
Azure Data Factory:

SSIS in the Cloud

2018

THE CASE FOR LIFT AND SHIFT
JOSHUHA OWEN

PRAGMATIC WORKS

Technical Reviewers:
Sandy Winarko, Microsoft & Mark Kromer, Microsoft

Contents

The Modern Data Warehouse ... 2

The Case for a Lift and Shift to Azure Data Factory .. 2

Common Considerations and Concerns ... 3

Security ... 3

Tools ... 4

Pricing ... 4

Networking ... 5

Custom/Third Party SSIS components ... 5

The Process of a Lift and Shift .. 5

Creating an Azure-SSIS IR ... 6

Managing your SSIS Packages in Azure .. 9

Executing and Monitoring your SSIS Packages ..13

Azure Data Factory “Execute SSIS Package” Activity ..13

Azure Data Factory Stored Procedure Method ..16

Azure Data Factory Pipeline Monitoring ..21

Azure SQL Managed Instance ..22

Azure-SSIS IR Monitoring ..22

Next Steps ..22

The Modern Data Warehouse

Today's landscape for data warehousing is a rapidly evolving space and most of that
evolution is happening in the cloud. The cloud has long offered ways to scale analytic
workloads for data warehousing with services like Azure SQL Data Warehouse.
However, this only solves one part of the data warehousing workload and as the
complexity and velocity of data ingestion grow, there are tools needed to be able to
scale with the ingestion and orchestration of data. Azure offers the Azure Data Factory
service to be able to handle this task. This service is the data orchestration tool of
choice that can handle both the constantly shifting cloud data sources and terabytes of
flat files both structured and unstructured. It can also spin up other Azure resources
such as HDInsight for your Spark jobs or Data Lake Analytics for your U-SQL jobs.

Traditional data warehouses have long been a mainstay, but with the increasing amount
of data sources and processing demands, ETL tools such as SQL Server Integration
Services (SSIS) need the scalability that the cloud can offer. While you may have heard
of Azure Data Factory and thought the only way to use this for data orchestration was to
rewrite all your SSIS packages, it now has the ability to run your SSIS packages in
managed Azure-SSIS Integration Runtimes (IRs), so you can scale the processing to
your growing needs. In this eBook we will go over why you would want to migrate your
existing SSIS workloads to Azure Data Factory and address common considerations
and concerns. We'll then walk you through the technical details of creating an Azure-
SSIS IR and then show you how to upload, execute, and monitor your packages
through Azure Data Factory using the tools you are probably are familiar with like SQL
Server Management Studio (SSMS).

The Case for a Lift and Shift to Azure Data Factory

The term for migrating your existing workloads to Azure with minimal effort has been
typically called a "lift and shift." Whenever I hear this phrase I like to imagine the large
Chinook style transport helicopters using a hoist, picking up my server room and
dropping it off somewhere else never to be seen again. While the visual is an amusing
one, it's not too far from the truth. In the case of migrating your SSIS packages to Azure
Data Factory, the effort is not complicated, and as you'll find out later, you get to use all
the same tools you are used to using when executing and working with your SSIS
packages.

So now that we know what a "lift and shift" is, what are some of the scenarios that make
this a good idea?

Perhaps the vast majority of your data sources and destinations are already in the
cloud, so by moving your packages to the cloud, you can make the data transfer much
faster. Azure probably lives a lot closer to your existing cloud data sources and has
better bandwidth to cloud vendors than your on-premises SSIS Server.

Maybe you are already utilizing a mostly cloud-first approach to data warehousing using
Azure SQL Data Warehouse, Azure Analysis Services, and Power BI, but your ETL,
which contains your business logic, is still local. This could be due to the development

time to refactor that logic to use other technologies like Spark, or even native ADF
activities. Being able to migrate the packages with no changes in this scenario could be
an easy win.

You could be due for a SQL Server upgrade including SSIS and looking at moving to
the cloud rather than performing an in-place upgrade. Perhaps you just don't want to
manage OS patches, SQL Server patches, and worry about hardware failures. While
the Azure-SSIS IR does run on Virtual Machines (VMs) in the backend, you don't have
to manage the day-to-day operations of these VMs and can scale them up and down or
add more nodes as needed.

Whatever the reason, the ability for Azure Data Factory to utilize the Azure-SSIS IR to
run your existing packages in the cloud, with scalable processing nodes, is a great way
to start that cloud-first approach your organization may be considering.

