
Anonymity and one-way authentication

in key exchange protocols

Ian Goldberg1, Douglas Stebila2, and Berkant Ustaoglu3

1: Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

2: Information Security Institute, Queensland University of Technology, Brisbane, Queensland, Australia

3: Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey

iang@cs.uwaterloo.ca, stebila@qut.edu.au, bustaoglu@cryptolounge.net

January 5, 2012

Abstract

Key establishment is a crucial cryptographic primitive for building secure communi-
cation channels between two parties in a network. It has been studied extensively in
theory and widely deployed in practice. In the research literature a typical protocol in
the public-key setting aims for key secrecy and mutual authentication. However, there
are many important practical scenarios where mutual authentication is undesirable, such
as in anonymity networks like Tor, or is difficult to achieve due to insufficient public-key
infrastructure at the user level, as is the case on the Internet today.

In this work we are concerned with the scenario where two parties establish a private
shared session key, but only one party authenticates to the other; in fact, the unauthen-
ticated party may wish to have strong anonymity guarantees. We present a desirable
set of security, authentication, and anonymity goals for this setting and develop a model
which captures these properties. Our approach allows for clients to choose among differ-
ent levels of authentication. We also describe an attack on a previous protocol of Øverlier
and Syverson, and present a new, efficient key exchange protocol that provides one-way
authentication and anonymity.

Keywords: key exchange, one-way authentication, anonymity, Tor network, protocols,
security models.

1 Introduction

Authentication is one of the core security properties that many cryptographic protocols aim
to provide: one party wishes to be convinced of the identity of another party. But in many
contexts, the opposite property, anonymity is equally important: one party wishes for no
one to be able to determine her identity.1 Anonymity is an enabling technology for pri-
vacy, whether for normal citizens going about their day-to-day lives or for dissidents and
whistleblowers putting themselves in danger because of the information they transmit.

1An important related property is unlinkability, meaning that no one can link one party’s various conver-
sations to each other. See [PH10] for a taxonomy of anonymity-related definitions. We will see that, in the
context of key exchange, unlinkability and anonymity are in a sense equivalent.

1

mailto:iang@cs.uwaterloo.ca
mailto:stebila@qut.edu.au
mailto:bustaoglu@cryptolounge.net


In practice, the seemingly opposite properties of anonymity and authentication go hand-
in-hand: Alice, wishing to remain anonymous, wants to communicate with Bob and be
assured of Bob’s identity. We see this in a number of examples on the Internet today:
• In the Tor anonymity network [DMS04, Tor11], an anonymous client node establishes

an encrypted Tor circuit through authenticated intermediate relay nodes.
• In secure web (HTTPS) transactions, the most common mode of operation has an

unauthenticated client communicating with an authenticated server.
There can be various reasons for clients to be unauthenticated. It may be that the client is
not trying to gain access to any resources that require authentication but is indifferent to its
anonymity, or it may in fact be that the client wishes very strongly to be anonymous.

Authenticated key exchange (AKE) is one of the most important cryptographic constructs
and is used to establish an authenticated and confidential communication channel. Existing
approaches to two-party key exchange have emphasized mutual authentication, in which both
parties authenticate themselves to their peer. The use of one-way authenticated protocols
raises an important question: what is the motivation for an authenticated server to use an
encrypted channel to communicate with an unauthenticated client? We will argue that in
some sense, the security provided with respect to confidentiality is upper-bounded by the
security provided with respect to authentication. From the server’s perspective there may
be no motivation to encrypt the channel with an unauthenticated client, but servers may
still wish to go to the computational effort of providing such encrypted connection out of
sympathy for the client’s security goals or for other external reasons.

Relaxing the authentication requirements in key exchange from mutual to one-way au-
thentication also permits additional security properties, such as anonymity. Some previous
approaches to key exchange have permitted identity hiding, in which the identity of a party is
never communicated in the clear, but still eventually becomes known to the peer. Anonymity,
on the other hand, means that a party’s identity is kept secret even from its peer, and is an
important privacy tool. A few protocols have been proposed that offer some combination of
one-way authenticated key exchange and anonymity, but a more thorough, formal and unified
approach is merited.

The cryptographic literature focuses almost entirely on mutually authenticated key ex-
change, usually in the two-party setting. Security models such as those by Canetti and
Krawczyk [CK01] and LaMacchia et al. [LLM07] assume all parties have certificates. Thus
session peers are indistinguishable in the sense that each peer can contribute static key pairs
and certificates to the key establishment. However, this assumption does not reflect real-world
practice. Of the millions of key agreement sessions that happen each day on the Internet,
only a tiny proportion involve mutual public key authentication; the vast majority, especially
using TLS on the web, involve only one certificate authenticating the server’s identity to the
client, while the client provides no certificate authentication (at least in the cryptographic
key agreement protocol). This is not a surprising fact. Certificates that bind static public
keys to identities require a public key infrastructure (PKI), which can be costly to deploy
and difficult to manage; while many big corporations can adopt certificates, average users
seldom do. Moreover, users tend to move between computers—at home, at work, in Inter-
net cafés—without carrying along private keys and certificates. Even system administrators
rarely, if at all, carry private-public key pairs, but nonetheless frequently perform remote
maintenance. These scenarios are often encountered in practice, but are not captured by the

2



aforementioned models.
Password-authenticated key exchange (PAKE) [BPR00, BM92] does treat clients and

servers differently, and passwords can be easier to use than certificates (though passwords
have their own usability and security challenges). Still, PAKE aims to provide mutual au-
thentication for peers, which does not always match a system’s needs.

In a number of situations, only one party needs, or can, or wants to be authenticated
to the other. Fiore et al. [FGS10] point out that, for the identity-based setting, a mutually
authenticated key exchange protocol can be transformed into a one-way protocol by assigning
a “dummy” public key / private key pair that is shared among the one-way parties. A similar
technique can be applied in the non-identity-based setting. However, one-way AKE need
not just be a limited form of mutually authenticated key exchange. It can, for example,
pave the way for features like anonymity. The generic construction of Fiore et al. provides
no anonymity assertions, and indeed it is not hard to imagine a reasonable protocol or
implementation in which nonces are generated by hashing previous values; with a reasonable
hash function, this would still provide security, but not unlinkability and hence not anonymity.

Contributions. In this paper, we consider the problem of one-way authenticated key ex-
change and how it relates to anonymity. We provide an intuitive set of goals that such
protocols should achieve, including confidential session key agreement, one-way authentica-
tion, and anonymity. We then present a formal model that captures these goals.

Our work differs from existing approaches to models for authenticated key exchange
because it provides a means to achieve not only mutual but also only one-way authentication.
We provide a security model that distinguishes between sessions that authenticate peers and
sessions that do not: we are concerned with the secrecy of session keys that have authenticated
peers. We also incorporate in our model the ability for an adversary to predict a party’s
behaviour by learning public keys in advance. This is a subtle issue as there are protocols
— see [MU09] for further discussion — where leaking public information before the protocol
run commences makes the difference between security and insecurity. Our security model
differs from existing authenticated key exchange security models such as CK01 [CK01] and
eCK [LLM07] in that it addresses one-way, not mutually authenticated, sessions, and is
more general than the specialized security definition of Goldberg [Gol06] for the one-way Tor
Authentication Protocol.

In addition to one-way AKE security, our model also provides anonymity definitions,
including anonymity with respect to peers and unlinkability of sessions, and we show that
unlinkability is equivalent to anonymity. Anonymity with respect to peers is a stronger
property than the identity hiding property present in several existing AKE protocols, such
as JFKi [ABB+04], where the client’s identity is hidden from eavesdroppers but eventually
known to the peer.

To motivate the need for formal models and proofs, we analyze a key exchange protocol
proposed by Øverlier and Syverson [ØS07] for use in the Tor anonymity network2 and show
that this protocol is insecure: it suffers from an authentication flaw allowing adversaries to
easily impersonate honest servers to honest clients. As a remedy, we introduce an efficient
new one-way authenticated key exchange protocol and show that it provides security and

2We note that Øverlier and Syverson’s protocol has not yet been used in the Tor anonymity network; thus,
this is not an attack on the deployed Tor network.

3



anonymity in our model. Our protocol is suitable for use in a variety of settings, including
the establishment of circuits in the Tor network.

2 Related work

Authenticated key agreement. Key agreement is an important cryptographic prim-
itive that has been extensively studied, especially in the two-party authenticated setting
[BR93, BWJM97, CK01, CK02, LLM07, MU09]. However, only a few protocols have con-
sidered the problem of one-way authentication. Goldberg [Gol06] gave a specialized one-way
AKE security definition for the Tor authentication protocol. Øverlier and Syverson [ØS07]
proposed some alternative protocols for circuit establishment in Tor but without any secu-
rity arguments. We analyze one of their protocols in Section 3 and demonstrate it does not
prevent server impersonation. Kate et al. [KZG10] describe an identity-based anonymous
authenticated key exchange protocol but with a limited session key secrecy definition based
on key recovery, not indistinguishability. Morrissey, Smart, and Warinschi [MSW08] ana-
lyzed the security of the Transport Layer Security (TLS) protocol in the context of one-way
authentication, but with specialized security definitions.

