Passing

1% should definitely grab our attention at least, but perhaps so should 0.5%

because that is, according to the data, comparatively very successful.

• There is already a ton of custom markup out there. It comes in a lot of forms, but

elements containing a dash definitely seem to have taken off.

• We need to increasingly study this data and come up with good observations to

help find and pave the cowpaths.

That last one is where you come in. We’d love to tap into the creativity and curiosity of the

larger community to help explore this data using some of the tools (like https://rainy-

periwinkle.glitch.me/). Please share your interesting observations and help build our commons

of knowledge and understanding.

71. https://rainy-periwinkle.glitch.me/permalink/981967b19a9346ac466482c51b35c49fc1c1cc66177ede440ab3ee51a7912187.html
72. https://rainy-periwinkle.glitch.me/permalink/2e6827af7c9d2530cb3d2f39a3f904091c523c2ead14daccd4a41428f34da5e8.html
73. https://rainy-periwinkle.glitch.me/permalink/5ae67c941395ca3125e42909c2c3881e27cb49cfa9aaf1cf59471e3779435339.html
74. https://rainy-periwinkle.glitch.me/permalink/db8fc0e58d2d46d2e2a251ed13e3daab39eba864e46d14d69cc114ab5d684b00.html

Part I Chapter 3 : Markup

2019 Web Almanac by HTTP Archive 71

https://rainy-periwinkle.glitch.me/permalink/981967b19a9346ac466482c51b35c49fc1c1cc66177ede440ab3ee51a7912187.html
https://rainy-periwinkle.glitch.me/permalink/2e6827af7c9d2530cb3d2f39a3f904091c523c2ead14daccd4a41428f34da5e8.html
https://rainy-periwinkle.glitch.me/permalink/5ae67c941395ca3125e42909c2c3881e27cb49cfa9aaf1cf59471e3779435339.html
https://rainy-periwinkle.glitch.me/permalink/5ae67c941395ca3125e42909c2c3881e27cb49cfa9aaf1cf59471e3779435339.html
https://rainy-periwinkle.glitch.me/permalink/db8fc0e58d2d46d2e2a251ed13e3daab39eba864e46d14d69cc114ab5d684b00.html
https://rainy-periwinkle.glitch.me/permalink/db8fc0e58d2d46d2e2a251ed13e3daab39eba864e46d14d69cc114ab5d684b00.html
https://rainy-periwinkle.glitch.me/
https://rainy-periwinkle.glitch.me/

Author

Brian Kardell

@briankardell bkardell https://bkardell.com

Brian Kardell is developer advocate at Igalia75, standards contributor, blogger76, and

is currently the W3C Advisory Committee Representative for the Open JS

Foundation77. He was a founder of the Extensible Web Community Group and co-

author of The Extensible Web Manifesto78.

75. https://igalia.com
76. https://bkardell.com
77. https://openjsf.org/
78. https://extensiblewebmanifesto.org

Part I Chapter 3 : Markup

72 2019 Web Almanac by HTTP Archive

https://twitter.com/briankardell
https://github.com/bkardell
https://bkardell.com/
https://igalia.com/
https://bkardell.com/
https://openjsf.org/
https://openjsf.org/
https://extensiblewebmanifesto.org/

Part I Chapter 4

Media

Written by Colin Bendell and Doug Sillars
Reviewed by Ahmad Awais and Eric Portis
Analyzed by Doug Sillars and Rick Viscomi
Edited by Barry Pollard

Introduction

Images, animations, and videos are an important part of the web experience. They are

important for many reasons: they help tell stories, engage audiences, and provide artistic

expression in ways that often cannot be easily produced with other web technologies. The

importance of these media resources can be demonstrated in two ways: by the sheer volume of

bytes required to download for a page, and also the volume of pixels painted with media.

From a pure bytes perspective, HTTP Archive has historically reported79 an average of two-

thirds of resource bytes associated from media. From a distribution perspective, we can see

that virtually every web page depends on images and videos. Even at the tenth percentile, we

see that 44% of the bytes are from media and can rise to 91% of the total bytes at the 90th

percentile of pages.

79. https://legacy.httparchive.org/interesting.php#bytesperpage

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 73

https://legacy.httparchive.org/interesting.php#bytesperpage

While media are critical for the visual experience, the impact of this high volume of bytes has

two side effects.

First, the network overhead required to download these bytes can be large and in cellular or

slow network environments (like coffee shops or tethering when in an Uber) can dramatically

slow down the page performance. Images are a lower priority request by the browser but can

easily block CSS and JavaScript in the download. This by itself can delay the page rendering. Yet

at other times, the image content is the visual cue to the user that the page is ready. Slow

transfers of visual content, therefore, can give the perception of a slow web page.

The second impact is on the financial cost to the user. This is often an ignored aspect since it is

not a burden on the website owner but a burden to the end-user. Anecdotally, it has been

shared that some markets, like Japan80, see a drop in purchases by students near the end of the

month when data caps are reached, and users cannot see the visual content.

Further, the financial cost of visiting these websites in different parts of the world is

disproportionate. At the median and 90th percentile, the volume of image bytes is 1 MB and 1.9

MB respectively. Using WhatDoesMySiteCost.com81 we can see that the gross national income

(GNI) per capita cost to a user in Madagascar a single web page load at the 90th percentile

would cost 2.6% of the daily gross income. By contrast, in Germany this would be 0.3% of the

daily gross income.

Figure 4.1. Web page bytes: image and video versus other.

80. https://twitter.com/yoavweiss/status/1195036487538003968?s=20
81. https://whatdoesmysitecost.com/#gniCost

Part I Chapter 4 : Media

74 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig1_bytes_images_and_video_versus_other.png
https://almanac.httparchive.org/static/images/2019/media/fig1_bytes_images_and_video_versus_other.png
https://twitter.com/yoavweiss/status/1195036487538003968?s=20
https://whatdoesmysitecost.com/#gniCost

Looking at bytes per page results in just looking at the costs—to page performance and the

user—but it overlooks the benefits. These bytes are important to render pixels on the screen.

As such, we can see the importance of the images and video resources by also looking at the

number of media pixels used per page.

There are three metrics to consider when looking at pixel volume: CSS pixels, natural pixels, and

screen pixels:

• CSS pixel volume is from the CSS perspective of layout. This measure focuses on the

bounding boxes for which an image or video could be stretched or squeezed into. It

also does not take into the actual file pixels nor the screen display pixels

• Natural pixels refer to the logical pixels represented in a file. If you were to load this

image in GIMP or Photoshop, the pixel file dimensions would be the natural pixels.

• Screen pixels refer to the physical electronics on the display. Prior to mobile phones

and modern high-resolution displays, there was a 1:1 relationship between CSS

pixels and LED points on a screen. However, because mobile devices are held closer

to the eye, and laptop screens are closer than the old mainframe terminals, modern

screens have a higher ratio of physical pixels to traditional CSS pixels. This ratio is

referred to as Device-Pixel-Ratio or colloquially referred to as Retina™ displays.

Figure 4.2. Total image bytes per web page (mobile).

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 75

https://almanac.httparchive.org/static/images/2019/media/fig2_total_image_bytes_per_web_page_mobile.png
https://almanac.httparchive.org/static/images/2019/media/fig2_total_image_bytes_per_web_page_mobile.png

Looking at the CSS pixel and the natural pixel volume we can see that the median website has a

layout that displays one megapixel (MP) of media content. At the 90th percentile, the CSS

layout pixel volume grows to 4.6 MP and 6.3 MP mobile and desktop respectively. This is

interesting not only because the responsive layout is likely different, but also because the form

factor is different. In short, the mobile layout has less space allocated for media compared to

Figure 4.3. Image pixels per page (mobile): CSS versus actual.

Figure 4.4. Image pixels per page (desktop): CSS versus actual.

Part I Chapter 4 : Media

76 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig3_image_pixel_per_page_mobile_css_v_actual.png
https://almanac.httparchive.org/static/images/2019/media/fig3_image_pixel_per_page_mobile_css_v_actual.png
https://almanac.httparchive.org/static/images/2019/media/fig4_image_pixel_per_page_desktop_css_v_actual.png
https://almanac.httparchive.org/static/images/2019/media/fig4_image_pixel_per_page_desktop_css_v_actual.png

the desktop.

In contrast, the natural, or file, pixel volume is between 2 and 2.6 times the layout volume. The

median desktop web page sends 2.1MP of pixel content that is displayed in 1.1 MP of layout

space. At the 90th percentile for mobile we see 12 MP squeezed into 4.6 MP.

Of course, the form factor for a mobile device is different than a desktop. A mobile device is

smaller and usually held in portrait mode while the desktop is larger and used predominantly in

landscape mode. As mentioned earlier, a mobile device also typically has a higher device pixel

ratio (DPR) because it is held much closer to the eye, requiring more pixels per inch compared

to what you would need on a billboard in Times Square. These differences force layout changes

and users on mobile more commonly scroll through a site to consume the entirety of content.

Megapixels are a challenging metric because it is a largely abstract metric. A useful way to

express this volume of pixels being used on a web page is to represent it as a ratio relative to the

display size.

For the mobile device used in the web page crawl, we have a display of 512 x 360 which is

0.18 MP of CSS content. (Not to be confused with the physical screen which is 3x or 3^2 more

pixels, which is 1.7MP). Dividing this viewer pixel volume by the number of CSS pixels allocated

to images we get a relative pixel volume.

If we had one image that filled the entire screen perfectly, this would be a 1x pixel fill rate. Of

course, rarely does a website fill the entire canvas with a single image. Media content tends to

be mixed in with the design and other content. A value greater than 1x implies that the layout

requires the user to scroll to see the additional image content.

Note: this is only looking at the CSS layout for both the DPR and the volume of layout content. It is not

evaluating the effectiveness of the responsive images or the effectiveness of providing high DPR

content.

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 77

For the median web page on desktop, only 46% of the display would have layout containing

images and video. In contrast, on mobile, the volume of media pixels fills 3.5 times the actual

viewport size. The layout has more content than can be filled in a single screen, requiring the

user to scroll. At a minimum, there is 3.5 scrolling pages of content per site (assuming 100%

saturation). At the 90th percentile for mobile, this grows substantially to 25x the viewport size!

Media resources are critical for the user experience.

Images

Much has already been written on the subject of managing and optimizing images to help

reduce the bytes and optimize the user experience. It is an important and critical topic for many

because it is the creative media that define a brand experience. Therefore, optimizing image

and video content is a balancing act between applying best practices that can help reduce the

bytes transferred over the network while preserving the fidelity of the intended experience.

While the strategies that are utilized for images, videos, and animations are—in broad

strokes—similar, the specific approaches can be very different. In general, these strategies boil

down to:

• File formats - utilizing the optimal file format

Figure 4.5. Image pixel volume versus screen size (CSS pixels).

Part I Chapter 4 : Media

78 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig5_image_pixel_volume_v_css_pixels.png
https://almanac.httparchive.org/static/images/2019/media/fig5_image_pixel_volume_v_css_pixels.png

• Responsive - applying responsive images techniques to transfer only the pixels that

will be shown on screen

• Lazy loading - to transfer content only when a human will see it

• Accessibility - ensuring a consistent experience for all humans

A word of caution when interpreting these results. The web pages crawled for the Web Almanac were

crawled on a Chrome browser. This implies that any content negotiation that might better apply for

Safari or Firefox might not be represented in this dataset. For example, the use of file formats like

JPEG2000, JPEG-XR, HEVC and HEIC are absent because these are not supported natively by

Chrome. This does not mean that the web does not contain these other formats or experiences.

Likewise, Chrome has native support for lazy loading (since v76) which is not yet available in other

browsers. Read more about these caveats in our Methodology.

It is rare to find a web page that does not utilize images. Over the years, many different file

formats have emerged to help present content on the web, each addressing a different

problem. Predominantly, there are 4 main universal image formats: JPEG, PNG, GIF, and SVG.

In addition, Chrome has enhanced the media pipeline and added support for a fifth image

format: WebP. Other browsers have likewise added support for JPEG2000 (Safari), JPEG-XL (IE

and Edge) and HEIC (WebView only in Safari).

Each format has its own merits and has ideal uses for the web. A very simplified summary would

break down as:

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 79

Format Highlights Drawbacks

JPEG
• Ubiquitously supported

• Ideal for photographic content

• There is always quality loss

• Most decoders cannot handle high

bit depth photographs from

modern cameras (> 8 bits per

channel)

• No support for transparency

PNG

• Like JPEG and GIF, shares wide

support

• It is lossless

• Supports transparency, animation,

and high bit depth

• Much bigger files compared to

JPEG

• Not ideal for photographic content

GIF

• The predecessor to PNG, is most

known for animations

• Lossless

• Because of the limitation of 256

colors, there is always visual loss

from conversion

• Very large files for animations

SVG

• A vector based format that can be

resized without increasing file size

• It is based on math rather than

pixels and creates smooth lines

• Not useful for photographic or

other raster content

WebP

• A newer file format that can

produce lossless images like PNG

and lossy images like JPEG

• It boasts a 30% average file

reduction compared82 to JPEG,

while other data suggests that

median file reduction is between

10-28% based on pixel volume83.

• Unlike JPEG, it is limited to

chroma-subsampling which will

make some images appear blurry.

• Not universally supported. Only

Chrome, Firefox and Android

ecosystems.

• Fragmented feature support

depending on browser versions

Part I Chapter 4 : Media

80 2019 Web Almanac by HTTP Archive

https://developers.google.com/speed/webp/faq
https://developers.google.com/speed/webp/faq
https://cloudinary.com/state-of-visual-media-report/
https://cloudinary.com/state-of-visual-media-report/

Image formats

In aggregate, across all page, we indeed see the prevalence of these formats. JPEG, one of the

oldest formats on the web, is by far the most commonly used image formats at 60% of the

image requests and 65% of all image bytes. Interestingly, PNG is the second most commonly

used image format 28% of image requests and bytes. The ubiquity of support along with the

precision of color and creative content are likely explanations for its wide use. In contrast SVG,

GIF, and WebP share nearly the same usage at 4%.

Of course, web pages are not uniform in their use of image content. Some depend on images

more than others. Look no further than the home page of google.com and you will see very

little imagery compared to a typical news website. Indeed, the median website has 13 images,

61 images at the 90th percentile, and a whopping 229 images at the 99th percentile.

Figure 4.6. Explanation of the mainstream file formats.

Figure 4.7. Image format usage.

82. https://developers.google.com/speed/webp/faq
83. https://cloudinary.com/state-of-visual-media-report/

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 81

https://almanac.httparchive.org/static/images/2019/media/fig7_image_format_usage.png
https://almanac.httparchive.org/static/images/2019/media/fig7_image_format_usage.png

While the median page has nine JPEGs and four PNGs, and only in the top 25% pages GIFs were

used, this doesn’t report the adoption rate. The use and frequency of each format per page

doesn’t provide insight into the adoption of the more modern formats. Specifically, what

percent of pages include at least one image in each format?

Figure 4.8. Image format usage per page.

Figure 4.9. Percent of pages using at least one image.

Part I Chapter 4 : Media

82 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig8_image_format_usage_per_page.png
https://almanac.httparchive.org/static/images/2019/media/fig8_image_format_usage_per_page.png
https://almanac.httparchive.org/static/images/2019/media/fig9_pages_using_at_least_1_image.png
https://almanac.httparchive.org/static/images/2019/media/fig9_pages_using_at_least_1_image.png

This helps explain why—even at the 90th percentile of pages—the frequency of WebP is still

zero; only 9% of web pages have even one resource. There are many reasons that WebP might

not be the right choice for an image, but adoption of media best practices, like adoption of

WebP itself, still remain nascent.

Image file sizes

There are two ways to look at image file sizes: absolute bytes per resource and bytes-per-pixel.

From this we can start to get a sense of how large or small a typical resource is on the web.

However, this doesn’t give us a sense of the volume of pixels represented on screen for these

file distributions. To do this we can divide each resource bytes by the natural pixel volume of the

image. A lower bytes-per-pixel indicates a more efficient transmission of visual content.

Figure 4.10. File size (KB) by image format.

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 83

https://almanac.httparchive.org/static/images/2019/media/fig10_image_format_size.png
https://almanac.httparchive.org/static/images/2019/media/fig10_image_format_size.png

While previously it appeared that GIF files were smaller than JPEG, we can now clearly see that

the cause of the larger JPEG resources is due to the pixel volume. It is probably not a surprise

that GIF shows a very low pixel density compared to the other formats. Additionally, while PNG

can handle high bit depth and doesn’t suffer from chroma subsampling blurriness, it is about

twice the size of JPG or WebP for the same pixel volume.

Of note, the pixel volume used for SVG is the size of the DOM element on screen (in CSS pixels).

While considerably smaller for file sizes, this hints that SVGs are generally used in smaller

portions of the layout. This is why the bytes-per-pixel appears worse than PNG.

Again, it is worth emphasizing, this comparison of pixel density is not comparing equivalent

images. Rather it is reporting typical user experience. As we will discuss next, even in each of

these formats there are techniques that can be used to further optimize and reduce the bytes-

per-pixel.

Image format optimization

Selecting the best format for an experience is an art of balancing capabilities of the format and

reducing the total bytes. For web pages one goal is to help improve web performance through

optimizing images. Yet within each format there are additional features that can help reduce

bytes.

Some features can impact the total experience. For example, JPEG and WebP can utilize

Figure 4.11. Bytes per pixel.

Part I Chapter 4 : Media

84 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig11_bytes_per_pixel.png
https://almanac.httparchive.org/static/images/2019/media/fig11_bytes_per_pixel.png

quantization (commonly referred to as quality levels) and chroma subsampling, which can reduce

the bits stored in the image without impacting the visual experience. Like MP3s for music, this

technique depends on a bug in the human eye and allows for the same experience despite the

loss of color data. However, not all images are good candidates for these techniques since this

can create blocky or blurry images and may distort colors or make text overlays become

unreadable.

Other format features simply organize the content and sometimes require contextual

knowledge. For example, applying progressive encoding of a JPEG reorganizes the pixels into

scan layers that allows the browser to complete layout sooner and coincidently reduces pixel

volume.

One Lighthouse test is an A/B comparing baseline with a progressively encoded JPEG. This

provides a smell to indicate whether the images overall can be further optimized with lossless

techniques and potentially with lossy techniques like using different quality levels.

The savings in this AB Lighthouse test is not just about potential byte savings, which can accrue

to several MBs at the 95th percentile, it also demonstrates the page performance

improvement.

Figure 4.12. Percent “optimized” images.

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 85

https://almanac.httparchive.org/static/images/2019/media/fig12_percentage_optimized_images.png
https://almanac.httparchive.org/static/images/2019/media/fig12_percentage_optimized_images.png

Responsive images

Another axis for improving page performance is to apply responsive images. This technique

focuses on reducing image bytes by reducing the extra pixels that are not shown on the display

because of image shrinking. At the beginning of this chapter, you saw that the median web page

on desktop used one MP of image placeholders yet transferred 2.1 MP of actual pixel volume.

Since this was a 1x DPR test, 1.1 MP of pixels were transferred over the network, but not

displayed. To reduce this overhead, we can use one of two (possibly three) techniques:

• HTML markup - using a combination of the <picture> and <source> elements

along with the srcset and sizes attributes allows the browser to select the

best image based on the dimensions of the viewport and the density of the display.

• Client Hints - this moves the selection of possible resized images to HTTP content

negotiation.

• BONUS: JavaScript libraries to delay image loading until the JavaScript can execute

and inspect the Browser DOM and inject the correct image based on the container.

Use of HTML markup

The most common method to implement responsive images is to build a list of alternative

Figure 4.13. Projected page performance improvements from image optimization from Lighthouse.

Part I Chapter 4 : Media

86 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig13_project_perf_improvements_image_optimization.png
https://almanac.httparchive.org/static/images/2019/media/fig13_project_perf_improvements_image_optimization.png

images using either or <source srcset> . If the srcset is based on DPR,

the browser can select the correct image from the list without additional information. However,

most implementations also use to help instruct the browser how to perform

the necessary layout calculation to select the correct image in the srcset based on pixel

dimensions.

The notably lower use of <picture> is not surprising given that it is used most often for

advanced responsive web design (RWD) layouts like art direction84.

Use of sizes

The utility of srcset is usually dependent on the precision of the sizes media query.

Without sizes the browser will assume the tag will fill the entire viewport instead of

smaller component. Interestingly, there are five common patterns that web developers have

adopted for :

• - this indicates that the image will fill the width of the

viewport (also the default).

• - this is helpful for browsers selecting based on DPR.

Figure 4.14. Percent of pages using responsive images with HTML.

84. https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#Art_direction

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 87

https://almanac.httparchive.org/static/images/2019/media/fig14_html_usage_of_responsive_images.png
https://almanac.httparchive.org/static/images/2019/media/fig14_html_usage_of_responsive_images.png
https://developer.mozilla.org/docs/Learn/HTML/Multimedia_and_embedding/Responsive_images#Art_direction

• - this is the second

most popular design pattern. It is the one auto generated by WordPress and likely a

few other platforms. It appears auto generated based on the original image size (in

this case 300px).

• <img sizes="(max-width: 767px) 89vw, (max-width: 1000px) 54vw,
..."> - this pattern is the custom built design pattern that is aligned with the CSS

responsive layout. Each breakpoint has a different calculation for sizes to use.

• - this is the most popular use, which is actually non-

standard and is an artifact of the use of the lazy_sizes JavaScript library. This

uses client-side code to inject a better sizes calculation for the browser. The

downside of this is that it depends on the JavaScript loading and DOM to be fully

ready, delaying image loading substantially.

Figure 4.15. Percent of pages using the most popular sizes patterns.

 Frequency (millions) %

(max-width: 300px) 100vw, 300px 1.47 5%

(max-width: 150px) 100vw, 150px 0.63 2%

(max-width: 100px) 100vw, 100px 0.37 1%

(max-width: 400px) 100vw, 400px 0.32 1%

(max-width: 80px) 100vw, 80px 0.28 1%

Part I Chapter 4 : Media

88 2019 Web Almanac by HTTP Archive

Client Hints

Client Hints85 allow content creators to move the resizing of images to HTTP content

negotiation. In this way, the HTML does not need additional to clutter the

markup, and instead can depend on a server or image CDN to select an optimal image86 for the

context. This allows simplifying of HTML and enables origin servers to adapt overtime and

disconnect the content and presentation layers.

To enable Client Hints, the web page must signal to the browser using either an extra HTTP

header Accept-CH: DPR, Width, Viewport-Width or by adding the HTML <meta
http-equiv="Accept-CH" content="DPR, Width, Viewport-Width"> . The

convenience of one or the other technique depends on the team implementing and both are

offered for convenience.

Figure 4.16. Top patterns of .

85. https://web.dev/user-agent-client-hints/
86. https://cloudinary.com/blog/client_hints_and_responsive_images_what_changed_in_chrome_67

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 89

https://almanac.httparchive.org/static/images/2019/media/fig16_top_patterns_of_img_sizes.png
https://almanac.httparchive.org/static/images/2019/media/fig16_top_patterns_of_img_sizes.png
https://web.dev/user-agent-client-hints/
https://cloudinary.com/blog/client_hints_and_responsive_images_what_changed_in_chrome_67

The use of the <meta> tag in HTML to invoke Client Hints is far more common compared with

the HTTP header. This is likely a reflection of the convenience to modify markup templates

compared to adding HTTP headers in middle boxes. However, looking at the usage of the HTTP

header, over 50% of these cases are from a single SaaS platform (Mercado).

Of the Client Hints invoked, the majority of pages use it for the original three use-cases of DPR ,

ViewportWidth and Width . Of course, the Width Client Hint that requires the use <img
sizes> for the browser to have enough context about the layout.

Figure 4.17. Usage of the Accept-CH header versus the equivalent <meta> tag.

Part I Chapter 4 : Media

90 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig17_usage_of_accept-ch_http_v_html.png
https://almanac.httparchive.org/static/images/2019/media/fig17_usage_of_accept-ch_http_v_html.png

The network-related Client Hints, downlink , rtt , and ect , are only available on Android

Chrome.

Lazy loading

Improving web page performance can be partially characterized as a game of illusions; moving

slow things out of band and out of site of the user. In this way, lazy loading images is one of

these illusions where the image and media content is only loaded when the user scrolls on the

page. This improves perceived performance, even on slow networks, and saves the user from

downloading bytes that are not otherwise viewed.

Earlier, in Figure 4.5, we showed that the volume of image content at the 75th percentile is far

more than could theoretically be shown in a single desktop or mobile viewport. The offscreen

images87 Lighthouse audit confirms this suspicion. The median web page has 27% of image

content significantly below the fold. This grows to 84% at the 90th percentile.

Figure 4.18. Enabled Client Hints.

87. https://developers.google.com/web/tools/lighthouse/audits/offscreen-images

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 91

https://almanac.httparchive.org/static/images/2019/media/fig18_enabled_client_hints.png
https://almanac.httparchive.org/static/images/2019/media/fig18_enabled_client_hints.png
https://developers.google.com/web/tools/lighthouse/audits/offscreen-images
https://developers.google.com/web/tools/lighthouse/audits/offscreen-images

The Lighthouse audit provides us a smell as there are a number of situations that can provide

tricky to detect such as the use of quality placeholders.

Lazy loading can be implemented88 in many different ways including using a combination of

Intersection Observers, Resize Observers, or using JavaScript libraries like lazySizes89, lozad90,

and a host of others.

In August 2019, Chrome 76 launched with the support for markup-based lazy loading using

 . While the snapshot of websites used for the 2019 Web Almanac used July 2019 data,

over 2,509 websites already utilized this feature.

Accessibility

At the heart of image accessibility is the alt tag. When the alt tag is added to an image, this

text can be used to describe the image to a user who is unable to view the images (either due to

a disability, or a poor internet connection).

We can detect all of the image tags in the HTML files of the dataset. Of 13 million image tags on

desktop and 15 million on mobile, 91.6% of images have an alt tag present. At initial glance, it

appears that image accessibility is in very good shape on the web. However, upon deeper

Figure 4.19. Lighthouse audit: Offscreen.

88. https://developers.google.com/web/fundamentals/performance/lazy-loading-guidance/images-and-video
89. https://github.com/aFarkas/lazysizes
90. https://github.com/ApoorvSaxena/lozad.js

Part I Chapter 4 : Media

92 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig19_lighthouse_audit_offscreen.png
https://almanac.httparchive.org/static/images/2019/media/fig19_lighthouse_audit_offscreen.png
https://developers.google.com/web/fundamentals/performance/lazy-loading-guidance/images-and-video
https://github.com/aFarkas/lazysizes
https://github.com/ApoorvSaxena/lozad.js

inspection, the outlook is not as good. If we examine the length of the alt tags present in the

dataset, we find that the median length of the alt tag is six characters. This maps to an empty

alt tag (appearing as alt=""). Only 39% of images use alt text that is longer than six

characters. The median value of “real” alt text is 31 characters, of which 25 actually describe

the image.

Video

While images dominate the media being served on web pages, videos are beginning to have a

major role in content delivery on the web. According to HTTP Archive, we find that 4.06% of

desktop and 2.99% of mobile sites are self-hosting video files. In other words, the video files are

not hosted by websites like YouTube or Facebook.

Video formats

Video can be delivered with many different formats and players. The dominant formats for

mobile and desktop are .ts (segments of HLS streaming) and .mp4 (the H264 MPEG):

Other formats that are seen include webm , mov , m4s , and m4v (MPEG-DASH streaming

segments). It is clear that the majority of streaming on the web is HLS, and that the major

format for static videos is the mp4 .

Figure 4.20. Count of video files by extension.

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 93

https://almanac.httparchive.org/static/images/2019/media/fig20_video_files_by_extension.png
https://almanac.httparchive.org/static/images/2019/media/fig20_video_files_by_extension.png

The median video size for each format is shown below:

The median values are smaller on mobile, which probably just means that some sites that have

very large videos on the desktop disable them for mobile, and that video streams serve smaller

versions of videos to smaller screens.

Video file sizes

When delivering video on the web, most videos are delivered with the HTML5 video player. The

HTML video player is extremely customizable to deliver video for many different purposes. For

example, to autoplay a video, the parameters autoplay and muted would be added. The

controls attribute allows the user to start/stop and scan through the video. By parsing the

video tags in the HTTP Archive, we’re able to see the usage of each of these attributes:

Figure 4.21. Median file size by video extension.

Part I Chapter 4 : Media

94 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig21_median_vidoe_file_size_by_extension.png
https://almanac.httparchive.org/static/images/2019/media/fig21_median_vidoe_file_size_by_extension.png

The most common attributes are autoplay , muted and loop , followed by the preload
tag and width and height . The use of the loop attribute is used in background videos, and

also when videos are used to replace animated GIFs, so it is not surprising to see that it is often

used on website home pages.

While most of the attributes have similar usage on desktop and mobile, there are a few that

have significant differences. The two attributes with the largest difference between mobile and

desktop are width and height , with 4% fewer sites using these attributes on mobile.

Interestingly, there is a small increase of the poster attribute (placing an image over the

video window before playback) on mobile.

From an accessibility point of view, the <track> tag can be used to add captions or subtitles.

There is data in the HTTP Archive on how often the <track> tag is used, but on investigation,

most of the instances in the dataset were commented out or pointed to an asset returning a

404 error. It appears that many sites use boilerplate JavaScript or HTML and do not remove

the track, even when it is not in use.

Video players

For more advanced playback (and to play video streams), the HTML5 native video player will

not work. There are a few popular video libraries that are used to playback the video:

Figure 4.22. Usage of HTML video tag attributes.

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 95

https://almanac.httparchive.org/static/images/2019/media/fig22_html_video_tag_attributes_usage.png
https://almanac.httparchive.org/static/images/2019/media/fig22_html_video_tag_attributes_usage.png

The most popular (by far) is video.js, followed by JWPLayer and HLS.js. The authors do admit

that it is possible that there are other files with the name “video.js” that may not be the same

video playback library.

Conclusion

Nearly all web pages use images and video to some degree to enhance the user experience and

create meaning. These media files utilize a large amount of resources and are a large

percentage of the tonnage of websites (and they are not going away!) Utilization of alternative

formats, lazy loading, responsive images, and image optimization can go a long way to lower the

size of media on the web.

Figure 4.23. Top JavaScript video players.

Part I Chapter 4 : Media

96 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/media/fig23_top_javascript_video_players.png
https://almanac.httparchive.org/static/images/2019/media/fig23_top_javascript_video_players.png

Authors

Colin Bendell

@colinbendell colinbendell

Colin is part of the CTO Office at Cloudinary91 and co-author of the O’Reilly book

High Performance Images92. He spends much of his time at the intersection of high

volume data, media, browsers and standards. You can find him on tweeting

@colinbendell and at blogging at https://bendell.ca.

Doug Sillars

@dougsillars dougsillars https://dougsillars.com

Doug Sillars is a freelance digital nomad working on the intersection of

performance and media. He tweets @dougsillars, and blogs regularly at

dougsillars.com93.

91. https://cloudinary.com/
92. https://www.oreilly.com/library/view/high-performance-images/9781491925799/
93. https://dougsillars.com

Part I Chapter 4 : Media

2019 Web Almanac by HTTP Archive 97

https://twitter.com/colinbendell
https://github.com/colinbendell
https://cloudinary.com/
https://www.oreilly.com/library/view/high-performance-images/9781491925799/
https://twitter.com/colinbendell
https://bendell.ca/
https://twitter.com/dougsillars
https://github.com/dougsillars
https://dougsillars.com/
https://twitter.com/dougsillars
https://dougsillars.com/

98 2019 Web Almanac by HTTP Archive

Part I Chapter 5

Third Parties

Written by Patrick Hulce
Reviewed by Simon Pieters, David Fox, and Vamsee Jasti
Analyzed by Patrick Hulce
Edited by Barry Pollard

Introduction

The open web is vast, linkable, and interoperable by design. The ability to grab someone else’s

complex library and use it on your site with a single <link> or <script> element has

supercharged developers’ productivity and enabled awesome new web experiences. On the flip

side, the immense popularity of a select few third-party providers raises important

performance, privacy, and security concerns. This chapter examines the prevalence and impact

of third-party code on the web in 2019, the usage patterns that lead to the popularity of third-

party solutions, and potential repercussions for the future of web experiences.

Part I Chapter 5 : Third Parties

2019 Web Almanac by HTTP Archive 99

Definitions

“Third Party”

A third party is an entity outside the primary site-user relationship, i.e. the aspects of the site

not directly within the control of the site owner but present with their approval. For example,

the Google Analytics script is an example of a common third-party resource.

Third-party resources are:

• Hosted on a shared and public origin

• Widely used by a variety of sites

• Uninfluenced by an individual site owner

To match these goals as closely as possible, the formal definition used throughout this chapter

of a third-party resource is a resource that originates from a domain whose resources can be

found on at least 50 unique pages in the HTTP Archive dataset.

Note that using these definitions, third-party content served from a first-party domain is

counted as first-party content. For example, self-hosting Google Fonts or bootstrap.css is

counted as first-party content. Similarly, first-party content served from a third-party domain is

counted as third-party content. For example, first-party images served over a CDN on a third-

party domain are considered third-party content.

Provider categories

This chapter divides third-party providers into one of these broad categories. A brief

description is included below and the mapping of domain to category can be found in the third-

party-web repository94.

• Ad - display and measurement of advertisements

• Analytics - tracking site visitor behavior

• CDN - providers that host public shared utilities or private content of their users

• Content - providers that facilitate publishers and host syndicated content

• Customer Success - support and customer relationship management functionality

94. https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5

Part I Chapter 5 : Third Parties

100 2019 Web Almanac by HTTP Archive

https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5
https://github.com/patrickhulce/third-party-web/blob/8afa2d8cadddec8f0db39e7d715c07e85fb0f8ec/data/entities.json5

• Hosting - providers that host the arbitrary content of their users

• Marketing - sales, lead generation, and email marketing functionality

• Social - social networks and their affiliated integrations

• Tag Manager - provider whose sole role is to manage the inclusion of other third

parties

• Utility - code that aids the development objectives of the site owner

• Video - providers that host the arbitrary video content of their users

• Other - uncategorized or non-conforming activity

Note on CDNs: The CDN category here includes providers that provide resources on public CDN

domains (e.g. bootstrapcdn.com, cdnjs.cloudflare.com, etc.) and does not include resources that are

simply served over a CDN. i.e. putting Cloudflare in front of a page would not influence its first-party

designation according to our criteria.

Caveats

• All data presented here is based on a non-interactive, cold load. These values could

start to look quite different after user interaction.

• Roughly 84% of all third-party domains by request volume have been identified and

categorized. The remaining 16% fall into the “Other” category.

Data

Third-party code is everywhere. 93% of pages include at least one third-party resource, 76% of

pages issue a request to an analytics domain, the median page requests content from at least 9

unique third-party domains that represent 35% of their total network activity, and the most

active 10% of pages issue a whopping 175 third-party requests or more. It’s not a stretch to say

that third parties are an integral part of the web.

Figure 5.1. Percentage of desktop pages that include at least one third-party resource.

93.59%

Part I Chapter 5 : Third Parties

2019 Web Almanac by HTTP Archive 101

Categories

If the ubiquity of third-party content is unsurprising, perhaps more interesting is the

breakdown of third-party content by provider type.

While advertising might be the most user-visible example of third-party presence on the web,

analytics providers are the most common third-party category with 76% of sites including at

least one analytics request. CDNs at 63%, ads at 57%, and developer utilities like Sentry, Stripe,

and Google Maps SDK at 56% follow up as a close second, third, and fourth for appearing on the

most web properties. The popularity of these categories forms the foundation of our web usage

patterns identified later in the chapter.

Providers

A relatively small set of providers dominate the third-party landscape: the top 100 domains

account for 30% of network requests across the web. Powerhouses like Google, Facebook, and

YouTube make the headlines here with full percentage points of share each, but smaller entities

like Wix and Shopify command a substantial portion of third-party popularity as well.

While much could be said about every individual provider’s popularity and performance impact,

this more opinionated analysis is left as an exercise for the reader and other purpose-built tools

such as third-party-web95.

Figure 5.2. Percentage of desktop pages that include at least one ad resource.

55.63%

95. https://thirdpartyweb.today

Part I Chapter 5 : Third Parties

102 2019 Web Almanac by HTTP Archive

https://thirdpartyweb.today/

Figure 5.3. Top 10 most popular third-party domains.

Rank Third party domain Percent of requests

1 fonts.gstatic.com 2.53%

2 www.facebook.com 2.38%

3 www.google-analytics.com 1.71%

4 www.google.com 1.17%

5 fonts.googleapis.com 1.05%

6 www.youtube.com 0.99%

7 connect.facebook.net 0.97%

8 googleads.g.doubleclick.net 0.93%

9 cdn.shopify.com 0.76%

10 maps.googleapis.com 0.75%

Part I Chapter 5 : Third Parties

2019 Web Almanac by HTTP Archive 103

Resource types

The resource type breakdown of third-party content also lends insight into how third-party

code is used across the web. While first-party requests are 56% images, 23% script, 14% CSS,

and only 4% HTML, third-party requests skew more heavily toward script and HTML at 32%

script, 34% images, 12% HTML, and only 6% CSS. While this suggests that third-party code is

less frequently used to aid the design and instead used more frequently to facilitate or observe

interactions than first-party code, a breakdown of resource types by party status tells a more

nuanced story. While CSS and images are dominantly first-party at 70% and 64% respectively,

fonts are largely served by third-party providers with only 28% being served from first-party

sources. This concept of usage patterns is explored in more depth later in this chapter.

Figure 5.4. Top 10 most popular third-party requests.

Rank Third party URL
Percent of
requests

1 https://www.google-analytics.com/analytics.js 0.64%

2 https://connect.facebook.net/en_US/fbevents.js 0.20%

3
https://connect.facebook.net/signals/plugins/
inferredEvents.js?v=2.8.51

0.19%

4
https://staticxx.facebook.com/connect/
xd_arbiter.php?version=44

0.16%

5
https://fonts.gstatic.com/s/opensans/v16/
mem8YaGs126MiZpBA-UFVZ0b.woff2

0.13%

6
https://www.googletagservices.com/activeview/js/
current/osd.js?cb=%2Fr20100101

0.12%

7
https://fonts.gstatic.com/s/roboto/v18/
KFOmCnqEu92Fr1Mu4mxK.woff2

0.11%

8 https://googleads.g.doubleclick.net/pagead/id 0.11%

9
https://fonts.gstatic.com/s/roboto/v19/
KFOmCnqEu92Fr1Mu4mxK.woff2

0.10%

10
https://www.googleadservices.com/pagead/
conversion_async.js

0.10%

Part I Chapter 5 : Third Parties

104 2019 Web Almanac by HTTP Archive

Several other amusing factoids jump out from this data. Tracking pixels (image requests to

analytics domains) make up 1.6% of all network requests, six times as many video requests are

to social networks like Facebook and Twitter than dedicated video providers like YouTube and

Vimeo (presumably because the default YouTube embed consists of HTML and a preview

thumbnail but not an autoplaying video), and there are still more requests for first-party images

than all scripts combined.

Request count

49% of all requests are third-party. At 51%, first-party can still narrowly hold on to the crown in

2019 of comprising the majority of the web resources. Given that just under half of all the

requests are third-party yet a small set of pages do not include any at all, the most active third-

party users must be doing quite a bit more than their fair share. Indeed, at the 75th, 90th, and

99th percentiles we see nearly all of the page being comprised of third-party content. In fact,

for some sites heavily relying on distributed WYSIWYG platforms like Wix and SquareSpace,

the root document might be the sole first-party request!

The number of requests issued by each third-party provider also varies considerably by

category. While analytics are the most widespread third-party category across websites, they

account for only 7% of all third-party network requests. Ads, on the other hand, are found on

nearly 20% fewer sites yet make up 25% of all third-party network requests. Their outsized

resource impact compared to their popularity will be a theme we continue to uncover in the

Figure 5.5. Percent of third-party requests by category and content type.

Part I Chapter 5 : Third Parties

2019 Web Almanac by HTTP Archive 105

https://almanac.httparchive.org/static/images/2019/third-parties/fig5.png
https://almanac.httparchive.org/static/images/2019/third-parties/fig5.png

remaining data.

Byte weight

While 49% of requests are third-party, their share of the web in terms of bytes is quite a bit

lower at only 28%. The same goes for the breakdown by multiple resource types. Third-party

fonts make up 72% of all fonts, but they’re only 53% of font bytes; 74% of HTML requests, but

only 39% of HTML bytes; 68% of video requests, but only 31% of video bytes. All this seems to

suggest third-party providers are responsible stewards who keep their response sizes low, and,

for the most part, that is in fact the case until you look at scripts.

Despite serving 57% of scripts, third parties comprise 64% of script bytes. meaning their scripts

are larger on average than first-party scripts. This is an early warning sign for their performance

impact to come in the next few sections.

As for specific third-party providers, the same juggernauts topping the request count

leaderboards make their appearance in byte weight as well. The only few notable movements

are the large, media-heavy providers such as YouTube, Shopify, and Twitter which climb to the

top of the byte impact charts.

Figure 5.6. Distributions of resource bytes per third-party category.

Part I Chapter 5 : Third Parties

106 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/third-parties/fig7.png
https://almanac.httparchive.org/static/images/2019/third-parties/fig7.png

Script execution

57% of script execution time is from third-party scripts, and the top 100 domains already

account for 48% of all script execution time on the web. This underscores just how large an

impact a select few entities really have on web performance. This topic is explored more in

depth in the Repercussions > Performance section.

The category breakdowns among script execution largely follow that of resource counts. Here

too advertising looms largest. Ad scripts comprise 25% of third-party script execution time with

hosting and social providers in a distant tie for second at 12%.

While much could be said about every individual provider’s popularity and performance impact,

this more opinionated analysis is left as an exercise for the reader and other purpose-built tools

such as the previously mentioned third-party-web96.

Usage patterns

Why do site owners use third-party code? How did third-party content grow to be nearly half of

all network requests? What are all these requests doing? Answers to these questions lie in the

three primary usage patterns of third-party resources. Broadly, site owners reach for third

parties to generate and consume data from their users, monetize their site experiences, and

simplify web development.

Generate and consume data

Analytics is the most popular third-party category found across the web and yet is minimally

user-visible. Consider the volume of information at play in the lifetime of a web visit; there’s

user context, device, browser, connection quality, location, page interactions, session length,

return visitor status, and more being generated continuously. It’s difficult, cumbersome, and

expensive to maintain tools that warehouse, normalize, and analyze time series data of this

magnitude. While nothing categorically necessitates that analytics fall into the domain of third-

party providers, the widespread attractiveness of understanding your users, deep complexity of

the problem space, and increasing emphasis on managing data respectfully and responsibly

naturally surfaces analytics as a popular third-party usage pattern.

There’s also a flip side to user data though: consumption. While analytics is about generating

data from your site’s visitors, other third-party resources focus on consuming data about your

visitors that is known only by others. Social providers fall squarely into this usage pattern. A

96. https://thirdpartyweb.today

Part I Chapter 5 : Third Parties

2019 Web Almanac by HTTP Archive 107

https://thirdpartyweb.today/

site owner must use Facebook resources if they wish to integrate information from a visitor’s

Facebook profile into their site. As long as site owners are interested in personalizing their

experience with widgets from social networks and leveraging the social networks of their

visitors to increase their reach, social integrations are likely to remain the domain of third-party

entities for the foreseeable future.

Monetize web traffic

The open model of the web does not always serve the financial interests of content creators to

their liking and many site owners resort to monetizing their sites with advertising. Because

building direct relationships with advertisers and negotiating pricing contracts is a relatively

difficult and time-consuming process, this concern is largely handled by third-party providers

performing targeted advertising and real-time bidding. Widespread negative public opinion,

the popularity of ad blocking technology, and regulatory action in major global markets such as

Europe pose the largest threat to the continued use of third-party providers for monetization.

While it’s unlikely that site owners suddenly strike their own advertising deals or build bespoke

ad networks, alternative monetization models like paywalls and experiments like Brave’s Basic

Attention Token97 have a real chance of shaking up the third-party ad landscape of the future.

Simplify development

Above all, third-party resources are used to simplify the web development experience. Even

previous usage patterns could arguably fall into this pattern as well. Whether analyzing user

behavior, communicating with advertisers, or personalizing the user experience, third-party

resources are used to make first-party development easier.

Hosting providers are the most extreme example of this pattern. Some of these providers even

enable anyone on Earth to become a site owner with no technical expertise necessary. They

provide hosting of assets, tools to build sites without coding experience, and domain

registration services.

The remainder of third-party providers also tend to fall into this usage pattern. Whether it’s

hosting of a utility library such as jQuery for usage by front-end developers cached on

Cloudflare’s edge servers or a vast library of common fonts served from a popular Google CDN,

third-party content is another way to give the site owner one fewer thing to worry about and,

maybe, just maybe, make the job of delivering a great experience a little bit easier.

97. https://basicattentiontoken.org/

Part I Chapter 5 : Third Parties

108 2019 Web Almanac by HTTP Archive

https://basicattentiontoken.org/
https://basicattentiontoken.org/

Repercussions

Performance

The performance impact of third-party content is neither categorically good nor bad. There are

good and bad actors across the spectrum and different category types have varying levels of

influence.

The good: shared third-party font and stylesheet utilities are, on average, delivered more

efficiently than their first-party counterparts.

Utilities, CDNs, and Content categories are the brightest spots on the third-party performance

landscape. They offer optimized versions of the same sort of content that would otherwise be

served from first-party sources. Google Fonts and Typekit serve optimized fonts that are

smaller on average than first-party fonts, Cloudflare CDN serves a minified version of open

source libraries that might be accidentally served in development mode by some site owners,

Google Maps SDK efficiently delivers complex maps that might otherwise be naively shipped as

large images.

The bad: a very small set of entities represent a very large chunk of JavaScript execution time

carrying out narrow set of functionality on pages.

Ads, social, hosting, and certain analytics providers represent the largest negative impact on

web performance. While hosting providers deliver a majority of a site’s content and will

understandably have a larger performance impact than other third-party categories, they also

serve almost entirely static sites that demand very little JavaScript in most cases that should

not justify the volume of script execution time. The other categories hurting performance

though have even less of an excuse. They fill very narrow roles on each page they appear on and

yet quickly take over a majority of resources. For example, the Facebook “Like” button and

associated social widgets take up extraordinarily little screen real estate and are a fraction of

most web experiences, and yet the median impact on pages with social third parties is nearly

20% of their total JavaScript execution time. The situation is similar for analytics - tracking

libraries do not directly contribute to the perceived user experience, and yet the 90th

percentile impact on pages with analytics third parties is 44% of their total JavaScript execution

time.

The silver lining of such a small number of entities enjoying such large market share is that a

very limited and concentrated effort can have an enormous impact on the web as a whole.

Performance improvements at just the top few hosting providers can improve 2-3% of all web

requests.

Part I Chapter 5 : Third Parties

2019 Web Almanac by HTTP Archive 109

Privacy

The abundance of analytics providers and top-heavy concentration of script execution raises

two primary privacy concerns for site visitors: the largest use case of third-parties is for site

owners to track their users and a handful of companies receive information on a large swath of

web traffic.

The interest of site owners in understanding and analyzing user behavior is not malicious on its

own, but the widespread and relatively behind-the-scenes nature of web analytics raises valid

concerns, and users, companies, and lawmakers have taken notice in recent years with privacy

regulation such as GDPR98 in Europe and the CCPA99 in California. Ensuring that developers

handle user data responsibly, treat the user respectfully, and are transparent with what data is

collected is key to keeping analytics the most popular third-party category and maintaining the

symbiotic nature of analyzing user behavior to deliver future user value.

The top-heavy concentration of script execution is great for the potential impact of

performance improvements, but less exciting for the privacy ramifications. 29% of all script

execution time across the web is just from scripts on domains owned by Google or Facebook.

That’s a very large percentage of CPU time that is controlled by just two entities. It’s critical to

ensure that the same privacy protections held to analytics providers be applied in these other

ad, social, and developer utility categories as well.

Security

While the topic of security is covered more in-depth in the Security chapter, the security

implications of introducing external dependencies to your site go hand-in-hand with privacy

concerns. Allowing third parties to execute arbitrary JavaScript effectively provides them with

complete control over your page. When a script can control the DOM and window , it can do

everything. Even if code has no security concerns, it can introduce a single point of failure,

which has been recognized as a potential problem for some time now100.

Self-hosting third-party content101 addresses some of the concerns mentioned here - and others.

Additionally with browsers increasingly partitioning HTTP caches102 the benefits of loading

directly from the third-party are increasingly questionable. Perhaps this is a better way to

consume third-party content for many use cases, even if it makes measuring its impact more

difficult.

98. https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
99. https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
100. https://www.stevesouders.com/blog/2010/06/01/frontend-spof/
101. https://csswizardry.com/2019/05/self-host-your-static-assets/
102. https://chromestatus.com/feature/5730772021411840

Part I Chapter 5 : Third Parties

110 2019 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation
https://en.wikipedia.org/wiki/California_Consumer_Privacy_Act
https://www.stevesouders.com/blog/2010/06/01/frontend-spof/
https://csswizardry.com/2019/05/self-host-your-static-assets/
https://chromestatus.com/feature/5730772021411840

Conclusion

Third-party content is everywhere. This is hardly surprising; the entire basis of the web is to

allow interconnectedness and linking. In this chapter we have examined third-party content in

terms of assets hosted away from the main domain. If we had included self-hosted third-party

content (e.g. common open source libraries hosted on the main domain), third-party usage

would have been even larger!

While reuse in computer technologies103 is generally a best practice, third parties on the web

introduce dependencies that have a considerable impact on the performance, privacy, and

security of a page. Self-hosting and careful provider selection can go a long way to mitigate

these effects

Regardless of the important question of how third-party content is added to a page, the

conclusion is the same: third parties are an integral part of the web!

Author

Patrick Hulce

@patrickhulce patrickhulce http://patrickhulce.com

Patrick Hulce is an ex-Chrome engineer, founder of Eris Ventures104, core team

member of Lighthouse105 and Lighthouse CI106, co-organizer of the DallasJS107

meetup, and author of the third-party-web108 project.

103. https://en.wikipedia.org/wiki/Code_reuse
104. https://eris.ventures/
105. https://github.com/GoogleChrome/lighthouse
106. https://github.com/GoogleChrome/lighthouse-ci
107. https://www.meetup.com/DallasJS/
108. https://github.com/patrickhulce/third-party-web

Part I Chapter 5 : Third Parties

2019 Web Almanac by HTTP Archive 111

https://en.wikipedia.org/wiki/Code_reuse
https://twitter.com/patrickhulce
https://github.com/patrickhulce
http://patrickhulce.com/
https://eris.ventures/
https://github.com/GoogleChrome/lighthouse
https://github.com/GoogleChrome/lighthouse-ci
https://www.meetup.com/DallasJS/
https://github.com/patrickhulce/third-party-web

112 2019 Web Almanac by HTTP Archive

Part I Chapter 6

Fonts

Written by Zach Leatherman
Reviewed by John Teague and Aymen Loukil
Analyzed by TJ Monserrat and Rick Viscomi
Edited by Barry Pollard

Introduction

Web fonts enable beautiful and functional typography on the web. Using web fonts not only

empowers design, but it democratizes a subset of design, as it allows easier access to those who

might not have particularly strong design skills. However, for all the good they can do, web fonts

can also do great harm to your site’s performance if they are not loaded properly.

Are they a net positive for the web? Do they provide more benefit than harm? Are the web

standards cowpaths sufficiently paved to encourage web font loading best practices by default?

And if not, what needs to change? Let’s take a data-driven peek at whether or not we can

answer those questions by inspecting how web fonts are used on the web today.

Where did you get those web fonts?

The first and most prominent question: performance. There is a whole chapter dedicated to

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 113

performance but we will delve a little into font-specific performance issues here.

Using hosted web fonts enables ease of implementation and maintenance, but self-hosting

offers the best performance. Given that web fonts by default make text invisible while the web

font is loading (also known as the Flash of Invisible Text109, or FOIT), the performance of web

fonts can be more critical than non-blocking assets like images.

Are fonts being hosted on the same host or by a different host?

Differentiating self-hosting against third-party hosting is increasingly relevant in an HTTP/2

world, where the performance gap between a same-host and different-host connection can be

wider. Same-host requests have the huge benefit of a better potential for prioritization against

other same-host requests in the waterfall.

Recommendations to mitigate the performance costs of loading web fonts from another host

include using the preconnect , dns-prefetch , and preload resource hints, but high

priority web fonts should be same-host requests to minimize the performance impact of web

fonts. This is especially important for fonts used by very visually prominent content or body

copy occupying the majority of a page.

The fact that three quarters are hosted is perhaps unsurprising given Google Fonts dominance

Figure 6.1. Popular web font hosting strategies.

109. https://css-tricks.com/fout-foit-foft/

Part I Chapter 6 : Fonts

114 2019 Web Almanac by HTTP Archive

https://css-tricks.com/fout-foit-foft/
https://almanac.httparchive.org/static/images/2019/fonts/fig1.png
https://almanac.httparchive.org/static/images/2019/fonts/fig1.png

that we will discuss below.

Google serves fonts using third-party CSS files hosted on

https://fonts.googleapis.com . Developers add requests to these stylesheets using

<link> tags in their markup. While these stylesheets are render blocking, they are very small.

However, the font files are hosted on yet another domain, https://fonts.gstatic.com .

The model of requiring two separate hops to two different domains makes preconnect a

great option here for the second request that will not be discovered until the CSS is

downloaded.

Note that while preload would be a nice addition to load the font files higher in the request

waterfall (remember that preconnect sets up the connection, it doesn’t request the file

content), preload is not yet available with Google Fonts. Google Fonts generates unique

URLs for their font files which are subject to change110.

110. https://github.com/google/fonts/issues/1067

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 115

https://github.com/google/fonts/issues/1067

What are the most popular third-party hosts?

The dominance of Google Fonts here was simultaneously surprising and unsurprising at the

same time. It was unsurprising in that I expected the service to be the most popular and

surprising in the sheer dominance of its popularity. 75% of font requests is astounding. TypeKit

was a distant single-digit second place, with the Bootstrap library accounting for an even more

Figure 6.2. Top 20 font hosts by percent of requests.

Host Desktop Mobile

fonts.gstatic.com 75.4% 74.9%

use.typekit.net 7.2% 6.6%

maxcdn.bootstrapcdn.com 1.8% 2.0%

use.fontawesome.com 1.1% 1.2%

static.parastorage.com 0.8% 1.2%

fonts.shopifycdn.com 0.6% 0.6%

cdn.shopify.com 0.5% 0.5%

cdnjs.cloudflare.com 0.4% 0.5%

use.typekit.com 0.4% 0.4%

netdna.bootstrapcdn.com 0.3% 0.4%

fast.fonts.net 0.3% 0.3%

static.dealer.com 0.2% 0.2%

themes.googleusercontent.com 0.2% 0.2%

static-v.tawk.to 0.1% 0.3%

stc.utdstc.com 0.1% 0.2%

cdn.jsdelivr.net 0.2% 0.2%

kit-free.fontawesome.com 0.2% 0.2%

open.scdn.co 0.1% 0.1%

assets.squarespace.com 0.1% 0.1%

fonts.jimstatic.com 0.1% 0.2%

Part I Chapter 6 : Fonts

116 2019 Web Almanac by HTTP Archive

distant third place.

While the high usage of Google Fonts here is very impressive, it is also noteworthy that only

29% of pages included a Google Fonts <link> element. This could mean a few things:

• When pages uses Google Fonts, they use a lot of Google Fonts. They are provided

without monetary cost, after all. Perhaps they’re being used in a popular WYSIWYG

editor? This seems like a very likely explanation.

• Or a more unlikely story is that it could mean that a lot of people are using Google

Fonts with @import instead of <link> .

• Or if we want to go off the deep end into super unlikely scenarios, it could mean that

many people are using Google Fonts with an HTTP Link: header instead.

Google Fonts documentation encourages the <link> for the Google Fonts CSS to be placed as

the first child in the <head> of a page. This is a big ask! In practice, this is not common as only

half a percent of all pages (about 20,000 pages) took this advice.

More so, if a page is using preconnect or dns-prefetch as <link> elements, these

would come before the Google Fonts CSS anyway. Read on for more about these resource hints.

Speeding up third-party hosting

As mentioned above, a super easy way to speed up web font requests to a third-party host is to

use the preconnect resource hint.

Figure 6.3. Percent of pages that include a Google Fonts stylesheet link in the document <head> .

29%

Figure 6.4. Percent of pages that include a Google Fonts stylesheet link as the first child in the
document <head> .

0.4%

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 117

https://developer.mozilla.org/docs/Web/HTTP/Headers/Link
https://developer.mozilla.org/docs/Web/HTTP/Headers/Link

Wow! Less than 2% of pages are using preconnect ! Given that Google Fonts is at 75%, this

should be higher! Developers: if you use Google Fonts, use preconnect ! Google Fonts:

proselytize preconnect more!

In fact, if you’re using Google Fonts go ahead and add this to your <head> if it’s not there

already:

<link rel="preconnect" href="https://fonts.gstatic.com/">

Figure 6.5. Percent of mobile pages preconnecting to a web font host.

1.7%
Part I Chapter 6 : Fonts

118 2019 Web Almanac by HTTP Archive

https://web.dev/uses-rel-preconnect
https://web.dev/uses-rel-preconnect

Most popular typefaces

It is unsurprising that the top entries here seem to match up very similarly to Google Fonts’ list

of fonts sorted by popularity111.

Figure 6.6. Top 20 font families as a percent of all font declarations.

Rank Font family Desktop Mobile

1 Open Sans 24% 22%

2 Roboto 15% 19%

3 Montserrat 5% 4%

4 Source Sans Pro 4% 3%

5 Noto Sans JP 3% 3%

6 Lato 3% 3%

7 Nanum Gothic 4% 2%

8 Noto Sans KR 3% 2%

9 Roboto Condensed 2% 2%

10 Raleway 2% 2%

11 FontAwesome 1% 1%

12 Roboto Slab 1% 1%

13 Noto Sans TC 1% 1%

14 Poppins 1% 1%

15 Ubuntu 1% 1%

16 Oswald 1% 1%

17 Merriweather 1% 1%

18 PT Sans 1% 1%

19 Playfair Display 1% 1%

20 Noto Sans 1% 1%

111. https://fonts.google.com/?sort=popularity

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 119

https://fonts.google.com/?sort=popularity
https://fonts.google.com/?sort=popularity

What font formats are being used?

