

© 2014–2016 Confluent, Inc.

Partner Development Guide for
Kafka Connect

Overview

This guide is intended to provide useful background to developers implementing Kafka Connect

sources and sinks for their data stores.

Last Updated: December 2016

 December 2016

© 2014–2016 Confluent, Inc.

1 |

Getting Started ... 2

Community Documentation (for basic background) ... 2

Kafka Connect Video Resources (for high-level overview).. 2

Sample Connectors .. 2

Developer Blog Post (for a concrete example of end-to-end design) .. 2

Developing a Certified Connector: The Basics .. 3

Coding ... 3

Documentation and Licensing .. 4

Unit Tests .. 4

System Tests .. 5

Packaging ... 6

Development Best Practices for Certified Connectors ... 7

Connector Configuration ... 7

Schemas and Schema Migration.. 8

Type support ... 8

Logical Types .. 8

Schemaless data ... 9

Schema Migration ... 9

Offset Management .. 10

Source Connectors ... 10

Sink Connectors .. 11

Converters and Serialization .. 11

Parallelism ... 12

Error Handling ... 13

Connector Certification Process ... 14

Post-Certification Evangelism .. 14

 December 2016

© 2014–2016 Confluent, Inc.

2 |

Getting Started

Community Documentation (for basic background)

 Kafka Connect Overview

 Kafka Connect Developer's Guide

Kafka Connect Video Resources (for high-level overview)

A broad set of video resources is available at https://vimeo.com/channels/1075932/videos . Of

particular interest to Connector developers are:

1. Partner Technology Briefings : Developing Connectors in the Kafka Connect Framework

2. Partner Tech Deep Dive : Kafka Connect Overview

(https://drive.google.com/open?id=0B6lWkg0jB5xlOUR6NHdrYUwyNmM)

3. Partner Tech Deep Dive : Kafka Connect Sources and Sinks

(https://drive.google.com/open?id=0B6lWkg0jB5xlV0xoWlZEZjFDdkE)

Sample Connectors

1. Simple file connectors

: https://github.com/confluentinc/kafka/tree/trunk/connect/file/src/main/java/org/apache/kafka/co

nnect/file

2. JDBC Source/Sink : https://github.com/confluentinc/kafka-connect-jdbc

3. Cassandra (DataStax Enterprise) : https://github.com/datamountaineer/stream-

reactor/tree/master/kafka-connect-cassandra

Other supported and certified connectors are available at http://confluent.io/product/connectors .

Developer Blog Post (for a concrete example of end-to-end design)

See <Jeremy Custenboarder's Blog Post>

(currently https://gist.github.com/jcustenborder/b9b1518cc794e1c1895c3da7abbe9c08)

http://docs.confluent.io/current/connect/intro.html
http://docs.confluent.io/current/connect/devguide.html
https://vimeo.com/channels/1075932/videos
https://drive.google.com/open?id=0B6lWkg0jB5xlOUR6NHdrYUwyNmM
https://drive.google.com/open?id=0B6lWkg0jB5xlV0xoWlZEZjFDdkE
https://github.com/confluentinc/kafka/tree/trunk/connect/file/src/main/java/org/apache/kafka/connect/file
https://github.com/confluentinc/kafka/tree/trunk/connect/file/src/main/java/org/apache/kafka/connect/file
https://github.com/confluentinc/kafka-connect-jdbc
https://github.com/datamountaineer/stream-reactor/tree/master/kafka-connect-cassandra
https://github.com/datamountaineer/stream-reactor/tree/master/kafka-connect-cassandra
http://confluent.io/product/connectors
https://gist.github.com/jcustenborder/b9b1518cc794e1c1895c3da7abbe9c08

 December 2016

© 2014–2016 Confluent, Inc.

3 |

Developing a Certified Connector: The Basics

Coding

Connectors are most often developed in Java. While Scala is an acceptable alternative, the

incompatibilities between Scala 2.x run-time environments might make it necessary to distribute

multiple builds of your connector. Java 8 is recommended.