Another potential scenario is you could lift and shift to your own VMs running in Azure,
but then you do still have to manage the infrastructure, hardware specs, patches, SQL
upgrades, etc.; and while SQL Server 2017 running on those virtual machines would
allow the ability to use the master/worker node (scale-out) feature, it is something you
need to manage yourself and not quite as easy as the scaling offered in Azure Data
Factory.

The bottom line is that the Azure SSIS IR extrapolates away almost all of that
infrastructure management while still providing the ability to scale when you need to.

Common Considerations and Concerns

Before we address the processing of actually preparing and migrating your SSIS
packages to Azure Data Factory, let's discuss some of the common considerations and
concerns that customers typically have when performing an SSIS migration. These
areas typically cover topics such as security, tools, pricing, networking infrastructure,
and custom SSIS components.

Security

Azure Data Factory itself does not store any data except for the credentials it needs to
access cloud data stores, and these credentials are encrypted using certificates. Data
movement in Azure Data Factory has been certified for several compliances, including
HIPPA, HITECH, ISO 27001/27018, and more. For more details on the certifications of
Azure Data Factory visit https://docs.microsoft.com/en-us/azure/data-factory/data-
movement-security-considerations.

For data in transit into Azure services, Azure uses a secure channel vita HTTPS and
TLS over TCP to prevent man-in-the middle attacks. With IPSec VPN or the Azure
ExpressRoute option, you can further secure the data communication while in transit to
Azure.

https://docs.microsoft.com/en-us/azure/data-factory/data-movement-security-considerations
https://docs.microsoft.com/en-us/azure/data-factory/data-movement-security-considerations

For more information about ports used to communicate with Azure services, please see
the link above.

If your SSIS destinations are Azure services such as Azure SQL Database or Azure
SQL Data Warehouse, these services support the use of Transparent Data Encryption
to protect your data at rest. Azure Data Lake Store and Azure Blob storage also support
encryption protocols to protect the data at rest.

A good resource to review all of Azure’s security options, compliances, and privacy
features is the Azure Trust Center. The following link will take you to the Trust Center
landing page: https://www.microsoft.com/en-us/trustcenter.

Microsoft makes security of Azure and data within Azure a top priority and continues to
invest over $1 billion a year on cyber security.

Tools

When working with any new product, you may be worried about what new tools and skill
sets that you may need to learn. With the Azure-SSIS IR you’ll get to use the tools you
are familiar with to manage, report, and execute your package. In our setup chapters
later in this eBook you’ll find that we use SSMS to upload and manage our packages.
Since the Azure-SSIS IR uses an Azure SQL Database/Managed Instance to host
Integration Service Catalog (SSISDB), you’ll find that it functions the exact same way
from SSMS that you are used to. You can still use the built-in reports to view package
executions and messages, and you still have the same power to use environments,
variables, and configurations to manage your packages. The only new change is setting
up Azure Data Factory and the Azure-SSIS IR, but these are simple web-UI driven
tasks and only need to be done once.

Pricing

Since pricing on Azure services can sometimes change (usually for the better) here is a
link to the pricing page for Azure Data Factory: https://azure.microsoft.com/en-
us/pricing/details/data-factory/.

Note that for normal Azure Data Factory operations you are usually charged for the data
movement, the number of activities you run, and for whether a pipeline is active or not.

However, since the Azure-SSIS IR is managing and setting up VMs in the background,
you are billed on a per hour cost for those VMs just like any other VM in the Azure
environment. You don’t have to worry about a SQL Server license as that cost gets
added on a per hour basis. If your organization has a Software Assurance agreement
with Azure Hybrid Benefit (AHB), you can apply your SQL Server license to waive the
per hour cost of the SQL Server license and only pay the virtual machine management
cost.

Also note that the costs discussed above are only for the Azure Data Factory
components. Any Azure storage/database, such as Azure SQL Database/Managed

https://www.microsoft.com/en-us/trustcenter
https://azure.microsoft.com/en-us/pricing/details/data-factory/
https://azure.microsoft.com/en-us/pricing/details/data-factory/

Instance to host SSISDB, or other services you access, such as HDInsight, are billed for
those services with the models appropriate to the service.

Networking

Depending on your data access needs, networking setup and infrastructure are areas
you should make sure to address. If your current data sources already exist in Azure
(such as Azure SQL databases) or are WAN addressable in SSIS such as with the
OData source, then Azure Data Factory will work right away as long as you have
enabled services like Azure SQL Database to communicate with other Azure services.