WOFF2 is pretty well supported112 in web browsers today. Google Fonts serves WOFF2, a

format that offers improved compression over its predecessor WOFF, which was itself already

an improvement over other existing font formats.

From my perspective, an argument could be made to go WOFF2-only for web fonts after seeing

the results here. I wonder where the double-digit WOFF usage is coming from? Perhaps

developers still serving web fonts to Internet Explorer?

Third place octet-stream (and plain a little further down) would seem to suggest that a

lot of web servers are configured improperly, sending an incorrect MIME type with web font file

requests.

Let’s dig a bit deeper and look at the format() values used in the src: property of @font-
face declarations:

Figure 6.7. Popularity of web font MIME types.

112. https://caniuse.com/#feat=woff2

Part I Chapter 6 : Fonts

120 2019 Web Almanac by HTTP Archive

https://caniuse.com/#feat=woff2
https://almanac.httparchive.org/static/images/2019/fonts/fig7.png
https://almanac.httparchive.org/static/images/2019/fonts/fig7.png

I was hoping to see SVG fonts113 on the decline. They’re buggy and implementations have been

removed from every browser except Safari. Time to drop these, y’all.

The SVG data point here also makes me wonder what MIME type y’all are serving these SVG

fonts with. I don’t see image/svg+xml anywhere in Figure 6.7. Anyway, don’t worry about

fixing that, just get rid of them!

Figure 6.8. Popularity of font formats in @font-face declarations.

113. https://caniuse.com/#feat=svg-fonts

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 121

https://almanac.httparchive.org/static/images/2019/fonts/fig8.png
https://almanac.httparchive.org/static/images/2019/fonts/fig8.png
https://caniuse.com/#feat=svg-fonts

WOFF2-only

This dataset seems to suggest that the majority of people are already using WOFF2-only in

their @font-face blocks. But this is misleading of course, per our earlier discussion on the

dominance of Google Fonts in the data set. Google Fonts does some sniffing methods to serve a

streamlined CSS file and only includes the most modern format() . Unsurprisingly, WOFF2

Figure 6.9. Top 20 font format combinations.

Rank Format combinations Desktop Mobile

1 woff2 84.0% 81.9%

2 svg, truetype, woff 4.3% 4.0%

3 svg, truetype, woff, woff2 3.5% 3.2%

4 eot, svg, truetype, woff 1.3% 2.9%

5 woff, woff2 1.8% 1.8%

6 eot, svg, truetype, woff, woff2 1.2% 2.1%

7 truetype, woff 0.9% 1.1%

8 woff 0.7% 0.8%

9 truetype 0.6% 0.7%

10 truetype, woff, woff2 0.6% 0.6%

11 opentype, woff, woff2 0.3% 0.2%

12 svg 0.2% 0.2%

13 eot, truetype, woff 0.1% 0.2%

14 opentype, woff 0.1% 0.1%

15 opentype 0.1% 0.1%

16 eot 0.1% 0.1%

17 opentype, svg, truetype, woff 0.1% 0.0%

18 opentype, truetype, woff, woff2 0.0% 0.0%

19 eot, truetype, woff, woff2 0.0% 0.0%

20 svg, woff 0.0% 0.0%

Part I Chapter 6 : Fonts

122 2019 Web Almanac by HTTP Archive

dominates the results here for that reason, as browser support for WOFF2 has been pretty

broad for some time now.

Importantly, this particular data doesn’t really support or detract from the case to go

WOFF2-only yet, but it remains a tempting idea.

Fighting against invisible text

The number one tool we have to fight the default web font loading behavior of “invisible while

loading” (also known as FOIT), is font-display . Adding font-display: swap to your

@font-face block is an easy way to tell the browser to show fallback text while the web font

is loading.

Browser support114 is great too. Internet Explorer and pre-Chromium Edge don’t have support

but they also render fallback text by default when a web font loads (no FOITs allowed here). For

our Chrome tests, how commonly is font-display used?

I assume this will be creeping up over time, especially now that Google Fonts is adding font-
display to all new code snippets copied from their site.

If you’re using Google Fonts, update your snippets! If you’re not using Google Fonts, use font-
display ! Read more about font-display on MDN115.

Let’s have a look at what font-display values are popular:

Figure 6.10. Percent of mobile pages that utilize the font-display style.

26%

114. https://caniuse.com/#feat=mdn-css_at-rules_font-face_font-display
115. https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 123

https://caniuse.com/#feat=mdn-css_at-rules_font-face_font-display
https://www.zachleat.com/web/google-fonts-display/
https://www.zachleat.com/web/google-fonts-display/
https://www.zachleat.com/web/google-fonts-display/
https://www.zachleat.com/web/google-fonts-display/
https://developer.mozilla.org/docs/Web/CSS/@font-face/font-display

As an easy way to show fallback text while a web font is loading, font-display: swap
reigns supreme and is the most common value. swap is also the default value used by new

Google Fonts code snippets too. I would have expected optional (only render if cached) to

have a bit more usage here as a few prominent developer evangelists lobbied for it a bit, but no

dice.

How many web fonts are too many?

This is a question that requires some measure of nuance. How are the fonts being used? For

how much content on the page? Where does this content live in the layout? How are the fonts

being rendered? In lieu of nuance however let’s dive right into some broad and heavy handed

analysis specifically centered on request counts.

Figure 6.11. Usage of font-display values.

Part I Chapter 6 : Fonts

124 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/fonts/fig11.png
https://almanac.httparchive.org/static/images/2019/fonts/fig11.png

The median web page makes three web font requests. At the 90th percentile, requested six and

nine web fonts on mobile and desktop, respectively.

It does seem quite interesting that web font requests seem to be pretty steady across desktop

Figure 6.12. Distribution of font requests per page.

Figure 6.13. Histogram of web fonts requested per page.

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 125

https://almanac.httparchive.org/static/images/2019/fonts/fig12.png
https://almanac.httparchive.org/static/images/2019/fonts/fig12.png
https://almanac.httparchive.org/static/images/2019/fonts/fig13.png
https://almanac.httparchive.org/static/images/2019/fonts/fig13.png

and mobile. I’m glad to see the recommendation to hide @font-face blocks inside of a

@media queries didn’t catch on (don’t get any ideas).

That said there are marginally more requests for fonts made on mobile devices. My hunch here

is that fewer typefaces are available on mobile devices, which in turn means fewer local()
hits in Google Fonts CSS, falling back to network requests for these.

You don’t want to win this award

The award for the page that requests the most web fonts goes to a site that made 718 web font

requests!

After diving into the code, all of those 718 requests are going to Google Fonts! It looks like a

malfunctioning “Above the Page fold” optimization plugin for WordPress has gone rogue on this

site and is requesting (DDoS-ing?) all the Google Fonts—oops!

Ironic that a performance optimization plugin can make your performance much worse!

More accurate matching with unicode-range

unicode-range is a great CSS property to let the browser know specifically which code

points the page would like to use in the font file. If the @font-face declaration has a

unicode-range , content on the page must match one of the code points in the range before

the font is requested. It is a very good thing.

This is another metric that I expect was skewed by Google Fonts usage, as Google Fonts uses

unicode-range in most (if not all) of its CSS. I’d expect this to be less common in user land,

but perhaps filtering out Google Fonts requests in the next edition of the Almanac may be

Figure 6.14. The most web font requests on a single page.

718

Figure 6.15. Percent of mobile pages that declare a web font with the unicode-range property.

56%

Part I Chapter 6 : Fonts

126 2019 Web Almanac by HTTP Archive

https://css-tricks.com/snippets/css/using-font-face/#article-header-id-6
https://css-tricks.com/snippets/css/using-font-face/#article-header-id-6
https://css-tricks.com/snippets/css/using-font-face/#article-header-id-6
https://css-tricks.com/snippets/css/using-font-face/#article-header-id-6
https://developer.mozilla.org/docs/Web/CSS/%40font-face/unicode-range
https://developer.mozilla.org/docs/Web/CSS/%40font-face/unicode-range

possible.

Don’t request web fonts if a system font exists

local() is a nice way to reference a system font in your @font-face src . If the local()
font exists, it doesn’t need to make a request for a web font at all. This is used both extensively

and controversially by Google Fonts, so it is likely another example of skewed data if we’re

trying to glean patterns from user land.

It should also be noted here that it has been said by smarter people than I (Bram Stein of

TypeKit) that using local() can be unpredictable as installed versions of fonts can be

outdated and unreliable.

Condensed fonts and font-stretch

Historically, font-stretch has suffered from poor browser support and was not a well-

known @font-face property. Read more about font-stretch on MDN. But browser

support116 has broadened.

It has been suggested that using condensed fonts on smaller viewports allows more text to be

viewable, but this approach isn’t commonly used. That being said, that this property is used half

a percentage point more on desktop than mobile is unexpected, and 7% seems much higher

than I would have predicted.

Figure 6.16. Percent of mobile pages that declare a web font with the local() property.

59%

Figure 6.17. Percent of desktop and mobile pages that include a style with the font-stretch
property.

7%

116. https://caniuse.com/#feat=css-font-stretch

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 127

https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
https://bramstein.com/writing/web-font-anti-patterns-local-fonts.html
https://developer.mozilla.org/docs/Web/CSS/font-stretch
https://developer.mozilla.org/docs/Web/CSS/font-stretch
https://caniuse.com/#feat=css-font-stretch
https://caniuse.com/#feat=css-font-stretch

Variable fonts are the future

Variable fonts117 allow several font weights and styles to be included in the one font file.

Even at 1.8% this was higher than expected, although I am excited to see this take off. Google

Fonts v2118 does include some support for variable fonts.

Through the lens of this large data set, these are very low sample sizes-take these results with a

grain of salt. However, opsz as the most common axis on desktop pages is notable, with wght
and wdth trailing. In my experience, the introductory demos for variable fonts are usually

weight-based.

Figure 6.18. Percent of pages that include a variable font.

1.8%

Figure 6.19. Usage of font-variation-settings axes.

117. https://developer.mozilla.org/docs/Web/CSS/CSS_Fonts/Variable_Fonts_Guide
118. https://developers.google.com/fonts/docs/css2

Part I Chapter 6 : Fonts

128 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/CSS/CSS_Fonts/Variable_Fonts_Guide
https://developers.google.com/fonts/docs/css2
https://developers.google.com/fonts/docs/css2
https://almanac.httparchive.org/static/images/2019/fonts/fig19.png
https://almanac.httparchive.org/static/images/2019/fonts/fig19.png

Color fonts might also be the future?

Usage here of these is basically nonexistent but you can check out the excellent resource Color

Fonts! WTF?119 for more information. Similar (but not at all) to the SVG format for fonts (which is

bad and going away), this allows you to embed SVG inside of OpenType files, which is awesome

and cool.

Conclusion

The biggest takeaway here is that Google Fonts dominates the web font discussion. Approaches

they’ve taken weigh heavily on the data we’ve recorded here. The positives here are easy access

to web fonts, good font formats (WOFF2), and for-free unicode-range configurations. The

downsides here are performance drawbacks associated with third-party hosting, different-host

requests, and no access to preload .

I fully expect that in the future we’ll see the “Rise of the Variable Font”. This should be paired

with a decline in web font requests, as Variable Fonts combine multiple individual font files into

a single composite font file. But history has shown us that what usually happens here is that we

optimize a thing and then add more things to fill the vacancy.

It will be very interesting to see if color fonts increase in popularity. I expect these to be far

more niche than variable fonts but may see a lifeline in the icon font space.

Keep those fonts frosty, y’all.

Figure 6.20. The number of desktop web pages that include a color font.

117

119. https://www.colorfonts.wtf/

Part I Chapter 6 : Fonts

2019 Web Almanac by HTTP Archive 129

https://www.colorfonts.wtf/
https://www.colorfonts.wtf/

Author

Zach Leatherman

@zachleat zachleat https://zachleat.com/

Zach is a Web Developer with Filament Group120. He’s currently fixated on web

fonts121 and static site generators122. His public speaking résumé123 includes talks in

eight different countries at events like JAMstack_conf, Beyond Tellerrand,

Smashing Conference, CSSConf, and The White House124. He also helps herd NEJS

CONF125 and the NebraskaJS126 meetup.

120. https://www.filamentgroup.com/
121. https://www.zachleat.com/web/fonts/
122. https://www.zachleat.com/web/introducing-eleventy/
123. https://www.zachleat.com/web/speaking/
124. https://www.zachleat.com/web/whitehouse/
125. http://nejsconf.com/
126. http://nebraskajs.com

Part I Chapter 6 : Fonts

130 2019 Web Almanac by HTTP Archive

https://twitter.com/zachleat
https://github.com/zachleat
https://zachleat.com/
https://www.filamentgroup.com/
https://www.zachleat.com/web/fonts/
https://www.zachleat.com/web/fonts/
https://www.zachleat.com/web/introducing-eleventy/
https://www.zachleat.com/web/speaking/
https://www.zachleat.com/web/whitehouse/
http://nejsconf.com/
http://nejsconf.com/
http://nebraskajs.com/

Part II Chapter 7

Performance

Written by Rick Viscomi
Reviewed by José M. Pérez, David Fox, Sergey Chernyshev, and Mark Zeman
Analyzed by Rick Viscomi and Raghu Ramakrishnan
Edited by Rachel Costello

Introduction

Performance is a visceral part of the user experience. For many websites127, an improvement to

the user experience by speeding up the page load time aligns with an improvement to

conversion rates. Conversely, when performance is poor, users don’t convert as often and have

even been observed to be rage clicking128 on the page in frustration.

There are many ways to quantify web performance. The most important thing is to measure

what actually matters to users. However, events like onload or DOMContentLoaded may

not necessarily reflect what users experience visually. For example, when loading an email

client, it might show an interstitial progress bar while the inbox contents load asynchronously.

The problem is that the onload event doesn’t wait for the inbox to asynchronously load. In

this example, the loading metric that matters most to users is the “time to inbox”, and focusing

on the onload event may be misleading. For that reason, this chapter will look at more

127. https://wpostats.com/
128. https://blog.fullstory.com/rage-clicks-turn-analytics-into-actionable-insights/

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 131

https://wpostats.com/
https://blog.fullstory.com/rage-clicks-turn-analytics-into-actionable-insights/

modern and universally applicable paint, load, and interactivity metrics to try to capture how

users are actually experiencing the page.

There are two kinds of performance data: lab and field. You may have heard these referred to as

synthetic testing and real-user measurement (or RUM). Measuring performance in the lab

ensures that each website is tested under common conditions and variables like browser,

connection speed, physical location, cache state, etc. remain the same. This guarantee of

consistency makes each website comparable with one another. On the other hand, measuring

performance in the field represents how users actually experience the web in all of the infinite

combinations of conditions that we could never capture in the lab. For the purposes of this

chapter and understanding real-world user experiences, we’ll look at field data.

The state of performance

Almost all of the other chapters in the Web Almanac are based on data from the HTTP

Archive129. However, in order to capture how real users experience the web, we need a different

dataset. In this section, we’re using the Chrome UX Report130 (CrUX), a public dataset from

Google that consists of all the same websites as the HTTP Archive, and aggregates how Chrome

users actually experience them. Experiences are categorized by:

• The form factor of the users’ devices

• Desktop

• Phone

• Tablet

• Users’ effective connection type (ECT) in mobile terms

• Offline

• Slow 2G

• 2G

• 3G

• 4G

• Users’ geographic locations

129. https://httparchive.org/
130. http://bit.ly/chrome-ux-report

Part II Chapter 7 : Performance

132 2019 Web Almanac by HTTP Archive

https://httparchive.org/
https://httparchive.org/
http://bit.ly/chrome-ux-report

Experiences are measured monthly, including paint, load, and interactivity metrics. The first

metric we’ll look at is First Contentful Paint131 (FCP). This is the time users spend waiting for the

page to display something useful to the screen, like an image or text. Then, we’ll look at look at a

loading metric, Time to First Byte132 (TTFB). This is a measure of how long the web page took

from the time of the user’s navigation until they received the first byte of the response. And,

finally, the last field metric we’ll look at is First Input Delay133 (FID). This is a relatively new metric

and one that represents parts of the UX other than loading performance. It measures the time

from a user’s first interaction with a page’s UI until the time the browser’s main thread is ready

to process the event.

So let’s dive in and see what insights we can find.

First Contentful Paint

In Figure 7.1 above, you can see how FCP experiences are distributed across the web. Out of

the millions of websites in the CrUX dataset, this chart compresses the distribution down to

1,000 websites, where each vertical slice represents a single website. The chart is sorted by the

percent of fast FCP experiences, which are those occurring in less than 1 second. Slow

experiences occur in 3 seconds or more, and moderate (formerly known as “average”)

experiences are everything in between. At the extremes of the chart, there are some websites

Figure 7.1. Distribution of websites’ fast, moderate, and slow FCP performance.

131. https://developers.google.com/web/fundamentals/performance/user-centric-performance-metrics#first_paint_and_first_contentful_paint
132. https://developer.mozilla.org/docs/Glossary/time_to_first_byte
133. https://developers.google.com/web/updates/2018/05/first-input-delay

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 133

https://developers.google.com/web/fundamentals/performance/user-centric-performance-metrics#first_paint_and_first_contentful_paint
https://developer.mozilla.org/docs/Glossary/time_to_first_byte
https://developers.google.com/web/updates/2018/05/first-input-delay
https://almanac.httparchive.org/static/images/2019/performance/fig1.png
https://almanac.httparchive.org/static/images/2019/performance/fig1.png

with almost 100% fast experiences and some websites with almost 100% slow experiences. In

between that, websites that have a combination of fast, moderate, and slow performance seem

to lean more towards fast or moderate than slow, which is good.

Note: When a user experiences slow performance, it’s hard to say what the reason might be. It could be

that the website itself was built poorly and inefficiently. Or there could be other environmental factors

like the user’s slow connection, empty cache, etc. So, when looking at this field data we prefer to say

that the user experiences themselves are slow, and not necessarily the websites.

In order to categorize whether a website is sufficiently fast we will use the new PageSpeed

Insights134 (PSI) methodology, where at least 75% of the website’s FCP experiences must be

faster than 1 second. Similarly, a sufficiently slow website has 25% or more FCP experiences

slower than 3 seconds. We say a website has moderate performance when it doesn’t meet

either of these conditions.

The results in Figure 7.2 show that only 13% of websites are considered fast. This is a sign that

there is still a lot of room for improvement, but many websites are painting meaningful content

quickly and consistently. Two thirds of websites have moderate FCP experiences.

To help us understand how users experience FCP across different devices, let’s segment by

form factor.

Figure 7.2. Distribution of websites labeled as having fast, moderate, or slow FCP.

134. https://developers.google.com/speed/docs/insights/v5/about#categories

Part II Chapter 7 : Performance

134 2019 Web Almanac by HTTP Archive

https://developers.google.com/speed/docs/insights/v5/about#categories
https://developers.google.com/speed/docs/insights/v5/about#categories
https://almanac.httparchive.org/static/images/2019/performance/fig2.png
https://almanac.httparchive.org/static/images/2019/performance/fig2.png

FCP by device

In Figures 7.3 and 7.4 above, the FCP distributions are broken down by desktop and phone. It’s

subtle, but the torso of the desktop fast FCP distribution appears to be more convex than the

distribution for phone users. This visual approximation suggests that desktop users experience

Figure 7.3. Distribution of desktop websites’ fast, moderate, and slow FCP performance.

Figure 7.4. Distribution of phone websites’ fast, moderate, and slow FCP performance.

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 135

https://almanac.httparchive.org/static/images/2019/performance/fig3.png
https://almanac.httparchive.org/static/images/2019/performance/fig3.png
https://almanac.httparchive.org/static/images/2019/performance/fig4.png
https://almanac.httparchive.org/static/images/2019/performance/fig4.png

a higher overall proportion of fast FCP. To verify this, we can apply the PSI methodology to each

distribution.

According to PSI’s classification, 17% of websites have fast FCP experiences overall for desktop

users, compared to 11% for mobile users. The entire distribution is skewed to being slightly

faster for desktop experiences, with fewer slow websites and more in the fast and moderate

category.

Why might desktop users experience fast FCP on a higher proportion of websites than phone

users? We can only speculate, after all, this dataset is meant to answer how the web is

performing and not necessarily why it’s performing that way. But one guess could be that

desktop users are connected to the internet on faster, more reliable networks like WiFi rather

than cell towers. To help answer this question, we can also explore how user experiences vary

by ECT.

Figure 7.5. Distribution of websites labeled as having fast, moderate, or slow FCP, broken down by
device type.

Part II Chapter 7 : Performance

136 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/performance/fig5.png
https://almanac.httparchive.org/static/images/2019/performance/fig5.png

FCP by effective connection type

In Figure 7.6 above, FCP experiences are grouped by the ECT of the user experience.

Interestingly, there is a correlation between ECT speed and the percent of websites serving fast

FCP. As the ECT speeds decrease, the proportion of fast experiences approaches zero. 14% of

websites that serve users with 4G ECT have fast FCP experiences, while 19% of those websites

have slow experiences. 61% of websites serve slow FCP to users with 3G ECT, 90% to 2G ECT,

and 99% to slow-2G ECT. These results suggest that websites seldom serve fast FCP

consistently to users on connections effectively slower than 4G.

Figure 7.6. Distribution of websites labeled as having fast, moderate, or slow FCP, broken down by
ECT.

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 137

https://almanac.httparchive.org/static/images/2019/performance/fig6.png
https://almanac.httparchive.org/static/images/2019/performance/fig6.png

FCP by geography

Figure 7.7. Distribution of websites labeled as having fast, moderate, or slow FCP, broken down by
geo.

Part II Chapter 7 : Performance

138 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/performance/fig7.png
https://almanac.httparchive.org/static/images/2019/performance/fig7.png

Finally, we can slice FCP by users’ geography (geo). The chart above shows the top 23 geos

having the highest number of distinct websites, an indicator of overall popularity of the open

web. Web users in the United States visit the most distinct websites at 1,211,002. The geos are

sorted by the percent of websites having sufficiently fast FCP experiences. At the top of the list

are three Asia-Pacific135 (APAC) geos: Korea, Taiwan, and Japan. This could be explained by the

availability of extremely fast network connection speeds in these regions136. Korea has 36% of

websites meeting the fast FCP bar, and only 7% rated as slow FCP. Recall that the global

distribution of fast/moderate/slow websites is approximately 13/66/20, making Korea a

significantly positive outlier.

Other APAC geos tell a different story. Thailand, Vietnam, Indonesia, and India all have fewer

than 10% of fast websites. These geos also have more than triple the proportion of slow

websites than Korea.

Time to First Byte (TTFB)

Time to First Byte137 (TTFB) is a measure of how long the web page took from the time of the

user’s navigation until they received the first byte of the response.

To help explain TTFB and the many factors that affect it, let’s borrow a diagram from the

Navigation Timing API spec138. In Figure 7.8 above, TTFB is the duration from startTime to

responseStart , including everything in between: unload , redirects , AppCache , DNS ,

SSL , TCP , and the time the server spends handling the request. Given that context, let’s see

how users are experiencing this metric.

Figure 7.8. Navigation Timing API diagram of the events in a page navigation.

135. https://en.wikipedia.org/wiki/Asia-Pacific
136. https://en.wikipedia.org/wiki/List_of_countries_by_Internet_connection_speeds
137. https://web.dev/time-to-first-byte
138. https://developer.mozilla.org/docs/Web/API/Navigation_timing_API

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 139

https://en.wikipedia.org/wiki/Asia-Pacific
https://en.wikipedia.org/wiki/List_of_countries_by_Internet_connection_speeds
https://web.dev/time-to-first-byte
https://almanac.httparchive.org/static/images/2019/performance/nav-timing.png
https://almanac.httparchive.org/static/images/2019/performance/nav-timing.png
https://developer.mozilla.org/docs/Web/API/Navigation_timing_API

Similar to the FCP chart in Figure 7.1, this is a view of 1,000 representative samples ordered by

fast TTFB. A fast TTFB139 is one that happens in under 0.2 seconds (200 ms), a slow TTFB

happens in 1 second or more, and everything in between is moderate.

Looking at the curve of the fast proportions, the shape is quite different from that of FCP. There

are very few websites that have a fast TTFB greater than 75%, while more than half are below

25%.

Let’s apply a TTFB speed label to each website, taking inspiration from the PSI methodology

used above for FCP. If a website serves fast TTFB to 75% or more user experiences, it’s labeled

as fast. Otherwise, if it serves slow TTFB to 25% or more user experiences, it’s slow. If neither

of those conditions apply, it’s moderate.

Figure 7.9. Distribution of websites’ fast, moderate, and slow TTFB performance.

139. https://developers.google.com/speed/docs/insights/Server#recommendations

Part II Chapter 7 : Performance

140 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/performance/fig9.png
https://almanac.httparchive.org/static/images/2019/performance/fig9.png
https://developers.google.com/speed/docs/insights/Server#recommendations

42% of websites have slow TTFB experiences. This is significant because TTFB is a blocker for

all other performance metrics to follow. By definition, a user cannot possibly experience a fast FCP

if the TTFB takes more than 1 second.

Figure 7.10. Distribution of websites labeled as having fast, moderate, or slow TTFB.

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 141

https://almanac.httparchive.org/static/images/2019/performance/fig10.png
https://almanac.httparchive.org/static/images/2019/performance/fig10.png

TTFB by geo

Figure 7.11. Distribution of websites labeled as having fast, moderate, or slow TTFB, broken down
by geo.

Part II Chapter 7 : Performance

142 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/performance/fig11.png
https://almanac.httparchive.org/static/images/2019/performance/fig11.png

Now let’s look at the percent of websites serving fast TTFB to users in different geos. APAC

geos like Korea, Taiwan, and Japan are still outperforming users from the rest of the world. But

no geo has more than 15% of websites with fast TTFB. India, for example, has fewer than 1% of

websites with fast TTFB and 79% with slow TTFB.

First Input Delay

The last field metric we’ll look at is First Input Delay140 (FID). This metric represents the time

from a user’s first interaction with a page’s UI until the time the browser’s main thread is ready

to process the event. Note that this doesn’t include the time applications spend actually

handling the input. At worst, slow FID results in a page that appears unresponsive and a

frustrating user experience.

Let’s start by defining some thresholds. According to the new PSI methodology, a fast FID is one

that happens in less than 100 ms. This gives the application enough time to handle the input

event and provide feedback to the user in a time that feels instantaneous. A slow FID is one

that happens in 300 ms or more. Everything in between is moderate.

You know the drill by now. This chart shows the distribution of websites’ fast, moderate, and

slow FID experiences. This is a dramatically different chart from the previous charts for FCP

and TTFB. (See Figure 7.1 and Figure 7.9, respectively). The curve of fast FID very slowly

Figure 7.12. Distribution of websites’ fast, moderate, and slow FID performance.

140. https://developers.google.com/web/updates/2018/05/first-input-delay

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 143

https://developers.google.com/web/updates/2018/05/first-input-delay
https://almanac.httparchive.org/static/images/2019/performance/fig12.png
https://almanac.httparchive.org/static/images/2019/performance/fig12.png

descends from 100% to 75%, then takes a nosedive. The overwhelming majority of FID

experiences are fast for most websites.

The PSI methodology for labeling a website as having sufficiently fast or slow FID is slightly

different than that of FCP. For a site to be fast, 95% of its FID experiences must be fast. A site is

slow if 5% of its FID experiences are slow. All other experiences are moderate.

Compared to the previous metrics, the distribution of aggregate FID performance is much

more skewed towards fast and moderate experiences than slow. 40% of websites have fast FID

and only 15% have slow FID. The nature of FID being an interactivity metric -- as opposed to a

loading metric bound by network speeds -- makes for an entirely different way to characterize

performance.

Figure 7.13. Distribution of websites labeled as having fast, moderate, or slow TTFB.

Part II Chapter 7 : Performance

144 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/performance/fig13.png
https://almanac.httparchive.org/static/images/2019/performance/fig13.png

FID by device

By breaking FID down by device, it becomes clear that there are two very different stories.

Desktop users enjoy fast FID almost all the time. Sure, there are some websites that throw out

a slow experience now and then, but the results are predominantly fast. Mobile users, on the

Figure 7.14. Distribution of desktop websites’ fast, moderate, and slow FID performance.

Figure 7.15. Distribution of phone websites’ fast, moderate, and slow FID performance.

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 145

https://almanac.httparchive.org/static/images/2019/performance/fig14.png
https://almanac.httparchive.org/static/images/2019/performance/fig14.png
https://almanac.httparchive.org/static/images/2019/performance/fig15.png
https://almanac.httparchive.org/static/images/2019/performance/fig15.png

other hand, have what seem to be one of two experiences: pretty fast (but not quite as often as

desktop) and almost never fast. The latter is experienced by users on only the tail 10% of

websites, but this is still a substantial difference.

When we apply the PSI labeling to desktop and phone experiences, the distinction becomes

crystal clear. 82% of websites’ FID experienced by desktop users are fast compared to 5% slow.

For mobile experiences, 26% of websites are fast while 22% are slow. Form factor plays a major

role in the performance of interactivity metrics like FID.

Figure 7.16. Distribution of websites labeled as having fast, moderate, or slow FID, broken down by
device type.

Part II Chapter 7 : Performance

146 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/performance/fig16.png
https://almanac.httparchive.org/static/images/2019/performance/fig16.png

FID by effective connection type

On its face, FID seems like it would be driven primarily by CPU speed. It’d be reasonable to

assume that the slower the device itself is, the higher the likelihood that it will be busy when the

user attempts to interact with a web page, right?

The ECT results above seem to suggest that there is a correlation between connection speed

and FID performance. As users’ effective connection speed decreases, the percent of websites

on which they experience fast FID also decreases: 41% of websites visited by users with a 4G

ECT have fast FID, 22% with 3G, 19% with 2G, and 15% with slow 2G.

Figure 7.17. Distribution of websites labeled as having fast, moderate, or slow FID, broken down by
ECT.

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 147

https://almanac.httparchive.org/static/images/2019/performance/fig17.png
https://almanac.httparchive.org/static/images/2019/performance/fig17.png

FID by geo

Figure 7.18. Distribution of websites labeled as having fast, moderate, or slow FID, broken down by
geo.

Part II Chapter 7 : Performance

148 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/performance/fig18.png
https://almanac.httparchive.org/static/images/2019/performance/fig18.png

In this breakdown of FID by geographic location, Korea is out in front of everyone else again.

But the top geos have some new faces: Australia, the United States, and Canada are next with

more than 50% of websites having fast FID.

As with the other geo-specific results, there are so many possible factors that could be

contributing to the user experience. For example, perhaps wealthier geos that are more

privileged can afford faster network infrastructure also have residents with more money to

spend on desktops and/or high-end mobile phones.

Conclusion

Quantifying how fast a web page loads is an imperfect science that can’t be represented by a

single metric. Conventional metrics like onload can miss the mark entirely by measuring

irrelevant or imperceptible parts of the user experience. User-perceived metrics like FCP and

FID more faithfully convey what users see and feel. Even still, neither metric can be looked at in

isolation to draw conclusions about whether the overall page load experience was fast or slow.

Only by looking at many metrics holistically, can we start to understand the performance for an

individual website and the state of the web.

The data presented in this chapter showed that there is still a lot of work to do to meet the

goals set for fast websites. Certain form factors, effective connection types, and geos do

correlate with better user experiences, but we can’t forget about the combinations of

demographics with poor performance. In many cases, the web platform is used for business;

making more money from improving conversion rates can be a huge motivator for speeding up

a website. Ultimately, for all websites, performance is about delivering positive experiences to

users in a way that doesn’t impede, frustrate, or enrage them.

As the web gets another year older and our ability to measure how users experience it

improves incrementally, I’m looking forward to developers having access to metrics that

capture more of the holistic user experience. FCP is very early on the timeline of showing useful

content to users, and newer metrics like Largest Contentful Paint141 (LCP) are emerging to

improve our visibility into how page loads are perceived. The Layout Instability API142 has also

given us a novel glimpse into the frustration users experience beyond page load.

Equipped with these new metrics, the web in 2020 will become even more transparent, better

understood, and give developers an advantage to make more meaningful progress to improve

performance and contribute to positive user experiences.

141. https://web.dev/largest-contentful-paint
142. https://web.dev/layout-instability-api

Part II Chapter 7 : Performance

2019 Web Almanac by HTTP Archive 149

https://web.dev/largest-contentful-paint
https://web.dev/layout-instability-api

Author

Rick Viscomi

@rick_viscomi rviscomi https://rviscomi.dev/

Rick Viscomi is a Senior Developer Programs Engineer at Google, working on web

transparency projects like the HTTP Archive and Chrome UX Report, and studying

the intersection of how websites are built and experienced. Rick is the host of The

State of the Web143 in which experts discuss how the web is trending. Rick is the

coauthor of Using WebPageTest144, a guide for testing web performance, and

writes frequently about the web on dev.to145 and on Twitter at @rick_viscomi.

143. https://www.youtube.com/playlist?list=PLNYkxOF6rcIBGvYSYO-VxOsaYQDw5rifJ
144. https://usingwpt.com
145. https://dev.to/rick_viscomi

Part II Chapter 7 : Performance

150 2019 Web Almanac by HTTP Archive

https://twitter.com/rick_viscomi
https://github.com/rviscomi
https://rviscomi.dev/
https://www.youtube.com/playlist?list=PLNYkxOF6rcIBGvYSYO-VxOsaYQDw5rifJ
https://www.youtube.com/playlist?list=PLNYkxOF6rcIBGvYSYO-VxOsaYQDw5rifJ
https://usingwpt.com/
https://dev.to/rick_viscomi
https://twitter.com/rick_viscomi

Part II Chapter 8

Security

Written by Scott Helme and Artur Janc
Reviewed by Barry Pollard, Alessandro Ghedini, and Paul Calvano
Analyzed by Andrew Galloni and Jason Haralson
Edited by Barry Pollard

Introduction

This chapter of the Web Almanac looks at the current status of security on the web. With

security and privacy becoming increasingly more important online there has been an increase

in the availability of features to protect site operators and users. We’re going to look at the

adoption of these new features across the web.

Transport Layer Security

Perhaps the largest push to increasing security and privacy online we’re seeing at present is the

widespread adoption of Transport Layer Security (TLS). TLS (or the older version, SSL) is the

protocol that gives us the ’S’ in HTTPS and allows secure and private browsing of websites. Not

only are we seeing a great increase in the use of HTTPS across the web146, but also an increase in

146. https://httparchive.org/reports/state-of-the-web#pctHttps

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 151

https://httparchive.org/reports/state-of-the-web#pctHttps

more modern versions of TLS like TLSv1.2 and TLSv1.3, which is also important.

Protocol versions

Figure 8.1. Usage of HTTP versus HTTPS.

Figure 8.2. Usage of TLS protocol versions.

Part II Chapter 8 : Security

152 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/security/fig1.png
https://almanac.httparchive.org/static/images/2019/security/fig1.png
https://almanac.httparchive.org/static/images/2019/security/fig2.png
https://almanac.httparchive.org/static/images/2019/security/fig2.png

Figure 8.2 shows the support for various protocol versions. Use of legacy TLS versions like

TLSv1.0 and TLSv1.1 is minimal and almost all support is for the newer TLSv1.2 and TLSv1.3

versions of the protocol. Even though TLSv1.3 is still very young as a standard (TLSv1.3 was

only formally approved in August 2018147), over 40% of requests using TLS are using the latest

version!

This is likely due to many sites using requests from the larger players for third-party content.

For example, any sites load Google Analytics, Google AdWords, or Google Fonts and these large

players like Google are typically early adopters for new protocols.

If we look at just home pages, and not all the other requests made on sites, then the usage of

TLS is considerably as expected, though still quite high which is likely due to CMS sites like

Wordpress and CDNs:

On the other hand, the methodology used by the Web Almanac will also under-report usage

from large sites, as their sites themselves will likely form a larger volume of internet traffic in

the real world, yet are crawled only once for these statistics.

Certificate Authorities

Of course, if we want to use HTTPS on our website then we need a certificate from a Certificate

Figure 8.3. Usage of TLS protocol versions for home page requests only.

147. https://tools.ietf.org/html/rfc8446

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 153

https://tools.ietf.org/html/rfc8446
https://almanac.httparchive.org/static/images/2019/security/fig3.png
https://almanac.httparchive.org/static/images/2019/security/fig3.png

Authority (CA). With the increase in the use of HTTPS comes the increase in use of CAs and

their products/services. Here are the top ten certificate issuers based on the volume of TLS

requests that use their certificate.

As previously discussed, the volume for Google likely reflects repeated use of Google Analytics,

Google Adwords, or Google Fonts on other sites.

The rise of Let’s Encrypt148 has been meteoric after their launch in early 2016, since then they’ve

become one of the top certificate issuers in the world. The availability of free certificates and

the automated tooling has been critically important to the adoption of HTTPS on the web. Let’s

Encrypt certainly had a significant part to play in both of those.

The reduced cost has removed the barrier to entry for HTTPS, but the automation Let’s Encrypt

uses is perhaps more important in the long run as it allows shorter certificate lifetimes which

has many security benefits149.

Authentication key type

Alongside the important requirement to use HTTPS is the requirement to also use a good

Figure 8.4. Top ten Certificate Authority used.

Issuing Certificate Authority Desktop Mobile

Google Internet Authority G3 19.26% 19.68%

Let’s Encrypt Authority X3 10.20% 9.19%

DigiCert SHA2 High Assurance Server CA 9.83% 9.26%

DigiCert SHA2 Secure Server CA 7.55% 8.72%

GTS CA 1O1 7.87% 8.43%

DigiCert SHA2 Secure Server CA 7.55% 8.72%

COMODO RSA Domain Validation Secure Server CA 6.29% 5.79%

Go Daddy Secure Certificate Authority - G2 4.84% 5.10%

Amazon 4.71% 4.45%

COMODO ECC Domain Validation Secure Server CA 2 3.22% 2.75%

148. https://letsencrypt.org/
149. https://scotthelme.co.uk/why-we-need-to-do-more-to-reduce-certificate-lifetimes/

Part II Chapter 8 : Security

154 2019 Web Almanac by HTTP Archive

https://letsencrypt.org/
https://scotthelme.co.uk/why-we-need-to-do-more-to-reduce-certificate-lifetimes/
https://scotthelme.co.uk/why-we-need-to-do-more-to-reduce-certificate-lifetimes/

configuration. With so many configuration options and choices to make, this is a careful

balance.

First of all, we’ll look at the keys used for authentication purposes. Traditionally certificates

have been issued based on keys using the RSA algorithm, however a newer and better

algorithm uses ECDSA (Elliptic Curve Digital Signature Algorithm) which allows the use of

smaller keys that demonstrate better performance than their RSA counterparts. Looking at the

results of our crawl we still see a large % of the web using RSA.

Whilst ECDSA keys are stronger, which allows the use of smaller keys and demonstrate better

performance than their RSA counterparts, concerns around backwards compatibility, and

complications in supporting both in the meantime, do prevent some website operators from

migrating.

Forward secrecy

Forward secrecy150 is a property of some key exchange mechanisms that secures the connection

in such a way that it prevents each connection to a server from being exposed even in case of a

future compromise of the server’s private key. This is well understood within the security

community as desirable on all TLS connections to safeguard the security of those connections.

It was introduced as an optional configuration in 2008 with TLSv1.2 and has become

mandatory in 2018 with TLSv1.3 requiring the use of Forward Secrecy.

Looking at the % of TLS requests that provide Forward Secrecy, we can see that support is

tremendous. 96.92% of Desktop and 96.49% of mobile requests use Forward secrecy. We’d

expect that the continuing increase in the adoption of TLSv1.3 will further increase these

numbers.

Cipher suites

TLS allows the use of various cipher suites - some newer and more secure, and some older and

insecure. Traditionally newer TLS versions have added cipher suites but have been reluctant to

Figure 8.5. Authentication key types used.

Key Type Desktop Mobile

RSA Keys 48.67% 58.8%

ECDA Keys 21.47% 26.41%

150. https://en.wikipedia.org/wiki/Forward_secrecy

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 155

https://en.wikipedia.org/wiki/Forward_secrecy

remove older cipher suites. TLSv1.3 aims to simplify this by offering a reduced set of ciphers

suites and will not permit the older, insecure, cipher suites to be used. Tools like SSL Labs151 allow

the TLS setup of a website (including the cipher suites supported and their preferred order) to

be easily seen, which helps drive better configurations. We can see that the majority of cipher

suites negotiated for TLS requests were indeed excellent:

It is positive to see such wide stream use of GCM ciphers since the older CBC ciphers are less

secure. CHACHA20_POLY1305152 is still an niche cipher suite, and we even still have a very

small use of the insecure 3DES ciphers153.

It should be noticed that these were the cipher suites used for the crawl using Chrome, but sites

will likely also support other cipher suites as well for older browsers. Other sources, for

example SSL Pulse154, can provide more detail on the range of all cipher suites and protocols

supported.

Mixed content

Most sites on the web originally existed as HTTP websites and have had to migrate their site to

HTTPS. This ’lift and shift’ operation can be difficult and sometimes things get missed or left

behind. This results in sites having mixed content, where their pages load over HTTPS but

something on the page, perhaps an image or a style, is loaded over HTTP. Mixed content is bad

for security and privacy and can be difficult to find and fix.

Figure 8.6. Cipher suite usage used.

Cipher Suite Desktop Mobile

AES_128_GCM 75.87% 76.71%

AES_256_GCM 19.73% 18.49%

AES_256_CBC 2.22% 2.26%

AES_128_CBC 1.43% 1.72%

CHACHA20_POLY1305 0.69% 0.79%

3DES_EDE_CBC 0.06% 0.04%

151. https://www.ssllabs.com/
152. https://blog.cloudflare.com/it-takes-two-to-chacha-poly/
153. https://en.wikipedia.org/wiki/Triple_DES#Security
154. https://www.ssllabs.com/ssl-pulse/

Part II Chapter 8 : Security

156 2019 Web Almanac by HTTP Archive

https://www.ssllabs.com/
https://blog.cloudflare.com/it-takes-two-to-chacha-poly/
https://en.wikipedia.org/wiki/Triple_DES#Security
https://www.ssllabs.com/ssl-pulse/

We can see that around 20% of sites across mobile (645,485 sites) and desktop (594,072 sites)

present some form of mixed content. Whilst passive mixed content, something like an image, is

less dangerous, we can still see that almost a quarter of sites with mixed content have active

mixed content. Active mixed content, like JavaScript, is more dangerous as an attacker can

insert their own hostile code into a page easily.

In the past web browsers have allowed passive mixed content and flagged it with a warning but

blocked active mixed content. More recently however, Chrome announced155 it intends to

improve here and as HTTPS becomes the norm it will block all mixed content instead.

Security headers

Many new and recent features for site operators to better protect their users have come in the

form of new HTTP response headers that can configure and control security protections built

into the browser. Some of these features are easy to enable and provide a huge level of

protection whilst others require a little more work from site operators. If you wish to check if a

site is using these headers and has them correctly configured, you can use the Security

Headers156 tool to scan it.

Figure 8.7. Mixed content usage.

Mixed Content Type Desktop Mobile

Pages with Any Mixed Content 16.27% 15.37%

Pages with Active Mixed Content 3.99% 4.13%

155. https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
156. https://securityheaders.com/

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 157

https://blog.chromium.org/2019/10/no-more-mixed-messages-about-https.html
https://securityheaders.com/
https://securityheaders.com/

HTTP Strict Transport Security

The HSTS157 header allows a website to instruct a browser that it should only ever communicate

with the site over a secure HTTPS connection. This means that any attempts to use a http://

URL will automatically be converted to https:// before a request is made. Given that over 40%

of requests were capable of using TLS, we see a much lower % of requests instructing the

browser to require it.

Less than 15% of mobile and desktop pages are issuing a HSTS with a max-age directive. This

is a minimum requirement for a valid policy. Fewer still are including subdomains in their policy

with the includeSubDomains directive and even fewer still are HSTS preloading. Looking at

Figure 8.8. Usage of Security Headers

Figure 8.9. HSTS directive usage.

HSTS Directive Desktop Mobile

max-age 14.80% 12.81%

includeSubDomains 3.86% 3.29%

preload 2.27% 1.99%

157. https://tools.ietf.org/html/rfc6797

Part II Chapter 8 : Security

158 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/security/fig8.png
https://almanac.httparchive.org/static/images/2019/security/fig8.png
https://tools.ietf.org/html/rfc6797

the median value for a HSTS max-age , for those that do use this, we can see that on both

desktop and mobile it is 15768000, a strong configuration representing half a year (60 x 60 x 24

x 365/2).

HSTS preloading

With the HSTS policy delivered via an HTTP response Header, when visiting a site for the first

time a browser will not know whether a policy is configured. To avoid this Trust On First Use158

problem, a site operator can have the policy preloaded into the browser (or other user agents)

meaning you are protected even before you visit the site for the first time.

There are a number of requirements for preloading, which are outlined on the HSTS preload159

site. We can see that only a small number of sites, 0.31% on desktop and 0.26% on mobile, are

eligible according to current criteria. Sites should ensure they have fully transitions all sites

under their domain to HTTPS before submitting to preload the domain or they risk blocking

access to HTTP-only sites.

Content Security Policy

Web applications face frequent attacks where hostile content finds its way into a page. The

most worrisome form of content is JavaScript and when an attacker finds a way to insert

JavaScript into a page, they can launch damaging attacks. These attacks are known as Cross-

Site Scripting (XSS)160 and Content Security Policy (CSP)161 provides an effective defense against

Figure 8.10. Medium values of HSTS max-age policy by percentile.

Client

Percentile Desktop Mobile

10 300 300

25 7889238 7889238

50 15768000 15768000

75 31536000 31536000

90 63072000 63072000

158. https://en.wikipedia.org/wiki/Trust_on_first_use
159. https://hstspreload.org/
160. https://en.wikipedia.org/wiki/Cross-site_scripting
161. https://www.w3.org/TR/CSP2/

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 159

https://en.wikipedia.org/wiki/Trust_on_first_use
https://hstspreload.org/
https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_scripting
https://www.w3.org/TR/CSP2/

these attacks.

CSP is an HTTP header (Content-Security-Policy) published by a website which tells the

browser rules around content allowed on a site. If additional content is injected into the site

due to a security flaw, and it is not allowed by the policy, the browser will block it from being

used. Alongside XSS protection, CSP also offers several other key benefits such as making

migration to HTTPS easier.

Despite the many benefits of CSP, it can be complicated to implement on websites since its very

purpose is to limit what is acceptable on a page. The policy must allow all content and resources

you need and can easily get large and complex. Tools like Report URI162 can help you analyze and

build the appropriate policy.

We find that only 5.51% of desktop pages include a CSP and only 4.73% of mobile pages include

a CSP, likely due to the complexity of deployment.

Hash/nonce

A common approach to CSP is to create an allowlist of 3rd party domains that are permitted to

load content, such as JavaScript, into your pages. Creating and managing these lists can be

difficult so hashes163 and nonces164 were introduced as an alternative approach. A hash is

calculated based on contents of the script so if this is published by the website operator and the

script is changed, or another script is added, then it will not match the hash and will be blocked.

A nonce is a one-time code (which should be changed each time the page is loaded to prevent it

being guessed) which is allowed by the CSP and which the script is tagged with. You can see an

example of a nonce on this page by viewing the source to see how Google Tag Manager is

loaded.

Of the sites surveyed only 0.09% of desktop pages use a nonce source and only 0.02% of

desktop pages use a hash source. The number of mobile pages use a nonce source is slightly

higher at 0.13% but the use of hash sources is lower on mobile pages at 0.01%.

strict-dynamic

The proposal of strict-dynamic in the next iteration of CSP165 further reduces the burden on

site operators for using CSP by allowing an approved script to load further script dependencies.

Despite the introduction of this feature, which already has support in some modern browsers166,

162. https://report-uri.com/
163. https://www.w3.org/TR/CSP2/#source-list-valid-hashes
164. https://www.w3.org/TR/CSP2/#source-list-valid-nonces
165. https://www.w3.org/TR/CSP3/
166. https://caniuse.com/#feat=mdn-http_headers_csp_content-security-policy_strict-dynamic

Part II Chapter 8 : Security

160 2019 Web Almanac by HTTP Archive

https://report-uri.com/
https://www.w3.org/TR/CSP2/#source-list-valid-hashes
https://www.w3.org/TR/CSP2/#source-list-valid-nonces
https://www.w3.org/TR/CSP3/#strict-dynamic-usage
https://www.w3.org/TR/CSP3/#strict-dynamic-usage
https://www.w3.org/TR/CSP3/
https://caniuse.com/#feat=mdn-http_headers_csp_content-security-policy_strict-dynamic

only 0.03% of desktop pages and 0.1% of mobile pages include it in their policy.

trusted-types

XSS attacks come in various forms and Trusted-Types167 was created to help specifically with

DOM-XSS. Despite being an effective mechanism, our data shows that only 2 mobile and

desktop pages use the Trusted-Types directive.

unsafe inline and unsafe-eval

When a CSP is deployed on a page, certain unsafe features like inline scripts or the use of

eval() are disabled. A page can depend on these features and enable them in a safe fashion,

perhaps with a nonce or hash source. Site operators can also re-enable these unsafe features

with unsafe-inline or unsafe-eval in their CSP though, as their names suggest, doing so

does lose much of the protections that CSP gives you. Of the 5.51% of desktop pages that

include a CSP, 33.94% of them include unsafe-inline and 31.03% of them include unsafe-
eval . On mobile pages we find that of the 4.73% that contain a CSP, 34.04% use unsafe-
inline and 31.71% use unsafe-eval .

upgrade-insecure-requests

We mentioned earlier that a common problem that site operators face in their migration from

HTTP to HTTPS is that some content can still be accidentally loaded over HTTP on their HTTPS

page. This problem is known as mixed content and CSP provides an effective way to solve this

problem. The upgrade-insecure-requests directive instructs a browser to load all

subresources on a page over a secure connection, automatically upgrading HTTP requests to

HTTPS requests as an example. Think of it like HSTS for subresources on a page.

We showed earlier in Figure 8.7 that, of the HTTPS pages surveyed on the desktop, 16.27% of

them loaded mixed-content with 3.99% of pages loading active mixed-content like JS/CSS/

fonts. On mobile pages we see 15.37% of HTTPS pages loading mixed-content with 4.13%

loading active mixed-content. By loading active content such as JavaScript over HTTP an

attacker can easily inject hostile code into the page to launch an attack. This is what the

upgrade-insecure-requests directive in CSP protects against.

The upgrade-insecure-requests directive is found in the CSP of 3.24% of desktop pages

and 2.84% of mobile pages, indicating that an increase in adoption would provide substantial

benefits. It could be introduced with relative ease, without requiring a fully locked-down CSP

167. https://github.com/w3c/webappsec-trusted-types

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 161

https://github.com/w3c/webappsec-trusted-types

and the complexity that would entail, by allowing broad categories with a policy like below, or

even including unsafe-inline and unsafe-eval :

Content-Security-Policy: upgrade-insecure-requests; default-src

https:

frame-ancestors

Another common attack known as clickjacking168 is conducted by an attacker who will place a

target website inside an iframe on a hostile website, and then overlay hidden controls and

buttons that they are in control of. Whilst the X-Frame-Options header (discussed below)

originally set out to control framing, it wasn’t flexible and frame-ancestors in CSP stepped

in to provide a more flexible solution. Site operators can now specify a list of hosts that are

permitted to frame them and any other hosts attempting to frame them will be prevented.

Of the pages surveyed, 2.85% of desktop pages include the frame-ancestors directive in

CSP with 0.74% of desktop pages setting Frame-Ancestors to 'none' , preventing any

framing, and 0.47% of pages setting frame-ancestors to 'self' , allowing only their own

site to frame itself. On mobile we see 2.52% of pages using frame-ancestors with 0.71%

setting the value of 'none' and 0.41% setting the value to 'self' .

Referrer Policy

The Referrer-Policy header allows a site to control what information will be sent in the

Referer header when a user navigates away from the current page. This can be the source of

information leakage if there is sensitive data in the URL, such as search queries or other user-

dependent information included in URL parameters. By controlling what information is sent in

the Referer header, ideally limiting it, a site can protect the privacy of their visitors by

reducing the information sent to 3rd parties.

Note the Referrer Policy does not follow the Referer header’s misspelling which has become

a well-known error169.

A total of 3.25% of desktop pages and 2.95% of mobile pages issue a Referrer-Policy
header and below we can see the configurations those pages used.

168. https://en.wikipedia.org/wiki/Clickjacking
169. https://stackoverflow.com/questions/3087626/was-the-misspelling-of-the-http-field-name-referer-intentional

Part II Chapter 8 : Security

162 2019 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Clickjacking
https://www.w3.org/TR/referrer-policy/
https://www.w3.org/TR/referrer-policy/
https://stackoverflow.com/questions/3087626/was-the-misspelling-of-the-http-field-name-referer-intentional
https://stackoverflow.com/questions/3087626/was-the-misspelling-of-the-http-field-name-referer-intentional

This table shows the valid values set by pages and that, of the pages which use this header,

99.75% of them on desktop and 96.55% of them on mobile are setting a valid policy. The most

popular choice of configuration is no-referrer-when-downgrade which will prevent the

Referer header being sent when a user navigates from a HTTPS page to a HTTP page. The

second most popular choice is strict-origin-when-cross-origin which prevents any

information being sent on a scheme downgrade (HTTPS to HTTP navigation) and when

information is sent in the Referer it will only contain the origin of the source and not the full

URL (for example https://www.example.com rather than https://www.example.com/
page/). Details on the other valid configurations can be found in the Referrer Policy

specification170, though such a high usage of unsafe-url warrants further investigation but is

likely to be a third-party component like analytics or advertisement libraries.

Feature Policy

As the web platform becomes more powerful and feature rich, attackers can abuse these new

APIs in interesting ways. In order to limit misuse of powerful APIs, a site operator can issue a

Feature-Policy header to disable features that are not required, preventing them from

being abused.

Here are the 5 most popular features that are controlled with a Feature Policy.

Figure 8.11. Referrer-Policy configuration option usage.

Configuration Desktop Mobile

no-referrer-when-downgrade 39.16% 41.52%

strict-origin-when-cross-origin 39.16% 22.17%

unsafe-url 22.17% 22.17%

same-origin 7.97% 7.97%

origin-when-cross-origin 6.76% 6.44%

no-referrer 5.65% 5.38%

strict-origin 4.35% 4.14%

origin 3.63% 3.23%

170. https://www.w3.org/TR/referrer-policy/#referrer-policies

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 163

https://www.w3.org/TR/referrer-policy/#referrer-policies
https://www.w3.org/TR/referrer-policy/#referrer-policies
https://w3c.github.io/webappsec-feature-policy/
https://w3c.github.io/webappsec-feature-policy/

We can see that the most popular feature to take control of is the microphone, with almost 11%

of desktop and mobile pages issuing a policy that includes it. Delving deeper into the data we

can look at what those pages are allowing or blocking.

By far the most common approach here is to block use of the microphone altogether, with

about 9% of pages taking that approach. A small number of pages do allow the use of the

microphone by their own origin and interestingly, a small selection of pages intentionally allow

use of the microphone by any origin loading content in their page.

X-Frame-Options

The X-Frame-Options header allows a page to control whether or not it can be placed in an

iframe by another page. Whilst lacking the flexibility of frame-ancestors in CSP, mentioned

Figure 8.12. Top 5 Feature-Policy options used.

Feature Desktop Mobile

microphone 10.78% 10.98%

camera 9.95% 10.19%

payment 9.54% 9.54%

geolocation 9.38% 9.41%

gyroscope 7.92% 7.90%

Figure 8.13. Settings used for microphone feature.

Feature Configuration Usage

microphone none 9.09%

microphone none 8.97%

microphone self 0.86%

microphone self 0.85%

microphone * 0.64%

microphone * 0.53%

Part II Chapter 8 : Security

164 2019 Web Almanac by HTTP Archive

https://tools.ietf.org/html/rfc7034
https://tools.ietf.org/html/rfc7034

above, it was effective if you didn’t require fine grained control of framing.

We see that the usage of the X-Frame-Options header is quite high on both desktop

(16.99%) and mobile (14.77%) and can also look more closely at the specific configurations

used.

It seems that the vast majority of pages restrict framing to only their own origin and the next

significant approach is to prevent framing altogether. This is similar to frame-ancestors in

CSP where these 2 approaches are also the most common. It should also be noted that the

allow-from option, which in theory allow site owners to list the third-party domains allowed

to frame was never well supported171 and has been deprecated.

X-Content-Type-Options

The X-Content-Type-Options header is the most widely deployed Security Header and is

also the most simple, with only one possible configuration value nosniff . When this header is

issued a browser must treat a piece of content as the MIME Type declared in the Content-
Type header and not try to change the advertised value when it infers a file is of a different

type. Various security flaws can be introduced if a browser is persuaded to incorrectly sniff the

type..

We find that an identical 17.61% of pages on both mobile and desktop issue the X-Content-
Type-Options header.

X-XSS-Protection

The X-XSS-Protection header allows a site to control the XSS Auditor or XSS Filter built

into a browser, which should in theory provide some XSS protection.

Figure 8.14. X-Frame-Options configuration used.

Configuration Desktop Mobile

sameorigin 84.92% 83.86%

deny 13.54% 14.50%

allow-from 1.53% 1.64%

171. https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 165

https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Frame-Options#Browser_compatibility
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-XSS-Protection
https://developer.mozilla.org/docs/Web/HTTP/Headers/X-XSS-Protection

14.69% of Desktop requests, and 15.2% of mobile requests used the X-XSS-Protection
header. Digging into the data we can see what the intention for most site operators was in

Figure 8.13.

The value 1 enables the filter/auditor and mode=block sets the protection to the strongest

setting (in theory) where any suspected XSS attack would cause the page to not be rendered.

The second most common configuration was to simply ensure the auditor/filter was turned on,

by presenting a value of 1 and then the 3rd most popular configuration is quite interesting.

Setting a value of 0 in the header instructs the browser to disable any XSS auditor/filter that it

may have. Some historic attacks demonstrated how the auditor or filter could be tricked into

assisting an attacker rather than protecting the user so some site operators could disable it if

they were confident they have adequate protection against XSS in place.

