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Abstract
We study the problem of collecting a cohort or set that is balanced with respect to sensitive groups
when group membership is unavailable or prohibited from use at deployment time. Specifically,
our deployment-time collection mechanism does not reveal significantly more about the group
membership of any individual sample than can be ascertained from base rates alone. To do this,
we study a learner that can use a small set of labeled data to train a proxy function that can later
be used for this filtering or selection task. We then associate the range of the proxy function with
sampling probabilities; given a new example, we classify it using our proxy function and then select
it with probability corresponding to its proxy classification. Importantly, we require that the proxy
classification does not reveal significantly more information about the sensitive group membership of
any individual example compared to population base rates alone (i.e., the level of disclosure should
be controlled) and show that we can find such a proxy in a sample- and oracle-efficient manner.
Finally, we experimentally evaluate our algorithm and analyze its generalization properties.
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1 Introduction

There are a variety of situations in which we would like to select a cohort or set that is
balanced or representative (having an approximately equal number of samples from different
groups) with respect to race, sex, or other sensitive attributes – but, we cannot explicitly
select based on these attributes. This could be because the attributes are sensitive so were
never collected, they could be redacted from the information we see, they could be too
resource intensive to collect, or selecting based on these attributes could be illegal.

Consider the context of college admissions. Out of many qualified applicants, a college
may prioritize racial diversity when deciding upon the final cohort to admit. However,
in the United States Supreme Court decision for Students for Fair Admissions, Inc. v.
President and Fellows of Harvard College, it was determined that “Harvard’s and UNC’s
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4:2 Balanced Filtering via Disclosure-Controlled Proxies

[race-conscious] admissions programs violate the Equal Protection Clause of the Fourteenth
Amendment” [36]. How might a college select a racially diverse cohort with affirmative action
prohibited?

Our approach is based on training a proxy classifier – in the form of a decision-tree –
with the following properties: (1) The set of points classified at each leaf should not be
strongly correlated with the protected attribute (the disclosure-control part) and (2) The
set of distributions on the protected attributes induced at each leaf should be such that
the uniform distribution on protected attributes is in their convex hull (the balancing part).
The second condition allows us to assign sampling probabilities to the leaves such that if we
accept each example with probability corresponding to its proxy classification, in expectation
the selected cohort will be balanced with respect to the protected attribute.2

1.1 Related Work

The proxy problem is a subject of ongoing debate in the philosophy of science and causal
inference literatures (e.g. [18, 3, 32, 24, 41, 29, 31, 9]), and our work engages with this
literature methodologically – we do not believe that it is our role to take a philosophical
or legal stance but rather to broaden the set of available tools. Using proxy variables for
sensitive attributes in settings where diversity or equity is a concern has been standard
practice, yet in many cases, existing features are chosen for the proxies (such as surname,
first name, or geographic location [13, 40, 44]). Rather than using an existing feature as a
proxy, we propose deliberately constructing a proxy. Several works take this perspective – in
[10], for example, the authors produce a proxy that can be used during training to build a
fair model downstream. But often, proxies for protected attributes are explicitly intended to
be good predictors for those attributes; it is not clear that using an accurate “race predictor”
is an acceptable solution to making decisions in which race should not be used (and is often
explicitly prohibited). Our primary point of departure is that we train a model to make
classifications that are minimally correlated with the protected attribute.

While our intended use cases are primarily curation or cohort selection, one may also use
our method for collecting balanced data sets for machine learning applications. However, we
recommend caution in these scenarios, as our approach does not give guarantees about the level
of distortion of the final filtered data set. In order to provide comparisons to existing empirical
techniques, however, we do measure our approach against a common data pre-processing
technique, SMOTE (Synthetic Minority Oversampling Technique) [8]. Other re-sampling
methods for data balancing include ADASYN [17], MIXUP [43], SMOTE adaptations
[26, 4, 5, 11, 15, 23]) and cluster-based approaches that under-sample disproportionately
represented classes [16, 42, 33, 21, 34]. In the causal literature, propensity score re-weighting
[22] is also a popular approach to account for group size differences. Each of these techniques,
however, requires access to the sensitive attribute. Our approach’s primary point of departure
is that we do not use the sensitive attribute – or a direct prediction or imputation of it – at
the final collection time when we are deploying our method.

2 A natural first approach is to add noise to the predictor for the protected attribute, against which
we compare. However, we are motivated by the need to have strategies that never involve training a
classifier for the protected attribute, especially if it could be used outside of the intended system.
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1.2 Limitations and Discussion
Our contributions are twofold. First, for situations where balance is desired but disclosure
is not a concern, we introduce a sampling scheme optimized to collect a balanced cohort.
Second, for when disclosure is a concern, we present a method to produce a proxy function
for the balanced selection task that is guaranteed not to be too disclosive. Below, we discuss
important considerations having to do with appropriate usage of our methodology, limitations,
and areas for expansion.