If you need your Azure-SSIS IR to continue to pull from on-premises sources from
Azure, then you need to set up an Azure VNET connected to your on-premises network
via VPN gateway or ExpressRoute. Here are links for VNet and ExpressRoute info:

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview

https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction

If you do have on-premises data but do not want to setup a VNet to enable pulling from
Azure, another potential option is to set up a push operation of your on-premises data to
an Azure location. The most suitable end-points for most traditional data warehouse
loads would be Azure SQL Database; or for flat files in either Azure Blob Storage or
Azure Data Lake Store. Then your SSIS packages would be addressing cloud locations,
but this does require some effort to change your package to potentially use a new data
source, as well as writing the process to push the data up to Azure.

Custom/Third Party SSIS components

The Azure SSIS runtime currently supports all the standard out-of-the-box components
that ship with SQL Server 2017, as well as the Azure SSIS Feature Pack. This means
for most typical workloads, your packages should function the same after uploading
them to your Azure SSISDB. If you are using custom/third-party components, you can
also install them on Azure-SSIS IR, see https://docs.microsoft.com/en-us/azure/data-
factory/how-to-configure-azure-ssis-ir-custom-setup.

The Process of a Lift and Shift

Now we are ready to discuss the process of migrating your SSIS packages to Azure
Data Factory. You'll find a walkthrough of the steps in the next three chapters.

At a high level we first need to use Azure Data Factory to provision our Azure-SSIS IR.
We'll be showing you how to do this via the web portal, but this could be done using the
various client SDKs using languages like C# or PowerShell. As part of creating the
Azure-SSIS IR, we'll be creating the SSISDB in an Azure SQL Database to host our
Integration Services Catalog. We'll then show you how to upload your packages via the

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://docs.microsoft.com/en-us/azure/expressroute/expressroute-introduction
https://docs.microsoft.com/en-us/azure/data-factory/how-to-configure-azure-ssis-ir-custom-setup
https://docs.microsoft.com/en-us/azure/data-factory/how-to-configure-azure-ssis-ir-custom-setup

ISPAC deployment method, and then execute them using the same tools you are
already familiar with: SSMS. Finally, we'll show how you can monitor your SSIS
package executions as well as use Azure Data Factory to monitor and scale the Azure-
SSIS IR.

By the end of these tutorials you should have a good feel of how easy the process can
be. The only truly new process will be creating the Azure-SSIS IR. The rest of the steps
of managing and executing your SSIS packages should closely resemble how you are
currently working with your on-premises SQL Server.

Creating an Azure-SSIS IR

Our first step in migrating our SSIS workload to Azure is to create the Azure-SSIS IR.
We create this runtime using the Azure Data Factory interface to allow our packages to
have scalable compute resources to execute our SSIS packages.

To start, we are going to navigate to the Azure portal and to your Azure Data Factory
instance. We'll click on Author and Monitor to get to the main Azure Data Factory
landing page.

From here we should see a Configure SSIS IR icon, which we will click to get to the
configuration panel for setting up our runtime.

Go ahead and give your SSIS IR a name and choose a location preferably in the same
region where you expect your Azure SQL DB and other sources to exist. As mentioned
earlier, the Azure-SSIS IR is running on VMs that Azure configures and manages for
you. For the node size property, we now get to choose the resources the VM has
available for each node. Choose an appropriate VM based on the amount of CPU cores
and RAM you expect to use. Do note that you have the flexibility to scale up and down
as needed. Next, choose the number of nodes you want to start with. Finally, if you
have a software assurance license that includes the AHB option you can choose Yes on
the SQL Server license to save cost per hour with the VMs. See the pricing information
in the Common Considerations chapter for more information.

Click Next to configure SQL settings for Azure to create and manage SSISDB. This is
required and needs to be either an Azure SQL DB or Azure SQL Managed Instance.
This is where the SSIS catalog will exist as well as the SSISDB. You will be able to run
all the reports and queries that come built-in to SSIS to see package executions,
messages, etc. While the default option for the Catalog Database Service Tier is Basic,
for anything other than exploration I would recommend S0 or above to provide adequate
performance when querying your SSISDB. You can click Test Connection to verify
connectivity to your Azure SQL database.

Click Next to get to the final setup screen. Here you can configure how many
executions are spread per node. As a rule, I would not configure this to be more than
the number of cores you assigned to your VM. If you have an Azure VNet configured to
be able to access on-premises resources, you can also configure that now.