Due to these attacks, Edge retired their XSS Filter, Chrome deprecated their XSS Auditor and

Firefox never implemented support for the feature. We still see widespread use of the header

at approximately 15% of all sites, despite it being largely useless now.

Report-To

The Reporting API172 was introduced to allow site operators to gather various pieces of

telemetry from the browser173. Many errors or problems on a site can result in a poor experience

for the user yet a site operator can only find out if the user contacts them. The Reporting API

provides a mechanism for a browser to automatically report these problems without any user

interaction or interruption. The Reporting API is configured by delivering the Report-To
header.

By specifying the header, which contains a location where the telemetry should be sent, a

Figure 8.15. X-XSS-Protection configuration usage.

Configuration Desktop Mobile

1;mode=block 91.77% 91.46%

1 5.54% 5.35%

0 2.58% 3.11%

1;report= 0.12% 0.09%

172. https://www.w3.org/TR/reporting/
173. https://scotthelme.co.uk/introducing-the-reporting-api-nel-other-major-changes-to-report-uri/

Part II Chapter 8 : Security

166 2019 Web Almanac by HTTP Archive

https://www.w3.org/TR/reporting/
https://scotthelme.co.uk/introducing-the-reporting-api-nel-other-major-changes-to-report-uri/

browser will automatically begin sending the data and you can use a 3rd party service like

Report URI174 to collect the reports or collect them yourself. Given the ease of deployment and

configuration, we can see that only a small fraction of desktop (1.70%) and mobile (1.57%) sites

currently enable this feature. To see the kind of telemetry you can collect, refer to the

Reporting API specification175.

Network Error Logging

Network Error Logging (NEL)176 provides detailed information about various failures in the

browser that can result in a site being inoperative. Whereas the Report-To is used to report

problems with a page that is loaded, the NEL header allows sites to inform the browser to

cache this policy and then to report future connection problems when they happen via the

endpoint configured in the Reporting-To header above. NEL can therefore be seen as an

extension of the Reporting API.

Of course, with NEL depending on the Reporting API, we shouldn’t see the usage of NEL exceed

that of the Reporting API, so we see similarly low numbers here too at 1.70% for desktop

requests and 1.57% for mobile. The fact these numbers are identical suggest they are being

deployed together.

NEL provides incredibly valuable information and you can read more about the type of

information in the Network Error Logging specification177.

Clear Site Data

With the increasing ability to store data locally on a user’s device, via cookies, caches and local

storage to name but a few, site operators needed a reliable way to manage this data. The Clear

Site Data header provides a means to ensure that all data of a particular type is removed from

the device, though it is not yet supported in all browsers178.

Given the nature of the header, it is unsurprising to see almost no usage reported - just 9

desktop requests and 7 mobile requests. With our data only looking at the homepage of a site,

we’re unlikely to see the most common use of the header which would be on a logout endpoint.

Upon logging out of a site, the site operator would return the Clear Site Data header and the

browser would remove all data of the indicated types. This is unlikely to take place on the

homepage of a site.

174. https://report-uri.com/
175. https://www.w3.org/TR/reporting/
176. https://www.w3.org/TR/network-error-logging/
177. https://w3c.github.io/network-error-logging/#predefined-network-error-types
178. https://caniuse.com/#feat=mdn-http_headers_clear-site-data

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 167

https://report-uri.com/
https://www.w3.org/TR/reporting/
https://www.w3.org/TR/network-error-logging/
https://w3c.github.io/network-error-logging/#predefined-network-error-types
https://caniuse.com/#feat=mdn-http_headers_clear-site-data

Cookies

Cookies have many security protections available and whilst some of those are long standing,

and have been available for years, some of them are really quite new have been introduced only

in the last couple of years.

Secure

The Secure flag on a cookie instructs a browser to only send the cookie over a secure

(HTTPS) connection and we find only a small % of sites (4.22% on desktop and 3.68% on mobile)

issuing a cookie with the Secure flag set on their homepage. This is depressing considering the

relative ease with which this feature can be used. Again, the high usage of analytics and

advertisement third-party requests, which wish to collect data over both HTTP and HTTPS is

likely skewing these numbers and it would be interesting research to see the usage on other

cookies, like authentication cookies.

HttpOnly

The HttpOnly flag on a cookie instructs the browser to prevent JavaScript on the page from

accessing the cookie. Many cookies are only used by the server so are not needed by the

JavaScript on the page, so restricting access to a cookie is a great protection against XSS

attacks from stealing the cookie. We find that a much larger % of sites issuing a cookie with this

flag on their homepage at 24.24% on desktop and 22.23% on mobile.

SameSite

As a much more recent addition to cookie protections, the SameSite flag is a powerful

protection against Cross-Site Request Forgery (CSRF)179 attacks (often also known as XSRF).

These attacks work by using the fact that browsers will typically include relevant cookies in all

requests. Therefore, if you are logged in, and so have cookies set, and then visit a malicious site,

it can make a call for an API and the browser will “helpfully” send the cookies. Adding the

SameSite attribute to a Cookie, allows a website to inform the browser not to send the

cookies when calls are issued from third-party sites and hence the attack fails.

Being a recently introduced mechanism, the usage of Same-Site cookies is much lower as we

would expect at 0.1% of requests on both desktop and mobile. There are use cases when a

179. https://en.wikipedia.org/wiki/Cross-site_request_forgery

Part II Chapter 8 : Security

168 2019 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Cross-site_request_forgery

cookie should be sent cross-site. For example, single sign-on sites implicitly work by setting the

cookie along with an authentication token.

We can see that of those pages already using Same-Site cookies, more than half of them are

using it in strict mode. This is closely followed by sites using Same-Site in lax mode and

then a small selection of sites using the value none . This last value is used to opt-out of the

upcoming change where browser vendors may implement lax mode by default.

Because it provides much needed protection against a dangerous attack, there are currently

indications that leading browsers could implement this feature by default180 and enable it on

cookies even though the value is not set. If this were to happen the SameSite protection would

be enabled, though in its weaker setting of lax mode and not strict mode, as that would

likely cause more breakage.

Prefixes

Another recent addition to cookies are Cookie Prefixes. These use the name of your cookie to

add one of two further protections to those already covered. While the above flags can be

accidentally unset on cookies, the name will not change so using the name to define security

attributes can more reliably enforce them.

Currently the name of your cookie can be prefixed with either __Secure- or __Host- , with

both offering additional security to the cookie.

Figure 8.16. SameSite configuration usage.

Configuration Desktop Mobile

strict 53.14% 50.64%

lax 45.85% 47.42%

none 0.51% 0.41%

180. https://blog.chromium.org/2019/10/developers-get-ready-for-new.html

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 169

https://blog.chromium.org/2019/10/developers-get-ready-for-new.html

As the figures show, the use of either prefix is incredibly low but as the more relaxed of the two,

the __Secure- prefix does see more utilization already.

Subresource Integrity

Another problem that has been on the rise recently is the security of 3rd party dependencies.

When loading a script file from a 3rd party, we hope that the script file is always the library that

we wanted, perhaps a particular version of jQuery. If a CDN or 3rd party hosting service is

compromised, the script files they are hosting could be altered. In this scenario your application

would now be loading malicious JavaScript that could harm your visitors. This is what

subresource integrity protects against.

By adding an integrity attribute to a script or link tag, a browser can integrity check the 3rd

party resource and reject it if it has been altered, in a similar manner that CSP hashes described

above are used.

<script

 src="https://code.jquery.com/jquery-3.4.1.min.js"

 integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo="

 crossorigin="anonymous"></script>

With only 0.06% (247,604) of desktop pages and 0.05% (272,167) of mobile pages containing

link or script tags with the integrity attribute set, there’s room for a lot of improvement in the

use of SRI. With many CDNs now providing code samples that include the SRI integrity

attribute we should see a steady increase in the use of SRI.

Figure 8.17. Cookie prefix usage.

No. of Home Pages % of Home Pages

Prefix value Desktop Mobile Desktop Mobile

__Secure- 640 628 0.01% 0.01%

__Host- 154 157 0.00% 0.00%

Part II Chapter 8 : Security

170 2019 Web Almanac by HTTP Archive

Conclusion

As the web grows in capabilities and allows access to more and more sensitive data, it becomes

increasingly important for developers to adopt web security features to protect their

applications. The security features reviewed in this chapter are defenses built into the web

platform itself, available to every web author. However, as a review of the study results in this

chapter shows, the coverage of several important security mechanisms extends only to a subset

of the web, leaving a significant part of the ecosystem exposed to security or privacy bugs.

Encryption

In the recent years, the web has made the most progress on the encryption of data in transit. As

described in the TLS section section, thanks to a range of efforts from browser vendors,

developers and Certificate Authorities such as Let’s Encrypt, the fraction of the web using

HTTPS has steadily grown. At the time of writing, the majority of sites are available over

HTTPS, ensuring confidentiality and integrity of traffic. Importantly, over 99% of websites

which enable HTTPS use newer, more secure versions of the TLS protocol (TLSv1.2 and

TLSv1.3). The use of strong cipher suites such as AES in GCM mode is also high, accounting for

over 95% of requests on all platforms.

At the same time, gaps in TLS configurations are still fairly common. Over 15% of pages suffer

from mixed content issues, resulting in browser warnings, and 4% of sites contain active mixed

content, blocked by modern browsers for security reasons. Similarly, the benefits of HTTP

Strict Transport Security only extend to a small subset of major sites, and the majority of

websites don’t enable the most secure HSTS configurations and are not eligible for HSTS

preloading. Despite progress in HTTPS adoption, a large number of cookies is still set without

the Secure flag; only 4% of homepages that set cookies prevent them from being sent over

unencrypted HTTP.

Defending against common web vulnerabilities

Web developers working on sites with sensitive data often enable opt-in web security features

to protect their applications from XSS181, CSRF182, clickjacking183, and other common web bugs.

These issues can be mitigated by setting a number of standard, broadly supported HTTP

response headers, including X-Frame-Options , X-Content-Type-Options , and

Content-Security-Policy .

In large part due to the complexity of both the security features and web applications, only a

181. https://en.wikipedia.org/wiki/Cross-site_scripting
182. https://en.wikipedia.org/wiki/Cross-site_request_forgery
183. https://en.wikipedia.org/wiki/Clickjacking

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 171

https://en.wikipedia.org/wiki/Cross-site_scripting
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://en.wikipedia.org/wiki/Clickjacking

minority of websites currently use these defenses, and often enable only those mechanisms

which do not require significant refactoring efforts. The most common opt-in application

security features are X-Content-Type-Options (enabled by 17% of pages), X-Frame-
Options (16%), and the deprecated X-XSS-Protection header (15%). The most powerful

web security mechanism—Content Security Policy—is only enabled by 5% of websites, and only

a small subset of them (about 0.1% of all sites) use the safer configurations based on CSP

nonces and hashes. The related Referrer-Policy , aiming to reduce the amount of

information sent to third parties in the Referer headers is similarly only used by 3% of

websites.

Modern web platform defenses

In the recent years, web browsers have implemented powerful new mechanisms which offer

protections from major classes of vulnerabilities and new web threats; this includes

Subresource Integrity, SameSite cookies, and cookie prefixes.

These features have seen adoption only by a relatively small number of websites; their total

coverage is generally well below 1%. The even more recent security mechanisms such as

Trusted Types184, Cross-Origin Resource Policy185 or Cross-Origin-Opener Policy186 have not seen

any widespread adoption as of yet.

Similarly, convenience features such as the Reporting API, Network Error Logging and the

Clear-Site-Data header are also still in their infancy and are currently being used by a

small number of sites.

Tying it all together

At web scale, the total coverage of opt-in platform security features is currently relatively low.

Even the most broadly adopted protections are enabled by less than a quarter of websites,

leaving the majority of the web without platform safeguards against common security issues;

more recent security mechanisms, such as Content Security Policy or Referrer Policy, are

enabled by less than 5% of websites.

It is important to note, however, that the adoption of these mechanisms is skewed towards

larger web applications which frequently handle more sensitive user data. The developers of

these sites more frequently invest in improving their web defenses, including enabling a range

of protections against common vulnerabilities; tools such as Mozilla Observatory187 and Security

184. https://w3c.github.io/webappsec-trusted-types/dist/spec/
185. https://developer.mozilla.org/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
186. https://www.chromestatus.com/feature/5432089535053824
187. https://observatory.mozilla.org/

Part II Chapter 8 : Security

172 2019 Web Almanac by HTTP Archive

https://w3c.github.io/webappsec-trusted-types/dist/spec/
https://developer.mozilla.org/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://www.chromestatus.com/feature/5432089535053824
https://observatory.mozilla.org/
https://securityheaders.com/

Headers188 can provide a useful checklist of web available security features.

If your web application handles sensitive user data, consider enabling the security mechanisms

outlined in this section to protect your users and make the web safer.

Authors

Scott Helme

@Scott_Helme ScottHelme https://scotthelme.co.uk

Scott Helme is a Security Researcher and founder of report-uri.com189 and

securityheaders.com190. You can find him talking about security on Twitter

@Scott_Helme and blogging at scotthelme.co.uk191.

Artur Janc

@arturjanc arturjanc

Artur Janc is an Information Security Engineer at Google, working on designing

and adopting web platform security mechanisms across Google and the web at

large. He argues with people on the internet as @arturjanc on Twitter.

188. https://securityheaders.com/
189. https://report-uri.com
190. https://securityheaders.com
191. https://scotthelme.co.uk

Part II Chapter 8 : Security

2019 Web Almanac by HTTP Archive 173

https://securityheaders.com/
https://twitter.com/Scott_Helme
https://github.com/ScottHelme
https://scotthelme.co.uk/
https://report-uri.com/
https://securityheaders.com/
https://twitter.com/Scott_Helme
https://scotthelme.co.uk/
https://twitter.com/arturjanc
https://github.com/arturjanc
https://twitter.com/arturjanc

174 2019 Web Almanac by HTTP Archive

Part II Chapter 9

Accessibility

Written by Nektarios Paisios, David Fox, and Abigail Klein
Reviewed by Laura Eberly
Analyzed by Doug Sillars, Rick Viscomi, and David Fox
Edited by David Fox

Introduction

Accessibility on the web is essential for an inclusive and equitable society. As more of our social

and work lives move to the online world, it becomes even more important for people with

disabilities to be able to participate in all online interactions without barriers. Just as building

architects can create or omit accessibility features such as wheelchair ramps, web developers

can help or hinder the assistive technology users rely on.

When thinking about users with disabilities, we should remember that their user journeys are

often the same—they just use different tools. These popular tools include but are not limited to:

screen readers, screen magnifiers, browser or text size zooming, and voice controls.

Often, improving the accessibility of your site has benefits for everyone. While we typically

think of people with disabilities as people with a permanent disability, anybody can have a

temporary or situational disability. For example, someone might be permanently blind, have a

temporary eye infection, or, situationally, be outside under a glaring sun. All of these might

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 175

explain why someone is unable to see their screen. Everyone has situational disabilities, and so

improving the accessibility of your web page will improve the experience of all users in any

situation.

The Web Content Accessibility Guidelines192 (WCAG) advise on how to make a website

accessible. These guidelines were used as the basis for our analysis. However, in many cases it is

difficult to programmatically analyze the accessibility of a website. For instance, the web

platform provides several ways of achieving similar functional results, but the underlying code

powering them may be completely different. Therefore, our analysis is just an approximation of

overall web accessibility.

We’ve split up our most interesting insights into four categories: ease of reading, media on the

web, ease of page navigation, and compatibility with assistive technologies.

No significant difference in accessibility was found between desktop and mobile during testing.

As a result, all of our presented metrics are the result of our desktop analysis unless otherwise

stated.

Ease of reading

The primary goal of a web page is to deliver content users want to engage with. This content

might be a video or an assortment of images, but many times, it’s simply the text on the page.

It’s extremely important that our textual content is legible to our readers. If visitors can’t read a

web page, they can’t engage with it, which ends up with them leaving. In this section we’ll look

at three areas in which sites struggled.

Color contrast

There are many cases where visitors to your site may not be able see it perfectly. Visitors may

be colorblind and unable to distinguish between the font and background color (1 in every 12

men and 1 in 200 women193 of European descent). Perhaps they’re simply reading while the sun

is out and creating tons of glare on their screen—significantly impairing their vision. Or maybe

they’ve just grown older and their eyes can’t distinguish colors as well as they used to.

In order to make sure your website is readable under these conditions, making sure your text

has sufficient color contrast with its background is critical. It is also important to consider what

contrasts will be shown when the colors are converted to grayscale.

192. https://www.w3.org/WAI/WCAG21/quickref/
193. http://www.cvrl.org/people/stockman/pubs/1999%20Genetics%20chapter%20SSJN.pdf

Part II Chapter 9 : Accessibility

176 2019 Web Almanac by HTTP Archive

https://www.w3.org/WAI/WCAG21/quickref/
http://www.cvrl.org/people/stockman/pubs/1999%20Genetics%20chapter%20SSJN.pdf
http://www.cvrl.org/people/stockman/pubs/1999%20Genetics%20chapter%20SSJN.pdf

Only 22.04% of sites gave all of their text sufficient color contrast. Or in other words: 4 out of

every 5 sites have text which easily blends into the background, making it unreadable.

Note that we weren’t able to analyze any text inside of images, so our reported metric is an upper-

bound of the total number of websites passing the color contrast test.

Zooming and scaling pages

Using a legible font size194 and target size195 helps users read and interact with your website. But

even websites perfectly following all of these guidelines can’t meet the specific needs of each

visitor. This is why device features like pinch-to-zoom and scaling are so important: they allow

users to tweak your pages so their needs are met. Or in the case of particularly inaccessible

sites using tiny fonts and buttons, it gives users the chance to even use the site.

There are rare cases when disabling scaling is acceptable, like when the page in question is a

web-based game using touch controls. If left enabled in this case, players’ phones will zoom in

and out every time the player taps twice on the game, ironically making it inaccessible.

Because of this, developers are given the ability to disable this feature by setting one of the

following two properties in the meta viewport tag196:

1. user-scalable set to 0 or no

Figure 9.1. Example of what text with insufficient color contrast looks like. Courtesy of LookZook

BG Color: #FCA469

#FFFFFF #FFFFFF

BG Color: #BD5B0E

#FFFFFF

Too lightly colored

#FFFFFF

Recommended

BG Color: #B8B8B8 BG Color: #707070

©

194. https://accessibleweb.com/question-answer/minimum-font-size/
195. https://www.w3.org/WAI/WCAG21/quickref/#target-size
196. https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 177

https://almanac.httparchive.org/static/images/2019/accessibility/example-of-good-and-bad-color-contrast-lookzook.svg
https://almanac.httparchive.org/static/images/2019/accessibility/example-of-good-and-bad-color-contrast-lookzook.svg
https://accessibleweb.com/question-answer/minimum-font-size/
https://www.w3.org/WAI/WCAG21/quickref/#target-size
https://developer.mozilla.org/docs/Web/HTML/Viewport_meta_tag

2. maximum-scale set to 1 , 1.0 , etc

Sadly, developers have misused this so much that almost one out of every three sites on mobile

(32.21%) disable this feature, and Apple (as of iOS 10) no longer allows web-developers to

disable zooming. Mobile Safari simply ignores the tag197. All sites, no matter what, can be

zoomed and scaled on newer iOS devices.

Language identification

The web is full of wondrous amounts of content. However, there’s a catch: over 1,000 different

languages exist in the world, and the content you’re looking for may not be written in one you

are fluent in. In recent years, we’ve made great strides in translation technologies and you

probably have used one of them on the web (e.g., Google translate).

In order to facilitate this feature, the translation engines need to know what language your

pages are written in. This is done by using the lang attribute. Without this, computers must

guess what language your page is written in. As you might imagine, this leads to many errors,

especially when pages use multiple languages (e.g., your page navigation is in English, but the

post content is in Japanese).

This problem is even more pronounced on text-to-speech assistive technologies like screen

Figure 9.2. Percentage of sites that disable zooming and scaling vs device type.

197. https://archive.org/details/ios-10-beta-release-notes

Part II Chapter 9 : Accessibility

178 2019 Web Almanac by HTTP Archive

https://archive.org/details/ios-10-beta-release-notes
https://almanac.httparchive.org/static/images/2019/accessibility/fig2.png
https://almanac.httparchive.org/static/images/2019/accessibility/fig2.png
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/lang
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/lang

readers, where if no language has been specified, they tend to read the text in the default user

language.

Of the pages analyzed, 26.13% do not specify a language with the lang attribute. This leaves

over a quarter of pages susceptible to all of the problems described above. The good news? Of

sites using the lang attribute, they specify a valid language code correctly 99.68% of the time.

Distracting content

Some users, such as those with cognitive disabilities, have difficulties concentrating on the

same task for long periods of time. These users don’t want to deal with pages that include lots of

motion and animations, especially when these effects are purely cosmetic and not related to

the task at hand. At a minimum, these users need a way to turn all distracting animations off.

Unfortunately, our findings indicate that infinitely looping animations are quite common on the

web, with 21.04% of pages using them through infinite CSS animations or <marquee> and

<blink> elements.

It is interesting to note however, that the bulk of this problem appears to be a few popular

third-party stylesheets which include infinitely looping CSS animations by default. We were

unable to determine how many pages actually used these animation styles.

Media on the web

Alternative text on images

Images are an essential part of the web experience. They can tell powerful stories, grab

attention, and elicit emotion. But not everyone can see these images that we rely on to tell

parts of our stories. Thankfully, in 1995, HTML 2.0 provided a solution to this problem: the alt

attribute198. The alt attribute provides web developers with the capability of adding a textual

description to the images we use, so that when someone is unable to see our images (or the

images are unable to load), they can read the alt text for a description. The alt text fills them in

on the part of the story they would have otherwise missed.

Even though alt attributes have been around for 25 years, 49.91% of pages still fail to provide

alt attributes for some of their images, and 8.68% of pages never use them at all.

198. https://webaim.org/techniques/alttext/

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 179

https://developer.mozilla.org/docs/Web/HTML/Element/marquee
https://developer.mozilla.org/docs/Web/HTML/Element/marquee
https://developer.mozilla.org/docs/Web/HTML/Element/blink
https://developer.mozilla.org/docs/Web/HTML/Element/blink
https://webaim.org/techniques/alttext/
https://webaim.org/techniques/alttext/

Captions for audio and video

Just as images are powerful storytellers, so too are audio and video in grabbing attention and

expressing ideas. When audio and video content is not captioned, users who cannot hear this

content miss out on large portions of the web. One of the most common things we hear from

users who are Deaf or hard of hearing is the need to include captions for all audio and video

content.

Of sites using <audio> or <video> elements, only 0.54% provide captions (as measured by

those that include the <track> element). Note that some websites have custom solutions for

providing video and audio captions to users. We were unable to detect these and thus the true

percentage of sites utilizing captions is slightly higher.

Ease of page navigation

When you open the menu in a restaurant, the first thing you probably do is read all of the

section headers: appetizers, salads, main course, and dessert. This allows you to scan a menu for

all of the options and jump quickly to the dishes most interesting to you. Similarly, when a

visitor opens a web page, their goal is to find the information they are most interested in—the

reason they came to the page in the first place. In order to help users find their desired content

as fast as possible (and prevent them from hitting the back button), we try to separate the

contents of our pages into several visually distinct sections, for example: a site header for

navigation, various headings in our articles so users can quickly scan them, a footer for other

extraneous resources, and more.

While this is exceptionally important, we need to take care to mark up our pages so our visitors’

computers can perceive these distinct sections as well. Why? While most readers use a mouse

to navigate pages, many others rely on keyboards and screen readers. These technologies rely

heavily on how well their computers understand your page.

Headings

Headings are not only helpful visually, but to screen readers as well. They allow screen readers

to quickly jump from section to section and help indicate where one section ends and another

begins.

In order to avoid confusing screen reader users, make sure you never skip a heading level. For

example, don’t go straight from an H1 to an H3, skipping the H2. Why is this a big deal? Because

this is an unexpected change that will cause a screen reader user to think they’ve missed a piece

of content. This might cause them to start looking all over for what they may have missed, even

Part II Chapter 9 : Accessibility

180 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/audio
https://developer.mozilla.org/docs/Web/HTML/Element/audio
https://developer.mozilla.org/docs/Web/HTML/Element/video
https://developer.mozilla.org/docs/Web/HTML/Element/video
https://developer.mozilla.org/docs/Web/Guide/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video
https://developer.mozilla.org/docs/Web/Guide/Audio_and_video_delivery/Adding_captions_and_subtitles_to_HTML5_video

if there isn’t anything missing. Plus, you’ll help all of your readers by keeping a more consistent

design.

With that being said, here are our results:

1. 89.36% of pages use headings in some fashion. Awesome.

2. 38.6% of pages do skip heading levels.

3. Strangely, H2s are found on more sites than H1s.

Main landmark

A main landmark199 indicates to screen readers where the main content of a web page starts so

users can jump right to it. Without this, screen reader users have to manually skip over your

navigation every single time they go to a new page within your site. Obviously, this is rather

frustrating.

We found only one in every four pages (26.03%) include a main landmark. And surprisingly,

8.06% of pages erroneously contained more than one main landmark, leaving these users

guessing which landmark contains the actual main content.

Figure 9.3. Popularity of heading levels.

199. https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/Main_role

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 181

https://almanac.httparchive.org/static/images/2019/accessibility/fig3.png
https://almanac.httparchive.org/static/images/2019/accessibility/fig3.png
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/Main_role

HTML section elements

Since HTML5 was released in 2008, and made the official standard in 2014, there are many

HTML elements to aid computers and screen readers in understanding our page layout and

structure.

Elements like <header> , <footer> , <navigation> , and <main> indicate where specific

types of content live and allow users to quickly jump around your page. These are being used

widely across the web, with most of them being used on over 50% of pages (<main> being the

outlier).

Others like <article> , <hr> , and <aside> aid readers in understanding a page’s main

content. For example, <article> says where one article ends and another begins. These

elements are not used nearly as much, with each sitting at around 20% usage. Not all of these

belong on every web page, so this isn’t necessarily an alarming statistic.

All of these elements are primarily designed for accessibility support and have no visual effect,

which means you can safely replace existing elements with them and suffer no unintended

consequences.

Figure 9.4. Percent of pages by their number of ’main’ landmarks.

Part II Chapter 9 : Accessibility

182 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/accessibility/fig4.png
https://almanac.httparchive.org/static/images/2019/accessibility/fig4.png
https://developer.mozilla.org/docs/Web/HTML/Element/header
https://developer.mozilla.org/docs/Web/HTML/Element/header
https://developer.mozilla.org/docs/Web/HTML/Element/footer
https://developer.mozilla.org/docs/Web/HTML/Element/footer
https://developer.mozilla.org/docs/Web/HTML/Element/nav
https://developer.mozilla.org/docs/Web/HTML/Element/nav
https://developer.mozilla.org/docs/Web/HTML/Element/main
https://developer.mozilla.org/docs/Web/HTML/Element/main
https://developer.mozilla.org/docs/Web/HTML/Element/article
https://developer.mozilla.org/docs/Web/HTML/Element/article
https://developer.mozilla.org/docs/Web/HTML/Element/hr
https://developer.mozilla.org/docs/Web/HTML/Element/hr
https://developer.mozilla.org/docs/Web/HTML/Element/aside
https://developer.mozilla.org/docs/Web/HTML/Element/aside

Other HTML elements used for navigation

Many popular screen readers also allow users to navigate by quickly jumping through links,

lists, list items, iframes, and form fields like edit fields, buttons, and list boxes. Figure 9.6 details

how often we saw pages using these elements.

Figure 9.5. Usage of various HTML semantic elements.

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 183

https://almanac.httparchive.org/static/images/2019/accessibility/fig5.png
https://almanac.httparchive.org/static/images/2019/accessibility/fig5.png

Skip Links

A skip link200 is a link placed at the top of a page which allows screen readers or keyboard-only

users to jump straight to the main content. It effectively “skips” over all navigational links and

menus at the top of the page. Skip links are especially useful to keyboard users who don’t use a

screen reader, as these users don’t usually have access to other modes of quick navigation (like

landmarks and headings). 14.19% of the pages in our sample were found to have skip links.

If you’d like to see a skip link in action for yourself, you can! Just do a quick Google search and

hit tab as soon as you land on the search result pages. You’ll be greeted with a previously

hidden link just like the one in Figure 9.7.

Figure 9.6. Other HTML elements used for navigation.

200. https://webaim.org/techniques/skipnav/

Part II Chapter 9 : Accessibility

184 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/accessibility/fig6.png
https://almanac.httparchive.org/static/images/2019/accessibility/fig6.png
https://webaim.org/techniques/skipnav/

In fact you don’t need to even leave this site as we use them here too201!

It’s hard to accurately determine what a skip link is when analyzing sites. For this analysis, if we

found an anchor link (href=#heading1) within the first 3 links on the page, we defined this as

a page with a skip link. So 14.19% is a strict upper bound.

Shortcuts

Shortcut keys set via the aria-keyshortcuts or accesskey attributes can be used in one

of two ways:

1. Activating an element on the page, like a link or button.

2. Giving a certain element on the page focus. For example, shifting focus to a certain

input on the page, allowing a user to then start typing into it.

Adoption of aria-keyshortcuts was almost absent from our sample, with it only being used

on 159 sites out of over 4 million analyzed. The accesskey attribute was used more

frequently, being found on 2.47% of web pages (1.74% on mobile). We believe the higher usage

of shortcuts on desktop is due to developers expecting mobile sites to only be accessed via a

touch screen and not a keyboard.

What is especially surprising here is 15.56% of mobile and 13.03% of desktop sites which use

Figure 9.7. What a skip link looks like on google.com.

201. https://github.com/HTTPArchive/almanac.httparchive.org/pull/645

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 185

https://almanac.httparchive.org/static/images/2019/accessibility/example-of-a-skip-link-on-google.com.png
https://almanac.httparchive.org/static/images/2019/accessibility/example-of-a-skip-link-on-google.com.png
https://github.com/HTTPArchive/almanac.httparchive.org/pull/645
https://www.w3.org/TR/wai-aria-1.1/#aria-keyshortcuts
https://www.w3.org/TR/wai-aria-1.1/#aria-keyshortcuts
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/accesskey
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/accesskey
https://www.w3.org/TR/wai-aria-1.1/#aria-keyshortcuts
https://www.w3.org/TR/wai-aria-1.1/#aria-keyshortcuts
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/accesskey
https://developer.mozilla.org/docs/Web/HTML/Global_attributes/accesskey

shortcut keys assign the same shortcut to multiple different elements. This means browsers

have to guess which element should own this shortcut key.

Tables

Tables are one of the primary ways we organize and express large amounts of data. Many

assistive technologies like screen readers and switches (which may be used by users with motor

disabilities) might have special features allowing them to navigate this tabular data more

efficiently.

Headings

Depending on the way a particular table is structured, the use of table headers makes it easier

to read across columns or rows without losing context on what data that particular column or

row refers to. Having to navigate a table lacking in header rows or columns is a subpar

experience for a screen reader user. This is because it’s hard for a screen reader user to keep

track of their place in a table absent of headers, especially when the table is quite large.

To mark up table headers, simply use the <th> tag (instead of <td>), or either of the ARIA

columnheader or rowheader roles. Only 24.5% of pages with tables were found to markup

their tables with either of these methods. So the three quarters of pages choosing to include

tables without headers are creating serious challenges for screen reader users.

Using <th> and <td> was by far the most commonly used method for marking up table

headers. The use of columnheader and rowheader roles was almost non-existent with only

677 total sites using them (0.058%).

Captions

Table captions via the <caption> element are helpful in providing more context for readers of

all kinds. A caption can prepare a reader to take in the information your table is sharing, and it

can be especially useful for people who may get distracted or interrupted easily. They are also

useful for people who may lose their place within a large table, such as a screen reader user or

someone with a learning or intellectual disability. The easier you can make it for readers to

understand what they’re analyzing, the better.

Despite this, only 4.32% of pages with tables provide captions.

Part II Chapter 9 : Accessibility

186 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/th
https://developer.mozilla.org/docs/Web/HTML/Element/th
https://developer.mozilla.org/docs/Web/HTML/Element/td
https://developer.mozilla.org/docs/Web/HTML/Element/td
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/Table_Role
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/Table_Role
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/Table_Role
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/Table_Role
https://developer.mozilla.org/docs/Web/HTML/Element/caption
https://developer.mozilla.org/docs/Web/HTML/Element/caption

Compatibility with assistive technologies

The use of ARIA

One of the most popular and widely used specifications for accessibility on the web is the

Accessible Rich Internet Applications202 (ARIA) standard. This standard offers a large array of

additional HTML attributes to help convey the purpose behind visual elements (i.e., their

semantic meaning), and what kinds of actions they’re capable of.

Using ARIA correctly and appropriately can be challenging. For example, of pages making use of

ARIA attributes, we found 12.31% have invalid values assigned to their attributes. This is

problematic because any mistake in the use of an ARIA attribute has no visual effect on the

page. Some of these errors can be detected by using an automated validation tool, but generally

they require hands-on use of real assistive software (like a screen reader). This section will

examine how ARIA is used on the web, and specifically which parts of the standard are most

prevalent.

The role attribute

The “role” attribute is the most important attribute in the entire ARIA specification. It’s used to

Figure 9.8. Percent of total pages vs ARIA attribute.

202. https://www.w3.org/WAI/standards-guidelines/aria/

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 187

https://www.w3.org/WAI/standards-guidelines/aria/
https://almanac.httparchive.org/static/images/2019/accessibility/fig8.png
https://almanac.httparchive.org/static/images/2019/accessibility/fig8.png

inform the browser what the purpose of a given HTML element is (i.e., the semantic meaning).

For example, a <div> element, visually styled as a button using CSS, should be given the ARIA

role of button .

Currently, 46.91% of pages use at least one ARIA role attribute. In Figure 9.9 below, we’ve

compiled a list of the top ten most widely used ARIA role values.

Looking at the results in Figure 9.9, we found two interesting insights: updating UI frameworks

may have a profound impact on accessibility across the web, and the impressive number of sites

attempting to make dialogs accessible.

Updating UI frameworks could be the way forward for accessibility across the
web

The top 5 roles, all appearing on 11% of pages or more, are landmark roles. These are used to

aid navigation, not to describe the functionality of a widget, such as a combo box. This is a

surprising result because the main motivator behind the development of ARIA was to give web

developers the capability to describe the functionality of widgets made of generic HTML

elements (like a <div>).

We suspect that some of the most popular web UI frameworks include navigation roles in their

templates. This would explain the prevalence of landmark attributes. If this theory is correct,

updating popular UI frameworks to include more accessibility support may have a huge impact

Figure 9.9. Top 10 ARIA roles.

Part II Chapter 9 : Accessibility

188 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/accessibility/fig9.png
https://almanac.httparchive.org/static/images/2019/accessibility/fig9.png

on the accessibility of the web.

Another result pointing towards this conclusion is the fact that more “advanced” but equally

important ARIA attributes don’t appear to be used at all. Such attributes cannot easily be

deployed through a UI framework because they might need to be customized based on the

structure and the visual appearance of every site individually. For example, we found that the

posinset and setsize attributes were only used on 0.01% of pages. These attributes

convey to a screen reader user how many items are in a list or menu and which item is currently

selected. So, if a visually impaired user is trying to navigate through a menu, they might hear

index announcements like: “Home, 1 of 5”, “Products, 2 of 5”, “Downloads, 3 of 5”, etc.

Many sites attempt to make dialogs accessible

The relative popularity of the dialog role203 stands out because making dialogs accessible for

screen reader users is very challenging. It is therefore exciting to see around 8% of the analyzed

pages stepping up to the challenge. Again, we suspect this might be due to the use of some UI

frameworks.

Labels on interactive elements

The most common way that a user interacts with a website is through its controls, such as links

or buttons to navigate the website. However, many times screen reader users are unable to tell

what action a control will perform once activated. Often the reason this confusion occurs is due

to the lack of a textual label. For example, a button displaying a left-pointing arrow icon to

signify it’s the “Back” button, but containing no actual text.

Only about a quarter (24.39%) of pages that use buttons or links include textual labels with

these controls. If a control is not labeled, a screen reader user might read something generic,

such as the word “button” instead of a meaningful word like “Search”.

Buttons and links are almost always included in the tab order and thus have extremely high

visibility. Navigating through a website using the tab key is one of the primary ways through

which users who use only the keyboard explore your website. So a user is sure to encounter

your unlabeled buttons and links if they are moving through your website using the tab key.

Accessibility of Form Controls

Filling out forms is a task many of us do every single day. Whether we’re shopping, booking

travel, or applying for a job, forms are the main way users share information with web pages.

203. https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/dialog_role

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 189

https://developer.mozilla.org/docs/Web/Accessibility/ARIA/Roles/dialog_role

Because of this, ensuring your forms are accessible is incredibly important. The simplest means

of accomplishing this is by providing labels (via the <label> element, aria-label or

aria-labelledby) for each of your inputs. Sadly, only 22.33% of pages provide labels for all

their form inputs, meaning 4 out of every 5 pages have forms that may be very difficult to fill

out.

Indicators of required and invalid fields

When we come across a field with a big red asterisk next to it, we know it’s a required field. Or

when we hit submit and are informed there were invalid inputs, anything highlighted in a

different color needs to be corrected and then resubmitted. However, people with low or no

vision cannot rely on these visual cues, which is why the HTML input attributes required ,

aria-required , and aria-invalid are so important. They provide screen readers with

the equivalent of red asterisks and red highlighted fields. As a nice bonus, when you inform

browsers what fields are required, they’ll validate parts of your forms204 for you. No JavaScript

required.

Of pages using forms, 21.73% use required or aria-required when marking up required

fields. Only one in every five sites make use of this. This is a simple step to make your site

accessible, and unlocks helpful browser features for all users.

We also found 3.52% of sites with forms make use of aria-invalid . However, since many

forms only make use of this field once incorrect information is submitted, we could not

ascertain the true percentage of sites using this markup.

Duplicate IDs

IDs can be used in HTML to link two elements together. For example, the <label> element

works this way. You specify the ID of the input field this label is describing and the browser links

them together. The result? Users can now click on this label to focus on the input field, and

screen readers will use this label as the description.

Unfortunately, 34.62% of sites have duplicate IDs, which means on many sites the ID specified

by the user could refer to multiple different inputs. So when a user clicks on the label to select a

field, they may end up selecting something different205 than they intended. As you might imagine,

this could have negative consequences in something like a shopping cart.

This issue is even more pronounced for screen readers because their users may not be able to

visually double check what is selected. Plus, many ARIA attributes, such as aria-

204. https://developer.mozilla.org/docs/Learn/HTML/Forms/Form_validation
205. https://www.deque.com/blog/unique-id-attributes-matter/

Part II Chapter 9 : Accessibility

190 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Element/label
https://developer.mozilla.org/docs/Web/HTML/Element/label
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-label_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-label_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-labelledby_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-labelledby_attribute
https://developer.mozilla.org/docs/Learn/HTML/Forms/Form_validation
https://developer.mozilla.org/docs/Web/HTML/Element/label
https://developer.mozilla.org/docs/Web/HTML/Element/label
https://www.deque.com/blog/unique-id-attributes-matter/
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-describedby_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-describedby_attribute

describedby and aria-labelledby , work similarly to the label element detailed above. So

to make your site accessible, removing all duplicate IDs is a good first step.

Conclusion

People with disabilities are not the only ones with accessibility needs. For example, anyone who

has suffered a temporary wrist injury has experienced the difficulty of tapping small tap targets.

Eyesight often diminishes with age, making text written in small fonts challenging to read.

Finger dexterity is not the same across age demographics, making tapping interactive controls

or swiping through content on mobile websites more difficult for a sizable percentage of users.

Similarly, assistive software is not only geared towards people with disabilities but for

improving the day to day experience of everyone:

• The recent popularity of voice assistance, both on mobile devices and in the home,

has demonstrated that controlling a computing device using voice commands is

both desirable and essential for many users. Voice commands like these used to only

be an accessibility feature but are now turning into a mainstream product.

• Drivers would benefit from a screen reading feature that, while they keep their eyes

on the road, reads long pieces of text like news stories aloud.

• Captions are enjoyed not only by people who cannot hear a video but also by people

who want to watch a video in a loud restaurant or in a library.

Once a website is built, it’s often hard to retrofit accessibility on top of existing site structures

and widgets. Accessibility isn’t something that can be easily sprinkled on afterwards, rather it

needs to be part of the design and implementation process. Unfortunately, either through a lack

of awareness or easy-to-use testing tools, many developers are not familiar with the needs of

all their users and the requirements of the assistive software they use.

While not conclusive, our results indicate that the use of accessibility standards like ARIA and

accessibility best practices (e.g., using alt text) are found on a sizable, but not substantial portion

of the web. On the surface this is encouraging, but we suspect many of these positive trends are

due to the popularity of certain UI frameworks. On one hand, this is disappointing because web

developers cannot simply rely on UI frameworks to inject their sites with accessibility support.

On the other hand though, it’s encouraging to see how large of an effect UI frameworks could

have on the accessibility of the web.

The next frontier, in our opinion, is making widgets which are available through UI frameworks

more accessible. Since many complex widgets used in the wild (e.g., calendar pickers) are

Part II Chapter 9 : Accessibility

2019 Web Almanac by HTTP Archive 191

https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-describedby_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-describedby_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-labelledby_attribute
https://developer.mozilla.org/docs/Web/Accessibility/ARIA/ARIA_Techniques/Using_the_aria-labelledby_attribute

sourced from a UI library, it would be great for these widgets to be accessible out of the box.

We hope that when we collect our results next time, the usage of more properly implemented

complex ARIA roles is on the rise—signifying more complex widgets have also been made

accessible. In addition, we hope to see more accessible media, like images and video, so all users

can enjoy the richness of the web.

Authors

Nektarios Paisios

Nektarios Paisios is a software engineer working on Chrome accessibility for the

last 5 years. He primarily focuses on making Chrome compatible with third party

assistive software such as screen readers and screen magnifiers. Before working

on Chrome accessibility, Nektarios worked in various other roles at the company,

such as GSuite accessibility and display ads. Nektarios holds a Ph.D. in Computer

Science from New York University.

David Fox

@theobto foxdavidj https://www.lookzook.com

David Fox is the lead usability researcher and founder of LookZook, a company

obsessed with finding out everything there is to know about building web

experiences that meet user expectations. He is a website psychologist who digs

into sites to learn not just what users are struggling with, but why, and how to best

improve their experience. He is also a Google Chromium contributor, speaker, and

provider of webinars and UX training.

Abigail Klein

kleinab

Abigail Klein is a Google software engineer. She worked on Google Docs, Sheets,

and Slides web accessibility where she added automatic captions to Google

Slides206, as well as improving screen reader, braille, screen magnifier, and high

contrast support. She currently works on Google Chrome and ChromeOS

accessibility. She has a bachelor’s and master’s degree in computer science from

MIT, where she co-founded an assistive technology hackathon and was a lab

assistant and guest lecturer of the assistive technology class.

206. https://www.blog.google/outreach-initiatives/accessibility/whats-you-say-present-captions-google-slides/

Part II Chapter 9 : Accessibility

192 2019 Web Almanac by HTTP Archive

https://twitter.com/theobto
https://github.com/foxdavidj
https://www.lookzook.com/
https://github.com/kleinab
https://www.blog.google/outreach-initiatives/accessibility/whats-you-say-present-captions-google-slides/
https://www.blog.google/outreach-initiatives/accessibility/whats-you-say-present-captions-google-slides/

Part II Chapter 10

SEO

Written by Yvo Schaap, Rachel Costello, and Martin Splitt
Reviewed by John Fox, Andrew Limn, Aymen Loukil, Catalin Rosu, and Matt Ludwig
Analyzed by Yvo Schaap
Edited by Rachel Costello

Introduction

Search Engine Optimization (SEO) isn’t just a hobby or a side project for digital marketers, it is

crucial for the success of a website. The primary goal of SEO is to make sure that a website is

optimized for the search engine bots that need to crawl and index its pages, as well as for the

users that will be navigating the website and consuming its content. SEO impacts everyone

working on a website, from the developer who is building it, through to the digital marketer

who will need to promote it to new potential customers.

Let’s put the importance of SEO into perspective. Earlier this year, the SEO industry looked on

in horror (and fascination) as ASOS reported an 87% decrease in profits207 after a “difficult year”.

The brand attributed their issues to a drop in search engine rankings which occurred after they

launched over 200 microsites and significant changes to their website’s navigation, among

other technical changes. Yikes.

207. https://www.bbc.co.uk/news/business-47877688

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 193

https://www.bbc.co.uk/news/business-47877688

The purpose of the SEO chapter of the Web Almanac is to analyze on-site elements of the web

that impact the crawling and indexing of content for search engines, and ultimately, website

performance. In this chapter, we’ll take a look at how well-equipped the top websites are to

provide a great experience for users and search engines, and which ones still have work to do.

Our analysis includes data from Lighthouse, the Chrome UX Report, and HTML element

analysis. We focused on SEO fundamentals like <title> elements, the different types of on-

page links, content, and loading speed, but also the more technical aspects of SEO, including

indexability, structured data, internationalization, and AMP across over 5 million websites.

Our custom metrics provide insights that, up until now, have not been exposed before. We are

now able to make claims about the adoption and implementation of elements such as the

hreflang tag, rich results eligibility, heading tag usage, and even anchor-based navigation for

single page apps.

Note: Our data is limited to analyzing home pages only and has not been gathered from site-wide

crawls. This will impact many metrics we’ll discuss, so we’ve added any relevant limitations in this case

whenever we mention a specific metric. Learn more about these limitations in our Methodology.

Read on to find out more about the current state of the web and its search engine friendliness.

Fundamentals

Search engines have a three-step process: crawling, indexing, and ranking. To be search engine-

friendly, a page needs to be discoverable, understandable, and contain quality content that

would provide value to a user who is browsing the search engine results pages (SERPs).

We wanted to analyze how much of the web is meeting the basic standards of SEO best

practices, so we assessed on-page elements such as body content, meta tags, and internal

linking. Let’s take a look at the results.

Content

To be able to understand what a page is about and decide for which search queries it provides

the most relevant answers, a search engine must be able to discover and access its content.

What content are search engines currently finding, however? To help answer this, we created

two custom metrics: word count and headings.

Part II Chapter 10 : SEO

194 2019 Web Almanac by HTTP Archive

Word count

We assessed the content on the pages by looking for groups of at least 3 words and counting

how many were found in total. We found 2.73% of desktop pages that didn’t have any word

groups, meaning that they have no body content to help search engines understand what the

website is about.

The median desktop home page has 346 words, and the median mobile home page has a slightly

lower word count at 306 words. This shows that mobile sites do serve a bit less content to their

users, but at over 300 words, this is still a reasonable amount to read. This is especially true for

home pages which will naturally contain less content than article pages, for example. Overall

the distribution of words is broad, with between 22 words at the 10th percentile and up to

1,361 at the 90th percentile.

Headings

We also looked at whether pages are structured in a way that provides the right context for the

content they contain. Headings (H1 , H2 , H3 , etc.) are used to format and structure a page

and make content easier to read and parse. Despite the importance of headings, 10.67% of

pages have no heading tags at all.

Figure 10.1. Distribution of the number of words per page.

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 195

https://almanac.httparchive.org/static/images/2019/seo/fig1.png
https://almanac.httparchive.org/static/images/2019/seo/fig1.png

The median number of heading elements per page is 10. Headings contain 30 words on mobile

pages and 32 words on desktop pages. This implies that the websites that utilize headings put

significant effort in making sure that their pages are readable, descriptive, and clearly outline

the page structure and context to search engine bots.

Figure 10.2. Distribution of the number of headings per page.

Figure 10.3. Distribution of H1 length per page.

Part II Chapter 10 : SEO

196 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/seo/fig2.png
https://almanac.httparchive.org/static/images/2019/seo/fig2.png
https://almanac.httparchive.org/static/images/2019/seo/fig3.png
https://almanac.httparchive.org/static/images/2019/seo/fig3.png

In terms of specific heading length, the median length of the first H1 element found on desktop

is 19 characters.

For advice on how to handle H1 s and headings for SEO and accessibility, take a look at this

video response by John Mueller208 in the Ask Google Webmasters series.

Meta tags

Meta tags allow us to give specific instructions and information to search engine bots about the

different elements and content on a page. Certain meta tags can convey things like the topical

focus of a page, as well as how the page should be crawled and indexed. We wanted to assess

whether or not websites were making the most of these opportunities that meta tags provide.

Page titles

Page titles are an important way of communicating the purpose of a page to a user or search

engine. <title> tags are also used as headings in the SERPS and as the title for the browser

tab when visiting a page, so it’s no surprise to see that 97.1% of mobile pages have a document

title.

Figure 10.4. Percent of mobile pages that include a <title> tag.

97%

208. https://www.youtube.com/watch?v=zyqJJXWk0gk

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 197

https://www.youtube.com/watch?v=zyqJJXWk0gk

Even though Google usually displays the first 50-60 characters of a page title209 within a SERP,

the median length of the <title> tag was only 21 characters for mobile pages and 20

characters for desktop pages. Even the 75th percentile is still below the cutoff length. This

suggests that some SEOs and content writers aren’t making the most of the space allocated to

them by search engines for describing their home pages in the SERPs.

Meta descriptions

Compared to the <title> tag, fewer pages were detected to have a meta description, as only

64.02% of mobile home pages have a meta description. Considering that Google often rewrites

meta descriptions in the SERPs in response to the searcher’s query, perhaps website owners

place less importance on including a meta description at all.

Figure 10.5. Distribution of title length per page.

209. https://moz.com/learn/seo/title-tag

Part II Chapter 10 : SEO

198 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/seo/fig5.png
https://almanac.httparchive.org/static/images/2019/seo/fig5.png
https://moz.com/learn/seo/title-tag

The median meta description length was also lower than the recommended length of 155-160

characters210, with desktop pages having descriptions of 123 characters. Interestingly, meta

descriptions were consistently longer on mobile than on desktop, despite mobile SERPs

traditionally having a shorter pixel limit. This limit has only been extended recently, so perhaps

more website owners have been testing the impact of having longer, more descriptive meta

descriptions for mobile results.

Image alt tags

Considering the importance of alt text for SEO and accessibility, it is far from ideal to see that

only 46.71% of mobile pages use alt attributes on all of their images. This means that there

are still improvements to be made with regard to making images across the web more

accessible to users and understandable for search engines. Learn more about issues like these

in the Accessibility chapter.

Indexability

To show a page’s content to users in the SERPs, search engine crawlers must first be permitted

to access and index that page. Some of the factors that impact a search engine’s ability to crawl

and index pages include:

Figure 10.6. Distribution of meta description length per page.

210. https://moz.com/learn/seo/meta-description

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 199

https://almanac.httparchive.org/static/images/2019/seo/fig6.png
https://almanac.httparchive.org/static/images/2019/seo/fig6.png
https://moz.com/learn/seo/meta-description
https://moz.com/learn/seo/meta-description

• Status codes

• noindex tags

• Canonical tags

• The robots.txt file

Status codes

It is recommended to maintain a 200 OK status code for any important pages that you want

search engines to index. The majority of pages tested were available for search engines to

access, with 87.03% of initial HTML requests on desktop returning a 200 status code. The

results were slightly lower for mobile pages, with only 82.95% of pages returning a 200 status

code.

The next most commonly found status code on mobile was 302 , a temporary redirect, which

was found on 10.45% of mobile pages. This was higher than on desktop, with only 6.71%

desktop home pages returning a 302 status code. This could be due to the fact that the mobile

home pages were alternates211 to an equivalent desktop page, such as on non-responsive sites

that have separate versions of the website for each device.

Note: Our results didn’t include 4xx or 5xx status codes.

noindex

A noindex directive can be served in the HTML <head> or in the HTTP headers as an X-
Robots directive. A noindex directive basically tells a search engine not to include that page

in its SERPs, but the page will still be accessible for users when they are navigating through the

website. noindex directives are usually added to duplicate versions of pages that serve the

same content, or low quality pages that provide no value to users coming to a website from

organic search, such as filtered, faceted, or internal search pages.

96.93% of mobile pages passed the Lighthouse indexing audit212, meaning that these pages didn’t

contain a noindex directive. However, this means that 3.07% of mobile home pages did have a

noindex directive, which is cause for concern, meaning that Google was prevented from

indexing these pages.

The websites included in our research are sourced from the Chrome UX Report dataset, which excludes

211. https://developers.google.com/search/mobile-sites/mobile-seo/separate-urls
212. https://developers.google.com/web/tools/lighthouse/audits/indexing

Part II Chapter 10 : SEO

200 2019 Web Almanac by HTTP Archive

https://developers.google.com/search/mobile-sites/mobile-seo/separate-urls
https://developers.google.com/search/mobile-sites/mobile-seo/separate-urls
https://developers.google.com/web/tools/lighthouse/audits/indexing

websites that are not publicly discoverable. This is a significant source of bias because we’re unable to

analyze sites that Chrome determines to be non-public. Learn more about our methodology.

Canonicalization

Canonical tags are used to specify duplicate pages and their preferred alternates, so that

search engines can consolidate authority which might be spread across multiple pages within

the group onto one main page for improved rankings.

48.34% of mobile home pages were detected213 to have a canonical tag. Self-referencing

canonical tags aren’t essential, and canonical tags are usually required for duplicate pages.

Home pages are rarely duplicated anywhere else across the site so seeing that less than half of

pages have a canonical tag isn’t surprising.

robots.txt

One of the most effective methods for controlling search engine crawling is the robots.txt
file. This is a file that sits on the root domain of a website and specifies which URLs and URL

paths should be disallowed from being crawled by search engines.

It was interesting to observe that only 72.16% of mobile sites have a valid robots.txt ,

according to Lighthouse214. The key issues we found are split between 22% of sites having no

robots.txt file at all, and ~6% serving an invalid robots.txt file, and thus failing the audit.

While there are many valid reasons to not have a robots.txt file, such as having a small

website that doesn’t struggle with crawl budget issues215, having an invalid robots.txt is

cause for concern.

Linking

One of the most important attributes of a web page is links. Links help search engines discover

new, relevant pages to add to their index and navigate through websites. 96% of the web pages

in our dataset contain at least one internal link, and 93% contain at least one external link to

another domain. The small minority of pages that don’t have any internal or external links will

be missing out on the immense value that links pass through to target pages.

The number of internal and external links included on desktop pages were consistently higher

than the number found on mobile pages. Often a limited space on a smaller viewport causes

fewer links to be included in the design of a mobile page compared to desktop.

213. https://developers.google.com/web/tools/lighthouse/audits/canonical
214. https://developers.google.com/web/tools/lighthouse/audits/robots
215. https://webmasters.googleblog.com/2017/01/what-crawl-budget-means-for-googlebot.html

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 201

https://developers.google.com/web/tools/lighthouse/audits/canonical
https://www.deepcrawl.com/knowledge/technical-seo-library/robots-txt/
https://www.deepcrawl.com/knowledge/technical-seo-library/robots-txt/
https://www.deepcrawl.com/knowledge/technical-seo-library/robots-txt/
https://developers.google.com/web/tools/lighthouse/audits/robots
https://webmasters.googleblog.com/2017/01/what-crawl-budget-means-for-googlebot.html

It’s important to bear in mind that fewer internal links on the mobile version of a page might

cause an issue216 for your website. With mobile-first indexing217, which for new websites is the

default for Google, if a page is only linked from the desktop version and not present on the

mobile version, search engines will have a much harder time discovering and ranking it.

Figure 10.7. Distribution of internal links per page.

216. https://moz.com/blog/internal-linking-mobile-first-crawl-paths
217. https://www.deepcrawl.com/knowledge/white-papers/mobile-first-index-guide/

Part II Chapter 10 : SEO

202 2019 Web Almanac by HTTP Archive

https://moz.com/blog/internal-linking-mobile-first-crawl-paths
https://moz.com/blog/internal-linking-mobile-first-crawl-paths
https://www.deepcrawl.com/knowledge/white-papers/mobile-first-index-guide/
https://almanac.httparchive.org/static/images/2019/seo/fig7.png
https://almanac.httparchive.org/static/images/2019/seo/fig7.png

The median desktop page includes 70 internal (same-site) links, whereas the median mobile

page has 60 internal links. The median number of external links per page follows a similar trend,

with desktop pages including 10 external links, and mobile pages including 8.

Figure 10.8. Distribution of external links per page.

Figure 10.9. Distribution of anchor links per page.

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 203

https://almanac.httparchive.org/static/images/2019/seo/fig8.png
https://almanac.httparchive.org/static/images/2019/seo/fig8.png
https://almanac.httparchive.org/static/images/2019/seo/fig9.png
https://almanac.httparchive.org/static/images/2019/seo/fig9.png

Anchor links, which link to a certain scroll position on the same page, are not very popular. Over

65% of home pages have no anchor links. This is probably due to the fact that home pages don’t

usually contain any long-form content.

There is good news from our analysis of the descriptive link text metric. 89.94% of mobile pages

pass Lighthouse’s descriptive link text audit218. This means that these pages don’t have generic

“click here”, “go”, “here” or “learn more” links, but use more meaningful link text which helps

users and search engines better understand the context of pages and how they connect with

one another.

Advanced

Having descriptive, useful content on a page that isn’t being blocked from search engines with a

noindex or Disallow directive isn’t enough for a website to succeed in organic search.

Those are just the basics. There is a lot more than can be done to enhance the performance of a

website and its appearance in SERPs.

Some of the more technically complex aspects that have been gaining importance in

successfully indexing and ranking websites include speed, structured data, internationalization,

security, and mobile friendliness.

Speed

Mobile loading speed was first announced as a ranking factor219 by Google in 2018. Speed isn’t a

new focus for Google though. Back in 2010 it was revealed that speed had been introduced as a

ranking signal220.

A fast-loading website is also crucial for a good user experience. Users that have to wait even a

few seconds for a site to load have the tendency to bounce and try another result from one of

your SERP competitors that loads quickly and meets their expectations of website

performance.

The metrics we used for our analysis of load speed across the web is based on the Chrome UX

Report (CrUX), which collects data from real-world Chrome users. This data shows that an

astonishing 48% of websites are labeled as slow. A website is labeled slow if it more than 25%

of FCP experiences slower than 3 seconds or 5% of FID experiences slower than 300 ms.

