

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

Version: 1.0
April 1 2019
Ian Johnson <ian.johnson@canonical.com>

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

Overview 3

Initial system configuration 3

Core snap channel 3

System user and group configuration 3

Installation 4

Installing the snap 4

Connecting interfaces 4

Configuration of the snap 6

Deploying Lambda Functions 7

Local Resource device access 7

Local Resource volume access 8

2 of 9

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

Overview

AWS IoT Greengrass version 1.8.0 is the first release to support snaps as a distribution
method. The Greengrass snap supports all the same features as a native distribution and is
compatible with existing Greengrass groups. However, some deployments may require
configuration changes.

This document assumes knowledge of AWS IoT Greengrass in general, and is meant as a
supplement to the official AWS IoT Greengrass documentation and walkthroughs available
here​.

Initial system configuration

Core snap channel
The Greengrass snap requires various interfaces to be connected before it can operate
normally. One of these interfaces, ​greengrass-support​, was modified to accommodate the 1.8
release of Greengrass and as such, the necessary changes are only available in snapd 2.38 and
later.

System user and group configuration
If you require the use of Greengrass groups/lambdas that do not run as root, you will need to
add the user/group you wish to use with the snap to the system. The default user and group
configured for groups and lambdas are ​ggc_user​ and ​ggc_group​ respectively. Note that this
configuration is optional; you can always configure your Greengrass groups/Lambdas to run as
root such that no additional users or groups are necessary on the system. See AWS
documentation for more information on running lambda functions ​here​ and for configuring
the default user and group for all lambdas in a Greengrass group ​here​.

To add the ​ggc_user​ user to an Ubuntu Core system use:

sudo adduser --extrausers --system ggc_user

To add the ​ggc_user​ user to an Ubuntu classic system omit the ​--extrausers​ flag and use:

sudo adduser --system ggc_user

To add the ​ggc_group​ group to an Ubuntu Core system use:

sudo adduser --extrausers --system ggc_user

3 of 9

https://docs.aws.amazon.com/greengrass/latest/developerguide/gg-gs.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/lambda-group-config.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/lambda-group-config.html#lambda-access-identity-groupsettings

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

To add the ​ggc_group​ to a classic Ubuntu system omit the ​--extrausers​ flag and use:

sudo adduser --system ggc_user

Installation

Installing the snap
The snap can be installed from the snap store using the ​snap install​ command:

snap install aws-iot-greengrass

If you are installing locally from a file and do not have the associated assertions you need to
use the ​--dangerous​ flag:

snap install --dangerous aws-iot-greengrass*.snap

The snap has one daemon/service that is disabled on installation because the service needs to
have certificates and configuration specific to a user’s account before it can run successfully.
You can see the service disabled with the ​snap services​ command:

$ snap services aws-iot-greengrass

Service Startup Current Notes

aws-iot-greengrass.greengrassd disabled inactive -

Connecting interfaces
If the snap was not installed from the store directly and was instead installed through a file
with the ​--dangerous​ flag, the relevant interfaces for Greengrass will not be automatically
connected and will need to be manually connected. This can be done with the ​snap connect
command or via a ​POST​ request to the ​/v2/interfaces​ REST endpoint in the snapd REST API.
The minimal necessary interfaces for the snap to function correctly are:

● greengrass-support
● process-control
● system-observe
● network
● network-bind
● network-control

Regardless of whether the snap was installed from a snap file or from the store, the ​network
and ​network-bind​ interfaces will be automatically connected.

4 of 9

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

Note that the ​greengrass-support​ interface is critical to the operation of the snap such that it
needs to be connected before any other interfaces are connected. If the ​greengrass-support
interface is ever disconnected from the snap, the interface will need to be re-connected and
the system rebooted in order for the Greengrass snap to work again. As such, it is
recommended never to disconnect the ​greengrass-support​ plug from the Greengrass snap
while the Greengrass snap is being used.