Confluent engineers have developed a Maven archetype to generate the core structure of your

connector.

mvn archetype:generate -B -DarchetypeGroupId=io.confluent.maven \

 -DarchetypeArtifactId=kafka-connect-quickstart \

 -DarchetypeVersion=0.10.0.0 \

 -Dpackage=com.mycompany.examples \

 -DgroupId=com.mycompany.examples \

 -DartifactId=testconnect \

 -Dversion=1.0-SNAPSHOT

will create the source-code skeleton automatically, or you can select the options interactively with

mvn archetype:generate -DarchetypeGroupId=io.confluent.maven \

 -DarchetypeArtifactId=kafka-connect-quickstart \

 -DarchetypeVersion=0.10.0.0

This archetype will generate a directory containing Java source files with class definitions and stub

functions for both Source and Sink connectors. You can choose to remove one or the other

components should you desire a uni-directional connector. The archetype will also generate some

simple unit-test frameworks that should be customized for your connector.

Note on Class Naming : The Confluent Control Center supports interactive configuration of

Connectors (see notes on Connector Configuration below). The naming convention that allows

Control Center to differentiate sources and sinks is the use of SourceConnector and

SinkConnector as Java classname suffixes (eg. JdbcSourceConnector

and JdbcSinkConnector). Failure to use these suffixes will prevent Control Center from

supporting interactive configuration of your connector.

 December 2016

© 2014–2016 Confluent, Inc.

4 |

Documentation and Licensing

The connector should be well-documented from a development as well as deployment perspective. At

a minimum, the details should include

 Top-level README with a simple description of the Connector, including its data model and

supported delivery semantics.

 Configuration details (this should be auto-generated via the toRst/toHtml methods for the

ConfigDef object within the Connector). Many developers include this generation as part of the

unit test framework.

 OPTIONAL: User-friendly description of the connector, highlighting the more important

configuration options and other operational details

 Quickstart Guide : end-to-end description of moving data to/from the Connector. Often, this

description will leverage the kafka-console-* utilities to serve as the other end of the data

pipeline (or kafka-console-avro-* when the Schema Registry-compatible Avro converter classes

are utilized).

See the JDBC connector for an example of comprehensive Connector documentation

https://github.com/confluentinc/kafka-connect-jdbc

Most connectors will be developed to OpenSource Software standards, though this is not a

requirement. The Kafka Connect framework itself is governed by the Apache License, Version

2.0. The licensing model for the connector should be clearly defined in the documentation. When

applicable, OSS LICENSE files must be included in the source code repositories.

Unit Tests

The Connector Classes should include unit tests to validate internal API's. In particular, unit tests

should be written for configuration validation, data conversion from Kafka Connect framework to any

data-system-specific types, and framework integration. Tools like PowerMock

(https://github.com/jayway/powermock) can be utilized to facilitate testing of class methods

independent of a running Kafka Connect environment.

https://github.com/confluentinc/kafka-connect-jdbc
https://github.com/jayway/powermock

 December 2016

© 2014–2016 Confluent, Inc.

5 |

System Tests

System tests to confirm core functionality should be developed. Those tests should verify proper

integration with the Kafka Connect framework:

 proper instantiation of the Connector within Kafka Connect workers (as evidenced by proper

handling of REST requests to the Connect workers)

 schema-driven data conversion with both Avro and JSON serialization classes

 task restart/rebalance in the event of worker node failure

Advanced system tests would include schema migration, recoverable error events, and performance

characterization. The system tests are responsible for both the data system endpoint and any

necessary seed data:

 System tests for a MySQL connector, for example, should deploy a MySQL database instance

along with the client components to seed the instance with data or confirm that data has been

written to the database via the Connector.

 System tests should validate the data service itself, independent of Kafka Connect. This can

be a trivial shell test, but definitely confirm that the automated service deployment is functioning

properly so as to avoid confusion should the Connector tests fail.

Ideally, system tests will include stand-alone and distributed mode testing

 Stand-alone mode tests should verify basic connectivity to the data store and core behaviors

(data conversion to/from the data source, append/overwrite transfer modes, etc.). Testing of

schemaless and schema'ed data can be done in stand-alone mode as well.

 Distributed mode tests should validate rational parallelism as well as proper failure

handling. Developers should document proper behavior of the connector in the event of worker

failure/restart as well as Kafka Cluster failures. If exactly-once delivery semantics are

supported, explicit system testing should be done to confirm proper behavior.

 Absolute performance tests are appreciated, but not required.

The Confluent System Test Framework (https://cwiki.apache.org/confluence/display/KAFKA/tutorial+-

+set+up+and+run+Kafka+system+tests+with+ducktape) can be leveraged for more advanced system

tests. In particular, the ducktape framework makes tesing of different Kafka failure modes simpler. An

example of a Kafka Connect ducktape test is available here

https://cwiki.apache.org/confluence/display/KAFKA/tutorial+-+set+up+and+run+Kafka+system+tests+with+ducktape
https://cwiki.apache.org/confluence/display/KAFKA/tutorial+-+set+up+and+run+Kafka+system+tests+with+ducktape

 December 2016

© 2014–2016 Confluent, Inc.

