

Verified Integration Program
Verification Guide:
Sources and Sinks using
Kafka Connect

Revision History
Overview
Why Verification?
What does it mean to be Verified?

Verification Criteria Detail
Implement the Kafka Connect API? (REQUIRED)
Source or Sink (REQUIRED)
Fully supported (REQUIRED)
Technical and Business Contacts (REQUIRED)
License (REQUIRED)

Functionality
Configurable? (REQUIRED)
Data Types
Usable with Avro or JSON converters?
Uses Single Message Transforms?
Exactly-once support?

Internals and Supportability
Error handling (REQUIRED)
Logging (REQUIRED)
Metrics
Graceful back-off
Cloud Readiness

Packaging (REQUIRED)

Testing (REQUIRED)
Verification Tests (REQUIRED)
Unit tests
System tests
Confluent Platform integration tests
Performance and Bound Tests

Documentation
Product Brief (REQUIRED)
Additional Documentation

Supported data types
Schema evolution and compatibility policies

© 2014–2020 Confluent, Inc. | 2

Configurations
Quickstart guide / Tutorial (REQUIRED)

Development Resources

Verification Process
Initiated
Guidance
Testing
Submitted
Verified

© 2014–2020 Confluent, Inc. | 3

Revision History

Versions Date Author Description

0.1 May 16 2019 jwfbean@confluent.io Merged content from prior
integration verification guide,
partner developer guide for
connectors, and connector
development process guide.

0.2 June 4 2019 jwfbean@confluent.io Separation of checklist from
verification guide.

0.5 March 11 2020 jwfbean@confluent.io Cloud readiness criteria

© 2014–2020 Confluent, Inc. | 4

Overview
This document describes the criteria that Confluent uses in verifying integrations

that use the Kafka Connect framework. Examples of these integrations include:

● Streaming CDC data into Kafka from a database such as an RDBMS

● Streaming data from Kafka into a target datastore

Because of the standardization it offers, Kafka Connect is Confluent’s preferred

framework for producing and consuming data into Apache Kafka. Integrations built

using Kafka Connect are referred to as “Connectors”.

This guide defines the criteria Confluent employs to verify a connector with at the

gold level.

Why Verification?
Verifying connectors is a mutually beneficial relationship between Confluent and its

partners, as well as their direct customers. The verification of a connector not only

provides assurances of a level of compatibility and functionality with the Confluent

Platform ecosystem, but it signals to customers that there is an established mutually

supported integration between Confluent Platform and the partner product.

What does it mean to be Verified?
Confluent maintains a set of best practices for connector development. Verification

measures a connector’s design and implementation against those practices. A gold

verification indicates that Confluent has determined whether and how the

connector adheres to each practice. Confluent publishes the best practice checklist

in an integration document for each verified connector.

© 2014–2020 Confluent, Inc. | 5

Verification Criteria Detail
Implement the Kafka Connect API? (REQUIRED)
In order to qualify for gold verification as a source or a sink, the partner must

implement the Kafka Connect API. Kafka Connect is designed to handle many of the

common integration requirements with Apache Kafka, including offset tracking,

data serialization, schema management, etc.

Source or Sink (REQUIRED)
Kafka Connect Connectors are designated as either source or sink connectors, which

either produce or consume data with respect to Apache Kafka. The partner is

required to designate whether their connector is a source, sink or both.

Fully supported (REQUIRED)
By verifying a connector with us, the partner pledges to fully support the connector

in conjunction with Confluent.

Technical and Business Contacts (REQUIRED)
In order to facilitate ongoing support and go-to-market activities, the partner is

asked for contact information. We’ll reach out to the technical contact if the

connector is referenced in a support or pre-sales context. We’ll reach out to the

business contact for other activities.

License (REQUIRED)
We ask the partner to share the licensing and distribution model under which

they’re releasing the connector. This helps us to better position and understand the

offering in the context of our ecosystem.

Functionality
Configurable? (REQUIRED)
Connectors should properly and completely define a ConfigDef to include all

configuration items, including documentation and default values, organized into

meaningful groups. We also follow some best practices for designing the

configuration properties for a connector, including:

© 2014–2020 Confluent, Inc. | 6

1. Expose the fewest configuration properties required to configure a connector,

keeping it as simple as possible but not too simple.

2. Always define a short, human readable display name in title case (e.g.,

“Database Name”).

3. Always define a meaningful, human readable documentation string that is

short enough but also complete enough for most users to understand what

the configuration does.