The sensitive attribute is still used to inform the proxy, and our approach
relies on accessing a small sample of data with this attribute: The proxy training
algorithm we propose is not blind to the sensitive attributes, which it must access during
training. Rather, the proxy does not use these attributes at the time of deployment.3
We emphasize that there is no contradiction between (1) being able to obtain (once) a
small data set labeled with sensitive attributes and then using it to train a classification
algorithm (in this case, our proxy model) and (2) having the inability to collect or use
sensitive attributes when gathering the bulk of one’s data. This is especially true when
the final selection criterion is not closely correlated with the sensitive attribute, which is
one of our primary objectives. In the algorithmic fairness literature in particular, there
is a substantial and growing body of work on learning classifiers that satisfy fairness
constraints by sensitive attributes but that do not use these attributes at test time (e.g.
[1, 20, 27, 28]). These methods still require access to the attributes at training time.
The distinction between using sensitive attributes at train versus test time is essential. In
certain financial applications in the United States, using race or gender at test time (i.e.,
when making lending decisions) is illegal. But it is not illegal to use these attributes at
training time to audit models for statistical bias and to remove it if found. The distinction
in our case is similar: We use these attributes to find a statistical selection criterion but
do not use sensitive attributes of individuals to make selection decisions about them.
The filtered cohort or data set will likely exhibit within-group distortion:
This is an important consideration that should be taken into account when using our
method. Our theoretical guarantees provide bounds on the level of balance and disclosure
when measured with respect to the sensitive attributes, but they do not guarantee that
the distribution over selected individuals matches that of the true population. In fact,
this is perhaps a necessary effect of our process and in many cases may be natural. For
example, in the context of college admissions or interview selection, a university or firm
is intentionally selecting a pool that is not representative of the base population. The
use cases for which this quality may create the greatest challenge is in curating data sets
for training machine learning models. While our method can improve representation in
data sets, it will not necessarily lead to improvements in downstream fairness of models
trained on the balanced data. We provide a detailed analysis of this in Appendix B.4

Affirmative Action and Legal Challenges: We do not propose our method as a
way to circumvent the intent of legislation, nor do we make claims regarding the legal or
moral appropriateness of its usage in any particular affirmative action setting. Rather, we
view it as a tool that can be used, when permitted legally, in settings where diversity or

3 It would be impossible to give an algorithm making no use of the protected attribute during deployment or
training and yet promising any sort of balance – it would have to behave identically on any distributions
with the same marginals over non-protected attributes, even if they differed on the protected attribute.

4 One note, however, is that our method does allow for balancing multiple attributes at a time – therefore,
one could ask for a cohort that has the same number of positive and negative examples in each group.
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balance is desired but when the sensitive attribute can or should be used only minimally.
For example, in the college admissions example, it is also undesirable to use explicit
race-based predictors in lieu of observing the sensitive attribute. However, students can
include race considerations in their admissions essays, which admissions officers see. Given
the stakes of college admissions and the strategic behavior of both sides (applicants and
schools), it is very likely that an ad-hoc system will still develop to indirectly make use
of racial information for the sake of diversity. In a situation such as this, our method
provides a controlled way to achieve such desiderata without unintentionally revealing
too much information or making use of highly correlated proxies.

2 Model and Preliminaries

Let Ω = X ×Y ×Z be an arbitrary data domain and P be the probability distribution over Ω.
Px will refer to the marginal distribution over X , Pz will refer to the marginal distribution
over Z, and Pz|x will refer to the conditional distribution over Z|X . Each data point is
a triplet ω = (x, y, z) ∈ X × Y × Z, where x ∈ X is the non-sensitive feature vector and
y ∈ Y = {0, 1} is the label. The label y is not required in training or applying our filtering
method, but it will be used in the analysis of downstream fairness effects of the filtering
process provided in Appendix B. In the paper body, therefore, we omit it for clarity.

Unless otherwise specified, we take group membership as disjoint such that z ∈ Z = [K] is
an integer indicating sensitive group membership, but our framework can easily be extended to
the case where group membership need not be disjoint. We consider the uniform distribution,
U , to be our target distribution over sensitive attributes, where U = ( 1

K , ..., 1
K ). We also

provide a brief extension to the intersecting case below.
We imagine we can sample unlimited data from Px, but the corresponding value z can

only be obtained from self-report, authorized agencies, or human annotation. We use rk

to denote the base rate Prz∼Pz
[z = k] in the underlying population distribution. We also

assume that we can obtain a limited sample of data D of n samples {(xi, zi)}n
i=1 ⊂ Ω for

which we can observe the true sensitive attribute z. We would like to use this sample to
collect a much larger set S ⊂ Ω such that even if we cannot observe the sensitive attributes,
S is balanced with respect to z.

Formally, we define a balanced set as follows, where Prz∼S [z = k] = 1
|S|
∑|S|

i=1 1zi=k is the
empirical distribution of z drawn uniformly from S.

▶ Definition 1 (Balance). A set S is balanced with respect to K disjoint groups z ∈ [K] if
Prz∼S [z = k] = 1

K ∀k.

