
Role-Based Access

Control (RBAC) for

Kafka Connect

Yeva Byzek, © 2019 Confluent, Inc.

Table of Contents

Introduction . 1

Target Audience . 1

Role-Based Access Control . 2

Overview. 2

Benefits . 4

Confluent Metadata Service. 4

Connect Configuration . 5

Connect Worker . 5

Connector . 10

Personas and Roles . 12

Confluent CLI for Role Bindings . 13

Connect Cluster Administrator . 15

Connector Submitter . 18

Connector . 18

Role Binding Summary . 22

Summary . 24

Appendix. 25

Cluster IDs . 25

Introduction

Role-Based Access Control (RBAC) ensures that only authorized clients have

appropriate access to system resources. These resources include those available across

services in Confluent Platform:

• Kafka brokers

• Kafka Connect

• KSQL

• Confluent Schema Registry

• Confluent Control Center

• Confluent REST Proxy

RBAC defines granular privileges for users and service accounts to different resources.

We will review basic RBAC concepts and then dive into using RBAC specifically with

Kafka Connect and connectors.

Target Audience

The reader should understand basic principles of Apache Kafka® and Kafka Connect,

and understand how to deploy security across the services in Confluent Platform.

Refer to the Connect and security documentation for prerequisite reading.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 1

https://docs.confluent.io/current/connect.html
https://docs.confluent.io/current/security/index.html

Role-Based Access Control

Overview

Because Kafka streams events that may contain extremely sensitive data, customers

often want to implement very strict rules that control who has access to this data and

the services in Confluent Platform.

For basic, simple authorization, a user could define ACLs to allow or deny specific users

access to certain resources. However, these ACLs have tangible limitations:

• How do you efficiently manage privileges across an organization with hundreds of

users?

• What if you wanted to allow a user to configure a sink connector that would

consume from a topic and send the messages to an end system?

• Without RBAC, a user with Confluent Control Center UI access is either a

superUser or a readOnly user with no middle ground for access—how do you

restrict a user to read from some topics but not others?

• What if you wanted to reduce your system dependencies on ZooKeeper, which is

used to store the ACLs?

• How do you control granular access across all services in the Confluent Platform,

including connectors, KSQL, REST Proxy, etc.?

• How do you match the identities of a business workflow that includes both users

(humans) and service accounts (applications)?

RBAC leverages predefined role assignments to determine who can access specific

resources and what actions an individual user can perform within those resources. An

administrator assigns predefined roles to users and groups; each user or group can be

assigned multiple roles. Certain privileged users, such as the UserAdmin or SystemAdmin,

assign roles to users and groups, and then map specific resources to those user roles.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 2

The ResourceOwner role also has AlterAccess permissions on the resources to which

they are bound, allowing them to delegate management of permissions to other users.

Consequently, a ResourceOwner in a finance department can grant department

members access to resources, perhaps to topics that use the prefix finance_, for

example.

User administrators can add LDAP users and groups, making it quicker and easier to

configure authentication and authorization centrally for the various Confluent

Platform resources used in an organization. With RBAC, the user administrator can

map roles to LDAP users and groups that are granted access to specific resources, via

a "role binding." These role bindings can be at the user level or group level. Group-level

bindings enable administrators to avoid having to grant explicit access to individual

users across every component.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 3

Benefits

RBAC benefits include:

• Robust framework that centralizes authentication and authorization in the

Confluent Metadata Service (MDS)

• Consistent behavior across the Confluent Platform such that all services in the

event streaming platform can authorize users with the same mechanism

• KSQL supports impersonation for Interactive Queries so that it passes user

credentials transparently from the end user to the cluster

• REST Proxy supports impersonation so that it passes user credentials

transparently from the end user to the cluster

• Administrators can differentiate and authorize individual roles

• With a unified security CLI, administrators can define RBAC role bindings across

the entire Confluent Platform

Confluent Metadata Service

Confluent Metadata Service (MDS) offers a single, centralized configuration context

that binds and enforces a Kafka cluster configuration across different resources, such

as topics, connectors, and Schema Registry subjects. MDS acts as the central authority

for all authorization, and it saves administrators from the complex and time-

consuming task of defining and assigning roles for each resource on an individual basis.

