
Proprietary

A java developer
walks into a
serverless bar

03Google Cloud Next ‘24

Mohammed
Aboullaite
Senior Engineer,
Spotify

04Proprietary

01 SW Architecture overview
02 Serverless in a nutshell
03 Java in a Serverless world
04 Production is fun
05 Conclusion

Agenda

05ProprietaryGoogle Cloud Next ‘24 ProprietaryGoogle Cloud Next ‘24 05

06Google Cloud Next ‘24 Proprietary

Evolution of software
architecture

1980s - Early 2000s
Monolithic architecture
dominates software
development.

Early 2010s
Microservices architecture
gains popularity for its
flexibility and scalability.

Late 1990s - 2010s
Shift towards SOA for more
modular applications.

Mid 2010s
Containerization and
orchestration tools like
Docker and Kubernetes
become critical for
microservices deployment.

Late 2010s - Present
Serverless computing
introduces a new level of
infrastructure abstraction

07ProprietaryGoogle Cloud Next ‘24

Everything in software architecture
is a tradeoff

Fundamentals of Software Architecture
by Mark Richards and Neal Ford

Google Cloud Next ‘24 Proprietary

Performance (Execution latency, Start-up time, …)

Architecture tradeoffs

Efficiency (Resource consumption, Storage, …)

Cost-Effectiveness

Scalability & Resiliency

Sustainability & Maintainability

08

Google Cloud Next ‘24 Proprietary

 12 15 factor apps

One Codebase, One
Application

API First

Dependency
Management

Administrative Processes

Concurrency

Design, Build, Release, and
Run

Logs

Backing Services

Port Binding

Telemetry

Configuration,
Credentials, and Code

Disposability

Environment Parity

Stateless Processes

Authentication and
Authorization

https://developer.ibm.com/articles/15-factor-applications/

010Google Cloud Next ‘24 Proprietary

What Serverless means

Operational
Model

Programming
Model

No Infra Management Managed Security Pay only for usage

Service-based Event-driven Stateless

Google Cloud Next ‘24 Proprietary

Simplicity (Managed runtime environments)

The Serverless Promise

Cost Efficiency (Pay-Per-Usage, No idle costs, …)

Speed (Maintenance-Free Operations)

Flexibility (Auto-scaling, dynamic adaptation, …)

Simplicity (Focusing on product)

012Proprietary

Cost savings with serverless

https://www.mongodb.com/blog/post/understanding-costs-serverless-architecture-save-money

ProprietaryGoogle Cloud Next ‘24 012

013ProprietaryGoogle Cloud Next ‘24

Google Cloud
Serverless platform

014Google Cloud Next ‘24 Proprietary

Cloud functions

Focus on executing
individual functions in a
serverless environment.

Cloud Run

Centered around
containerization, allowing

you to run entire containers

015Google Cloud Next ‘24 Proprietary

Which one to pick

https://cloud.google.com/blog/products/serverless/cloud-run-vs-cloud-functions-for-serverless?hl=en

016Google Cloud Next ‘24 Proprietary

Serverless Compute Serverless database Serverless data

Functions

Cloud run Bigtable

Alloydb pub/sub

storage

017ProprietaryGoogle Cloud Next ‘24

Java in a serverless
world

018Google Cloud Next ‘24 Proprietary

The good part
Robust ecosystem

Performance

Mature Tooling and Development Support

Continuous Evolution

Security

019Google Cloud Next ‘24 Proprietary

The tricky part

Cold Start

Resource Constraints

020Google Cloud Next ‘24 Proprietary

Does startup time matters?
A faster startup time improves auto-scaling’s
responsiveness and aids in quickly launching new
instances. Additionally, it enhances system
resilience against sudden increases in user
activity, effectively preventing system slowdowns
or failures.

