(%) CONFLUENT

Benchmark Your
Dedicated Apache
Kafka® Cluster on
Confluent Cloud

Anna Povzner, Scott Hendricks © 2020 Confluent, Inc.

Table of Contents

Abstract

Introduction

Setting Up Benchmark Clients
Download Your Java Config for the Cluster from the Confluent Cloud Ul
Container/VM Creation for Running Performance Benchmarks
Configuration

Benchmark Overview

Running Benchmarks
Create Topic
Execute Benchmark
Example Output
Topic Cleanup

Results

Performance Troubleshooting Tips
Benchmarking Your Dedicated Cluster

What Performance Should | Expect from My Own Workload?

1"

1

13

13
14
18
20

20

21

21

22

Abstract

Confluent Cloud Dedicated cluster capacity is based on a pricing unit called a CKU
(Confluent Unit for Apache Kafka®), where each unit is capable of sustaining 50 MB/s
producer bandwidth and 150 MB/s consumer bandwidth. This white paper reports the
results of the benchmarks we ran on a 2-CKU multi-zone Dedicated cluster, and shows
the ability of a CKU to deliver the stated client bandwidth on AWS, GCP, and Azure
clouds. The paper describes the setup up and execution of our benchmarks in sufficient

detail to make them reproducible.

Introduction

Confluent Cloud Dedicated cluster capacity is based on a pricing unit called a CKU
(Confluent Unit for Apache Kafka®). As of April 2020, one CKU is capable of sustaining
50 MB/s producer bandwidth and 150 MB/s consumer bandwidth, where a higher
consumer bandwidth capacity is useful for a publish/subscribe model that lets multiple
consumer groups retrieve their own copy of a topic. One CKU also comes with a set of
upper limits on your workload behavior. Notable upper limits include the maximum
number of simultaneously connected clients (1,000 per CKU) and the maximum
number of topic partitions (3,000 per CKU). Increasing your allocated CKUs will
linearly increase your upper limits. Independent of the number of CKUs, there is also an

upper limit on per-partition producer bandwidth (5 MB/s) and per-partition consumer
bandwidth (15 MB/s).

The specific performance of your clients with a CKU will depend on the behavior of
your workload. In general, you will not be able to max out all the dimensions of your
workload behavior and achieve the maximum CKU bandwidth at the same time. For
example, if you reach the partition limit, you will not be able to reach the maximum
CKU bandwidth. The benchmark described in the paper provides an example workload
that is capable of reaching maximum per-CKU bandwidth. You'll note that our
example workload uses 108 partitions, fewer than 20 connections, and specific client

configuration. Your own workload is probably different and as a result, your application

bandwidth may be different.

Since the range of possible workload behaviors is large, you may need to benchmark
your own Dedicated cluster with the configurations more relevant to your specific
workload. This paper describes the benchmark that achieves the maximum CKU
bandwidth for all clouds where Confluent Cloud is available: Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP). For benchmarks, we used
off-the-shelf Kafka producer and consumer performance tools, kafka-producer-perf-
test and kafka-consumer-perf-test. You can use our benchmarks as a baseline to
verify the capabilities of your cluster and also as a starting point for benchmarking a
wider range of workload parameters, such as a different number of partitions and

clients, different message sizes, and different client configurations.

To make our benchmarks fully reproducible, this paper first provides a step-by-step
guide for setting up and running the benchmarks that test the capabilities of a 2-CKU
Dedicated cluster, a minimum size for the multi-zone clusters. We present and explain
the results of running these benchmarks on three multi-zone clusters, one per cloud
(AWS, GCP, and Azure). Our results show that each setup was able to achieve the
maximum 2-CKU bandwidth: 100 MB/s producer and 300 MB/s consumer bandwidth.

Setting Up Benchmark Clients

This section describes the steps for setting up VMs/containers that would run Kafka
performance tools, kafka-producer-perf-test and kafka-consumer-perf-test,
configuring performance tools to be able to access your Dedicated cluster, and the
exact coommands for running the performance tools. All the steps are relevant for
testing any CKU Dedicated cluster, while our specific examples assume testing a 2-
CKU cluster.

