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The Life Sciences Data Bottleneck
DNAmicroarrays and sequencing have revolutionized biology and are in the process of
reinventing health care. Massive datasets of tens of thousands to millions of affected
individuals (with matched controls) allow researchers to study genetic factors associated with
disease with unprecedented resolution. Genetic test results combined with electronic health
record data are helping us realize the potential of precision medicine. However, the inherent
sensitivity of genetic data, strong privacy legislation, and terms of patient research consents
limit the sharing of this data. The process for a researcher to request access to genomic
data to test an idea or hypothesis must be approved on a case-by-case basis and often takes
months. This can reduce the statistical power of scientific studies, and limit study enrollment
to only those populations easily available to a given researcher.

Synthetic data, powered by recent advances in machine learning, is a promising technology
to create artificial versions of sensitive datasets. Along with privacy enhancing technologies
such as differential privacy, synthetic data has the potential to address the deep privacy
concerns working with genomic data, enabling faster sharing of data and
unlocking innovation.
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Case Study Overview
Scientists explore the relationships between phenotypes (physical characteristics) and
genotypes (measured genetic “spelling” at specific locations) in large groups of individuals in
order to better understand the causes of disease, find genetic risk factors, and find targets for
new drugs. One such widely-used study population is the UK Biobank, which contains more
than 7,000 phenotypic fields and more than 800,000 SNP genotypes across more than
500,000 individuals, for a total of more than 400 billion data points.

Here we are using a more modestly-sized dataset from mice so that we can freely share the
data and code with readers. We begin with the dataset and analysis of Parker et al³, which
describes genome-wide association analyses of 68 phenotypes with 92,734 single nucleotide
polymorphisms (SNPs), in 1,200 mice. The authors used an outbred strain of mice to avoid
linkage problems with common inbred strains.

Mice dataset characteristics
(used in this experiment)

UK Biobank
(for comparison)

1,220 samples, each containing a
genotype record (as SNPs) and a
matching phenotype record.

500,000+ samples

92,734 genotypes per mouse 800,000+ genotypes per sample

164 phenotypes 7,000+ phenotypes

https://www.ukbiobank.ac.uk/
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Exploring the mouse genome dataset
There are two datasets that we will synthesize for this test: one for genotypes and another for
phenotypes. The phenotype dataset represents both a series of measurements of various
characteristics in mice as well as other external variables that can have an influence on the
results. A comprehensive list is available in the original research paper.

The genotype dataset contains the genomic information of the mice. Considering that most of
the genome is the same across individuals in a species, only the differences with respect to a
species-specific reference genome are reported. The simplest form of such a difference is
called a SNP (single nucleotide polymorphism). In our dataset, the column names are SNP
identifiers–either identifiers in NCBI’s dbSNP or formed by joining the chromosome and its
position on the chromosome.

Figure 1 - Example phenotype data

Figure 2 - Example genotype data

https://www.nature.com/articles/ng.3609#MOESM97
https://www.ncbi.nlm.nih.gov/snp/
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In most animals, including mice and humans, there are two copies of each chromosome. So
for a given SNP at a position you may have:

• A difference with respect to the reference genome in both chromosomes (which is
represented as 2).

• A difference in only one of the copies (represented as 1).

• No differences at all (represented as 0).

Some genotypes have non-integer values, such as the final row in the figure above with a
value of 1.439. There are multiple reasons why this can occur, but one of the most common
is that the measuring process could not provide a definitive answer on the variant, and rather
than make an approximation the data is provided “as-is”.

Finally, the mapping dataset maps each SNP identifier to its matching chromosome and
position on the chromosome.

Figure 3 - Example SNP to chromosome position mapping
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Genome wide association study
In a genome-wide association study (GWAS), researchers seek to identify locations on the
genome that are associated with a particular phenotype. This is done with a statistical test to
determine whether any SNP displays a significantly different distribution of non-reference-to-
reference alleles between the case and control populations. Because there are so many SNP
locations on a genome, the distribution has to be quite different to be sure the observed
differences aren’t just due to chance. (If you flip a coin a thousand times, finding a run of ten
heads is expected but a run of a hundred heads is not.) The likelihood that an association is
due to chance is measured by the p-value; lower p-values are more significant.

Here we use the open source GEMMA software that is also used in the original research.
The result of the GEMMA and linear regression algorithms for each phenotype comprise
approximately 80,000 rows; each row containing a SNP and its calculated p value.