6 |

: https://github.com/apache/kafka/blob/trunk/tests/kafkatest/tests/connect/connect_distributed_test.py#

L356 .

Packaging

The final connector package should have minimal dependences. The default invocation of the

Connect Worker JVM's includes the core Apache and Confluent classes from the distribution in

CLASSPATH. The packaged connectors (e.g. HDFS Sink and JDBC Source/Sink) are deployed to

share/java/kafka-connect-* and included in CLASSPATH as well. To avoid Java namespace collisions,

you must not directly include any of the following classes in your connector jar :

 io.confluent.*

 org.apache.kafka.connect.*

In concrete terms, you'll want your package to depend only on the connect-api artifact, and that artifact

should be classified as provided. That will ensure that no potentially conflicting jar's will be included in

your package.

Kafka Connect 0.10.* and earlier does not support CLASSPATH isolation within the JVM's deploying

the connectors. If you Connector conflicts with classes from the packaged connectors, you should

document the conflict and the proper method for isolating your Connector at runtime. Such isolation

can be accomplished by disabling the packaged connectors completely (renaming the share/java/kafka-

connect-* directories) or developing a customized script to launch your Connect Workers that

eliminates those directories from CLASSPATH.

Developers are free to distribute their connector via whatever packaging and installation framework is

most appropriate. Confluent distributes its software as rpm/deb packages as well as a self-contained

tarball for relocatable deployments. Barring extraordinary circumstances, Connector jars should be

made available in compiled form rather than requiring end customers to build the connector on

site. The helper scripts that launch Kafka Connect workers (connect-standalone and connect-

distributed) explicitly add the connector jars to the CLASSPATH. By convention, jar files in

share/java/kafka-connect-* directories are added automatically, so you could document your installation

process to locate your jar files in share/java/kafka-connect-<MyConnector> .

https://github.com/apache/kafka/blob/trunk/tests/kafkatest/tests/connect/connect_distributed_test.py#L356
https://github.com/apache/kafka/blob/trunk/tests/kafkatest/tests/connect/connect_distributed_test.py#L356

 December 2016

© 2014–2016 Confluent, Inc.

7 |

Development Best Practices for Certified Connectors

Connector Configuration

Connector classes must define the config() method, which returns an instance of the ConfigDef class

representing the required configuration for the connector. The AbstractConfig class should be used to

simplify the parsing of configuration options. That class supports get* functions to assist in

configuration validation. Complex connectors can choose to extend the AbstractConfig class to deliver

custom functionality. The existing JDBCConnector illustrates that with its JDBCConnectorConfig class,

which extends AbstractConfig while implementing the getBaseConfig() method to return the necessary

ConfigDef object when queried. You can see how ConfigDef provides a fluent API that lets you easily

define new configurations with their default values and simultaneously configure useful UI parameters

for interactive use. An interesting example of this extensibility can be found in the MODE_CONFIG

property within JDBCConnectorConfig. That property is constrained to one of 4 pre-defined values

and will be automatically validated by the framework.

The ConfigDef class instance within the Connector should handle as many of the configuration details

(and validation thereof) as possible. The values from ConfigDef will be exposed to the REST interface

and directly affect the user experience in Confluent Control Center. For that reason, you should

carefully consider grouping and ordering information for the different configuration

parameters. Parameters also support Recommender functions for use within the Control Center

environment to guide users with configuration recommendations. The connectors developed by the

Confluent team (JDBC, HDFS, and Elasticsearch) have excellent examples of how to construct a

usable ConfigDef instance with the proper information.

If the configuration parameters are interdependent, implementing a <Connector>.validate() function is

highly recommended. This ensures that the potential configuration is consistent before it is used for

Connector deployment. Configuration validation can be done via the REST interface before deploying

a connector; the Confluent Control Center always utilizes that capability so as to avoid invalid

configurations.

 December 2016

© 2014–2016 Confluent, Inc.