Download Your Java Config for the Cluster
from the Confluent Cloud Ul

You need to configure performance benchmarks to access your Dedicated cluster.
Since kafka-producer-perf-test and kafka-consumer-perf-test are Java clients,

download your Java config for the cluster from the Confluent Cloud Ul as follows.

Select your cluster from the navigation bar:

%) CONFLUENT

DE
ase ClUusters

Cluster 2
5 ol I + Add cluster
5o
Schema:
Dev Staging
Running Running
Overview Overview
Cloud provider GCP Cloud provider GCP
Region us-central Region us-centrall
Availability Single zone Availability Single zone
Type Basic Type Basic
Usage Usage
Partitions Partitions
Topics o Topics
Production 0B Production 0B/s
Consumption OB/s Consumption 0B/s
Storage 0B Storage oB
Connected services Connected services
KSQL applications Y KSQL applications
Connectors 0 Connectors

Click on Tools & client configuration menu:

ONFLUENT

oo
oo
DEV o
Cluster settings
Data flow
ST
Cluster 2 Topics Kafka
o Connectors)
Pﬂ Cluster details
Schema
KsQL
Cluster name Dev
Consumers Cluster ID
Bootstrap server
Kafka APl keys Cloud provider GCP
Region us-centrall
Cluster settings
Availability Single zone
Type Basic

Tools & client configuration

Usage limits ©®

Ingress up to 100 MBps
Egress up to 100 MBps
Storage upto5TB
Partitions up to 2048
Uptime SLA None

Change settings

Select Clients at the top:

NFLUENT
oo
oo
DEV . o .
. Tools and client configuration
Data flow
S ,
e 2 Topics CCloud CLI Clients CLI Tools
o Connectors
. !33 Try it out!
KsaL Now that you have a cluster up and running in Confluent Cloud,
you can administer using the Confluent ud CLI.
Consumers
Kafka API keys 1. Install / Update the Confluent Cloud CLI

Run this command to install the Confluent Cloud CLI
Cluster settings
$ curl -L --httpl.1 https://cnfl.io/ccloud-cli | sh -s -- -b /usr/local/bin Copy.
Tools & client configuration
This script will install the CLI in the /usr/local/bin directory by
default. If you want to install it somewhere else, add the path to
the end of the command and to your your $PATH variable.

Note: On Windows, you might need to install an appropriate Linux
environment to have the curl and sh commands available, such as
the Windows S stem for Linux. You can also download and
install the raw binaries.

If already installed, update to the latest version with:

$ ccloud update Copy.

Generate a New Kafka Cluster API Key & Secret:

DD

oo
DEV
Data flow

Cluster 2 TOD\CS

gy Connectors
KSQL
Consumers

Kafka API keys
Cluster settings

Tools & client configuration

Expand Java in the list:

Tools and client configuration

CCloud CLI Clients CLI Tools

Expand the appropriate configuration to copy into your client code. Schema Registry is recommended to ensure
consistent, reliable data in your topics.

For more information about the best practices for developing Apache Kafka applications with Confluent Cloud, check
out the whitepaper

If necessary, create a key/secret pair for your a Cluster.

Q, Create New Kafka Cluster API key & secret

~ C#

~ C/C++

~ Clojure

~ Go

~ Groovy

E ' e
Data flow
ST ~ Clojure
Cluster 2 TOD‘CS
o Connectors ~ Go
[=a
Schema:
KSQL
~ Groovy
Consumers
v Java
Kafka API keys
X show API keys
Cluster settings # Kafka

bootstrap.servers=

security.protocol=SASL_SSL

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username=
password:

ssl.endpoint.identification.algorithm=https

sasl.mechanism=PLAIN

Confluent Cloud Schema Registry

schema.registry.url=https://{{ SR_ENDPOINT }}

basic.auth.credentials.source=USER_INFO

schema.registry.basic.auth.user.info={{ SR_API_KEY }}:{{ SR_API_SECRET }}

O Copy to clipboard & See example

Tools & client configuration

~ Kotlin

A Nada ic

Check box to show API Keys to replace {{ CLUSTER_API_KEY }} and {{
CLUSTER_API_SECRET }} values with the real APl Key and Secret you just created:

Cluster 2

5
¥ a:

Click Copy

Data flow
Topics
Connectors
KSQL
Consumers
Kafka API keys
Cluster settings

Tools & client configuration

to clipboard:

>

~

~

C/C++

Clojure
Go
Groovy

Java

Kafka

bootstrap.servers:

security.protocol=SASL_SSL

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username=
password:

ssl.endpoint.identification.algorithm=https

sasl.mechanism=PLAIN

Confluent Cloud Schema Registry

schema.registry.url=https://{{ SR_ENDPOINT }}

basic.auth.credentials.source=USER_INFO

schema.registry.basic.auth.user.info={{ SR_API_KEY }}:{{ SR_API_SECRET

& See example

Kotlin

Nada ic

show API keys

(9 CONFLUENT

E | nee
Data flow

ST ~ Clojure
Cluster 2 TOD‘CS
o Connectors ~ Go
[=a
S
KSQL
~ Groovy
Consumers
v Java
Kafka API keys
X show API keys
Cluster settings # Kafka

bootstrap.serverss=

security.protocol=SASL_SSL

sasl.jaas.config=org.apache.kafka.comnon.security.plain.PlainLoginModule required username=
password

Tools & client configuration

ssl.endpoint.identification.algorithm=https

sasl.mechanism=PLAIN

Confluent Cloud Schema Registry

schema.registry.url=https://{{ SR_ENDPOINT }}
basic.auth.credentials.source=USER_INFO
schema.registry.basic.auth.user.info={{ SR_API_KEY }}:{{ SR_API_SECRET }}

O Copy to clipboard & See example

~ Kotlin

A Nada ic

Save the contents of the #Kafka config section for later, ignoring every other section.

Container/VM Creation for Running
Performance Benchmarks

The number of containers to run the performance benchmark was chosen as the
minimum number of containers that ensures that clients are not a bottleneck, i.e.,
there is enough performance capacity for the benchmark producers and consumers to

push enough bandwidth to the cluster.

Create two clean confluentinc/cp-kaftka containers or VMs for each CKU in AWS or
Azure, or four for each CKU in GCP. These should be running with a minimum of 4-
cores and isolated from each other and any other heavy workloads. The test is very
CPU intensive, so it is required to run on two separate systems for each CKU on AWS

and Azure, and four separate systems for each CKU on GCP.

You should also aim to create these tests in the same cloud region as your Kafka

cluster. This will ensure the numbers match our reported results.

Docker

On Docker, you can run the following command to create a new container running
confluentinc/cp-kafka. You must note the Container IDs output from each

command.

docker run -d confluentinc/cp-kafka tail -f /dev/null

To reproduce the results reported in this paper for a 2-CKU cluster, create four

containers on AWS or Azure, and eight containers on GCP.

To get a prompt to run a performance benchmark command in each container, use the

following command:

docker exec —-it <CONTAINER 1 ID> bash
docker exec -it <CONTAINER 2 ID> bash
docker exec —-it <CONTAINER 3 ID> bash
docker exec -it <CONTAINER 4 ID> bash

Kubernetes

On Kubernetes, you can create a pod by running the kubectl run command. Make sure

you choose a different name for each pod you run.

You may need to tweak the commands below to get them to run on different nodes.
For example, on AWS r5.xlarge (or any other 32GB node type) you can use the

--requests "memory=20Gi' flag to make sure they are on individual nodes. You can

also use the --port/--hostport flag combo to schedule these alone, as we have done

below.

kubectl run kafka-benchmarkl \
--image confluentinc/cp-kafka \
--restart Never \
-—port 28130 \
-—hostport 28130 \
[——-namespace optional-namespace] \
-\
tail -f /dev/null

kubectl run kafka-benchmark2 \
--image confluentinc/cp-kafka \
--restart Never \
-—port 28130 \
-—hostport 28130 \
[--namespace optional-namespace] \

-\
tail -f /dev/null

To reproduce the results reported in this paper for a 2-CKU cluster, run the above

commands to create four pods in AWS/Azure or eight pods in GCP:

kafka-benchmarkl, .., kafka-benchmark4 [, .., kafka-benchmark8]

To get a prompt to run a performance benchmark command in each container, use the

following command:

kafka-benchmarkl -- bash
kafka-benchmark2 -- bash
kafka-benchmark3 -- bash
kafka-benchmark4 -- bash

kubectl exec —-it [-n optional-namespace
kubectl exec -it [-n optional-namespace
kubectl exec —-it [-n optional-namespace
kubectl exec -it [-n optional-namespace

—_ - -

Configuration

Important: Copy the configuration you saved from the Confluent Cloud Ul to each
system in a file called /config, making sure you have replaced the parameterized

sections.