218. https://developers.google.com/web/tools/lighthouse/audits/descriptive-link-text
219. https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html
220. https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html

Part II Chapter 10 : SEO

204 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse/audits/descriptive-link-text
https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html
https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html
https://webmasters.googleblog.com/2010/04/using-site-speed-in-web-search-ranking.html

Split by device, this picture is even bleaker for tablet (65%) and phone (58%).

Although the numbers are bleak for the speed of the web, the good news is that SEO experts

and tools have been focusing more and more on the technical challenges of speeding up

websites. You can learn more about the state of web performance in the Performance chapter.

Structured data

Structured data allows website owners to add additional semantic data to their web pages, by

adding JSON-LD221 snippets or Microdata222, for example. Search engines parse this data to

better understand these pages and sometimes use the markup to display additional relevant

information in the search results. Some of the useful types of structured data are:

• reviews223

• products224

• businesses225

Figure 10.10. Distribution of the performance of user experiences by device type.

221. https://en.wikipedia.org/wiki/JSON-LD
222. https://developer.mozilla.org/docs/Web/HTML/Microdata
223. https://developers.google.com/search/docs/data-types/review-snippet
224. https://developers.google.com/search/docs/data-types/product
225. https://developers.google.com/search/docs/data-types/local-business

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 205

https://almanac.httparchive.org/static/images/2019/seo/fig10.png
https://almanac.httparchive.org/static/images/2019/seo/fig10.png
https://en.wikipedia.org/wiki/JSON-LD
https://developer.mozilla.org/docs/Web/HTML/Microdata
https://developers.google.com/search/docs/data-types/review-snippet
https://developers.google.com/search/docs/data-types/product
https://developers.google.com/search/docs/data-types/local-business

• movies226

• and you can search for more types of supported structured data types227

The extra visibility228 that structured data can provide for websites is interesting for site owners,

given that it can help to create more opportunities for traffic. For example, the relatively new

FAQ schema229 will double the size of your snippet and the real estate of your site in the SERP.

During our research, we found that only 14.67% of sites are eligible for rich results on mobile.

Interestingly, desktop site eligibility is slightly lower at 12.46%. This suggests that there is a lot

more that site owners can be doing to optimize the way their home pages are appearing in

search.

Among the sites with structured data markup, the five most prevalent types are:

1. WebSite (16.02%)

2. SearchAction (14.35%)

3. Organization (12.89%)

4. WebPage (11.58%)

5. ImageObject (5.35%)

Interestingly, one of the most popular data types that triggers a search engine feature is

SearchAction , which powers the sitelinks searchbox230.

The top five markup types all lead to more visibility in Google’s search results, which might be

the fuel for more widespread adoption of these types of structured data.

Seeing as we only looked at home pages within this analysis, the results might look very

different if we were to consider interior pages, too.

Review stars are only found on 1.09% of the web’s home pages (via AggregateRating231). Also,

the newly introduced QAPage232 appeared only in 48 instances, and the FAQPage233 at a slightly

higher frequency of 218 times. These last two counts are expected to increase in the future as

we run more crawls and dive deeper into Web Almanac analysis.

Internationalization

Internationalization is one of the most complex aspects of SEO, even according to some Google

226. https://developers.google.com/search/docs/data-types/movie
227. https://developers.google.com/search/docs/guides/search-gallery
228. https://developers.google.com/search/docs/guides/enhance-site
229. https://developers.google.com/search/docs/data-types/faqpage
230. https://developers.google.com/search/docs/data-types/sitelinks-searchbox
231. https://schema.org/AggregateRating
232. https://schema.org/QAPage
233. https://schema.org/FAQPage

Part II Chapter 10 : SEO

206 2019 Web Almanac by HTTP Archive

https://developers.google.com/search/docs/data-types/movie
https://developers.google.com/search/docs/guides/search-gallery
https://developers.google.com/search/docs/guides/enhance-site
https://developers.google.com/search/docs/data-types/faqpage
https://developers.google.com/search/docs/data-types/sitelinks-searchbox
https://schema.org/AggregateRating
https://schema.org/QAPage
https://schema.org/FAQPage
https://twitter.com/JohnMu/status/965507331369984002

search employees234. Internationalization in SEO focuses on serving the right content from a

website with multiple language or country versions and making sure that content is being

targeted towards the specific language and location of the user.

While 38.40% of desktop sites (33.79% on mobile) have the HTML lang attribute set to English,

only 7.43% (6.79% on mobile) of the sites also contain an hreflang link to another language

version. This suggests that the vast majority of websites that we analyzed don’t offer separate

versions of their home page that would require language targeting -- unless these separate

versions do exist but haven’t been configured correctly.

234. https://twitter.com/JohnMu/status/965507331369984002

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 207

https://twitter.com/JohnMu/status/965507331369984002

hreflang Desktop Mobile

en 12.19% 2.80%

x-default 5.58% 1.44%

fr 5.23% 1.28%

es 5.08% 1.25%

de 4.91% 1.24%

en-us 4.22% 2.95%

it 3.58% 0.92%

ru 3.13% 0.80%

en-gb 3.04% 2.79%

de-de 2.34% 2.58%

nl 2.28% 0.55%

fr-fr 2.28% 2.56%

es-es 2.08% 2.51%

pt 2.07% 0.48%

pl 2.01% 0.50%

ja 2.00% 0.43%

tr 1.78% 0.49%

it-it 1.62% 2.40%

ar 1.59% 0.43%

pt-br 1.52% 2.38%

th 1.40% 0.42%

ko 1.33% 0.28%

zh 1.30% 0.27%

sv 1.22% 0.30%

en-au 1.20% 2.31%

Part II Chapter 10 : SEO

208 2019 Web Almanac by HTTP Archive

Next to English, the most common languages are French, Spanish, and German. These are

followed by languages targeted towards specific geographies like English for Americans (en-
us) or more obscure combinations like Spanish for the Irish (es-ie).

The analysis did not check for correct implementation, such as whether or not the different

language versions properly link to each other. However, from looking at the low adoption of

having an x-default version (only 3.77% on desktop and 1.30% on mobile), as is recommended235,

this is an indicator that this element is complex and not always easy to get right.

SPA crawlability

Single-page applications (SPAs) built with frameworks like React and Vue.js come with their

own SEO complexity. Websites using a hash-based navigation, make it especially hard for

search engines to properly crawl and index them. For example, Google had an “AJAX crawling

scheme” workaround that turned out to be complex for search engines as well as developers, so

it was deprecated in 2015236.

The number of SPAs that were tested had a relatively low number of links served via hash URLs,

with 13.08% of React mobile pages using hash URLs for navigation, 8.15% of mobile Vue.js

pages using them, and 2.37% of mobile Angular pages using them. These results were very

similar for desktop pages too. This is positive to see from an SEO perspective, considering the

impact that hash URLs can have on content discovery.

The higher number of hash URLs in React pages is surprising, especially in contrast to the lower

number of hash URLs found on Angular pages. Both frameworks promote the adoption of

routing packages where the History API237 is the default for links, instead of relying on hash

URLs. Vue.js is considering moving to using the History API as the default238 as well in version 3

of their vue-router package.

AMP

AMP (formerly known as “Accelerated Mobile Pages”) was first introduced in 2015 by Google

as an open source HTML framework. It provides components and infrastructure for websites to

provide a faster experience for users, by using optimizations such as caching, lazy loading, and

optimized images. Notably, Google adopted this for their search engine, where AMP pages are

Figure 10.11. Top 25 most popular hreflang values.

235. https://www.google.com/url?q=https://support.google.com/webmasters/answer/
189077?hl%3Den&sa=D&ust=1570627963630000&usg=AFQjCNFwzwglsbysT9au_I-7ZQkwa-QvrA

236. https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
237. https://developer.mozilla.org/docs/Web/API/History
238. https://github.com/vuejs/rfcs/pull/40

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 209

https://www.google.com/url?q=https://support.google.com/webmasters/answer/189077?hl%3Den&sa=D&ust=1570627963630000&usg=AFQjCNFwzwglsbysT9au_I-7ZQkwa-QvrA
https://webmasters.googleblog.com/2015/10/deprecating-our-ajax-crawling-scheme.html
https://developer.mozilla.org/docs/Web/API/History
https://github.com/vuejs/rfcs/pull/40

also served from their own CDN. This feature later became a standards proposal under the

name Signed HTTP Exchanges239.

Despite this, only 0.62% of mobile home pages contain a link to an AMP version. Given the

visibility this project has had, this suggests that it has had a relatively low adoption. However,

AMP can be more useful for serving article pages, so our home page-focused analysis won’t

reflect adoption across other page types.

Security

A strong online shift in recent years has been for the web to move to HTTPS by default. HTTPS

prevents website traffic from being intercepted on public Wi-Fi networks, for example, where

user input data is then transmitted unsecurely. Google have been pushing for sites to adopt

HTTPS, and even made HTTPS as a ranking signal240. Chrome also supported the move to secure

pages by labeling non-HTTPS pages as not secure241 in the browser.

For more information and guidance from Google on the importance of HTTPS and how to adopt

it, please see Why HTTPS Matters242.

We found that 67.06% of websites on desktop are now served over HTTPS. Just under half of

websites still haven’t migrated to HTTPS and are serving non-secure pages to their users. This

is a significant number. Migrations can be hard work, so this could be a reason why the adoption

rate isn’t higher, but an HTTPS migration usually require an SSL certificate and a simple change

to the .htaccess file. There’s no real reason not to switch to HTTPS.

Google’s HTTPS Transparency Report243 reports a 90% adoption of HTTPS for the top 100 non-

Google domains (representing 25% of all website traffic worldwide). The difference between

this number and ours could be explained by the fact that relatively smaller sites are adopting

HTTPS at a slower rate.

Learn more about the state of security in the Security chapter.

Conclusion

Through our analysis, we observed that the majority of websites are getting the fundamentals

right, in that their home pages are crawlable, indexable, and include the key content required to

rank well in search engines’ results pages. Not every person who owns a website will be aware

239. https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
240. https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
241. https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
242. https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
243. https://transparencyreport.google.com/https/overview

Part II Chapter 10 : SEO

210 2019 Web Almanac by HTTP Archive

https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://developers.google.com/web/fundamentals/security/encrypt-in-transit/why-https
https://transparencyreport.google.com/https/overview

of SEO at all, let alone its best practice guidelines, so it is promising to see that so many sites

have got the basics covered.

However, more sites are missing the mark than expected when it comes to some of the more

advanced aspects of SEO and accessibility. Site speed is one of these factors that many

websites are struggling with, especially on mobile. This is a significant problem, as speed is one

of the biggest contributors to UX, which is something that can impact rankings. The number of

websites that aren’t yet served over HTTPS is also problematic to see, considering the

importance of security and keeping user data safe.

There is a lot more that we can all be doing to learn about SEO best practices and industry

developments. This is essential due to the evolving nature of the search industry and the rate at

which changes happen. Search engines make thousands of improvements to their algorithms

each year, and we need to keep up if we want our websites to reach more visitors in organic

search.

Authors

Yvo Schaap

@yvoschaap ymschaap https://build.amsterdam/

Founder at technical SEO consultancy build.amsterdam244. Previously founded

several web companies that reached over 1 billions users. Blogging about his latest

(ad)ventures since 2005 on yvoschaap.com245.

Rachel Costello

@rachellcostello rachellcostello

Rachel Costello is a Technical SEO & Content Manager at DeepCrawl246 and an

international conference speaker who spends her time researching and

communicating the latest developments in search. Rachel currently manages the

production of technical SEO white papers247 and research pieces for DeepCrawl,

and is a regular columnist for Search Engine Journal248.

244. https://build.amsterdam/
245. https://yvoschaap.com/
246. https://www.deepcrawl.com/
247. https://www.deepcrawl.com/knowledge/white-papers/
248. https://www.searchenginejournal.com/author/rachel-costello/

Part II Chapter 10 : SEO

2019 Web Almanac by HTTP Archive 211

https://twitter.com/yvoschaap
https://github.com/ymschaap
https://build.amsterdam/
https://build.amsterdam/
https://yvoschaap.com/
https://twitter.com/rachellcostello
https://github.com/rachellcostello
https://www.deepcrawl.com/
https://www.deepcrawl.com/knowledge/white-papers/
https://www.searchenginejournal.com/author/rachel-costello/

Martin Splitt

@g33konaut AVGP http://geekonaut.de

Martin Splitt is a developer advocate on the web ecosystem team at Google where

he works on keeping the web discoverable.

Part II Chapter 10 : SEO

212 2019 Web Almanac by HTTP Archive

https://twitter.com/g33konaut
https://github.com/AVGP
http://geekonaut.de/

Part II Chapter 11

PWA

Written by Thomas Steiner and Jeff Posnick
Reviewed by John Teague and Ahmad Awais
Analyzed by Jason Haralson
Edited by Barry Pollard

Introduction

Progressive Web Apps (PWAs) are a new class of web applications, building on top of platform

primitives like the Service Worker APIs249. Service workers allow apps to support network-

independent loading by acting as a network proxy, intercepting your web app’s outgoing

requests, and replying with programmatic or cached responses. Service workers can receive

push notifications and synchronize data in the background even when the corresponding app is

not running. Additionally, service workers, together with Web App Manifests250, allow users to

install PWAs to their devices’ home screens.

Service workers were first implemented in Chrome 40251, back in December 2014, and the term

Progressive Web Apps was coined by Frances Berriman and Alex Russell252 in 2015. As service

249. https://developer.mozilla.org/docs/Web/API/Service_Worker_API
250. https://developer.mozilla.org/docs/Web/Manifest
251. https://blog.chromium.org/2014/12/chrome-40-beta-powerful-offline-and.html
252. https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

Part II Chapter 11 : PWA

2019 Web Almanac by HTTP Archive 213

https://developer.mozilla.org/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/docs/Web/Manifest
https://blog.chromium.org/2014/12/chrome-40-beta-powerful-offline-and.html
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

workers are now finally implemented in all major browsers253, the goal for this chapter is to

determine how many PWAs are actually out there, and how they make use of these new

technologies. Certain advanced APIs like Background Sync254 are currently still only available on

Chromium-based browsers255, so as an additional question, we looked into which features these

PWAs actually use.

Service workers

Service worker registrations and installability

The first metric we explore are service worker installations. Looking at the data exposed

through feature counters in the HTTP Archive, we find that 0.44% of all desktop and 0.37% of

all mobile pages register a service worker, and both curves over time are steeply growing.

Figure 11.1. Percent of desktop pages that register a service worker.

0.44%

253. https://jakearchibald.github.io/isserviceworkerready/
254. https://developers.google.com/web/updates/2015/12/background-sync
255. https://caniuse.com/#feat=background-sync

Part II Chapter 11 : PWA

214 2019 Web Almanac by HTTP Archive

https://jakearchibald.github.io/isserviceworkerready/
https://developers.google.com/web/updates/2015/12/background-sync
https://caniuse.com/#feat=background-sync
https://caniuse.com/#feat=background-sync

Now this might not look overly impressive, but taking traffic data from Chrome Platform Status

into account, we can see that a service worker controls about 15% of all page loads256, which can

be interpreted as popular, high-traffic sites increasingly having started to embrace service

workers.

Lighthouse checks whether a page is eligible for an install prompt258. 1.56% of mobile pages have

an installable manifest259.

To control the install experience, 0.82% of all desktop and 0.94% of all mobile pages use the

OnBeforeInstallPrompt interface. At present support is limited to Chromium-based

browsers260.

Figure 11.2. Service Worker installation over time for desktop and mobile.

Figure 11.3. Percent of page views on a page that registers a service worker. (Source: Chrome
Platform Status257)

15%

256. https://www.chromestatus.com/metrics/feature/timeline/popularity/990
257. https://www.chromestatus.com/metrics/feature/timeline/popularity/990
258. https://developers.google.com/web/tools/lighthouse/audits/install-prompt
259. https://web.dev/installable-manifest/
260. https://caniuse.com/#feat=web-app-manifest

Part II Chapter 11 : PWA

2019 Web Almanac by HTTP Archive 215

https://almanac.httparchive.org/static/images/2019/pwa/fig2.png
https://almanac.httparchive.org/static/images/2019/pwa/fig2.png
https://www.chromestatus.com/metrics/feature/timeline/popularity/990
https://www.chromestatus.com/metrics/feature/timeline/popularity/990
https://www.chromestatus.com/metrics/feature/timeline/popularity/990
https://developers.google.com/web/tools/lighthouse/audits/install-prompt
https://web.dev/installable-manifest/
https://w3c.github.io/manifest/#beforeinstallpromptevent-interface
https://w3c.github.io/manifest/#beforeinstallpromptevent-interface
https://caniuse.com/#feat=web-app-manifest
https://caniuse.com/#feat=web-app-manifest

Service worker events

In a service worker one can listen for a number of events261:

• install , which occurs upon service worker installation.

• activate , which occurs upon service worker activation.

• fetch , which occurs whenever a resource is fetched.

• push , which occurs when a push notification arrives.

• notificationclick , which occurs when a notification is being clicked.

• notificationclose , which occurs when a notification is being closed.

• message , which occurs when a message sent via postMessage() arrives.

• sync , which occurs when a background sync event occurs.

We have examined which of these events are being listened to by service workers we could find

in the HTTP Archive. The results for mobile and desktop are very similar with fetch ,

install , and activate being the three most popular events, followed by

notificationclick and push . If we interpret these results, offline use cases that service

Figure 11.4. Popularity of service worker events.

261. https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle

Part II Chapter 11 : PWA

216 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle
https://almanac.httparchive.org/static/images/2019/pwa/fig4.png
https://almanac.httparchive.org/static/images/2019/pwa/fig4.png

workers enable are the most attractive feature for app developers, far ahead of push

notifications. Due to its limited availability, and less common use case, background sync doesn’t

play a significant role at the moment.

Service worker file sizes

File size or lines of code are generally a bad proxy for the complexity of the task at hand. In this

case, however, it is definitely interesting to compare (compressed) file sizes of service workers

for mobile and desktop.

The median service worker file on desktop is 895 bytes, whereas on mobile it’s 694 bytes.

Throughout all percentiles desktop service workers are larger than mobile service workers. We

note that these stats don’t account for dynamically imported scripts through the

importScripts() method, which likely skews the results higher.

Web app manifests

Web app manifest properties

The web app manifest is a simple JSON file that tells the browser about a web application and

how it should behave when installed on the user’s mobile device or desktop. A typical manifest

Figure 11.5. Distribution of service worker transfer size.

Part II Chapter 11 : PWA

2019 Web Almanac by HTTP Archive 217

https://almanac.httparchive.org/static/images/2019/pwa/fig5.png
https://almanac.httparchive.org/static/images/2019/pwa/fig5.png
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts
https://developer.mozilla.org/docs/Web/API/WorkerGlobalScope/importScripts

file includes information about the app name, icons it should use, the start URL it should open at

when launched, and more. Only 1.54% of all encountered manifests were invalid JSON, and the

rest parsed correctly.

We looked at the different properties defined by the Web App Manifest specification262, and also

considered non-standard proprietary properties. According to the spec, the following

properties are allowed:

• dir

• lang

• name

• short_name

• description

• icons

• screenshots

• categories

• iarc_rating_id

• start_url

• display

• orientation

• theme_color

• background_color

• scope

• serviceworker

• related_applications

• prefer_related_applications

The only property that we didn’t observe in the wild was iarc_rating_id , which is a string

that represents the International Age Rating Coalition (IARC) certification code of the web

262. https://w3c.github.io/manifest/#webappmanifest-dictionary

Part II Chapter 11 : PWA

218 2019 Web Almanac by HTTP Archive

https://w3c.github.io/manifest/#webappmanifest-dictionary

application. It is intended to be used to determine which ages the web application is

appropriate for.

The proprietary properties we encountered frequently were gcm_sender_id and

gcm_user_visible_only from the legacy Google Cloud Messaging (GCM) service.

Interestingly there are almost no differences between mobile and desktop. On both platforms,

however, there’s a long tail of properties that are not interpreted by browsers yet contain

potentially useful metadata like author or version . We also found a non-trivial amount of

mistyped properties; our favorite being shot_name , as opposed to short_name . An

interesting outlier is the serviceworker property, which is standard but not implemented by

any browser vendor. Nevertheless, it was found on 0.09% of all web app manifests used by

mobile and desktop pages.

Display values

Looking at the values developers set for the display property, it becomes immediately clear

that they want PWAs to be perceived as “proper” apps that don’t reveal their web technology

origins.

Figure 11.6. Popularity of web app manifest properties.

Part II Chapter 11 : PWA

2019 Web Almanac by HTTP Archive 219

https://almanac.httparchive.org/static/images/2019/pwa/fig6.png
https://almanac.httparchive.org/static/images/2019/pwa/fig6.png

By choosing standalone , they make sure no browser UI is shown to the end-user. This is

reflected by the majority of apps that make use of the prefers_related_applications
property: more that 97% of both mobile and desktop applications do not prefer native

applications.

Category values

The categories property describes the expected application categories to which the web

application belongs. It is only meant as a hint to catalogs or app stores listing web applications,

and it is expected that websites will make a best effort to list themselves in one or more

appropriate categories.

Figure 11.7. Usage of web app manifest display properties.

Part II Chapter 11 : PWA

220 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/pwa/fig7.png
https://almanac.httparchive.org/static/images/2019/pwa/fig7.png

There were not too many manifests that made use of the property, but it is interesting to see

the shift from “shopping” being the most popular category on mobile to “business”,

“technology”, and “web” (whatever may be meant with that) on desktop that share the first

place evenly.

Icon sizes

Lighthouse requires263 at least an icon sized 192x192 pixels, but common favicon generation

tools create a plethora of other sizes, too.

Figure 11.8. Top web app manifest categories.

263. https://developers.google.com/web/tools/lighthouse/audits/manifest-contains-192px-icon

Part II Chapter 11 : PWA

2019 Web Almanac by HTTP Archive 221

https://almanac.httparchive.org/static/images/2019/pwa/fig8.png
https://almanac.httparchive.org/static/images/2019/pwa/fig8.png
https://developers.google.com/web/tools/lighthouse/audits/manifest-contains-192px-icon

Lighthouse’s rule is probably the culprit for 192 pixels being the most popular choice of icon

size on both desktop and mobile, despite Google’s documentation264 explicitly recommending

512x512, which doesn’t show as a particularly prominent option.

Orientation values

The valid values for the orientation property are defined in the Screen Orientation API

specification265. Currently, they are:

• "any"

• "natural"

• "landscape"

• "portrait"

• "portrait-primary"

• "portrait-secondary"

• "landscape-primary"

Figure 11.9. Top web app manifest icon sizes.

264. https://developers.google.com/web/fundamentals/web-app-manifest#icons
265. https://www.w3.org/TR/screen-orientation/#dom-orientationlocktype

Part II Chapter 11 : PWA

222 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/pwa/fig9.png
https://almanac.httparchive.org/static/images/2019/pwa/fig9.png
https://developers.google.com/web/fundamentals/web-app-manifest#icons
https://www.w3.org/TR/screen-orientation/#dom-orientationlocktype
https://www.w3.org/TR/screen-orientation/#dom-orientationlocktype

• "landscape-secondary"

"portrait" orientation is the clear winner on both platforms, followed by "any"
orientation.

Workbox

Workbox266 is a set of libraries that help with common service worker use cases. For instance,

Workbox has tools that can plug in to your build process and generate a manifest of files, which

are then precached by your service worker. Workbox includes libraries to handle runtime

caching, request routing, cache expiration, background sync, and more.

Given the low-level nature of the service worker APIs, many developers have turned to

Workbox as a way of structuring their service worker logic into higher-level, reusable chunks of

code. Workbox adoption is also driven by its inclusion as a feature in a number of popular

JavaScript framework starter kits, like create-react-app and Vue’s PWA plugin267.

The HTTP Archive shows that 12.71% of websites that register a service worker are using at

least one of the Workbox libraries. This percentage is roughly consistent across desktop and

Figure 11.10. Top web app manifest orientation values.

266. https://developers.google.com/web/tools/workbox
267. https://www.npmjs.com/package/@vue/cli-plugin-pwa

Part II Chapter 11 : PWA

2019 Web Almanac by HTTP Archive 223

https://almanac.httparchive.org/static/images/2019/pwa/fig10.png
https://almanac.httparchive.org/static/images/2019/pwa/fig10.png
https://developers.google.com/web/tools/workbox
https://create-react-app.dev/
https://create-react-app.dev/
https://www.npmjs.com/package/@vue/cli-plugin-pwa

mobile, with a slightly lower percentage (11.46%) on mobile compared to desktop (14.36%).

Conclusion

The stats in this chapter show that PWAs are still only used by a small percentage of sites.

However, this relatively small usage is driven by the more popular sites which have a much

larger share of traffic, and pages beyond the home page may use this more: we showed that

15% of page loads use a service workers. The advantages they give for performance and

greater control over caching particularly for mobile should mean that usage will continue to

grow.

PWAs have often been seen as Chrome-driven technology. Other browsers have made great

strides recently to implement most of the underlying technologies, although first-class

installability lags on some platforms. It’s positive to see support becoming more widespread.

Maximiliano Firtman268 does a great job of tracking this on iOS, including explaining Safari PWA

support269. Apple doesn’t use the term PWA much, and has explicitly stated that these HTML5

apps are best delivered outside of the App Store270. Microsoft went the opposite direction, not

only encouraging PWAs in its app store, but even automatically shortlisting PWAs to be added

that were found via the Bing web crawler271. Google has also provided a method for listing web

apps in the Google Play Store, via Trusted Web Activities272.

PWAs provide a path forward for developers who would prefer to build and release on the web

instead of on native platforms and app stores. Not every operating system and browser offers

full parity with native software, but improvements continue, and perhaps 2020 is the year

where we see an explosion in deployments?

Authors

Thomas Steiner

@tomayac tomayac https://blog.tomayac.com/

Thomas Steiner is a Web Developer Advocate at Google Hamburg, focused on

making the Web a better place through standardization, creating and sharing best

practices, and doing research. He blogs at blog.tomayac.com273 and tweets as

@tomayac.

268. https://twitter.com/firt
269. https://medium.com/@firt/iphone-11-ipados-and-ios-13-for-pwas-and-web-development-5d5d9071cc49
270. https://developer.apple.com/news/?id=09062019b
271. https://web.archive.org/web/20190711051508/https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps/microsoft-store
272. https://developers.google.com/web/updates/2019/02/using-twa

Part II Chapter 11 : PWA

224 2019 Web Almanac by HTTP Archive

https://twitter.com/firt
https://medium.com/@firt/iphone-11-ipados-and-ios-13-for-pwas-and-web-development-5d5d9071cc49
https://medium.com/@firt/iphone-11-ipados-and-ios-13-for-pwas-and-web-development-5d5d9071cc49
https://developer.apple.com/news/?id=09062019b
https://developer.apple.com/news/?id=09062019b
https://web.archive.org/web/20190711051508/https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps/microsoft-store
https://web.archive.org/web/20190711051508/https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps/microsoft-store
https://developers.google.com/web/updates/2019/02/using-twa
https://twitter.com/tomayac
https://github.com/tomayac
https://blog.tomayac.com/
https://blog.tomayac.com/
https://twitter.com/tomayac

Jeff Posnick

@jeffposnick jeffposnick https://jeffy.info

Jeff Posnick is a member of Google’s Web Developer Relations team, based in

New York. His focus is on Workbox274, a set of service worker libraries for

Progressive Web Apps. He blogs at https://jeffy.info and tweets as @jeffposnick.

273. https://blog.tomayac.com/
274. https://developers.google.com/web/tools/workbox/

Part II Chapter 11 : PWA

2019 Web Almanac by HTTP Archive 225

https://twitter.com/jeffposnick
https://github.com/jeffposnick
https://jeffy.info/
https://developers.google.com/web/tools/workbox/
https://jeffy.info/
https://twitter.com/jeffposnick

226 2019 Web Almanac by HTTP Archive

Part II Chapter 12

Mobile Web

Written by David Fox
Reviewed by Aymen Loukil and John Teague
Analyzed by Yvo Schaap and Rick Viscomi
Edited by Rick Viscomi

Introduction

Let’s step back for a moment, to the year 2007. The “mobile web” is currently just a blip on the

radar, and for good reason too. Why? Mobile browsers have little to no CSS support, meaning

sites look nothing like they do on desktop — some browsers can only display text. Screens are

incredibly small and can only display a few lines of text at a time. And the replacements for a

mouse are these tiny little arrow keys you use to “tab around”. Needless to say, browsing the

web on a phone is truly a labor of love. However, all of this is just about to change.

In the middle of his presentation, Steve Jobs takes the newly unveiled iPhone, sits down, and

begins to surf the web in a way we had only previously dreamed of. A large screen and fully

featured browser displaying websites in their full glory. And most importantly, surfing the web

using the most intuitive pointer device known to man: our fingers. No more tabbing around

with tiny little arrow keys.

Since 2007, the mobile web has grown at an explosive rate. And now, 13 years later, mobile

Part II Chapter 12 : Mobile Web

2019 Web Almanac by HTTP Archive 227

accounts for 59% of all searches275 and 58.7% of all web traffic, according to Akamai mPulse276

data in July 2019. It’s no longer an afterthought, but the primary way people experience the

web. So given how significant mobile is, what kind of experience are we providing our visitors?

Where are we falling short? Let’s find out.

The page loading experience

The first part of the mobile web experience we analyzed is the one we’re all most intimately

familiar with: the page loading experience. But before we start diving into our findings, let’s make

sure we’re all on the same page regarding what the typical mobile user really looks like. Because

this will not only help you reproduce these results, but understand these users better.

Let’s start with what phone the typical mobile user has. The average Android phone is ~$250277,

and one of the most popular phones278 in that range is a Samsung Galaxy S6. So this is likely the

kind of phone they use, which is actually 4x slower than an iPhone 8. This user doesn’t have

access to a fast 4G connection, but rather a 2G connection (29%279 of the time) or 3G connection

(28%280 of the time). And this is what it all adds up to:

I imagine some of you are surprised by these results. They may be far worse conditions than

you’ve ever tested your site with. But now that we’re all on the same page with what a mobile

user truly looks like, let’s get started.

Figure 12.1. Technical profile of a typical mobile user.

Connection type 2G or 3G281

Latency 300 - 400 ms

Bandwidth 0.4 - 1.6 Mbps

Phone Galaxy S6282 — 4x slower283 than iPhone 8 (Octane V2 score)

275. https://www.merkleinc.com/thought-leadership/digital-marketing-report
276. https://developer.akamai.com/akamai-mpulse-real-user-monitoring-solution
277. https://web.archive.org/web/20190921115844/https://www.idc.com/getdoc.jsp?containerId=prUS45115119
278. https://web.archive.org/web/20190812221233/https://deviceatlas.com/blog/most-popular-android-smartphones
279. https://www.gsma.com/r/mobileeconomy/
280. https://www.gsma.com/r/mobileeconomy/
281. https://www.gsma.com/r/mobileeconomy/
282. https://www.gsmarena.com/samsung_galaxy_s6-6849.php
283. https://www.notebookcheck.net/A11-Bionic-vs-7420-Octa_9250_6662.247596.0.html

Part II Chapter 12 : Mobile Web

228 2019 Web Almanac by HTTP Archive

https://www.merkleinc.com/thought-leadership/digital-marketing-report
https://developer.akamai.com/akamai-mpulse-real-user-monitoring-solution
https://web.archive.org/web/20190921115844/https://www.idc.com/getdoc.jsp?containerId=prUS45115119
https://web.archive.org/web/20190812221233/https://deviceatlas.com/blog/most-popular-android-smartphones
https://www.gsma.com/r/mobileeconomy/
https://www.gsma.com/r/mobileeconomy/
https://www.gsma.com/r/mobileeconomy/
https://www.gsmarena.com/samsung_galaxy_s6-6849.php
https://www.notebookcheck.net/A11-Bionic-vs-7420-Octa_9250_6662.247596.0.html

Pages bloated with JavaScript

The state of JavaScript on the mobile web is terrifying. According to HTTP Archive’s JavaScript

report284, the median mobile site requires phones to download 375 KB of JavaScript. Assuming a

70% compression ratio, this means that phones have to parse, compile, and execute 1.25 MB of

JavaScript at the median.

Why is this a problem? Because sites loading this much JS take upwards of 10 seconds285 to

become consistently interactive. Or in other words, your page may appear fully loaded, but

when a user clicks any of your buttons or menus, the user may experience some slowdown

because the JavaScript hasn’t finished executing. In the worst case scenario, users may be

forced to keep clicking the button for upwards of 10 seconds, just waiting for that magical

moment where something actually happens. Think about how confusing and frustrating that

can be.

Let’s delve deeper and look at another metric that focuses more on how well each page utilizes

JavaScript. For example, does it really need as much JavaScript as it’s loading? We call this

metric the JavaScript Bloat Score, based on the web bloat score286. The idea behind it is this:

• JavaScript is often used to both generate and change the page as it loads.

• It’s also delivered as text to the browser. So it compresses well, and should be

Figure 12.2. Example of how painful of an experience waiting for JS to load can be.

284. https://httparchive.org/reports/state-of-javascript?start=2016_05_15&end=2019_07_01&view=list#bytesJs
285. https://httparchive.org/reports/loading-speed?start=earliest&end=2019_07_01&view=list#ttci
286. https://www.webbloatscore.com/

Part II Chapter 12 : Mobile Web

2019 Web Almanac by HTTP Archive 229

https://httparchive.org/reports/state-of-javascript?start=2016_05_15&end=2019_07_01&view=list#bytesJs
https://httparchive.org/reports/state-of-javascript?start=2016_05_15&end=2019_07_01&view=list#bytesJs
https://httparchive.org/reports/loading-speed?start=earliest&end=2019_07_01&view=list#ttci
https://www.youtube.com/embed/Lx1cYJAVnzA
https://www.youtube.com/embed/Lx1cYJAVnzA
https://www.webbloatscore.com/

delivered faster than just a screenshot of the page.

• So if the total amount of JavaScript a page downloads alone (not including images,

css, etc) is larger than a PNG screenshot of the viewport, we are using far too much

JavaScript. At this point, it’d be faster just to send that screenshot to get the initial

page state!

The JavaScript Bloat Score is defined as: (total JavaScript size) / (size of PNG screenshot of viewport).

Any number greater than 1.0 means it’s faster to send a screenshot.

The results of this? Of the 5+ million websites analyzed, 75.52% were bloated with JavaScript.

We have a long way to go.

Note that we were not able to capture and measure the screenshots of all 5 million+ sites we

analyzed. Instead, we took a random sampling of 1000 sites to find what the median viewport

screenshot size is (140 KB), and then compared each site’s JavaScript download size to this

number.

For a more in-depth breakdown of the effects of JavaScript, check out The Cost of JavaScript in

2018287 by Addy Osmani.

Service Worker usage

Browsers typically load all pages the same. They prioritize the download of some resources

above others, follow the same caching rules, etc. Thanks to Service Workers288 though, we now

have a way to directly control how our resources are handled by the network layer, often times

resulting in quite significant improvements to our page load times.

Despite being available since 2016 and implemented on every major browser, only 0.64% of

sites utilize them!

Shifting content while loading

One of the most beautiful parts of the web is how web pages load progressively by nature.

Browsers download and display content as soon as they are able, so users can engage with your

content as soon as possible. However, this can have a detrimental effect if you don’t design your

site with this in mind. Specifically, content can shift position as resources load and impede the

user experience.

287. https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
288. https://developers.google.com/web/fundamentals/primers/service-workers

Part II Chapter 12 : Mobile Web

230 2019 Web Almanac by HTTP Archive

https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://developers.google.com/web/fundamentals/primers/service-workers

Imagine you’re reading an article when all of a sudden, an image loads and pushes the text

Figure 12.3. Example of shifting content distracting a reader. CLS total of 42.59%. Image courtesy of
LookZook

Part II Chapter 12 : Mobile Web

2019 Web Almanac by HTTP Archive 231

https://almanac.httparchive.org/static/images/2019/mobile-web/example-of-a-site-shifting-content-while-it-loads-lookzook.gif
https://almanac.httparchive.org/static/images/2019/mobile-web/example-of-a-site-shifting-content-while-it-loads-lookzook.gif

you’re reading way down the screen. You now have to hunt for where you were or just give up

on reading the article. Or, perhaps even worse, you begin to click a link right before an ad loads

in the same spot, resulting in an accidental click on the ad instead.

So, how do we measure how much our sites shift? In the past it was quite difficult (if not

impossible), but thanks to the new Layout Instability API289 we can do this in two steps:

1. Via the Layout Instability API, track each shift’s impact on the page. This is reported

to you as a percentage of how much content in the viewport has shifted.

2. Take all the shifts you’ve tracked and add them together. The result is what we call

the Cumulative Layout Shift290 (CLS) score.

Because every visitor can have a different CLS, in order to analyze this metric across the web

with the Chrome UX Report (CrUX), we combine every experience into three different buckets:

• Small CLS: Experiences having CLS under 5%. That is, the page is mostly stable and

does not shift very much at all. For perspective, the page in the video above has a

CLS of 42.59%.

• Large CLS: Experiences having CLS 100% or greater. These may consist of many

small individual shifts or a few large and noticeable shifts.

• Medium CLS: Anything in between small and large.

So what do we see when we look at CLS across the web?

1. Nearly two out of every three sites (65.32%) have medium or large CLS for 50% or

more of all user experiences.

2. 20.52% of sites have large CLS for at least half of all user experiences. That’s about

one of every five websites. Remember, the video in Figure 12.3 only has a CLS of

42.59% — these experiences are even worse than that!

We suspect much of this may be caused by websites not providing an explicit width and height

for resources like ads and images that load after text has been painted to the screen. Before

browsers can display a resource on the screen, they need to know how much room the resource

will take up. So unless an explicit size is provided via CSS or HTML attributes, browsers have no

way to know how how large the resource actually is and display it with a width and height of

0px until loaded. When the resource loads and browsers finally know how big it is, it shifts the

page’s contents, creating an unstable layout.

289. https://web.dev/layout-instability-api
290. https://web.dev/layout-instability-api#a-cumulative-layout-shift-score

Part II Chapter 12 : Mobile Web

232 2019 Web Almanac by HTTP Archive

https://web.dev/layout-instability-api
https://web.dev/layout-instability-api#a-cumulative-layout-shift-score

Permission requests

Over the last few years, the line between websites and “app store” apps has continued to blur.

Even now, you have the ability to request access to a user’s microphone, video camera,

geolocation, ability to display notifications, and more.

While this has opened up even more capabilities for developers, needlessly requesting these

permissions may leave users feeling wary of your web page, and can build mistrust. This is why

we recommend to always tie a permission request to a user gesture, like tapping a “Find

theaters near me” button.

Right now 1.52% of sites request permissions without a user interaction. Seeing such a low

number is encouraging. However, it’s important to note that we were only able to analyze home

pages. So for example, sites requesting permissions only on their content pages (e.g., their blog

posts) were not accounted for. See our Methodology page for more info.

Textual content

The primary goal of a web page is to deliver content users want to engage with. This content

might be a YouTube video or an assortment of images, but often times, it’s simply the text on the

page. It goes without saying that ensuring our textual content is legible to our visitors is

extremely important. Because if visitors can’t read it, there’s nothing left to engage with, and

they’ll leave. There are two key things to check when ensuring your text is legible to readers:

color contrast and font sizes.

Color contrast

When designing our sites we tend to be in more optimal conditions, and have far better eyes

than many of our visitors. Visitors may be colorblind and unable to distinguish between the text

and background color. 1 in every 12 men and 1 in 200 women291 of European descent are

colorblind. Or perhaps visitors are reading the page while the sun is creating glare on their

screen, which may similarly impair legibility.

To help us mitigate this problem, there are accessibility guidelines292 we can follow when

choosing our text and background colors. So how are we doing in meeting these baselines? Only

22.04% of sites give all their text sufficient color contrast. This value is actually a lower limit, as

we could only analyze text with solid backgrounds. Image and gradient backgrounds were

unable to be analyzed.

291. http://www.cvrl.org/people/stockman/pubs/1999%20Genetics%20chapter%20SSJN.pdf
292. https://dequeuniversity.com/rules/axe/2.2/color-contrast

Part II Chapter 12 : Mobile Web

2019 Web Almanac by HTTP Archive 233

http://www.cvrl.org/people/stockman/pubs/1999%20Genetics%20chapter%20SSJN.pdf
https://dequeuniversity.com/rules/axe/2.2/color-contrast

For colorblindness stats for other demographics, see this paper293.

Font size

The second part of legibility is ensuring that text is large enough to read easily. This is important

for all users, but especially so for older age demographics. Font sizes under 12px tend to be

harder to read.

Across the web we found 80.66% of web pages meet this baseline.

Zooming, scaling, and rotating pages

Zooming and scaling

Designing your site to work perfectly across the tens of thousands of screen sizes and devices is

incredibly difficult. Some users need larger font sizes to read, zoom in on your product images,

or need a button to be larger because it’s too small and slipped past your quality assurance

team. Reasons like these are why device features like pinch-to-zoom and scaling are so

important; they allow users to tweak our pages so their needs are met.

There do exist very rare cases when disabling this is acceptable, like when the page in question

is a web-based game using touch controls. If left enabled in this case, players’ phones will zoom

Figure 12.4. Example of what text with insufficient color contrast looks like. Courtesy of LookZook.

BG Color: #FCA469

#FFFFFF #FFFFFF

BG Color: #BD5B0E

#FFFFFF

Too lightly colored

#FFFFFF

Recommended

BG Color: #B8B8B8 BG Color: #707070

©

293. https://web.archive.org/web/20180304115406/http://www.allpsych.uni-giessen.de/karl/colbook/sharpe.pdf

Part II Chapter 12 : Mobile Web

234 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/mobile-web/example-of-good-and-bad-color-contrast-lookzook.svg
https://almanac.httparchive.org/static/images/2019/mobile-web/example-of-good-and-bad-color-contrast-lookzook.svg
https://web.archive.org/web/20180304115406/http://www.allpsych.uni-giessen.de/karl/colbook/sharpe.pdf

in and out every time the player taps twice on the game, resulting in an unusable experience.

Because of this, developers are given the ability to disable this feature by setting one of the

following two properties in the meta viewport tag:

1. user-scalable set to 0 or no

2. maximum-scale set to 1 , 1.0 , etc

However, developers have misused this so much that almost one out of every three sites

(32.21%) disable this feature, and Apple (as of iOS 10) no longer allows web developers to

disable zooming. Mobile Safari simply ignores the tag294. All sites, no matter what, can be

zoomed and scaled on newer Apple devices, which account for over 11%295 of all web traffic

worldwide!

Rotating pages

Mobile devices allow users to rotate them so your website can be viewed in the format users

prefer. Users do not always keep the same orientation throughout a session however. When

filling out forms, users may rotate to landscape mode to use the larger keyboard. Or while

browsing products, some may prefer the larger product images landscape mode gives them.

Figure 12.5. Percent of desktop and mobile websites that enable or disable zooming/scaling.

294. https://archive.org/details/ios-10-beta-release-notes
295. https://gs.statcounter.com/

Part II Chapter 12 : Mobile Web

2019 Web Almanac by HTTP Archive 235

https://almanac.httparchive.org/static/images/2019/mobile-web/fig5.png
https://almanac.httparchive.org/static/images/2019/mobile-web/fig5.png
https://archive.org/details/ios-10-beta-release-notes
https://gs.statcounter.com/

Because of these types of use cases, it’s very important not to rob the user of this built-in ability

of mobile devices. And the good news is that we found virtually no sites that disable this. Only

87 total sites (or 0.0016%) disable this feature. This is fantastic.

Buttons and links

Tap targets

We’re used to having precise devices like mice while on desktop, but the story is quite different

on mobile. On mobile we engage with sites through these large and imprecise tools we call

fingers. Because of how imprecise they can be, we constantly “fat finger” links and buttons,

tapping on things we never intended.

Designing tap targets appropriately to mitigate this issue can be difficult because of how widely

fingers vary in size. However, lots of research has now been done and there are safe standards296

for how large buttons should be and how far apart they need to be separated.

As of now, 34.43% of sites have sufficiently sized tap targets. So we have quite a ways to go

until “fat fingering” is a thing of the past.

Figure 12.6. Standards for sizing and spacing tap targets. Image courtesy of LookZook

296. https://developers.google.com/web/tools/lighthouse/audits/tap-targets

Part II Chapter 12 : Mobile Web

236 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse/audits/tap-targets
https://almanac.httparchive.org/static/images/2019/mobile-web/example-of-easy-to-hit-tap-targets-lookzook.png
https://almanac.httparchive.org/static/images/2019/mobile-web/example-of-easy-to-hit-tap-targets-lookzook.png

Labeling buttons

Some designers love to use icons in place of text — they can make our sites look cleaner and

more elegant. But while you and everyone on your team may know what these icons mean,

many of your users will not. This is even the case with the infamous hamburger icon! If you don’t

believe us, do some user testing and see how often users get confused. You’ll be astounded.

This is why it’s important to avoid any confusion and add supporting text and labels to your

buttons. As of now, at least 28.59% of sites include a button with only a single icon with no

supporting text.

Note: The reported number above is only a lower bound. During our analysis, we only included buttons

using font icons with no supporting text. Many buttons now use SVGs instead of font-icons however, so

in future runs we will be including them as well.

Semantic form fields

From signing up for a new service, buying something online, or even to receive notifications of

new posts from a blog, form fields are an essential part of the web and something we use daily.

Unfortunately, these fields are infamous for how much of a pain they are to fill out on mobile.

Thankfully, in recent years browsers have given developers new tools to help ease the pain of

completing these fields we know all too well. So let’s take a look at how much they’ve been

getting used.

New input types

In the past, text and password were some of the only input types available to developers as

it met almost all of our needs on desktop. This is not the case for mobile devices. Mobile

keyboards are incredibly small, and a simple task, like entering an email address, may require

users to switch between multiple keyboards: the standard keyboard and the special character

keyboard for the “@” symbol. Simply entering a phone number can be difficult using the default

keyboard’s tiny numbers.

Many new input types297 have since been introduced, allowing developers to inform browsers

what kind of data is expected, and enable browsers to provide customized keyboards

specifically for these input types. For example, a type of email provides users with an

alphanumeric keyboard including the “@” symbol, and a type of tel will display a numeric

keypad.

297. https://developer.mozilla.org/docs/Web/HTML/Element/input#Form_%3Cinput%3E_types

Part II Chapter 12 : Mobile Web

2019 Web Almanac by HTTP Archive 237

https://developer.mozilla.org/docs/Web/HTML/Element/input#Form_%3Cinput%3E_types

When analyzing sites containing an email input, 56.42% use type="email" . Similarly, for

phone inputs, type="tel" is used 36.7% of the time. Other new input types have an even

lower adoption rate.

Make sure to educate yourself and others on the large amount of input types available and

double-check that you don’t have any typos like the most common ones in Figure 12.7 above.

Enabling autocomplete for inputs

The autocomplete input attribute enables users to fill out form fields in a single click. Users

fill out tons of forms, often with the exact same information each time. Realizing this, browsers

have begun to securely store this information so it can be used on future pages. All developers

need to do is use this autocomplete attribute to tell browsers what exact piece of

information needs to be filled in, and the browser does the rest.

Currently, only 29.62% of pages with input fields utilize this feature.

Pasting into password fields

Enabling users to copy and paste their passwords into your page is one way that allows them to

use password managers. Password managers help users generate (and remember) strong

passwords and fill them out automatically on web pages. Only 0.02% of web pages tested

disable this functionality.

Note: While this is very encouraging, this may be an underestimation due to the requirement of our

Methodology to only test home pages. Interior pages, like login pages, are not tested.

Figure 12.7. Most commonly used invalid input types

Type Frequency (pages)

phone 1,917

name 1,348

textbox 833

Figure 12.8. Percent of pages that use autocomplete .

29.62%

Part II Chapter 12 : Mobile Web

238 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTML/Attributes/autocomplete
https://developer.mozilla.org/docs/Web/HTML/Attributes/autocomplete

Conclusion

For over 13 years we’ve been treating the mobile web as an afterthought, like a mere exception

to desktop. But it’s time for this to change. The mobile web is now the web, and desktop is

becoming the legacy one. There are now 4 billion active smartphones in the world, covering

70% of all potential users. What about desktops? They currently sit at 1.6 billion, and account

for less and less of web usage every month.

How well are we doing catering to mobile users? According to our research, even though 71%

of sites make some kind of effort to adjust their site for mobile, they’re falling well below the

mark. Pages take forever to load and become unusable thanks to an abuse of JavaScript, text is

often impossible to read, engaging with sites via clicking links or buttons is error-prone and

infuriating, and tons of great technologies invented to mitigate these problems (Service

Workers, autocomplete, zooming, new image formats, etc) are barely being used at all.

The mobile web has now been around long enough for there to be an entire generation of kids

where this is the only internet they’ve ever known. And what kind of experience are we giving

them? We’re essentially taking them back to the dial-up era. (Good thing I hear AOL still sells

those CDs providing 1000 hours of free internet access!)

Figure 12.9. 1000 hours of America Online for free, from archive.org298.

298. https://archive.org/details/America_Online_1000_Hours_Free_for_45_Days_Version_7.0_Faster_Than_Ever_AM402R28

Part II Chapter 12 : Mobile Web

2019 Web Almanac by HTTP Archive 239

https://almanac.httparchive.org/static/images/2019/mobile-web/america-online-1000-hours-free.jpg
https://almanac.httparchive.org/static/images/2019/mobile-web/america-online-1000-hours-free.jpg
https://archive.org/details/America_Online_1000_Hours_Free_for_45_Days_Version_7.0_Faster_Than_Ever_AM402R28

Notes:

1. We defined sites making a mobile effort as those who adjust their designs for

smaller screens. Or rather, those which have at least one CSS breakpoint at 600px

or less.

2. Potential users, or the total addressable market, are those who are 15+ years old:

5.7 billion people299.

3. Desktop search300 and web traffic share301 has been on the decline for years

4. The total number of active smartphones was found by totaling the number of active

Androids and iPhones (made public by Apple and Google), and a bit of math to

account for Chinese internet-connected phones. More info here302.

5. The 1.6 billion desktops is calculated by numbers made public by Microsoft303 and

Apple304. It does not include linux PC users.

Author

David Fox

@theobto foxdavidj https://www.lookzook.com

David Fox is the lead usability researcher and founder of LookZook, a company

obsessed with finding out everything there is to know about building web

experiences that meet user expectations. He is a website psychologist who digs

into sites to learn not just what users are struggling with, but why, and how to best

improve their experience. He is also a Google Chromium contributor, speaker, and

provider of webinars and UX training.

299. https://www.prb.org/international/geography/world
300. https://www.merkleinc.com/thought-leadership/digital-marketing-report
301. https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-201205-201909
302. https://www.ben-evans.com/benedictevans/2019/5/28/the-end-of-mobile
303. https://web.archive.org/web/20181030132235/https://news.microsoft.com/bythenumbers/en/windowsdevices
304. https://web.archive.org/web/20190628161024/https://appleinsider.com/articles/18/10/30/apple-passes-100m-active-mac-milestone-thanks-to-high-numbers-of-

new-users

Part II Chapter 12 : Mobile Web

240 2019 Web Almanac by HTTP Archive

https://www.prb.org/international/geography/world
https://www.merkleinc.com/thought-leadership/digital-marketing-report
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet/worldwide/#monthly-201205-201909
https://www.ben-evans.com/benedictevans/2019/5/28/the-end-of-mobile
https://web.archive.org/web/20181030132235/https://news.microsoft.com/bythenumbers/en/windowsdevices
https://web.archive.org/web/20190628161024/https://appleinsider.com/articles/18/10/30/apple-passes-100m-active-mac-milestone-thanks-to-high-numbers-of-new-users
https://twitter.com/theobto
https://github.com/foxdavidj
https://www.lookzook.com/

Part III Chapter 13

Ecommerce

Written by Sam Dutton and Alan Kent
Reviewed by Vincent Terrasi
Analyzed by Rick Viscomi
Edited by Barry Pollard

Introduction

Nearly 10% of the home pages in this study were found to be on an ecommerce platform. An

“ecommerce platform” is a set of software or services that enables you to create and operate an

online store. There are several types of ecommerce platforms, for example:

• Paid-for services such as Shopify305 that host your store and help you get started.

They provide website hosting, site and page templates, product-data management,

shopping carts and payments.

• Software platforms such as Magento Open Source306 which you set up, host and

manage yourself. These platforms can be powerful and flexible, but may be more

complex to set up and run than services such as Shopify.

305. https://www.shopify.com/
306. https://magento.com/products/magento-open-source

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 241

https://www.shopify.com/
https://magento.com/products/magento-open-source

• Hosted platforms such as Magento Commerce307 that offer the same features as

their self-hosted counterparts, except that hosting is managed as a service by a

third-party.

This analysis could only detect sites built on an ecommerce platform. This means that most

large online stores and marketplaces—such as Amazon, JD, and eBay—are not included here.

Also note that the data here is for home pages only: not category, product or other pages. Learn

more about our methodology.

Platform detection

How do we check if a page is on an ecommerce platform?

Detection is done through Wappalyzer. Wappalyzer is a cross-platform utility that uncovers the

technologies used on websites. It detects content management systems, ecommerce platforms,

web servers, JavaScript frameworks, analytics tools, and many more.

Page detection is not always reliable, and some sites explicitly block detection to protect

against automated attacks. We might not be able to catch all websites that use a particular

ecommerce platform, but we’re confident that the ones we do detect are actually on that

platform.

Figure 13.1. Percent of pages on an ecommerce platform.

10%

Figure 13.2. Percent of ecommerce platforms detected.

Mobile Desktop

Ecommerce pages 500,595 424,441

Total pages 5,297,442 4,371,973

Adoption rate 9.45% 9.70%

307. https://magento.com/products/magento-commerce

Part III Chapter 13 : Ecommerce

242 2019 Web Almanac by HTTP Archive

https://magento.com/products/magento-commerce

Ecommerce platforms

Out of the 116 ecommerce platforms that were detected, only six are found on more than 0.1%

of desktop or mobile websites. Note that these results do not show variation by country, by size

of site, or other similar metrics.

Figure 13.3 above shows that WooCommerce has the largest adoption at around 4% of desktop

and mobile websites. Shopify is second with about 1.6% adoption. Magento, PrestaShop,

Bigcommerce, and Shopware follow with smaller and smaller adoption, approaching 0.1%.

Figure 13.3. Adoption of the top six ecommerce platforms.

Platform Mobile Desktop

WooCommerce 3.98 3.90

Shopify 1.59 1.72

Magento 1.10 1.24

PrestaShop 0.91 0.87

Bigcommerce 0.19 0.22

Shopware 0.12 0.11

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 243

Long tail

There are 110 ecommerce platforms that each have fewer than 0.1% of desktop or mobile

websites. Around 60 of these have fewer than 0.01% of mobile or desktop websites.

Figure 13.4. Adoption of top ecommerce platforms.

Part III Chapter 13 : Ecommerce

244 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/ecommerce/fig4.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig4.png

7.87% of all requests on mobile and 8.06% on desktop are for home pages on one of the top six

ecommerce platforms. A further 1.52% of requests on mobile and 1.59% on desktop are for

home pages on the 110 other ecommerce platforms.

Ecommerce (all platforms)

In total, 9.7% of desktop pages and 9.5% of mobile pages used an ecommerce platform.

Figure 13.5. Combined adoption of the top six ecommerce platforms versus the other 110
platforms.

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 245

https://almanac.httparchive.org/static/images/2019/ecommerce/fig5.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig5.png

Although the desktop proportion of websites was slightly higher overall, some popular

platforms (including WooCommerce, PrestaShop and Shopware) actually have more mobile

than desktop websites.

Page weight and requests

The page weight of an ecommerce platform includes all HTML, CSS, JavaScript, JSON, XML,

images, audio, and video.

Figure 13.6. Percent of pages using any ecommerce platform.

Part III Chapter 13 : Ecommerce

246 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/ecommerce/fig6.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig6.png

The median desktop ecommerce platform page loads 108 requests and 2.7 MB. The median

weight for all desktop pages is 74 requests and 1.9 MB. In other words, ecommerce pages make

nearly 50% more requests than other web pages, with payloads around 35% larger. By

comparison, the amazon.com308 home page makes around 300 requests on first load, for a page

Figure 13.7. Distribution of ecommerce page weight.

Figure 13.8. Distribution of requests per ecommerce page.

308. https://amazon.com

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 247

https://almanac.httparchive.org/static/images/2019/ecommerce/fig7.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig7.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig8.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig8.png
https://amazon.com/

weight of around 5 MB, and ebay.com309 makes around 150 requests for a page weight of

approximately 3 MB. The page weight and number of requests for home pages on ecommerce

platforms is slightly smaller on mobile at every percentile, but around 10% of all ecommerce

home pages load more than 7 MB and make over 200 requests.

This data accounts for home page payload and requests without scrolling. Clearly there are a

significant proportion of sites that appear to be retrieving more files (the median is over 100),

with a larger total payload, than should be necessary for first load. See also: Third-party

requests and bytes below.

We need to do further research to better understand why so many home pages on ecommerce

platforms make so many requests and have such large payloads. The authors regularly see

home pages on ecommerce platforms that make hundreds of requests on first load, with multi-

megabyte payloads. If the number of requests and payload are a problem for performance, then

how can they be reduced?

Requests and payload by type

The charts below are for desktop requests:

Figure 13.9. Percentiles of the distribution of page weight (in KB) by resource type.

Type 10 25 50 75 90

image 353 728 1,514 3,104 6,010

video 156 453 1,325 2,935 5,965

script 199 330 572 915 1,331

font 47 85 144 226 339

css 36 59 102 180 306

html 12 20 36 66 119

audio 7 7 11 17 140

xml 0 0 0 1 3

other 0 0 0 0 3

text 0 0 0 0 0

309. https://ebay.com

Part III Chapter 13 : Ecommerce

248 2019 Web Almanac by HTTP Archive

https://ebay.com/

Images constitute the largest number of requests and the highest proportion of bytes for

ecommerce pages. The median desktop ecommerce page includes 39 images weighing 1,514

KB (1.5 MB).