4. Always use the appropriate and restrictive type for the configuration property

(e.g., “int”, “string”, “double”, “list”, etc.). Always use “PASSWORD” type for

secrets and credentials. (Some property values, like JDBC URLs, can contain

passwords or secrets. In this case, it’s better if the different segments within

JDBC URL were represented as separate configuration properties. This doesn’t

always work.)

5. Provide a validator for most configuration properties to provide the user

immediate feedback when creating a configuration. Ideally, a connector

whose configuration validates will always run, barring any transient problems

communicating with the backend. Where possible, the value of a

configuration property should not be case-sensitive (e.g., “avro” and “Avro” and

“AVRO” might all be valid).

6. Provide a recommender when the configuration property has a limited

number of choices for values. Always provide a recommender for enumerated

literals. The recommender can communicate with the external service, but be

careful that this never takes more than a few seconds, since this may block

the connector and the Connect worker thread.

7. Use dependencies between configuration properties to dynamically “show” or

“hide” configuration properties based upon the value of another configuration

property. For example, consider a connector property “mode” that can be set

to either “default” or “exact”, and another property “mode.exact.range” should

apply only for the “exact” mode. In this case, the “mode.exact.range” can be

dependent upon the “mode” property, such that “mode.exact.range” is hidden

when “mode=default” and unhidden when “mode=exact”. This is used in

Control Center and other tools driven entirely by ConfigDef.

© 2014–2020 Confluent, Inc. | 7

8. Use appropriate importance, which generally correspond to:

a. HIGH for configuration properties that are important enough to always

consider,

b. MEDIUM for configuration properties that have defaults that are

somewhat advanced, and whose defaults should be acceptable for

users who aren’t sure what to pick, and

c. LOW for configuration properties that have defaults and are typically

needed in advanced cases.

9. Use defaults wherever possible, especially on MEDIUM and LOW importance

properties.

10. Organize related configuration properties into groups, with human-readable

group names. Specify the order of properties within each group, starting with

those properties that have a HIGH importance, then MEDIUM, then LOW

importance.

11. Prefer enumerations over boolean properties, or sets of boolean properties.

Boolean properties are not as flexible for future expansion, and sometimes

lead to deprecating older boolean properties in favor of other newer

properties. Properties with enumerated literals for values can easily be

expanded over time. For example, consider the JDBC source connector’s older

`numeric.precision.mapping=true|false` property, which couldn’t be

expanded to handle additional mapping strategies, and which was

superseded by ̀ numeric.mapping=none|best_fit|precision_only`.

12. If a connector has pluggable/extensible components (e.g., like HDFS and S3

connectors’ ̀ format.class` and ̀ partitioner.class` properties, make sure the

interface for those classes extends the

`org.apache.kafka.common.Configurable` interface and defines a

`config():ConfigDef` method. Then, the ConfigDef for the connector can

dynamically discover the ConfigDef and configuration properties of these

pluggable components, when they are chosen by the user. This is the only way

to provide a good user experience in Control Center and other

ConfigDef-driven tools, where the ConfigDef must always describe all of the

configuration properties that are needed for a connector.

© 2014–2020 Confluent, Inc. | 8

13. When pluggable components have their own configuration options, always

use prefixes for the properties passed to that component. For example, the

Connect worker configuration allows the user to choose converters for record

keys and values, via the ̀ key.converter` and ̀ value.converter` properties. All

properties that begin with the ̀ key.converter.` prefix are passed (after

removing the prefix) to the converter when it is configured. This style of

prefixing makes it easy for the connector to determine which properties

should be passed to the component, and then pass only those properties to

that component. This is also a pattern used more recently in Apache Kafka.

Connectors should always parse and use properties via connector-specific custom

subclasses of Apache Kafka’s AbstractConfig, which at a minimum ensures that

password-type properties are never logged and tracks which properties are used and

unused by the connector. The AbstractConfig class has methods for obtaining

subsets of the original properties as Maps, optionally removing prefixes, that still will

track usage. See the “JdbcSourceConnectorConfig” class for an example of a

subclass of “AbstractConfig” that follows most of the above best practices.

We consider configuration and ConfigDefs as public APIs, so it’s critical that we

maintain backward compatibility when releasing new versions. Any configuration

created by a customer for an older version should work with all newer versions of the

connector, with no changes. Yes, the user might want to edit their configuration to

utilize more recently-added configurations, and it’s possible some configurations

were deprecated and any of these in the user’s connector configuration might not

be used in newer versions of the connector. Some configurations can even be

removed (preferably after a deprecation process) once the connector no longer uses

them to control behavior.