The file should look something like this, but with your actual values.

Kafka

bootstrap.servers=pkc-12345.us-west-2.aws.devel.cpdev.cloud:9092

security.protocol=SASL_SSL

sasl.jaas.config=org.apache.kafka.common.security.plain.PlainLoginModule required username="REDACTED" password="redacted";
ssl.endpoint.identification.algorithm=https

sasl.mechanism=PLAIN

Benchmark Overview

As our benchmark, we used pre-packaged performance testing tools that ship with

Kafka: kafka-producer-perf-test and kafka-consumer-perf-test. We used the

following non-default client configurations and workload specifications:

Configuration / Workload Specification

Client version Apache Kafka 2.4 / Confluent Platform
5.4

acks all

Configuration / Workload Specification

linger.ms 10
compression.type none (default)
Producer record size value = 512 bytes
Number of topic partitions 108

Producer to consumer ratio 1:3

Our benchmarks do not use compression, which is the default client configuration. This
shows the ability of a CKU to achieve the stated bandwidth over the wire, independent
of compression and its resulting compression ratio. We recommend enabling 1z4 or
Snappy compression on the producer via compression.type producer configuration,
which would both let you achieve higher client (pre-compression) bandwidth and save
on ingress, egress, and storage costs. The trade-off of using Iz4 or Snappy compression
is a slightly higher CPU usage on both clients and brokers, while gzip could result in a

more significant CPU overhead.

Our benchmark was designed to test a 2-CKU Dedicated cluster. The number of
producers and consumers was the minimum number of clients that were able to push
enough load given the CPU capabilities of the cloud provider's instance types running
the benchmark clients. Our benchmark had four producers (eight on GCP) publishing
messages to one topic with 108 partitions, and three consumer groups, each with four
consumers (eight on GCP), consuming from the same topic. We chose a producer to
consumer ratio of 1:3 in order to get the maximum CKU bandwidth (50:150 MB/s per
CKU). You can use other ratios, but you may not get the maximum CKU bandwidth.

The next section will describe how to execute the benchmarks. Notice that consumers

start at the same time as producers, meaning that all consumers will be reading from
the tail of the log. If your application has non-real-time consumers, which are reading
further back from the log, you may not achieve the full CKU bandwidth because the

workload will become more disk bound.

We selected 108 partitions as an example of not too small, not too large. You will need
at least 10x the number of CKUs partitions to achieve the maximum CKU bandwidth,

to account for per-partition bandwidth limits.

We used producer configuration linger.ms=10 (default is O) to ensure good batching
of records, which optimizes throughput. We usually recormmend linger.ms between
five and 10 milliseconds if you care more about latencies, and up to 100 milliseconds if
you care about throughput but have a lot of clients and partitions which may reduce
the ability of each client to batch records together. The record size of 512 bytes was

also chosen as large enough to optimize for throughput.

We chose to benchmark a highly fault-tolerant client configuration, because we expect
it to be a more common scenario for production workloads: producer configuration
acks=all (defaultis 1). Compared to the default, less fault-tolerant configuration, you
will see higher producer latencies, because the producer has to wait for the message to

be replicated to all the partition's replicas before receiving the acknowledgment.

We provide more suggestions on how to validate performance and optimize your

workload at the end of this paper.

Running Benchmarks

This section describes the exact set of steps and commmands that we used for

benchmarking a 2-CKU cluster.

Create Topic

On only one of the Docker containers or Kubernetes Pods, run the following command

to create the topic. Make sure to replace <BOOTSTRAP SERVER>:<PORT> with the

actual bootstrap server from your configs.

kafka-topics \
-—-bootstrap-server <BOOTSTRAP SERVER>:<PORT> \
--command-config /config \
--create \
--topic perf-test \

-—partitions 108 \
--replication-factor 3

Execute Benchmark

To execute the tests, on each system add the following section to a script and run
them all simultaneously, staggered by a couple seconds. Make sure to replace
<BOOTSTRAP SERVER>:<PORT> with the actual bootstrap server from your configs.