The number of JavaScript requests indicates that better bundling (and/or HTTP/2 multiplexing)

could improve performance. JavaScript files are not significantly large in terms of total bytes,

but many separate requests are made. According to the HTTP/2 chapter, more than 40% of

requests are not via HTTP/2. Similarly, CSS files have the third highest number of requests but

are generally small. Merging CSS files (and/or HTTP/2) could improve performance of such

sites. In the authors’ experience, many ecommerce pages have a high proportion of unused CSS

and JavaScript. Videos may require a small number of requests, but (not surprisingly) consume

a high proportion of the page weight, particularly on sites with heavy payloads.

Figure 13.10. Percentiles of the distribution of requests per page by resource type.

Type 10 25 50 75 90

image 16 25 39 62 97

script 11 21 35 53 75

css 3 6 11 22 32

font 2 3 5 8 11

html 1 2 4 7 12

video 1 1 2 5 9

other 1 1 2 4 9

text 1 1 1 2 3

xml 1 1 1 2 2

audio 1 1 1 1 3

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 249

HTML payload size

Note that HTML payloads may include other code such as inline JSON, JavaScript, or CSS

directly in the markup itself, rather than referenced as external links. The median HTML

payload size for ecommerce pages is 34 KB on mobile and 36 KB on desktop. However, 10% of

ecommerce pages have an HTML payload of more than 115 KB.

Mobile HTML payload sizes are not very different from desktop. In other words, it appears that

sites are not delivering significantly different HTML files for different devices or viewport sizes.

On many ecommerce sites, home page HTML payloads are large. We don’t know whether this is

because of bloated HTML, or from other code (such as JSON) within HTML files.

Figure 13.11. Distribution of HTML bytes (in KB) per ecommerce page.

Part III Chapter 13 : Ecommerce

250 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/ecommerce/fig11.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig11.png

Image stats

Note that because our data collection methodology does not simulate user interactions on pages like

clicking or scrolling, images that are lazy loaded would not be represented in these results.

Figure 13.12. Distribution of image bytes (in KB) per ecommerce page.

Figure 13.13. Distribution of image requests per ecommerce page.

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 251

https://almanac.httparchive.org/static/images/2019/ecommerce/fig12.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig12.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig13.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig13.png

Figures 13.12 and 13.13 above show that the median ecommerce page has 37 images and an

image payload of 1,517 KB on mobile, 40 images and 1,524 KB on desktop. 10% of home pages

have 90 or more images and an image payload of nearly 6 MB!

A significant proportion of ecommerce pages have sizable image payloads and make a large

number of image requests on first load. See HTTP Archive’s State of Images310 report and the

media and page weight chapters for more context.

Website owners want their sites to look good on modern devices. As a result, many sites deliver

the same high resolution product images to every user without regard for screen resolution or size.

Developers may not be aware of (or not want to use) responsive techniques that enable

efficient delivery of the best possible image to different users. It’s worth remembering that

high-resolution images may not necessarily increase conversion rates. Conversely, overuse of

heavy images is likely to impact page speed and can thereby reduce conversion rates. In the

authors’ experience from site reviews and events, some developers and other stakeholders

have SEO or other concerns about using lazy loading for images.

We need to do more analysis to better understand why some sites are not using responsive

image techniques or lazy loading. We also need to provide guidance that helps ecommerce

platforms to reliably deliver beautiful images to those with high end devices and good

connectivity, while simultaneously providing a best-possible experience to lower-end devices

and those with poor connectivity.

Figure 13.14. The median number of image bytes per mobile ecommerce page.

1,517 KB

310. https://httparchive.org/reports/state-of-images

Part III Chapter 13 : Ecommerce

252 2019 Web Almanac by HTTP Archive

https://httparchive.org/reports/state-of-images

Popular image formats

Note that some image services or CDNs will automatically deliver WebP (rather than JPEG or PNG) to

platforms that support WebP, even for a URL with a .jpg or .png suffix. For example,

IMG_20190113_113201.jpg311 returns a WebP image in Chrome. However, the way HTTP Archive

detects image formats312 is to check for keywords in the MIME type first, then fall back to the file

extension. This means that the format for images with URLs such as the above will be given as WebP,

since WebP is supported by HTTP Archive as a user agent.

PNG

One in four images on ecommerce pages are PNG. The high number of PNG requests from

pages on ecommerce platforms is probably for product images. Many commerce sites use PNG

with photographic images to enable transparency.

Using WebP with a PNG fallback can be a far more efficient alternative, either via a picture

element313 or by using user agent capability detection via an image service such as Cloudinary314.

Figure 13.15. Popular image formats.

311. https://res.cloudinary.com/webdotdev/f_auto/w_500/IMG_20190113_113201.jpg
312. https://github.com/HTTPArchive/legacy.httparchive.org/blob/31a25b9064a365d746d4811a1d6dda516c0e4985/bulktest/batch_lib.inc#L994
313. http://simpl.info/picturetype
314. https://res.cloudinary.com/webdotdev/f_auto/w_500/IMG_20190113_113201.jpg

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 253

https://almanac.httparchive.org/static/images/2019/ecommerce/fig15.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig15.png
https://res.cloudinary.com/webdotdev/f_auto/w_500/IMG_20190113_113201.jpg
https://github.com/HTTPArchive/legacy.httparchive.org/blob/31a25b9064a365d746d4811a1d6dda516c0e4985/bulktest/batch_lib.inc#L994
http://simpl.info/picturetype
http://simpl.info/picturetype
https://res.cloudinary.com/webdotdev/f_auto/w_500/IMG_20190113_113201.jpg

WebP

Only 1% of images on ecommerce platforms are WebP, which tallies with the authors’

experience of site reviews and partner work. WebP is supported by all modern browsers other

than Safari315 and has good fallback mechanisms available. WebP supports transparency and is a

far more efficient format than PNG for photographic images (see PNG section above).

We as a web community can provide better guidance/advocacy for enabling transparency using

WebP with a PNG fallback and/or using WebP/JPEG with a solid color background. WebP

appears to be rarely used on ecommerce platforms, despite the availability of guides316 and tools

(e.g. Squoosh317 and cwebp318). We need to do further research into why there hasn’t been more

take-up of WebP, which is now nearly 10 years old319.

Image dimensions

The median (’mid-range’) dimensions for images requested by ecommerce pages is 247x196 px

on mobile and 240x192 px on desktop. 10% of images requested by ecommerce pages are at

least 693x512 px on mobile and 800x546 px on desktop. Note that these dimensions are the

intrinsic sizes of images, not their display size.

Given that image dimensions at each percentile up to the median are similar on mobile and

desktop, or even slightly larger on mobile in some cases, it would seem that many sites are not

delivering different image dimensions for different viewports, or in other words, not using

Figure 13.16. Distribution of intrinsic image dimensions (in pixels) per ecommerce page.

Mobile Desktop

Percentile Width (px) Height (px) Width (px) Height (px)

10 16 16 16 16

25 100 64 100 60

50 247 196 240 192

75 364 320 400 331

90 693 512 800 546

315. https://caniuse.com/#feat=webp
316. https://web.dev/serve-images-webp
317. https://squoosh.app/
318. https://developers.google.com/speed/webp/docs/cwebp
319. https://blog.chromium.org/2010/09/webp-new-image-format-for-web.html

Part III Chapter 13 : Ecommerce

254 2019 Web Almanac by HTTP Archive

https://caniuse.com/#feat=webp
https://caniuse.com/#feat=webp
https://web.dev/serve-images-webp
https://squoosh.app/
https://developers.google.com/speed/webp/docs/cwebp
https://blog.chromium.org/2010/09/webp-new-image-format-for-web.html

responsive image techniques. The delivery of larger images to mobile in some cases may (or may

not!) be explained by sites using device or screen detection.

We need to do more research into why many sites are (apparently) not delivering different

image sizes to different viewports.

Third-party requests and bytes

Many websites—especially online stores—load a significant amount of code and content from

third-parties: for analytics, A/B testing, customer behavior tracking, advertising, and social

media support. Third-party content can have a significant impact on performance320. Patrick

Hulce321’s third-party-web tool322 is used to determine third-party requests for this report, and

this is discussed more in the Third Parties chapter.

Figure 13.17. Distribution of third-party requests per ecommerce page.

320. https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript
321. https://twitter.com/patrickhulce
322. https://github.com/patrickhulce/third-party-web

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 255

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript
https://twitter.com/patrickhulce
https://twitter.com/patrickhulce
https://github.com/patrickhulce/third-party-web
https://almanac.httparchive.org/static/images/2019/ecommerce/fig17.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig17.png

The median (’mid-range’) home page on an ecommerce platform makes 17 requests for third-

party content on mobile and 19 on desktop. 10% of all home pages on ecommerce platforms

make over 50 requests for third-party content, with a total payload of over 1 MB.

Other studies323 have indicated that third-party content can be a major performance bottleneck.

This study shows that 17 or more requests (50 or more for the top 10%) is the norm for

ecommerce pages.

Third-party requests and payload per platform

Note the charts and tables below show data for mobile only.

Figure 13.18. Distribution of third-party bytes per ecommerce page.

323. https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript/

Part III Chapter 13 : Ecommerce

256 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/ecommerce/fig18.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig18.png
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript/

Platforms such as Shopify may extend their services using client-side JavaScript, whereas other

platforms such as Magento use more server side extensions. This difference in architecture

affects the figures seen here.

Clearly, pages on some ecommerce platforms make more requests for third-party content and

Figure 13.19. Distribution of third-party requests per mobile page for each ecommerce platform.

Figure 13.20. Distribution of third-party bytes (KB) per mobile page for each ecommerce platform.

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 257

https://almanac.httparchive.org/static/images/2019/ecommerce/fig19.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig19.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig20.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig20.png

incur a larger payload of third-party content. Further analysis could be done on why pages from

some platforms make more requests and have larger third-party payloads than others.

First Contentful Paint (FCP)

First Contentful Paint measures the time it takes from navigation until content such as text or

an image is first displayed. In this context, fast means FCP in under one second, slow means

FCP in 3 seconds or more, and moderate is everything in between. Note that third-party

content and code may have a significant impact on FCP.

All top-six ecommerce platforms have worse FCP on mobile than desktop: less fast and more

slow. Note that FCP is affected by device capability (processing power, memory, etc.) as well as

connectivity.

We need to establish why FCP is worse on mobile than desktop. What are the causes:

connectivity and/or device capability, or something else?

Progressive Web App (PWA) scores

See also the PWA chapter for more information on this topic beyond just ecommerce sites.

Figure 13.21. Average distribution of FCP experiences per ecommerce platform.

Part III Chapter 13 : Ecommerce

258 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/ecommerce/fig21.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig21.png

More than 60% of home pages on ecommerce platforms get a Lighthouse PWA score324 between

0.25 and 0.35. Less than 20% of home pages on ecommerce platforms get a score of more than

0.5 and less than 1% of home pages score more than 0.6.

Lighthouse returns a Progressive Web App (PWA) score between 0 and 1. 0 is the worst

possible score, and 1 is the best. The PWA audits are based on the Baseline PWA Checklist325,

which lists 14 requirements. Lighthouse has automated audits for 11 of the 14 requirements.

The remaining 3 can only be tested manually. Each of the 11 automated PWA audits are

weighted equally, so each one contributes approximately 9 points to your PWA score.

If at least one of the PWA audits got a null score, Lighthouse nulls out the score for the entire

PWA category. This was the case for 2.32% of mobile pages.

Clearly, the majority of ecommerce pages are failing most PWA checklist audits326. We need to

do further analysis to better understand which audits are failing and why.

Conclusion

This comprehensive study of ecommerce usage shows some interesting data and also the wide

variations in ecommerce sites, even among those built on the same ecommerce platform. Even

Figure 13.22. Distribution of Lighthouse PWA category scores for mobile ecommerce pages.

324. https://developers.google.com/web/ilt/pwa/lighthouse-pwa-analysis-tool
325. https://developers.google.com/web/progressive-web-apps/checklist
326. https://developers.google.com/web/progressive-web-apps/checklist

Part III Chapter 13 : Ecommerce

2019 Web Almanac by HTTP Archive 259

https://almanac.httparchive.org/static/images/2019/ecommerce/fig22.png
https://almanac.httparchive.org/static/images/2019/ecommerce/fig22.png
https://developers.google.com/web/ilt/pwa/lighthouse-pwa-analysis-tool
https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist

though we have gone into a lot of detail here, there is much more analysis we could do in this

space. For example, we didn’t get accessibility scores this year (checkout the accessibility

chapter for more on that). Likewise, it would be interesting to segment these metrics by

geography. This study detected 246 ad providers on home pages on ecommerce platforms.

Further studies (perhaps in next year’s Web Almanac?) could calculate what proportion of sites

on ecommerce platforms shows ads. WooCommerce got very high numbers in this study so

another interesting statistic we could look at next year is if some hosting providers are

installing WooCommerce but not enabling it, thereby causing inflated figures.

Authors

Sam Dutton

@sw12 samdutton https://simpl.info

Sam Dutton has worked with the Google Chrome team as a Developer Advocate

since 2011. He has organized and presented at a number of events, created and

taught several web development courses, and worked on a range of videos,

codelabs and written guidance covering PWA, performance, media, image and

‘Next Billion Users’ initiatives. He maintains simpl.info327, which provides simplest

possible examples of HTML, CSS and JavaScript. Sam grew up in South Australia,

went to university in Sydney, and has lived since 1986 in London.

Alan Kent

@akent99 alankent https://alankent.me

Alan Kent is a Developer Advocate at Google focusing on e-commerce and

content ecosystems. He blogs at alankent.me328 and tweets as @akent99.

327. https://simpl.info
328. https://alankent.me

Part III Chapter 13 : Ecommerce

260 2019 Web Almanac by HTTP Archive

https://twitter.com/sw12
https://github.com/samdutton
https://simpl.info/
https://simpl.info/
https://twitter.com/akent99
https://github.com/alankent
https://alankent.me/
https://alankent.me/
https://twitter.com/akent99

Part III Chapter 14

CMS

Written by Renee Johnson and Alberto Medina
Reviewed by Jonathan Wold
Analyzed and edited by Rick Viscomi

Introduction

The general term Content Management System (CMS) refers to systems enabling individuals

and organizations to create, manage, and publish content. A CMS for web content, specifically,

is a system aimed at creating, managing, and publishing content to be consumed and

experienced via the open web.

Each CMS implements some subset of a wide range of content management capabilities and

the corresponding mechanisms for users to build websites easily and effectively around their

content. Such content is often stored in some type of database, providing users with the

flexibility to reuse it wherever needed for their content strategy. CMSs also provide admin

capabilities aimed at making it easy for users to upload and manage content as needed.

There is great variability on the type and scope of the support CMSs provide for building sites;

some provide ready-to-use templates which are “hydrated” with user content, and others

require much more user involvement for designing and constructing the site structure.

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 261

When we think about CMSs, we need to account for all the components that play a role in the

viability of such a system for providing a platform for publishing content on the web. All of

these components form an ecosystem surrounding the CMS platform, and they include hosting

providers, extension developers, development agencies, site builders, etc. Thus, when we talk

about a CMS, we usually refer to both the platform itself and its surrounding ecosystem.

Why do content creators use a CMS?

At the beginning of (web evolution) time, the web ecosystem was powered by a simple growth

loop, where users could become creators just by viewing the source of a web page, copy-pasting

according to their needs, and tailoring the new version with individual elements like images.

As the web evolved, it became more powerful, but also more complicated. As a consequence,

that simple growth loop was broken and it was not the case anymore that any user could

become a creator. For those who could pursue the content creation path, the road became

arduous and hard to achieve. The usage-capability gap329, that is, the difference between what

can be done in the web and what is actually done, grew steadily.

329. https://medinathoughts.com/2018/05/17/progressive-wordpress/

Part III Chapter 14 : CMS

262 2019 Web Almanac by HTTP Archive

https://medinathoughts.com/2018/05/17/progressive-wordpress/

Here is where a CMS plays the very important role of making it easy for users with different

degrees of technical expertise to enter the web ecosystem loop as content creators. By

lowering the barrier of entry for content creation, CMSs activate the growth loop of the web by

turning users into creators. Hence their popularity.

The goal of this chapter

There are many interesting and important aspects to analyze and questions to answer in our

quest to understand the CMS space and its role in the present and the future of the web. While

we acknowledge the vastness and complexity of the CMS platforms space, and don’t claim

omniscient knowledge fully covering all aspects involved on all platforms out there, we do claim

our fascination for this space and we bring deep expertise on some of the major players in the

space.

In this chapter, we seek to scratch the surface area of the vast CMS space, trying to shed a beam

of light on our collective understanding of the status quo of CMS ecosystems, and the role they

play in shaping users’ perception of how content can be consumed and experienced on the web.

Figure 14.1. Chart illustrating the increase in web capabilities from 1999 to 2018.

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 263

https://almanac.httparchive.org/static/images/2019/cms/web-evolution.png
https://almanac.httparchive.org/static/images/2019/cms/web-evolution.png

Our goal is not to provide an exhaustive view of the CMS landscape; instead, we will discuss a

few aspects related to the CMS landscape in general, and the characteristics of web pages

generated by these systems. This first edition of the Web Almanac establishes a baseline, and in

the future we’ll have the benefit of comparing data against this version for trend analysis.

CMS adoption

Today, we can observe that more than 40% of the web pages are powered by some CMS

platform; 40.01% for mobile and 39.61% for desktop more precisely.

There are other datasets tracking market share of CMS platforms, such as W3Techs330, and they

reflect higher percentages of more than 50% of web pages powered by CMS platforms.

Furthermore, they observe also that CMS platforms are growing, as fast as 12% year-over-year

growth in some cases! The deviation between our analysis and W3Tech’s analysis could be

explained by a difference in research methodologies. You can read more about ours on the

Methodology page.

In essence, this means that there are many CMS platforms available out there. The following

picture shows a reduced view of the CMS landscape.

Figure 14.2. Percent of web pages powered by a CMS.

40%

330. https://w3techs.com/technologies/history_overview/content_management

Part III Chapter 14 : CMS

264 2019 Web Almanac by HTTP Archive

https://w3techs.com/technologies/history_overview/content_management

Some of them are open source (e.g. WordPress, Drupal, others) and some of them are

proprietary (e.g. AEM, others). Some CMS platforms can be used on “free” hosted or self-hosted

plans, and there are also advanced options for using these platforms on higher-tiered plans

even at the enterprise level. The CMS space as a whole is a complex, federated universe of CMS

ecosystems, all separated and at the same time intertwined in the vast fabric of the web.

It also means that there are hundreds of millions of websites powered by CMS platforms, and

an order of magnitude more of users accessing the web and consuming content through these

platforms. Thus, these platforms play a key role for us to succeed in our collective quest for an

evergreen, healthy, and vibrant web.

The CMS landscape

A large swath of the web today is powered by one kind of CMS platform or another. There are

Figure 14.3. The top content management systems.

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 265

https://almanac.httparchive.org/static/images/2019/cms/cms-logos.png
https://almanac.httparchive.org/static/images/2019/cms/cms-logos.png

statistics collected by different organizations that reflect this reality. Looking at the Chrome UX

Report (CrUX) and HTTP Archive datasets, we get a picture that is consistent with stats

published elsewhere, although quantitatively the proportions described may be different as a

reflection of the specificity of the datasets.

Looking at web pages served on desktop and mobile devices, we observe an approximate 60-40

split in the percentage of such pages which were generated by some kind of CMS platform, and

those that aren’t.

CMS-powered web pages are generated by a large set of available CMS platforms. There are

many such platforms to choose from, and many factors that can be considered when deciding to

use one vs. another, including things like:

• Core functionality

• Creation/editing workflows and experience

• Barrier of entry

• Customizability

• Community

• And many others.

Figure 14.4. Percent of desktop and mobile websites that use a CMS.

Part III Chapter 14 : CMS

266 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cms/fig4.png
https://almanac.httparchive.org/static/images/2019/cms/fig4.png

The CrUX and HTTP Archive datasets contain web pages powered by a mix of around 103 CMS

platforms. Most of those platforms are very small in terms of relative market share. For the

sake of our analysis, we will be focusing on the top CMS platforms in terms of their footprint on

the web as reflected by the data. For a full analysis, see this chapter’s results spreadsheet331.

The most salient CMS platforms present in the datasets are shown above in Figure 14.5.

WordPress comprises 74.19% of mobile and 73.47% of desktop CMS websites. Its dominance

in the CMS landscape can be attributed to a number of factors that we’ll discuss later, but it’s a

major player. Open source platforms like Drupal and Joomla, and closed SaaS offerings like

Squarespace and Wix, round out the top 5 CMSs. The diversity of these platforms speak to the

CMS ecosystem consisting of many platforms where user demographics and the website

Figure 14.5. Top CMS platforms as a percent of all CMS websites.

331. https://docs.google.com/spreadsheets/d/1FDYe6QdoY3UtXodE2estTdwMsTG-hHNrOe9wEYLlwAw/edit#gid=0

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 267

https://docs.google.com/spreadsheets/d/1FDYe6QdoY3UtXodE2estTdwMsTG-hHNrOe9wEYLlwAw/edit#gid=0
https://almanac.httparchive.org/static/images/2019/cms/fig5.png
https://almanac.httparchive.org/static/images/2019/cms/fig5.png

creation journey vary. What’s also interesting is the long tail of small scale CMS platforms in the

top 20. From enterprise offerings to proprietary applications developed in-house for industry

specific use, content management systems provide the customizable infrastructure for groups

to manage, publish, and do business on the web.

The WordPress project332 defines its mission as “democratizing publishing”. Some of its main goals

are ease of use and to make the software free and available for everyone to create content on

the web. Another big component is the inclusive community the project fosters. In almost any

major city in the world, one can find a group of people who gather regularly to connect, share,

and code in an effort to understand and build on the WordPress platform. Attending local

meetups and annual events as well as participating in web-based channels are some of the ways

WordPress contributors, experts, businesses, and enthusiasts participate in its global

community.

The low barrier of entry and resources to support users (online and in-person) with publishing

on the platform and to develop extensions (plugins) and themes contribute to its popularity.

There is also a thriving availability of and economy around WordPress plugins and themes that

reduce the complexity of implementing sought after web design and functionality. Not only do

these aspects drive its reach and adoption by newcomers, but also maintains its long-standing

use over time.

The open source WordPress platform is powered and supported by volunteers, the WordPress

Foundation, and major players in the web ecosystem. With these factors in mind, WordPress as

the leading CMS makes sense.

How are CMS-powered sites built

Independent of the specific nuances and idiosyncrasies of different CMS platforms, the end

goal for all of them is to output web pages to be served to users via the vast reach of the open

web. The difference between CMS-powered and non-CMS-powered web pages is that in the

former, the CMS platform makes most of the decisions of how the end result is built, while in

the latter there are not such layers of abstraction and decisions are all made by developers

either directly or via library configurations.

In this section we take a brief look at the status quo of the CMS space in terms of the

characteristics of their output (e.g. total resources used, image statistics, etc.), and how they

compare with the web ecosystem as a whole.

332. https://wordpress.org/about/

Part III Chapter 14 : CMS

268 2019 Web Almanac by HTTP Archive

https://wordpress.org/about/

Total resource usage

The building blocks of any website also make a CMS website: HTML, CSS, JavaScript, and media

(images and video). CMS platforms give users powerfully streamlined administrative

capabilities to integrate these resources to create web experiences. While this is one of the

most inclusive aspects of these applications, it could have some adverse effects on the wider

web.

Figure 14.6. Distribution of CMS page weight.

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 269

https://almanac.httparchive.org/static/images/2019/cms/fig6.png
https://almanac.httparchive.org/static/images/2019/cms/fig6.png

In Figures 14.6 and 14.7 above, we see the median desktop CMS page loads 86 resources and

weighs 2.29 MB. Mobile page resource usage is not too far behind with 83 resources and 2.25

MB.

The median indicates the halfway point that all CMS pages either fall above or below. In short,

half of all CMS pages load fewer requests and weigh less, while half load more requests and

weigh more. At the 10th percentile, mobile and desktop pages have under 40 requests and 1

MB in weight, but at the 90th percentile we see pages with over 170 requests and at 7 MB,

almost tripling in weight from the median.

How do CMS pages compare to pages on the web as a whole? In the Page Weight chapter, we

find some telling data about resource usage. At the median, desktop pages load 74 requests and

weigh 1.9 MB, and mobile pages on the web load 69 requests and weigh 1.7 MB. The median

CMS page exceeds this. CMS pages also exceed resources on the web at the 90th percentile,

but by a smaller margin. In short: CMS pages could be considered as some of the heaviest.

Figure 14.7. Distribution of CMS requests per page.

Part III Chapter 14 : CMS

270 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cms/fig7.png
https://almanac.httparchive.org/static/images/2019/cms/fig7.png

When we look closer at the types of resources that load on mobile or desktop CMS pages,

images and video immediately stand out as primary contributors to their weight.

The impact doesn’t necessarily correlate with the number of requests, but rather how much

data is associated with those individual requests. For example, in the case of video resources

with only two requests made at the median, they carry more than 1 MB of associated load.

Multimedia experiences also come with the use of scripts to integrate interactivity, deliver

functionality and data to name a few use cases. In both mobile and desktop pages, those are the

3rd heaviest resource.

With our CMS experiences saturated with these resources, we must consider the impact this

has on website visitors on the frontend- is their experience fast or slow? Additionally, when

comparing mobile and desktop resource usage, the amount of requests and weight show little

difference. This means that the same amount and weight of resources are powering both

mobile and desktop CMS experiences. Variation in connection speed and mobile device quality

adds another layer of complexity333. Later in this chapter, we’ll use data from CrUX to assess user

experience in the CMS space.

Third-party resources

Let’s highlight a particular subset of resources to assess their impact in the CMS landscape.

Third-party resources are those from origins not belonging to the destination site’s domain

Figure 14.8. Distribution of desktop CMS page kilobytes per resource type.

percentile image video script font css audio html

50 1,233 1,342 456 140 93 14 33

75 2,766 2,735 784 223 174 97 66

90 5,699 5,098 1,199 342 310 287 120

Figure 14.9. Distribution of mobile CMS page kilobytes per resource type.

percentile image video script css font audio html

50 1,264 1,056 438 89 109 14 32

75 2,812 2,191 756 171 177 38 67

90 5,531 4,593 1,178 317 286 473 123

333. https://medinathoughts.com/2017/12/03/the-perils-of-mobile-web-performance-part-iii/

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 271

https://medinathoughts.com/2017/12/03/the-perils-of-mobile-web-performance-part-iii/

name or servers. They can be images, videos, scripts, or other resource types. Sometimes these

resources are packaged in combination such as with embedding an iframe for example. Our

data reveals that the median amount of 3rd party resources for both desktop and mobile are

close.

The median amount of 3rd party requests on mobile CMS pages is 15 and weigh 264.72 KB,

while the median for these requests on desktop CMS pages is 16 and weigh 271.56 KB. (Note

that this excludes 3P resources considered part of “hosting”).

Figure 14.10. Distribution of third-party weight (KB) on CMS pages.

Part III Chapter 14 : CMS

272 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cms/fig10.png
https://almanac.httparchive.org/static/images/2019/cms/fig10.png

We know the median value indicates at least half of CMS web pages are shipping with more 3rd

party resources than what we report here. At the 90th percentile, CMS pages can deliver up to

52 resources at approximately 940 KB, a considerable increase.

Given that third-party resources originate from remote domains and servers, the destination

site has little control over the quality and impact these resources have on its performance. This

unpredictability could lead to fluctuations in speed and affect the user experience, which we’ll

soon explore.

Figure 14.11. Distribution of the number of third-party requests on CMS pages.

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 273

https://almanac.httparchive.org/static/images/2019/cms/fig11.png
https://almanac.httparchive.org/static/images/2019/cms/fig11.png

Image stats

Recall from Figures 14.8 and 14.9 earlier, images are a big contributor to the total weight of

CMS pages. Figures 14.12 and 14.13 above show that the median desktop CMS page has 31

images and payload of 1,232 KB, while the median mobile CMS page has 29 images and payload

of 1,263 KB. Again we have very close margins for the weight of these resources for both

desktop and mobile experiences. The Page Weight chapter additionally shows that image

resources well exceed the median weight of pages with the same amount of images on the web

as a whole, which is 983 KB and 893 KB for desktop and mobile respectively. The verdict: CMS

pages ship heavy images.

Which are the common formats found on mobile and desktop CMS pages? From our data JPG

images on average are the most popular image format. PNG and GIF formats follow, while

formats like SVG, ICO, and WebP trail significantly comprising approximately a little over 2%

and 1%.

Figure 14.12. Distribution of image weight (KB) on CMS pages.

Figure 14.13. The median number of image kilobytes loaded per desktop CMS page.

1,232 KB

Part III Chapter 14 : CMS

274 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cms/fig12.png
https://almanac.httparchive.org/static/images/2019/cms/fig12.png

Perhaps this segmentation isn’t surprising given the common use cases for these image types.

SVGs for logos and icons are common as are JPEGs ubiquitous. WebP is still a relatively new

optimized format with growing browser adoption334. It will be interesting to see how this

impacts its use in the CMS space in the years to come.

User experience on CMS-powered websites

Success as a web content creator is all about user experience. Factors such as resource usage

and other statistics regarding how web pages are composed are important indicators of the

quality of a given site in terms of the best practices followed while building it. However, we are

ultimately interested in shedding some light on how are users actually experiencing the web

when consuming and engaging with content generated by these platforms.

To achieve this, we turn our analysis towards some user-perceived performance metrics335,

which are captured in the CrUX dataset. These metrics relate in some ways to how we, as

humans, perceive time336.

Figure 14.14. Adoption of image formats on CMS pages.

334. https://caniuse.com/#search=webp
335. https://developers.google.com/web/fundamentals/performance/user-centric-performance-metrics
336. https://paulbakaus.com/tutorials/performance/the-illusion-of-speed/

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 275

https://almanac.httparchive.org/static/images/2019/cms/fig14.png
https://almanac.httparchive.org/static/images/2019/cms/fig14.png
https://caniuse.com/#search=webp
https://developers.google.com/web/fundamentals/performance/user-centric-performance-metrics
https://paulbakaus.com/tutorials/performance/the-illusion-of-speed/
https://paulbakaus.com/tutorials/performance/the-illusion-of-speed/

If things happen within 0.1 seconds (100 milliseconds), for all of us they are happening virtually

instantly. And when things take longer than a few seconds, the likelihood we go on with our

lives without waiting any longer is very high. This is very important for content creators seeking

sustainable success in the web, because it tells us how fast our sites must load if we want to

acquire, engage, and retain our user base.

In this section we take a look at three important dimensions which can shed light on our

understanding of how users are experiencing CMS-powered web pages in the wild:

• First Contentful Paint (FCP)

• First Input Delay (FID)

• Lighthouse scores

First Contentful Paint

First Contentful Paint337 measures the time it takes from navigation until content such as text or

an image is first displayed. A successful FCP experience, or one that can be qualified as “fast,”

entails how quickly elements in the DOM are loaded to assure the user that the website is

loading successfully. Although a good FCP score is not a guarantee that the corresponding site

offers a good UX, a bad FCP almost certainly does guarantee the opposite.

Figure 14.15. How humans perceive short durations of time.

Duration Perception

< 0.1 seconds Instant

0.5-1 second Immediate

2-5 seconds Point of abandonment

337. https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint

Part III Chapter 14 : CMS

276 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse/audits/first-contentful-paint

FCP in the CMS landscape trends mostly in the moderate range. The need for CMS platforms to

query content from a database, send, and subsequently render it in the browser, could be a

contributing factor to the delay that users experience. The resource loads we discussed in the

previous sections could also play a role. In addition, some of these instances are on shared

hosting or in environments that may not be optimized for performance, which could also impact

the experience in the browser.

WordPress shows notably moderate and slow FCP experiences on mobile and desktop. Wix sits

strongly in moderate FCP experiences on its closed platform. TYPO3, an enterprise open-

source CMS platform, has consistently fast experiences on both mobile and desktop. TYPO3

Figure 14.16. Average distribution of FCP experiences across CMSs.

Figure 14.17. Average distribution of FCP experiences for the top 5 CMSs.

CMS
Fast

(< 1000ms)
Moderate

Slow
(>= 3000ms)

WordPress 24.33% 40.24% 35.42%

Drupal 37.25% 39.39% 23.35%

Joomla 22.66% 46.48% 30.86%

Wix 14.25% 62.84% 22.91%

Squarespace 26.23% 43.79% 29.98%

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 277

https://almanac.httparchive.org/static/images/2019/cms/fig16.png
https://almanac.httparchive.org/static/images/2019/cms/fig16.png

advertises built-in performance and scalability features that may have a positive impact for

website visitors on the frontend.

First Input Delay

First Input Delay338 (FID) measures the time from when a user first interacts with your site (i.e.

when they click a link, tap on a button, or use a custom, JavaScript-powered control) to the time

when the browser is actually able to respond to that interaction. A “fast” FID from a user’s

perspective would be immediate feedback from their actions on a site rather than a stalled

experience. This delay (a pain point) could correlate with interference from other aspects of the

site loading when the user tries to interact with the site.

FID in the CMS space generally trends on fast experiences for both desktop and mobile on

average. However, what’s notable is the significant difference between mobile and desktop

experiences.

Figure 14.18. Average distribution of FID experiences across CMSs.

338. https://developers.google.com/web/updates/2018/05/first-input-delay

Part III Chapter 14 : CMS

278 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/updates/2018/05/first-input-delay
https://almanac.httparchive.org/static/images/2019/cms/fig18.png
https://almanac.httparchive.org/static/images/2019/cms/fig18.png

While this difference is present in FCP data, FID sees bigger gaps in performance. For example,

the difference between mobile and desktop fast FCP experiences for Joomla is around 12.78%,

for FID experiences the difference is significant: 27.76%. Mobile device and connection quality

could play a role in the performance gaps that we see here. As we highlighted previously, there

is a small margin of difference between the resources shipped to desktop and mobile versions

of a website. Optimizing for the mobile (interactive) experience becomes more apparent with

these results.

Lighthouse scores

Lighthouse is an open-source, automated tool designed to help developers assess and improve

the quality of their websites. One key aspect of the tool is that it provides a set of audits to

assess the status of a website in terms of performance, accessibility, progressive web apps,

and more. For the purposes of this chapter, we are interested in two specific audits categories:

PWA and accessibility.

PWA

The term Progressive Web App (PWA) refers to web-based user experiences that are

considered as being reliable339, fast340, and engaging341. Lighthouse provides a set of audits which

returns a PWA score between 0 (worst) and 1 (best). These audits are based on the Baseline

PWA Checklist342, which lists 14 requirements. Lighthouse has automated audits for 11 of the 14

requirements. The remaining 3 can only be tested manually. Each of the 11 automated PWA

audits are weighted equally, so each one contributes approximately 9 points to your PWA

Figure 14.19. Average distribution of FID experiences for the top 5 CMSs.

CMS
Fast

(< 100ms)
Moderate

Slow
(>= 300ms)

WordPress 80.25% 13.55% 6.20%

Drupal 74.88% 18.64% 6.48%

Joomla 68.82% 22.61% 8.57%

Squarespace 84.55% 9.13% 6.31%

Wix 63.06% 16.99% 19.95%

339. https://developers.google.com/web/progressive-web-apps#reliable
340. https://developers.google.com/web/progressive-web-apps#fast
341. https://developers.google.com/web/progressive-web-apps#engaging
342. https://developers.google.com/web/progressive-web-apps/checklist#baseline

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 279

https://developers.google.com/web/progressive-web-apps#reliable
https://developers.google.com/web/progressive-web-apps#fast
https://developers.google.com/web/progressive-web-apps#engaging
https://developers.google.com/web/progressive-web-apps/checklist#baseline
https://developers.google.com/web/progressive-web-apps/checklist#baseline

score.

Figure 14.20. Distribution of Lighthouse PWA category scores for CMS pages.

Figure 14.21. Median Lighthouse PWA category scores per CMS.

Part III Chapter 14 : CMS

280 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cms/fig20.png
https://almanac.httparchive.org/static/images/2019/cms/fig20.png
https://almanac.httparchive.org/static/images/2019/cms/fig21.png
https://almanac.httparchive.org/static/images/2019/cms/fig21.png

Accessibility

An accessible website is a site designed and developed so that people with disabilities can use

them. Lighthouse provides a set of accessibility audits and it returns a weighted average of all of

them (see Scoring Details343 for a full list of how each audit is weighted).

Each accessibility audit is pass or fail, but unlike other Lighthouse audits, a page doesn’t get

points for partially passing an accessibility audit. For example, if some elements have

screenreader-friendly names, but others don’t, that page gets a 0 for the screenreader-friendly-

names audit.

Figure 14.22. Distribution of Lighthouse accessibility category scores for CMS pages.

343. https://docs.google.com/spreadsheets/d/1Cxzhy5ecqJCucdf1M0iOzM8mIxNc7mmx107o5nj38Eo/edit#gid=1567011065

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 281

https://docs.google.com/spreadsheets/d/1Cxzhy5ecqJCucdf1M0iOzM8mIxNc7mmx107o5nj38Eo/edit#gid=1567011065
https://almanac.httparchive.org/static/images/2019/cms/fig22.png
https://almanac.httparchive.org/static/images/2019/cms/fig22.png

As it stands now, only 1.27% of mobile CMS home pages get a perfect score of 100%. Of the top

CMSs, Wix takes the lead by having the highest median accessibility score on its mobile pages.

Overall, these figures are dismal when you consider how many websites (how much of the web

that is powered by CMSs) are inaccessible to a significant segment of our population. As much

as digital experiences impact so many aspects of our lives, this should be a mandate to

encourage us to build accessible web experiences from the start, and to continue the work of

making the web an inclusive space.

CMS innovation

While we’ve taken a snapshot of the current landscape of the CMS ecosystem, the space is

evolving. In efforts to address performance and user experience shortcomings, we’re seeing

experimental frameworks being integrated with the CMS infrastructure in both coupled and

decoupled/ headless instances. Libraries and frameworks such as React.js, its derivatives like

Gatsby.js and Next.js, and Vue.js derivative Nuxt.js are making slight marks of adoption.

Figure 14.23. Median Lighthouse accessibility category scores per CMS.

Part III Chapter 14 : CMS

282 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cms/fig23.png
https://almanac.httparchive.org/static/images/2019/cms/fig23.png

We also see hosting providers and agencies offering Digital Experience Platforms (DXP) as

holistic solutions using CMSs and other integrated technologies as a toolbox for enterprise

customer-focused strategies. These innovations show an effort to create turn-key, CMS-based

solutions that make it possible, simple, and easy by default for the users (and their end users) to

get the best UX when creating and consuming the content of these platforms. The aim: good

performance by default, feature richness, and excellent hosting environments.

Conclusions

The CMS space is of paramount importance. The large portion of the web these applications

power and the critical mass of users both creating and encountering its pages on a variety of

Figure 14.24. Adoption (number of mobile websites) of React and companion frameworks per CMS.

CMS React
Nuxt.js,
React

Nuxt.js
Next.js,
React

Gatsby,
React

WordPress 131,507 21 18

Wix 50,247

Joomla 3,457

Drupal 2,940 8 15 1

DataLife Engine 1,137

Adobe Experience Manager 723 7

Contentful 492 7 114 909 394

Squarespace 385

1C-Bitrix 340

TYPO3 CMS 265 1

Weebly 263 1

Jimdo 248 2

PrestaShop 223 1

SDL Tridion 152

Craft CMS 123

Part III Chapter 14 : CMS

2019 Web Almanac by HTTP Archive 283

devices and connections should not be trivialized. We hope this chapter and the others found

here in the Web Almanac inspire more research and innovation to help make the space better.

Deep investigations would provide us better context about the strengths, weaknesses, and

opportunities these platforms provide the web as a whole. Content management systems can

make an impact on preserving the integrity of the open web. Let’s keep moving them forward!

Authors

Renee Johnson

@reneesoffice ernee https://reneesvirtualoffice.com

Renee Johnson is a web and product consultant, a WordPress enthusiast, and

frequent WordCamp organizer and volunteer. She’s currently working with the

Content Management System Developer Relations team at Google as a Product

Support Specialist.

Alberto Medina

@iAlbMedina amedina

Alberto Medina is a Developer Advocate in the Web Content Ecosystems Team at

Google, focusing on advancing the proliferation of quality content on the web via

progressive technologies such as Amp, and the use of modern Web APIs. Alberto’s

work currently has a strong focus on Content Management Systems as he leads an

area of Content Ecosystem called CMS Developer Relations.

Part III Chapter 14 : CMS

284 2019 Web Almanac by HTTP Archive

https://twitter.com/reneesoffice
https://github.com/ernee
https://reneesvirtualoffice.com/
https://twitter.com/iAlbMedina
https://github.com/amedina

Part IV Chapter 15

Compression

Written by Paul Calvano
Reviewed by David Fox and Yoav Weiss
Analyzed by Paul Calvano
Edited by Barry Pollard

Introduction

HTTP compression is a technique that allows you to encode information using fewer bits than

the original representation. When used for delivering web content, it enables web servers to

reduce the amount of data transmitted to clients. This increases the efficiency of the client’s

available bandwidth, reduces page weight, and improves web performance.

Compression algorithms are often categorized as lossy or lossless:

• When a lossy compression algorithm is used, the process is irreversible, and the

original file cannot be restored via decompression. This is commonly used to

compress media resources, such as image and video content where losing some

data will not materially affect the resource.

• Lossless compression is a completely reversible process, and is commonly used to

compress text based resources, such as HTML, JavaScript, CSS, etc.

Part IV Chapter 15 : Compression

2019 Web Almanac by HTTP Archive 285

In this chapter, we are going to explore how text-based content is compressed on the web.

Analysis of non-text-based content forms part of the Media chapter.

How HTTP compression works

When a client makes an HTTP request, it often includes an Accept-Encoding header to

advertise the compression algorithms it is capable of decoding. The server can then select from

one of the advertised encodings it supports and serve a compressed response. The compressed

response would include a Content-Encoding header so that the client is aware of which

compression was used. Additionally, a Content-Type header is often used to indicate the

MIME type344 of the resource being served.

In the example below, the client advertised support for Gzip, Brotli, and Deflate compression.

The server decided to return a Gzip compressed response containing a text/html document.

 > GET / HTTP/1.1

 > Host: httparchive.org

 > Accept-Encoding: gzip, deflate, br

 < HTTP/1.1 200

 < Content-type: text/html; charset=utf-8

 < Content-encoding: gzip

The HTTP Archive contains measurements for 5.3 million web sites, and each site loaded at

least 1 compressed text resource on their home page. Additionally, resources were compressed

on the primary domain on 81% of web sites.

Compression algorithms

IANA maintains a list of valid HTTP content encodings345 that can be used with the Accept-
Encoding and Content-Encoding headers. These include gzip , deflate , br (Brotli), as

well as a few others. Brief descriptions of these algorithms are given below:

344. https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/MIME_types
345. https://www.iana.org/assignments/http-parameters/http-parameters.xml#content-coding

Part IV Chapter 15 : Compression

286 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
https://developer.mozilla.org/docs/Web/HTTP/Headers/Accept-Encoding
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Encoding
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Encoding
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/docs/Web/HTTP/Headers/Content-Type
https://developer.mozilla.org/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://www.iana.org/assignments/http-parameters/http-parameters.xml#content-coding

• Gzip346 uses the LZ77347 and Huffman coding348 compression techniques, and is older

than the web itself. It was originally developed for the UNIX gzip program in

1992. An implementation for web delivery has existed since HTTP/1.1, and most

web browsers and clients support it.

• Deflate349 uses the same algorithm as Gzip, just with a different container. Its use

was not widely adopted for the web because of compatibility issues350 with some

servers and browsers.

• Brotli351 is a newer compression algorithm that was invented by Google352. It uses the

combination of a modern variant of the LZ77 algorithm, Huffman coding, and

second order context modeling. Compression via Brotli is more computationally

expensive compared to Gzip, but the algorithm is able to reduce files by 15-25%353

more than Gzip compression. Brotli was first used for compressing web content in

2015 and is supported by all modern web browsers354.

Approximately 38% of HTTP responses are delivered with text-based compression. This may

seem like a surprising statistic, but keep in mind that it is based on all HTTP requests in the

dataset. Some content, such as images, will not benefit from these compression algorithms. The

table below summarizes the percentage of requests served with each content encoding.

346. https://tools.ietf.org/html/rfc1952
347. https://en.wikipedia.org/wiki/LZ77_and_LZ78#LZ77
348. https://en.wikipedia.org/wiki/Huffman_coding
349. https://tools.ietf.org/html/rfc1951
350. https://en.wikipedia.org/wiki/HTTP_compression#Problems_preventing_the_use_of_HTTP_compression
351. https://tools.ietf.org/html/rfc7932
352. https://github.com/google/brotli
353. https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
354. https://caniuse.com/#feat=brotli

Part IV Chapter 15 : Compression

2019 Web Almanac by HTTP Archive 287

https://tools.ietf.org/html/rfc1952
https://en.wikipedia.org/wiki/LZ77_and_LZ78#LZ77
https://en.wikipedia.org/wiki/Huffman_coding
https://tools.ietf.org/html/rfc1951
https://en.wikipedia.org/wiki/HTTP_compression#Problems_preventing_the_use_of_HTTP_compression
https://tools.ietf.org/html/rfc7932
https://github.com/google/brotli
https://cran.r-project.org/web/packages/brotli/vignettes/brotli-2015-09-22.pdf
https://caniuse.com/#feat=brotli

Of the resources that are served compressed, the majority are using either Gzip (80%) or Brotli

(20%). The other compression algorithms are infrequently used.

Figure 15.1. Adoption of compression algorithms.

Percent of Requests Requests

Content Encoding Desktop Mobile Desktop Mobile

No Text Compression 62.87% 61.47% 260,245,106 285,158,644

gzip 29.66% 30.95% 122,789,094 143,549,122

br 7.43% 7.55% 30,750,681 35,012,368

deflate 0.02% 0.02% 68,802 70,679

Other / Invalid 0.02% 0.01% 67,527 68,352

identity 0.000709% 0.000563% 2,935 2,611

x-gzip 0.000193% 0.000179% 800 829

compress 0.000008% 0.000007% 33 32

x-compress 0.000002% 0.000006% 8 29

Part IV Chapter 15 : Compression

288 2019 Web Almanac by HTTP Archive

Additionally, there are 67k requests that return an invalid Content-Encoding , such as

“none”, “UTF-8”, “base64”, “text”, etc. These resources are likely served uncompressed.

We can’t determine the compression levels from any of the diagnostics collected by the HTTP

Archive, but the best practice for compressing content is:

• At a minimum, enable Gzip compression level 6 for text based assets. This provides

a fair trade-off between computational cost and compression ratio and is the

default for many web servers355—though Nginx still defaults to the, often too low,

level 1356.

• If you can support Brotli and precompress resources, then compress to Brotli level

11. This is more computationally expensive than Gzip - so precompression is an

absolute must to avoid delays.

• If you can support Brotli and are unable to precompress, then compress to Brotli

level 5. This level will result in smaller payloads compared to Gzip, with a similar

computational overhead.

Figure 15.2. Adoption of compression algorithms on desktop pages.

355. https://paulcalvano.com/index.php/2018/07/25/brotli-compression-how-much-will-it-reduce-your-content/
356. http://nginx.org/en/docs/http/ngx_http_gzip_module.html#gzip_comp_level

Part IV Chapter 15 : Compression

2019 Web Almanac by HTTP Archive 289

https://almanac.httparchive.org/static/images/2019/compression/fig2.png
https://almanac.httparchive.org/static/images/2019/compression/fig2.png
https://paulcalvano.com/index.php/2018/07/25/brotli-compression-how-much-will-it-reduce-your-content/
http://nginx.org/en/docs/http/ngx_http_gzip_module.html#gzip_comp_level
http://nginx.org/en/docs/http/ngx_http_gzip_module.html#gzip_comp_level

What types of content are we compressing?

Most text based resources (such as HTML, CSS, and JavaScript) can benefit from Gzip or Brotli

compression. However, it’s often not necessary to use these compression techniques on binary

resources, such as images, video, and some web fonts because their file formats are already

compressed.

In the graph below, the top 25 content types are displayed with box sizes representing the

relative number of requests. The color of each box represents how many of these resources

were served compressed. Most of the media content is shaded orange, which is expected since

Gzip and Brotli would have little to no benefit for them. Most of the text content is shaded blue

to indicate that they are being compressed. However, the light blue shading for some content

types indicate that they are not compressed as consistently as the others.

Filtering out the eight most popular content types allows us to see the compression stats for

the rest of these content types more clearly.

Figure 15.3. Top 25 compressed content types.

Part IV Chapter 15 : Compression

290 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/compression/fig3.png
https://almanac.httparchive.org/static/images/2019/compression/fig3.png

The application/json and image/svg+xml content types are compressed less than 65%

of the time.

Most of the custom web fonts are served without compression, since they are already in a

compressed format. However, font/ttf is compressible, but only 84% of TTF font requests

are being served with compression so there is still room for improvement here.

The graphs below illustrate the breakdown of compression techniques used for each content

type. Looking at the top three content types, we can see that across both desktop and mobile

there are major gaps in compressing some of the most frequently requested content types. 56%

of text/html as well as 18% of application/javascript and text/css resources are

not being compressed. This presents a significant performance opportunity.

Figure 15.4. Compressed content types, excluding top 8.

Part IV Chapter 15 : Compression

2019 Web Almanac by HTTP Archive 291

https://almanac.httparchive.org/static/images/2019/compression/fig4.png
https://almanac.httparchive.org/static/images/2019/compression/fig4.png

The content types with the lowest compression rates include application/json , text/
xml , and text/plain . These resources are commonly used for XHR requests to provide data

that web applications can use to create rich experiences. Compressing them will likely improve

user experience. Vector graphics such as image/svg+xml , and image/x-icon are not often

thought of as text based, but they are and sites that use them would benefit from compression.

Figure 15.5. Compression by content type for desktop.

Figure 15.6. Compression by content type for mobile.

Part IV Chapter 15 : Compression

292 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/compression/fig5.png
https://almanac.httparchive.org/static/images/2019/compression/fig5.png
https://almanac.httparchive.org/static/images/2019/compression/fig6.png
https://almanac.httparchive.org/static/images/2019/compression/fig6.png

Across all content types, Gzip is the most popular compression algorithm. The newer Brotli

compression is used less frequently, and the content types where it appears most are

application/javascript , text/css and application/x-javascript . This is likely

due to CDNs that automatically apply Brotli compression for traffic that passes through them.

Figure 15.7. Compression by content type as a percent for desktop.

Figure 15.8. Compression by content type as a percent for mobile.

Part IV Chapter 15 : Compression

2019 Web Almanac by HTTP Archive 293

https://almanac.httparchive.org/static/images/2019/compression/fig7.png
https://almanac.httparchive.org/static/images/2019/compression/fig7.png
https://almanac.httparchive.org/static/images/2019/compression/fig8.png
https://almanac.httparchive.org/static/images/2019/compression/fig8.png

First-party vs third-party compression

In the Third Parties chapter, we learned about third parties and their impact on performance.

When we compare compression techniques between first and third parties, we can see that

third-party content tends to be compressed more than first-party content.

Additionally, the percentage of Brotli compression is higher for third-party content. This is

likely due to the number of resources served from the larger third parties that typically support

Brotli, such as Google and Facebook.

Identifying compression opportunities

Google’s Lighthouse357 tool enables users to run a series of audits against web pages. The text

compression audit358 evaluates whether a site can benefit from additional text-based

compression. It does this by attempting to compress resources and evaluate whether an

object’s size can be reduced by at least 10% and 1,400 bytes. Depending on the score, you may

see a compression recommendation in the results, with a list of specific resources that could be

compressed.

Figure 15.9. First-party versus third-party compression by device type.

Desktop Mobile

Content Encoding First-Party Third-Party First-Party Third-Party

No Text Compression 66.23% 59.28% 64.54% 58.26%

gzip 29.33% 30.20% 30.87% 31.22%

br 4.41% 10.49% 4.56% 10.49%

deflate 0.02% 0.01% 0.02% 0.01%

Other / Invalid 0.01% 0.02% 0.01% 0.02%

357. https://developers.google.com/web/tools/lighthouse
358. https://developers.google.com/web/tools/lighthouse/audits/text-compression

Part IV Chapter 15 : Compression

294 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse/audits/text-compression
https://developers.google.com/web/tools/lighthouse/audits/text-compression

Because the HTTP Archive runs Lighthouse audits for each mobile page, we can aggregate the

scores across all sites to learn how much opportunity there is to compress more content.

Overall, 62% of websites are passing this audit and almost 23% of websites have scored below a

40. This means that over 1.2 million websites could benefit from enabling additional text based

compression.

Lighthouse also indicates how many bytes could be saved by enabling text-based compression.

Of the sites that could benefit from text compression, 82% of them can reduce their page

weight by up to 1 MB!

Figure 15.10. Lighthouse compression suggestions.

Figure 15.11. Lighthouse “enable text compression” audit scores.

Part IV Chapter 15 : Compression

2019 Web Almanac by HTTP Archive 295

https://almanac.httparchive.org/static/images/2019/compression/ch15_fig8_lighthouse.jpg
https://almanac.httparchive.org/static/images/2019/compression/ch15_fig8_lighthouse.jpg
https://almanac.httparchive.org/static/images/2019/compression/fig11.png
https://almanac.httparchive.org/static/images/2019/compression/fig11.png

Conclusion

HTTP compression is a widely used and highly valuable feature for reducing the size of web

content. Both Gzip and Brotli compression are the dominant algorithms used, and the amount

of compressed content varies by content type. Tools like Lighthouse can help uncover

opportunities to compress content.

While many sites are making good use of HTTP compression, there is still room for

improvement, particularly for the text/html format that the web is built upon! Similarly,

lesser-understood text formats like font/ttf , application/json , text/xml , text/
plain , image/svg+xml , and image/x-icon may take extra configuration that many

websites miss.

At a minimum, websites should use Gzip compression for all text-based resources, since it is

widely supported, easily implemented, and has a low processing overhead. Additional savings

can be found with Brotli compression, although compression levels should be chosen carefully

based on whether a resource can be precompressed.

Figure 15.12. Lighthouse “enable text compression” audit potential byte savings.

Part IV Chapter 15 : Compression

296 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/compression/fig12.png
https://almanac.httparchive.org/static/images/2019/compression/fig12.png

Author

Paul Calvano

@paulcalvano paulcalvano https://paulcalvano.com

Paul Calvano is a Web Performance Architect at Akamai359, where he helps

businesses improve the performance of their websites. He’s also a co-maintainer

of the HTTP Archive project. You can find him tweeting at @paulcalvano, blogging

at http://paulcalvano.com and sharing HTTP Archive research at

https://discuss.httparchive.org.

359. https://www.akamai.com/

Part IV Chapter 15 : Compression

2019 Web Almanac by HTTP Archive 297

https://twitter.com/paulcalvano
https://github.com/paulcalvano
https://paulcalvano.com/
https://www.akamai.com/
https://twitter.com/paulcalvano
https://paulcalvano.com/
https://discuss.httparchive.org/

298 2019 Web Almanac by HTTP Archive

Part IV Chapter 16

Caching

Written by Paul Calvano
Reviewed by David Fox and Brian Kardell
Analyzed by Paul Calvano and David Fox
Edited by Barry Pollard

Introduction

Caching is a technique that enables the reuse of previously downloaded content. It provides a

significant performance benefit by avoiding costly network requests and it also helps scale an

application by reducing the traffic to a website’s origin infrastructure. There’s an old saying,

“the fastest request is the one that you don’t have to make,” and caching is one of the key ways

to avoid having to make requests.

There are three guiding principles to caching web content: cache as much as you can, for as long

as you can, as close as you can to end users.

Cache as much as you can. When considering how much can be cached, it is important to

understand whether a response is static or dynamic. Requests that are served as a static

response are typically cacheable, as they have a one-to-many relationship between the

resource and the users requesting it. Dynamically generated content can be more nuanced and

require careful consideration.

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 299

Cache for as long as you can. The length of time you would cache a resource is highly

dependent on the sensitivity of the content being cached. A versioned JavaScript resource

could be cached for a very long time, while a non-versioned resource may need a shorter cache

duration to ensure users get a fresh version.

Cache as close to end users as you can. Caching content close to the end user reduces

download times by removing latency. For example, if a resource is cached on an end user’s

browser, then the request never goes out to the network and the download time is as fast as the

machine’s I/O. For first time visitors, or visitors that don’t have entries in their cache, a CDN

would typically be the next place a cached resource is returned from. In most cases, it will be

faster to fetch a resource from a local cache or a CDN compared to an origin server.

Web architectures typically involve multiple tiers of caching360. For example, an HTTP request

may have the opportunity to be cached in:

• An end user’s browser

• A service worker cache in the user’s browser

• A shared gateway

• CDNs, which offer the ability to cache at the edge, close to end users

• A caching proxy in front of the application, to reduce the backend workload

• The application and database layers

This chapter will explore how resources are cached within web browsers.

Overview of HTTP caching

For an HTTP client to cache a resource, it needs to understand two pieces of information:

• “How long am I allowed to cache this for?”

• “How do I validate that the content is still fresh?”

When a web browser sends a response to a client, it typically includes headers that indicate

whether the resource is cacheable, how long to cache it for, and how old the resource is. RFC

7234 covers this in more detail in section 4.2 (Freshness)361 and 4.3 (Validation)362.

360. https://blog.yoav.ws/tale-of-four-caches/
361. https://tools.ietf.org/html/rfc7234#section-4.2
362. https://tools.ietf.org/html/rfc7234#section-4.3

Part IV Chapter 16 : Caching

300 2019 Web Almanac by HTTP Archive

https://blog.yoav.ws/tale-of-four-caches/
https://tools.ietf.org/html/rfc7234#section-4.2
https://tools.ietf.org/html/rfc7234#section-4.3

The HTTP response headers typically used for conveying freshness lifetime are:

• Cache-Control allows you to configure a cache lifetime duration (i.e. how long

this is valid for).

• Expires provides an expiration date or time (i.e. when exactly this expires).

Cache-Control takes priority if both are present. These are discussed in more detail below.

The HTTP response headers for validating the responses stored within the cache, i.e. giving

conditional requests something to compare to on the server side, are:

• Last-Modified indicates when the object was last changed.

• Entity Tag (ETag) provides a unique identifier for the content.

ETag takes priority if both are present. These are discussed in more detail below.