Data Types
Sink Connectors should not simply cast the fields from the incoming messages to

the expected data types. Instead, you should check the message contents explicitly

for your data objects within the Schema portion of the SinkRecord (or

© 2014–2020 Confluent, Inc. | 9

https://github.com/confluentinc/kafka-connect-jdbc/blob/master/src/main/java/io/confluent/connect/jdbc/source/JdbcSourceConnectorConfig.java

with instanceof for schemaless data). The PreparedStatementBinder.bindRecord()

method in the JdbcSinkConnector provides a good example of this logic. The

lowest level loop walks through all the non-key fields in the SinkRecords and

converts those fields to a SQLCompatible type based on the Connect Schema type

associated with that field:

for (final String fieldName : fieldsMetadata.nonKeyFieldNames) {

 final Field field = record.valueSchema().field(fieldName);

 bindField(index++, field.schema().type(),

valueStruct.get(field));

}

Well-designed Source Connectors will associate explicit data schemas with their

messages, enabling Sink Connectors to more easily utilize incoming data. Utilities

within the Connect framework simplify the construction of those schemas and their

addition to the SourceRecords structure.

The code should throw appropriate exceptions if the data type is not supported.

 Limited data type support won't be uncommon (e.g. many table-structured data

stores will require a Struct with name/value pairs). If your code throws Java

exceptions to report these errors, a best practice is to use ConnectException rather

than the potentially confusing ClassCastException. This will ensure the more useful

status reporting to Connect's RESTful interface, and allow the framework to manage

your connector more completely.

Usable with Avro or JSON converters?
For optimal utilization with the Confluent platform including the schema registry,

support for Avro or Json is suggested. There are currently two supported data

converters for Kafka Connect distributed with

Confluent: org.apache.kafka.connect.json.JsonConverter

and io.confluent.connect.avro.AvroConverter . Both converters support including the

message schema along with the payload (when configured with the appropriate

*.converter.schemas.enable property to true).

© 2014–2020 Confluent, Inc. | 10

The JsonConverter includes the schema details as simply another JSON value in

each record. A record such as " {"name":"Alice","age":38} " would get wrapped to the

longer format

{

 "schema":{"type":"struct",

"fields":[{"type":"string","optional":false,"field":"name"},{"ty

pe":"integer","optional":false,"field":"age"}],

 "optional":false,

 "name":"htest2"},

 "payload":{"name":"Alice","age":38}

}

Connectors are often tested with the JsonConverter because the standard Kafka

consumers and producers can validate the topic data.

Confluent’s AvroConverter uses the SchemaRegistry service to store topic schemas,

so the volume of data on the Kafka topic is much reduced. The SchemaRegistry

enabled Kafka clients (eg kafka-avro-console-consumer) can be used to examine

these topics (or publish data to them).

Uses Single Message Transforms?
Many Connect users may want to make alterations to the records produced by

source connectors or those sent to sink connectors. Connect provides Single

Message Transforms (SMTs) that allow this kind of customization, either by using the

built-in SMTs, SMTs that are written as separate plugins, or as custom SMTs provided

by your connector. Connect allows users to optionally configure multiple SMTs on

any connector, and they are completely independent of the connectors.

SMTs may affect what customizations and options you want to support in your

connector. For example, a user of a source connector might want the ability to

customize the topic names for the generated records. When developing a source

© 2014–2020 Confluent, Inc. | 11

connector, you might choose to rely upon SMTs to keep your connector as simple as

possible, or you might decide that this is a common requirement for your connector

and want to make it easy for users to do this without using an SMT.

Exactly-once support?
Kafka Connect allows sink connectors to optionally implement exactly once behavior

by tracking in the external system the offsets for each topic partition. Most users

would prefer exactly once if given the choice, so where possible and where feasible

sink connectors should implement this behavior.

To handle exactly-once semantics for message delivery, the Source Connector must

correctly map the committed offsets to the Kafka cluster with some analog within

the source data system, and then handle the necessary rewinding should messages

need to be re-delivered. For example, consider a trivial Source connector that

publishes the lines from an input file to a Kafka topic one line at a time ... prefixed by

the line number. The commit* methods for that connector would save the line

number of the posted record ... and then pick up at that location upon a restart.