Identity hiding and anonymity. Some key exchange protocols [ABB+04, CCCT06,
Chi07, Kra03] aim to provide identity hiding, in which the identity of one party remains
hidden during communication, though the identity becomes available to the peer by the
end of the protocol. The Canetti-Krawczyk post-specified peer model [CK02] and Menezes-
Ustaoglu model [MU09] encompass key exchange protocols in which the identity of the peer
may not be available at the onset of the protocol.

Other key exchange protocols [Sho99, Gol06, ØS07, KZG10, RIO+07, CC07] aim to give
anonymity, in which even the peer does not learn the long-term identity of the party. This
is an important goal for practical applications such as the Tor anonymity network [DMS04].
Most of the references above do not analyze the anonymity properties of their protocols in
a formal manner, although a few do. Shoup [Sho99] defines anonymity in the context of the
simulation framework for key exchange security, as opposed to the indistinguishability frame-
work of, for example, Canetti-Krawczyk [CK01], which has now become more commonplace
for analyzing key agreement protocols. Kate et al. [KZG10] provide the only other one-way
authenticated key exchange protocol with formal anonymity goals, although their definition
is specialized for the protocol in question. In this paper, we present a generic anonymity
definition, suitable for analyzing a wide variety of protocols, in a framework similar to the
key exchange security framework of Canetti-Krawczyk [CK01].

Some protocols [DGK06] provide deniability, where it cannot be conclusively proven that
a party participated in a key exchange session. This differs from anonymity in that a deniable
protocol may still leak information about the parties involved in its normal operation.

One-way vs One-flow. We make special note of the difference between one-way AKE
and one-flow AKE. One-flow AKE protocols are designed to establish a session key using a
single message from the client to the server. It can provide mutual authentication by using
two static keys (one each from the client and the server) and one ephemeral key (from the
client). In contrast, one-way AKE can use one static key (from the server) and two ephemeral

4



keys (one each from the client and the server), but provides no authentication to the server.
Although one can try to view a one-way AKE protocol as the complement of a one-flow
AKE protocol, switching ephemeral and static keys, the security properties are substantially
different.

3 Cryptanalysis of a protocol of Øverlier and Syverson

Øverlier and Syverson [ØS07] proposed a number of one-way authenticated key exchange
protocols to be used for circuit establishment in the Tor anonymity network. They presented
several protocols, culminating in the so-called fourth protocol, which aims to provide reduced
computational requirements, key establishment with immediate forward secrecy, and implicit
one-way authentication. The protocols did not have any accompanying security argument.
We had originally set out to prove the fourth protocol secure in our model, but instead
discovered an attack against the protocol.

Fourth protocol. Let g be a generator of a group of prime order q. Suppose a client Â
wishes to establish an encrypted session with server B̂ with long-term Diffie-Hellman private
key b and public key B = gb. The client and server exchange random ephemeral Diffie-
Hellman public keys X = gx and Y = gy, respectively, and the session keys are derived from
the cryptographic key material k, which is computed by the client as (BY )x and by the server
as Xb+y. The diagrammatic version of this protocol appears in Figure 1.

“Fourth Protocol” [ØS07]

Client Â Server B̂

long-term private key b, public key B = gb

1. select sid

2. x
$← Zq

3. X ← gx
X,sid−−−−−−→ y

$← Zq

4. Y ← gy

5. k ← (BY )x
Y,sid←−−−−−− k ← Xb+y

Figure 1: Core cryptographic operations of the “Fourth Protocol” [ØS07] for authenticated
key exchange in Tor circuit establishment

Attack. Our attack allows an adversary M to impersonate an honest server to an honest
client. The adversary is able to determine the session key and thereby convince honest clients
that it is the honest server simply from having learned the server’s long-term public key. This
is essentially a full break of the protocol.

The attack proceeds as follows. SupposeM knows server B̂’s long-term public key B. An
honest client Â sends its ephemeral public key X to B̂, which M intercepts. M computes
B−1, selects a value r ← Zq, and computes Y ′ ← B−1gr = gr−b; M responds to the client
with Y ′. The client computes the key material k ← (BY ′)x = g(b+r−b)x = grx. The attacker
M computes the same key material as Xr = grx, and hence can derive the same session keys
as Â. This allows M to impersonate B̂ to Â.

5



For the purposes of breaking an entire Tor circuit,M can use this technique to successively
impersonate all nodes in a Tor circuit establishment by M.

Lessons learned. This attack serves to underline the importance of formal security argu-
ments for protocols and motivates our development of a security model for one-way AKE in
Section 5. Before developing a security model, we first examine security goals in the one-way
authenticated scenario and how they differ from the two-way authenticated scenario.

4 Understanding one-way authentication

In this section, we try to understand the motivation of various parties to engage in one-
way AKE protocols. We then investigate the relation of one-way AKE protocols to key
confirmation and public-key encryption.

4.1 Secrecy without authentication

If authentication is not required, is secrecy? Consider the following examples:

1. Readers act upon the perceived reputation of a news source, so reputation is a valuable
commodity for utility providers such as journalists. Provider-to-user authentication
achieves both reputation damage prevention for the provider and source integrity for
users. No further authentication is required and since the information is public, channel
secrecy is not required and does not affect the actions of either party.

2. A growing community achieves online privacy via the Tor network [Tor11]. Tor hides
user actions by relaying encrypted connection through authenticated intermediate servers,
without requiring any user authentication. To avoid Internet surveillance users must
authenticate their Tor entry point and keep the subsequent communication encrypted.
However, Tor is available even to users who after utilizing Tor disclose all their actions.

3. Until recently most search engines redirected HTTPS to HTTP requests thus denying
secrecy to clients.3 On the server side HTTPS connections require extra valuable re-
sources while the actual response content is not affected [Goo10]. On the user end,
however, encryption availability likely affects the content of sensitive queries.

4. Patients requiring medical advice may wish to do so anonymously, while still ensuring
the confidentiality of their request and assurance that the medical advice received comes
from an authentic, qualified source.

For a single communication channel these examples illustrate that the authenticated party
provides the same services irrespective of secrecy. On the other hand, the party verifying the
authentication could alter its behaviour depending on the availability of secrecy. Effectively,
the party with an incentive to perform authentication on the other also has an incentive for
the channel to be encrypted. In that sense, secrecy assurances stronger than authentication
assurances are not well-motivated in an individual communication session. However, parties
not receiving authentication can still have secrecy-related goals:
• Doctors may be required by law to preserve patient-doctor confidentiality. Even in the

case of an unauthenticated patient, doctors may prefer an encrypted channel over an

3As of May 2010, Google started accepting HTTPS search requests [Goo10].

6



unencrypted channel to ensure only the session initiator can read the responses. This
is subtly different than the standard secrecy definition and is perhaps better described
as exclusivity. Even without this encrypted channel, however, the primary actions of
the doctor—the medical advice given—will be unaltered.

• An Internet service provider (ISP) could make additional revenue by either replacing
ads on returned search queries with its own ads [Sla07], or by observing and selling
user trends [Sin08]. For search engines that accept unauthenticated connections and
obtain revenue from selling advertising space, end-to-end secrecy and message integrity
could protect their business model from unfair competition. Arguably, however, the
search engine’s goal here is not the secrecy of any separate connection, but the security
of a large number of connections overall. Hence other aggregate-oriented definitions of
secrecy may be relevant here.

In this work, we focus on authentication and secrecy goals for individual connections, and
therefore to parties that receive authentication assurances. This excludes alternative goals
such as connection exclusiveness and aggregate security, which are different targets and could
potentially be achieved via alternate methods.

4.2 Key confirmation and one-way authentication

Key confirmation is an integral part of many authenticated key exchange protocols. The TLS
protocol [DA99], for example, uses Finished messages in both directions, which are computed
as a MAC, under the master secret key, of the text “client finished” or “server finished” and
the fingerprint of the transcript. Key confirmation enhances the security properties of the
basic schemes. NIST SP800-56A [NIS07] states:

Key agreement, accompanied by key confirmation [...] can be used to provide the
recipient with assurance of either the provider’s current or prior possession of the
static private key that is associated with a particular static public key.

Moreover, in SP800-56A key confirmation is associated with the use of a static key pair:
a party provides a key confirmation message only if that party contributed a static key pair
in the key agreement protocol. In the previous section we gave examples where parties not
authenticating their peers do not alter their behaviour based on the presence of encryption.
From the point of view that key confirmation enhances session-key secrecy and authentication
properties, client-to-server key confirmation is not needed.

While there may be no cryptographic reason for key confirmation from an unauthenti-
cated client to an authenticated server, from an engineering perspective the server may desire
assurances that the client has computed the session key and should keep the connection open.
MAC tags provide a means for the server to confirm that the peer has completed the session.
However, confirmation that the unauthenticated client has successfully completed the session
does not require secret-key cryptographic operations; it can be achieved simply by using a
hash of all public messages. Such an approach is no worse than sending a MAC tag: in
preventing any half-open-connection denial-of-service attacks, confirmation via a hash of ex-
changed messages is as successful as confirmation via a MAC tag. The computational cost of
symmetric-key operations is negligible but minimizing cryptographic operations nevertheless
reduces the overall complexity of server management by imposing weaker conditions on the

7



environment. Consequently, the protocol we propose in Section 6 employs only server-to-
client key confirmation and no client-to-server key confirmation.