Due to finite sampling, Definition 1 will rarely be met, even if the underlying distribution is
uniform over sensitive attributes. Therefore, we also discuss approximate balance:5

▶ Definition 2 (β-Approximate Balance). A set S is β-approximately balanced with respect to
K disjoint groups z ∈ [K] if ∥(Prz∼S [z = 1], ..., Prz∼S [z = K]) − (1/K, .., 1/K)∥2 ≤ β.

Note that β-approximate balance involves the distribution of sensitive groups in S: as this
distribution deviates farther from the uniform, the imbalance, β, increases.

In the intersecting groups case, we let the sensitive attribute domain Z be a binary vector
of length K, such that z ∈ Z = {0, 1}K . We will assume Z is composed of G group classes
{Zi}G

i=1 (e.g., sex, race, etc), and each group class Zi has Ki groups. Thus, the vector z will

5 We use the L2 norm due to operational reasons, as it allows us to make useful geometric arguments.
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indicate all possible group memberships, where the length of the vector of group memberships
is K =

∑G
i=1 Ki. We also replace U with Uint = ( 1

K1
, ..., 1

K1
, ..., 1

KG
, ..., 1

KG
) to indicate the

target distribution over intersecting sensitive attributes.

▶ Definition 3 (Multi-Class Balance). We will say that a set S is balanced with respect
to K intersecting groups if, for any group class {Zi}G

i=1 composed of groups {Zij }Ki
j=1,

Prz∼S [z[Zij
] = 1] = 1

Ki
∀j.

▶ Definition 4 (β-Approximate Multi-Class Balance). We say that a set S is β-approximately
balanced with respect to K intersecting groups if

∥( Pr
z∼S

[z[Z11 ] = 1], Pr
z∼S

[z[Z12 ] = 1], ..., Pr
z∼S

[z[ZGKG−1 ] = 1], Pr
z∼S

[z[ZGKG
] = 1]) − Uint∥2 ≤ β

▶ Remark 5. This definition aims to take into account the fact that for different group classes,
there may be a different number of potential groups. For example, there may only be two sex
groups but eight income groups. Asking that the representation of each of those categories be
one-tenth of the final sample would not make sense. However, our definition does not prevent
certain intersections being more represented than others. When the number of groups is
small, this can always be dealt with by using the Cartesian product over group classes to
enumerate intersectional groups.

In addition to desiring that our proxy allows us to select an approximately balanced
cohort, we would also like the classification outcomes of the proxy not to be overly disclosive.
We model this by asking that the posterior distribution on group membership is close to the
prior distribution when conditioning on the outcome of the proxy classifier.

▶ Definition 6 (α-Disclosive Proxy). A proxy g is α-disclosive (or has disclosure level at
most α) on set S if, for all sensitive groups k and proxy values i, |Prz|x∼S [z = k|g(x) =
i] − Prz∼S [z = k]| ≤ α.

For any proxy function g, we can analyze the distribution of sensitive groups amongst points
mapped to each value k in the range of the proxy. Call this conditional distribution ak, let l

be the number of unique elements in the range of the proxy, and let A be the ℓ × K matrix
whose kth row is ak. Denote the convex hull, defined in Definition 8, of the rows of A by
C(A). Then, we can add a notion of balance into our proxy definition in the following way:

▶ Definition 7 ((α, β) Proxy). g : X → N is an (α, β) proxy if it is α-disclosive and
inf

U ′∈C(A)
∥U ′ − U∥2 ≤ β.

Here, infU ′∈C(A)∥U ′ − U∥2 indicates the Euclidean distance between U and the closest point
in C(A). We will slightly abuse notation and refer to this as the distance ∥C(A) − U∥2.
The disclosure parameter α controls the amount of additional information the proxy gives
about group membership, while the balance parameter β quantifies the minimum distance
from uniform achievable with any acceptance probabilities for a given proxy. There do exist
limitations on how small α can be if we need full balance. With K sensitive groups, the
final frequency of each group must be 1

K if we desire β = 0: if there is a group with initial
frequency f , there is no avoiding that α ≥ |f − 1

K |. For some data sets, this unavoidably
can be quite large. For example, consider a data set of 1

3 men and 2
3 women and assume

the proxy g takes values 0 or 1. Of the samples mapped to g = 0, 1
4 are men and 3

4 are
women. Of those mapped to g = 1, 1

2 are men and 1
2 are women. Then, α = 1

6 , because
| Pr[z = men|g = 0] − Pr[z = men]| = | 1

3 − 1
2 | = 1

6 . In this example, β would be 0, because
the convex hull of the conditionals Pr[z|g(x)] contains [ 1

2 , 1
2 ]. Next, we provide definitions

for a convex hull and stochastic vector.

FORC 2024
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▶ Definition 8 (Convex Hull [7]). The convex hull of a set of points S in K dimensions is
the intersection of all convex sets containing S. For l points s1, ..., sl, the convex hull C is
given by the expression: C ≡ {

∑l
i=1 qisi : qi ≥ 0 for all i and

∑l
i=1 qi = 1}

▶ Definition 9 (Stochastic Vector [6]). v = (vi)ℓ
i=1 is a stochastic vector if

∑ℓ
i=1 vi =

1 and vi ≥ 0 ∀i.