The example below contains an excerpt of a request/response header from HTTP Archive’s

main.js file. These headers indicate that the resource can be cached for 43,200 seconds (12

hours), and it was last modified more than two months ago (difference between the Last-
Modified and Date headers).

> GET /static/js/main.js HTTP/1.1

> Host: httparchive.org

> User-agent: curl/7.54.0

> Accept: */*

< HTTP/1.1 200

< Date: Sun, 13 Oct 2019 19:36:57 GMT

< Content-Type: application/javascript; charset=utf-8

< Content-Length: 3052

< Vary: Accept-Encoding

< Server: gunicorn/19.7.1

< Last-Modified: Sun, 25 Aug 2019 16:00:30 GMT

< Cache-Control: public, max-age=43200

< Expires: Mon, 14 Oct 2019 07:36:57 GMT

< ETag: "1566748830.0-3052-3932359948"

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 301

The tool RedBot.org363 allows you to input a URL and see a detailed explanation of how the

response would be cached based on these headers. For example, a test for the URL above364

would output the following:

If no caching headers are present in a response, then the client is permitted to heuristically

cache the response365. Most clients implement a variation of the RFC’s suggested heuristic,

which is 10% of the time since Last-Modified . However, some may cache the response

indefinitely. So, it is important to set specific caching rules to ensure that you are in control of

the cacheability.

72% of responses are served with a Cache-Control header, and 56% of responses are served

with an Expires header. However, 27% of responses did not use either header, and therefore

are subject to heuristic caching. This is consistent across both desktop and mobile sites.

Figure 16.1. Cache-Control information from RedBot.

363. https://redbot.org/
364. https://redbot.org/?uri=https%3A%2F%2Fhttparchive.org%2Fstatic%2Fjs%2Fmain.js
365. https://paulcalvano.com/index.php/2018/03/14/http-heuristic-caching-missing-cache-control-and-expires-headers-explained/

Part IV Chapter 16 : Caching

302 2019 Web Almanac by HTTP Archive

https://redbot.org/
https://redbot.org/?uri=https%3A%2F%2Fhttparchive.org%2Fstatic%2Fjs%2Fmain.js
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig1_redbot_example.jpg
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig1_redbot_example.jpg
https://paulcalvano.com/index.php/2018/03/14/http-heuristic-caching-missing-cache-control-and-expires-headers-explained/
https://paulcalvano.com/index.php/2018/03/14/http-heuristic-caching-missing-cache-control-and-expires-headers-explained/

What type of content are we caching?

A cacheable resource is stored by the client for a period of time and available for reuse on a

subsequent request. Across all HTTP requests, 80% of responses are considered cacheable,

meaning that a cache is permitted to store them. Out of these,

• 6% of requests have a time to live (TTL) of 0 seconds, which immediately invalidates

a cached entry.

• 27% are cached heuristically because of a missing Cache-Control header.

• 47% are cached for more than 0 seconds.

The remaining responses are not permitted to be stored in browser caches.

Figure 16.2. Presence of HTTP Cache-Control and Expires headers.

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 303

https://almanac.httparchive.org/static/images/2019/caching/fig2.png
https://almanac.httparchive.org/static/images/2019/caching/fig2.png

The table below details the cache TTL values for desktop requests by type. Most content types

are being cached however CSS resources appear to be consistently cached at high TTLs.

Figure 16.3. Distribution of cacheable responses.

Part IV Chapter 16 : Caching

304 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/fig3.png
https://almanac.httparchive.org/static/images/2019/caching/fig3.png

While most of the median TTLs are high, the lower percentiles highlight some of the missed

caching opportunities. For example, the median TTL for images is 28 hours, however the 25th

percentile is just one-two hours and the 10th percentile indicates that 10% of cacheable image

content is cached for less than one hour.

By exploring the cacheability by content type in more detail in Figure 16.5 below, we can see

that approximately half of all HTML responses are considered non-cacheable. Additionally, 16%

of images and scripts are non-cacheable.

Figure 16.4. Desktop cache TTL percentiles by resource type.

Desktop Cache TTL Percentiles (Hours)

10 25 50 75 90

Audio 12 24 720 8,760 8,760

CSS 720 8,760 8,760 8,760 8,760

Font < 1 3 336 8,760 87,600

HTML < 1 168 720 8,760 8,766

Image < 1 1 28 48 8,760

Other < 1 2 336 8,760 8,760

Script < 1 < 1 1 6 720

Text 21 336 7,902 8,357 8,740

Video < 1 4 24 24 336

XML < 1 < 1 < 1 < 1 < 1

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 305

The same data for mobile is shown below. As can be seen, the cacheability of content types is

consistent between desktop and mobile.

Figure 16.5. Distribution of cacheability by content type for desktop.

Figure 16.6. Distribution of cacheability by content type for mobile.

Part IV Chapter 16 : Caching

306 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/fig5.png
https://almanac.httparchive.org/static/images/2019/caching/fig5.png
https://almanac.httparchive.org/static/images/2019/caching/fig6.png
https://almanac.httparchive.org/static/images/2019/caching/fig6.png

Cache-Control vs Expires

In HTTP/1.0, the Expires header was used to indicate the date/time after which the response

is considered stale. Its value is a date timestamp, such as:

Expires: Thu, 01 Dec 1994 16:00:00 GMT

HTTP/1.1 introduced the Cache-Control header, and most modern clients support both

headers. This header provides much more extensibility via caching directives. For example:

• no-store can be used to indicate that a resource should not be cached.

• max-age can be used to indicate a freshness lifetime.

• must-revalidate tells the client a cached entry must be validated with a

conditional request prior to its use.

• private indicates a response should only be cached by a browser, and not by an

intermediary that would serve multiple clients.

53% of HTTP responses include a Cache-Control header with the max-age directive, and

54% include the Expires header. However, only 41% of these responses use both headers,

which means that 13% of responses are caching solely based on the older Expires header.

Figure 16.7. Usage of Cache-Control versus Expires headers.

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 307

https://almanac.httparchive.org/static/images/2019/caching/fig7.png
https://almanac.httparchive.org/static/images/2019/caching/fig7.png

Cache-Control directives

The HTTP/1.1 specification366 includes multiple directives that can be used in the Cache-
Control response header and are detailed below. Note that multiple can be used in a single

response.

For example, cache-control: public, max-age=43200 indicates that a cached entry

should be stored for 43,200 seconds and it can be stored by all caches.

Figure 16.8. Cache-Control directives.

Directive Description

max-age Indicates the number of seconds that a resource can be cached for.

public Any cache may store the response.

no-cache A cached entry must be revalidated prior to its use.

must-revalidate A stale cached entry must be revalidated prior to its use.

no-store Indicates that a response is not cacheable.

private The response is intended for a specific user and should not be stored by shared caches.

no-transform No transformations or conversions should be made to this resource.

proxy-revalidate Same as must-revalidate but applies to shared caches.

s-maxage Same as max age but applies to shared caches only.

immutable Indicates that the cached entry will never change, and that revalidation is not necessary.

stale-while-

revalidate

Indicates that the client is willing to accept a stale response while asynchronously checking in the

background for a fresh one.

stale-if-error Indicates that the client is willing to accept a stale response if the check for a fresh one fails.

366. https://tools.ietf.org/html/rfc7234#section-5.2.1

Part IV Chapter 16 : Caching

308 2019 Web Almanac by HTTP Archive

https://tools.ietf.org/html/rfc7234#section-5.2.1

Figure 16.9 above illustrates the top 15 Cache-Control directives in use on mobile websites.

The results for desktop and mobile are very similar. There are a few interesting observations

about the popularity of these cache directives:

• max-age is used by almost 75% of Cache-Control headers, and no-store is

used by 18%.

• public is rarely necessary since cached entries are assumed public unless

private is specified. Approximately 38% of responses include public .

Figure 16.9. Usage of Cache-Control directives on mobile.

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 309

https://almanac.httparchive.org/static/images/2019/caching/fig9.png
https://almanac.httparchive.org/static/images/2019/caching/fig9.png

• The immutable directive is relatively new, introduced in 2017367 and is supported

on Firefox and Safari368. Its usage has grown to 3.4%, and it is widely used in

Facebook and Google third-party responses369.

Another interesting set of directives to show up in this list are pre-check and post-check ,

which are used in 2.2% of Cache-Control response headers (approximately 7.8 million

responses). This pair of headers was introduced in Internet Explorer 5 to provide a background

validation370 and was rarely implemented correctly by websites. 99.2% of responses using these

headers had used the combination of pre-check=0 and post-check=0 . When both of

these directives are set to 0, then both directives are ignored. So, it seems these directives were

never used correctly!

In the long tail, there are more than 1,500 erroneous directives in use across 0.28% of

responses. These are ignored by clients, and include misspellings such as “nocache”, “s-max-age”,

“smax-age”, and “maxage”. There are also numerous non-existent directives such as “max-stale”,

“proxy-public”, “surrogate-control”, etc.

Cache-Control : no-store , no-cache and max-
age=0

When a response is not cacheable, the Cache-Control no-store directive should be used.

If this directive is not used, then the response is cacheable.

There are a few common errors that are made when attempting to configure a response to be

non-cacheable:

• Setting Cache-Control: no-cache may sound like the resource will not be

cacheable. However, the no-cache directive requires the cached entry to be

revalidated prior to use and is not the same as being non-cacheable.

• Setting Cache-Control: max-age=0 sets the TTL to 0 seconds, but that is not

the same as being non-cacheable. When max-age is set to 0, the resource is stored

in the browser cache and immediately invalidated. This results in the browser

having to perform a conditional request to validate the resource’s freshness.

Functionally, no-cache and max-age=0 are similar, since they both require revalidation of a

367. https://code.facebook.com/posts/557147474482256/this-browser-tweak-saved-60-of-requests-to-facebook
368. https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control#Browser_compatibility
369. https://discuss.httparchive.org/t/cache-control-immutable-a-year-later/1195
370. https://blogs.msdn.microsoft.com/ieinternals/2009/07/20/internet-explorers-cache-control-extensions/

Part IV Chapter 16 : Caching

310 2019 Web Almanac by HTTP Archive

https://code.facebook.com/posts/557147474482256/this-browser-tweak-saved-60-of-requests-to-facebook
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control#Browser_compatibility
https://developer.mozilla.org/docs/Web/HTTP/Headers/Cache-Control#Browser_compatibility
https://discuss.httparchive.org/t/cache-control-immutable-a-year-later/1195
https://blogs.msdn.microsoft.com/ieinternals/2009/07/20/internet-explorers-cache-control-extensions/
https://blogs.msdn.microsoft.com/ieinternals/2009/07/20/internet-explorers-cache-control-extensions/

cached resource. The no-cache directive can also be used alongside a max-age directive

that is greater than 0.

Over 3 million responses include the combination of no-store , no-cache , and max-
age=0 . Of these directives no-store takes precedence and the other directives are merely

redundant

18% of responses include no-store and 16.6% of responses include both no-store and

no-cache . Since no-store takes precedence, the resource is ultimately non-cacheable.

The max-age=0 directive is present on 1.1% of responses (more than four million responses)

where no-store is not present. These resources will be cached in the browser but will

require revalidation as they are immediately expired.

How do cache TTLs compare to resource age?

So far we’ve talked about how web servers tell a client what is cacheable, and how long it has

been cached for. When designing cache rules, it is also important to understand how old the

content you are serving is.

When you are selecting a cache TTL, ask yourself: “how often are you updating these assets?”

and “what is their content sensitivity?”. For example, if a hero image is going to be modified

infrequently, then cache it with a very long TTL. If you expect a JavaScript resource to change

frequently, then version it and cache it with a long TTL or cache it with a shorter TTL.

The graph below illustrates the relative age of resources by content type, and you can read a

more detailed analysis here371. HTML tends to be the content type with the shortest age, and a

very large % of traditionally cacheable resources (scripts, CSS, and fonts) are older than one

year!

371. https://discuss.httparchive.org/t/analyzing-resource-age-by-content-type/1659

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 311

https://discuss.httparchive.org/t/analyzing-resource-age-by-content-type/1659

By comparing a resources cacheability to its age, we can determine if the TTL is appropriate or

too low. For example, the resource served by the response below was last modified on 25 Aug

2019, which means that it was 49 days old at the time of delivery. The Cache-Control
header says that we can cache it for 43,200 seconds, which is 12 hours. It is definitely old

enough to merit investigating whether a longer TTL would be appropriate.

< HTTP/1.1 200

< Date: Sun, 13 Oct 2019 19:36:57 GMT

< Content-Type: application/javascript; charset=utf-8

< Content-Length: 3052

< Vary: Accept-Encoding

< Server: gunicorn/19.7.1

< Last-Modified: Sun, 25 Aug 2019 16:00:30 GMT

< Cache-Control: public, max-age=43200

< Expires: Mon, 14 Oct 2019 07:36:57 GMT

< ETag: "1566748830.0-3052-3932359948"

Overall, 59% of resources served on the web have a cache TTL that is too short compared to its

content age. Furthermore, the median delta between the TTL and age is 25 days.

When we break this out by first vs third-party, we can also see that 70% of first-party resources

can benefit from a longer TTL. This clearly highlights a need to spend extra attention focusing

on what is cacheable, and then ensuring caching is configured correctly.

Figure 16.10. Resource age distribution by content type.

Part IV Chapter 16 : Caching

312 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/ch16_fig8_resource_age.jpg
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig8_resource_age.jpg

Validating freshness

The HTTP response headers used for validating the responses stored within a cache are Last-
Modified and ETag . The Last-Modified header does exactly what its name implies and

provides the time that the object was last modified. The ETag header provides a unique

identifier for the content.

For example, the response below was last modified on 25 Aug 2019 and it has an ETag value of

"1566748830.0-3052-3932359948"

< HTTP/1.1 200

< Date: Sun, 13 Oct 2019 19:36:57 GMT

< Content-Type: application/javascript; charset=utf-8

< Content-Length: 3052

< Vary: Accept-Encoding

< Server: gunicorn/19.7.1

< Last-Modified: Sun, 25 Aug 2019 16:00:30 GMT

< Cache-Control: public, max-age=43200

< Expires: Mon, 14 Oct 2019 07:36:57 GMT

< ETag: "1566748830.0-3052-3932359948"

A client could send a conditional request to validate a cached entry by using the Last-
Modified value in a request header named If-Modified-Since . Similarly, it could also

validate the resource with an If-None-Match request header, which validates against the

ETag value the client has for the resource in its cache.

In the example below, the cache entry is still valid, and an HTTP 304 was returned with no

content. This saves the download of the resource itself. If the cache entry was no longer fresh,

then the server would have responded with a 200 and the updated resource which would have

to be downloaded again.

Figure 16.11. Percent of requests with short TTLs.

Client 1st Party 3rd Party Overall

Desktop 70.7% 47.9% 59.2%

Mobile 71.4% 46.8% 59.6%

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 313

> GET /static/js/main.js HTTP/1.1

> Host: www.httparchive.org

> User-Agent: curl/7.54.0

> Accept: */*

> If-Modified-Since: Sun, 25 Aug 2019 16:00:30 GMT

< HTTP/1.1 304

< Date: Thu, 17 Oct 2019 02:31:08 GMT

< Server: gunicorn/19.7.1

< Cache-Control: public, max-age=43200

< Expires: Thu, 17 Oct 2019 14:31:08 GMT

< ETag: "1566748830.0-3052-3932359948"

< Accept-Ranges: bytes

Overall, 65% of responses are served with a Last-Modified header, 42% are served with an

ETag , and 38% use both. However, 30% of responses include neither a Last-Modified or

ETag header.

Figure 16.12. Adoption of validating freshness via Last-Modified and ETag headers for

desktop websites.

Part IV Chapter 16 : Caching

314 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/fig12.png
https://almanac.httparchive.org/static/images/2019/caching/fig12.png

Validity of date strings

There are a few HTTP headers used to convey timestamps, and the format for these are very

important. The Date response header indicates when the resource was served to a client. The

Last-Modified response header indicates when a resource was last changed on the server.

And the Expires header is used to indicate how long a resource is cacheable until (unless a

Cache-Control header is present).

All three of these HTTP headers use a date formatted string to represent timestamps.

For example:

> GET /static/js/main.js HTTP/1.1

> Host: httparchive.org

> User-Agent: curl/7.54.0

> Accept: */*

< HTTP/1.1 200

< Date: Sun, 13 Oct 2019 19:36:57 GMT

< Content-Type: application/javascript; charset=utf-8

< Content-Length: 3052

< Vary: Accept-Encoding

< Server: gunicorn/19.7.1

< Last-modified: Sun, 25 Aug 2019 16:00:30 GMT

< Cache-Control: public, max-age=43200

< Expires: Mon, 14 Oct 2019 07:36:57 GMT

< ETag: "1566748830.0-3052-3932359948"

Most clients will ignore invalid date strings, which render them ineffective for the response

they are served on. This can have consequences on cacheability, since an erroneous Last-
Modified header will be cached without a Last-Modified timestamp resulting in the inability

to perform a conditional request.

The Date HTTP response header is usually generated by the web server or CDN serving the

response to a client. Because the header is typically generated automatically by the server, it

tends to be less prone to error, which is reflected by the very low percentage of invalid Date
headers. Last-Modified headers were very similar, with only 0.67% of them being invalid.

What was very surprising to see though, was that 3.64% Expires headers used an invalid

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 315

date format!

Examples of some of the invalid uses of the Expires header are:

• Valid date formats, but using a time zone other than GMT

• Numerical values such as 0 or -1

• Values that would be valid in a Cache-Control header

The largest source of invalid Expires headers is from assets served from a popular third-

party, in which a date/time uses the EST time zone, for example Expires: Tue, 27 Apr
1971 19:44:06 EST .

Vary header

One of the most important steps in caching is determining if the resource being requested is

cached or not. While this may seem simple, many times the URL alone is not enough to

determine this. For example, requests with the same URL could vary in what compression they

used (Gzip, Brotli, etc.) or be modified and tailored for mobile visitors.

To solve this problem, clients give each cached resource a unique identifier (a cache key). By

Figure 16.13. Invalid date formats in response headers.

Part IV Chapter 16 : Caching

316 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/fig13.png
https://almanac.httparchive.org/static/images/2019/caching/fig13.png

default, this cache key is simply the URL of the resource, but developers can add other elements

(like compression method) by using the Vary header.

A Vary header instructs a client to add the value of one or more request header values to the

cache key. The most common example of this is Vary: Accept-Encoding , which will result

in different cached entries for Accept-Encoding request header values (i.e. gzip , br ,

deflate).

Another common value is Vary: Accept-Encoding, User-Agent , which instructs the

client to vary the cached entry by both the Accept-Encoding values and the User-Agent
string. When dealing with shared proxies and CDNs, using values other than Accept-
Encoding can be problematic as it dilutes the cache keys and can reduce the amount of traffic

served from cache.

In general, you should only vary the cache if you are serving alternate content to clients based

on that header.

The Vary header is used on 39% of HTTP responses, and 45% of responses that include a

Cache-Control header.

The graph below details the popularity for the top 10 Vary header values. Accept-
Encoding accounts for 90% of Vary ’s use, with User-Agent (11%), Origin (9%), and

Accept (3%) making up much of the rest.

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 317

Setting cookies on cacheable responses

When a response is cached, its entire headers are swapped into the cache as well. This is why

you can see the response headers when inspecting a cached response via DevTools.

Figure 16.14. Vary header usage.

Part IV Chapter 16 : Caching

318 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/fig14.png
https://almanac.httparchive.org/static/images/2019/caching/fig14.png

But what happens if you have a Set-Cookie on a response? According to RFC 7234 Section

8372, the presence of a Set-Cookie response header does not inhibit caching. This means that

a cached entry might contain a Set-Cookie if it was cached with one. The RFC goes on to

recommend that you should configure appropriate Cache-Control headers to control how

responses are cached.

One of the risks of caching responses with Set-Cookie is that the cookie values can be stored

and served to subsequent requests. Depending on the cookie’s purpose, this could have

worrying results. For example, if a login cookie or a session cookie is present in a shared cache,

then that cookie might be reused by another client. One way to avoid this is to use the Cache-
Control private directive, which only permits the response to be cached by the client

browser.

3% of cacheable responses contain a Set-Cookie header . Of those responses, only 18% use

the private directive. The remaining 82% include 5.3 million HTTP responses that include a

Set-Cookie which can be cached by public and private cache servers.

Figure 16.15. Chrome Dev Tools for a cached resource.

372. https://tools.ietf.org/html/rfc7234#section-8

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 319

https://almanac.httparchive.org/static/images/2019/caching/ch16_fig12_header_example_with_cookie.jpg
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig12_header_example_with_cookie.jpg
https://tools.ietf.org/html/rfc7234#section-8
https://tools.ietf.org/html/rfc7234#section-8

AppCache and service workers

The Application Cache or AppCache is a feature of HTML5 that allows developers to specify

resources the browser should cache and make available to offline users. This feature was

deprecated and removed from web standards373, and browser support has been diminishing. In

fact, when its use is detected, Firefox v44+ recommends that developers should use service

workers instead374. Chrome 70 restricts the Application Cache to secure context only375. The

industry has moved more towards implementing this type of functionality with service workers

- and browser support376 has been rapidly growing for it.

Figure 16.16. Cacheable responses of Set-Cookie responses.

373. https://web.archive.org/web/20191115024726/https://html.spec.whatwg.org/multipage/offline.html
374. https://developer.mozilla.org/docs/Web/API/Service_Worker_API/Using_Service_Workers
375. https://www.chromestatus.com/feature/5714236168732672
376. https://caniuse.com/#feat=serviceworkers

Part IV Chapter 16 : Caching

320 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/ch16_fig16_cacheable_responses_set_cookie.jpg
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig16_cacheable_responses_set_cookie.jpg
https://web.archive.org/web/20191115024726/https://html.spec.whatwg.org/multipage/offline.html
https://developer.mozilla.org/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://developer.mozilla.org/docs/Web/API/Service_Worker_API/Using_Service_Workers
https://www.chromestatus.com/feature/5714236168732672
https://caniuse.com/#feat=serviceworkers

In fact, one of the HTTP Archive trend reports shows the adoption of service workers377 shown

below:

Adoption is still below 1% of websites, but it has been steadily increasing since January 2017.

The Progressive Web App chapter discusses this more, including the fact that it is used a lot

more than this graph suggests due to its usage on popular sites, which are only counted once in

above graph.

In the table below, you can see a summary of AppCache vs service worker usage. 32,292

websites have implemented a service worker, while 1,867 sites are still utilizing the deprecated

AppCache feature.

If we break this out by HTTP vs HTTPS, then this gets even more interesting. 581 of the

Figure 16.17. Timeseries of service worker controlled pages. (Source: HTTP Archive378)

Figure 16.18. Number of websites using AppCache versus service worker.

Does Not Use Server
Worker

Uses Service
Worker

Total

Does Not Use

AppCache
5,045,337 32,241 5,077,578

Uses AppCache 1,816 51 1,867

Total 5,047,153 32,292 5,079,445

377. https://httparchive.org/reports/progressive-web-apps#swControlledPages
378. https://httparchive.org/reports/progressive-web-apps#swControlledPages

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 321

https://httparchive.org/reports/progressive-web-apps#swControlledPages
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig14_service_worker_adoption.jpg
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig14_service_worker_adoption.jpg
https://httparchive.org/reports/progressive-web-apps#swControlledPages

AppCache enabled sites are served over HTTP, which means that Chrome is likely disabling the

feature. HTTPS is a requirement for using service workers, but 907 of the sites using them are

served over HTTP.

Identifying caching opportunities

Google’s Lighthouse379 tool enables users to run a series of audits against web pages, and the

cache policy audit380 evaluates whether a site can benefit from additional caching. It does this by

comparing the content age (via the Last-Modified header) to the cache TTL and estimating

the probability that the resource would be served from cache. Depending on the score, you may

see a caching recommendation in the results, with a list of specific resources that could be

cached.

Figure 16.19. Number of websites using AppCache versus service worker usage by HTTP/HTTPS.

Does Not Use Service
Worker

Uses Service
Worker

HTTP

Does Not Use

AppCache
1,968,736 907

Uses AppCache 580 1

HTTPS

Does Not Use

AppCache
3,076,601 31,334

Uses AppCache 1,236 50

379. https://developers.google.com/web/tools/lighthouse
380. https://developers.google.com/web/tools/lighthouse/audits/cache-policy

Part IV Chapter 16 : Caching

322 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse
https://developers.google.com/web/tools/lighthouse/audits/cache-policy
https://developers.google.com/web/tools/lighthouse/audits/cache-policy

Lighthouse computes a score for each audit, ranging from 0% to 100%, and those scores are

then factored into the overall scores. The caching score381 is based on potential byte savings.

When we examine the Lighthouse results, we can get a perspective of how many sites are doing

well with their cache policies.

Figure 16.20. Lighthouse report highlighting potential cache policy improvements.

381. https://developers.google.com/web/tools/lighthouse/audits/cache-policy

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 323

https://almanac.httparchive.org/static/images/2019/caching/ch16_fig15_lighthouse_example.jpg
https://almanac.httparchive.org/static/images/2019/caching/ch16_fig15_lighthouse_example.jpg
https://developers.google.com/web/tools/lighthouse/audits/cache-policy

Only 3.4% of sites scored a 100%, meaning that most sites can benefit from some cache

optimizations. A vast majority of sites sore below 40%, with 38% scoring less than 10%. Based

on this, there is a significant amount of caching opportunities on the web.

Lighthouse also indicates how many bytes could be saved on repeat views by enabling a longer

cache policy. Of the sites that could benefit from additional caching, 82% of them can reduce

their page weight by up to a whole Mb!

Figure 16.21. Distribution of Lighthouse scores for the “Uses Long Cache TTL” audit for mobile web
pages.

Part IV Chapter 16 : Caching

324 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/caching/fig21.png
https://almanac.httparchive.org/static/images/2019/caching/fig21.png

Conclusion

Caching is an incredibly powerful feature that allows browsers, proxies and other

intermediaries (such as CDNs) to store web content and serve it to end users. The performance

benefits of this are significant, since it reduces round trip times and minimizes costly network

requests.

Caching is also a very complex topic. There are numerous HTTP response headers that can

convey freshness as well as validate cached entries, and Cache-Control directives provide a

tremendous amount of flexibility and control. However, developers should be cautious about

the additional opportunities for mistakes that it comes with. Regularly auditing your site to

ensure that cacheable resources are cached appropriately is recommended, and tools like

Lighthouse382 and REDbot383 do an excellent job of helping to simplify the analysis.

Figure 16.22. Distribution of potential byte savings from the Lighthouse caching audit.

382. https://developers.google.com/web/tools/lighthouse
383. https://redbot.org/

Part IV Chapter 16 : Caching

2019 Web Almanac by HTTP Archive 325

https://almanac.httparchive.org/static/images/2019/caching/fig22.png
https://almanac.httparchive.org/static/images/2019/caching/fig22.png
https://developers.google.com/web/tools/lighthouse
https://redbot.org/

Author

Paul Calvano

@paulcalvano paulcalvano https://paulcalvano.com

Paul Calvano is a Web Performance Architect at Akamai384, where he helps

businesses improve the performance of their websites. He’s also a co-maintainer

of the HTTP Archive project. You can find him tweeting at @paulcalvano, blogging

at http://paulcalvano.com and sharing HTTP Archive research at

https://discuss.httparchive.org.

384. https://www.akamai.com/

Part IV Chapter 16 : Caching

326 2019 Web Almanac by HTTP Archive

https://twitter.com/paulcalvano
https://github.com/paulcalvano
https://paulcalvano.com/
https://www.akamai.com/
https://twitter.com/paulcalvano
https://paulcalvano.com/
https://discuss.httparchive.org/

Part IV Chapter 17

CDN

Written by Andy Davies and Colin Bendell
Reviewed by Yoav Weiss, Paul Calvano, Patrick Meenan, and Erik Nygren
Analyzed by Raghu Ramakrishnan and Rick Viscomi
Edited by Rick Viscomi

Introduction

“Use a Content Delivery Network” was one of Steve Souders original recommendations385 for

making web sites load faster. It’s advice that remains valid today, and in this chapter of the Web

Almanac we’re going to explore how widely Steve’s recommendation has been adopted, how

sites are using Content Delivery Networks (CDNs), and some of the features they’re using.

Fundamentally, CDNs reduce latency—the time it takes for packets to travel between two

points on a network, say from a visitor’s device to a server—and latency is a key factor in how

quickly pages load.

A CDN reduces latency in two ways: by serving content from locations that are closer to the

user and second, by terminating the TCP connection closer to the end user.

Historically, CDNs were used to cache, or copy, bytes so that the logical path from the user to

385. http://stevesouders.com/examples/rules.php

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 327

http://stevesouders.com/examples/rules.php

the bytes becomes shorter. A file that is requested by many people can be retrieved once from

the origin (your server) and then stored on a server closer to the user, thus saving transfer time.

CDNs also help with TCP latency. The latency of TCP determines how long it takes to establish

a connection between a browser and a server, how long it takes to secure that connection, and

ultimately how quickly content downloads. At best, network packets travel at roughly two-

thirds of the speed of light, so how long that round trip takes depends on how far apart the two

ends of the conversation are, and what’s in between. Congested networks, overburdened

equipment, and the type of network will all add further delays. Using a CDN to move the server

end of the connection closer to the visitor reduces this latency penalty, shortening connection

times, TLS negotiation times, and improving content download speeds.

Although CDNs are often thought of as just caches that store and serve static content close to

the visitor, they are capable of so much more! CDNs aren’t limited to just helping overcome the

latency penalty, and increasingly they offer other features that help improve performance and

security.

• Using a CDN to proxy dynamic content (base HTML page, API responses, etc.) can

take advantage of both the reduced latency between the browser and the CDN’s

own network back to the origin.

• Some CDNs offer transformations that optimize pages so they download and

render more quickly, or optimize images so they’re the appropriate size (both

dimensions and file size) for the device on which they’re going to be viewed.

• From a security perspective, malicious traffic and bots can be filtered out by a CDN

before the requests even reach the origin, and their wide customer base means

CDNs can often see and react to new threats sooner.

• The rise of edge computing386 allows sites to run their own code close to their

visitors, both improving performance and reducing the load on the origin.

Finally, CDNs also help sites to adopt new technologies without requiring changes at the origin,

for example HTTP/2, TLS 1.3, and/or IPv6 can be enabled from the edge to the browser, even if

the origin servers don’t support it yet.

Caveats and disclaimers

As with any observational study, there are limits to the scope and impact that can be measured.

The statistics gathered on CDN usage for the Web Almanac does not imply performance nor

386. https://en.wikipedia.org/wiki/Edge_computing

Part IV Chapter 17 : CDN

328 2019 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Edge_computing

effectiveness of a specific CDN vendor.

There are many limits to the testing methodology used for the Web Almanac. These include:

• Simulated network latency: The Web Almanac uses a dedicated network

connection that synthetically shapes traffic.

• Single geographic location: Tests are run from a single datacenter387 and cannot test

the geographic distribution of many CDN vendors.

• Cache effectiveness: Each CDN uses proprietary technology and many, for security

reasons, do not expose cache performance.

• Localization and internationalization: Just like geographic distribution, the effects

of language and geo-specific domains are also opaque to the testing.

• CDN detection388 is primarily done through DNS resolution and HTTP headers. Most

CDNs use a DNS CNAME to map a user to an optimal datacenter. However, some

CDNs use AnyCast IPs or direct A+AAAA responses from a delegated domain

which hide the DNS chain. In other cases, websites use multiple CDNs to balance

between vendors which is hidden from the single-request pass of WebPageTest. All

of this limits the effectiveness in the measurements.

Most importantly, these results reflect a potential utilization but do not reflect actual impact.

YouTube is more popular than “ShoesByColin” yet both will appear as equal value when

comparing utilization.

With this in mind, there are a few intentional statistics that were not measured with the

context of a CDN:

• TTFB: Measuring the Time to first byte by CDN would be intellectually dishonest

without proper knowledge about cacheability and cache effectiveness. If one site

uses a CDN for round trip time (RTT) management but not for caching, this would

create a disadvantage when comparing another site that uses a different CDN

vendor but does also caches the content. (Note: this does not apply to the TTFB

analysis in the Performance chapter because it does not draw conclusions about the

performance of individual CDNs.)

• Cache Hit vs. Cache Miss performance: As mentioned previously, this is opaque to

the testing apparatus and therefore repeat tests to test page performance with a

cold cache vs. a hot cache are unreliable.

387. https://httparchive.org/faq#how-is-the-data-gathered
388. https://github.com/WPO-Foundation/wptagent/blob/master/internal/optimization_checks.py#L51

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 329

https://httparchive.org/faq#how-is-the-data-gathered
https://github.com/WPO-Foundation/wptagent/blob/master/internal/optimization_checks.py#L51

Further stats

In future versions of the Web Almanac, we would expect to look more closely at the TLS and

RTT management between CDN vendors. Of interest would the impact of OCSP stapling,

differences in TLS Cipher performance. CWND (TCP congestion window) growth rate, and

specifically the adoption of BBR v1, v2, and traditional TCP Cubic.

CDN adoption and usage

For websites, a CDN can improve performance for the primary domain

(www.shoesbycolin.com), sub-domains or sibling domains (images.shoesbycolin.com
or checkout.shoesbycolin.com), and finally third parties (Google Analytics, etc.). Using a

CDN for each of these use cases improves performance in different ways.

Historically, CDNs were used exclusively for static resources like CSS, JavaScript, and images.

These resources would likely be versioned (include a unique number in the path) and cached

long-term. In this way we should expect to see higher adoption of CDNs on sub-domains or

sibling domains compared to the base HTML domains. The traditional design pattern would

expect that www.shoesbycolin.com would serve HTML directly from a datacenter (or

origin) while static.shoesbycolin.com would use a CDN.

Indeed, this traditional pattern is what we observe on the majority of websites crawled. The

Figure 17.1. CDN usage vs. origin-hosted resources.

Part IV Chapter 17 : CDN

330 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/fig1.png
https://almanac.httparchive.org/static/images/2019/cdn/fig1.png

majority of web pages (80%) serve the base HTML from origin. This breakdown is nearly

identical between mobile and desktop with only 0.4% lower usage of CDNs on desktop. This

slight variance is likely due to the small continued use of mobile specific web pages (“mDot”),

which more frequently use a CDN.

Likewise, resources served from sub-domains are more likely to utilize a CDN at 40% of sub-

domain resources. Sub-domains are used either to partition resources like images and CSS or

they are used to reflect organizational teams such as checkout or APIs.

Despite first-party resources still largely being served directly from origin, third-party

resources have a substantially higher adoption of CDNs. Nearly 66% of all third-party

resources are served from a CDN. Since third-party domains are more likely a SaaS integration,

the use of CDNs are more likely core to these business offerings. Most third-party content

breaks down to shared resources (JavaScript or font CDNs), augmented content

(advertisements), or statistics. In all these cases, using a CDN will improve the performance and

offload for these SaaS solutions.

Top CDN providers

There are two categories of CDN providers: the generic and the purpose-fit CDN. The generic

CDN providers offer customization and flexibility to serve all kinds of content for many

industries. In contrast, the purpose-fit CDN provider offers similar content distribution

capabilities but are narrowly focused on a specific solution.

This is clearly represented when looking at the top CDNs found serving the base HTML

content. The most frequent CDNs serving HTML are generic CDNs (Cloudflare, Akamai, Fastly)

and cloud solution providers who offer a bundled CDN (Google, Amazon) as part of the

platform service offerings. In contrast, there are only a few purpose-fit CDN providers, such as

Wordpress and Netlify, that deliver base HTML markup.

Note: This does not reflect traffic or usage, only the number of sites using them.

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 331

Figure 17.2. HTML CDN usage.

Part IV Chapter 17 : CDN

332 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/html_cdn_usage.png
https://almanac.httparchive.org/static/images/2019/cdn/html_cdn_usage.png

HTML CDN Usage (%)

ORIGIN 80.39

Cloudflare 9.61

Google 5.54

Amazon CloudFront 1.08

Akamai 1.05

Fastly 0.79

WordPress 0.37

Sucuri Firewall 0.31

Incapsula 0.28

Myra Security CDN 0.1

OVH CDN 0.08

Netlify 0.06

Edgecast 0.04

GoCache 0.03

Highwinds 0.03

CDNetworks 0.02

Limelight 0.01

Level 3 0.01

NetDNA 0.01

StackPath 0.01

Instart Logic 0.01

Azion 0.01

Yunjiasu 0.01

section.io 0.01

Microsoft Azure 0.01

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 333

Sub-domain requests have a very similar composition. Since many websites use sub-domains

for static content, we see a shift to a higher CDN usage. Like the base page requests, the

resources served from these sub-domains utilize generic CDN offerings.

Figure 17.3. Top 25 CDNs for HTML by site.

Figure 17.4. Sub-domain resource CDN usage.

Part IV Chapter 17 : CDN

334 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/subdomain_resource_cdn_usage.png
https://almanac.httparchive.org/static/images/2019/cdn/subdomain_resource_cdn_usage.png

Sub-Domain CDN Usage (%)

ORIGIN 60.56

Cloudflare 10.06

Google 8.86

Amazon CloudFront 6.24

Akamai 3.5

Edgecast 1.97

WordPress 1.69

Highwinds 1.24

Limelight 1.18

Fastly 0.8

CDN77 0.43

KeyCDN 0.41

NetDNA 0.37

CDNetworks 0.36

Incapsula 0.29

Microsoft Azure 0.28

Reflected Networks 0.28

Sucuri Firewall 0.16

BunnyCDN 0.13

OVH CDN 0.12

Advanced Hosters CDN 0.1

Myra Security CDN 0.07

CDNvideo 0.07

Level 3 0.06

StackPath 0.06

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 335

The composition of top CDN providers dramatically shifts for third-party resources. Not only

are CDNs more frequently observed hosting third-party resources, there is also an increase in

purpose-fit CDN providers such as Facebook, Twitter, and Google.

Figure 17.5. Top 25 resource CDNs for sub-domain requests.

Figure 17.6. Third-party resource CDN usage.

Part IV Chapter 17 : CDN

336 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/thirdparty_resource_cdn_usage.png
https://almanac.httparchive.org/static/images/2019/cdn/thirdparty_resource_cdn_usage.png

Third-Party CDN Usage (%)

ORIGIN 34.27

Google 29.61

Facebook 8.47

Akamai 5.25

Fastly 5.14

Cloudflare 4.21

Amazon CloudFront 3.87

WordPress 2.06

Edgecast 1.45

Twitter 1.27

Highwinds 0.94

NetDNA 0.77

Cedexis 0.3

CDNetworks 0.22

section.io 0.22

jsDelivr 0.2

Microsoft Azure 0.18

Yahoo 0.18

BunnyCDN 0.17

CDNvideo 0.16

Reapleaf 0.15

CDN77 0.14

KeyCDN 0.13

Azion 0.09

StackPath 0.09

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 337

RTT and TLS management

CDNs can offer more than simple caching for website performance. Many CDNs also support a

pass-through mode for dynamic or personalized content when an organization has a legal or

other business requirement prohibiting the content from being cached. Utilizing a CDN’s

physical distribution enables increased performance for TCP RTT for end users. As others have

noted389, reducing RTT is the most effective means to improve web page performance390

compared to increasing bandwidth.

Using a CDN in this way can improve page performance in two ways:

1. Reduce RTT for TCP and TLS negotiation. The speed of light is only so fast and

CDNs offer a highly distributed set of data centers that are closer to the end users.

In this way the logical (and physical) distance that packets must traverse to

negotiate a TCP connection and perform the TLS handshake can be greatly reduced.

Reducing RTT has three immediate benefits. First, it improves the time for the user

to receive data, because TCP+TLS connection time are RTT-bound. Secondly, this

will improve the time it takes to grow the congestion window and utilize the full

amount of bandwidth the user has available. Finally, it reduces the probability of

packet loss. When the RTT is high, network interfaces will time-out requests and

resend packets. This can result in double packets being delivered.

2. CDNs can utilize pre-warmed TCP connections to the back-end origin. Just as

terminating the connection closer to the user will improve the time it takes to grow

the congestion window, the CDN can relay the request to the origin on pre-

established TCP connections that have already maximized congestion windows. In

this way the origin can return the dynamic content in fewer TCP round trips and the

content can be more effectively ready to be delivered to the waiting user.

TLS negotiation time: origin 3x slower than CDNs

Since TLS negotiations require multiple TCP round trips before data can be sent from a server,

simply improving the RTT can significantly improve the page performance. For example, looking

at the base HTML page, the median TLS negotiation time for origin requests is 207 ms (for

Figure 17.7. Top 25 resource CDNs for third-party requests.

389. https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
390. https://hpbn.co/primer-on-latency-and-bandwidth/

Part IV Chapter 17 : CDN

338 2019 Web Almanac by HTTP Archive

https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-bottleneck/
https://hpbn.co/primer-on-latency-and-bandwidth/

desktop WebPageTest). This alone accounts for 10% of a 2 second performance budget, and

this is under ideal network conditions where there is no latency applied on the request.

In contrast, the median TLS negotiation for the majority of CDN providers is between 60 and

70 ms. Origin requests for HTML pages take almost 3x longer to complete TLS negotiation than

those web pages that use a CDN. Even at the 90th percentile, this disparity perpetuates with

origin TLS negotiation rates of 427 ms compared to most CDNs which complete under 140 ms!

A word of caution when interpreting these charts: it is important to focus on orders of magnitude when

comparing vendors as there are many factors that impact the actual TLS negotiation performance.

These tests were completed from a single datacenter under controlled conditions and do not reflect the

variability of the internet and user experiences.

Figure 17.8. HTML TLS negotiation time.

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 339

https://almanac.httparchive.org/static/images/2019/cdn/html_tls_negotiation_time.png
https://almanac.httparchive.org/static/images/2019/cdn/html_tls_negotiation_time.png

For resource requests (including same-domain and third-party), the TLS negotiation time takes

longer and the variance increases. This is expected because of network saturation and network

congestion. By the time that a third-party connection is established (by way of a resource hint

or a resource request) the browser is busy rendering and making other parallel requests. This

creates contention on the network. Despite this disadvantage, there is still a clear advantage

for third-party resources that utilize a CDN over using an origin solution.

Figure 17.9. HTML TLS connection time (ms).

p10 p25 p50 p75 p90

Highwinds 58 58 60 66 94

Fastly 56 59 63 69 75

WordPress 58 62 76 77 80

Sucuri Firewall 63 66 77 80 86

Amazon CloudFront 59 61 62 83 128

Cloudflare 62 68 80 92 103

Akamai 57 59 72 93 134

Microsoft Azure 62 93 97 98 101

Edgecast 94 97 100 110 221

Google 47 53 79 119 184

OVH CDN 114 115 118 120 122

section.io 105 108 112 120 210

Incapsula 96 100 111 139 243

Netlify 53 64 73 145 166

Myra Security CDN 95 106 118 226 365

GoCache 217 219 223 234 260

ORIGIN 100 138 207 342 427

CDNetworks 85 143 229 369 452

Part IV Chapter 17 : CDN

340 2019 Web Almanac by HTTP Archive

TLS handshake performance is impacted by a number of factors. These include RTT, TLS record

size, and TLS certificate size. While RTT has the biggest impact on the TLS handshake, the

second largest driver for TLS performance is the TLS certificate size.

During the first round trip of the TLS handshake391, the server attaches its certificate. This

certificate is then verified by the client before proceeding. In this certificate exchange, the

server might include the certificate chain by which it can be verified. After this certificate

exchange, additional keys are established to encrypt the communication. However, the length

and size of the certificate can negatively impact the TLS negotiation performance, and in some

cases, crash client libraries.

The certificate exchange is at the foundation of the TLS handshake and is usually handled by

isolated code paths so as to minimize the attack surface for exploits. Because of its low level

nature, buffers are usually not dynamically allocated, but fixed. In this way, we cannot simply

assume that the client can handle an unlimited-sized certificate. For example, OpenSSL CLI

tools and Safari can successfully negotiate against https://10000-sans.badssl.com . Yet,

Chrome and Firefox fail because of the size of the certificate.

While extreme sizes of certificates can cause failures, even sending moderately large

certificates has a performance impact. A certificate can be valid for one or more hostnames

which are are listed in the Subject-Alternative-Name (SAN). The more SANs, the larger

the certificate. It is the processing of these SANs during verification that causes performance to

Figure 17.10. Resource TLS negotiation time.

391. https://hpbn.co/transport-layer-security-tls/#tls-handshake

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 341

https://almanac.httparchive.org/static/images/2019/cdn/resource_tls_negotiation_time.png
https://almanac.httparchive.org/static/images/2019/cdn/resource_tls_negotiation_time.png
https://hpbn.co/transport-layer-security-tls/#tls-handshake
https://10000-sans.badssl.com/
https://10000-sans.badssl.com/

degrade. To be clear, performance of certificate size is not about TCP overhead, rather it is

about processing performance of the client.

Technically, TCP slow start can impact this negotiation but it is very improbable. TLS record

length is limited to 16 KB, which fits into a typical initial congestion window of 10. While some

ISPs might employ packet splicers, and other tools fragment congestion windows to artificially

throttle bandwidth, this isn’t something that a website owner can change or manipulate.

Many CDNs, however, depend on shared TLS certificates and will list many customers in the

SAN of a certificate. This is often necessary because of the scarcity of IPv4 addresses. Prior to

the adoption of Server-Name-Indicator (SNI) by end users, the client would connect to a

server, and only after inspecting the certificate, would the client hint which hostname the user

user was looking for (using the Host header in HTTP). This results in a 1:1 association of an IP

address and a certificate. If you are a CDN with many physical locations, each location may

require a dedicated IP, further aggravating the exhaustion of IPv4 addresses. Therefore, the

simplest and most efficient way for CDNs to offer TLS certificates for websites that still have

users that don’t support SNI is to offer a shared certificate.

According to Akamai, the adoption of SNI is still not 100% globally392. Fortunately there has

been a rapid shift in recent years. The biggest culprits are no longer Windows XP and Vista, but

now Android apps, bots, and corporate applications. Even at 99% adoption, the remaining 1% of

3.5 billion users on the internet can create a very compelling motivation for website owners to

require a non-SNI certificate. Put another way, a pure play website can enjoy a virtually 100%

SNI adoption among standard web browsers. Yet, if the website is also used to support APIs or

WebViews in apps, particularly Android apps, this distribution can drop rapidly.

Most CDNs balance the need for shared certificates and performance. Most cap the number of

SANs between 100 and 150. This limit often derives from the certificate providers. For

example, LetsEncrypt393, DigiCert394, and GoDaddy395 all limit SAN certificates to 100 hostnames

while Comodo396’s limit is 2,000. This, in turn, allows some CDNs to push this limit, cresting over

800 SANs on a single certificate. There is a strong negative correlation of TLS performance and

the number of SANs on a certificate.

392. https://datatracker.ietf.org/meeting/101/materials/slides-101-maprg-update-on-tls-sni-and-ipv6-client-adoption-00
393. https://letsencrypt.org/docs/rate-limits/
394. https://www.websecurity.digicert.com/security-topics/san-ssl-certificates
395. https://www.godaddy.com/web-security/multi-domain-san-ssl-certificate
396. https://comodosslstore.com/comodo-mdc-ssl.aspx

Part IV Chapter 17 : CDN

342 2019 Web Almanac by HTTP Archive

https://datatracker.ietf.org/meeting/101/materials/slides-101-maprg-update-on-tls-sni-and-ipv6-client-adoption-00
https://letsencrypt.org/docs/rate-limits/
https://www.websecurity.digicert.com/security-topics/san-ssl-certificates
https://www.godaddy.com/web-security/multi-domain-san-ssl-certificate
https://comodosslstore.com/comodo-mdc-ssl.aspx

Figure 17.11. TLS SAN count for HTML.

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 343

https://almanac.httparchive.org/static/images/2019/cdn/fig11.png
https://almanac.httparchive.org/static/images/2019/cdn/fig11.png

Figure 17.12. TLS SAN count for HTML.

p10 p25 p50 p75 p90

section.io 1 1 1 1 2

ORIGIN 1 2 2 2 7

Amazon CloudFront 1 2 2 2 8

WordPress 2 2 2 2 2

Sucuri Firewall 2 2 2 2 2

Netlify 1 2 2 2 3

Highwinds 1 2 2 2 2

GoCache 1 1 2 2 4

Google 1 1 2 3 53

OVH CDN 2 2 3 8 19

Cloudflare 1 1 3 39 59

Microsoft Azure 2 2 2 43 47

Edgecast 2 4 46 56 130

Incapsula 2 2 11 78 140

Akamai 2 18 57 85 95

Fastly 1 2 77 100 100

Myra Security CDN 2 2 18 139 145

CDNetworks 2 7 100 360 818

Part IV Chapter 17 : CDN

344 2019 Web Almanac by HTTP Archive

Figure 17.13. Resource SAN count (50th percentile).

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 345

https://almanac.httparchive.org/static/images/2019/cdn/fig13.png
https://almanac.httparchive.org/static/images/2019/cdn/fig13.png

TLS adoption

In addition to using a CDN for TLS and RTT performance, CDNs are often used to ensure

patching and adoption of TLS ciphers and TLS versions. In general, the adoption of TLS on the

main HTML page is much higher for websites that use a CDN. Over 76% of HTML pages are

Figure 17.14. 10th, 25th, 50th, 75th, and 90th percentiles of the distribution of resource SAN
count.

p10 p25 p50 p75 p90

section.io 1 1 1 1 1

ORIGIN 1 2 2 3 10

Amazon CloudFront 1 1 2 2 6

Highwinds 2 2 2 3 79

WordPress 2 2 2 2 2

NetDNA 2 2 2 2 2

CDN77 2 2 2 2 10

Cloudflare 2 3 3 3 35

Edgecast 2 4 4 4 4

Twitter 2 4 4 4 4

Akamai 2 2 5 20 54

Google 1 10 11 55 68

Facebook 13 13 13 13 13

Fastly 2 4 16 98 128

Yahoo 6 6 79 79 79

Cedexis 2 2 98 98 98

Microsoft Azure 2 43 99 99 99

jsDelivr 2 116 116 116 116

CDNetworks 132 178 397 398 645

Part IV Chapter 17 : CDN

346 2019 Web Almanac by HTTP Archive

served with TLS compared to the 62% from origin-hosted pages.

Each CDN offers different rates of adoption for both TLS and the relative ciphers and versions

offered. Some CDNs are more aggressive and roll out these changes to all customers whereas

other CDNs require website owners to opt-in to the latest changes and offer change-

management to facilitate these ciphers and versions.

Figure 17.15. HTML TLS version adoption (CDN vs. origin).

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 347

https://almanac.httparchive.org/static/images/2019/cdn/fig15.png
https://almanac.httparchive.org/static/images/2019/cdn/fig15.png

Along with this general adoption of TLS, CDN use also sees higher adoption of emerging TLS

versions like TLS 1.3.

In general, the use of a CDN is highly correlated with a more rapid adoption of stronger ciphers

and stronger TLS versions compared to origin-hosted services where there is a higher usage of

Figure 17.16. HTML TLS adoption by CDN.

Figure 17.17. Third-party TLS adoption by CDN.

Part IV Chapter 17 : CDN

348 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/fig16.png
https://almanac.httparchive.org/static/images/2019/cdn/fig16.png
https://almanac.httparchive.org/static/images/2019/cdn/fig17.png
https://almanac.httparchive.org/static/images/2019/cdn/fig17.png

very old and compromised TLS versions like TLS 1.0.

It is important to emphasize that Chrome used in the Web Almanac will bias to the latest TLS versions

and ciphers offered by the host. Also, these web pages were crawled in July 2019 and reflect the

adoption of websites that have enabled the newer versions.

More discussion of TLS versions and ciphers can be found in the Security and HTTP/2 chapters.

HTTP/2 adoption

Along with RTT management and improving TLS performance, CDNs also enable new

standards like HTTP/2 and IPv6. While most CDNs offer support for HTTP/2 and many have

signaled early support of the still-under-standards-development HTTP/3, adoption still

depends on website owners to enable these new features. Despite the change-management

overhead, the majority of the HTML served from CDNs has HTTP/2 enabled.

CDNs have over 70% adoption of HTTP/2, compared to the nearly 27% of origin pages.

Similarly, sub-domain and third-party resources on CDNs see an even higher adoption of HTTP/

2 at 90% or higher while third-party resources served from origin infrastructure only has 31%

adoption. The performance gains and other features of HTTP/2 are further covered in the

HTTP/2 chapter.

Figure 17.18. HTML TLS version by CDN.

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 349

https://almanac.httparchive.org/static/images/2019/cdn/fig18.png
https://almanac.httparchive.org/static/images/2019/cdn/fig18.png

Note: All requests were made with the latest version of Chrome which supports HTTP/2. When only

HTTP/1.1 is reported, this would indicate either unencrypted (non-TLS) servers or servers that don’t

support HTTP/2.

Figure 17.19. HTTP/2 adoption (CDN vs. origin).

Figure 17.20. HTML adoption of HTTP/2.

Part IV Chapter 17 : CDN

350 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/fig19.png
https://almanac.httparchive.org/static/images/2019/cdn/fig19.png
https://almanac.httparchive.org/static/images/2019/cdn/fig20.png
https://almanac.httparchive.org/static/images/2019/cdn/fig20.png

HTTP/0.9 HTTP/1.0 HTTP/1.1 HTTP/2

WordPress 0 0 0.38 100

Netlify 0 0 1.07 99

section.io 0 0 1.56 98

GoCache 0 0 7.97 92

NetDNA 0 0 12.03 88

Instart Logic 0 0 12.36 88

Microsoft Azure 0 0 14.06 86

Sucuri Firewall 0 0 15.65 84

Fastly 0 0 16.34 84

Cloudflare 0 0 16.43 84

Highwinds 0 0 17.34 83

Amazon CloudFront 0 0 18.19 82

OVH CDN 0 0 25.53 74

Limelight 0 0 33.16 67

Edgecast 0 0 37.04 63

Cedexis 0 0 43.44 57

Akamai 0 0 47.17 53

Myra Security CDN 0 0.06 50.05 50

Google 0 0 52.45 48

Incapsula 0 0.01 55.41 45

Yunjiasu 0 0 70.96 29

ORIGIN 0 0.1 72.81 27

Zenedge 0 0 87.54 12

CDNetworks 0 0 88.21 12

ChinaNetCenter 0 0 94.49 6

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 351

Figure 17.21. HTML adoption of HTTP/2 by CDN.

Figure 17.22. HTML/2 adoption: third-party resources.

Part IV Chapter 17 : CDN

352 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/fig22.png
https://almanac.httparchive.org/static/images/2019/cdn/fig22.png

cdn HTTP/0.9 HTTP/1.0 HTTP/1.1 HTTP/2

jsDelivr 0 0 0 100

Facebook 0 0 0 100

Twitter 0 0 1 99

section.io 0 0 2 98

BunnyCDN 0 0 2 98

KeyCDN 0 0 4 96

Microsoft Azure 0 0 6 94

WordPress 0 0 7 93

CDN77 0 0 7 93

NetDNA 0 0 7 93

Google 0 0 8 92

Fastly 0 0 10 90

Sucuri Firewall 0 0 14 86

Cloudflare 0 0 16 84

Yahoo 0 0 17 83

OVH CDN 0 0 26 75

Amazon CloudFront 0 0 26 74

Cedexis 0 0 27 73

CDNetworks 0 0 30 70

Edgecast 0 0 42 58

Highwinds 0 0 43 57

Akamai 0 0.01 47 53

Incapsula 0 0 56 44

CDNvideo 0 0 68 31

ORIGIN 0 0.07 69 31

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 353

Controlling CDN caching behavior

Vary

A website can control the caching behavior of browsers and CDNs with the use of different

HTTP headers. The most common is the Cache-Control header which specifically

determines how long something can be cached before returning to the origin to ensure it is up-

to-date.

Another useful tool is the use of the Vary HTTP header. This header instructs both CDNs and

browsers how to fragment a cache. The Vary header allows an origin to indicate that there are

multiple representations of a resource, and the CDN should cache each variation separately.

The most common example is compression. Declaring a resource as Vary: Accept-
Encoding allows the CDN to cache the same content, but in different forms like

uncompressed, with Gzip, or Brotli. Some CDNs even do this compression on the fly so as to

keep only one copy available. This Vary header likewise also instructs the browser how to

cache the content and when to request new content.

Figure 17.23. HTML/2 adoption: third-party resources.

Figure 17.24. Usage of Vary for HTML served from CDNs.

Part IV Chapter 17 : CDN

354 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/use_of_vary_on_cdn.png
https://almanac.httparchive.org/static/images/2019/cdn/use_of_vary_on_cdn.png

While the main use of Vary is to coordinate Content-Encoding , there are other important

variations that websites use to signal cache fragmentation. Using Vary also instructs SEO bots

like DuckDuckGo, Google, and BingBot that alternate content would be returned under

different conditions. This has been important to avoid SEO penalties for “cloaking” (sending

SEO specific content in order to game the rankings).

For HTML pages, the most common use of Vary is to signal that the content will change based

on the User-Agent . This is short-hand to indicate that the website will return different

content for desktops, phones, tablets, and link-unfurling engines (like Slack, iMessage, and

Whatsapp). The use of Vary: User-Agent is also a vestige of the early mobile era, where

content was split between “mDot” servers and “regular” servers in the back-end. While the

adoption for responsive web has gained wide popularity, this Vary form remains.

In a similar way, Vary: Cookie usually indicates that content that will change based on the

logged-in state of the user or other personalization.

Resources, in contrast, don’t use Vary: Cookie as much as the HTML resources. Instead

these resources are more likely to adapt based on the Accept , Origin , or Referer . Most

media, for example, will use Vary: Accept to indicate that an image could be a JPEG, WebP,

JPEG 2000, or JPEG XR depending on the browser’s offered Accept header. In a similar way,

third-party shared resources signal that an XHR API will differ depending on which website it is

embedded. This way, a call to an ad server API will return different content depending on the

parent website that called the API.

Figure 17.25. Comparison of Vary usage for HTML and resources served from origin and CDN.

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 355

https://almanac.httparchive.org/static/images/2019/cdn/use_of_vary.png
https://almanac.httparchive.org/static/images/2019/cdn/use_of_vary.png

The Vary header also contains evidence of CDN chains. These can be seen in Vary headers

such as Accept-Encoding, Accept-Encoding or even Accept-Encoding, Accept-
Encoding, Accept-Encoding . Further analysis of these chains and Via header entries

might reveal interesting data, for example how many sites are proxying third-party tags.