4.3 Public-key encryption and one-way AKE protocols

Public key encryption can be used for one-way AKE protocols, for example by having the
client encrypt a session key under the server’s public key. This mechanism is widely used, for
example in the RSA-based cipher suites in TLS [DA99, §7.4.7.1] and in the KAS1 protocol
in NIST SP800-56B [NIS09, §8.2].

Key agreement using public-key encryption provides a form of one-way authentication.
NIST SP800-56B [NIS09, §8.2.4] describes the authentication properties of KAS1 as follows:

In each scheme included in this family, only the identifier of V (the responder) is
required to be bound to a public key-establishment key. U (the initiator) has as-
surance that no unintended party can recover Z from C (without the compromise
of private information).

The responder, however, has no such assurance. In particular, V has no assurance
as to the accuracy of the identifier claimed by the initiator and, therefore, has no
assurance as to the true source of the ciphertext C.

Existing two-party AKE security models allow the adversary to select any session (as
long as it is not trivially compromised) as the test session. In key agreement protocols such
as KAS1, where the responder does not obtain any assurance of its peer’s identity, AKE
security is hard to achieve: the adversary can create a ciphertext on its own and engage with
an honest party “on behalf” of another honest party. Since the adversary can compute the
session key, no secrecy assurances can be deduced and thus existing AKE definitions are not
useful here.

Recall that in a typical indistinguishability-based adaptive chosen ciphertext attack (IND-
CCA2) security experiment, the adversary plays a game against a party that encrypts mes-
sages. In other words, it is the sender of the message that obtains security assurances and has
assurances about the identity of the receiving party. In line with the discussion in Section 4.1,
the IND-CCA2 security definition implies no (direct) assurances for the receiver. We therefore
adapt this idea to our security definition for one-way AKE. Our adversary can only select
target test sessions that have an authenticated peer, thus overcoming the aforementioned
drawback of existing models where the adversary can target any session.

Our one-way AKE model can be viewed as a refinement of authentication and secrecy
notions in key agreement, but it can also be seen as an extension of IND-CCA2 security to the
multi-party setting. Such a unified treatment of key establishment and public-key encryption
should not come as a surprise, since a typical usage of both primitives is to establish a shared
secret key between two parties that can subsequently be used with symmetric encryption to
transfer larger amounts of data.

5 Security model

In the previous section we looked at the meaning of one-way authentication and argued that
existing models leave outside their scope one-way authenticated protocols. In this section,

8



we describe the security model and security experiments we consider relevant for one-way
authenticated key exchange. The section is divided into two parts: the overall model of
what protocols, parties, and the adversary are and how they interact, and then a number of
security experiments in that model to describe various security properties such as one-way
authenticated key exchange and anonymity.

Our model is based on the eCK model [LLM07], but with a few changes to support one-
way authentication, as well as some syntactic changes. Most importantly, we do not focus on
matching conversations or transcripts but on the output of a session. The output is defined
by the protocol, and it is the output that indicates which sessions should produce the same
session key. The grouping of values in the session output also defines which combinations
of values can be revealed by the adversary without compromising security; this notion of
partnering to a value is the link between parties, public keys, and session outputs, and is
crucial for our definitions. Finally, we provide the adversary with additional power compared
to CK01 or eCK, namely the ability to learn public values before they are used (RevealNext).

5.1 Model description

Parties, key pairs, and certificates. Parties implementing protocols are probabilistic
interactive Turing machines. Parties can be activated via incoming messages. The responses
are outgoing messages as defined by the protocol or confirmation that certain routines were
completed with either success or failure.

Each party will have in its memory many key pairs of the form (x,X), where x is a private
value and X is a public value. The key pairs may be generated by some algorithm specified
by the protocol. A party may have two types of key pairs: ephemeral key pairs, which are
associated with a particular session Ψ, or static key pairs, which can be used across multiple
sessions. The party may also have key pairs that have been generated but not yet used.
If necessary, different types of key pairs may be permitted, for example, if a protocol uses
has one type of key pair for digital signatures and another type of key pair for public-key
encryption.

Each party will also have public keys X that have been bound together with a party
identifier X̂ to form a certificate certX = (X̂,X) that it will use to authenticate other
parties. A party is said to be an owner of a certificate (X̂,X) if it knows the secret key x
corresponding to the public key X.

Protocol and sessions. A protocol is a collection of interactive routines, along with a
set of public parameters pubparams. During execution a protocol can request access to the
party’s memory. Each execution of a protocol is called a session, and each session has an
associated session identifier Ψ assigned by the party, which must be unique within the party.
Each session has an associated session state where intermediate values are stored, which is
updated according to the protocol specification and the incoming messages delivered to the
session. Where necessary, we identify the session state for party P in session Ψ by MP

state[Ψ].
If a session Ψ is executed within a party then we call that party the owner of Ψ.

Session execution. Within a session execution for the session Ψ, the computation may
access the party’s static key pairs as well as certificates of other parties. Furthermore, the
session Ψ can access key pairs (x,X) that are not yet bound to other sessions, or direct novel

9



pairs to be generated if no unused pairs exist; if such a pair (x,X) is accessed or generated,
then it becomes bound to Ψ and becomes part of Ψ’s session state. After the session completes
its execution, pairs (x,X) that were part of the session state are deleted. During the session
execution the session may also produce outgoing messages.

Once a session Ψ owned by P completes, it outputs a value MP
out[Ψ] which is either ⊥

or (sk, pid,~v), where sk is a session key in a keyspace K, pid is a party identifier or the
anonymous symbol ~, and ~v = (~v0, ~v1, . . . ) where each vector ~vi is a vector of public values.
(For example, ~v1 may consist of the public values contributed by party P1.) Including ~v
as part of the session output binds the session with the various keys used by the parties;
this serves the same purpose as including a partial transcript in the session identifier in the
eCK model. We use the notation MP

out[Ψ].sk to refer to the session key for the session, and
similarly for the remaining output values.

Adversary. The adversary is a probabilistic Turing machine taking as input pubparams
with access to oracles for parties P1, . . . , Pn. The adversary controls all communications
between the parties using the specified queries; in particular, it can delete, modify, insert,
delay, and reorder messages. The adversary can direct a party to perform certain actions by
sending one of following queries to the party P :
• Send(params, pid) → (Ψ,msg): With this query, the adversary directs the party to

initiate a new key exchange session. The party initiates a new session and assigns
a new session identifier Ψ. The response to this query includes any protocol-specific
outgoing message msg as well as the session identifier Ψ. The format of the input
value params is specified by the protocol and could include: (i) the protocol to be
executed; (ii) the certificate(s) which the party should use to authenticate itself; (iii)
the certificate(s) to use for peers in the session. The value pid is the identifier of the
party with whom to establish the session; if the session is meant to be established with
an unauthenticated, anonymous peer, then pid is the special symbol ~.

• Send(Ψ,msg) → msg′: This query models the standard delivery of messages. The
party activates session Ψ with msg and returns any outgoing message msg′.

• RevealNext → X: This query allows the adversary to learn future public values. The
party generates a new key pair (x,X), records it as unused, and returns the public
value X.
• Partner(X)→ x: This query allows the adversary to compromise secret values used in

the protocol computation. If the party has a key pair (x,X) in its memory, it returns
the private value x.
• SessionKeyReveal(Ψ)→ sk: With this query, the adversary can learn session keys. This

returns the secret key MP
out[Ψ].sk for session Ψ.

Additionally, the adversary can generate its own public keys and certificates with the following
non-party-specific query:
• EstablishCertificate(X̂,X): The adversary registers with all parties a certificate con-

taining public key X for an unused identifier X̂; the adversary is the owner of such a
certificate.4

4We often equate identifiers and parties. If an identifier X̂ and associated public key X was introduced
with an EstablishCertificate query, we call X̂ a dishonest party; otherwise X̂ is said to be honest.

10



Certification can also be made an adaptive process. That is, the adversary can be allowed
queries that direct a party to generate a new certificate for a pair (x,X) or accept new or
different peer certificates. For simplicity we do not address this issue here.

Where necessary to avoid ambiguity, we use a superscript to indicate the party to whom
the query is directed, for example SendPi(Ψ,msg).

Partnering. The adversary is said to be a partner to a value X unless X was the output
of a Send or RevealNext query to some party Pi and Partner(X) was never issued to party Pi.
Note that this implies that the adversary is partner to almost all values. For consistency, if a
party generated the pair (x,X) — either because it was directed by the adversary or because
of a session execution — then the party is said to be a partner to X.

Correct protocols. A two-party key exchange protocol π is said to be correct if, under
the following conditions:
• the adversary is benign, meaning it faithfully relays all messages in a protocol run

between the two parties, and
• if a party is activated with a Send query in which the peer identifier pid is not ~, then

that party holds a certificate corresponding to pid;5

the following hold for each run of the protocol:
• both parties accept and output the same session key sk and the same vectors ~v, and
• the value pid in each party’s output matches the partner identifiers pid in the Send

query with which the party was activated.