Finally, we observe a necessary and sufficient condition for U to be in C(A).

▶ Lemma 10 (Inclusion in Convex Hull). Let A be an l × K matrix and U be a 1 × K vector
with 1

K in each entry. There exists a stochastic vector q such that qA = U if and only if
U ∈ C(A).

Proof. Let ai denote the ith row of A. If U is in C(A), then by Definition 8, there exists a
non-negative vector q such that

∑l
i=1 qiai = U and

∑l
i=1 qi = 1. Similarly, for any stochastic

q, qA ∈ C(A). Then if qA = U , U ∈ C(A). ◀

Finally, we outline several key results that we will use in the derivations and proofs for
our proxy training algorithm. We begin by considering a zero-sum game between two players,
a Learner with strategies in S1 and an Auditor with strategies in S2. The payoff function of
the game is W : S1 × S2 → R≥0.

▶ Definition 11 (Approximate Equilibrium [14]). A pair of strategies
(s1, s2) ∈ S1×S2 is said to be a ν-approximate minimax equilibrium of the game if the following
conditions hold: U(s1, s2) − mins′

1∈S1 U(s′
1, s2) ≤ ν, maxs′

2∈S2 U(s1, s′
2) − U(s1, s2) ≤ ν

Freund and Schapire [14] show that if a sequence of actions for the players jointly has low
regret, the uniform distribution over each player’s actions forms an approximate equilibrium:

▶ Theorem 1 (No-Regret Dynamics [14]). Let S1 and S2 be convex, and suppose W (·, s2) :
S1 → R≥0 is convex for all s2 ∈ S2 and W (s1, ·) : S2 → R≥0 is concave for all s1 ∈ S1. Let
(s1

1, s2
1, . . . , sT

1 ) and (s1
2, s2

2, . . . , sT
2 ) be sequences of actions for each player. If for ν1, ν2 ≥ 0,

the regret of the players jointly satisfies

T∑
t=1

W (st
1, st

2) − min
s1∈S1

T∑
t=1

W (s1, st
2) ≤ ν1T max

s2∈S2

T∑
t=1

W (st
1, s2) −

T∑
t=1

W (st
1, st

2) ≤ ν2T

then the pair (s̄1, s̄2) is a (ν1 + ν2)-approximate equilibrium, where s̄1 = 1
T

∑T
t=1 st

1 ∈ S1 and
s̄2 = 1

T

∑T
t=1 st

2 ∈ S2 are the uniform distributions over the action sequences.

Additionally, we define a Cost Sensitive Classification (CSC) oracle over a classification
model class H, which we will use as an efficient subroutine in our algorithm.

▶ Definition 12 (Weighted Cost-Sensitive Classification Oracle for H [2]). An instance of
a Weighted Cost-Sensitive Classification problem, or a CSC problem, for the class H, is
given by a set of n tuples {w(xi), xi, c0

i , c1
i }n

i=1 such that c1
i corresponds to the cost for

predicting label 1 on sample xi and c0
i corresponds to the cost for prediction label 0 on

sample xi. The weight of xi is denoted by w(xi). Given such an instance as input, a
CSC(H) oracle finds a hypothesis h ∈ H that minimizes the total cost across all points:
h ∈ argminh′∈H

∑n
i=1 w(xi)

[
h′(xi)c1

i + (1 − h′(xi))c0
i

]
.
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3 Computing Sampling Weights from a Proxy (QP Approach)

Now we introduce our first methodological contribution: a selection approach for producing
a balanced set given a proxy. At a high level, our approach involves mapping each example
to an acceptance probability. We construct such a mapping by labeling the range of the
proxy g : X → N with acceptance probabilities and then selecting samples for our set by
applying the proxy function to a sample and keeping it with probability corresponding to
the element of the range of the proxy that the point maps to.

Recall the condition distribution matrix A, where each row represents the distribution of
z values mapped to a given proxy value. Our goal is to find acceptance probabilities such
that the induced distribution on retained points is uniform over the protected attributes. By
Lemma 10, such probabilities exist if A contains the uniform distribution in its convex hull.
Consider the system qA = U , where U = ( 1

K , ..., 1
K ) and q must be a length ℓ stochastic

vector. If there is a solution for q, we consider this a valid acceptance rate scheme and use it
to derive the selection probabilities for our filtering problem. If there is not an exact solution
(which will happen frequently) we take argminq∥qA−U∥2 as our best acceptance rate scheme.
Because this involves solving a quadratic program, we refer to the proxies and accompanying
selection schemes produced by this approach as QP (Quadratic Program) proxies.