Because the final output from the consumers is not a summary of the test, we must
use awk to calculate the running average of the entire test. The awk command sums the
incremental fetch.time.ms (column $8), and takes the final value for the running sum
of data.consumed.in.MB (column $3). It then calculates MB/s based on those two

values.

You must delete and re-create the topic for every rerun due to the way
0 the consumers are configured here. Also, be sure the tests are not
started at identical times on different servers to avoid consumer group

race conditions.

AWS and Azure

These tests are designed to run up to 30 MB/s ingress, 20 MB/s egress per test

container/VM to the Kafka cluster. Please note, traffic will likely not be equal among all

containers/VMs. Some may run at a higher rate on one and a lower rate on another.

kafka-producer-perf-test \
-—topic perf-test \
--record-size 512 \
--producer.config config \
-—throughput 60000 \
-—-num-records 54000000 \
--producer-props acks=all linger.ms=10 \
| tee /tmp/producer &

kafka-consumer-perf-test \
-—-broker-1list <BOOTSTRAP SERVER>:<PORT> \
--consumer.config /config \
--topic perf-test \
--messages 53950000 \
--group=perf-test-1 \
--show-detailed-stats \
--hide-header \
--timeout 60000 \
| tee /tmp/consumerl &

kafka-consumer-perf-test \
--broker-1list <BOOTSTRAP SERVER>:<PORT> \
—--consumer.config /config \
-—topic perf-test \
--messages 53950000 \
--group=perf-test-2 \
--show-detailed-stats \
--hide-header \
-—timeout 60000 \

| tee /tmp/consumer2 &

kafka-consumer-perf-test \
-—-broker-1list <BOOTSTRAP SERVER>:<PORT> \

-—consumer.config /config \
--topic perf-test \
--messages 53950000 \
--group=perf-test-3 \
--show-detailed-stats \
--hide-header \

--timeout 60000 \

| tee /tmp/consumer3 &

wait

echo "Test Results:"
tail -n 1 /tmp/producer | sed 's|.(\(.\))|Producer: \1|g'
echo "Consumer 1:" \
“cat /tmp/consumerl \
| awk -F"," '{if($8>0){msec+=$8};mb=$3}END{print mbx1000/msec}"'"\
"MB/sec"
echo "Consumer 2:" \
“cat /tmp/consumer2 \
| awk -F"," '{if($8>0){msec+=$8};mb=$3}END{print mbx1000/msec}"'"\
"MB/sec"
echo "Consumer 3:" \
“cat /tmp/consumer3 \

| awk -F"," '{if($8>0){msec+=$8};mb=$3}END{print mbx1000/msec}"'"\
"MB/sec"

GCP

Since we run GCP with more client nodes, we need to decrease the amount of traffic
sent per node to keep the test at 15 minutes. These tests are designed to run up to 15
MB/s ingress, 45 MB/s egress per test container/VM to the Kafka cluster. Please note,
some containers or VMs may run at a higher consumer rate on one and a lower

consumer rate on another.

kafka-producer-perf-test \
--topic perf-test \
--record-size 512 \
--producer.config config \
-—throughput 30000 \
-—-num-records 27000000 \
-—producer-props acks=all linger.ms=10 \
| tee /tmp/producer &

kafka-consumer-perf-test \
-—broker-1list <BOOTSTRAP SERVER>:<PORT> \
--consumer.config /config \
-—topic perf-test \
-—-messages 26950000 \
-—group=perf-test-1 \
--show-detailed-stats \
--hide-header \
--timeout 60000 \
| tee /tmp/consumerl &

kafka-consumer-perf-test \
--broker-1list <BOOTSTRAP SERVER>:<PORT> \
-—consumer.config /config \
--topic perf-test \
--messages 26950000 \
--group=perf-test-2 \
--show-detailed-stats \
--hide-header \
--timeout 60000 \

| tee /tmp/consumer2 &

kafka-consumer-perf-test \
--broker-1ist <BOOTSTRAP SERVER>:<PORT> \
--consumer.config /config \
-—topic perf-test \
-—-messages 26950000 \