Google Cloud Next ‘24 Proprietary

Mitigations

CPU allocation & Background execution

Request Concurrency per instance

Container instance autoscaling

Health checks

CPU Boost - Google specific optimization

Latest Java versions

Class Data Sharing (CDS)

JVM optimizations

Coordinated Restore at Checkpoint (CRaC)

Ahead-of-Time (AOT) compilation with GraalVM

022ProprietaryGoogle Cloud Next ‘24

Cloud Runtime
Optimizations

023Google Cloud Next ‘24 Proprietary

CPU allocation

https://cloud.google.com/run/docs/configuring/cpu-allocation

024Proprietary

● CPU only allocated during request processing is
recommended for applications experiencing intermittent
or unpredictable traffic patterns.

● CPU always allocated is beneficial for services with
consistent traffic flows, slowly varying:

○ Distributed tracing or metrics senders apps, periodically
sending data

○ Java threads, Kotlin coroutines
○ App frameworks relying on built-in scheduling/timing
○ Pull subscribers for messaging systems
○ JDBC Connection Pool management.

CPU allocation:
Traffic patterns
considerations

025Proprietary

Concurrency
in Serverless

https://cloud.google.com/run/docs/about-concurrency

026Google Cloud Next ‘24 Proprietary

Autoscaling
Autoscaling factors:
● CPU Utilization: Aims for 60% CPU usage over

1-minute intervals.

● Request Concurrency: Assesses against max
concurrency in the last minute.

● Instance Caps: Respects max and min instance
settings.

https://cloud.google.com/run/docs/about-instance-autoscaling

027Google Cloud Next ‘24 Proprietary

Health checks

Help ascertain when a container
is ready to receive traffic.
Particularly beneficial for
slow-starting containers,
ensuring they are not
prematurely terminated before
becoming operational.

Startup probe Liveness probe
Determine when to restart a
container, aiding in catching
deadlocks where a service is
running but unable to progress,
thereby enhancing service
availability in the presence of
bugs. https://cloud.google.com/run/docs/configuring/healthchecks

028Google Cloud Next ‘24 Proprietary

Startup CPU Boost

https://cloud.google.com/run/docs/configuring/services/cpu

029ProprietaryGoogle Cloud Next ‘24

Java-specific
optimizations

030Google Cloud Next ‘24 Proprietary

Latest is better

https://www.optaplanner.org/blog/2021/09/15/HowMuchFasterIsJava17.html

031Google Cloud Next ‘24 Proprietary

Latest is better

032Proprietary

Hardware
Resources

Consistent
Performance

Exclusivity

JVM assumes it has full access to the host's physical
resources (CPU, memory), which it uses to make decisions
on resource allocation.

JVM presumes the underlying hardware will provide
consistent performance, which is used to optimize JIT
compilation and GC behavior.

JVM often assumes it's the only significant process
running on a machine, thus it optimizes as if it has all
resources to itself.

Know your JVM ergonomics

033Google Cloud Next ‘24 Proprietary

● Default GC in
○ HotSpot JVM / OpenJDK (Java 11 or later)

■ Defaults to SerialGC or G1GC if no GC is specified.

○ Java 8
■ Uses SerialGC or ParallelGC by default.

● Default GC when ressources are
○ Up to 1791 MB of memory

■ Default GC: SerialGC

○ 2 or more processors & <=1792 MB of memory
■ Default GC: G1GC

JVM ergonomics: GC

034Google Cloud Next ‘24 Proprietary

● Maximum Heap Size:
○ Memory Available: Up to 256 MB

■ Default Heap: 50% of memory

○ Memory Available: 256 MB to 512 MB
■ Default Heap: ~127MB

○ Memory Available: More than 512 MB
■ Default Heap: 25% of memory

● Initial Heap Size
○ Set to 1/64th of available memory.