It can be integrated with LDAP to provide authentication and refreshable bearer

tokens for impersonation. MDS is the master record for these role bindings, and all

components in the Confluent Platform communicate with MDS to ensure that after a

role binding is set, users can’t gain access via another API or Confluent Control Center

to gain unauthorized access to resources.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 4

Connect Configuration

Before the introduction of RBAC, any user that could authenticate with Kafka Connect

could take any action on the connectors or Kafka topic data. However, with RBAC,

Connect administrators can grant granular access to users and service accounts, with

connector-based authorization and role-based access. They can create multi-tenant

Connect clusters that are shared between many departments in an enterprise. Sharing

a Connect cluster and scaling it is especially compelling with the improvements made

in Confluent Platform 5.3 that enable 10s to 100s of connectors per Kafka Connect

cluster.

The rest of this paper describes the workflow for enabling RBAC on Connect. Before

proceeding to the sections below, ensure that your Kafka cluster is properly configured

for RBAC, and refer to the RBAC documentation as needed.

Connect Worker

The Connect cluster administrator will need to configure all the Kafka Connect

workers and start the Connect cluster. There are many configuration parameters that

can be set, and this paper focuses on a subset of those required for RBAC.

For consistency with the RBAC demo that uses Hash Login Service with users, the

examples here do not have the configuration required to integrate with LDAP. If you

need more information on required LDAP configuration, refer to the LDAP Authorizer

documentation.

After configuring the Connect worker, create the appropriate role bindings described

in the section Personas and Roles.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 5

https://docs.confluent.io/current/security/rbac/index.html#rbac-overview
https://github.com/confluentinc/examples/tree/latest/security/rbac
https://docs.confluent.io/current/security/ldap-authorizer/introduction.html
https://docs.confluent.io/current/security/ldap-authorizer/introduction.html



Refer to an example of the delta Connect configuration required to be

added to your existing Connect configuration file. This configuration is

part of a demo all running on a localhost (e.g., bootstrap server at

localhost:9092 and MDS at localhost:8090), so you’ll need to adapt it

to your specific environment.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 6

https://github.com/confluentinc/examples/blob/latest/security/rbac/delta_configs/connect-avro-distributed.properties.delta

• RBAC authentication and authorization: enable communication between the

Connect worker and the Kafka cluster, basic token authentication between the

Connect worker and MDS, and authentication for the Connect REST API

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 7

Configuration required for communication with the Kafka cluster
bootstrap.servers=localhost:9092
security.protocol=SASL_PLAINTEXT
sasl.mechanism=OAUTHBEARER
sasl.login.callback.handler.class=io.confluent.kafka.clients.plugins.a
uth.token.TokenUserLoginCallbackHandler
sasl.jaas.config=org.apache.kafka.common.security.oauthbearer.OAuthBea
rerLoginModule required username="connect" password="connect1"
metadataServerUrls="http://localhost:8090";

Enables basic and bearer authentication for requests made to the
worker
rest.servlet.initializor.classes=io.confluent.common.security.jetty.in
itializer.InstallBearerOrBasicSecurityHandler

The path to a directory containing public keys that should be used
to verify json web tokens during authentication
public.key.path=/tmp/tokenPublicKey.pem

The location of a running metadata service; used to verify that
requests are authorized by the users that make them
confluent.metadata.bootstrap.server.urls=http://localhost:8090

Credentials to use when communicating with the MDS; these should
usually match the ones used for communicating with Kafka
confluent.metadata.basic.auth.user.info=connect:connect1
confluent.metadata.http.auth.credentials.provider=BASIC

REST extensions: RBAC and Secret Registry

Installs the RBAC and Secret Registry REST extensions
rest.extension.classes=io.confluent.connect.security.ConnectSecurityEx
tension,io.confluent.connect.secretregistry.ConnectSecretRegistryExten
sion

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 8

• Clients embedded within each Connect worker: producer, consumer, and

AdminClient

producer.security.protocol=SASL_PLAINTEXT
producer.sasl.mechanism=OAUTHBEARER
producer.sasl.login.callback.handler.class=io.confluent.kafka.clients.
plugins.auth.token.TokenUserLoginCallbackHandler
Intentionally omitting `producer.sasl.jaas.config` to force
connectors to use their own

consumer.security.protocol=SASL_PLAINTEXT
consumer.sasl.mechanism=OAUTHBEARER
consumer.sasl.login.callback.handler.class=io.confluent.kafka.clients.
plugins.auth.token.TokenUserLoginCallbackHandler
Intentionally omitting `consumer.sasl.jaas.config` to force
connectors to use their own

admin.security.protocol=SASL_PLAINTEXT
admin.sasl.mechanism=OAUTHBEARER
admin.sasl.login.callback.handler.class=io.confluent.kafka.clients.plu
gins.auth.token.TokenUserLoginCallbackHandler
Intentionally omitting `admin.sasl.jaas.config` to force connectors
to use their own