Finally, click Finish to deploy your Azure-SSIS IR. Do note that this does provision your
VMs behind the scenes and can take a little time. It's typical for this process to take 15-
30 minutes before the Azure-SSIS IR is available. Once this is complete we are ready to
move and start uploading our packages!

Managing your SSIS Packages in Azure

In the previous chapter we setup the Azure-SSIS IR. This is a prerequisite before we
can upload our SSIS packages to our Azure database. As part of the creation of the
Azure-SSIS IR, we specified an Azure SQL Database or Azure SQL Managed instance.
This server location and database name will be needed for us to upload and manage
our SSIS packages.

The great news is that we can use the tools we are familiar with to upload and manage
our SSIS packages. For this chapter, we will be walking through how to use SSMS to
upload your SSIS packages. The first thing to note is that we will be deploying using the
ISPAC file. Currently SSIS in Azure Data Factory only supports using the ISPAC file to
deploy rather than uploading individual DTSX files. When working with SSIS packages

in Visual Studio Data Tools in Project Mode, this ISPAC file is automatically generated
when you build your solution, and the default location for the ISPAC file will be in your
solution's BIN folder.

Before we start, if you are using the Azure SSIS Feature Pack, please make sure this is
installed on the computer that is deploying the ISPAC file.

In SSMS we are going to click on the File Menu and choose Connect Object Explorer.

Once you do that, then put in the Azure SQL server endpoint that hosts your SSISDB.
Under the Connection Properties tab, and then under Connect to Database, go
ahead and fill in SSISDB. If you don’t do this the Integration Services Catalog won’t
appear in SSMS.

You should now see the Integration Services Catalog in your Azure SQL Database.
Right-click the SSISDB in the Catalog and create a folder to house your deployed SSIS
project.

Navigate to the Projects subfolder and right click and select Deploy Projects.

Click Next if you get the Introduction page in the wizard to get to the Source step. Here
browse to your ISPAC file and then click Next.

Enter your Azure SQL Database server endpoint and credentials and verify the path is
in the folder you want the SSIS packages to be deployed to. Click Deploy to review
your results and click Deploy again to upload your SSIS packages to your project
folder.

Once your ISPAC file is deployed your SSIS packages should now be available to
browse via the Integration Services Catalog on the SSISDB we specified.

From here you have all the same tools available, including the ability to specify
environment variables, override connections strings, and access to the built-in reports
for monitoring your SSIS packages. Go ahead and make any configuration changes you
want now before we show how we can execute and monitor our SSIS packages.

Executing and Monitoring your SSIS Packages

In the previous chapter we showed you how to upload your SSIS packages to the
SSISDB associated with the Azure-SSIS IR. Now we execute those packages to utilize
this Azure compute resource.

Since this Integration Service Catalogs works the same as your on-premises SQL
Server we can execute the packages manually from the Catalog with SQL Server
Management Studio. It may be a good idea to test out if everything is communicating
correctly with your sources and destination before scheduling your packages.

Azure Data Factory “Execute SSIS Package” Activity
The easiest way to schedule, monitor and manage SSIS package execution in the Cloud is

natively within an Azure Data Factory pipeline: https://docs.microsoft.com/en-
us/azure/data-factory/how-to-invoke-ssis-package-ssis-activity.

You can start by creating a new ADF Pipeline and add the Execute SSIS Package
activity. In the General properties at the bottom of the window, give a name to your new
SSIS activity. Tab over to Settings and pick the Azure-SSIS IR that you created above.
Pick the logging level for package executions and then provide the package path to the
SSIS package to execute. Lastly, set any catalog execution environments that you wish
to utilize in the package execution. On the Parameters tab you will see settings that can
be parameterized in the activity, which follows normal ADF parameterization facilities:
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-expression-language-
functions.

You can now continue to build out your data pipeline in ADF by connecting SSIS with
other activities, or if you wish to test just the SSIS package execution, you can use the
Debug button feature in ADF to test the SSIS execution in-place while designing the
pipeline. Once you are satisfied with the pipeline state, you can trigger a live execution

https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-ssis-activity
https://docs.microsoft.com/en-us/azure/data-factory/how-to-invoke-ssis-package-ssis-activity
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-expression-language-functions
https://docs.microsoft.com/en-us/azure/data-factory/control-flow-expression-language-functions

of the pipeline with the SSIS package execution using the Trigger | Trigger Now option
(see screenshot below) or set the recurring schedule for your SSIS package similar to
what you may have done previously using SQL Server Agent jobs.