JVM ergonomics: Memory

035Google Cloud Next ‘24 Proprietary

Tune your JVM

Core JVM Container Support Memory Management CPU Core Adjustment

Garbage Collection Tuning Debugging and Monitoring

-XX:+UseContainerSupport -XX:InitialRAMPercentage,
-XX:MaxRAMPercentage,
-XX:MinRAMPercentage

-XX:ActiveProcessorCount

-XX:ParallelGCThreads,
-XX:ConcGCThreads

-XX:+PrintFlagsFinal

Auto-adjusts to container
limits (Enabled by default). Configure heap size.

Specifies the number of CPU
cores for the JVM to use.

Limits GC parallel & GC
concurrent phase threads to
match container cores.

Outputs final JVM flag values
for verification.

036Google Cloud Next ‘24 Proprietary

Pick the right GC
Factors SerialGC ParallelGC G1GC ZGC ShenandoahGC

Number of cores 1 2 2 2 2

Multi-threaded No Yes Yes Yes Yes

Java heap size <4 GBytes <4 GBytes >4 GBytes >4 GBytes >4 GBytes

Pause Yes Yes Yes Yes (<1 ms) Yes (<10 ms)

Overhead Minimal Minimal Moderate Moderate Moderate

Tail-latency Effect High High High Low Moderate

JDK version All All JDK 8+ JDK 17+ JDK 11+

Best for
Single-core small

heaps

Multi-core small heaps or

batch workloads with any

heap size

Responsive in medium to large

heaps (request-response/DB

interactions)

Responsive in medium to large

heaps (request-response/DB

interactions)

Responsive in medium to large

heaps (request-response/DB

interactions)

https://learn.microsoft.com/en-us/azure/developer/java/containers/overview

037Google Cloud Next ‘24 Proprietary

Tiered Compilation
● Setting -XX:TieredStopAtLevel=1

instructs the JVM to use only the C1
only and disable C2

● By stopping at the first tier, the JVM
avoids the overhead of further
optimization, which is unnecessary
for short-running applications.

● It will slow down the JIT later at the
expense of the saved startup time

038Google Cloud Next ‘24 Proprietary

Class Data Sharing (CDS)

039Google Cloud Next ‘24 Proprietary

How It Works
● Archive Creation: Generate

a CDS archive file containing
class data.

● Runtime Usage: Use
-XX:SharedArchiveFile to
point to the CDS file for
faster class loading.

Archive Types
● Static Dumps: Created with

-Xshare:dump and
-XX:SharedClassListFile.

● Dynamic Dumps: Generated
with
-XX:ArchiveClassesAtExit
(since JDK 13), simplifies the
process by not requiring a
class list.

Considerations
● Consistency: The JDK used

for creating and running the
archive must be identical.

● Compatibility: Static dumps
work without the default JDK
CDS archive; dynamic dumps
do not.

Class Data Sharing

040Google Cloud Next ‘24 Proprietary

Coordinated Restore at
Checkpoint (CRaC)

041Google Cloud Next ‘24 Proprietary

CRaC: The good part

fast startup time

Project CRaC can significantly
reduce the time it takes for an
application to start up.

Peak performance
from first request
CRaC allows applications to
operate at peak efficiency from
the very first request,
particularly when checkpointing
a fully warmed-up image.

Easy developer
onboarding
Same developer experience,
jvm based.

042Google Cloud Next ‘24 Proprietary

CRaC: tradeoffs

Checkpointing Requirement Performance Variability Resource Management

OS Dependency Data Security Concerns

Peak performance is
dependent on when the
checkpoint is taken within
the application's lifecycle,
requiring careful timing.

Necessitates closing and
reopening files, connection
pools, and sockets upon
restore, which may introduce
latency.

Limited to Linux runtime
environments due to
dependency on the CRIU
(Checkpoint/Restore In
Userspace) technology.

Sensitive data may be at risk
of being leaked in snapshots
if not properly secured or
handled.

Need to checkpoint/store
the Java application state
upfront, which might add
complexity to the
deployment process.