Internals and Supportability
Error handling (REQUIRED)
The Kafka Connect framework defines its own hierarchy of throwable error classes

(https://kafka.apache.org/0100/javadoc/org/apache/kafka/connect/errors/package-su

mmary.html). Connector developers should leverage those classes

(particularly ConnectException and RetriableException) to standardize connector

behavior. Exceptions caught within your code should be rethrown as connect.errors

whenever possible to ensure proper visibility of the problem outside the framework.

Specifically, throwing a RuntimeException beyond the scope of your own code

should be avoided because the framework will have no alternative but to terminate

the connector completely.

© 2014–2020 Confluent, Inc. | 12

https://kafka.apache.org/0100/javadoc/org/apache/kafka/connect/errors/package-summary.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/connect/errors/package-summary.html

Recoverable errors during normal operation can be reported differently by sources

and sinks. Source Connectors can return null (or an empty list of SourceRecords)

from the poll() call. Those connectors should implement a reasonable backoff

model to avoid wasteful Connector operations; a simple call to sleep() will often

suffice. Sink Connectors may throw a RetriableException from the put() call in the

event that a subsequent attempt to store the SinkRecords is likely to succeed. The

backoff period for that subsequent put() call is specified by the timeout value in the

sinkContext. A default timeout value is often included with the connector

configuration, or a customized value can be assigned

using sinkContext.timeout() before the exception is thrown.

Connectors that deploy multiple threads should use context.raiseError() to ensure

that the framework maintains the proper state for the Connector as a whole. This

also ensures that the exception is handled in a thread-safe manner.

Logging (REQUIRED)
Connectors are expected to provide adequate and useful logging at ERROR, WARN,

INFO, DEBUG, and TRACE levels. The default logging level for Confluent Platform is

INFO, and by default customers should be able to understand when the connector

has started and/or stopped, and is processing records, including with messages

describing important activities and changes in state or behavior. WARN log

messages should be used only when a potential problem exists and should include

actions the user can take to correct the problem. ERROR log messages should be

used for all problems and errors, ideally with suggested actions that the user can

take to correct the problem. Connectors must never log any record data at ERROR,

WARN, INFO, or DEBUG level. Connectors may log schemas at any level.

When a customer is having a problem with the connector, ideally they could enable

DEBUG and learn more about what the connector is and is not doing, including the

number of records being processed (or not processed) and the operations against

the external system. TRACE level should not be required for normal problem-solving

activities.

© 2014–2020 Confluent, Inc. | 13

Metrics
Kafka Connect introduced framework-level metrics, and has yet to provide an API so

connectors can easily log metrics using the same framework. It is possible, however,

for connectors to use the same low-level metrics library that Kafka ships with to

provide their own connector-specific metrics. We have yet to make use of this, and

need to decide whether to move in this direction or to add to Kafka Connect a

simple metrics API for connectors.

Graceful back-off
Connectors should always deal with connectivity and other transient problems

without failing or stopping the connector. Instead, Connectors should simply try to

re-establish connectivity using a backoff technique. The developer should also

consider adding randomness to the timeouts (e.g., jitter), to prevent a large number

of connectors talking to the same backend system forming a thundering herd when

all lose connectivity at about the same time and then, with a fixed backoff interval,

all try to re-establish connectivity at about the same time and potentially causing

another outage of the backend system. Introducing random jitter also means that

the specifics of the retries do not need to be configured by the user, thus simplifying

the connector configuration at least a bit.

A simpler option is to throw a RetriableException, which is a special subtype of

ConnectException, and the Connect framework will retry the same connector

operation again. This may work well for source connectors, since they’ve not yet

returned any records for the current poll. For sinks, however, this means they’d be

passed the same set of records again, even if the sink connector had successfully

written some of these to the backend system. Therefore, for sink connectors, it’s

almost always best for the connector to retry on its own.

Cloud Readiness

© 2014–2020 Confluent, Inc. | 14

To be considered for hosting in Confluent Cloud, the following criteria needs to be

met:

1. Rich Validations: The Kafka Connect validation API needs to be fully and

completely implemented so as to ensure proper integration with the

Confluent Cloud UI. Any input provided by the user should be validated not

only for correctness but also for completeness. For example, a validation

should not just check that a host URL for an external system is well-formed,

but also that the system is live and can be accessed with the user-supplied

credentials. .