The p value threshold used for human GWAS studies is around 1e-8 magnitude, but multiple
values can be used in practice. The authors of the original paper here computed the
significance threshold at 2e-6, due to the lower allelic diversity in laboratory mice (even in
this outbred population.) The abBMD bone-mineral density analysis from the experiment is
shown below, where we can see two regions having multiple SNPs are above the threshold
for statistical significance to this trait.

Figure 4 - Example GWAS result
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Figure 5 - Manhattan plot showing original GWAS results
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Synthesizing the mouse
genome dataset
To determine whether synthetic data models are capable of creating an artificial genomic
dataset that captures the discoveries in the research paper, we will create synthetic versions
of the real-world phenotypes and genotypes gathered from mice in the sample dataset using
Gretel.ai’s synthetic data APIs, perform the same GWAS analysis, and then compare the
results of the GWAS analysis for real-world vs synthetic data.

https://github.com/gretelai/synthetic-data-genomics

https://github.com/gretelai/synthetic-data-genomics
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Case study steps
Below are the general steps used to synthesize the genotype and phenotype datasets and to
recreate the results of the original experiment with synthetic data. To recreate the results
yourself, follow along with the Jupyter notebook for each step.

Build phenotype training set

First, create and format real-world training data for each phenotype batch that will be
synthesized. This step can be recreated in 01_build_phenome_training_data.ipynb.

Synthesize phenotypes

Train a synthetic model for each batch of correlated phenotypes in the phenotype
dataset, then generate synthetic phenotypes matching their size and shape. This
step can be recreated in 02_create_synthetic_mouse_phenomes.ipynb.

Build genotype training set

Format and build a training set for genome data by batching the genome data by
position on the chromosome along with synthesized phenotype data.
03_build_genome_training_data.ipynb.

Synthesize genotypes

Train a synthetic model on real world SNPs. To ensure that the synthetic phenotypes
line up with our newly created synthetic genotypes, we use the synthetic phenotypes
to prompt data generation, with a focus in this analysis on one phenotype (and its
covariate), namely abBMD.

1

2

3

4

https://github.com/gretelai/synthetic-data-genomics/blob/main/synthetics/01_build_phenome_training_data.ipynb
https://github.com/gretelai/synthetic-data-genomics/blob/main/synthetics/02_create_synthetic_mouse_phenomes.ipynb
https://github.com/gretelai/synthetic-data-genomics/blob/main/synthetics/03_build_genome_training_data.ipynb
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Initial analysis of the synthetic genomes
We can use Gretel’s synthetic data report and Synthetic Quality Score (SQS) to compare the
accuracy of the synthetic genotype and phenotype data to the real world training sets. Below
is an example of a correlation matrix between an example batch of 19 genotype SNPs from
the synthetic data report that demonstrates the model’s ability to learn correlations in
the data.

A principal component analysis (PCA) view of the real world vs synthetic data is another
useful tool in the synthetic data quality report to examine how effectively the synthetic model
learned the structure and distribution of the data. Once again, the results look quite
promising on the sample batch of 19 SNPs and abBMD phenotype.

Figure 6 - Correlation matrices in synthetic data report

Figure 7 - PCA analysis in synthetic data report
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Compute requirements

Comparing real world and
synthetic datasets

In this experiment, training time for Gretel.ai’s synthetic data APIs, as described above for
mice took approximately 36 hours using the default configuration in the attached notebooks,
running on 80 Nvidia T4 GPUs in parallel. Nvidia T4 GPU instances in GCP, AWS, and Azure
cost approximately $0.50/hour, bringing the total compute cost for model training and
synthetic data generation of the mouse phenotypes and genotype dataset to
approximately $1,440.

We have now synthesized the abBMD phenotype data and all associated genotypes, and
can compare the results of a genome-wide association study (GWAS) analysis using our real
world and synthetic datasets. As the genome-wide significance (WGS) P value threshold of
1e-8 has become common for GWAS7,8, we will use that as a cutoff to determine accuracy for
comparisons between the synthetic and real-world results, although Parker et. al were able
to use a lower threshold of 2e-6. The real world dataset analysis found 193 out of 71,315
SNPs with a p-value for the abBMD trait that was over the statistical significance threshold.
In the synthetic dataset, 177 of the 193 SNPs were recreated by the GWAS analysis and
false positives were low, with a SNP-wise precision (positive predictive value) of 93%.