8 |

Schemas and Schema Migration

Type support

The Connector documentation should, of course, include all the specifics about the data types

supported by your connector and the expected message syntax. Sink Connectors should not simply

cast the fields from the incoming messages to the expected data types. Instead, you should check the

message contents explicitly for your data objects within the Schema portion of the SinkRecord (or

with instanceof for schemaless data). The PreparedStatementBinder.bindRecord() method in the

JdbcSinkConnector provides a good example of this logic. The lowest level loop walks through all the

non-key fields in the SinkRecords and converts those fields to a SQLCompatible type based on the

Connect Schema type associated with that field:

for (final String fieldName : fieldsMetadata.nonKeyFieldNames) {

 final Field field = record.valueSchema().field(fieldName);

 bindField(index++, field.schema().type(), valueStruct.get(field));

}

Well-designed Source Connectors will associate explicit data schemas with their messages, enabling

Sink Connectors to more easily utilize incoming data. Utilities within the Connect framework simplify

the construction of those schemas and their addition to the SourceRecords structure.

The code should throw appropriate exceptions if the data type is not supported. Limited data type

support won't be uncommon (e.g. many table-structured data stores will require a Struct

with name/value pairs). If your code throws Java exceptions to report these errors, a best practice is to

use ConnectException rather than the potentially confusing ClassCastException. This will ensure the

more useful status reporting to Connect's RESTful interface, and allow the framework to manage your

connector more completely.

Logical Types

Where possible, preserve the extra semantics specified by logical types by checking

for schema.name()'s that match known logical types. Although logical types will safely fall back on the

native types (e.g. a UNIX timestamp will be preserved as a long), often times systems will provide a

corresponding type that will be more useful to users. This will be particularly true in some common

cases, such as Decimal, where the native type (bytes) does not obviously correspond to the logical

http://schema.name/

 December 2016

© 2014–2016 Confluent, Inc.

9 |

type. The use of schema in these cases actually expands the functionality of the connectors ... and

thus should be leveraged as much as possible.

Schemaless data

Connect prefers to associate schemas with topics and we encourage you to preserve those schemas

as much as possible. However, you can design a connector that supports schemaless data. Indeed,

some message formats implicitly omit schema (eg JSON). You should make a best effort to support

these formats when possible, and fail cleanly and with an explanatory exception message when lack of

a schema prevents proper handling of the messages.

Sink Connectors that support schemaless data should detect the type of the data and translate it

appropriately. The community connector for DynamoDB illustrates this capability very clearly in its

AttributeValueConverter class. If the connected data store requires schemas and doesn't efficiently

handle schema changes, it will likely prove impossible to handle implicit schema changes

automatically. It is better in those circumstances to design a connector that will immediately throw an

error. In concrete terms, if the target data store has a fixed schema for incoming data, by all means

design a connector that translates schemaless data as necessary. However, if schema changes in the

incoming data stream are expected to have direct effect in the target data store, you may wish to

enforce explicit schema support from the framework.

Schema Migration

Schemas will change, and your connector should expect this.

Source Connectors won't need much support as the topic schema is defined by the source system; to

be efficient, they may want to cache schema translations between the source system and Connect's

data API, but schema migrations "just work" from the perspective of the framework. Source

Connectors may wish to add some data-system-specific details to their error logging in the event of

schema incompatibility exceptions. For example, users could inadvertently configure two instances of

the JDBC Source connector to publish data for table "FOO" from two different database instances. A

different table structure for FOO in the two databases would result in the second Source Connector

getting an exception when attempting to publish its data ... and error message indicating the specific

JDBC Source would be helpful.

 December 2016

© 2014–2016 Confluent, Inc.

10 |

Sink Connectors must consider schema changes more carefully. Schema changes in the input data

might require making schema changes in the target data system before delivering any data with the

new schema. Those changes themselves could fail, or they could require compatible transformations

on the incoming data. Schemas in the Kafka Connect framework include a version. Sink connectors

should keep track of the latest schema version that has arrived. Remember that incoming data may

reference newer or older schemas, since data may be delivered from multiple Kafka partitions with an

arbitrary mix of schemas. By keeping track of the Schema version, the connector can ensure that

schema changes that have been applied to the target data system are not reverted. Converters within

the Connector can the version of the schema for the incoming data along with the latest schema

version observed to determine whether to apply schema changes to the data target or to project the

incoming data to a compatible format. Projecting data between compatible schema versions can be

done using the SchemaProjector utility included in the Kafka Connect framework. The

SchemaProjector utility leverages the Connect Data API, so it will always support the full range of data

types and schema structures in Kafka Connect.