Details on using the ADF pipeline wall-clock scheduler are here: https://docs.microsoft.com/en-

us/azure/data-factory/how-to-create-schedule-trigger.

Once you’ve operationalized your pipeline, you should monitor the health of your pipeline

executions in the ADF monitoring view https://docs.microsoft.com/en-us/azure/data-

factory/monitor-visually:

Additionally, the SSIS executions will log to the SSISDB which can be viewed from the SSMS

dashboard:

https://docs.microsoft.com/en-us/azure/data-factory/how-to-create-schedule-trigger
https://docs.microsoft.com/en-us/azure/data-factory/how-to-create-schedule-trigger
https://docs.microsoft.com/en-us/azure/data-factory/monitor-visually
https://docs.microsoft.com/en-us/azure/data-factory/monitor-visually

NOTE: Remember to set your “Connect to Database” under Connection Properties to “SSISDB”
in SQL Server Management Studio (SSMS) in order to see the “Integration Services

Dashboard” link under “Integration Services Catalogs”.

Azure Data Factory Stored Procedure Method

We can also execute our packages with the built-in SSISDB stored procedures. While
this option has been available since SSIS 2005 it may be new to you. To do this we call
the catalog.create_execution, catalog.set_execution_parameter_value, and the
catalog.start_execution stored procedures. An example for a DTSX package called
Module2.dtsx would be:

DECLARE @return_value INT, @exe_id BIGINT, @err_msg NVARCHAR(150)

EXEC @return_value=[SSISDB].[catalog].[create_execution] @folder_name=N'ADFLab',
@project_name=N'ADFLab', @package_name=N'Module2.dtsx', @use32bitruntime=0,
@runinscaleout=1, @useanyworker=1, @execution_id=@exe_id OUTPUT

EXEC [SSISDB].[catalog].[set_execution_parameter_value] @exe_id, @object_type=50,
@parameter_name=N'SYNCHRONIZED', @parameter_value=1

EXEC [SSISDB].[catalog].[start_execution] @execution_id=@exe_id, @retry_count=0

IF(SELECT [status] FROM [SSISDB].[catalog].[executions] WHERE execution_id=@exe_id)<>7
BEGIN SET @err_msg=N'Your package execution did not succeed for execution ID: ' +
CAST(@exe_id AS NVARCHAR(20)) RAISERROR(@err_msg,15,1) END

The stored procedure method is interesting, as this allows us to use other tools that can
call stored procedures in Azure to also call our SSIS packages. One great example of
this is, of course, Azure Data Factory. Azure Data Factory has an activity that can
execute stored procedures on SQL Servers. And since Azure Data Factory pipelines
can have scheduled triggers, this could be one method you could use to schedule and
monitor your SSIS packages. This method works great if you plan to have native Azure
Data Factory pipelines being scheduled along with your Azure SSIS workloads.

Let's quickly walk through setting up a SQL Activity in Azure Data Factory and setting
up a trigger.

Navigate to your Azure Data Factory on the Azure Portal. Click on Author and Monitor
to get to the Azure Data Factory landing page. Click the pencil icon to get to the
Pipeline Editor GUI.

Go ahead and name your Pipeline.

Drag the Stored Procedure activity (under General) to the design panel and name it
Execute SQL.

Under the SQL Account tab go ahead and click the +New button to configure a new
SQL Server connection. Fill out the Linked Service to connect to the Azure SQL
Database where your SSISDB was deployed to – Select the Default Azure IR for the
connection. Click Save and navigate back to your pipeline.

Under the Stored Procedure tab of our Execute SQL activity we will be using the
sp_executesql stored procedure to call multiple lines of SQL. Go ahead and add a new
stored procedure parameter called stmt, type of string, and for value paste in the
following:

DECLARE @return_value INT, @exe_id BIGINT, @err_msg NVARCHAR(150) EXEC
@return_value=[SSISDB].[catalog].[create_execution] @folder_name=N'ADFLab',
@project_name=N'ADFLab', @package_name=N'Module2.dtsx', @use32bitruntime=0,
@runinscaleout=1, @useanyworker=1, @execution_id=@exe_id OUTPUT EXEC
[SSISDB].[catalog].[set_execution_parameter_value] @exe_id, @object_type=50,
@parameter_name=N'SYNCHRONIZED', @parameter_value=1 EXEC
[SSISDB].[catalog].[start_execution] @execution_id=@exe_id, @retry_count=0 IF(SELECT
[status] FROM [SSISDB].[catalog].[executions] WHERE execution_id=@exe_id)<>7 BEGIN
SET @err_msg=N'Your package execution did not succeed for execution ID: ' + CAST(@exe_id
AS NVARCHAR(20)) RAISERROR(@err_msg,15,1) END

You can now save the pipeline.