We can use a Manhattan plot to represent the P values of the entire GWAS on a genomic
scale and assess the performance of the model on a genomic locus-wise basis. In these
plots, the -log 10 of the P values (y axis) are plotted in genomic order by chromosome and
their position on the chromosome (x axis). SNPs associated with the studied trait will rise up
high compared to the background, evoking skyscrapers in the Manhattan skyline. Generally,
with a sufficient density of SNPs measured, clusters of SNPs (forming the “skyscrapers”) are
observed instead of just one or two high-flying causal SNPs as segments of chromosomes
are what is inherited from our parents
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Figure 8 - GWAS results on real world data

Figure 9 - GWAS results on synthetic data

These Manhattan plots demonstrate some interesting insights into our synthetic model and
its performance. The synthetic model was able to capture and replay the strong associations
in chromosomes 11 and 5. However, the synthetic model introduced notable false positive
GWAS associations in chromosomes 8, 10, and 12. The false positives in the GWAS results
above are most likely due to the small sample set size of 1,200 mice used to train the
language model, where we generally recommend 10,000 or more examples for the network
to sufficiently learn to recreate the data, especially with the complexity of the genome
containing 92k SNPs per mouse. Similarly, the GWAS association noise floor and y scale is
significantly higher in the synthetic data, indicating that the model might be amplifying
characteristics in real world data that are being reflected in the GWAS analysis. These
differences can also likely be minimized with additional examples and neural network
parameter optimization, which we will explore in the next post.
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Conclusion

What’s next

While initial case study results are based on a relatively small sample set of 1,200 mice with
limited testing and tuning, it demonstrates encouraging evidence that state of the art
synthetic data models can produce artificial versions of even highly dimensional and complex
genomic and phenotypic data. Our synthetic data model demonstrated the ability to recreate
the key GWAS associations of the real world data, with total compute costs for training
synthetic models on the genotype and phenotype data of only $1,440. With continued
experiments in scale, accuracy, and privacy; synthetic data has the potential to enable
sharing and collaboration on synthetic genomics datasets at a scale that is orders of
magnitude larger than what is possible today.

We are working together to enable future genomics research and safe, private data sharing
between researchers, health care providers, and industry. In our next posts, we will expand
to human datasets, explore greater scale, train multiple phenotypes together with the
genotypic data, and show the privacy guarantees that can be achieved working with
synthetic data. If you have any questions or would like to discuss anything further we would
love to talk to you. Feel free to reach out to us at hi@gretel.ai.

mailto:hi@gretel.ai
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About Gretel

About Illumina

Gretel.ai was founded on a privacy-first mission to equip developers with the ability to unlock
innovation through safe, efficient collaboration with sensitive data. Gretel pioneered Privacy
Engineering as a Service and designed a synthetic data tool suite based on their open
sourced AI-based core. These tools make it easier and faster to generate privacy-preserving
data that can be safely shared.

Gretel created easy to use, accessible APIs for developers and data practitioners to generate
high quality synthetic data, classify and label, and transform and anonymize data – tools that
quickly remove privacy-related bottlenecks, and accelerate business innovation for
organizations in financial services, life sciences, healthcare, technology, gaming and other
industries.

Illumina is a leading developer, manufacturer, and marketer of life science tools and
integrated systems for large-scale analysis of genetic variation and function. These systems
are enabling studies that were not even imaginable just a few years ago, and moving us
closer to the realization of personalized medicine. With rapid advances in technology taking
place, it is mission-critical to offer solutions that are not only innovative, but flexible, and
scalable, with industry-leading support and service.

We strive to meet this challenge by placing a high value on collaborative interactions, rapid
delivery of solutions, and meeting the needs of our customers.

Our customers include a broad range of academic, government, pharmaceutical,
biotechnology, and other leading institutions around the globe.

https://gretel.ai
https://www.illumina.com
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Concepts and Notation
Genomic data is the DNA of organisms. Genomic data often requires a large amount of
storage, and is expected to generate exabytes of data over the next decade1.

Synthetic data is artificial information generated by computer algorithms or simulations that
can be used as an alternative to real world data2. Research has shown that synthetic data
can be as good or even better than real world data for data analysis and training AI models,
and that it can be engineered to reduce biases and increase privacy2.

SNP - A single nucleotide polymorphism is a variation at a single position in a DNA sequence
among individuals. Possible DNA bases are A, C, T, and G. For example, at position
19962213 on human chromosome 8 (Build 38), 90% of chromosomes have a C and 10% of
chromosomes have a G.

P value - A P-value expresses the probability that a given result from a test is due to chance.
“To account for multiple testing in genome-wide association studies (GWAS), a fixed P value
threshold of 1x10−8 is widely used to identify association between a common genetic variant
and a trait of interest.op

https://www.snowflake.com/trending/genomic-data
https://www.nature.com/scitable/definition/snp-295/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270946/
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