2. ConfigProvider: The connector should support injecting Credentials via the

Apache Kafka ConfigProvider class. Confluent Cloud stores credentials in a

secret store and injects it dynamically.

© 2014–2020 Confluent, Inc. | 15

Packaging (REQUIRED)
All connectors are also packaged and made available via Confluent Hub. The

packaging specification is available in our documentation, and we have created a

Maven Packaging Plugin that makes it easy for Maven-based builds to specify the

package metadata and automatically build the artifacts.

Testing (REQUIRED)
Although we require visibility into how the connector was tested we don’t specifically require
everything listed below in order to achieve verification. Treat this as a comprehensive guide for
completely testing most connectors.

Verification Tests (REQUIRED)
The process of verifying a connector entails making claims about the connector and

verifying that those claims are in fact true via reproducible tests. For every criteria

marked REQUIRED, a test for that criteria should be documented. Taken in total, this

set of tests serve as “verification tests”. The document should provide everything

required to reproduce these tests and should indicate the expected results. See the

document “Verification Checklist and Results: Gold verifications using Kafka

Connect” for an example template.

Unit tests
Confluent runs unit tests as part of our Maven builds and use the JUnit framework.

You can get fairly good coverage using JUnit and it’s good to design for testability.

Connector Classes should include unit tests to validate internal API's. In particular,

unit tests should be written for configuration validation, data conversion from Kafka

Connect framework to any data-system-specific types, and framework integration.

Tools like PowerMock (https://github.com/jayway/powermock) can be utilized to

facilitate testing of class methods independent of a running Kafka Connect

environment.

System tests

© 2014–2020 Confluent, Inc. | 16

https://docs.confluent.io/current/connect/managing/confluent-hub/component-archive.html
https://docs.confluent.io/current/connect/managing/confluent-hub/component-archive.html#maven-packaging-plugin
https://github.com/jayway/powermock

System tests to confirm core functionality should be developed. Those tests should

verify proper integration with the Kafka Connect framework:

● proper instantiation of the Connector within Kafka Connect workers (as

evidenced by proper handling of REST requests to the Connect workers)

● schema-driven data conversion with both Avro and JSON serialization classes

● task restart/rebalance in the event of worker node failure

Advanced system tests would include schema migration, recoverable error events,

and performance characterization. The system tests are responsible for both the

data system endpoint and any necessary seed data:

● System tests for a MySQL connector, for example, should deploy a MySQL

database instance along with the client components to seed the instance

with data or confirm that data has been written to the database via the

Connector.

● System tests should validate the data service itself, independent of Kafka

Connect. This can be a trivial shell test, but definitely confirm that the

automated service deployment is functioning properly so as to avoid

confusion should the Connector tests fail.

Ideally, system tests will include stand-alone and distributed mode testing

● Stand-alone mode tests should verify basic connectivity to the data store and

core behaviors (data conversion to/from the data source, append/overwrite

transfer modes, etc.). Testing of schemaless and schema'ed data can be done

in stand-alone mode as well.

● Distributed mode tests should validate rational parallelism as well as proper

failure handling. Developers should document proper behavior of the

connector in the event of worker failure/restart as well as Kafka Cluster failures.

 If exactly-once delivery semantics are supported, explicit system testing

should be done to confirm proper behavior.

● Absolute performance tests are appreciated, but not required.

© 2014–2020 Confluent, Inc. | 17

The Confluent System Test Framework

(https://cwiki.apache.org/confluence/display/KAFKA/tutorial+-+set+up+and+run+Kafk

a+system+tests+with+ducktape) can be leveraged for more advanced system tests.

In particular, the ducktape framework makes testing of different Kafka failure modes

simpler. An example of a Kafka Connect ducktape test is available here

: https://github.com/apache/kafka/blob/trunk/tests/kafkatest/tests/connect/connect_

distributed_test.py#L356 .

Confluent Platform integration tests
Some manual testing is expected to verify the connector works properly with Control

Center, and that all properties can be set and connectors managed only via the

Control Center user interface.

© 2014–2020 Confluent, Inc. | 18

https://cwiki.apache.org/confluence/display/KAFKA/tutorial+-+set+up+and+run+Kafka+system+tests+with+ducktape
https://cwiki.apache.org/confluence/display/KAFKA/tutorial+-+set+up+and+run+Kafka+system+tests+with+ducktape
https://github.com/apache/kafka/blob/trunk/tests/kafkatest/tests/connect/connect_distributed_test.py#L356
https://github.com/apache/kafka/blob/trunk/tests/kafkatest/tests/connect/connect_distributed_test.py#L356

Performance and Bound Tests
It’s good to define the bounds of a connector by running the following workload. You

can optionally record the number of topics, tasks, and topic partitions set during the

test scenario and submit it as part of your verification.