-—-group=perf-test-3 \
--show-detailed-stats \
--hide-header \
--timeout 60000 \

| tee /tmp/consumer3 &

wait

echo "Test Results:"
tail -n 1 /tmp/producer | sed 's|.(\(.\))|Producer: \1|g'
echo "Consumer 1:" \
‘cat /tmp/consumerl \
| awk -F"," '"{if($8>0){msec+=$83};mb=$3}END{print mbx1000/msec}"' "\
"MB/sec"
echo "Consumer 2:" \
“cat /tmp/consumer2 \
| awk -F"," '"{if($8>0){msec+=$83};mb=$3}END{print mbx1000/msec}"' "\
"MB/sec"
echo "Consumer 3:" \
‘cat /tmp/consumer3 \

| awk -F"," '"{if($8>0){msec+=$83};mb=$3}END{print mbx1000/msec}"' "\
"MB/sec"

Example Output

For each test, you should see streaming output while the test is running. This can be

largely ignored, but designed to show progress is being made:

249231 records sent, 49746.7 records/sec (24.29 MB/sec), 14.1 ms avg latency, 212.0

ms max latency.
2020-03-26 17:47:20:530, 0, 493.1592, 24.1315, 1009990, 49421.2315, 0, 5002, 24.1315,

49421.2315
2020-03-26 17:47:20:630, 0, 496.1494, 24.3395, 1016114, 49847.2306, 0, 5001, 24.3395,
49847.2306
2020-03-26 17:47:25:157, 0, 605.2256, 24.0767, 1239502, 49309.0000, 0, 5000, 24.0767,
49309.0000

251874 records sent, 50364.7 records/sec (24.59 MB/sec), 18.3 ms avg latency, 149.0

ms max latency.
2020-03-26 17:47:25:550, 0, 616.1587, 24.5019, 1261893, 50179.8805, 0, 5020, 24.5019,

50179.8805
2020-03-26 17:47:25:630, 0, 619.0649, 24.5831, 1267845, 50346.2000, 0, 5000, 24.5831,
50346.2000
2020-03-26 17:47:30:157, 0, 729.5664, 24.8682, 1494152, 50930.0000, 0, 5000, 24.8682,
50930.0000

250346 records sent, 50059.2 records/sec (24.44 MB/sec), 11.6 ms avg latency, 130.0

ms max latency.
2020-03-26 17:47:30:550, 0, 739.1626, 24.6008, 1513805, 50382.4000, 0, 5000, 24.6008,

50382.4000
2020-03-26 17:47:30:630, 0, 739.8574, 24.1585, 1515228, 49476.6000, 0, 5000, 24.1585,
49476.6000
2020-03-26 17:47:35:160, 0, 851.5815, 24.3884, 1744039, 49947.4315, 0, 5003, 24.3884,
49947.4315

Once the test finishes, the output should resemble this:

Producer: 24.79 MB/sec, 16.88 ms avg latency, 1851.00 ms max latency, 7 ms 50th, 57
ms 95th, 211 ms 99th, 566 ms 99.9th.
Consumer 1: 24.7757 MB/sec

Consumer 2: 24.7930 MB/sec
Consumer 3: 24.8054 MB/sec

This shows 25 MB/s ingress to the cluster and 75 MB/s egress for this script. Add up

the summary output from all the scripts to get the final total.

Topic Cleanup

To clean up and restart, run this commmand to delete the topic and start over at the top
of this section. Make sure to replace <BOOTSTRAP SERVER>:<PORT> with the actual

bootstrap server from your configs.

kafka-topics \
--bootstrap-server <BOOTSTRAP SERVER>:<PORT> \
--command-config /config \

--topic perf-test \
--delete

Results

We ran the benchmarks described in the previous section on 2-CKU multi-zone clusters
created in AWS, GCP, and Azure clouds. 2 CKUs are capable of sustaining 100 MB/s
producer bandwidth and 300 MB/s consumer bandwidth, but may support larger
bandwidth bursts. The bursts may vary over time, and while our results show slightly

higher than sustained CKU bandwidth, such bursts are not guaranteed.

In order to demonstrate the maximum throughput we could achieve with our
benchmark from a 2-CKU cluster, we configured producers in the benchmarks to
produce with the rate slightly higher than sustained 2-CKU rate: 120 MB/s. Keep this in
mind when looking at resulting producer latencies, because clients producing with the
rate higher than the system's sustained rate causes longer delays on clients. So, if you
care about short latencies, make sure that your clients do not try to send more

bandwidth than your maximum sustained CKU bandwidth.