Algorithm 1 Finding Acceptance Probabilities ρ.
Input: proxy g, D = {(xi, zi)}n

i=1, number of sensitive groups K

for j in Range(g) do
For k in [K], let ak = Prz|x∼D[z = k|g(x) = j]
Let r̂j = Prx∼D[g(x) = j]

Let A be the matrix with kth row ak and let U = ( 1
K , ..., 1

K )
q = argminq∥qA − U∥2 s.t. qi ≥ 0 and

∑
qi = 1

For j in Range(g), set ρj = qj

r̂j

Let C = maxj ρj and normalize ρj = ρj/C

return ρ, A

Algorithm 2 Filtering with ρ.
Input: g, ρ, Px

Draw x ∼ Px and compute g(x)
With probability ρg(x), accept x into sample

▶ Lemma 13 (Filtering According to ρ). Consider acceptance probabilities ρ and conditional
distribution matrix A returned by Algorithm 1. Then, if U ∈ C(A), filtering according to ρ

as in Algorithm 2 induces a uniform distribution over protected attributes.

Proof. We want to show that the distribution over sensitive attributes in the filtered set is
uniform. We begin by expressing the distribution over sensitive attributes in the filtered set
constructively, as the distribution obtained from sampling according to ρ. From there, we
plug in our definitions of ak,j as the jth element in the kth row of the conditional distribution
matrix of z values given proxy values and as well as our definition of r̂j as the marginal

FORC 2024



4:8 Balanced Filtering via Disclosure-Controlled Proxies

probability that a proxy value is j. Finally, we use the result that qA = U = ( 1
K ... 1

K )∑
j∈Range(g)

ρj Pr[z = k, g(x) = j] =
∑

j∈Range(g)

ρj Pr[z = k|g(x) = j] Pr[g(x) = j]

=
∑

j∈Range(g)

ak,j r̂jρj =
∑

j∈Range(g)

ak,jqj = 1
K

◀

4 Learning an (α, β) Proxy

We have discussed a proxy function g : X → N that maps samples to proxy groups and
described the conditional distribution matrix A indicating the distribution of sensitive
attributes within each proxy group. In Section 3, we showed how A can be used to derive
acceptance probabilities for each group, such that under appropriate conditions, selecting
according to these probabilities induces a uniform distribution over the protected attributes.
Up until now, however, we have referenced A as fixed – we have used it to derive retention
probabilities but have not described how it and the proxy can be generated. Recall that
our proxy function g ∈ G takes the form of a decision tree, where each leaf is a proxy group.
Therefore, each row in A, corresponding to the distribution over sensitive attributes in a
given proxy group, also corresponds to the distribution over these attributes in a given leaf.

We grow our decision tree by sequentially making splits over the feature space – our tree
will start as a stump and our matrix will have just one row, then we will split the tree into
two leaves and the matrix will have two rows, and we will continue in this manner, splitting
a leaf (and adding a row to the matrix) at each iteration. We will make these splits by
employing a classification function from the pre-specified model class H ⊆ {h : X → {0, 1}}
assigned to each leaf. Because the two representations, as a matrix or a tree, afford different
analytical advantages, we will continue to refer to both as we derive our algorithm. One
advantage of the matrix representation is that it allows us to reason about the convex hull of
a set of conditional distributions. Lemma 10 showed that there is a solution to qA = U for a
stochastic vector q if and only if U lies in the convex hull of A. Our goal will be to grow our
tree (and the matrix A) so that the infU ′∈C(A)∥U ′ − U∥2 shrinks at each iteration – until
finally U is contained within (or sufficiently close to) C(A).6

We begin with a geometric interpretation of C(A) and describe how it changes as our
tree and conditional distribution matrix expand. In particular, we grow a tree that has
leaves V and keep track of the corresponding matrix A of sensitive attribute distributions
conditional on their classification by the tree. We can always label the leaves of a tree with a
binary sequence, so from now on we will identify each V with a binary sequence. Using this
description, we derive sufficient conditions to decrease the Euclidean distance between C(A)
and U . We begin with several definitions that we will use to characterize C(A).

▶ Definition 14 (Vertex). Let R be a bijective mapping of vertices to a rows in A. Then
V ∈ {0, 1}N is a vertex of C(A) if R(V ) corresponds to a row ai such that ai /∈ C({aj}j<i).

Note that in our context this means that each row of A corresponds to a vertex of C(A)
as long as it cannot be represented as a convex combination of the other rows. Next, we
introduce the function that is used at a node of the decision tree to partition samples into
the left or right child. It will also be convenient in our algorithm to make use of randomized
splitting functions, so we handle both cases.

6 Algorithms 1 and 2 and Lemma 13 extend easily to distributions other than the uniform.
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▶ Definition 15 (Splitting Function). We call hV ∈ H a deterministic splitting function at
vertex V . A randomized splitting function h̃V ∈ ∆H is a distribution supported on a finite
set of deterministic splitting functions {hi

V }n
i=1 such that h̃V (x) = hi

V (x) with probability 1
n

for all i.

Each vertex V is paired with a splitting function h̃V operating on samples mapped to V .
To model the expected action of a randomized splitting function, we introduce the notion
of sample weights, where the weight of a sample x at V is the probability that x reaches
V in its random walk down the tree (as determined by the randomized splitting function).
Here, V \0 indicates the parent of V if V ends in 0, and V \1 indicates the parent if V ends
in 1. Note that because V is a binary sequence, we can apply the modulo operator with the
binary representation of 2 to isolate the last digit.