Number of Workers 3

CPU 8 cores

Heap 6 GB

Messa
ge Size

Throughput
(messages/sec)

Number
of Topics

Number
of Topic
partition
s per
topic

Number
of Tasks

Comments

100
bytes

25,000 2.5 MB/sec

100
bytes

50,000 5 MB/sec

100
bytes

100,000 10 MB/sec

100
bytes

250,000 25 MB/sec

100
bytes

500,000 50 MB/sec

100
bytes

1,00,0000 100 MB/sec

5 kb 500 2.5 MB/sec

5 kb 1000 5 MB/sec

5 kb 2000 10 MB/sec

© 2014–2020 Confluent, Inc. | 19

5 kb 5000 25 MB/sec

5 kb 10,000 50 MB/sec

5 kb 20,000 100 MB/sec

50 kb 50 2.5 MB/sec

50 kb 100 5 MB/sec

50 kb 200 10 MB/sec

50 kb 500 25 MB/sec

50 kb 1000 50 MB/sec

50 kb 2000 100 MB/sec

© 2014–2020 Confluent, Inc. | 20

Documentation
The following information should be provided as part of any connector’s standard

documentation.

Product Brief (REQUIRED)
A two page document detailing the contact info and high level design / architecture

of the connector, including:

● Connect API version used

● Confluent Platform supported versions

● Partner Product supported versions

Additional Documentation

Supported data types

Documentation should include all the specifics about the data types supported by

your connector and the expected message syntax.

Schema evolution and compatibility policies

Confluent schema registry supports a variety of different compatibility policies as

detailed here:

https://docs.confluent.io/current/schema-registry/avro.html

Documentation should state how the connector behaves with each compatibility

policy and whether that compatibility policy is officially supported by the connector.

Configurations

In addition to the self-describing configuration settings, a configuration reference is

a good idea. Additionally, this can be a tuning and performance guide, including

suggested connector, worker, producer, and consumer settings.

© 2014–2020 Confluent, Inc. | 21

https://docs.confluent.io/current/schema-registry/avro.html

Quickstart guide / Tutorial (REQUIRED)

Covering getting started with the connector and its basic usage.

Development Resources
● Kafka Connect overview , concepts and architecture

● Kafka Connect developer guide

● Sample sink connector: S3

● Sample sink connector: Elasticsearch

● Sample source connector: JDBC

● Sample source and sink connector: Couchbase

© 2014–2020 Confluent, Inc. | 22

https://docs.confluent.io/current/connect/intro.html
https://docs.confluent.io/current/connect/concepts.html
https://docs.confluent.io/current/connect/design.html
https://docs.confluent.io/current/connect/devguide.html
https://github.com/confluentinc/kafka-connect-storage-cloud
https://github.com/confluentinc/kafka-connect-elasticsearch
https://github.com/confluentinc/kafka-connect-jdbc
https://github.com/couchbase/kafka-connect-couchbase

Verification Process
The verified integration program is broken up into the following phases. This details

the meaning of each phase and the criteria for exiting it.

Initiated
A connector initiative has been identified and the partner and Confluent have

agreed to work together on it.

Deliverable: A 2 page product brief describing the connector and the partner

information.

Guidance
The connector is actively being developed. Confluent can provide both development

(Q&A) support as well as process support.

Deliverable: A connector for verification with the checklist below.

Testing
The connector development is complete and verification testing is underway by the

partner or by Confluent.

Deliverable: A detailed test document illustrating how the criteria are met. See the

document entitled “Verification Checklist and Results: Gold verifications using Kafka

Connect” for an example.

Submitted
The connector is being evaluated by Confluent. There may be some revision and

further discussion in this process.

Deliverable: A completed verification report including a filled out checklist of

verification criteria.

Verified
The connector has been verified by Confluent.

Deliverable(s): A card on the Confluent hub. An entry in the Confluent internal

repository for field enablement. Blogs, co-marketing, etc.

© 2014–2020 Confluent, Inc. | 23

Questions? Email vip@confluent.io

© 2014–2020 Confluent, Inc. | 24