The table below reports total producer and consumer bandwidth achieved by running
the benchmark on each of the cloud types: AWS, GCP, and Azure.

Producer bandwidth

(MB/s)

Consumer bandwidth
(MB/s)

AWS

GCP

Azure

17

106

106

351

318

318

We were able to achieve higher bandwidth on AWS because periodic log flushes to disk
were absorbed by EBS burst balance. On other clouds, bandwidth fluctuated between
about 100 MB/s and 150 MB/s, where log flushes to disk caused dips in bandwidth
followed by bandwidth spikes due to clients catching up to their throughput rate. In all
environments, consumers were able to keep up with producers, resulting in 3x the

producer bandwidth (3 consumer groups).

Performance Troubleshooting Tips

Benchmarking Your Dedicated Cluster

If you try our benchmark on your own 2-CKU cluster and get somewhat worse
bandwidth than 100 MB/s producer and 300 MB/s consumer bandwidth, make sure
that:

« The hypervisors, Docker hosts, or Kubernetes nodes are not overloaded. For
example, multiples of your benchmark containers are not placed on the same

node.

« Your client benchmarks are not set up in the remote region or not going through

an overloaded network or proxy.

« On AWS, it is not caused by a warm-up time for Elastic Load Balancer (ELB), in

which case, try re-running the benchmark.

If your cluster is a different size than 2-CKU, you should also be able to get a CKU
maximum bandwidth by creating the appropriate number of benchmark
containers/VMs as described in the "Setting Up Benchmark Clients" section: twice the
number of CKUs on AWS and Azure, and four times the number of CKUs on GCP. On
each container, execute performance testing tools exactly as described in this paper
for a 2-CKU cluster.

If you checked the above and you are still not seeing 50 MB/s ingress and 150 MB/s

egress per CKU, please contact Confluent Support for assistance.

What Performance Should | Expect from
My Own Workload?

Your specific performance will depend on many factors including number of clients,
partitions, producer partitioning strategy, rate of the connection attempts from your
application layer, and so on. If you want to maximize the bandwidth you get from a
CKU:

- Make sure that your clients are not a bottleneck, i.e., they are capable of pushing
the desired load.

- Keep in mind there is a per-partition bandwidth limit. The limit is soft in a sense
that it may be possible to get more than the limit, but achieving a CKU
bandwidth may require a minimum number of partitions based on the CKU

partition limits.

« You should be able to achieve the maximum CKU bandwidth if your workload is
reasonably efficient in using bandwidth, without requiring too many requests or
connection attempts. In other words, if your workload behavior starts

approaching one or more upper limits defined by the number of your CKUs, your

https://aws.amazon.com/elasticloadbalancing/

client bandwidth may decrease as the workload starts saturating CKU processing
capacity. In this scenario, you may either improve the behavior of your clients or
purchase more CKUs. In general, two CKUs will deliver twice the bandwidth of
one CKU.

We recommmend the following reading material for further information on designing

your client applications for better throughput and/or latency:

« 99th Percentile Latency at Scale with Apache Kafka: while this paper focuses on

latency, architecting for low latency also makes your clients more efficient with

using bandwidth, which is also discussed in the paper.

« Optimizing Your Apache Kafka Deployment provides a comprehensive list of

guidelines for configuring your Kafka deployment to optimize for various goals:

throughput, latency, durability, and availability.

https://www.confluent.io/blog/configure-kafka-to-minimize-latency
https://www.confluent.io/white-paper/optimizing-your-apache-kafka-deployment/

	Benchmark Your Dedicated Apache Kafka® Cluster on Confluent Cloud
	Table of Contents
	Abstract
	Introduction
	Setting Up Benchmark Clients
	Download Your Java Config for the Cluster from the Confluent Cloud UI
	Container/VM Creation for Running Performance Benchmarks
	Configuration

	Benchmark Overview
	Running Benchmarks
	Create Topic
	Execute Benchmark
	Example Output
	Topic Cleanup

	Results
	Performance Troubleshooting Tips
	Benchmarking Your Dedicated Cluster
	What Performance Should I Expect from My Own Workload?