Offset Management

Source Connectors

Source Connectors should retrieve the last committed offsets for the configured Kafka topics during the

execution of the start() method. To handle exactly-once semantics for message delivery, the Source

Connector must correctly map the committed offsets to the Kafka cluster with some analog within the

source data system, and then handle the necessary rewinding should messages need to be re-

delivered. For example, consider a trivial Source connector that publishes the lines from an input file to

a Kafka topic one line at a time ... prefixed by the line number. The commit* methods for that

connector would save the line number of the posted record ... and then pick up at that location upon a

restart.

An absolute guarantee of exactly once semantics is not yet possible with Source Connectors (there are

very narrow windows where multiple failures at the Connect Worker and Kafka Broker levels could

distort the offset management functionality). However, the necessary low-level changes to the Kafka

Producer API are being integrated into Apache Kafka Core to eliminate these windows.

 December 2016

© 2014–2016 Confluent, Inc.

11 |

Sink Connectors

The proper implementation of the flush() method is often the simplest solution for correct offset

management within Sink Connectors. So long as Sinks correctly ensure that messages delivered to

the put() method before flush() are successfully saved to the target data store before returning from the

flush() call, offset management should "just work". A conservative design may choose not to

implement flush() at all and simply manage offsets with every put() call. In practice, that design may

constrain connector performance unnecessarily.

Developers should carefully document and implement their handling of partitioned topics. Since

different connector tasks may receive data from different partitions of the same topic, you may need

some additional data processing to avoid any violations of the ordering semantics of the target data

store. Additionally, data systems where multiple requests can be "in flight" at the same time from

multiple Connector Task threads should make sure that relevant data ordering is preserved (eg not

committing a later message while an earlier one has yet to be confirmed). Not all target data systems

will require this level of detail, but many will.

Exactly-once semantics within Sink Connectors require atomic transactional semantics against the

target data system ... where the known topic offset is persisted at the same time as the payload

data. For some systems (notably relational databases), this requirement is simple. Other target

systems require a more complex solution. The Confluent-certified HDFS connector offers a good

example of supporting exactly-once delivery semantics using a connector-managed commit strategy.

Converters and Serialization

Serialization formats for Kafka are expected to be handled separately from connectors. Serialization is

performed after the Connect Data API formatted data is returned by Source Connectors, or before

Connect Data API formatted data is delivered to Sink Connectors. Connectors should not assume a

particular format of data. However, note that Converters only address one half of the system.

Connectors may still choose to implement multiple formats, and even make them pluggable. For

example, the HDFS Sink Connector (taking data from Kafka and storing it to HDFS) does not assume

anything about the serialization format of the data in Kafka. However, since that connector is

responsible for writing the data to HDFS, it can handle converting it to Avro or Parquet, and even allows

users to plug in new format implementations if desired. In other words, Source Connectors might be

flexible on the format of source data and Sink Connectors might be flexible on the format of sink data,

but both types of connectors should let the Connect framework handle the format of data within Kafka.

 December 2016

© 2014–2016 Confluent, Inc.

12 |

There are currently two supported data converters for Kafka Connect distributed with

Confluent: org.apache.kafka.connect.json.JsonConverter and io.confluent.connect.avro.AvroConverter

. Both converters support including the message schema along with the payload (when configured with

the appropriate *.converter.schemas.enable property to true).

The JsonConverter includes the schema details as simply another JSON value in each record. A

record such as " {"name":"Alice","age":38} " would get wrapped to the longer format

{

 "schema":{"type":"struct",

 "fields":[{"type":"string","optional":false,"field":"name"},{"type":"integer","optional":false,"f

ield":"age"}],

 "optional":false,

 "name":"htest2"},

 "payload":{"name":"Alice","age":38}

}

Connectors are often tested with the JsonConverter because the standard Kafka consumers and

producers can validate the topic data.

The AvroConverter uses the SchemaRegistry service to store topic schemas, so the volume of data on

the Kafka topic is much reduced. The SchemaRegistry enabled Kafka clients (eg kafka-avro-console-

consumer) can be used to examine these topics (or publish data to them).

Parallelism

Most connectors will have some sort of inherent parallelism. A connector might process many log files,

many tables, many partitions, etc. Connect can take advantage of this parallelism and automatically

allow your connector to scale up more effectively – IF you provide the framework the necessary

information.

Sink connectors need to do little to support this because they already leverage Kafka's consumer

groups functionality; recall that consumer groups automatically balance and scale work between

member consumers (in this case Sink Connector tasks) as long as enough Kafka partitions are

available on the incoming topics.