To connect an interface plug via the ​snap connect​ command, perform the following command
for all relevant interfaces:

snap connect aws-iot-greengrass:greengrass-support

To instead connect these interfaces using the snapd REST API, perform a ​POST​ request against
the ​/v2/interfaces​ endpoint from a program the ​snapd-control​ interface with the following
JSON body content:

{

"action": "connect",

"plugs": [{"snap": "aws-iot-greengrass", "plug": "greengrass-support"}],

"slots": [{"snap": "core", "slot": "greengrass-support"}]

}

For example, to perform this POST request with ​curl​ run:

$ sudo curl -X POST --unix /run/snapd.socket http://localhost:/v2/interfaces --data

'{"action": "connect","plugs": [{"snap": "aws-iot-greengrass", "plug":

"greengrass-support"}],"slots": [{"snap":"core","slot": "greengrass-support"}]}'

Other interfaces that may be useful or convenient for the operation of the snap but are not
necessary include:

● camera
● dvb
● gpio
● gpio-memory-control
● hardware-random-control
● home
● i2c
● iio
● joystick
● opengl
● optical-drive
● raw-usb
● removable-media

5 of 9

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

● serial-port
● spi

Many of these additional interfaces are necessary in order for Lambda functions to access
devices. This is detailed more in the section ​Local Resource device access​ below.

Configuration of the snap

After the snap is installed it must be configured with a user’s Greengrass configuration and
certificates specific to their account. This mechanism is provided as a ​snap set​ call, accessible
either using the snap command or using the snapd REST API. When a greengrass group is
initially created, a user is provided with the opportunity to download the certificates and
configuration file as a gzipped tar file with either a tar.gz or tgz file extension. The name of
this file is to be provided to the ​snap set​ command or REST API endpoint. Specifically, the file
contents are not stored in the snap configuration for security reasons; the certificates are
stored in $SNAP_DATA and only accessible by root or from processes in the snap and not to
other users. Storing the key data directly inside the snap configuration would expose these
keys to other users on the system that are authenticated with snapd and may or may not have
root access.

Note that both the ​home​ and ​removable-media​ interfaces are used only for convenience when
configuring the snap with this archive file. If you do not connect these interfaces, the archive
file will first need to be copied into a snap-readable location such as ​$SNAP_DATA​ or
$SNAP_COMMON​. If you connect these interfaces, note that the ​home​ interface is connected with
the ​read: all​ attribute specified, which allows a process running as root inside the snap to
read from the home folders of all other users on the system. This allows the configure hook,
which runs as root, to read non-root home folders and thus read the archive file even if the
file is not strictly in the root user’s home interface.

To provide the combined configuration and certificates archive file with the ​snap set
command run:

snap set aws-iot-greengrass gg-certs=/path/to/the/file.tgz

To provide the file using the snapd REST API from a management agent snap using
snapd-control​, perform a ​PUT​ request against the ​/v2/snaps/aws-iot-greengrass/conf
endpoint with the following JSON content as the HTTP request body:

{

 "gg-certs" : "/path/to/the/file.tgz"

}

For example, to set this with the ​curl​ command run:

6 of 9

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

$ sudo curl -X PUT --unix /run/snapd.socket

http://localhost:/v2/snaps/aws-iot-greengrass/conf --data

'{"gg-certs":"/path/to/the/file.tgz"}'

After this is done, the ​greengrassd​ service will start running automatically if the configuration
is valid. This can be validated with ​snap services​:

$ snap services aws-iot-greengrass

Service Startup Current Notes

aws-iot-greengrass.greengrassd enabled active -

Deploying Lambda Functions
After the snap is configured and running on the device, the associated Greengrass group must
be deployed using either the AWS REST API, the AWS CLI, or the web UI. See AWS
documentation for more details on how to do this ​here​ using the web UI and ​here​ for using
the CLI or the REST API.

Additionally, some Lambda functions can use Local Resources as documented ​here​. There are
additional steps that must be taken in order to use Local Resources with the Greengrass snap.

Local Resource device access

Some Lambda functions may require access to direct linux devices such as ​/dev/gpio0​ or
/dev/ttyUSB0​. By default the Greengrass Lambda will not have access to these devices and
access must be provided to the Lambda in AWS as documented ​here​. In addition, the
Greengrass snap is confined by AppArmor to not allow these accesses by default, but the snap
can be configured to allow these accesses by connecting an interface. Only devices which are
supported with a snapd interface that is declared by the snap can be configured for access.
Some of these interfaces are generic and connect to the system’s default slot such as the
raw-usb​ interface. This would allow access to ​/dev/ttyUSB0​ as well as any other device
matching the pattern ​“/dev/tty{USB,ACM}[0-9]*”​. For these devices, connect the interface to
the implicit core snap slot using the ​snap connect​ command as in:

snap connect aws-iot-greengrass:raw-usb

Or using the snapd REST API by performing a post as shown previously in ​Connecting
Interfaces​.