Now that we have a wrapper pipeline and activity to execute our SSIS package we can
use the Azure Data Factory built-in triggers to schedule. At the top of your pipeline click
the Trigger menu icon and click New/Edit.

Go ahead and configure the schedule to a time/frequency that makes sense for your
SSIS package.

Azure Data Factory Pipeline Monitoring

If you use the Azure Data Factory pipeline wrapper and trigger method to execute your
packages you can also use Azure Data Factory to monitor the status of those
executions.

From the Azure Data Factory landing page click on the Monitor icon (gauge) to get to
the Monitoring Dashboard. From the Monitor menu dropdown at the top select
Trigger Runs.

You should now be at the Trigger Runs activity log which is essentially a job overview
status. You can see the status of your triggers and the actual trigger time when it was
kicked off.

At the top of the Monitor menu icon select Pipeline Runs to see the actual execution
log of the pipelines themselves. From here you can drill down into the individual
activities of a pipeline run and see the statuses as well. In our case we had a single
stored procedure activity to run our SSIS package, but if you chained those together to
run multiple SSIS packages, you could drill-down into the activities to see the status of
each activity execution.

Azure SQL Managed Instance

If you host your SSIDB in Azure SQL Managed Instance, you should also have the
capabilities to use Managed Instance Agent to schedule your SSIS packages to
execute. This is probably the easiest method to transition to as it most likely resembles
how you are executing your packages on your on-premises SQL Server.

Azure-SSIS IR Monitoring

Finally, the above methods have shown how to execute and monitor your SSIS package
executions, but Azure Data Factory also provides the ability to monitor the Azure-SSIS
IR itself. This lets you see what kind of resources you assigned to your SSIS IR, as well
as what the current utilization of your nodes is. To access this, navigate back to your
Azure Data Factory landing page and click the Monitoring icon again. Choose the
Runtimes tab and then click on the Azure-SSIS IR you created. You should see
information about your Azure-SSIS IR including Node Size, Available Memory, and CPU
Utilization. This is a good place to see the health of your compute resources as well as
if you need to potentially scale up your nodes.

Next Steps

Once you have lifted and shifted your current packages and workflow up to the cloud,
begin to think about how you can begin to combine/replace pieces of that logic with
native ADF activities. If you are already pulling from cloud sources such as Salesforce
and your destination is an Azure resource such as Azure SQL Data Warehouse, you'll
find that rewriting those pulls can be quick and easy wins since ADF has already written
the efficient, scalable cloud-to-cloud linked services for you. Scaling that throughput up

with DTUs can approach speeds of 1 gigabit per second, which is probably much faster
than you could perform the same copy out of SSIS.

When migrating to native Azure Data Factory pipelines you may want to start thinking of
an Extract – Load – Transform (ELT) pattern as opposed to what you are mostly likely
doing with SSIS now, which is an Extract – Transform – Load (ETL). With SSIS
operating in memory on an individual server (or multiple nodes with 2017), the
transformation is all done in one place. To fully utilize the cloud resources that Azure
can provide (such as Spark with HDInsight, U-SQL with Data Lake Analytics, or
PolyBase with Azure SQL Data Warehouse), you want to shift your transformation
closer to where the data will live. This allows those scalable compute resources to be
able to work with the data in massively parallel fashion where it rests rather than in the
SSIS style data buffer at a time.

	The Modern Data Warehouse
	The Case for a Lift and Shift to Azure Data Factory
	Common Considerations and Concerns
	Security
	Tools
	Pricing
	Networking
	Custom/Third Party SSIS components

	The Process of a Lift and Shift
	Creating an Azure-SSIS IR
	Managing your SSIS Packages in Azure
	Executing and Monitoring your SSIS Packages
	Azure Data Factory “Execute SSIS Package” Activity
	Azure Data Factory Stored Procedure Method
	Azure Data Factory Pipeline Monitoring
	Azure SQL Managed Instance
	Azure-SSIS IR Monitoring

	Next Steps