5.2 One-way AKE security

The goal of the adversary in the one-way AKE security experiment is to distinguish the
session key of an uncompromised session from a random key. In the one-way authenticated
key exchange security experiment, the adversary has access to the following additional oracle:
• Test(i,Ψ) → K: Abort if MPi

out[Ψ].sk =⊥ or MPi
out[Ψ].pid = ~. Otherwise, choose

b
$← {0, 1}. If b = 1, then return MPi

out[Ψ].sk; otherwise, when b = 0, return a random
element of K. Only one call to the Test query is allowed.

One-way-AKE-fresh. A session Ψ at a party Pi is said to be one-way-AKE-fresh if both
of the following conditions hold:

1. For every vector ~vj , j ≥ 1, in MPi
out[Ψ], there is at least one element X in ~vj such that

the adversary is not a partner to X.
2. The adversary did not issue SessionKeyReveal(Ψ′) at party Pj , for any Pj which is the

owner of a certificate for the identifier MPi
out[Ψ].pid such that MPi

out[Ψ].~v = M
Pj

out[Ψ
′].~v.

Definition 1 (One-way-AKE-secure) Let k be a security parameter and let n ≥ 1. A
protocol π is said to be one-way-AKE-secure if, for all probabilistic polynomial time (in k)
adversariesM, the advantage thatM distinguishes a session of a one-way-AKE-fresh session
from a randomly chosen session key is negligible (in k).

5If certification is treated as an adaptive process, then correctness further requires that this certificate be
unchanged during the run of that session.

11



Remark. We emphasize that the test session can be directed only at sessions that outputs
an identifier pid of an authenticated party. If a session does not output any authenticated
peer then the session key security of such sessions is not guaranteed.

Forward secrecy. Since the one-way-AKE-fresh definition depends on the session output,
and the protocol specifies the output, one-way-AKE-security does not necessarily imply for-
ward secrecy. For example, in our ntor protocol in Section 6, the server’s ephemeral and
static public keys are in the same vector in the output, so the protocol has forward secrecy:
if the static public key is (later) compromised, the session remains secure. By contrast, RSA
key transport in TLS could be proven one-way-AKE-secure with only the server’s static pub-
lic key in the output, so it would not have forward secrecy (see Section 5.5). In general, a
one-way-AKE-secure protocol gives forward secrecy if, whenever a party’s long-term public
key appears in an output vector, that output vector also includes an ephemeral public key
from that party.

5.3 One-way anonymity

The goal of the adversary in the one-way anonymity security experiment is to guess which of
two parties is participating in the key exchange. We use a proxy—run by the challenger—to
relay communications to the party the adversary is trying to identify. The experiment is
shown diagrammatically in Figure 2. The adversary gives distinct party indices i and j to
the challenger; the challenger randomly picks i∗ as one of these, activates Pi∗ , and then relays
messages between the adversary and Pi∗ . The adversary’s task is to guess i∗.

Party Pi∗

Send Send

guess i∗

Start(i, j, params, pid)
i∗

$← {i, j}
Send(params, pid)

A CChallenger

Figure 2: The challenger for the one-way anonymity security experiment

In the one-way anonymity security experiment, the adversary can issue the following
queries to the challenger C. The first two queries are for activation and communication
during the test session:

• StartC(i, j, params, pid) → msg′: Abort if i = j. Otherwise, set i∗
$← {i, j} and

(Ψ∗,msg′)← SendPi∗ (params, pid); return msg′. Only one call to StartC is allowed.
• SendC(msg)→ msg′: Return msg′ ← SendPi∗ (Ψ∗,msg).

The remaining queries that can be issued by the adversary to the challenger C deal with the
compromise of information related to the test session:
• RevealNextC → X: Return RevealNextPi∗ . Note that the responses to the RevealNextC

and RevealNextPi∗ queries are additionally modified so that no values produced by

12



RevealNextC are used in sessions other than Ψ∗, and no values produced by the adver-
sary’s direct calls to RevealNextPi∗ are used in session Ψ∗.

• SessionKeyRevealC()→ sk: Return sk ← SessionKeyRevealPi∗ (Ψ∗).
• PartnerC(X)→ x, where X was a value returned by SendC : Return x← PartnerPi∗ (X).

Definition 2 (One-way anonymity) Let k be a security parameter and let n ≥ 1. A
protocol π is said to be one-way anonymous if, for all probabilistic polynomial time (in k)
adversaries M, the advantage (over random guessing) that M wins the following experiment
is negligible (in k):
• Expt1w-anon

π,k,n (M):
– Initialize pubparams.
– Initialize parties P1, . . . , Pn.
– Set î←MP1,...,Pn,C(pubparams).
– Suppose that M made an StartC(i, j, params, pid) query which chose i∗. If î = i∗,

and M’s queries satisfy the following constraints, then M wins, otherwise M
loses.
∗ No SessionKeyReveal(Ψ∗) query to Pi or Pj.
∗ No Partner(X) query to Pi or Pj for any value X returned by C.
∗ No Send(Ψ∗, ·) query to Pi or Pj.
∗ Both Pi and Pj had exactly one certificate — the same certificate — for pid

during the run of the protocol for Ψ∗.

Remark. The restrictions in Definition 2 are to prevent the adversary from trivially learning
Pi∗ by querying Pi and Pj on information related to the target session. For example, if i∗ = i,
then SessionKeyRevealPi(Ψ∗) would return the real session key while SessionKeyRevealPj (Ψ∗)
would return ⊥ since Pj has no session Ψ∗, and the adversary can then learn that i∗ = i. We
also ensure that both Pi and Pj hold exactly the same certificate for pid during the entire
test session.

However, we do allow the adversary to interact with the challenger in much the same
way as a normal party. The adversary can compromise values for the test session: the main
restriction is that it must do so via queries to the challenger, not queries to the actual parties.
In order to further prevent trivial attacks, we must ensure that any values used in the test
session are not used in other sessions at the party, and this is accounted for in the definition
of RevealNextC .

5.3.1 Related notion: External anonymity

Definition 2 hides the identity of one party (say the initiator of a Tor connection) from that
party’s peer (the Tor server). This internal anonymity property is different from external
anonymity where the identity of the communicating parties is hidden from most parties on
the network but become available to the session participants by the end of the protocol. This
property has been considered previously [CK02, ABB+04]; it can be achieved via encryption
of the identities of communicating parties.

13



5.3.2 Related notion: Two-way anonymity

Definition 2 can also be extended to provide anonymity for both peers from each other.
However, as we argued earlier, authentication bounds the level of security. With two-way
anonymity, no authentication is provided, so secrecy is not well-motivated. Thus, for one-way
AKE protocols the one-way anonymity definition suffices.

5.3.3 Related notion: Unlinkability

Unlinkability is the property that an attacker cannot determine whether two items of interest
are related or not [PH10, §4]. In the context of anonymous key exchange, the two items of
interest could be two key exchange sessions, and the relation the attacker aims to determine is
whether the two sessions are with the same anonymous party or with two different anonymous
parties.

With a suitable formalization of unlinkability of anonymous key exchange sessions, it can
be shown that unlinkablity is equivalent to one-way anonymity as defined in Section 5.3. We
present a formalization and argument for this in Appendix A.

5.3.4 Relation notion: Deniability

Deniability is the property that a party’s participation in a protocol cannot be proven con-
clusively to a judge: while the session owner may be convinced of her peer’s identity, the
transcript cannot convince someone else of the same fact. For example, in the context
of authenticated key agreement protocols [DGK06], a protocol in which authentication is
demonstrated using a digital signature, deniability is in general not satisfied, but a protocol
in which authentication is demonstrated by correctly decrypting a public-key ciphertext may
achieve deniability.

Deniability is not the same as anonymity. While in a deniable protocol it cannot be
proven that a session involves a particular party, typical sessions between honest parties
may still leak identifying information about the parties involved. In contrast, protocols with
anonymity properties ensure stronger privacy properties in that no information about the
parties involved is leaked.

5.4 One-way AKE protocols

Given the model, it is worth considering which protocols satisfy the security model we pro-
pose. Natural candidates are the KAS1 family of protocols in SP800-56B [NIS09] and the
so called C(1, 1) family of protocols in SP800-56A [NIS07]. In both families of protocols the
responder provides a static key pair and possibly a nonce—a one-time random public string.
One easily verifies that these protocols do not provide forward secrecy. If the static private
key of the server is compromised, the client, who contributed the ephemeral key pair, loses
secrecy. We are interested in the assurances that would satisfy the needs of the Tor network,
where forward secrecy is an important attribute. In the next section we propose and analyze
such a protocol, but it is also of interest to see if forward secrecy is the only drawback of the
protocols suggested in SP800-56A and SP800-56B.

14



5.5 Analysis of TLS

The Transport Layer Security (TLS) protocol [DR08] is most commonly used to provide con-
fidentiality and authentication on the web, and in that setting it is typical that only server
authentication is used. It is natural, then, to consider whether TLS satisfies the one-way
AKE and anonymity security properties. TLS supports a wide variety of cryptographic algo-
rithms in the form of ciphersuites; we will focus on two common ciphersuites, namely RSA
key transport (TLS RSA WITH AES 128 CBC SHA) and signed ephemeral Diffie-Hellman
(TLS DHE RSA WITH AES 128 CBC SHA).