 December 2016

© 2014–2016 Confluent, Inc.

13 |

Source Connectors, in contrast, need to express how their data is partitioned and how the work of

publishing the data can be split across the desired number of tasks for the connector. The first step is to

define your input data set to be broad by default, encompassing as much data as is sensible given a

single configuration. This provides sufficient partitioned data to allow Connect to scale up/down

elastically as needed. The second step is to use your Connector.taskConfigs() method implementation

to divide these source partitions among (up to) the requested number of tasks for the connector.

Explicit support of parallelism is not an absolute requirement for Connectors – some data sources

simply do not partition well. However, it is worthwhile to identify the conditions under which parallelism

is possible. For example, a database might have a single WAL file which seems to permit no

parallelism for a change-data-capture connector; however, even in this case we might extract subsets

of the data (e.g. per table from a DB WAL) to different topics, in which case we can get some

parallelism (split tables across tasks) at the cost of the overhead of reading the WAL multiple times.

Error Handling

The Kafka Connect framework defines its own hierarchy of throwable error classes

(https://kafka.apache.org/0100/javadoc/org/apache/kafka/connect/errors/package-

summary.html). Connector developers should leverage those classes

(particularly ConnectException and RetriableException) to standardize connector behavior. Exceptions

caught within your code should be rethrown as connect.errors whenever possible to ensure proper

visibility of the problem outside the framework. Specifically, throwing a RuntimeException beyond the

scope of your own code should be avoided because the framework will have no alternative but to

terminate the connector completely.

Recoverable errors during normal operation can be reported differently by sources and sinks. Source

Connectors can return null (or an empty list of SourceRecords) from the poll() call. Those connectors

should implement a reasonable backoff model to avoid wasteful Connector operations; a simple call to

sleep() will often suffice. Sink Connectors may throw a RetriableException from the put() call in the

event that a subsequent attempt to store the SinkRecords is likely to succeed. The backoff period for

that subsequent put() call is specified by the timeout value in the sinkContext. A default timeout value

is often included with the connector configuration, or a customized value can be assigned

using sinkContext.timeout() before the exception is thrown.

https://kafka.apache.org/0100/javadoc/org/apache/kafka/connect/errors/package-summary.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/connect/errors/package-summary.html

 December 2016

© 2014–2016 Confluent, Inc.

14 |

Connectors that deploy multiple threads should use context.raiseError() to ensure that the framework

maintains the proper state for the Connector as a whole. This also ensures that the exception is

handled in a thread-safe manner.

Connector Certification Process

Partners will provide the following material to the Confluent Partner team for review prior to certification.

1. Engineering materials

a. Source code details (usually a reference to a public source-code repository)

b. Results of unit and system tests

2. Connector Hub details

a. Tags / description

b. Public links to source and binary distributions of the connector

c. Landing page for the connector (optional)

3. Customer-facing materials

a. Connector documentation

b. [Recommended] Blog post and walk-through video (eg.Cassandra Sink Blog

at http://www.confluent.io/blog/kafka-connect-cassandra-sink-the-perfect-match/)

The Confluent team will review the materials and provide feedback. The review process may be

iterative, requiring minor updates to connector code and/or documentation. The ultimate goal is a

customer-ready deliverable that exemplifies the best of the partner product and Confluent.

Post-Certification Evangelism

Confluent is happy to support Connect Partners in evangelizing their work. Activities include

 Blog posts and social media amplification

 Community education (meet-ups, webinars, conference presentations, etc)

 Press Releases (on occasion)

 Cross-training of field sales teams

http://confluent.io/product/connectors
http://www.confluent.io/blog/kafka-connect-cassandra-sink-the-perfect-match/

	Overview
	Getting Started
	Community Documentation (for basic background)
	Kafka Connect Video Resources (for high-level overview)
	Sample Connectors
	Developer Blog Post (for a concrete example of end-to-end design)

	Developing a Certified Connector: The Basics
	Coding
	Documentation and Licensing
	Unit Tests
	System Tests
	Packaging

	Development Best Practices for Certified Connectors
	Connector Configuration
	Schemas and Schema Migration
	Type support
	Logical Types
	Schemaless data
	Schema Migration

	Offset Management
	Source Connectors
	Sink Connectors

	Converters and Serialization
	Parallelism
	Error Handling

	Connector Certification Process
	Post-Certification Evangelism