▶ Definition 16 (Sample Weights). The weight of a sample x at vertex V is defined as follows:

w0(x) = 1 and for V ̸= 0, wV (x) =
{

wV \0(x) · E[h̃V \0(x)] if V mod 2 = 0
wV \1(x) · E[1 − h̃V \1(x)] if V mod 2 = 1

}
We distinguish between V and the collection of weighted samples represented by V, lV .

▶ Definition 17 (Collection of Weighted Samples at V ). Given randomized splitting functions
{h̃i}V

i=0, the collection of weighted samples at V is denoted by lV = {wV (x), (x, z) : (x, z) ∈ S}.

▶ Definition 18 (Vertex Split). A vertex split results from applying h̃V to x ∈ lV , where
lV 0 = {wV 0(x), (x, z) : (x, z) ∈ S} and lV 1 = {wV 1(x), (x, z) : (x, z) ∈ S}.

After V is split into V0 and V1, V is no longer a vertex, whereas V0 and V1 may be. So, the
number of leaves in the tree, and therefore the number of rows in A, increased by at most 1.

4.1 Growing the Convex Hull and Learning a Splitting Function
Imagine that we have started to grow our proxy tree, but U is not in C(A). We would like
to expand C(A) to contain U , and intuitively, we might like to expand C(A) in the direction
of U . One way to do so is to choose a vertex V to split into two vertices, V 1 and V 0. We
assume that V 1 is the split such that R(V 1) − R(V ) is most in the direction of U − U ′, where
U ′ is the closest point in Euclidean distance to U in C(A).

▶ Definition 19 (Convex Hull Notation). Let θ be the angle between R(V 1) − R(V ) and
U − U ′, and U ′′ be the closest point to U on the line segment R(V 1) − U ′:

U ′ = arg min
U∗∈C(A)

∥U − U∗∥2

cos θ = ⟨R(V 1) − R(V ), U − U ′⟩
∥R(V 1) − R(V )∥2∥U − U ′∥2

U ′′ = tU ′ + (1 − t)R(V 1) where
t = argmin

0<t∗<1
∥U − (t∗U ′ + (1 − t∗)R(V 1))∥2

R(V 1)

U

R(V )
U ′

R(V 0)

θ
ϕ

U ′′

We show that, given certain assumptions, we can lower bound how much this splitting process
will decrease the distance from C(A) to U . The first condition in Lemma 20 will be used to
derive an objective function over which we can optimize to find a splitting function. The
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second and third conditions limit the theory to the case where we can prove our progress
lemma. The second condition says that the distance between R(V ) and R(V 1) has to be
sufficiently large compared to the existing distance between the uniform distribution and
its projection onto C(A). The third condition is needed for the proof, allowing us to make
arguments based on right triangles – it is satisfied when the second condition is met and the
angle between R(V 1) − R(V ) and U − U ′ is not too large. As these conditions are potentially
limiting theoretically, we verify that they are indeed frequently satisfied in the experiments.

▶ Lemma 20 (Progress via Vertex Split). When a vertex V is split, forming new vertices V 0
and V 1, the distance from the convex hull to U decreases by at least a factor of 1 − γ if

⟨R(V 1) − R(V ), U − U ′⟩/∥U − U ′∥2 ≥ f(γ) and (1)

∥R(V 1) − R(V )∥2 ≥ (1 − γ)−1
√

2γ − γ2∥U − U ′∥2, R(V 1) − U ′ ⊥ U − U ′′ where

f(γ) :=

√
(2γ − γ2)

(
2 − ∥R(V ) − U ′∥2

2 + 2∥R(V ) − U ′∥2(1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2
2 + 2

)
▶ Remark 21. These are sufficient, but not necessary, conditions for a split to make sufficient
progress. Empirically, we simply require that each split decreases the distance from the
convex hull to U by at least a factor of 1 − γ for the algorithm to continue.
To summarize, these conditions ask that we split a vertex of the convex hull (equivalently a
leaf of the proxy tree), so that the convex hull expands in the direction of the target vector.
In other words, we want to split a leaf into the over-represented groups in one child and
the under-represented groups in the other child, without violating the disclosure constraints.
Lemma 1 also involves conditions that make sure that this split is sufficiently large to move
the convex hull closer to the uniform rather than making minute progress. Having identified
a sufficient condition for a split to make suitable progress toward containing the uniform
distribution within the convex hull, we present a subroutine to find an α-proxy. We first
express Equation (1) in a form amenable to use in a linear program:

▶ Lemma 22 (Objective Function). Let mV be the number of samples in lV and let hV be
the splitting function for vertex V . The condition ⟨R(V 1)−R(V ),U−U ′⟩

∥U−U ′∥2
≥ f(γ) is equivalent to

mV∑
i=1

wV (xi)hV (xi)(−Q +
K∑

k=1
1zi=k (U ′

k − Uk)) ≤ 0

for QV,U ′,γ := ∥U ′ − U∥f(γ) +
∑mV

i=1 wV (xi)
∑K

k=1 1zi=k (U ′
k − Uk)∑mV

i=1 wV (xi)