One-way-AKE security. An essential characteristic of one-way-AKE security (Defini-
tion 1) is that, if a party uses multiple keys in a session, then the session should remain
secure if all but one of those keys is compromised.

In RSA key transport in TLS, the client picks a random pre-master secret and sends it
to the server encrypted under the server’s long-term public key; the server has no ephemeral
key. Hence, provided the server’s long-term key is not revealed, the session remains secure,
and TLS could theoretically be proven secure in the formalism of Definition 1. However, as
mentioned earlier, this does not provide forward secrecy.

In signed ephemeral Diffie-Hellman key exchange in TLS, the client and server use plain
Diffie-Hellman key exchange to establish a shared secret, and the server signs its ephemeral
Diffie-Hellman key using its long-term signing key. If the server’s ephemeral key is revealed,
the session key is no longer secure, and thus this ciphersuite cannot satisfy our one-way-AKE
security definition.

Anonymity. The core cryptographic components of TLS — basic RSA key transport or the
basic ephemeral Diffie-Hellman — appear at first glance to provide anonymity for clients in
the fashion of Definition 2. However, TLS as a protocol consists of much more than the core
cryptographic components; it includes protocol negotiation (the ClientHello and ServerHello
messages), session reuse, and other values in various messages. We have identified several
parts of the protocol that have the potential to break client anonymity (even when used over
an anonymizing network protocol such as Tor):
• In the ClientHello message, the client indicates its supported TLS versions, ciphersuites,

algorithms, and extensions. These values may leak information about the client’s con-
figuration.
• In the client random value in the ClientHello message, the client provides its computer’s

current time in seconds (gmt unix time). As the clocks of various client computers may
not all be exactly synchronized on a universal time, this value may allow a server to
link client sessions.

• The session identifier of a new session is specified by the server in the session id field of
the ServerHello message. In particular, the client has no input into the session identifier.
As a result, it is possible for a malicious server to reuse the same session identifier in
multiple sessions. While the TLS specification does not explicitly require a client to
abort if it receives the same session identifier from a server twice, many implementations
do abort in that case.6

6For example, in OpenSSL [Ope11], the routine ssl get new session in the file ssl/ssl sess.c aborts if the
session id exists in the cache.

15



6 Proposed Protocol ntor

In this section we propose and analyze a one-way authenticated key exchange protocol that
provides one-way anonymity. Our protocol is suitable for use in a variety of settings, including
the Tor anonymity network [Tor11]. We describe the protocol as being between a “client”
and a “server” but the protocol could equally be considered as being among parties who take
on multiple roles as both “initiators” and “responders”, albeit with independent keys in their
separate roles.

Definition 3 Let k be a security parameter. Let G be a cyclic group of prime order q gen-
erated by an element g, and let G∗ be the set of non-identity elements of G. Let Hsid, Hmac be
hash functions with range {0, 1}k and let H be a hash function with range {0, 1}k × {0, 1}k.
The ntor protocol proceeds as follows:
• When B̂ is initialized as a server:

1. Set b
$← {1, . . . , q − 1} and set B ← gb.

2. Set (b, B) as B̂’s static key pair.
3. Set certB = (B̂, B) as B̂’s certificate.

• When Â is initialized as a client:
4. Obtain an authentic copy of B̂’s certificate.

• When Â receives the message (params, pid) = ((“new session”, ntor), B̂):
5. Verify that Â holds an authenticated certificate certB = (B̂, B).
6. Obtain an unused ephemeral key pair (x,X ← gx); set session id Ψa ← Hsid(X).

7. Set M Â
state[Ψa]← (ntor, B̂, x,X).

8. Return session identifier Ψa and outgoing message msg′ ← (ntor, B̂,X).
• When B̂ receives the message msg = (ntor, B̂,X):

9. Verify X ∈ G∗.
10. Obtain an unused ephemeral key pair (y, Y ← gy); set session id Ψb ← Hsid(Y ).
11. Compute (sk′, sk) = H(Xy, Xb, B̂,X, Y, ntor).
12. Compute tB = Hmac(sk

′, B̂, Y,X, ntor, “server”).
13. Return session identifier Ψb and outgoing message msg′ ← (ntor, Y, tB).
14. Complete Ψb by deleting y and outputting (sk,~, (~v0, ~v1)), where ~v0 = (X) and

~v1 = (Y,B).
• When Â receives the message msg = (ntor, Y, tB) for session identifier Ψa:

15. Verify session state M Â
state[Ψa] exists.

16. Retrieve B̂, x, and X from M Â
state[Ψa].

17. Verify Y ∈ G∗.
18. Compute (sk′, sk) = H(Y x, Bx, B̂,X, Y, ntor).
19. Verify tB = Hmac(sk

′, B̂, Y,X, ntor, “server”).

20. Complete Ψa by deleting M Â
state[Ψa] and outputting (sk, B̂, (~v0, ~v1)), where ~v0 =

(X) and ~v1 = (Y,B).
If any verification fails, the party erases all session-specific information and aborts the ses-
sion.

6.1 Security

Security of the proposed protocol is established via the following theorem.

16



Theorem 1 Assume H and Hmac are random oracles and Hsid is collision-resistant.7 If G is a
group where the gap Diffie-Hellman assumption holds, then the ntor protocol in Definition 3
is a one-way-AKE-secure protocol.

Argument outline: The argument is a reduction S that takes an CDH instance (U, V ); S
has access to both a DDH oracle and M. The algorithm M can distinguish a fresh session
key from a randomly chosen key. Since M is polynomially bounded, S has a non-negligible
chance to guess in advance the test session and which public keys will be involved in the test
session. By embedding into the test session’s public keys the values (U, V ) and observing
the random oracle queries the algorithm S can extract the solution to the CDH instance. It
is important to have an authenticated peer in the test session as it allows the challenger to
embed the CDH instance within a public key that has not been manipulated by the adversary.
The remaining challenge is to provide consistent random oracle queries and session key reveal
queries in case S does not posses the corresponding private keys. The consistency is achieved
by utilizing the DDH oracle. The details are provided in Appendix B.

6.2 Anonymity

Theorem 2 The ntor protocol in Definition 3 is a one-way anonymous protocol according
to Definition 2.

Argument: We proceed by introducing another experiment, which the adversary cannot win
more often than random guessing. In this new experiment, the choice of i∗ will be uncoupled
from the behaviour of the rest of the system. We then show that no adversary can distinguish
this new experiment from the original experiment, thereby showing the anonymity of the
protocol.

Let Expt1w-anon′
ntor,k,n (M) be the same experiment as Expt1w-anon

ntor,k,n(M), except that C uses the
following new oracles for the 1w-anon′ experiment instead of the original ones from the 1w-
anon experiment:
• Start′(i, j, params, pid = B̂)→ msg′:

1. Abort if i = j.

2. Set i∗
$← {i, j}.

3. Obtain an unused ephemeral key pair (x∗, X∗), consistent with the RevealNext′

query.
4. Set Ψ∗ ← Hsid(X

∗).
5. Set B̂∗ ← B̂ and store M∗state ← (ntor, B̂∗, x∗, X∗).
6. Return session identifier Ψ∗ and outgoing message msg′ ← (ntor, B̂∗, X∗).

• Send′(msg = (ntor, Y, tb)):
1. Verify session state M∗state exists.
2. Retrieve B̂∗, x∗, and X∗ from M∗state.
3. Verify Y ∈ G∗.
4. Compute (sk′, sk)← H(Y x∗ , Bx∗ , B̂∗, X∗, Y, ntor).
5. Verify tB = Hmac(sk

′, B̂, Y,X, ntor, “server”).
6. Complete by deleting M∗state and outputting (sk, B̂∗, {(X∗), (Y,B)}).

7For example, Hsid may in fact be the identity function.

17



• SessionKeyReveal′()→ sk: If the test session has completed, return sk.
• Partner′(X∗): Return M∗state, out∗, or x∗, respectively.
• RevealNext′(eph, n) → (X1, . . . , Xn): Return n values generated by Feph, consistent

with previous RevealNext′ and Send′ queries.
Since all messages computed in the 1w-anon′ experiment are independent of the choice of

i∗, M has no advantage:

Pr
(

Expt1w-anon′
ntor,k,n (M) = win

)
=

1

2
. (1)

We now show that no adversary can distinguish the two experiments.
The distribution of messages returned by the challenger in the 1w-anon′ experiment is

identical to messages returned in the 1w-anon experiment. Moreover, the messages from all
parties except Pi and Pj are unchanged. For messages from Pi and Pj , all queries return
identical distributions of messages in the 1w-anon′ experiment as in the 1w-anon experiment.

We note that any other queries that might reveal information about which of Pi or Pj has
participated in the test session are prohibited by Definition 2. For example, the adversary
is prohibited from trying to determine if Pi holds a session key related to the target session
using the query SessionKeyReveal(Ψ∗) to Pi.