Many of the uses of the Vary are extraneous. With most browsers adopting double-key

caching, the use of Vary: Origin is redundant. As is Vary: Range or Vary: Host or

Vary: * . The wild and variable use of Vary is demonstrable proof that the internet is weird.

Surrogate-Control , s-maxage , and Pre-Check

There are other HTTP headers that specifically target CDNs, or other proxy caches, such as the

Surrogate-Control , s-maxage , pre-check , and post-check values in the Cache-
Control header. In general usage of these headers is low.

Surrogate-Control allows origins to specify caching rules just for CDNs, and as CDNs are

likely to strip the header before serving responses, its low visible usage isn’t a surprise, in fact

it’s surprising that it’s actually in any responses at all! (It was even seen from some CDNs that

state they strip it).

Some CDNs support post-check as a method to allow a resource to be refreshed when it

goes stale, and pre-check as a maxage equivalent. For most CDNs, usage of pre-check
and post-check was below 1%. Yahoo was the exception to this and about 15% of requests

had pre-check=0, post-check=0 . Unfortunately this seems to be a remnant of an old

Internet Explorer pattern rather than active usage. More discussion on this can be found in the

Caching chapter.

The s-maxage directive informs proxies for how long they may cache a response. Across the

Web Almanac dataset, jsDelivr is the only CDN where a high level of usage was seen across

multiple resources—this isn’t surprising given jsDelivr’s role as a public CDN for libraries. Usage

across other CDNs seems to be driven by individual customers, for example third-party scripts

or SaaS providers using that particular CDN.

Part IV Chapter 17 : CDN

356 2019 Web Almanac by HTTP Archive

With 40% of sites using a CDN for resources, and presuming these resources are static and

cacheable, the usage of s-maxage seems low.

Future research might explore cache lifetimes versus the age of the resources, and the usage of

s-maxage versus other validation directives such as stale-while-revalidate .

CDNs for common libraries and content

So far, this chapter has explored the use of commercials CDNs which the site may be using to

host its own content, or perhaps used by a third-party resource included on the site.

Common libraries like jQuery and Bootstrap are also available from public CDNs hosted by

Google, Cloudflare, Microsoft, etc. Using content from one of the public CDNs instead of a self-

hosting the content is a trade-off. Even though the content is hosted on a CDN, creating a new

connection and growing the congestion window may negate the low latency of using a CDN.

Google Fonts is the most popular of the content CDNs and is used by 55% of websites. For non-

font content, Google API, Cloudflare’s JS CDN, and the Bootstrap’s CDN are the next most

popular.

Figure 17.26. Adoption of s-maxage across CDN responses.

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 357

https://almanac.httparchive.org/static/images/2019/cdn/fig26.png
https://almanac.httparchive.org/static/images/2019/cdn/fig26.png

As more browsers implement partitioned caches, the effectiveness of public CDNs for hosting

common libraries will decrease and it will be interesting to see whether they are less popular in

future iterations of this research.

Conclusion

The reduction in latency that CDNs deliver along with their ability to store content close to

visitors enable sites to deliver faster experiences while reducing the load on the origin.

Steve Souders’ recommendation to use a CDN remains as valid today as it was 12 years ago, yet

only 20% of sites serve their HTML content via a CDN, and only 40% are using a CDN for

resources, so there’s plenty of opportunity for their usage to grow further.

There are some aspects of CDN adoption that aren’t included in this analysis, sometimes this

was due to the limitations of the dataset and how it’s collected, in other cases new research

questions emerged during the analysis.

As the web continues to evolve, CDN vendors innovate, and sites use new practices CDN

adoption remains an area rich for further research in future editions of the Web Almanac.

Figure 17.27. Usage of public content CDNs.

Part IV Chapter 17 : CDN

358 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/cdn/fig27.png
https://almanac.httparchive.org/static/images/2019/cdn/fig27.png

Authors

Andy Davies

@AndyDavies andydavies http://andydavies.me/

Andy Davies is a Freelance Web Performance Consultant and has helped some of

the UK’s leading retailers, newspapers and financial services companies to make

their sites faster. He wrote The Pocket Guide to Web Performance, is co-author of

Using WebPageTest and also an organizer of the London Web Performance

meetup. You can find Andy on Twitter as @AndyDavies, and he occasionally blogs

at https://andydavies.me

Colin Bendell

@colinbendell colinbendell

Colin is part of the CTO Office at Cloudinary397 and co-author of the O’Reilly book

High Performance Images398. He spends much of his time at the intersection of high

volume data, media, browsers and standards. You can find him on tweeting

@colinbendell and at blogging at https://bendell.ca.

397. https://cloudinary.com/
398. https://www.oreilly.com/library/view/high-performance-images/9781491925799/

Part IV Chapter 17 : CDN

2019 Web Almanac by HTTP Archive 359

https://twitter.com/AndyDavies
https://github.com/andydavies
http://andydavies.me/
https://twitter.com/andydavies
https://andydavies.me/
https://twitter.com/colinbendell
https://github.com/colinbendell
https://cloudinary.com/
https://www.oreilly.com/library/view/high-performance-images/9781491925799/
https://twitter.com/colinbendell
https://bendell.ca/

360 2019 Web Almanac by HTTP Archive

Part IV Chapter 18

Page Weight

Written by Tammy Everts and Katie Hempenius
Reviewed by Paul Calvano
Analyzed by Katie Hempenius
Edited by David Fox

Introduction

The median web page is around 1900 KB in size and contains 74 requests. That doesn’t sound

too bad, right?

Here’s the issue with medians: they mask problems. By definition, they focus only on the middle

of the distribution. We need to consider percentiles at both extremes to get an understanding

of the bigger picture.

Looking at the 90th percentile exposes the unpleasant stuff. Roughly 10% of the pages we’re

pushing at the unsuspecting public are in excess of 6 MB and contain 179 requests. This is,

frankly, terrible. If this doesn’t seem terrible to you, then you definitely need to read this

chapter.

Part IV Chapter 18 : Page Weight

2019 Web Almanac by HTTP Archive 361

Myth: Page size doesn’t matter

The common argument as to why page size doesn’t matter anymore is that, thanks to high-

speed internet and our souped-up devices, we can serve massive, complex (and massively

complex) pages to the general population. This assumption works fine, as long as you’re okay

with ignoring the vast swathe of internet users who don’t have access to said high-speed

internet and souped-up devices.

Yes, you can build large robust pages that feel fast… to some users. But you should care about

page bloat in terms of how it affects all your users, especially mobile-only users who deal with

bandwidth constraints or data limits.

Check out Tim Kadlec’s fascinating online calculator, What Does My Site Cost?399, which

calculates the cost—in dollars and Gross National Income per capita—of your pages in countries

around the world. It’s an eye-opener. For instance, Amazon’s home page, which at the time of

writing weighs 2.79 MB, costs 1.89% of the daily per capita GNI of Mauritania. How global is

the world wide web when people in some parts of the world would have to give up a day’s

wages just to visit a few dozen pages?

More bandwidth isn’t a magic bullet for web performance

Even if more people had access to better devices and cheaper connections, that wouldn’t be a

complete solution. Double the bandwidth doesn’t mean twice as fast. In fact, it has been

demonstrated400 that increasing bandwidth by up to 1,233% only made pages 55% faster.

The problem is latency. Most of our networking protocols require a lot of round-trips, and each

of those round trips imposes a latency penalty. For as long as latency continues to be a

performance problem (which is to say, for the foreseeable future), the major performance

culprit will continue to be that a typical web page today contains a hundred or so assets hosted

on dozens of different servers. Many of these assets are unoptimized, unmeasured,

unmonitored—and therefore unpredictable.

What types of assets does the HTTP Archive track, and how much do
they matter?

Here’s a quick glossary of the page composition metrics that the HTTP Archive tracks, and how

much they matter in terms of performance and user experience:

399. https://whatdoesmysitecost.com/
400. https://developer.akamai.com/blog/2015/06/09/heres-why-more-bandwidth-isnt-magic-bullet-web-performance

Part IV Chapter 18 : Page Weight

362 2019 Web Almanac by HTTP Archive

https://whatdoesmysitecost.com/
https://developer.akamai.com/blog/2015/06/09/heres-why-more-bandwidth-isnt-magic-bullet-web-performance
https://developer.akamai.com/blog/2015/06/09/heres-why-more-bandwidth-isnt-magic-bullet-web-performance

• The total size is the total weight in bytes of the page. It matters especially to mobile

users who have limited and/or metered data.

• HTML is typically the smallest resource on the page. Its performance risk is

negligible.

• Unoptimized images are often the greatest contributor to page bloat. Looking at

the 90th percentile of the distribution of page weight, images account for a

whopping 5.2 MB of a roughly 7 MB page. In other words, images comprise almost

75% of the total page weight. And if that already wasn’t enough, the number of

images on a page has been linked to lower conversion rates on retail sites. (More on

that later.)

• JavaScript matters. A page can have a relatively low JavaScript weight but still

suffer from JavaScript-inflicted performance problems. Even a single 100 KB third-

party script can wreak havoc with your page. The more scripts on your page, the

greater the risk.

It’s not enough to focus solely on blocking JavaScript. It’s possible for your pages to

contain zero blocking resources and still have less-than-optimal performance

because of how your JavaScript is rendered. That’s why it’s so important to

understand CPU usage on your pages, because JavaScript consumes more CPU

than all other browser activities combined. While JavaScript blocks the CPU, the

browser can’t respond to user input. This creates what’s commonly called “jank”:

that annoying feeling of jittery, unstable page rendering.

• CSS is an incredible boon for modern web pages. It solves a myriad of design

problems, from browser compatibility to design maintenance and updating.

Without CSS, we wouldn’t have great things like responsive design. But, like

JavaScript, CSS doesn’t have to be bulky to cause problems. Poorly executed

stylesheets can create a host of performance problems, ranging from stylesheets

taking too long to download and parse, to improperly placed stylesheets that block

the rest of the page from rendering. And, similarly to JavaScript, more CSS files

equals more potential trouble.

Part IV Chapter 18 : Page Weight

2019 Web Almanac by HTTP Archive 363

Bigger, complex pages can be bad for your business

Let’s assume you’re not a heartless monster who doesn’t care about your site’s visitors. But if

you are, you should know that serving bigger, more complex pages hurts you, too. That was one

of the findings of a Google-led machine learning study401 that gathered over a million beacons’

worth of real user data from retail sites.

There were three really important takeaways from this research:

1. The total number of elements on a page was the greatest predictor of

conversions. Hopefully this doesn’t come as a huge surprise to you, given what

we’ve just covered about the performance risks imposed by the various assets that

make up a modern web page.

2. The number of images on a page was the second greatest predictor of

conversions. Sessions in which users converted had 38% fewer images than in

sessions that didn’t convert.

3. Sessions with more scripts were less likely to convert. What’s really fascinating

Figure 18.1. Converted sessions vs non-converted sessions.

401. https://www.thinkwithgoogle.com/marketing-resources/experience-design/mobile-page-speed-load-time/

Part IV Chapter 18 : Page Weight

364 2019 Web Almanac by HTTP Archive

https://www.thinkwithgoogle.com/marketing-resources/experience-design/mobile-page-speed-load-time/
https://almanac.httparchive.org/static/images/2019/page-weight/ch18_fig1_conversion_difference.png
https://almanac.httparchive.org/static/images/2019/page-weight/ch18_fig1_conversion_difference.png

about this chart isn’t just the sharp drop-off in conversion probability after about

240 scripts. It’s the long tail that demonstrates how many retail sessions contained

up to 1,440 scripts!

Now that we’ve covered why page size and complexity matter, let’s get into some juicy HTTP

Archive stats so we can better understand the current state of the web and the impact of page

bloat.

Analysis

The statistics in this section are all based on the transfer size of a page and its resources. Not all

resources on the web are compressed before sending, but if they are, this analysis uses the

compressed size.

Page weight

Roughly speaking, mobile sites are about 10% smaller than their desktop counterparts. The

majority of the difference is due to mobile sites loading fewer image bytes than their desktop

counterparts.

Figure 18.2. Conversion rate dropping off as scripts increase.

Part IV Chapter 18 : Page Weight

2019 Web Almanac by HTTP Archive 365

https://almanac.httparchive.org/static/images/2019/page-weight/ch18_fig2_conversion_graph.jpg
https://almanac.httparchive.org/static/images/2019/page-weight/ch18_fig2_conversion_graph.jpg

Mobile

Desktop

Page weight over time

Over the past year the median size of a desktop site increased by 434 KB, and the median size

of a mobile site increased by 179 KB. Images are overwhelmingly driving this increase.

Figure 18.3. Page weight on mobile broken down by resource type.

Percentile Total (KB) HTML (KB) JS (KB) CSS (KB) Image (KB) Document (KB)

90 6226 107 1060 234 4746 49

75 3431 56 668 122 2270 25

50 1745 26 360 56 893 13

25 800 11 164 22 266 7

10 318 6 65 5 59 4

Figure 18.4. Page weight on desktop broken down by resource type

Percentile Total (KB) HTML (KB) JS (KB) CSS (KB) Image (KB) Document (KB)

90 6945 110 1131 240 5220 52

75 3774 58 721 129 2434 26

50 1934 27 391 62 983 14

25 924 12 186 26 319 8

10 397 6 76 8 78 4

Part IV Chapter 18 : Page Weight

366 2019 Web Almanac by HTTP Archive

Mobile

Desktop

For a longer-term perspective on how page weight has changed over time, check out this

timeseries graph402 from HTTP Archive. Median page size has grown at a fairly constant rate

since the HTTP Archive started tracking this metric in November 2010 and the increase in page

weight observed over the past year is consistent with this.

Page requests

The median desktop page makes 74 requests, and the median mobile page makes 69. Images

and JavaScript account for the majority of these requests. There was no significant change in

the quantity or distribution of requests over the last year.

Figure 18.5. Change in mobile page weight since 2018.

Percentile Total (KB) HTML (KB) JS (KB) CSS (KB) Image (KB) Document (KB)

90 +376 -50 +46 +36 +648 +2

75 +304 -7 +34 +21 +281 0

50 +179 -1 +27 +10 +106 0

25 +110 -1 +16 +5 +36 0

10 +72 0 +13 +2 +20 +1

Figure 18.6. Change in desktop page weight since 2018.

Percentile Total (KB) HTML (KB) JS (KB) CSS (KB) Image (KB) Document (KB)

90 +1106 -75 +22 +45 +1291 +5

75 +795 -12 +9 +32 +686 +1

50 +434 -1 +10 +15 +336 0

25 +237 0 +12 +7 +138 0

10 +120 0 +10 +2 +39 +1

402. https://httparchive.org/reports/page-weight#bytesTotal

Part IV Chapter 18 : Page Weight

2019 Web Almanac by HTTP Archive 367

https://httparchive.org/reports/page-weight#bytesTotal
https://httparchive.org/reports/page-weight#bytesTotal

Mobile

Desktop

File formats

The preceding analysis has focused on analyzing page weight through the lens of resource

types. However, in the case of images and media, it’s possible to dive a level deeper and look at

the differences in resource sizes between specific file formats.

Figure 18.7. Mobile page requests broken down by resource type.

Percentile Total HTML JS CSS Image Document

90 168 15 52 20 79 7

75 111 7 32 12 49 2

50 69 3 18 6 28 0

25 40 2 9 3 15 0

10 22 1 4 1 7 0

Figure 18.8. Desktop page requests broken down by resource type.

Percentile Total HTML JS CSS Image Document

90 179 14 53 20 90 6

75 118 7 33 12 54 2

50 74 4 19 6 31 0

25 44 2 10 3 16 0

10 24 1 4 1 7 0

Part IV Chapter 18 : Page Weight

368 2019 Web Almanac by HTTP Archive

File size by image format (mobile)

Some of these results, particularly those for GIFs, are really surprising. If GIFs are so small, then

why are they being replaced by formats like JPG, PNG, and WEBP?

The data above obscures the fact that the vast majority of GIFs on the web are actually tiny 1x1

pixels. These pixels are typically used as “tracking pixels”, but can also be used as a hack to

generate various CSS effects. While these 1x1 pixels are images in the literal sense, the spirit of

their usage is probably closer to what we’d associate with scripts or CSS.

Further investigation into the data set revealed that 62% of GIFs are 43 bytes or smaller (43

bytes is the size of a transparent, 1x1 pixel GIF) and 84% of GIFs are 1 KB or smaller.

Figure 18.9. Images file sizes on mobile broken down by image format.

Percentile GIF (KB) ICO (KB) JPG (KB) PNG (KB) SVG (KB) WEBP (KB)

10 0 0 3.08 0.37 0.25 2.54

25 0.03 0.26 7.96 1.14 0.43 4.89

50 0.04 1.12 21 4.31 0.88 13

75 0.06 2.72 63 22 2.41 33

90 2.65 13 155 90 7.91 78

Figure 18.10. Cumulative distribution function of GIF file sizes.

Part IV Chapter 18 : Page Weight

2019 Web Almanac by HTTP Archive 369

https://almanac.httparchive.org/static/images/2019/page-weight/ch18_fig3_gif_cdf.png
https://almanac.httparchive.org/static/images/2019/page-weight/ch18_fig3_gif_cdf.png

The tables below show two different approaches to removing these tiny images from the data

set: the first one is based on images with a file size greater than 100 bytes, the second is based

on images with a file size greater than 1024 bytes.

File size by image format for images > 100 bytes

File size by image format for images > 1024 bytes

The low file size of PNG images compared to JPEG images may seem surprising. JPEG uses

lossy compression403. Lossy compression results in data loss, which makes it possible to achieve

smaller file sizes. Meanwhile, PNG uses lossless compression404. This does not result in data loss,

which this produces higher-quality, but larger images. However, this difference in file sizes is

probably a reflection of the popularity of PNGs for iconography due to their transparency

Figure 18.11. File size by image format for images > 100 bytes.

Percentile GIF (KB) ICO (KB) JPG (KB) PNG (KB) SVG (KB) WEBP (KB)

10 0.27 0.31 3.08 0.4 0.28 2.1

25 0.75 0.6 7.7 1.17 0.46 4.4

50 2.14 1.12 20.47 4.35 0.95 11.54

75 7.34 4.19 61.13 21.39 2.67 31.21

90 35 14.73 155.46 91.02 8.26 76.43

Figure 18.12. File size by image format for images > 1024 bytes.

Percentile GIF (KB) ICO (KB) JPG (KB) PNG (KB) SVG (KB) WEBP (KB)

10 1.28 1.12 3.4 1.5 1.2 3.08

25 1.9 1.12 8.21 2.88 1.52 5

50 4.01 2.49 21.19 8.33 2.81 12.52

75 11.92 7.87 62.54 33.17 6.88 32.83

90 67.15 22.13 157.96 127.15 19.06 79.53

403. https://en.wikipedia.org/wiki/Lossy_compression
404. https://en.wikipedia.org/wiki/Lossless_compression

Part IV Chapter 18 : Page Weight

370 2019 Web Almanac by HTTP Archive

https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Lossless_compression

support, rather than differences in their encoding and compression.

File size by media format

MP4 is overwhelmingly the most popular video format on the web today. In terms of popularity,

it is followed by WebM and MPEG-TS respectively.

Unlike some of the other tables in this data set, this one has mostly happy takeaways. Videos

are consistently smaller on mobile, which is great to see. In addition, the median size of an MP4

video is a very reasonable 18 KB on mobile and 39 KB on desktop. The median numbers for

WebM are even better but they should be taken with a grain of salt: the duplicate measurement

of 0.29 KB across multiple clients and percentiles is a little bit suspicious. One possible

explanation is that identical copies of one very tiny WebM video is included on many pages. Of

the three formats, MPEG-TS consistently has the highest file size across all percentiles. This

may be related to the fact that it was released in 1995, making it the oldest of these three

media formats.

Mobile

Figure 18.13. Video size by media format on mobile.

Percentile MP4 (KB) WebM (KB) MPEG-TS (KB)

10 0.89 0.29 0.01

25 2.07 0.29 55

50 18 1.44 153

75 202 223 278

90 928 390 475

Part IV Chapter 18 : Page Weight

2019 Web Almanac by HTTP Archive 371

Desktop

Conclusion

Over the past year, pages increased in size by roughly 10%. Brotli, performance budgets, and

basic image optimization best practices are probably the three techniques which show the most

promise for maintaining or improving page weight while also being widely applicable and fairly

easy to implement. That being said, in recent years, improvements in page weight have been

more constrained by the low adoption of best practices than by the technology itself. In other

words, although there are many existing techniques for improving page weight, they won’t

make a difference if they aren’t put to use.

Authors

Tammy Everts

@tameverts tammyeverts https://speedcurve.com/

Tammy Everts has spent more than two decades studying usability and UX. For the

past ten years, she’s focused on the intersection of UX with web performance and

business. She is CXO at SpeedCurve405, co-chair of the performance.now()

conference406, and author of the O’Reilly book Time Is Money_bio: The Business Value

of Performance407.

Figure 18.14. Video size by media format on desktop.

Percentile MP4 (KB) WebM (KB) MPEG-TS (KB)

10 0.27 0.29 34

25 1.05 0.29 121

50 39 17 286

75 514 288 476

90 2142 896 756

405. https://speedcurve.com/
406. https://perfnow.nl/
407. http://shop.oreilly.com/product/0636920041450.do

Part IV Chapter 18 : Page Weight

372 2019 Web Almanac by HTTP Archive

https://twitter.com/tameverts
https://github.com/tammyeverts
https://speedcurve.com/
https://speedcurve.com/
https://perfnow.nl/
https://perfnow.nl/
http://shop.oreilly.com/product/0636920041450.do
http://shop.oreilly.com/product/0636920041450.do

Katie Hempenius

@katiehempenius khempenius

Katie Hempenius is an engineer on the Chrome team where she works on making

the web faster.

Part IV Chapter 18 : Page Weight

2019 Web Almanac by HTTP Archive 373

https://twitter.com/katiehempenius
https://github.com/khempenius

374 2019 Web Almanac by HTTP Archive

Part IV Chapter 19

Resource Hints

Written by Katie Hempenius
Reviewed by Andy Davies, Barry Pollard, and Yoav Weiss
Analyzed and edited by Rick Viscomi

Introduction

Resource hints408 provide “hints” to the browser about what resources will be needed soon. The

action that the browser takes as a result of receiving this hint will vary depending on the type of

resource hint; different resource hints kick off different actions. When used correctly, they can

improve page performance by giving a head start to important anticipated actions.

Examples409 of performance improvements as a result of resource hints include:

• Jabong decreased Time to Interactive by 1.5 seconds by preloading critical scripts.

• Barefoot Wine decreased Time to Interactive of future pages by 2.7 seconds by

prefetching visible links.

• Chrome.com decreased latency by 0.7 seconds by preconnecting to critical origins.

408. https://www.w3.org/TR/resource-hints/
409. https://youtu.be/YJGCZCaIZkQ?t=1956

Part IV Chapter 19 : Resource Hints

2019 Web Almanac by HTTP Archive 375

https://www.w3.org/TR/resource-hints/
https://youtu.be/YJGCZCaIZkQ?t=1956

There are four separate resource hints supported by most browsers today: dns-prefetch ,

preconnect , preload , and prefetch .

dns-prefetch

The role of dns-prefetch is to initiate an early DNS lookup. It’s useful for completing the

DNS lookup for third-parties. For example, the DNS lookup of a CDN, font provider, or third-

party API.

preconnect

preconnect initiates an early connection, including DNS lookup, TCP handshake, and TLS

negotiation. This hint is useful for setting up a connection with a third party. The uses of

preconnect are very similar to those of dns-prefetch , but preconnect has less browser

support. However, if you don’t need IE 11 support, preconnect is probably a better choice.

preload

The preload hint initiates an early request. This is useful for loading important resources that

would otherwise be discovered late by the parser. For example, if an important image is only

discoverable once the browser has received and parsed the stylesheet, it may make sense to

preload the image.

prefetch

prefetch initiates a low-priority request. It’s useful for loading resources that will be used on

the subsequent (rather than current) page load. A common use of prefetch is loading resources

that the application “predicts” will be used on the next page load. These predictions could be

based on signals like user mouse movement or common user flows/journeys.

Syntax

97% of resource hint usage relied on using the <link> tag to specify a resource hint. For

example:

Part IV Chapter 19 : Resource Hints

376 2019 Web Almanac by HTTP Archive

https://developer.mozilla.org/docs/Learn/Performance/dns-prefetch
https://developer.mozilla.org/docs/Learn/Performance/dns-prefetch
https://web.dev/uses-rel-preconnect
https://web.dev/uses-rel-preconnect
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://medium.com/reloading/preload-prefetch-and-priorities-in-chrome-776165961bbf
https://calendar.perfplanet.com/2018/all-about-prefetching/
https://calendar.perfplanet.com/2018/all-about-prefetching/
https://developer.mozilla.org/docs/Web/HTML/Element/link
https://developer.mozilla.org/docs/Web/HTML/Element/link

<link rel="prefetch" href="shopping-cart.js">

Only 3% of resource hint usage used HTTP headers410 to specify resource hints. For example:

Link: <https://example.com/shopping-cart.js>; rel=prefetch

Because the usage of resource hints in HTTP headers is so low, the remainder of this chapter

will focus solely on analyzing the usage of resource hints in conjunction with the <link> tag.

However, it’s worth noting that in future years, usage of resource hints in HTTP headers may

increase as HTTP/2 Push is adopted. This is due to the fact that HTTP/2 Push has repurposed

the HTTP preload Link header as a signal to push resources.

Resource hints

Note: There was no noticeable difference between the usage patterns for resource hints on mobile

versus desktop. Thus, for the sake of conciseness, this chapter only includes the statistics for mobile.

The relative popularity of dns-prefetch is unsurprising; it’s a well-established API (it first

appeared in 2009411), it is supported by all major browsers, and it is the most “inexpensive” of all

resource hints. Because dns-prefetch only performs DNS lookups, it consumes very little

data, and therefore there is very little downside to using it. dns-prefetch is most useful in

high-latency situations.

Figure 19.1. Adoption of resource hints.

Resource Hint Usage (percent of sites)

dns-prefetch 29%

preload 16%

preconnect 4%

prefetch 3%

prerender (deprecated) 0.13%

410. https://developer.mozilla.org/docs/Web/HTTP/Headers/Link
411. https://caniuse.com/#feat=link-rel-dns-prefetch

Part IV Chapter 19 : Resource Hints

2019 Web Almanac by HTTP Archive 377

https://developer.mozilla.org/docs/Web/HTTP/Headers/Link
https://caniuse.com/#feat=link-rel-dns-prefetch

That being said, if a site does not need to support IE11 and below, switching from dns-
prefetch to preconnect is probably a good idea. In an era where HTTPS is ubiquitous,

preconnect yields greater performance improvements while still being inexpensive. Note

that unlike dns-prefetch , preconnect not only initiates the DNS lookup, but also the TCP

handshake and TLS negotiation. The certificate chain412 is downloaded during TLS negotiation

and this typically costs a couple of kilobytes.

prefetch is used by 3% of sites, making it the least widely used resource hint. This low usage

may be explained by the fact that prefetch is useful for improving subsequent—rather than

current—page loads. Thus, it will be overlooked if a site is only focused on improving their

landing page, or the performance of the first page viewed.

Resource hints are most effective when they’re used selectively (“when everything is important,

nothing is”). Figure 19.2 above shows the number of resource hints per page for pages using at

least one resource hint. Although there is no clear cut rule for defining what an appropriate

number of resource hints is, it appears that most sites are using resource hints appropriately.

The crossorigin attribute

Most “traditional” resources fetched on the web (images, stylesheets, and scripts) are fetched

without opting in to Cross-Origin Resource Sharing (CORS413). That means that if those

resources are fetched from a cross-origin server, by default their contents cannot be read back

by the page, due to the same-origin policy.

Figure 19.2. Median and 90th percentiles of the number of resource hints used per page, of all pages
using that resource hint.

Resource Hint
Resource Hints Per Page:

Median

Resource Hints Per Page:

90th Percentile

dns-prefetch 2 8

preload 2 4

preconnect 2 8

prefetch 1 3

prerender (deprecated) 1 1

412. https://knowledge.digicert.com/solution/SO16297.html
413. https://developer.mozilla.org/docs/Web/HTTP/CORS

Part IV Chapter 19 : Resource Hints

378 2019 Web Almanac by HTTP Archive

https://knowledge.digicert.com/solution/SO16297.html
https://developer.mozilla.org/docs/Web/HTTP/CORS

In some cases, the page can opt-in to fetch the resource using CORS if it needs to read its

content. CORS enables the browser to “ask permission” and get access to those cross-origin

resources.

For newer resource types (e.g. fonts, fetch() requests, ES modules), the browser defaults to

requesting those resources using CORS, failing the requests entirely if the server does not

grant it permission to access them.

In the context of resource hints, usage of the crossorigin attribute enables them to match

the CORS mode of the resources they are supposed to match and indicates the credentials to

include in the request. For example, anonymous enables CORS and indicates that no

credentials should be included for those cross-origin requests:

<link rel="prefetch" href="https://other-server.com/shopping-

cart.css" crossorigin="anonymous">

Although other HTML elements support the crossorigin attribute, this analysis only looks at

usage with resource hints.

The as attribute

as is an attribute that should be used with the preload resource hint to inform the browser

of the type (e.g. image, script, style, etc.) of the requested resource. This helps the browser

correctly prioritize the request and apply the correct Content Security Policy (CSP414). CSP is a

security mechanism, expressed via HTTP header, that helps mitigate the impact of XSS and

Figure 19.3. Adoption of the crossorigin attribute as a percent of resource hint instances.

crossorigin
value

Usage Explanation

Not set 92%
If the crossorigin attribute is absent, the request will follow the single-origin

policy.

anonymous (or

equivalent)
7% Executes a cross-origin request that does not include credentials.

use-credentials 0.47% Executes a cross-origin request that includes credentials.

414. https://developers.google.com/web/fundamentals/security/csp

Part IV Chapter 19 : Resource Hints

2019 Web Almanac by HTTP Archive 379

https://developers.google.com/web/fundamentals/security/csp

other malicious attacks by declaring a safelist of trusted sources; only content from these

sources can be rendered or executed.

88% of resource hint instances use the as attribute. When as is specified, it is

overwhelmingly used for scripts: 92% of usage is script, 3% font, and 3% styles. This is

unsurprising given the prominent role that scripts play in most sites’ architecture as well the

high frequency with which scripts are used as attack vectors (thereby making it therefore

particularly important that scripts get the correct CSP applied to them).

The future

At the moment, there are no proposals to expand the current set of resource hints. However,

priority hints and native lazy loading are two proposed technologies that are similar in spirit to

resource hints in that they provide APIs for optimizing the loading process.

Priority Hints

Priority hints415 are an API for expressing the fetch priority of a resource: high , low , or

auto . They can be used with a wide range of HTML tags: specifically <image> , <link >,

<script> , and <iframe> .

Figure 19.4. The percent of resource hint instances using the as attribute.

88%

415. https://wicg.github.io/priority-hints/

Part IV Chapter 19 : Resource Hints

380 2019 Web Almanac by HTTP Archive

https://wicg.github.io/priority-hints/

For example, if you had an image carousel, priority hints could be used to prioritize the image

that users see immediately and deprioritize later images.

Priority hints are implemented416 and can be tested via a feature flag in Chromium browsers

versions 70 and up. Given that it is still an experimental technology, it is unsurprising that it is

only used by 0.04% of sites.

85% of priority hint usage is with tags. Priority hints are mostly used to deprioritize

resources: 72% of usage is importance="low" ; 28% of usage is importance="high" .

Native lazy loading

Native lazy loading417 is a native API for deferring the load of off-screen images and iframes. This

frees up resources during the initial page load and avoids loading assets that are never used.

Previously, this technique could only be achieved through third-party JavaScript libraries.

The API for native lazy loading looks like this: .

Native lazy loading is available in browsers based on Chromium 76 and up. The API was

announced too late for it to be included in the dataset for this year’s Web Almanac, but it is

something to keep an eye out for in the coming year.

<carousel>

</carousel>

Figure 19.4. Example HTML of using priority hints on a carousel of images.

Figure 19.5. The rate of priority hint adoption.

0.04%

416. https://www.chromestatus.com/feature/5273474901737472
417. https://web.dev/native-lazy-loading

Part IV Chapter 19 : Resource Hints

2019 Web Almanac by HTTP Archive 381

https://www.chromestatus.com/feature/5273474901737472
https://web.dev/native-lazy-loading

Conclusion

Overall, this data seems to suggest that there is still room for further adoption of resource

hints. Most sites would benefit from adopting and/or switching to preconnect from dns-
prefetch . A much smaller subset of sites would benefit from adopting prefetch and/or

preload . There is greater nuance in successfully using prefetch and preload , which

constrains its adoption to a certain extent, but the potential payoff is also greater. HTTP/2 Push

and the maturation of machine learning technologies is also likely to increase the adoption of

preload and prefetch .

Author

Katie Hempenius

@katiehempenius khempenius

Katie Hempenius is an engineer on the Chrome team where she works on making

the web faster.

Part IV Chapter 19 : Resource Hints

382 2019 Web Almanac by HTTP Archive

https://twitter.com/katiehempenius
https://github.com/khempenius

Part IV Chapter 20

HTTP/2

Written by Barry Pollard
Reviewed by Daniel Stenberg, Robin Marx, and Andrew Galloni
Analyzed by Paul Calvano
Edited by Rachel Costello

Introduction

HTTP/2 was the first major update to the main transport protocol of the web in nearly 20 years.

It arrived with a wealth of expectations: it promised a free performance boost with no

downsides. More than that, we could stop doing all the hacks and work arounds that HTTP/1.1

forced us into, due to its inefficiencies. Bundling, spriting, inlining, and even sharding domains

would all become anti-patterns in an HTTP/2 world, as improved performance would be

provided by default.

This meant that even those without the skills and resources to concentrate on web

performance would suddenly have performant websites. However, the reality has been, as ever,

a little more nuanced than that. It has been over four years since the formal approval of HTTP/2

as a standard in May 2015 as RFC 7540418, so now is a good time to look over how this relatively

new technology has fared in the real world.

418. https://tools.ietf.org/html/rfc7540

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 383

https://tools.ietf.org/html/rfc7540

What is HTTP/2?

For those not familiar with the technology, a bit of background is helpful to make the most of

the metrics and findings in this chapter. Up until recently, HTTP has always been a text-based

protocol. An HTTP client like a web browser opened a TCP connection to a server, and then

sent an HTTP command like GET /index.html to ask for a resource.

This was enhanced in HTTP/1.0 to add HTTP headers, so various pieces of metadata could be

included in addition to the request, such as what browser it is, the formats it understands, etc.

These HTTP headers were also text-based and separated by newline characters. Servers parsed

the incoming requests by reading the request and any HTTP headers line by line, and then the

server responded with its own HTTP response headers in addition to the actual resource being

requested.

The protocol seemed simple, but it also came with limitations. Because HTTP was essentially

synchronous, once an HTTP request had been sent, the whole TCP connection was basically off

limits to anything else until the response had been returned, read, and processed. This was

incredibly inefficient and required multiple TCP connections (browsers typically use 6) to allow

a limited form of parallelization.

That in itself brings its own issues as TCP connections take time and resources to set up and get

to full efficiency, especially when using HTTPS, which requires additional steps to set up the

encryption. HTTP/1.1 improved this somewhat, allowing reuse of TCP connections for

subsequent requests, but still did not solve the parallelization issue.

Despite HTTP being text-based, the reality is that it was rarely used to transport text, at least in

its raw format. While it was true that HTTP headers were still text, the payloads themselves

often were not. Text files like HTML, JS, and CSS are usually compressed for transport into a

binary format using Gzip, Brotli, or similar. Non-text files like images and videos are served in

their own formats. The whole HTTP message is then often wrapped in HTTPS to encrypt the

messages for security reasons.

So, the web had basically moved on from text-based transport a long time ago, but HTTP had

not. One reason for this stagnation was because it was so difficult to introduce any breaking

changes to such a ubiquitous protocol like HTTP (previous efforts had tried and failed). Many

routers, firewalls, and other middleboxes understood HTTP and would react badly to major

changes to it. Upgrading them all to support a new version was simply not possible.

In 2009, Google announced that they were working on an alternative to the text-based HTTP

called SPDY419, which has since been deprecated. This would take advantage of the fact that

HTTP messages were often encrypted in HTTPS, which prevents them being read and

419. https://www.chromium.org/spdy

Part IV Chapter 20 : HTTP/2

384 2019 Web Almanac by HTTP Archive

https://www.chromium.org/spdy

interfered with en route.

Google controlled one of the most popular browsers (Chrome) and some of the most popular

websites (Google, YouTube, Gmail…etc.) - so both ends of the connection when both were used

together. Google’s idea was to pack HTTP messages into a proprietary format, send them

across the internet, and then unpack them on the other side. The proprietary format, SPDY, was

binary-based rather than text-based. This solved some of the main performance problems with

HTTP/1.1 by allowing more efficient use of a single TCP connection, negating the need to open

the six connections that had become the norm under HTTP/1.1.

By using SPDY in the real world, they were able to prove that it was more performant for real

users, and not just because of some lab-based experimental results. After rolling out SPDY to all

Google websites, other servers and browser started implementing it, and then it was time to

standardize this proprietary format into an internet standard, and thus HTTP/2 was born.

HTTP/2 has the following key concepts:

• Binary format

• Multiplexing

• Flow control

• Prioritization

• Header compression

• Push

Binary format means that HTTP/2 messages are wrapped into frames of a pre-defined format,

making HTTP messages easier to parse and would no longer require scanning for newline

characters. This is better for security as there were a number of exploits420 for previous versions

of HTTP. It also means HTTP/2 connections can be multiplexed. Different frames for different

streams can be sent on the same connection without interfering with each other as each frame

includes a stream identifier and its length. Multiplexing allows much more efficient use of a

single TCP connection without the overhead of opening additional connections. Ideally we

would open a single connection per domain—or even for multiple domains421!

Having separate streams does introduce some complexities along with some potential benefits.

HTTP/2 needs the concept of flow control to allow the different streams to send data at

different rates, whereas previously, with only one response in flight at any one time, this was

controlled at a connection level by TCP flow control. Similarly, prioritization allows multiple

420. https://www.owasp.org/index.php/HTTP_Response_Splitting
421. https://daniel.haxx.se/blog/2016/08/18/http2-connection-coalescing/

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 385

https://www.owasp.org/index.php/HTTP_Response_Splitting
https://daniel.haxx.se/blog/2016/08/18/http2-connection-coalescing/

requests to be sent together, but with the most important requests getting more of the

bandwidth.

Finally, HTTP/2 introduced two new concepts: header compression and HTTP/2 push. Header

compression allowed those text-based HTTP headers to be sent more efficiently, using an

HTTP/2-specific HPACK422 format for security reasons. HTTP/2 push allowed more than one

response to be sent in answer to a request, enabling the server to “push” resources before a

client was even aware it needed them. Push was supposed to solve the performance

workaround of having to inline resources like CSS and JavaScript directly into HTML to prevent

holding up the page while those resources were requested. With HTTP/2 the CSS and

JavaScript could remain as external files but be pushed along with the initial HTML, so they

were available immediately. Subsequent page requests would not push these resources, since

they would now be cached, and so would not waste bandwidth.

This whistle-stop tour of HTTP/2 gives the main history and concepts of the newish protocol.

As should be apparent from this explanation, the main benefit of HTTP/2 is to address

performance limitations of the HTTP/1.1 protocol. There were also security improvements as

well - perhaps most importantly in being to address performance issues of using HTTPS since

HTTP/2, even over HTTPS, is often much faster than plain HTTP423. Other than the web browser

packing the HTTP messages into the new binary format, and the web server unpacking it at the

other side, the core basics of HTTP itself stayed roughly the same. This means web applications

do not need to make any changes to support HTTP/2 as the browser and server take care of

this. Turning it on should be a free performance boost, therefore adoption should be relatively

easy. Of course, there are ways web developers can optimize for HTTP/2 to take full advantage

of how it differs.

Adoption of HTTP/2

As mentioned above, internet protocols are often difficult to adopt since they are ingrained into

so much of the infrastructure that makes up the internet. This makes introducing any changes

slow and difficult. IPv6 for example has been around for 20 years but has struggled to be

adopted424.

Figure 20.1. The percent of global users who can use HTTP/2.

95%
422. https://tools.ietf.org/html/rfc7541
423. https://www.httpvshttps.com/
424. https://www.google.com/intl/en/ipv6/statistics.html

Part IV Chapter 20 : HTTP/2

386 2019 Web Almanac by HTTP Archive

https://tools.ietf.org/html/rfc7541
https://www.httpvshttps.com/
https://www.google.com/intl/en/ipv6/statistics.html
https://www.google.com/intl/en/ipv6/statistics.html

HTTP/2 however, was different as it was effectively hidden in HTTPS (at least for the browser

uses cases), removing barriers to adoption as long as both the browser and server supported it.

Browser support has been very strong for some time and the advent of auto updating evergreen

browsers has meant that an estimated 95% of global users now support HTTP/2425.

Our analysis is sourced from the HTTP Archive, which tests approximately 5 million of the top

desktop and mobile websites in the Chrome browser. (Learn more about our methodology.)

The results show that HTTP/2 usage is now the majority protocol-an impressive feat just 4

short years after formal standardization! Looking at the breakdown of all HTTP versions by

request we see the following:

Figure 20.2. HTTP/2 usage by request. (Source: HTTP Archive426)

Figure 20.3. HTTP version usage by request.

Protocol Desktop Mobile Both

5.60% 0.57% 2.97%

HTTP/0.9 0.00% 0.00% 0.00%

HTTP/1.0 0.08% 0.05% 0.06%

HTTP/1.1 40.36% 45.01% 42.79%

HTTP/2 53.96% 54.37% 54.18%

425. https://caniuse.com/#feat=http2
426. https://httparchive.org/reports/state-of-the-web#h2

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 387

https://caniuse.com/#feat=http2
https://almanac.httparchive.org/static/images/2019/http/ch20_fig2_http2_usage_by_request.png
https://almanac.httparchive.org/static/images/2019/http/ch20_fig2_http2_usage_by_request.png
https://httparchive.org/reports/state-of-the-web#h2

Figure 20.3 shows that HTTP/1.1 and HTTP/2 are the versions used by the vast majority of

requests as expected. There is only a very small number of requests on the older HTTP/1.0 and

HTTP/0.9 protocols. Annoyingly, there is a larger percentage where the protocol was not

correctly tracked by the HTTP Archive crawl, particularly on desktop. Digging into this has

shown various reasons, some of which can be explained and some of which can’t. Based on spot

checks, they mostly appear to be HTTP/1.1 requests and, assuming they are, desktop and

mobile usage is similar.

Despite there being a little larger percentage of noise than we’d like, it doesn’t alter the overall

message being conveyed here. Other than that, the mobile/desktop similarity is not

unexpected; HTTP Archive tests with Chrome, which supports HTTP/2 for both desktop and

mobile. Real-world usage may have slightly different stats with some older usage of browsers

on both, but even then support is widespread, so we would not expect a large variation

between desktop and mobile.

At present, HTTP Archive does not track HTTP over QUIC427 (soon to be standardized as HTTP/

3) separately, so these requests are currently listed under HTTP/2, but we’ll look at other ways

of measuring that later in this chapter.

Looking at the number of requests will skew the results somewhat due to popular requests. For

example, many sites load Google Analytics, which does support HTTP/2, and so would show as

an HTTP/2 request, even if the embedding site itself does not support HTTP/2. On the other

hand, popular websites tend to support HTTP/2 are also underrepresented in the above stats as

they are only measured once (e.g. “google.com” and “obscuresite.com” are given equal

weighting). There are lies, damn lies, and statistics.

However, our findings are corroborated by other sources, like Mozilla’s telemetry428, which looks

at real-world usage through the Firefox browser.

It is still interesting to look at home pages only to get a rough figure on the number of sites that

Figure 20.4. HTTP version usage for home pages.

Protocol Desktop Mobile Both

0.09% 0.08% 0.08%

HTTP/1.0 0.09% 0.08% 0.09%

HTTP/1.1 62.36% 63.92% 63.22%

HTTP/2 37.46% 35.92% 36.61%

427. https://www.chromium.org/quic
428. https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&measure=HTTP_RESPONSE_VERSION

Part IV Chapter 20 : HTTP/2

388 2019 Web Almanac by HTTP Archive

https://www.chromium.org/quic
https://telemetry.mozilla.org/new-pipeline/dist.html#!cumulative=0&measure=HTTP_RESPONSE_VERSION

support HTTP/2 (at least on their home page). Figure 20.4 shows less support than overall

requests, as expected, at around 36%.

HTTP/2 is only supported by browsers over HTTPS, even though officially HTTP/2 can be used

over HTTPS or over unencrypted non-HTTPS connections. As mentioned previously, hiding the

new protocol in encrypted HTTPS connections prevents networking appliances which do not

understand this new protocol from interfering with (or rejecting!) its usage. Additionally, the

HTTPS handshake allows an easy method of the client and server agreeing to use HTTP/2.

The web is moving to HTTPS, and HTTP/2 turns the traditional argument of HTTPS being bad

for performance almost completely on its head. Not every site has made the transition to

HTTPS, so HTTP/2 will not even be available to those that have not. Looking at just those sites

that use HTTPS, in Figure 20.5 we do see a higher adoption of HTTP/2 at around 55%, similar to

the percent of all requests in Figure 20.2.

We have shown that browser support for HTTP/2 is strong and that there is a safe road to

adoption, so why doesn’t every site (or at least every HTTPS site) support HTTP/2? Well, here

we come to the final item for support we have not measured yet: server support.

This is more problematic than browser support as, unlike modern browsers, servers often do

not automatically upgrade to the latest version. Even when the server is regularly maintained

and patched, that will often just apply security patches rather than new features like HTTP/2.

Let’s look first at the server HTTP headers for those sites that do support HTTP/2.

Figure 20.5. HTTP version usage for HTTPS home pages.

Protocol Desktop Mobile Both

0.09% 0.10% 0.09%

HTTP/1.0 0.06% 0.06% 0.06%

HTTP/1.1 45.81% 44.31% 45.01%

HTTP/2 54.04% 55.53% 54.83%

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 389

Nginx provides package repositories that allow ease of installing or upgrading to the latest

version, so it is no surprise to see it leading the way here. Cloudflare is the most popular CDN

and enables HTTP/2 by default, so again it is not surprising to see it hosts a large percentage of

HTTP/2 sites. Incidently, Cloudflare uses a heavily customized429 version of nginx as their web

server. After those, we see Apache at around 20% of usage, followed by some servers who

choose to hide what they are, and then the smaller players such as LiteSpeed, IIS, Google

Servlet Engine, and openresty, which is nginx based.

What is more interesting is those servers that that do not support HTTP/2:

Figure 20.6. Servers used for HTTP/2.

Server Desktop Mobile Both

nginx 34.04% 32.48% 33.19%

cloudflare 23.76% 22.29% 22.97%

Apache 17.31% 19.11% 18.28%

4.56% 5.13% 4.87%

LiteSpeed 4.11% 4.97% 4.57%

GSE 2.16% 3.73% 3.01%

Microsoft-IIS 3.09% 2.66% 2.86%

openresty 2.15% 2.01% 2.07%

… … … …

429. https://blog.cloudflare.com/nginx-structural-enhancements-for-http-2-performance/

Part IV Chapter 20 : HTTP/2

390 2019 Web Almanac by HTTP Archive

https://blog.cloudflare.com/nginx-structural-enhancements-for-http-2-performance/

Some of this will be non-HTTPS traffic that would use HTTP/1.1 even if the server supported

HTTP/2, but a bigger issue is those that do not support HTTP/2 at all. In these stats, we see a

much greater share for Apache and IIS, which are likely running older versions.

For Apache in particular, it is often not easy to add HTTP/2 support to an existing installation, as

Apache does not provide an official repository to install this from. This often means resorting to

compiling from source or trusting a third-party repository, neither of which is particularly

appealing to many administrators.

Only the latest versions of Linux distributions (RHEL and CentOS 8, Ubuntu 18 and Debian 9)

come with a version of Apache which supports HTTP/2, and many servers are not running those

yet. On the Microsoft side, only Windows Server 2016 and above supports HTTP/2, so again

those running older versions cannot support this in IIS.

Merging these two stats together, we can see the percentage of installs per server, that use

HTTP/2:

Figure 20.7. Servers used for HTTP/1.1 or lower.

Server Desktop Mobile Both

Apache 46.76% 46.84% 46.80%

nginx 21.12% 21.33% 21.24%

Microsoft-IIS 11.30% 9.60% 10.36%

7.96% 7.59% 7.75%

GSE 1.90% 3.84% 2.98%

cloudflare 2.44% 2.48% 2.46%

LiteSpeed 1.02% 1.63% 1.36%

openresty 1.22% 1.36% 1.30%

… … … …

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 391

It’s clear that Apache and IIS fall way behind with 18% and 14% of their installed based

supporting HTTP/2, which has to be (at least in part) a consequence of it being more difficult to

upgrade them. A full operating system upgrade is often required for many servers to get this

support easily. Hopefully this will get easier as new versions of operating systems become the

norm.

None of this is a comment on the HTTP/2 implementations here (I happen to think Apache has

one of the best implementations430), but more about the ease of enabling HTTP/2 in each of

these servers–or lack thereof.

Impact of HTTP/2

The impact of HTTP/2 is much more difficult to measure, especially using the HTTP Archive

methodology. Ideally, sites should be crawled with both HTTP/1.1 and HTTP/2 and the

difference measured, but that is not possible with the statistics we are investigating here.

Additionally, measuring whether the average HTTP/2 site is faster than the average HTTP/1.1

site introduces too many other variables that require a more exhaustive study than we can

cover here.

One impact that can be measured is in the changing use of HTTP now that we are in an HTTP/2

Figure 20.8. Percentage installs of each server used to provide HTTP/2.

Server Desktop Mobile

cloudflare 85.40% 83.46%

LiteSpeed 70.80% 63.08%

openresty 51.41% 45.24%

nginx 49.23% 46.19%

GSE 40.54% 35.25%

25.57% 27.49%

Apache 18.09% 18.56%

Microsoft-IIS 14.10% 13.47%

… … …

430. https://twitter.com/tunetheweb/status/988196156697169920?s=20

Part IV Chapter 20 : HTTP/2

392 2019 Web Almanac by HTTP Archive

https://twitter.com/tunetheweb/status/988196156697169920?s=20
https://twitter.com/tunetheweb/status/988196156697169920?s=20

world. Multiple connections were a workaround with HTTP/1.1 to allow a limited form of

parallelization, but this is in fact the opposite of what usually works best with HTTP/2. A single

connection reduces the overhead of TCP setup, TCP slow start, and HTTPS negotiation, and it

also allows the potential of cross-request prioritization.

HTTP Archive measures the number of TCP connections per page, and that is dropping steadily

as more sites support HTTP/2 and use its single connection instead of six separate connections.

Figure 20.9. TCP connections per page. (Source: HTTP Archive431)

Figure 20.10. Total requests per page. (Source: HTTP Archive432)

431. https://httparchive.org/reports/state-of-the-web#tcp
432. https://httparchive.org/reports/state-of-the-web#reqTotal

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 393

https://almanac.httparchive.org/static/images/2019/http/ch20_fig9_num_tcp_connections_trend_over_years.png
https://almanac.httparchive.org/static/images/2019/http/ch20_fig9_num_tcp_connections_trend_over_years.png
https://httparchive.org/reports/state-of-the-web#tcp
https://almanac.httparchive.org/static/images/2019/http/ch20_fig10_total_requests_per_page_trend_over_years.png
https://almanac.httparchive.org/static/images/2019/http/ch20_fig10_total_requests_per_page_trend_over_years.png
https://httparchive.org/reports/state-of-the-web#reqTotal

Bundling assets to obtain fewer requests was another HTTP/1.1 workaround that went by

many names: bundling, concatenation, packaging, spriting, etc. This is less necessary when using

HTTP/2 as there is less overhead with requests, but it should be noted that requests are not

free in HTTP/2, and those that experimented with removing bundling completely have noticed

a loss in performance433. Looking at the number of requests loaded per page over time, we do see

a slight decrease in requests, rather than the expected increase.

This low rate of change can perhaps be attributed to the aforementioned observations that

bundling cannot be removed (at least, not completely) without a negative performance impact

and that many build tools currently bundle for historical reasons based on HTTP/1.1

recommendations. It is also likely that many sites may not be willing to penalize HTTP/1.1 users

by undoing their HTTP/1.1 performance hacks just yet, or at least that they do not have the

confidence (or time!) to feel that this is worthwhile.

The fact that the number of requests is staying roughly static is interesting, given the ever-

increasing page weight, though perhaps this is not entirely related to HTTP/2.

HTTP/2 Push

HTTP/2 push has a mixed history despite being a much-hyped new feature of HTTP/2. The

other features were basically performance improvements under the hood, but push was a

brand new concept that completely broke the single request to single response nature of HTTP.

It allowed extra responses to be returned; when you asked for the web page, the server could

respond with the HTML page as usual, but then also send you the critical CSS and JavaScript,

thus avoiding any additional round trips for certain resources. It would, in theory, allow us to

stop inlining CSS and JavaScript into our HTML, and still get the same performance gains of

doing so. After solving that, it could potentially lead to all sorts of new and interesting use

cases.

The reality has been, well, a bit disappointing. HTTP/2 push has proved much harder to use

effectively than originally envisaged. Some of this has been due to the complexity of how HTTP/

2 push works434, and the implementation issues due to that.

A bigger concern is that push can quite easily cause, rather than solve, performance issues.

Over-pushing is a real risk. Often the browser is in the best place to decide what to request, and

just as crucially when to request it but HTTP/2 push puts that responsibility on the server.

Pushing resources that a browser already has in its cache, is a waste of bandwidth (though in

my opinion so is inlining CSS but that gets must less of a hard time about that than HTTP/2

push!).

433. https://engineering.khanacademy.org/posts/js-packaging-http2.htm
434. https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

Part IV Chapter 20 : HTTP/2

394 2019 Web Almanac by HTTP Archive

https://engineering.khanacademy.org/posts/js-packaging-http2.htm
https://engineering.khanacademy.org/posts/js-packaging-http2.htm
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/
https://jakearchibald.com/2017/h2-push-tougher-than-i-thought/

Proposals to inform the server about the status of the browser cache have stalled435 especially

on privacy concerns. Even without that problem, there are other potential issues if push is not

used correctly. For example, pushing large images and therefore holding up the sending of

critical CSS and JavaScript will lead to slower websites than if you’d not pushed at all!

There has also been very little evidence to date that push, even when implemented correctly,

results in the performance increase it promised. This is an area that, again, the HTTP Archive is

not best placed to answer, due to the nature of how it runs (a crawl of popular sites using

Chrome in one state), so we won’t delve into it too much here. However, suffice to say that the

performance gains are far from clear-cut and the potential problems are real.

Putting that aside let’s look at the usage of HTTP/2 push.

These stats show that the uptake of HTTP/2 push is very low, most likely because of the issues

described previously. However, when sites do use push, they tend to use it a lot rather than for

one or two assets as shown in Figure 20.12.

This is a concern as previous advice has been to be conservative with push and to “push just

enough resources to fill idle network time, and no more”436. The above statistics suggest many

resources of a significant combined size are pushed.

Figure 20.11. Sites using HTTP/2 push.

Client Sites Using HTTP/2 Push Sites Using HTTP/2 Push (%)

Desktop 22,581 0.52%

Mobile 31,452 0.59%

Figure 20.12. How much is pushed when it is used.

Client Avg Pushed Requests Avg KB Pushed

Desktop 7.86 162.38

Mobile 6.35 122.78

435. https://lists.w3.org/Archives/Public/ietf-http-wg/2019JanMar/0033.html
436. https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0/edit

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 395

https://lists.w3.org/Archives/Public/ietf-http-wg/2019JanMar/0033.html
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0/edit
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0/edit

Figure 20.13 shows us which assets are most commonly pushed. JavaScript and CSS are the

overwhelming majority of pushed items, both by volume and by bytes. After this, there is a

ragtag assortment of images, fonts, and data. At the tail end we see around 100 sites pushing

video, which may be intentional, or it may be a sign of over-pushing the wrong types of assets!

One concern raised by some is that HTTP/2 implementations have repurposed the preload
HTTP link header as a signal to push. One of the most popular uses of the preload
resource hint is to inform the browser of late-discovered resources, like fonts and images, that

the browser will not see until the CSS has been requested, downloaded, and parsed. If these are

now pushed based on that header, there was a concern that reusing this may result in a lot of

unintended pushes.

However, the relatively low usage of fonts and images may mean that risk is not being seen as

much as was feared. <link rel="preload" ... > tags are often used in the HTML rather

than HTTP link headers and the meta tags are not a signal to push. Statistics in the Resource

Hints chapter show that fewer than 1% of sites use the preload HTTP link header, and about

the same amount use preconnect which has no meaning in HTTP/2, so this would suggest this is

not so much of an issue. Though there are a number of fonts and other assets being pushed,

which may be a signal of this.

As a counter argument to those complaints, if an asset is important enough to preload, then it

could be argued these assets should be pushed if possible as browsers treat a preload hint as

very high priority requests anyway. Any performance concern is therefore (again arguably) at

Figure 20.13. What asset types is push used for?

Part IV Chapter 20 : HTTP/2

396 2019 Web Almanac by HTTP Archive

https://almanac.httparchive.org/static/images/2019/http/ch20_fig13_what_push_is_used_for.png
https://almanac.httparchive.org/static/images/2019/http/ch20_fig13_what_push_is_used_for.png

the overuse of preload, rather than the resulting HTTP/2 push that happens because of this.

To get around this unintended push, you can provide the nopush attribute in your preload

header:

link: </assets/jquery.js>; rel=preload; as=script; nopush

5% of preload HTTP headers do make use of this attribute, which is higher than I would have

expected as I would have considered this a niche optimization. Then again, so is the use of

preload HTTP headers and/or HTTP/2 push itself!

HTTP/2 Issues

HTTP/2 is mostly a seamless upgrade that, once your server supports it, you can switch on with

no need to change your website or application. You can optimize for HTTP/2 or stop using

HTTP/1.1 workarounds as much, but in general, a site will usually work without needing any

changes—it will just be faster. There are a couple of gotchas to be aware of, however, that can

impact any upgrade, and some sites have found these out the hard way.