Allow producer/consumer/admin client overrides (this enables per-
connector principals)
connector.client.config.override.policy=All

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 9

• Connect Secret Registry: enable Connect to store encrypted Connect credentials

in a topic exposed through a REST API

config.providers=secret
config.providers.secret.class=io.confluent.connect.secretregistry.rbac
.config.provider.InternalSecretConfigProvider
config.providers.secret.param.master.encryption.key=password1234

config.providers.secret.param.kafkastore.topic=_secrets
config.providers.secret.param.kafkastore.bootstrap.servers=localhost:9
092
config.providers.secret.param.kafkastore.security.protocol=SASL_PLAINT
EXT
config.providers.secret.param.kafkastore.sasl.mechanism=OAUTHBEARER
config.providers.secret.param.kafkastore.sasl.login.callback.handler.c
lass=io.confluent.kafka.clients.plugins.auth.token.TokenUserLoginCallb
ackHandler
config.providers.secret.param.kafkastore.sasl.jaas.config=org.apache.k
afka.common.security.oauthbearer.OAuthBearerLoginModule required
username="connect" password="connect1"
metadataServerUrls="http://localhost:8090";

Connector

Additional connector configuration includes:

• RBAC authentication and authorization: enable basic authentication between the

connector and Kafka

 Refer to an example of the source connector or sink connector.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 10

https://docs.confluent.io/current/connect/rbac/connect-rbac-secret-registry.html
https://docs.confluent.io/current/connect/rbac/connect-rbac-connectors.html
https://github.com/confluentinc/examples/blob/latest/security/rbac/delta_configs/connector-source.properties.delta
https://github.com/confluentinc/examples/blob/latest/security/rbac/delta_configs/connector-sink.properties.delta

Source connector
producer.override.sasl.jaas.config=org.apache.kafka.common.security.oa
uthbearer.OAuthBearerLoginModule required username="connector"
password="connector1" metadataServerUrls="http://localhost:8090";

Sink connector
consumer.override.sasl.jaas.config=org.apache.kafka.common.security.oa
uthbearer.OAuthBearerLoginModule required username="connector"
password="connector1" metadataServerUrls="http://localhost:8090";

This configuration is part of a demo all running on a local host, so you’ll need to adapt

it to your specific environment.

The connector should be submitted after Kafka Connect has successfully started and

with the appropriate role bindings described in the section Personas and Roles.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 11

Personas and Roles

With RBAC, administrators can authorize users or groups to access resources on a per-

role basis. A user or group who is assigned a role receives all the privileges of that role,

and a user or group can be assigned to multiple roles. Creating role bindings for a

group, i.e., using a principal that starts with Group:, enables administrators to scale

and operationally manage access for large organizations, while role bindings for a user,

i.e., using a principal that starts with User:, may be useful for specific cases. For

consistency in this paper, particularly with the RBAC demo which uses Hash Login with

users, the examples here refer to users.

Let’s consider the following three Connect personas:

• Connect Cluster Administrator: a principal that represents a Connect worker and

is used by that worker to access the Connect cluster group and internal Connect

topics

• Connector Submitter: a principal that submits the connector to the Connect

cluster

• Connector: a connector principal that needs access to the relevant topics and

related resources, e.g., Schema Registry subjects

These personas will need appropriate role bindings in order to work with RBAC, to give

access to different resources as described in the following sections. The examples

provided in this white paper are general guidelines that you will need to adapt to your

specific environment. You should develop a custom plan to address how these

personas are appropriated to different groups or users, whether these are all different

principals or not, who does the privilege assignment, etc. Review your plan with your

RBAC system administrator before creating a Connect cluster or running connectors.


Refer to the Appendix section Cluster IDs to obtain the values for

$KAFKA_CLUSTER_ID, $CONNECT_CLUSTER_ID, and

$SCHEMA_REGISTRY_CLUSTER_ID, used in the examples below.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 12

https://github.com/confluentinc/examples/tree/latest/security/rbac

Confluent CLI for Role Bindings

To manage RBAC and role bindings, you must use the unified Confluent CLI.