Thus, the two experiments are indistinguishable from an adversary’s perspective:

Pr
(
Expt1w-anon

ntor,k,n(M) = win
)

= Pr
(

Expt1w-anon′
ntor,k,n (M) = win

)
. (2)

Combining equations (1) and (2) shows that the ntor protocol is one-way anonymous. �

6.3 Efficiency

Table 1 presents the efficiency in term of group exponentiations of relevant key agreement
protocols. The Diffie-Hellman protocol [DH76] is the basic protocol on which most other
protocols in the literature are built upon. In the table we refer to the ephemeral-ephemeral
variant that succumbs to man-in-the-middle attacks, but is a good benchmark for efficiency.
We also include the “fourth protocol” of Øverlier and Syverson [ØS07], denoted by ØS,
which was proposed as an efficient Tor candidate that provides one-way authentication. The
MQV [LMQ+03] and the UM [BWJM97] key agreement protocols were initially devised to
provide two parties holding certified static keys with a session key. Variants where parties
do not provide static keys are included in the NIST SP800-56A [NIS07] standard. In case
a party does not contribute a static key, the ephemeral key substitutes for the static key
in all computations. We emphasize that SP800-56A does not allow the scenario where the
initiator contributes only an ephemeral key and the responder contributes both static and
ephemeral keys. In this comparison we use the variants where both participants contribute
both static and ephemeral key pairs. Variants of both protocols have been shown secure;
however, the UM protocol achieves security in a restricted model, whereas the MQV variant
(HMQV [Kra05]) proven secure has a highly non-tight security argument. By “tight” in
the context of key agreement security reductions, we mean that the only significant factor
between the difficulty of breaking the key agreement protocol and the difficulty of solving
the underlying function is the factor that comes from guessing the correct test session. This
factor is present in all known security reductions of key agreement protocols.

18



Protocol Efficiency (client) Efficiency (server) authentication security
Off-line On-line Off-line On-line

DH 1 1 1 1 none insecure

ØS 1 1 1 1 one-way insecure

MQV 1 1.17 (1.5) 1 1.17 (1.5) mutual non-tight

UM 1 2 1 2 mutual limited

ours 1 2 1 1.33 (2) one-way tight

Table 1: Efficiency in terms of group exponentiations

In the table all protocols except ours are balanced in the sense that the operations per-
formed by both the client and the server have the same cost. The values in the brackets
are naive counts and public key validation is omitted. MQV benefits from Shamir’s trick
for simultaneous multiple exponentiation [MvOV97, Algorithm 14.88]. In our protocol the
server needs to compute Xb and Xy. Since the base is the same, squarings in the square-
and-multiply algorithm can be parallelized [MN96] reducing the computational cost to 1.33
exponentiations. Further improvements such the “Exponent Combination Method” [MN96,
§2.3] can be applied to the computation of the server. However such algorithms further in-
crease the complexity of the computations and the improvements are not always clear cut.
Note that the off-line stage can also benefit from the Exponent Combination Method. We
do not consider amortized costs since they are applicable to all protocols and will not affect
any comparison.

On the client side our proposal is at least as efficient as the UM protocol. Since the
exponent in Bx and Y x is repeated there may be room for improvement. However such
improvements will provide little contribution since clients are expected to run relatively few
sessions compared to the server. On the server side our protocol performs almost as efficiently
as the MQV protocol. While improved computation techniques or protocols may be feasible,
the narrow gap with the DH protocol indicates that our protocol is very efficient on the server
side without a compromise in security.

7 Conclusions and future work

This work provides a general approach to one-way authenticated key establishment. We
motivated the need for a formal approach by analyzing and finding a major flaw in an
existing protocol that aims to achieve one-way authentication. Subsequently, we identified
the practical motivations for authentication and secrecy assurances of parties engaging in one-
way AKE protocols. Based on our discussion we proposed a suitable model that covers those
goals and offered an efficient protocol that formally meets the proposed security definition.

In our discussion we related our security definition not only with usual mutually authen-
ticated key establishment protocols but also with public key encryption. It is of interest
to formally investigate the relation between public key encryption and our one-way AKE
security definitions. Furthermore, identifying and formalizing other goals such as aggregate
security or exclusivity, and looking for the relation with our definitions is another worthy
objective.

19



Acknowledgements

The authors gratefully acknowledge helpful discussions with Alfred Menezes and Paul Syver-
son. I. Goldberg acknowledges the financial support of the Natural Sciences and Engineering
Research Council (NSERC) of Canada and Mprime.

References

[ABB+04] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ioannidis, Ange-
los D. Keromytis, and Omer Reingold. Just Fast Keying: Key agreement in a hostile
Internet. ACM Transactions on Information and System Security, 7(2):1–30, May 2004.
doi:10.1145/996943.996946.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based
protocols secure against dictionary attacks. In Proceedings of the 1992 IEEE Com-
puter Society Conference on Research in Security and Privacy. IEEE, May 1992.
doi:10.1109/RISP.1992.213269.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange
secure against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – Proc.
EUROCRYPT 2000, LNCS, volume 1807, pp. 139–155. Springer, 2000. doi:10.1007/3-
540-45539-6 11.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, Advances in Cryptology – Proc. CRYPTO ’93, LNCS, volume 773,
pp. 232–249. Springer, 1993. doi:10.1007/3-540-48329-2 21.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols and
their security analysis. In Michael Darnell, editor, Cryptography and Coding – 6th IMA
International Conference, LNCS, volume 1355. Springer, 1997. doi:10.1007/BFb0024447.

[CC07] Sherman S. M. Chow and Kim-Kwang Raymond Choo. Strongly-secure identity-based
key agreement and anonymous extension. In Juan Garay, Arjen Lenstra, Masahiro
Mambo, and René Peralta, editors, Proc. 10th International Conference on Informa-
tion Security Conference (ISC) 2007, LNCS, volume 4779, pp. 203–220. Springer, 2007.
doi:10.1007/978-3-540-75496-1 14.

[CCCT06] Zhaohui Cheng, Liqun Chen, Richard Comley, and Qiang Tang. Identity-based key agree-
ment with unilateral identity privacy using pairings. In Kefei Chen, Robert Deng, Xuejia
Lai, and Jianying Zhou, editors, Proc. Information Security Practice and Experience (IS-
PEC) 2006, LNCS, volume 3903, pp. 202–213. Springer, 2006. doi:10.1007/11689522 19.

[Chi07] Hung-Yu Chien. ID-based key agreement with anonymity for ad hoc networks. In Tei-Wei
Huo, Edwin Sha, Minyi Guo, Laurence Yang, and Zili Shao, editors, Proc. Embedded and
Ubiquitous Computing (EUC) 2007, LNCS, volume 4808, pp. 333–345. Springer, 2007.
doi:10.1007/978-3-540-77092-3 29.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – Proc.
EUROCRYPT 2001, LNCS, volume 2045, pp. 453–474. Springer, 2001. doi:10.1007/3-
540-44987-6 28.

[CK02] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature based key-exchange
protocol. In Moti Yung, editor, Advances in Cryptology – Proc. CRYPTO 2002, LNCS,
volume 2442, pp. 27–52. Springer, 2002. doi:10.1007/3-540-45708-9 10. Full version avail-
able as http://eprint.iacr.org/2002/120.

20

http://dx.doi.org/10.1145/996943.996946
http://dx.doi.org/10.1109/RISP.1992.213269
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-48329-2_21
http://dx.doi.org/10.1007/BFb0024447
http://dx.doi.org/10.1007/978-3-540-75496-1_14
http://dx.doi.org/10.1007/11689522_19
http://dx.doi.org/10.1007/978-3-540-77092-3_29
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/3-540-44987-6_28
http://dx.doi.org/10.1007/3-540-45708-9_10
http://eprint.iacr.org/2002/120


[DA99] Tim Dierks and Christopher Allen. The TLS protocol version 1.0, January 1999. url
http://www.ietf.org/rfc/rfc2246.txt. RFC 2246.

[DGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentication
and key exchange. In Rebecca Wright, Sabrina De Capitani de Vimercati, and Vitaly
Shmatikov, editors, Proc. 13th ACM Conference on Computer and Communications Se-
curity (CCS), pp. 400–409. ACM, 2006. doi:10.1145/1180405.1180454.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, November 1976.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In Proc. 13th USENIX Security Symposium. The USENIX Association, 2004. url
http://www.usenix.org/events/sec04/tech/dingledine.html.

[DR08] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) protocol version 1.2,
August 2008. url http://www.ietf.org/rfc/rfc5246.txt. RFC 5246.

[FGS10] Dario Fiore, Rosario Gennaro, and Nigel P. Smart. Constructing certificateless encryption
and ID-based encryption from ID-based key agreement. In Marc Joye, Atsuko Miyaji, and
Akira Otsuka, editors, Proc. Pairing-Based Cryptography (Pairing) 2010, LNCS, volume
6487, pp. 167–186. Springer, 2010. doi:10.1007/978-3-642-17455-1 11.

[Gol06] Ian Goldberg. On the security of the Tor authentication protocol. In George Danezis
and Philippe Golle, editors, Privacy Enhancing Technologies (PET) 2006, LNCS, volume
4258, pp. 316–331. Springer, 2006. doi:10.1007/11957454 18.

[Goo10] Google. The Official Google Blog – search more securely with encrypted
Google web search, May 2010. url http://googleblog.blogspot.com/2010/05/

search-more-securely-with-encrypted.html.