Proof. We begin by expanding the scaled dot product between R(V 1) − R(V ) and U − U ′:

⟨R(V 1) − R(V ), U − U ′⟩
∥U − U ′∥

=
mV∑
j=1

wV (xj)
K∑

k=1
1zj=k

(
hV (xj)∑mV

j=1 wV (xj)hV (xj)
− 1∑mV

j=1 wV (xj)

)
Uk − U ′

k

∥U − U ′∥

Asking ⟨R(V 1)−R(V ),U−U ′⟩
∥U−U ′∥ ≥ f(γ) is equivalent to asking ⟨R(V 1)−R(V ),U ′−U⟩

∥U ′−U∥ ≤ f(γ) or:

∑mV

j=1 wV (xj)hV (xj)
∑K

k=1 1zj=k (U ′
k − Uk)∑mV

i=1 wV (xj)hV (xj)
≤ ∥U ′ − U∥f(γ) +

∑mV

j=1 wV (xj)
∑K

k=1 1zj=k (U ′
k − Uk)∑mV

j=1 wV (xj)
(2)
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Finally, the right-hand side is constant given V , U ′, and γ. Therefore, we represent it

by a constant QV,U ′,γ := ∥U ′ − U∥f(γ) +
∑mV

j=1
wV (xj)

∑K

k=1
1zj =k(U ′

k−Uk)∑mV

j=1
wV (xj)

. This allows us to

rewrite Equation (2) as

mV∑
j=1

wV (xj)hV (xj)
(

−QV,U ′,γ +
K∑

k=1
1zj=k (U ′

k − Uk)
)

≤ 0 ◀

We use Lemma 22 to form a cost-sensitive classification problem for vertex V , where the
constraints make sure that any candidate proxy is no more than α-disclosive:

min
hV ∈H

mV∑
i=1

wV (xi)hV (xi)
(

−QV,U ′,γ +
K∑

k=1
1zi=k (U ′

k − Uk)
)

s.t. ∀k (3)

|
∑mV

i=1 wV (xi)hV (xi)1zi=k∑mV

i=1 wV (xi)hV (xi)
− rk| ≤ α and |

∑mV

i=1 wV (xi)(1 − hV (xi))1zi=k∑mV

i=1 wV (xi)(1 − hV (xi))
− rk| ≤ α

Next, we will appeal to strong duality to derive the corresponding Lagrangian. We note
that computing an approximately optimal solution to the linear program corresponds to
finding approximate equilibrium strategies for both players in the game in which one player,
the “Learner,” controls the primal variables and aims to minimize the Lagrangian value.
The other player, the “Auditor,” controls the dual variables and seeks to maximize the
Lagrangian value. If we construct our algorithm in such a way that it simulates repeated play
of the Lagrangian game such that both players have sufficiently small regret, we can apply
Theorem 1 to conclude that our empirical play converges to an approximate equilibrium of
the game. Furthermore, our algorithm will be oracle efficient: it will make polynomially
many calls to oracles that solve weighted cost-sensitive classification problems over H.

To turn Program (3) into a form amenable to our two-player zero-sum game formulation,
we expand H to ∆H, allow our splitting function to be randomized, and take expectations
over the objective and constraints with respect to deterministic splitting functions drawn
according to h̃V . Doing so yields the following CSC problem to be solved for vertex V :

min
h̃V ∈ ∆H

EhV ∼h̃V

mV∑
i=1

wV (xi)hV (xi)
(

−QV,U ′,γ +
K∑

k=1
1zi=k (U ′

k − Uk))
)

s.t. EhV ∼h̃V

mV∑
i=1

wV (xi)h̃V (xi) (1zi=k − rk − α) ≤ 0 ∀k,

EhV ∼h̃V

mV∑
i=1

wV (xi)(1 − hV (xi)) (1zi=k − rk − α) ≤ 0 ∀k,

EhV ∼h̃V

mV∑
i=1

wV (xi)hV (xi) (rk − 1zi=k − α) ≤ 0 ∀k,

EhV ∼h̃V

mV∑
i=1

wV (xi)(1 − hV (xi)) (rk − 1zi=k − α) ≤ 0 ∀k

(4)

We solve this constrained optimization problem by simulation a zero-sum two-player
game on the Lagrangian dual. Given dual variables λ ∈ R4K

≥0 such that ∥λ∥2 ≤ λmax for
some constant λmax, the Lagrangian of Program (4) is:
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4:12 Balanced Filtering via Disclosure-Controlled Proxies

L(λ, h̃V ) = EhV ∼h̃V

mV∑
i=1

wV (xi)
(

−QV,U ′,γhV (xi) +
K∑

k=1
hV (xi)1zi=k (U ′

k − Uk) +

(λk,1hV (xi) + λk,0(1 − hV (xi))) (1zi=k − rk − α) +
(λk,3hV (xi) + λk,2(1 − hV (xi))) (rk − 1zi=k − α))

Given the Lagrangian, solving Program (4) is equivalent to solving the minimax problem
minh̃V ∈∆H maxλ∈R4K