1. Use CLI version v0.128.0 or later. Check the version of the CLI installed by

executing the command confluent version.

confluent - Confluent CLI

Version: v0.128.0
Git Ref: 0e56172115bf3c2ba7dda6920fb205c9803efa81
Build Date: 2019-07-11T20:51:02Z
Build Host: semaphore@semaphore-vm
Go Version: go1.12.5 (darwin/amd64)
Development: false

2. Assuming MDS is already running, log in to the MDS endpoint with the

appropriate credentials by executing the command confluent login. Log in as a

user with the SystemAdmin role (the configured super.user), the ResourceOwner

role, or the UserAdmin role, basically any user with privileges to create the

subsequent role bindings shown in this paper.

$ confluent login --url http://localhost:8090

Enter your Confluent credentials:
Username: mds
Password:

Logged in as mds

3. List the available roles and the associated privileges by executing the command

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 13

https://docs.confluent.io/current/cli/index.html

confluent iam role list. For any given role, it shows the permitted operations

on the respective resources. (The output is too long to include in the paper).

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 14

Connect Cluster Administrator

Role Bindings

The role bindings for the Connect cluster administrator, i.e., $USER_ADMIN_CONNECT, are

shown below.

1. Grant $USER_ADMIN_CONNECT the ResourceOwner role to the three "internal" Kafka

topics that Connect uses to store information about connector tasks, offsets,

and statuses. With this role, the user owns those topics and can also grant other

users access to those topics.

◦ config.storage.topic: a topic for storing connector and task

configurations, in which the default value is connect-configs

◦ offset.storage.topic: a topic for storing offsets, in which the default value

is connect-offsets

◦ status.storage.topic: a topic for storing connector statuses, in which the

default value is connect-statuses

connect-configs
confluent iam rolebinding create --principal
User:$USER_ADMIN_CONNECT --role ResourceOwner --resource
Topic:connect-configs --kafka-cluster-id $KAFKA_CLUSTER_ID

connect-offsets
confluent iam rolebinding create --principal
User:$USER_ADMIN_CONNECT --role ResourceOwner --resource
Topic:connect-offsets --kafka-cluster-id $KAFKA_CLUSTER_ID

connect-statuses
confluent iam rolebinding create --principal
User:$USER_ADMIN_CONNECT --role ResourceOwner --resource
Topic:connect-statuses --kafka-cluster-id $KAFKA_CLUSTER_ID

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 15

2. Grant $USER_ADMIN_CONNECT the ResourceOwner role for the Connect cluster

group, defined by the parameter group.id, which by default is configured to

connect-cluster. With this role binding, the user is the owner for that group.

confluent iam rolebinding create --principal
User:$USER_ADMIN_CONNECT --role ResourceOwner --resource
Group:connect-cluster --kafka-cluster-id $KAFKA_CLUSTER_ID

3. Optional if using Connect Secret Registry): grant $USER_ADMIN_CONNECT the

ResourceOwner role to the resources required for Connect Secret Registry.

◦ Grant ResourceOwner for the topic defined by

config.providers.secret.param.kafkastore.topic, which by default is

configured to _secrets. With this role binding, the user owns that topic and

can create it.

confluent iam rolebinding create --principal
User:$USER_ADMIN_CONNECT --role ResourceOwner --resource
Topic:_secrets --kafka-cluster-id $KAFKA_CLUSTER_ID

◦ Grant ResourceOwner for the consumer group defined by

config.providers.secret.param.secret.registry.group.id, which by

default is configured to secret-registry. With this role binding, the user is

the owner for that consumer group, which is used to read from the topic

above.

confluent iam rolebinding create --principal
User:$USER_ADMIN_CONNECT --role ResourceOwner --resource
Group:secret-registry --kafka-cluster-id $KAFKA_CLUSTER_ID

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 16

https://docs.confluent.io/current/connect/rbac/connect-rbac-secret-registry.html

4. Grant $USER_ADMIN_CONNECT the SecurityAdmin role to the Connect cluster. With

this role binding, the user can make requests to MDS to determine if the

connector user is authorized to perform required operations. Notice that the

following command does not require a --resource argument, because the

SecurityAdmin role has a cluster-level scope (the roles SystemAdmin, UserAdmin,

ClusterAdmin, and Operator also have cluster-level scope).

confluent iam rolebinding create --principal
User:$USER_ADMIN_CONNECT --role SecurityAdmin --kafka-cluster-id
$KAFKA_CLUSTER_ID --connect-cluster-id $CONNECT_CLUSTER_ID

RBAC and Control Center

Connectors can now be managed through Confluent Control Center, while honoring

access that has been granted. When logging into the Control Center UI with

appropriate credentials, $USER_ADMIN_CONNECT has access to the connector cluster in

the UI. This user has access only to the Connect worker information but not the

connectors, topics, KSQL, consumers, etc. Other users without the appropriate role

bindings do not have access to this Connect worker information.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 17

Likewise, other users without the appropriate permissions do not have access to the

Connect cluster.