[Kra03] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman
and its use in the IKE protocols. In Dan Boneh, editor, Advances in Cryptology – Proc.
CRYPTO 2003, LNCS, volume 2729, pp. 400–425. Springer, 2003. doi:10.1007/b11817.
Full version available as http://www.ee.technion.ac.il/~hugo/sigma.ps.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Ronald
Cramer, editor, Advances in Cryptology – Proc. CRYPTO 2005, LNCS, volume 3621, pp.
546–566. Springer, 2005. doi:10.1007/11535218 33.

[KZG10] Aniket Kate, Greg M. Zaverucha, and Ian Goldberg. Pairing-based onion routing with im-
proved forward secrecy. ACM Transactions on Information and System Security, 13(4):29,
2010. doi:10.1145/1880022.1880023.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, First International
Conference on Provable Security (ProvSec) 2007, LNCS, volume 4784, pp. 1–16. Springer,
2007. doi:10.1007/978-3-540-75670-5 1.

[LMQ+03] L. Law, Alfred J. Menezes, M. Qu, J. Solinas, and Scott Vanstone. An efficient pro-
tocol for authenticated key agreement. Designs, Codes and Cryptography, 28:119–134,
2003. doi:10.1023/A:1022595222606. Previously appeared as http://www.cacr.math.

uwaterloo.ca/techreports/1998/corr98-05.pdf.

[MN96] David M’Räıhi and David Naccache. Batch exponentiations: a fast DLP-based signature
generation strategy. In Li Gong and Jacques Stern, editors, CCS 1996: Proceedings of the
3rd ACM conference on Computer and communications security, pp. 58–61. ACM, March
1996. doi:10.1145/238168.238187.

21

http://www.ietf.org/rfc/rfc2246.txt
http://dx.doi.org/10.1145/1180405.1180454
http://www.usenix.org/events/sec04/tech/dingledine.html
http://www.ietf.org/rfc/rfc5246.txt
http://dx.doi.org/10.1007/978-3-642-17455-1_11
http://dx.doi.org/10.1007/11957454_18
http://googleblog.blogspot.com/2010/05/search-more-securely-with-encrypted.html
http://googleblog.blogspot.com/2010/05/search-more-securely-with-encrypted.html
http://dx.doi.org/10.1007/b11817
http://www.ee.technion.ac.il/~hugo/sigma.ps
http://dx.doi.org/10.1007/11535218_33
http://dx.doi.org/10.1145/1880022.1880023
http://dx.doi.org/10.1007/978-3-540-75670-5_1
http://dx.doi.org/10.1023/A:1022595222606
http://www.cacr.math.uwaterloo.ca/techreports/1998/corr98-05.pdf
http://www.cacr.math.uwaterloo.ca/techreports/1998/corr98-05.pdf
http://dx.doi.org/10.1145/238168.238187


[MSW08] Paul Morrissey, Nigel P. Smart, and B. Warinschi. A modular security analysis of the
TLS handshake protocol. In Josef Pieprzyk, editor, Advances in Cryptology – Proc. ASI-
ACRYPT 2008, LNCS, volume 5350, pp. 55–73, 2008. doi:10.1007/978-3-540-89255-7 5.

[MU09] Alfred J. Menezes and Berkant Ustaoglu. Comparing the pre- and post-specified peer
models for key agreement. International Journal of Applied Cryptography, 1(3):236–250,
2009. doi:10.1504/IJACT.2009.023472.

[MvOV97] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, FL, USA, 1997.

[NIS07] NIST National Institute of Standards and Technology. Special Publication 800-56A, Rec-
ommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryp-
tography, March 2007. url http://csrc.nist.gov/publications/PubsSPs.html.

[NIS09] NIST National Institute of Standards and Technology. Special Publication 800-56B,
Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factorization
Cryptography, August 2009. url http://csrc.nist.gov/publications/PubsSPs.html.

[Ope11] OpenSSL Project, The. OpenSSL v1.0.0d, 2011. url http://www.openssl.org/.

[ØS07] Lasse Øverlier and Paul Syverson. Improving efficiency and simplicity of Tor circuit
establishment and hidden services. In Privacy Enhancing Technologies, LNCS, volume
4776, pp. 134–152. Springer, 2007. doi:10.1007/978-3-540-75551-7 9.

[PH10] Andreas Pfitzmann and Marit Hansen. A terminology for talking about privacy by data
minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity,
and identity management, August 2010. url http://dud.inf.tu-dresden.de/Anon_

Terminology.shtml. v0.34.

[RIO+07] Sk. Md. Mizanur Rahman, Atsuo Inomata, Takeshi Okamoto, Masahiro Mambo, and
Eiji Okamoto. Anonymous secure communication in wireless mobile ad-hoc networks. In
Frank Stajano, Hyoung Joong Kim, Jong-Suk Chae, and Seong-Dong Kim, editors, Proc.
International Converence on Ubiquitous Convergence Technology (ICUCT) 2006, LNCS,
volume 4412, pp. 140–149. Springer, 2007. doi:10.1007/978-3-540-71789-8 15.

[Sho99] Victor Shoup. On formal models for secure key exchange (version 4), November 1999.
url http://shoup.net/papers/skey.pdf.

[Sin08] Ryan Singel. Charter to snoop on broadband customers’ web histories for ad networks,
May 2008. url http://www.wired.com/threatlevel/2008/05/charter-to-inse/.

[Sla07] Slashdot. ISPs inserting ads into your pages, June 2007. url http://yro.slashdot.

org/yro/07/06/23/1233212.shtml.

[Tor11] Tor Project. Homepage, 2011. url http://www.torproject.org/.

A Equivalence of unlinkability and one-way anonymity

In this section we provide a formalization of the unlinkability security property from Sec-
tion 5.3.3 and show that it is equivalent to one-way anonymity (Definition 2).

The goal of the adversary in the unlinkability security experiment is to determine whether
two sessions are being run at the same party or at different parties. We use a proxy—run
by the challenger—to relay communications for the sessions the adversary is trying to link.
The experiment is shown diagrammatically in Figure 3. The adversary gives distinct party
indices i and j to the challenger and then participates in two sessions via the challenger. The

22

http://dx.doi.org/10.1007/978-3-540-89255-7_5
http://dx.doi.org/10.1504/IJACT.2009.023472
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
http://www.openssl.org/
http://dx.doi.org/10.1007/978-3-540-75551-7_9
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
http://dx.doi.org/10.1007/978-3-540-71789-8_15
http://shoup.net/papers/skey.pdf
http://www.wired.com/threatlevel/2008/05/charter-to-inse/
http://yro.slashdot.org/yro/07/06/23/1233212.shtml
http://yro.slashdot.org/yro/07/06/23/1233212.shtml
http://www.torproject.org/


challenger randomly picks a bit b∗; if b∗ = 0, then the challenger runs one session at party Pi
the other session at party Pj ; if b∗ = 1, then the challenger runs both sessions at party Pi.
The adversary’s task is to guess b∗.

Send1

SendStart(i, j, params1, 
params2, pid)

b∗
$← {0, 1}

Send(params1, pid)

A

CChallenger

Send2
if b* =

 0

if b* = 1

Party Pi

Send
Party Pj

Send

Party Pi

Send

guess b* Send(params1, pid)

Send(params2, pid)

Send(params2, pid)

Figure 3: The challenger for the unlinkability security experiment

A.1 Security experiment

In the unlinkability security experiment, the adversary can issue the following queries to the
challenger C. The first three queries are for activation and communication during the test
session:
• StartC(i, j, params1, params2, pid) → (msg′1,msg

′
2): Abort if i = j. Otherwise, set

b∗
$← {0, 1}. Set i∗ ← i. If b∗ = 0 then set j∗ ← j, otherwise set j∗ ← i. Set

(Ψ∗1,msg
′
1) ← SendPi∗ (params1, pid) and (Ψ∗2,msg

′
2) ← SendPj∗ (params2, pid). Re-

turn (msg′1,msg
′
2). Only one call to StartC is allowed.

• Send1C(msg)→ msg′: Return msg′ ← SendPi∗ (Ψ∗1,msg).
• Send2C(msg)→ msg′: Return msg′ ← SendPj∗ (Ψ∗2,msg).

The remaining queries that can be issued to the challenger—RevealNext1C , RevealNext2C ,
SessionKeyReveal1C , SessionKeyReveal2C , Partner1C , and Partner2C—deal with the compromise
of information related to the test sessions, and are analogous to the queries in the one-way
anonymity experiment (Section 5.3), where queries labelled 1 are relayed to party Pi∗ and
parties labelled 2 are relayed to party Pj∗ .

Definition 4 (Unlinkability) Let k be a security parameter and let n ≥ 1. A protocol π
is said to be unlinkable if, for all probabilistic polynomial time (in k) adversaries M, the
advantage (over random guessing) that M wins the following experiment is negligible (in k):
• Exptunlinkπ,k,n (M):

– Initialize pubparams.
– Initialize parties P1, . . . , Pn.