043Google Cloud Next ‘24 Proprietary

Ahead of time compilation
with Graal VM

044Google Cloud Next ‘24 Proprietary

Fast Startup Time
Native images compiled with GraalVM
initialize instantly, enabling rapid
application startup

Lower CPU and Memory
Usage
GraalVM reduces runtime CPU and
memory overhead on startup

Peak Performance from
First Request
GraalVM optimizes code at build time,
providing immediate high performance at
runtime without the need for JIT warm-up.

Smaller Attack Surface
Smaller binaries with fewer
dependencies minimize the attack
surface, enhancing application security.

AOT: The good part

045Google Cloud Next ‘24 Proprietary

AOT: tradeoffs

Slow compile time Closed-World Assumptions
with AOT

Additional Metadata for 3rd
Party Libraries

AOT requires all code paths to
be known at compile time,
limiting dynamic features
typically used in Java
applications.

Some libraries may need extra
metadata to work with GraalVM's
native images, adding to the
complexity of development and
build processes.

AOT compilation with GraalVM
can be time-consuming as it
involves thorough analysis and
optimization of the codebase.

046Google Cloud Next ‘24 Proprietary

Future sneak-peek:
Project Leyden
● An innovative OpenJDK project aiming to improve Java application’s startup/warmup time

and reduce footprint.

● Focuses on selective computation shifting and constraining, ensuring ‘meaning

preservation’.

● Currently undergoing early-stage experiments by the Java Platform Group.

● Promising ‘early’ optimization observed with a 15% startup improvement,

achieved by combining Class Data Sharing (CDS) with Spring AOT.
https://openjdk.org/projects/leyden/notes/03-toward-condensers

https://github.com/openjdk/leyden/tree/premain/test/hotspot/jtreg/premain/javac_new_workflow

047ProprietaryGoogle Cloud Next ‘24

Demo

049ProprietaryGoogle Cloud Next ‘24

Security

Google Cloud Next ‘24 Proprietary

Security considerations
● Your code is your responsibility

● Keep a secret

● Establish access controls and permissions

● Get visibility into your functions

● Automate security controls for function code

051Google Cloud Next ‘24 Proprietary

 Secret Manager
● Mount secrets as volumes for real-time access to the latest

version from Secret Manager, ideal for secret rotation

● Pass secrets via environment variables.

● Opt for pinning the version for stability instead of using the
latest version

https://cloud.google.com/run/docs/configuring/services/secrets

052Google Cloud Next ‘24 Proprietary

Service Accounts

053Google Cloud Next ‘24 Proprietary

GCP Identity aware proxy
● Adds login page to the web

app or the API

● Integrate with Google
Workspace & GCP IAM

● AuthN & AuthZ

● Cloud Run, App Engine, GKE,
Compute engine, …

https://cloud.google.com/iap/docs/enabling-cloud-run

054Google Cloud Next ‘24 Proprietary

GCP Cloud Run
ingress policy

Ingress controls access to the URL of the Cloud Run service itself:
https://<serviceName>-<projectHash>-<region>.run.app

055Google Cloud Next ‘24 Proprietary

GCP Cloud Run
ingress policy
3 options for ingress:

● INGRESS_TRAFFIC_ALL <- default
● INGRESS_TRAFFIC_INTERNAL_ONLY
● INGRESS_TRAFFIC_INTERNAL_LOAD_BALANCER

Proprietary 056Google Cloud Next ‘24

CI / CD

057ProprietaryGoogle Cloud Next ‘24

Choose your
adventure!

058Proprietary

● Java <3 containers & Serverless

● Use the latest Java versions for both speed,
security & DevX

● Your code is your responsibility

● Google cloud has a big community,
and so is Java.

● Know your tools

Key takeaways
Serverless doesn’t solve all
architectural constraints,
but it’s advantageous for
the right use case.

Google Cloud Next ‘24 Proprietary

Tap into special offers
designed to help you
implement what you
learned at Google Cloud
Next.

Scan the code to receive
personalized guidance from
one of our experts.

Or visit g.co/next/24offers

Ready to build
what’s next?

Thank you

062Proprietary