Connector Submitter

Role Bindings

The role bindings for the person who submits a connector to the Connect cluster, i.e.,

$USER_CONNECTOR_SUBMITTER, are shown below.

5. Grant $USER_CONNECTOR_SUBMITTER the ResourceOwner role for the connector

defined by $CONNECTOR_NAME. With this role binding, the user is the owner of the

connector and can grant others access to this connector.

confluent iam rolebinding create --principal
User:$USER_CONNECTOR_SUBMITTER --role ResourceOwner --resource
Connector:$CONNECTOR_NAME --kafka-cluster-id $KAFKA_CLUSTER_ID
--connect-cluster-id $CONNECT_CLUSTER_ID

If a user who is not authorized tries to submit the connector, the Connect REST API

will return an HTTP error 403 Forbidden with the text Unauthorized operation.

Connector

Role Bindings

The role bindings for the connector, i.e., $USER_CONNECTOR, are shown below.

6. Grant $USER_CONNECTOR the ResourceOwner role for the data. Data means two

resources: topic and Schema Registry subject.

◦ The topic in the Kafka cluster is defined by $TOPIC2_AVRO. With the

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 18

ResourceOwner role binding, the connector can create the topic. If the topic

already exists, you may consider creating a more restricted privilege like

DeveloperWrite for a source connector (or DeveloperRead for a sink

connector).

confluent iam rolebinding create --principal
User:$USER_CONNECTOR --role ResourceOwner --resource
Topic:$TOPIC2_AVRO --kafka-cluster-id $KAFKA_CLUSTER_ID

◦ Optional if using Confluent Schema Registry: The subject is defined by

${TOPIC2_AVRO}-key and/or ${TOPIC2_AVRO}-value (it assumes that the

subject name strategy is TopicNameStrategy). With the ResourceOwner role

binding, the connector can create the subject. If the topic already exists, you

may consider creating a more restricted privilege like DeveloperWrite for a

source connector (or DeveloperRead for a sink connector).

confluent iam rolebinding create --principal
User:$USER_CONNECTOR --role ResourceOwner --resource
Subject:${TOPIC2_AVRO}-value --kafka-cluster-id
$KAFKA_CLUSTER_ID --schema-registry-cluster-id
$SCHEMA_REGISTRY_CLUSTER_ID

RBAC and Control Center

The topic data and schema related to this connector can now be managed through

Confluent Control Center, while honoring access that has been granted. When logging

into the Control Center UI with appropriate credentials, $USER_CONNECTOR has access

to the topic $TOPIC2_AVRO in the UI (in the diagram below, $TOPIC2_AVRO=pageviews).

Other users without the appropriate role bindings do not have access to this topic

data.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 19

The user also has access to the Schema Registry subject ${TOPIC2_AVRO}-value (in the

diagram below, the schema is shown for the topic value where

$TOPIC2_AVRO=pageviews). Other users without the appropriate role bindings do not

have access to this Schema Registry subject.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 20

Finally, as expected, this user does not have access to the connector itself, KSQL,

consumers, etc. For example, when trying to view connectors, this is what this user

would see without appropriate role bindings.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 21

Role Binding Summary

The summary of role bindings required to enable Connect for RBAC is shown below.

Note that this is just a generic example that you should adapt for your specific

environment.

You may configure more restricted privileges if a topic or subject already exists.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 22