23



– Set b̂←MP1,...,Pn,C(pubparams).
– Suppose that M makes a StartC(i, j, params1, params2, pid) query which chose
b∗. If b̂ = b∗, and M’s queries satisfy the following constraints, then M wins,
otherwise M loses.
∗ No SessionKeyReveal(Ψ∗1) or SessionKeyReveal(Ψ∗2) query to Pi or Pj.
∗ No Partner(X) query to Pi or Pj for any value X returned by C.
∗ No Send(Ψ∗1, ·) or Send(Ψ∗2, ·) query to Pi or Pj.
∗ Both Pi and Pj had exactly one certificate – the same certificate – for pid

during both entire test sessions (that is, from when StartC was called until both
Send1C and Send2C resulted in accepted sessions).

A.2 Equivalence

Theorem 3 A protocol π is unlinkable if and only if it is one-way anonymous.

Argument: The proof proceeds using a bilateral simulation. First, we show that an adversary
against the unlinkability experiment can be used to break the one-way anonymity experiment,
and then we show the reverse, yielding the equivalence of the two properties.

[One-way anonymity =⇒ unlinkability.] Let Mu be an adversary against the unlink-
ability experiment. We will construct a simulator S that responds to Mu’s queries but is
itself an adversary against the one-way anonymity experiment. Let Ca be the challenger for
the one-way anonymity experiment. The basic idea is that S will run one session with party
Pi and the other session with Ca, and Ca may be running the session either with Pi or Pj .

When Mu sends S a Start(i, j, params1, params2, pid) query, the simulator S sends Pi
a Send(params1, pid) query and receives msg′1; S also sends Ca a Start(i, j, params2, pid)
query and receives msg′2. S returns (msg′1,msg

′
2) toMu. WhenMu sends S a Send1 query,

S relays that query to Pi and returns the responses, but for Send2 queries, S relays those
queries to Ca. RevealNext, SessionKeyReveal, and Partner queries made against S are handled
analogously. All other queries that Mu makes against parties are relayed directly to those
parties.

It is easy to see that the distributions of all messages returned to Mu are identical
to those in the original unlinkability experiment. Moreover, provided that Mu makes no
prohibited (according to Definition 4) queries to S, then S will make no prohibited (according
to Definition 2) queries to Ca.

If Ca is using i∗ = i, then the simulated experiment is behaving exactly as if it were the
unlinkability experiment with b∗ = 1, and if Ca is using i∗ = j, then the simulated experiment
is behaving exactly as if it were the unlinkability experiment with b∗ = 0. Hence, if i∗ is the
output ofMu, then Su returns b∗ ← 1 if i∗ = i, and b∗ ← 0 otherwise. IfMu is an adversary
against the unlinkability experiment with non-negligible probability, then S is an adversary
against the one-way anonymity experiment with the same non-negligible probability.

[Unlinkability =⇒ one-way anonymity.] Let Ma be an adversary against the one-way
anonymity experiment. We will construct a simulator S that responds to Ma’s queries but
is itself an adversary against the unlinkability experiment. Let Cu be the challenger for the
unlinkability experiment. The basic idea is that S will run the test session as one of the
two sessions in the unlinkability experiment with Cu, and Cu may be running that session
either as Pi or Pj . The simulator S then usesMa’s guess of whether the one-way anonymity

24



session is run at Pi or Pj as S’s guess against the unlinkability challenger Cu of whether the
two sessions are run at the same party or at different parties.

WhenMa sends a Start(i, j, params, pid) query to S, the simulator S sends Cu a Start(i, j, params1, params,
pid) query, for a random params1 chosen according to the protocol, receives (msg′1,msg

′
2),

and returns msg′ ← msg′2 to Ma. When Ma sends S a Send query, S relays that message
to Cu via a Send2 query and returns the response. RevealNext, SessionKeyReveal, and Partner
queries made against S are handled analogously. All other queries that Mu makes against
parties are relayed directly to those parties.

It is easy to see that the distributions of all messages returned to Ma are identical to
those in the original one-way anonymity experiment. Moreover, provided thatMa makes no
prohibited (according to Definition 2) queries to S, then S will make no prohibited (according
to Definition 4) queries to Cu.

If Cu is using b∗ = 0, then the simulated experiment is behaving exactly as if it were the
one-way anonymity experiment with i∗ = j, and if Ca is using b∗ = 1, then the simulated
experiment is behaving exactly as if it were the one-way anonymity experiment with i∗ = i.
Hence, if b∗ is the output ofMa, then Su returns i∗ ← i if b∗ = 1, and i∗ ← j otherwise. IfMa

is an adversary against the one-way anonymity experiment with non-negligible probability,
then S is an adversary against the unlinkability experiment with the same non-negligible
probability. �

B Security argument

Argument: It is straightforward to verify that the protocol is correct, i.e., that if messages
are delivered faithfully the sessions produce the same session key.

We verify that the session key is indistinguishable from a randomly chosen session key.
Suppose the test session is ΨA with output (sk, B̂, {(X), (Y,B)}). We emphasize that the
list of identities in the public output cannot be empty since without an authenticated peer
anyone—in particular the adversary—can be the session peer.

In the random oracle model, the adversary can distinguish the session key from a randomly
chosen session key only if the adversary queries the oracle with the same input as the test
session owner. We first argue that no two sessions with different public outputs have the
same input to the key derivation.

On one hand for any party B̂ that contributes a certified public key B̂ also contributes
an ephemeral public key chosen on a per-session basis. Therefore by including the identifier
of the certificate along with the static and ephemeral public keys, B̂ is assured that the key
derivation material of all sessions for which B̂ is a partner are different from each other.

On the other hand for any party Â the ephemeral public key X contributed by Â implies
that except with negligible probability no other honest party will inputX to the key derivation
function. Including the identifier B̂ assures that only the intended peer B̂ will input it to the
key derivation function. The string ntor assures Â that B̂ is aware about the key agreement
protocol for which the static public key B is used.

Since the actions of malicious parties cannot be predicted, the above argument implicitly
assumes that parties are honest. Thus for honest parties the public information input to
the key derivation function suffices to ensure that different sessions have different inputs.
Therefore exposing any session key owned by an honest party reveals no information about

25



the test session key. To show security we will argue that no malicious entity can compute
the entire input to the key derivation function unless the entity becomes a partner to at least
one vector from the public output.

If the adversary M is partner to X then the session key is compromised. So in the
remainder we assume that M is not a partner to X and the test session has output

(sk, B̂, {(X), (Y,B)})

where sk is not known toM. Since the key derivation function is modeled as a random oracle
the only way M can distinguish the session key from a randomly chosen key is to query H

with
(CDH(X,Y ),CDH(X,B), B̂, Y,X, ntor).

To show that breaking protocol’s security is equivalent to solving a CDH instance (U, V ) we
outline an algorithm S that solves the instance. The algorithm is given a black box access
to M and simulates its environment. Since the number of activated sessions is polynomially
bounded, with non-negligible probability S can correctly guess which public key X will be the
test sessions’ outgoing ephemeral public key. In the remainder of this argument we assume
that this event occurred. In the simulation S sets X = U ; since M is not partner of X, the
adversary cannot distinguish this deviation from an honest protocol simulation. A successful
adversary is partner to at most one of Y and B.

AssumeM is not a partner of Y . Since the number of ephemeral key pairs is polynomially
bounded, with non-negligible probability S correctly anticipates and sets Y = V . Since M
does not obtain the session key from the matching session if one exists8, the adversary must
query H with

(σ1 = CDH(U, V ), σ2 = CDH(U,B), B̂, V, U, ntor).

From all queries of this form S extracts the correct value σ1 using the DDH oracle.
AssumeM does not partner with B. Since the number of static key pairs is polynomially

bounded, with non-negligible probability S correctly anticipates and sets B = V . In this
case S has to simulate session executions without knowledge of the corresponding private
key. In particular, the simulation may fail due to inconsistent H queries. To address this
problem S uses the DDH oracle to respond consistently to H and SessionKeyReveal queries
for sessions that involve V . In particular for H queries that involve B, S first verifies using
the DDH oracle that the shared secrets are computed honestly before responding with the
session key. As before M does not obtain the session key from the matching session, if one
exists; therefore, the adversary must query H with

(σ1 = CDH(U, Y ), σ2 = CDH(U, V ), B̂, Y, U, ntor).

From all queries of this form S extracts the correct value σ2 using the DDH oracle.
During the simulation, for each adversary query S performs a polynomially bounded

number of steps and therefore the running time of the reduction is polynomially bounded.
Therefore ifM is successful with non-negligible probability S produces a solution to the CDH
instance with non-negligible probability contradicting the hardness of the GDH assumption
in the underlying group. �

8The adversary may choose to use an ephemeral key from a non-matching session to supply the test session
with an incoming ephemeral public key.

26


	Introduction
	Related work
	Cryptanalysis of a protocol of Øverlier and Syverson
	Understanding one-way authentication
	Secrecy without authentication
	Key confirmation and one-way authentication
	Public-key encryption and one-way AKE protocols

	Security model
	Model description
	One-way AKE security
	One-way anonymity
	Related notion: External anonymity
	Related notion: Two-way anonymity
	Related notion: Unlinkability
	Relation notion: Deniability

	One-way AKE protocols
	Analysis of TLS

	Proposed Protocol ntor
	Security
	Anonymity
	Efficiency

	Conclusions and future work
	Equivalence of unlinkability and one-way anonymity
	Security experiment
	Equivalence

	Security argument