Some devices, however, need a specific system slot in order to allow access, in which case the
command is slightly different. In order to use a device such as ​/dev/gpio0​, a slot exposing
/dev/gpio0​ must be exposed by the gadget snap on an Ubuntu Core system and the
connection will only allow access to that specific device node. To access another gpio device

7 of 9

https://docs.aws.amazon.com/greengrass/latest/developerguide/configs-core.html
https://docs.aws.amazon.com/greengrass/latest/apireference/createdeployment-post.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/access-local-resources.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/access-local-resources.html

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

such as ​/dev/gpio1​ another slot must be exposed by the gadget snap and connected
independently from the ​/dev/gpio0​ connection. To allow access to a specific gpio device such
as BCM pin 0 (which is exposed as ​/dev/gpio0​) on a Raspberry Pi with a gadget snap named
pi3​, the gpio interface plug that Greengrass specifies would be connected as follows:

snap connect aws-iot-greengrass:gpio pi3:bcm-gpio-0

Lastly, these connections can be specified in a gadget snap using the connections stanza in
the ​gadget.yaml​ of the gadget snap. See documentation of the gadget snap ​here​ for more
details.

Local Resource volume access
Some Lambda functions may require access to other files not already contained in the
Lambda. Thus, Lambda functions can be configured using Local Resources to access file
content using volumes. Snaps are also confined to not access arbitrary files from the host
filesystem, so local resource files must also be delivered to the system using snaps. The snap
exposes a ​content​ interface which can be connected to another snap to share the other snap’s
files with the Greengrass snap, thus enabling the Greengrass snap to provide access to the
other snap’s files to Lambda function using local resources.

The first task to provide volume access is to build a snap with the files in a snap. Then the snap
needs to declare a ​content​ interface slot named ​local-resources ​that specifies the file or
directory to share from the snap to the Greengrass snap. For example, with a snap that has
files in a ​myfiles​ directory that should be accessed by the Greengrass snap, declare a slot in
the ​snapcraft.yaml​ of your other snap using:

slots:

 local-resources:

 interface: content

 content: local-resources

 source:

 read: [$SNAP/myfiles]

The source specification is specifically important because otherwise, all of the files from
inside the ​myfiles​ directory will be placed into the root folder of the target and potentially
conflict with other snaps sharing files with the Greengrass snap. Using the source
specification allows the ​myfiles​ directory to be placed verbatim inside the target as explained
below.

After installing this snap on the same system as the system running Greengrass as a snap the
interface plug in, the Greengrass snap must be connected to the interface slot in the other

8 of 9

https://docs.snapcraft.io/the-gadget-snap

Greengrass Snap Release Notes

Canonical Devices and IoT, Field Engineering

snap. This can be done with the ​snap set​ command like this:

snap connect aws-iot-greengrass:local-resources other-snap:local-resources

This can also be connected any other way interfaces can be connected such as using the snapd
REST API or using auto-connection rules in the gadget snap. After this has been connected,
the next step is to configure the Lambda function in AWS.

Due to the usage of the ​content​ interface, the location of the files from the perspective of the
Greengrass snap is not exactly the same as the location of the files in the other snap. Thus, a
different path needs to be used when configuring the local resource volume access for the
Lambda function. Files shared via the ​content​ interface with the Greengrass snap will reside
inside the ​/var/snap/greengrass/common/ggc-local-resources​ directory such that the ​myfiles
directory will appear inside the Greengrass snap as
/var/snap/greengrass/common/ggc-local-resources/myfiles​. When configuring the local
resource access for a Lambda to access this directory, you would specify the volume source
path as ​/var/snap/greengrass/common/ggc-local-resources/myfiles​.

For more information and help using Greengrass as a snap, please visit the snapcraft forum at
forum.snapcraft.io​. For more information about AWS IoT Greengrass, please visit
aws.amazon.com/greengrass​.

9 of 9

https://forum.snapcraft.io/
https://aws.amazon.com/greengrass/