https://github.com/confluentinc/examples/tree/latest/security/rbac#connect

Connect Admin
confluent iam rolebinding create --principal User:$USER_ADMIN_CONNECT
--role ResourceOwner --resource Topic:connect-configs --kafka-cluster
-id $KAFKA_CLUSTER_ID
confluent iam rolebinding create --principal User:$USER_ADMIN_CONNECT
--role ResourceOwner --resource Topic:connect-offsets --kafka-cluster
-id $KAFKA_CLUSTER_ID
confluent iam rolebinding create --principal User:$USER_ADMIN_CONNECT
--role ResourceOwner --resource Topic:connect-statuses --kafka-cluster
-id $KAFKA_CLUSTER_ID
confluent iam rolebinding create --principal User:$USER_ADMIN_CONNECT
--role ResourceOwner --resource Group:connect-cluster --kafka-cluster
-id $KAFKA_CLUSTER_ID
confluent iam rolebinding create --principal User:$USER_ADMIN_CONNECT
--role ResourceOwner --resource Topic:_secrets --kafka-cluster-id
$KAFKA_CLUSTER_ID
confluent iam rolebinding create --principal User:$USER_ADMIN_CONNECT
--role ResourceOwner --resource Group:secret-registry --kafka-cluster
-id $KAFKA_CLUSTER_ID
confluent iam rolebinding create --principal User:$USER_ADMIN_CONNECT
--role SecurityAdmin --kafka-cluster-id $KAFKA_CLUSTER_ID --connect
-cluster-id $CONNECT_CLUSTER_ID

Connector Submitter
confluent iam rolebinding create --principal
User:$USER_CONNECTOR_SUBMITTER --role ResourceOwner --resource
Connector:$CONNECTOR_NAME --kafka-cluster-id $KAFKA_CLUSTER_ID
--connect-cluster-id $CONNECT_CLUSTER_ID

Connector
confluent iam rolebinding create --principal User:$USER_CONNECTOR
--role ResourceOwner --resource Topic:$TOPIC2_AVRO --kafka-cluster-id
$KAFKA_CLUSTER_ID
confluent iam rolebinding create --principal User:$USER_CONNECTOR
--role ResourceOwner --resource Subject:${TOPIC2_AVRO}-value --kafka
-cluster-id $KAFKA_CLUSTER_ID --schema-registry-cluster-id
$SCHEMA_REGISTRY_CLUSTER_ID

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 23

Summary

This white paper applies basic RBAC concepts to Kafka Connect. You should now be

able to apply these concepts to your deployment of the Confluent Platform.

As next steps, you can follow up on RBAC with these resources:

• RBAC demo

• Deploy RBAC across the entire Confluent Platform

• Best practices for taking Kafka Connect to production

• Download the Confluent Platform: RBAC and MDS are commercial features of

the Confluent Platform

• Install Confluent CLI: the CLI is used for connecting to MDS and managing role

bindings

Confluent Platform is the leading distribution of Apache Kafka, containing all of

Kafka’s capabilities and enhancing it with integrated, tested, and packaged features

that make architecting and managing large-scale event streaming pipelines easier and

more reliable.

Visit www.confluent.io/download to download the latest version of the Confluent

Platform.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 24

https://github.com/confluentinc/examples/tree/latest/security/rbac
https://docs.confluent.io/current/security/rbac/index.html
https://docs.confluent.io/current/connect.html
https://www.confluent.io/download/
https://docs.confluent.io/current/cli/installing.html
http://confluent.io/download/

Appendix

Cluster IDs

Kafka Cluster ID

Get the Kafka cluster ID from ZooKeeper, which is running at localhost:2181 in the

example below. The user must have access to ZooKeeper to get the cluster ID.

zookeeper-shell localhost:2181 get /cluster/id | grep version | jq -r
.id

Connect Cluster ID

Get the Kafka Connect cluster ID from the Connect REST endpoint, which is running at

localhost:8083 in the example below. The user must be the Connect administrator

($USER_ADMIN_CONNECT) to get the cluster ID.

curl -u $USER_ADMIN_CONNECT:$USER_ADMIN_CONNECT_PASSWORD
http://localhost:8083/permissions | jq -r '.scope.clusters."connect-
cluster"'

Schema Registry Cluster ID

Get the Schema Registry cluster ID from the Schema Registry REST endpoint, which is

running at localhost:8081 in the example below. The user must be the Schema

Registry administrator ($USER_ADMIN_SR) to get the cluster ID.

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 25

curl -u $USER_ADMIN_SR:$USER_ADMIN_SR_PASSWORD
http://localhost:8081/permissions | jq -r '.scope.clusters."schema-
registry-cluster"'

Role-Based Access Control (RBAC) for Kafka Connect

© 2014-2020 Confluent, Inc. 26

	Role-Based Access Control (RBAC) for Kafka Connect
	Table of Contents
	Introduction
	Target Audience

	Role-Based Access Control
	Overview
	Benefits
	Confluent Metadata Service

	Connect Configuration
	Connect Worker
	Connector

	Personas and Roles
	Confluent CLI for Role Bindings
	Connect Cluster Administrator
	Connector Submitter
	Connector
	Role Binding Summary

	Summary
	Appendix
	Cluster IDs