One cause of issues in HTTP/2 is the poor support of HTTP/2 prioritization. This feature allows

multiple requests in progress to make the appropriate use of the connection. This is especially

important since HTTP/2 has massively increased the number of requests that can be running on

the same connection. 100 or 128 parallel request limits are common in server implementations.

Previously, the browser had a max of six connections per domain, and so used its skill and

judgement to decide how best to use those connections. Now, it rarely needs to queue and can

send all requests as soon as it knows about them. This can then lead to the bandwidth being

“wasted” on lower priority requests while critical requests are delayed (and incidentally can

also lead to swamping your backend server with more requests than it is used to!437).

HTTP/2 has a complex prioritization model (too complex many say - hence why it is being

reconsidered for HTTP/3!) but few servers honor that properly. This can be because their

HTTP/2 implementations are not up to scratch, or because of so-called bufferbloat, where the

responses are already en route before the server realizes there is a higher priority request. Due

to the varying nature of servers, TCP stacks, and locations, it is difficult to measure this for most

sites, but with CDNs this should be more consistent.

Patrick Meenan438 created an example test page439, which deliberately tries to download a load of

437. https://www.lucidchart.com/techblog/2019/04/10/why-turning-on-http2-was-a-mistake/
438. https://twitter.com/patmeenan
439. https://github.com/pmeenan/http2priorities/tree/master/stand-alone

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 397

https://www.lucidchart.com/techblog/2019/04/10/why-turning-on-http2-was-a-mistake/
https://www.lucidchart.com/techblog/2019/04/10/why-turning-on-http2-was-a-mistake/
https://twitter.com/patmeenan
https://github.com/pmeenan/http2priorities/tree/master/stand-alone

low priority, off-screen images, before requesting some high priority on-screen images. A good

HTTP/2 server should be able to recognize this and send the high priority images shortly after

requested, at the expense of the lower priority images. A poor HTTP/2 server will just respond

in the request order and ignore any priority signals. Andy Davies has a page tracking the status

of various CDNs for Patrick’s test440. The HTTP Archive identifies when a CDN is used as part of

its crawl, and merging these two datasets can tell us the percent of pages using a passing or

failing CDN.

Figure 20.14 shows that a fairly significant portion of traffic is subject to the identified issue,

totaling 26.82% on desktop and 27.83% on mobile. How much of a problem this is depends on

exactly how the page loads and whether high priority resources are discovered late or not for

the sites affected.

Figure 20.14. HTTP/2 prioritization support in common CDNs.

CDN Prioritizes Correctly? Desktop Mobile Both

Not using CDN Unknown 57.81% 60.41% 59.21%

Cloudflare Pass 23.15% 21.77% 22.40%

Google Fail 6.67% 7.11% 6.90%

Amazon CloudFront Fail 2.83% 2.38% 2.59%

Fastly Pass 2.40% 1.77% 2.06%

Akamai Pass 1.79% 1.50% 1.64%

Unknown 1.32% 1.58% 1.46%

WordPress Pass 1.12% 0.99% 1.05%

Sucuri Firewall Fail 0.88% 0.75% 0.81%

Incapsula Fail 0.39% 0.34% 0.36%

Netlify Fail 0.23% 0.15% 0.19%

OVH CDN Unknown 0.19% 0.18% 0.18%

440. https://github.com/andydavies/http2-prioritization-issues

Part IV Chapter 20 : HTTP/2

398 2019 Web Almanac by HTTP Archive

https://github.com/andydavies/http2-prioritization-issues
https://github.com/andydavies/http2-prioritization-issues

Another issue is with the upgrade HTTP header being used incorrectly. Web servers can

respond to requests with an upgrade HTTP header suggesting that it supports a better

protocol that the client might wish to use (e.g. advertise HTTP/2 to a client only using HTTP/

1.1). You might think this would be useful as a way of informing the browser a server supports

HTTP/2, but since browsers only support HTTP/2 over HTTPS and since use of HTTP/2 can be

negotiated through the HTTPS handshake, the use of this upgrade header for advertising

HTTP/2 is pretty limited (for browsers at least).

Worse than that, is when a server sends an upgrade header in error. This could be because a

backend server supporting HTTP/2 is sending the header and then an HTTP/1.1-only edge

server is blindly forwarding it to the client. Apache emits the upgrade header when

mod_http2 is enabled but HTTP/2 is not being used, and an nginx instance sitting in front of

such an Apache instance happily forwards this header even when nginx does not support

HTTP/2. This false advertising then leads to clients trying (and failing!) to use HTTP/2 as they

are advised to.

108 sites use HTTP/2 while they also suggest upgrading to HTTP/2 in the upgrade header. A

further 12,767 sites on desktop (15,235 on mobile) suggest upgrading an HTTP/1.1 connection

delivered over HTTPS to HTTP/2 when it’s clear this was not available, or it would have been

used already. These are a small minority of the 4.3 million sites crawled on desktop and 5.3

million sites crawled on mobile, but it shows that this is still an issue affecting a number of sites

out there. Browsers handle this inconsistently, with Safari in particular attempting to upgrade

and then getting itself in a mess and refusing to display the site at all.

All of this is before we get into the few sites that recommend upgrading to http1.0 ,

http://1.1 , or even -all,+TLSv1.3,+TLSv1.2 . There are clearly some typos in web

server configurations going on here!

There are further implementation issues we could look at. For example, HTTP/2 is much stricter

about HTTP header names, rejecting the whole request if you respond with spaces, colons, or

other invalid HTTP header names. The header names are also converted to lowercase, which

catches some by surprise if their application assumes a certain capitalization. This was never

guaranteed previously, as HTTP/1.1 specifically states the header names are case insensitive441,

but still some have depended on this. The HTTP Archive could potentially be used to identify

Figure 20.15. The percent of mobile requests with sub-optimal HTTP/2 prioritization.

27.83%

441. https://tools.ietf.org/html/rfc7230#section-3.2

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 399

https://tools.ietf.org/html/rfc7230#section-3.2

these issues as well, though some of them will not be apparent on the home page, but we did

not delve into that this year.

HTTP/3

The world does not stand still, and despite HTTP/2 not having even reached its fifth birthday,

people are already seeing it as old news and getting more excited about its successor, HTTP/3442.

HTTP/3 builds on the concepts of HTTP/2, but moves from working over TCP connections that

HTTP has always used, to a UDP-based protocol called QUIC443. This allows us to fix one case

where HTTP/2 is slower then HTTP/1.1, when there is high packet loss and the guaranteed

nature of TCP holds up all streams and throttles back all streams. It also allows us to address

some TCP and HTTPS inefficiencies, such as consolidating in one handshake for both, and

supporting many ideas for TCP that have proven hard to implement in real life (TCP fast open,

0-RTT, etc.).

HTTP/3 also cleans up some overlap between TCP and HTTP/2 (e.g. flow control being

implemented in both layers) but conceptually it is very similar to HTTP/2. Web developers who

understand and have optimized for HTTP/2 should have to make no further changes for HTTP/

3. Server operators will have more work to do, however, as the differences between TCP and

QUIC are much more groundbreaking. They will make implementation harder so the rollout of

HTTP/3 may take considerably longer than HTTP/2, and initially be limited to those with certain

expertise in the field like CDNs.

QUIC has been implemented by Google for a number of years and it is now undergoing a similar

standardization process that SPDY did on its way to HTTP/2. QUIC has ambitions beyond just

HTTP, but for the moment it is the use case being worked on currently. Just as this chapter was

being written, Cloudflare, Chrome, and Firefox all announced HTTP/3 support444, despite the

fact that HTTP/3 is still not formally complete or approved as a standard yet. This is welcome as

QUIC support has been somewhat lacking outside of Google until recently, and definitely lags

behind SPDY and HTTP/2 support from a similar stage of standardization.

Because HTTP/3 uses QUIC over UDP rather than TCP, it makes the discovery of HTTP/3

support a bigger challenge than HTTP/2 discovery. With HTTP/2 we can mostly use the HTTPS

handshake, but as HTTP/3 is on a completely different connection, that is not an option here.

HTTP/2 also used the upgrade HTTP header to inform the browser of HTTP/2 support, and

although that was not that useful for HTTP/2, a similar mechanism has been put in place for

QUIC that is more useful. The alternative services HTTP header (alt-svc) advertises

alternative protocols that can be used on completely different connections, as opposed to

442. https://tools.ietf.org/html/draft-ietf-quic-http
443. https://datatracker.ietf.org/wg/quic/about/
444. https://blog.cloudflare.com/http3-the-past-present-and-future/

Part IV Chapter 20 : HTTP/2

400 2019 Web Almanac by HTTP Archive

https://tools.ietf.org/html/draft-ietf-quic-http
https://datatracker.ietf.org/wg/quic/about/
https://blog.cloudflare.com/http3-the-past-present-and-future/

alternative protocols that can be used on this connection, which is what the upgrade HTTP

header is used for.

Analysis of this header shows that 7.67% of desktop sites and 8.38% of mobile sites already

support QUIC, which roughly represents Google’s percentage of traffic, unsurprisingly enough,

as it has been using this for a while. And 0.04% are already supporting HTTP/3. I would imagine

by next year’s Web Almanac, this number will have increased significantly.

Conclusion

This analysis of the available statistics in the HTTP Archive project has shown what many of us

in the HTTP community were already aware of: HTTP/2 is here and proving to be very popular.

It is already the dominant protocol in terms of number of requests, but has not quite overtaken

HTTP/1.1 in terms of number of sites that support it. The long tail of the internet means that it

often takes an exponentially longer time to make noticeable gains on the less well-maintained

sites than on the high profile, high volume sites.

We’ve also talked about how it is (still!) not easy to get HTTP/2 support in some installations.

Server developers, operating system distributors, and end customers all have a part to play in

pushing to make that easier. Tying software to operating systems always lengthens deployment

time. In fact, one of the very reasons for QUIC is to break a similar barrier with deploying TCP

changes. In many instances, there is no real reason to tie web server versions to operating

systems. Apache (to use one of the more popular examples) will run with HTTP/2 support in

older operating systems, but getting an up-to-date version on to the server should not require

the expertise or risk it currently does. Nginx does very well here, hosting repositories for the

common Linux flavors to make installation easier, and if the Apache team (or the Linux

distribution vendors) do not offer something similar, then I can only see Apache’s usage

continuing to shrink as it struggles to hold relevance and shake its reputation as old and slow

(based on older installs) even though up-to-date versions have one of the best HTTP/2

implementations. I see that as less of an issue for IIS, since it is usually the preferred web server

on the Windows side.

Other than that, HTTP/2 has been a relatively easy upgrade path, which is why it has had the

strong uptake it has already seen. For the most part, it is a painless switch-on and, therefore, for

Figure 20.16. The percent of mobile sites which support QUIC.

8.38%

Part IV Chapter 20 : HTTP/2

2019 Web Almanac by HTTP Archive 401

most, it has turned out to be a hassle-free performance increase that requires little thought

once your server supports it. The devil is in the details though (as always), and small differences

between server implementations can result in better or worse HTTP/2 usage and, ultimately,

end user experience. There has also been a number of bugs and even security issues445, as is to be

expected with any new protocol.

Ensuring you are using a strong, up-to-date, well-maintained implementation of any newish

protocol like HTTP/2 will ensure you stay on top of these issues. However, that can take

expertise and managing. The roll out of QUIC and HTTP/3 will likely be even more complicated

and require more expertise. Perhaps this is best left to third-party service providers like CDNs

who have this expertise and can give your site easy access to these features? However, even

when left to the experts, this is not a sure thing (as the prioritization statistics show), but if you

choose your server provider wisely and engage with them on what your priorities are, then it

should be an easier implementation.

On that note it would be great if the CDNs prioritized these issues (pun definitely intended!),

though I suspect with the advent of a new prioritization method in HTTP/3, many will hold tight.

The next year will prove yet more interesting times in the HTTP world.

Author

Barry Pollard

@tunetheweb tunetheweb tunetheweb https://www.tunetheweb.com

Barry Pollard is a software developer and author of the Manning book HTTP/2 in

Action446. He thinks the web is amazing but wants to make it even better. You can

find him tweeting @tunetheweb and blogging at www.tunetheweb.com.

445. https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-002.md
446. https://www.manning.com/books/http2-in-action

Part IV Chapter 20 : HTTP/2

402 2019 Web Almanac by HTTP Archive

https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-002.md
https://twitter.com/tunetheweb
https://github.com/tunetheweb
https://www.linkedin.com/in/tunetheweb/
https://www.tunetheweb.com/
https://www.manning.com/books/http2-in-action
https://www.manning.com/books/http2-in-action
https://twitter.com/tunetheweb
https://www.tunetheweb.com/

Appendix A

Methodology

Overview

The Web Almanac is a project organized by HTTP Archive447. HTTP Archive was started in 2010

by Steve Souders with the mission to track how the web is built. It evaluates the composition of

millions of web pages on a monthly basis and makes its terabytes of metadata available for

analysis on BigQuery448. Learn more about HTTP Archive449.

The mission of the Web Almanac is to make the data warehouse of HTTP Archive even more

accessible to the web community by having subject matter experts provide contextualized

447. https://httparchive.org
448. https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data
449. https://httparchive.org/about

Appendix A : Methodology

2019 Web Almanac by HTTP Archive 403

https://httparchive.org/
https://httparchive.org/faq#how-do-i-use-bigquery-to-write-custom-queries-over-the-data
https://httparchive.org/about

insights. You can think of it as an annual repository of knowledge about the state of the web,

2019 being its first edition.

The 2019 edition of the Web Almanac is comprised of four pillars: content, experience,

publishing, and distribution. Each part of the written report represents a pillar and is made up

of chapters exploring its different aspects. For example, Part II represents the user experience

and includes the Performance, Security, Accessibility, SEO, PWA, and Mobile Web chapters.

About the dataset

The HTTP Archive dataset is continuously updating with new data monthly. For the 2019

edition of the Web Almanac, unless otherwise noted in the chapter, all metrics were sourced

from the July 2019 crawl. These results are publicly queryable450 on BigQuery in tables prefixed

with 2019_07_01 .

All of the metrics presented in the Web Almanac are publicly reproducible using the dataset on

BigQuery. You can browse the queries used by all chapters in our GitHub repository451.

Please note that some of these queries are quite large and can be expensive452 to run yourself, as

BigQuery is billed by the terabyte. For help controlling your spending, refer to Tim Kadlec’s post Using

BigQuery Without Breaking the Bank453.

For example, to understand the median number of bytes of JavaScript per desktop and mobile

page, see 01_01b.sql454:

#standardSQL

01_01b: Distribution of JS bytes by client

SELECT

 percentile,

 _TABLE_SUFFIX AS client,

 APPROX_QUANTILES(ROUND(bytesJs / 1024, 2),

1000)[OFFSET(percentile * 10)] AS js_kbytes

FROM

450. https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
451. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2019
452. https://cloud.google.com/bigquery/pricing
453. https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
454. https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2019/javascript/01_01b.sql

Appendix A : Methodology

404 2019 Web Almanac by HTTP Archive

https://github.com/HTTPArchive/httparchive.org/blob/main/docs/gettingstarted_bigquery.md
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2019
https://cloud.google.com/bigquery/pricing
https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
https://timkadlec.com/remembers/2019-12-10-using-bigquery-without-breaking-the-bank/
https://github.com/HTTPArchive/almanac.httparchive.org/blob/main/sql/2019/javascript/01_01b.sql

 `httparchive.summary_pages.2019_07_01_*`,

 UNNEST([10, 25, 50, 75, 90]) AS percentile

GROUP BY

 percentile,

 client

ORDER BY

 percentile,

 client

Results for each metric are publicly viewable in chapter-specific spreadsheets, for example

JavaScript results455.

Websites

There are 5,790,700 websites in the dataset. Among those, 5,297,442 are mobile websites and

4,371,973 are desktop websites. Most websites are included in both the mobile and desktop

subsets.

HTTP Archive sources the URLs for its websites from the Chrome UX Report. The Chrome UX

Report is a public dataset from Google that aggregates user experiences across millions of

websites actively visited by Chrome users. This gives us a list of websites that are up-to-date

and a reflection of real-world web usage. The Chrome UX Report dataset includes a form factor

dimension, which we use to get all of the websites accessed by desktop or mobile users.

The July 2019 HTTP Archive crawl used by the Web Almanac used the most recently available

Chrome UX Report release, May 2019 (201905), for its list of websites. This dataset was

released on June 11, 2019 and captures websites visited by Chrome users during the month of

May.

Due to resource limitations, the HTTP Archive can only test one page from each website in the

Chrome UX report. To reconcile this, only the home pages are included. Be aware that this will

introduce some bias into the results because a home page is not necessarily representative of

the entire website.

HTTP Archive is also considered a lab testing tool, meaning it tests websites from a datacenter

455. https://docs.google.com/spreadsheets/d/1kBTglETN_V9UjKqK_EFmFjRexJnQOmLLr-I2Tkotvic/edit?usp=sharing

Appendix A : Methodology

2019 Web Almanac by HTTP Archive 405

https://docs.google.com/spreadsheets/d/1kBTglETN_V9UjKqK_EFmFjRexJnQOmLLr-I2Tkotvic/edit?usp=sharing

and does not collect data from real-world user experiences. Therefore, all website home pages

are tested with an empty cache in a logged out state.

Metrics

HTTP Archive collects metrics about how the web is built. It includes basic metrics like the

number of bytes per page, whether the page was loaded over HTTPS, and individual request

and response headers. The majority of these metrics are provided by WebPageTest, which acts

as the test runner for each website.

Other testing tools are used to provide more advanced metrics about the page. For example,

Lighthouse is used to run audits against the page to analyze its quality in areas like accessibility

and SEO. The Tools section below goes into each of these tools in more detail.

To work around some of the inherent limitations of a lab dataset, the Web Almanac also makes

use of the Chrome UX Report for metrics on user experiences, especially in the area of web

performance.

Some metrics are completely out of reach. For example, we don’t necessarily have the ability to

detect the tools used to build a website. If a website is built using create-react-app, we could

tell that it uses the React framework, but not necessarily that a particular build tool is used.

Unless these tools leave detectible fingerprints in the website’s code, we’re unable to measure

their usage.

Other metrics may not necessarily be impossible to measure but are challenging or unreliable.

For example, aspects of web design are inherently visual and may be difficult to quantify, like

whether a page has an intrusive modal dialog.

Tools

The Web Almanac is made possible with the help of the following open source tools.

WebPageTest

WebPageTest456 is a prominent web performance testing tool and the backbone of HTTP

Archive. We use a private instance457 of WebPageTest with private test agents, which are the

actual browsers that test each web page. Desktop and mobile websites are tested under

different configurations:

456. https://www.webpagetest.org/
457. https://docs.webpagetest.org/private-instances/

Appendix A : Methodology

406 2019 Web Almanac by HTTP Archive

https://www.webpagetest.org/
https://docs.webpagetest.org/private-instances/

Desktop websites are run from within a desktop Chrome environment on a Linux VM. The

network speed is equivalent to a cable connection.

Mobile websites are run from within a mobile Chrome environment on an emulated Moto G4

device with a network speed equivalent to a 3G connection. Note that the emulated mobile

User Agent self-identifies as Chrome 65 but is actually Chrome 75 under the hood.

There are two locations from which tests are run: California and Oregon USA. HTTP Archive

maintains its own test agent hardware located in the Internet Archive458 datacenter in

California. Additional test agents in Google Cloud Platform459’s us-west-1 location in Oregon are

added as needed.

HTTP Archive’s private instance of WebPageTest is kept in sync with the latest public version

and augmented with custom metrics460. These are snippets of JavaScript that are evaluated on

each website at the end of the test. The almanac.js461 custom metric includes several metrics that

were otherwise infeasible to calculate, for example those that depend on DOM state.

The results of each test are made available as a HAR file462, a JSON-formatted archive file

containing metadata about the web page.

Config Desktop Mobile

Device Linux VM Emulated Moto G4

User Agent

Mozilla/5.0 (X11; Linux x86_64)

AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/

75.0.3770.100 Safari/537.36

PTST/190704.170731

Mozilla/5.0 (Linux; Android 6.0.1; Moto G

(4) Build/MPJ24.139-64) AppleWebKit/

537.36 (KHTML, like Gecko) Chrome/

65.0.3325.146 Mobile Safari/537.36

PTST/190628.140653

Location
Redwood City, California, USA

The Dalles, Oregon, USA

Redwood City, California, USA

The Dalles, Oregon, USA

Connection Cable (5/1 Mbps 28ms RTT) 3G (1.600/0.768 Mbps 300ms RTT)

Viewport 1024 x 768px 512 x 360px

458. https://archive.org
459. https://cloud.google.com/compute/docs/regions-zones/#locations
460. https://github.com/HTTPArchive/custom-metrics
461. https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/almanac.js
462. https://en.wikipedia.org/wiki/HAR_(file_format)

Appendix A : Methodology

2019 Web Almanac by HTTP Archive 407

https://archive.org/
https://cloud.google.com/compute/docs/regions-zones/#locations
https://github.com/HTTPArchive/custom-metrics
https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/almanac.js
https://en.wikipedia.org/wiki/HAR_(file_format)

Lighthouse

Lighthouse463 is an automated website quality assurance tool built by Google. It audits web

pages to make sure they don’t include user experience antipatterns like unoptimized images

and inaccessible content.

HTTP Archive runs the latest version of Lighthouse for all of its mobile web pages — desktop

pages are not included because of limited resources. As of the July 2019 crawl, HTTP Archive

used the 5.1.0464 version of Lighthouse.

Lighthouse is run as its own distinct test from within WebPageTest, but it has its own

configuration profile:

* Note that Lighthouse is normally configured to have a CPU slowdown of 4x, but due to a bug465 in

WebPageTest, this was 1x at the time of the tests.

For more information about Lighthouse and the audits available in HTTP Archive, refer to the

Lighthouse developer documentation466.

Wappalyzer

Wappalyzer467 is a tool for detecting technologies used by web pages. There are 65 categories468

of technologies tested, ranging from JavaScript frameworks, to CMS platforms, and even

cryptocurrency miners. There are over 1,200 supported technologies.

HTTP Archive runs the latest version of Wappalyzer for all web pages. As of July 2019 the Web

Almanac used the 5.8.3 version469 of Wappalyzer.

Config Value

CPU slowdown 1x*

Download throughput 1.6 Mbps

Upload throughput 0.768 Mbps

RTT 150 ms

463. https://developers.google.com/web/tools/lighthouse/
464. https://github.com/GoogleChrome/lighthouse/releases/tag/v5.1.0
465. https://github.com/GoogleChrome/lighthouse/issues/9668#issuecomment-535134232
466. https://developers.google.com/web/tools/lighthouse/
467. https://www.wappalyzer.com/
468. https://www.wappalyzer.com/technologies
469. https://github.com/AliasIO/Wappalyzer/releases/tag/v5.8.3

Appendix A : Methodology

408 2019 Web Almanac by HTTP Archive

https://developers.google.com/web/tools/lighthouse/
https://github.com/GoogleChrome/lighthouse/releases/tag/v5.1.0
https://github.com/GoogleChrome/lighthouse/issues/9668#issuecomment-535134232
https://developers.google.com/web/tools/lighthouse/
https://www.wappalyzer.com/
https://www.wappalyzer.com/technologies
https://github.com/AliasIO/Wappalyzer/releases/tag/v5.8.3

Wappalyzer powers many chapters that analyze the popularity of developer tools like

WordPress, Bootstrap, and jQuery. For example, the Ecommerce and CMS chapters rely heavily

on the respective Ecommerce470 and CMS471 categories of technologies detected by Wappalyzer.

All detection tools, including Wappalyzer, have their limitations. The validity of their results will

always depend on how accurate their detection mechanisms are. The Web Almanac will add a

note in every chapter where Wappalyzer is used but its analysis may not be accurate due to a

specific reason.

Chrome UX Report

The Chrome UX Report472 is a public dataset of real-world Chrome user experiences.

Experiences are grouped by websites’ origin, for example https://www.example.com . The

dataset includes distributions of UX metrics like paint, load, interaction, and layout stability. In

addition to grouping by month, experiences may also be sliced by dimensions like country-level

geography, form factor (desktop, phone, tablet), and effective connection type (4G, 3G, etc.).

For Web Almanac metrics that reference real-world user experience data from the Chrome UX

Report, the July 2019 dataset (201907) is used.

You can learn more about the dataset in the Using the Chrome UX Report on BigQuery473 guide

on web.dev474.

Third Party Web

Third Party Web475 is a research project by Patrick Hulce, author of the Third Parties chapter,

that uses HTTP Archive and Lighthouse data to identify and analyze the impact of third party

resources on the web.

Domains are considered to be a third party provider if they appear on at least 50 unique pages.

The project also groups providers by their respective services in categories like ads, analytics,

and social.

Several chapters in the Web Almanac use the domains and categories from this dataset to

understand the impact of third parties.

470. https://www.wappalyzer.com/categories/ecommerce
471. https://www.wappalyzer.com/categories/cms
472. https://developers.google.com/web/tools/chrome-user-experience-report
473. https://web.dev/chrome-ux-report-bigquery
474. https://web.dev/
475. https://www.thirdpartyweb.today/

Appendix A : Methodology

2019 Web Almanac by HTTP Archive 409

https://www.wappalyzer.com/categories/ecommerce
https://www.wappalyzer.com/categories/cms
https://developers.google.com/web/tools/chrome-user-experience-report
https://web.dev/chrome-ux-report-bigquery
https://web.dev/
https://www.thirdpartyweb.today/

Rework CSS

Rework CSS476 is a JavaScript-based CSS parser. It takes entire stylesheets and produces a

JSON-encoded object distinguishing each individual style rule, selector, directive, and value.

This special purpose tool significantly improved the accuracy of many of the metrics in the CSS

chapter. CSS in all external stylesheets and inline style blocks for each page were parsed and

queried to make the analysis possible. See this thread477 for more information about how it was

integrated with the HTTP Archive dataset on BigQuery.

Analytical process

The Web Almanac took about a year to plan and execute with the coordination of dozens of

contributors from the web community. This section describes why we chose the metrics you

see in the Web Almanac, how they were queried, and interpreted.

Brainstorming

The inception of the Web Almanac started in January 2019 as a post on the HTTP Archive

forum478 describing the initiative and gathering support. In March 2019 we created a public

brainstorming doc479 in which anyone in the web community could write-in ideas for chapters or

metrics. This was a critical step to ensure we were focusing on things that matter to the

community and have a diverse set of voices included in the process.

As a result of the brainstorming, 20 chapters were solidified and we began assigning subject

matter experts and peer reviewers to each chapter480. This process had some inherent bias

because of the challenge of getting volunteers to commit to a project of this scale. Thus, many

of the contributors are members of the same professional circles. One explicit goal for future

editions of the Web Almanac is to encourage even more inclusion of underrepresented and

heterogeneous voices as authors and peer reviewers.

We spent May through June 2019 pairing people with chapters and getting their input to

finalize the individual metrics that will make up each chapter.

476. https://github.com/reworkcss/css
477. https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
478. https://discuss.httparchive.org/t/planning-the-web-almanac-2019/1553
479. http://bit.ly/web-almanac-brainstorm
480. https://github.com/HTTPArchive/almanac.httparchive.org/issues/2

Appendix A : Methodology

410 2019 Web Almanac by HTTP Archive

https://github.com/reworkcss/css
https://discuss.httparchive.org/t/analyzing-stylesheets-with-a-js-based-parser/1683
https://discuss.httparchive.org/t/planning-the-web-almanac-2019/1553
https://discuss.httparchive.org/t/planning-the-web-almanac-2019/1553
http://bit.ly/web-almanac-brainstorm
http://bit.ly/web-almanac-brainstorm
https://github.com/HTTPArchive/almanac.httparchive.org/issues/2
https://github.com/HTTPArchive/almanac.httparchive.org/issues/2

Analysis

In June 2019, with the stable list of metrics and chapters, data analysts triaged the metrics for

feasibility. In some cases, custom metrics481 needed to be created to fill gaps in our analytic

capabilities.

Throughout July 2019, the HTTP Archive data pipeline crawled several million websites,

gathering the metadata to be used in the Web Almanac.

Starting in August 2019, the data analysts began writing queries to extract the results for each

metric. In total, 431 queries were written by hand! You can browse all of the queries by chapter

in the sql/2019482 directory of the project’s GitHub repository.

Interpretation

Authors worked with analysts to correctly interpret the results and draw appropriate

conclusions. As authors wrote their respective chapters, they drew from these statistics to

support their framing of the state of the web. Peer reviewers worked with authors to ensure

the technical correctness of their analysis.

To make the results more easily understandable to readers, web developers and analysts

created data visualizations to embed in the chapter. Some visualizations are simplified to make

the conclusions easier to grasp. For example, rather than showing a full histogram of a

distribution, only a handful of percentiles are shown. Unless otherwise noted, all distributions

are summarized using percentiles, especially medians (50th percentile), and not averages.

Finally, editors revised the chapters to fix simple grammatical errors and ensure consistency

across the reading experience.

Looking ahead

The 2019 edition of the Web Almanac is the first of what we hope to be an annual tradition in

the web community of introspection and a commitment to positive change. Getting to this point

has been a monumental effort thanks to many dedicated contributors and we hope to leverage

as much of this work as possible to make future editions even more streamlined.

If you’re interested in contributing to the 2020 edition of the Web Almanac, please fill out our

interest form483. We’d love to hear your ideas for making this project even better!

481. https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/almanac.js
482. https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2019
483. https://forms.gle/Qyf3q5pKgdH1cBhq5

Appendix A : Methodology

2019 Web Almanac by HTTP Archive 411

https://github.com/HTTPArchive/legacy.httparchive.org/blob/master/custom_metrics/almanac.js
https://github.com/HTTPArchive/almanac.httparchive.org/tree/main/sql/2019
https://forms.gle/Qyf3q5pKgdH1cBhq5

412 2019 Web Almanac by HTTP Archive

Appendix B

Contributors

The Web Almanac has been made possible by the hard work of the web community. 103 people

have volunteered countless hours in the planning, research, writing and production phases of

the 2019 Web Almanac.

Abby Tsai
AbbyTsai

Translator

Abigail Klein
kleinab

Author

Adam Argyle
@argyleink

argyleink

https://nerdy.dev
Author and Brainstormer

Addy Osmani
@addyosmani

addyosmani

https://www.addyosmani.com
Brainstormer

Ahmad Awais
@MrAhmadAwais

ahmadawais

https://AhmadAwais.com
Brainstormer, Developer, and Reviewer

Alan Kent
@akent99

alankent

https://alankent.me
Author and Brainstormer

Alberto Medina
@iAlbMedina

amedina
Author and Brainstormer

Alessandro Ghedini
ghedo

https://ghedini.me/
Brainstormer and Reviewer

Alex Russell
@slightlylate

slightlyoff

http://infrequently.org
Brainstormer

Alexey Pyltsyn
lex111

https://lex111.ru/
Translator

Andrew Galloni
@dot_js

dotjs
Analyst and Reviewer

Andrew Limn
@Artefact_Andy

andylimn

https://artefact.com/gb-en/
Reviewer

Appendix B : Contributors

2019 Web Almanac by HTTP Archive 413

https://github.com/AbbyTsai
https://github.com/kleinab
https://twitter.com/argyleink
https://github.com/argyleink
http://127.0.0.1:8080/en/2019/argyleink
https://twitter.com/addyosmani
https://github.com/addyosmani
http://127.0.0.1:8080/en/2019/addyosmani
https://twitter.com/MrAhmadAwais
https://github.com/ahmadawais
http://127.0.0.1:8080/en/2019/MrAhmadAwais
https://twitter.com/akent99
https://github.com/alankent
http://127.0.0.1:8080/en/2019/akent99
https://twitter.com/iAlbMedina
https://github.com/amedina
https://github.com/ghedo
https://twitter.com/slightlylate
https://github.com/slightlyoff
http://127.0.0.1:8080/en/2019/slightlylate
https://github.com/lex111
https://twitter.com/dot_js
https://github.com/dotjs
https://twitter.com/Artefact_Andy
https://github.com/andylimn
http://127.0.0.1:8080/en/2019/Artefact_Andy

Andrew Noblet
anoblet

Developer

André Naumann
ndrnmnn

Brainstormer

Andy Davies
@AndyDavies

andydavies

http://andydavies.me/
Author and Reviewer

Arthur Rigaud
@arigaud_ca

arigaud-ca
Translator

Artur Janc
@arturjanc

arturjanc
Author and Brainstormer

Aymen Loukil
@LoukilAymen

AymenLoukil

http://www.aymen-loukil.com/en/
Developer and Reviewer

Barry Pollard
@tunetheweb

tunetheweb

tunetheweb

https://www.tunetheweb.com
Author, Brainstormer, Developer, Editor,
and Reviewer

Boris Schapira
@boostmarks

borisschapira

https://boris.schapira.dev
Developer and Translator

Brian Kardell
@briankardell

bkardell

https://bkardell.com
Author, Brainstormer, and Reviewer

Carlos Araya
@elrond25

caraya

http://publishing-

project.rivendellweb.net/
Brainstormer

Carlos Torres
@carlos_catb

c-torres
Developer and Translator

Catalin Rosu
@catalinred

catalinred

https://catalin.red/
Developer and Reviewer

Chen Hui Jing
@hj_chen

huijing

https://www.chenhuijing.com
Reviewer

Cheng Xi
chengxicn

Translator

Colin Bendell
@colinbendell

colinbendell
Author and Brainstormer

Daniel Stenberg
@bagder

bagder

https://daniel.haxx.se/
Reviewer

Dave Crossland
@davelab6

davelab6

https://fonts.google.com
Brainstormer

David Fox
@theobto

foxdavidj

https://www.lookzook.com
Analyst, Author, Brainstormer, Editor,
and Reviewer

Appendix B : Contributors

414 2019 Web Almanac by HTTP Archive

https://github.com/anoblet
https://github.com/ndrnmnn
https://twitter.com/AndyDavies
https://github.com/andydavies
http://127.0.0.1:8080/en/2019/AndyDavies
https://twitter.com/arigaud_ca
https://github.com/arigaud-ca
https://twitter.com/arturjanc
https://github.com/arturjanc
https://twitter.com/LoukilAymen
https://github.com/AymenLoukil
http://127.0.0.1:8080/en/2019/LoukilAymen
https://twitter.com/tunetheweb
https://github.com/tunetheweb
https://www.linkedin.com/in/tunetheweb
http://127.0.0.1:8080/en/2019/tunetheweb
https://twitter.com/boostmarks
https://github.com/borisschapira
http://127.0.0.1:8080/en/2019/boostmarks
https://twitter.com/briankardell
https://github.com/bkardell
http://127.0.0.1:8080/en/2019/briankardell
https://twitter.com/elrond25
https://github.com/caraya
http://127.0.0.1:8080/en/2019/elrond25
https://twitter.com/carlos_catb
https://github.com/c-torres
https://twitter.com/catalinred
https://github.com/catalinred
http://127.0.0.1:8080/en/2019/catalinred
https://twitter.com/hj_chen
https://github.com/huijing
http://127.0.0.1:8080/en/2019/hj_chen
https://github.com/chengxicn
https://twitter.com/colinbendell
https://github.com/colinbendell
https://twitter.com/bagder
https://github.com/bagder
http://127.0.0.1:8080/en/2019/bagder
https://twitter.com/davelab6
https://github.com/davelab6
http://127.0.0.1:8080/en/2019/davelab6
https://twitter.com/theobto
https://github.com/foxdavidj
http://127.0.0.1:8080/en/2019/theobto

Doug Sillars
@dougsillars

dougsillars

https://dougsillars.com
Analyst, Author, and Brainstormer

Eduardo Q. Gomes
eduqg

https://eduqg.github.io/
Translator

Elayne Lemos
elaynelemos

elaynelemos
Translator

Eric A. Meyer
@meyerweb

meyerweb

http://meyerweb.com/
Reviewer

Eric Portis
@etportis

eeeps

https://ericportis.com
Reviewer

Erik Nygren
@akanygren

enygren

https://erik.nygren.org/
Brainstormer and Reviewer

Fatma Badri
fatmabadri

fatmabadri

https://fatmabadri.github.io/
Translator

Gabriel De Gennaro
https://gabrieldegennaro.com

Designer

Giacomo Pignoni
@Pigna__

GiacomoPignoni
Developer

Heng Yeow
@tanhengyeow

tanhengyeow

https://tanhengyeow.github.io
Developer

Henri Helvetica
@HenriHelvetica

henrihelvetica
Brainstormer

Houssein Djirdeh
@hdjirdeh

housseindjirdeh

https://houssein.me
Author and Brainstormer

JABANE Mohamed Ayoub
@SilentJMA

SilentJMA
Translator

Jared White
@jaredcwhite

jaredcwhite

https://jaredwhite.com
Brainstormer

Jason Haralson
jrharalson

Analyst

Jeff Posnick
@jeffposnick

jeffposnick

https://jeffy.info
Author and Brainstormer

John Fox
clarkeclark

johnfox
Reviewer

John Teague
@jtteag

logicalphase

https://gemservers.com
Brainstormer, Developer, and Reviewer

Appendix B : Contributors

2019 Web Almanac by HTTP Archive 415

https://twitter.com/dougsillars
https://github.com/dougsillars
http://127.0.0.1:8080/en/2019/dougsillars
https://github.com/eduqg
https://github.com/elaynelemos
https://www.linkedin.com/in/
https://twitter.com/meyerweb
https://github.com/meyerweb
http://127.0.0.1:8080/en/2019/meyerweb
https://twitter.com/etportis
https://github.com/eeeps
http://127.0.0.1:8080/en/2019/etportis
https://twitter.com/akanygren
https://github.com/enygren
http://127.0.0.1:8080/en/2019/akanygren
https://github.com/fatmabadri
https://www.linkedin.com/in/
https://twitter.com/Pigna__
https://github.com/GiacomoPignoni
https://twitter.com/tanhengyeow
https://github.com/tanhengyeow
http://127.0.0.1:8080/en/2019/tanhengyeow
https://twitter.com/HenriHelvetica
https://github.com/henrihelvetica
https://twitter.com/hdjirdeh
https://github.com/housseindjirdeh
http://127.0.0.1:8080/en/2019/hdjirdeh
https://twitter.com/SilentJMA
https://github.com/SilentJMA
https://twitter.com/jaredcwhite
https://github.com/jaredcwhite
http://127.0.0.1:8080/en/2019/jaredcwhite
https://github.com/jrharalson
https://twitter.com/jeffposnick
https://github.com/jeffposnick
http://127.0.0.1:8080/en/2019/jeffposnick
https://github.com/clarkeclark
https://www.linkedin.com/in/
https://twitter.com/jtteag
https://github.com/logicalphase
http://127.0.0.1:8080/en/2019/jtteag

Jonathan Wold
@sirjonathan

sirjonathan

https://jonathanwold.com
Reviewer

José M. Pérez
@jmperezperez

JMPerez

https://jmperezperez.com
Developer, Reviewer, and Translator

Justin Ahinon
@justinahinon1

JustinyAhin

https://segbedji.com/
Translator

Justin Welenofsky
welenofsky

Developer

Kari Larson
@KaJLa47

KJLarson

https://www.kjlarson.com
Developer

Kate Tymoshkina
tymosh

tymosh
Translator

Katie Hempenius
@katiehempenius

khempenius
Analyst, Author, and Brainstormer

Laura Eberly
ljme

Reviewer

Leonardo Digiorgio
@simdigiorgio

chefleo

https://chefleo.dev/
Translator

M.Sakamaki
@msakamaki2

MSakamaki

https://twitter.com/msakamaki2
Developer and Translator

Manuel Garcia
@corrosion_pt

soulcorrosion

manuel-garcia-12b6928

https://farfetchtechblog.com/en/blog/

authors/manuel-garcia/
Translator

Mark Nottingham
@mnot

mnot

https://www.mnot.net/
Brainstormer

Mark Zeman
@MarkZeman

zeman

https://speedcurve.com
Brainstormer and Reviewer

Martin Splitt
@g33konaut

AVGP

http://geekonaut.de
Author and Brainstormer

Mathias Bynens
@mathias

mathiasbynens

https://mathiasbynens.be/
Brainstormer and Reviewer

Matt Ludwig
mattludwig

Reviewer

Matthew Phillips
matthewp

Reviewer

Mike Geyser
@mikegeyser

mikegeyser

https://mikerambl.es
Developer

Appendix B : Contributors

416 2019 Web Almanac by HTTP Archive

https://twitter.com/sirjonathan
https://github.com/sirjonathan
http://127.0.0.1:8080/en/2019/sirjonathan
https://twitter.com/jmperezperez
https://github.com/JMPerez
http://127.0.0.1:8080/en/2019/jmperezperez
https://twitter.com/justinahinon1
https://github.com/JustinyAhin
http://127.0.0.1:8080/en/2019/justinahinon1
https://github.com/welenofsky
https://twitter.com/KaJLa47
https://github.com/KJLarson
http://127.0.0.1:8080/en/2019/KaJLa47
https://github.com/tymosh
https://www.linkedin.com/in/
https://twitter.com/katiehempenius
https://github.com/khempenius
https://github.com/ljme
https://twitter.com/simdigiorgio
https://github.com/chefleo
http://127.0.0.1:8080/en/2019/simdigiorgio
https://twitter.com/msakamaki2
https://github.com/MSakamaki
http://127.0.0.1:8080/en/2019/msakamaki2
https://twitter.com/corrosion_pt
https://github.com/soulcorrosion
https://www.linkedin.com/in/corrosion_pt
http://127.0.0.1:8080/en/2019/corrosion_pt
https://twitter.com/mnot
https://github.com/mnot
http://127.0.0.1:8080/en/2019/mnot
https://twitter.com/MarkZeman
https://github.com/zeman
http://127.0.0.1:8080/en/2019/MarkZeman
https://twitter.com/g33konaut
https://github.com/AVGP
http://127.0.0.1:8080/en/2019/g33konaut
https://twitter.com/mathias
https://github.com/mathiasbynens
http://127.0.0.1:8080/en/2019/mathias
https://github.com/mattludwig
https://github.com/matthewp
https://twitter.com/mikegeyser
https://github.com/mikegeyser
http://127.0.0.1:8080/en/2019/mikegeyser

Morten Rand-Hendriksen
@mor10

mor10

http://mor10.com/
Brainstormer

Nektarios Paisios
Author

Nicolas Hoffmann
@Nico3333fr

nico3333fr

https://www.nicolas-hoffmann.net/
Translator

Noah Blon
@noahblon

noahblon
Brainstormer

Noah van der Veer
@noah_aaron_vdv

noah-vdv
Translator

Patrick Hulce
@patrickhulce

patrickhulce

http://patrickhulce.com
Analyst, Author, and Brainstormer

Patrick Meenan
@patmeenan

pmeenan

https://www.webpagetest.org/
Brainstormer and Reviewer

Paul Calvano
@paulcalvano

paulcalvano

https://paulcalvano.com
Analyst, Author, Brainstormer,
Developer, and Reviewer

Pavel Evdokimov
@Pavel_Evdokimov

Pavel-Evdokimov
Brainstormer

Praveen Pal
@PraveenPal4232

PraveenPal4232

https://praveenpal4232.github.io
Translator

Rachel Costello
@rachellcostello

rachellcostello
Author, Brainstormer, and Editor

Raghu Ramakrishnan
raghuramakrishnan71

Analyst

Raghvendra Kumar
@mail_raghvendra

arsenicraghav
Developer

Renee Johnson
@reneesoffice

ernee

https://reneesvirtualoffice.com
Author

Rick Viscomi
@rick_viscomi

rviscomi

https://rviscomi.dev/
Analyst, Author, Brainstormer,
Developer, Editor, and Reviewer

Robin Marx
@programmingart

rmarx

http://internetonmars.org
Reviewer

Rory Hewitt
Brainstormer

Sakae Kotaro
@beltway7

ksakae1216

https://ksakae1216.com/
Translator

Appendix B : Contributors

2019 Web Almanac by HTTP Archive 417

https://twitter.com/mor10
https://github.com/mor10
http://127.0.0.1:8080/en/2019/mor10
https://twitter.com/Nico3333fr
https://github.com/nico3333fr
http://127.0.0.1:8080/en/2019/Nico3333fr
https://twitter.com/noahblon
https://github.com/noahblon
https://twitter.com/noah_aaron_vdv
https://github.com/noah-vdv
https://twitter.com/patrickhulce
https://github.com/patrickhulce
http://127.0.0.1:8080/en/2019/patrickhulce
https://twitter.com/patmeenan
https://github.com/pmeenan
http://127.0.0.1:8080/en/2019/patmeenan
https://twitter.com/paulcalvano
https://github.com/paulcalvano
http://127.0.0.1:8080/en/2019/paulcalvano
https://twitter.com/Pavel_Evdokimov
https://github.com/Pavel-Evdokimov
https://twitter.com/PraveenPal4232
https://github.com/PraveenPal4232
http://127.0.0.1:8080/en/2019/PraveenPal4232
https://twitter.com/rachellcostello
https://github.com/rachellcostello
https://github.com/raghuramakrishnan71
https://twitter.com/mail_raghvendra
https://github.com/arsenicraghav
https://twitter.com/reneesoffice
https://github.com/ernee
http://127.0.0.1:8080/en/2019/reneesoffice
https://twitter.com/rick_viscomi
https://github.com/rviscomi
http://127.0.0.1:8080/en/2019/rick_viscomi
https://twitter.com/programmingart
https://github.com/rmarx
http://127.0.0.1:8080/en/2019/programmingart
https://twitter.com/beltway7
https://github.com/ksakae1216
http://127.0.0.1:8080/en/2019/beltway7

Sam Dutton
@sw12

samdutton

https://simpl.info
Author and Brainstormer

Scott Helme
@Scott_Helme

ScottHelme

https://scotthelme.co.uk
Author and Brainstormer

Sergey Chernyshev
@sergeyche

sergeychernyshev

http://sergeychernyshev.com/
Reviewer

Simon Pieters
@zcorpan

zcorpan
Brainstormer and Reviewer

Susie Lu
@DataToViz

https://www.susielu.com/
Designer

Sébastien Allemand
@allema_s

allemas

https://sebastienallemand.fr/
Translator

TJ Monserrat
tjmonsi

Analyst

Tammy Everts
@tameverts

tammyeverts

https://speedcurve.com/
Author

Thomas Steiner
@tomayac

tomayac

https://blog.tomayac.com/
Author and Brainstormer

Tommy Hodgins
tomhodgins

http://codepen.io/tomhodgins
Reviewer

Una Kravets
@una

una

http://una.im
Author and Brainstormer

Vamsee Jasti
@vamseejasti

jasti

https://vamseejasti.com
Reviewer

Vincent Terrasi
voltek62

https://data-seo.com
Brainstormer and Reviewer

Weston Ruter
@westonruter

westonruter

https://weston.ruter.net/
Brainstormer

William Sandres
@hakacode

HakaCode

https://hakacode.github.io
Translator

Yoav Weiss
@yoavweiss

yoavweiss

https://blog.yoav.ws
Brainstormer and Reviewer

Yohan Totting
@tyohan

tyohan

http://tyohan.me
Developer

Yvo Schaap
@yvoschaap

ymschaap

https://build.amsterdam/
Analyst, Author, Brainstormer, and
Developer

Appendix B : Contributors

418 2019 Web Almanac by HTTP Archive

https://twitter.com/sw12
https://github.com/samdutton
http://127.0.0.1:8080/en/2019/sw12
https://twitter.com/Scott_Helme
https://github.com/ScottHelme
http://127.0.0.1:8080/en/2019/Scott_Helme
https://twitter.com/sergeyche
https://github.com/sergeychernyshev
http://127.0.0.1:8080/en/2019/sergeyche
https://twitter.com/zcorpan
https://github.com/zcorpan
https://twitter.com/DataToViz
http://127.0.0.1:8080/en/2019/DataToViz
https://twitter.com/allema_s
https://github.com/allemas
http://127.0.0.1:8080/en/2019/allema_s
https://github.com/tjmonsi
https://twitter.com/tameverts
https://github.com/tammyeverts
http://127.0.0.1:8080/en/2019/tameverts
https://twitter.com/tomayac
https://github.com/tomayac
http://127.0.0.1:8080/en/2019/tomayac
https://github.com/tomhodgins
https://twitter.com/una
https://github.com/una
http://127.0.0.1:8080/en/2019/una
https://twitter.com/vamseejasti
https://github.com/jasti
http://127.0.0.1:8080/en/2019/vamseejasti
https://github.com/voltek62
https://twitter.com/westonruter
https://github.com/westonruter
http://127.0.0.1:8080/en/2019/westonruter
https://twitter.com/hakacode
https://github.com/HakaCode
http://127.0.0.1:8080/en/2019/hakacode
https://twitter.com/yoavweiss
https://github.com/yoavweiss
http://127.0.0.1:8080/en/2019/yoavweiss
https://twitter.com/tyohan
https://github.com/tyohan
http://127.0.0.1:8080/en/2019/tyohan
https://twitter.com/yvoschaap
https://github.com/ymschaap
http://127.0.0.1:8080/en/2019/yvoschaap

Zach Leatherman
@zachleat

zachleat

https://zachleat.com/
Author and Brainstormer

Appendix B : Contributors

2019 Web Almanac by HTTP Archive 419

https://twitter.com/zachleat
https://github.com/zachleat
http://127.0.0.1:8080/en/2019/zachleat

	2019Web Almanac
	HTTP Archive’s annualstate of the web report

	Table of Contents
	Introduction
	Part I. Page Content
	Part II. User Experience
	Part III. Content Publishing
	Part IV. Content Distribution
	Appendices

	Foreword
	JavaScript
	Introduction
	How much JavaScript do we use?
	Processing time
	Number of requests
	First-party vs. third-party

	Resource compression
	Open source libraries and frameworks
	Frameworks and UI libraries

	Differential loading
	Preload and prefetch
	Newer APIs
	Source maps
	Conclusion
	Author

	CSS
	Introduction
	Color
	Color types
	Color selection
	Color count
	Color duplication

	Units
	Length and sizing
	Viewport-based units
	Custom properties

	Selectors
	ID vs class selectors
	Attribute selectors
	Classes per element

	Layout
	Flexbox
	Grid
	Writing modes

	Typography
	Web fonts per page
	Popular font families
	Font sizes

	Spacing
	Margins
	Logical properties
	z-index
	Popular z-index values

	Decoration
	Filters
	Blend modes

	Animation
	Transitions
	Keyframe animations

	Media queries
	Popular media query breakpoint sizes
	Portrait vs landscape usage
	Most popular unit types
	min-width vs max-width
	Print and speech

	Page-level stats
	Stylesheets
	Stylesheet names
	Stylesheet size
	Libraries
	Reset utilities
	@supports and @import

	Conclusion
	Authors

	Markup
	Introduction
	Methodology
	Top elements and general info
	Elements per page

	Custom elements
	Perspective on value and usage
	Lots of data: real DOM on the real web
	Products (and libraries) and their custom markup
	Common use cases and solutions

	Conclusion
	Author

	Media
	Introduction
	Images
	Image formats
	Image file sizes
	Image format optimization
	Responsive images
	Use of HTML markup
	Use of sizes
	Client Hints
	Lazy loading
	Accessibility

	Video
	Video formats
	Video file sizes
	Video players

	Conclusion
	Authors

	Third Parties
	Introduction
	Definitions
	“Third Party”
	Provider categories
	Caveats

	Data
	Categories
	Providers
	Resource types
	Request count
	Byte weight
	Script execution

	Usage patterns
	Generate and consume data
	Monetize web traffic
	Simplify development

	Repercussions
	Performance
	Privacy
	Security

	Conclusion
	Author

	Fonts
	Introduction
	Where did you get those web fonts?
	Are fonts being hosted on the same host or by a different host?
	What are the most popular third-party hosts?
	Speeding up third-party hosting
	Most popular typefaces

	What font formats are being used?
	WOFF2-only

	Fighting against invisible text
	How many web fonts are too many?
	You don’t want to win this award

	More accurate matching with unicode-range
	Don’t request web fonts if a system font exists
	Condensed fonts and font-stretch
	Variable fonts are the future
	Color fonts might also be the future?
	Conclusion
	Author

	Performance
	Introduction
	The state of performance
	First Contentful Paint
	FCP by device
	FCP by effective connection type
	FCP by geography

	Time to First Byte (TTFB)
	TTFB by geo

	First Input Delay
	FID by device
	FID by effective connection type
	FID by geo

	Conclusion
	Author

	Security
	Introduction
	Transport Layer Security
	Protocol versions
	Certificate Authorities
	Authentication key type
	Forward secrecy
	Cipher suites

	Mixed content
	Security headers
	HTTP Strict Transport Security
	HSTS preloading

	Content Security Policy
	Hash/nonce
	strict-dynamic
	trusted-types
	unsafe inline and unsafe-eval
	upgrade-insecure-requests
	frame-ancestors

	Referrer Policy
	Feature Policy
	X-Frame-Options
	X-Content-Type-Options
	X-XSS-Protection
	Report-To
	Network Error Logging
	Clear Site Data

	Cookies
	Secure
	HttpOnly
	SameSite
	Prefixes

	Subresource Integrity
	Conclusion
	Encryption
	Defending against common web vulnerabilities
	Modern web platform defenses

	Tying it all together
	Authors

	Accessibility
	Introduction
	Ease of reading
	Color contrast
	Zooming and scaling pages
	Language identification
	Distracting content

	Media on the web
	Alternative text on images
	Captions for audio and video

	Ease of page navigation
	Headings
	Main landmark
	HTML section elements
	Other HTML elements used for navigation
	Skip Links
	Shortcuts
	Tables
	Headings
	Captions

	Compatibility with assistive technologies
	The use of ARIA
	The role attribute
	Updating UI frameworks could be the way forward for accessibility across the web
	Many sites attempt to make dialogs accessible

	Labels on interactive elements

	Accessibility of Form Controls
	Indicators of required and invalid fields
	Duplicate IDs

	Conclusion
	Authors

	SEO
	Introduction
	Fundamentals
	Content
	Word count
	Headings

	Meta tags
	Page titles
	Meta descriptions
	Image alt tags

	Indexability
	Status codes
	noindex
	Canonicalization
	robots.txt

	Linking

	Advanced
	Speed
	Structured data
	Internationalization
	SPA crawlability
	AMP
	Security

	Conclusion
	Authors

	PWA
	Introduction
	Service workers
	Service worker registrations and installability
	Service worker events
	Service worker file sizes

	Web app manifests
	Web app manifest properties
	Display values
	Category values
	Icon sizes
	Orientation values

	Workbox
	Conclusion
	Authors

	Mobile Web
	Introduction
	The page loading experience
	Pages bloated with JavaScript
	Service Worker usage
	Shifting content while loading
	Permission requests

	Textual content
	Color contrast
	Font size

	Zooming, scaling, and rotating pages
	Zooming and scaling
	Rotating pages

	Buttons and links
	Tap targets
	Labeling buttons

	Semantic form fields
	New input types
	Enabling autocomplete for inputs
	Pasting into password fields

	Conclusion
	Author

	Ecommerce
	Introduction
	Platform detection
	Ecommerce platforms
	Long tail

	Ecommerce (all platforms)
	Page weight and requests
	Requests and payload by type
	HTML payload size
	Image stats
	Popular image formats
	PNG
	WebP

	Image dimensions
	Third-party requests and bytes
	Third-party requests and payload per platform
	First Contentful Paint (FCP)
	Progressive Web App (PWA) scores
	Conclusion
	Authors

	CMS
	Introduction
	Why do content creators use a CMS?
	The goal of this chapter

	CMS adoption
	The CMS landscape

	How are CMS-powered sites built
	Total resource usage
	Third-party resources
	Image stats

	User experience on CMS-powered websites
	First Contentful Paint
	First Input Delay
	Lighthouse scores
	PWA
	Accessibility

	CMS innovation
	Conclusions
	Authors

	Compression
	Introduction
	How HTTP compression works
	Compression algorithms
	What types of content are we compressing?
	First-party vs third-party compression
	Identifying compression opportunities
	Conclusion
	Author

	Caching
	Introduction
	Overview of HTTP caching
	What type of content are we caching?
	Cache-Control vs Expires
	Cache-Control directives
	Cache-Control: no-store, no-cache and max-age=0
	How do cache TTLs compare to resource age?
	Validating freshness
	Validity of date strings
	Vary header
	Setting cookies on cacheable responses
	AppCache and service workers
	Identifying caching opportunities
	Conclusion
	Author

	CDN
	Introduction
	Caveats and disclaimers
	Further stats

	CDN adoption and usage
	Top CDN providers
	RTT and TLS management
	TLS negotiation time: origin 3x slower than CDNs
	TLS adoption
	HTTP/2 adoption
	Controlling CDN caching behavior
	Vary
	Surrogate-Control, s-maxage, and Pre-Check

	CDNs for common libraries and content
	Conclusion
	Authors

	Page Weight
	Introduction
	Myth: Page size doesn’t matter
	More bandwidth isn’t a magic bullet for web performance
	What types of assets does the HTTP Archive track, and how much do they matter?
	Bigger, complex pages can be bad for your business

	Analysis
	Page weight
	Mobile
	Desktop

	Page weight over time
	Mobile
	Desktop

	Page requests
	Mobile
	Desktop

	File formats
	File size by image format (mobile)
	File size by image format for images > 100 bytes
	File size by image format for images > 1024 bytes
	File size by media format
	Mobile
	Desktop

	Conclusion
	Authors

	Resource Hints
	Introduction
	dns-prefetch
	preconnect
	preload
	prefetch

	Syntax
	Resource hints
	The crossorigin attribute
	The as attribute
	The future
	Priority Hints
	Native lazy loading

	Conclusion
	Author

	HTTP/2
	Introduction
	What is HTTP/2?
	Adoption of HTTP/2
	Impact of HTTP/2
	HTTP/2 Push
	HTTP/2 Issues
	HTTP/3
	Conclusion
	Author

	Methodology
	Overview
	About the dataset
	Websites
	Metrics

	Tools
	WebPageTest
	Lighthouse
	Wappalyzer
	Chrome UX Report
	Third Party Web
	Rework CSS

	Analytical process
	Brainstorming
	Analysis
	Interpretation

	Looking ahead

	Contributors