≥0
L(λ, h̃V ) = maxλ∈R4K

≥0
minh̃V ∈∆H L(λ, h̃V ), where the minimax theo-

rem holds because the range of the primal variable, i.e., ∆H is convex and compact, the
range of the dual variable, i.e., R4K

≥0 is convex, and the Lagrangian function L is linear in both
primal and dual variables. Therefore, we focus on solving the minimax problem, which can be
seen as a two-player zero-sum game between the primal player (the Learner) who is controlling
h̃V and the dual player (the Auditor) who is controlling λ. Using no-regret dynamics, we
will have the Learner deploy its best response strategy in every round, which will be reduced
to a call to CSC(H) and let the Auditor with strategies in Λ = {λ : 0 ≤ λ ≤ λmax} play
according to Online Projected Gradient Descent [45].

Our local algorithm for splitting a vertex is described in Algorithm 3, and its guarantee
is given in Theorem 2. We note that the algorithm returns a distribution over H. Given
an action λ of the Auditor, we write LC(λ) for the vector of costs for labeling each data
point as 1. We view our costs as the inner product of the outputs of a deterministic splitting
function hV on the mV points and corresponding cost vector. We define the cost for labeling
an example 0 to be 0 for all x (c0(x) = 0), and the cost for labeling an example 1 as:

c1(x) = wV (x)(−QV,U ′,γ +
K∑

k=1
1zj=k (U ′

k − Uk) + (λk,1 − λk,0) (1z=k − rk − α)

+ (λk,3 − λk,2) (rk − 1z=k − α))

Algorithm 3 Learning a Splitting Function.
Input: {wV (xi), (xi, zi)}mV

i=1, model class H, CSC(H), α, ϵ, γ

Set λmax = m(K − 1)/Kϵ + 2 and T = ⌈(2Km (1 + α) λmax/ϵ)2⌉
Initialize λk = 0 ∀k

for t = 1 . . . T do
ht = argminh∈H⟨LC(λ), h⟩
λt = λt−1 + t−1/2 (∇λL)+; If ∥λt∥ > λmax, set λt = λmax

λt

∥λt∥
return h̃V := uniform distribution over ht

V

▶ Theorem 2 (Learning an (α + ϵ)-Disclosive Proxy). Fix α, ϵ, suppose H has finite V C

dimension, and suppose ∃ h̃∗
V ∈ ∆H that is a feasible solution to Program (4). Then,

Algorithm 3 returns a distribution h̃V that is an ϵ-optimal solution to Program (4).
Theorem 2 says that with appropriate conditions on the model class H and access to

CSC(H), Algorithm 3 returns a model satisfying the conditions of Program 4 (i.e. produces
an acceptable split) up to an additive factor of ϵ. A few requirements of this theorem may
not hold in practice and thus motivate our experiments. The choice of a base model class H
impacts whether a feasible solution exists – typically more complex model classes will be more
likely to contain a feasible solution, but this complexity will impact the generalization bounds.
Also, the guarantee relies on Algorithm 3 having access to a cost sensitive classification oracle.
In practice, we typically do not have such an oracle so must use a heuristic.
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4.2 Decision Tree Meta-Algorithm
Finally, we use these results to greedily construct a proxy g : X → N. We do this iteratively
using a decision tree, where leaves correspond to proxy groups. We split the data into these
leaves in such a way that when we consider the distribution of groups in each leaf, the
uniform vector is contained in their convex hull. This allows us to select a balanced set
in expectation. In addition, we require that the proxy be α-disclosive at every step. We
grow the tree as follows, for some tolerance β: (1) If ∥U − C(A)∥2 ≤ β, output the tree.
(2) Otherwise, look for a leaf to split. If we find a suitable split, make it, and continue. If
not, output the tree. To determine if a split is suitable, we use the results from Section 4.1:
for fixed approximation factor ϵ, disclosivity budget α − ϵ, and progress parameter γ, a
splitting function h̃V must be an ϵ-approximate solution to Program 4 (and therefore no
more than α-disclosive) at vertex V . If we can find such an h̃V for at least ln β−ln

√
2

ln 1−γ rounds,
the decision tree will be an (α, β) proxy.

Algorithm 4 Learning an (α, β) Proxy.
Input: D = {xi, zi}n

i=1, CSC(H), α, ϵ, γ, β

while infU ′∈C(A)∥U ′ − U∥2 > β do
Apply Algorithm 3 to find feasible split (if no feasible split, terminate)
Expand tree T and re-calculate A, C(A)

return T , A

▶ Theorem 3 (Learning an (α, β) Proxy). If the conditions of Lemma 20 are satisfied at every
split, Algorithm 4 produces an (α, β) proxy in-sample within ln β−ln

√
2

ln 1−γ rounds.

Proof. Let Ai∗ be the conditional distribution matrix returned by Algorithm 4 after i∗

rounds. Our goal is to produce Ai∗ such that ∥U − C(Ai∗)∥2 ≤ β. Let A0 be the initial
conditional distribution matrix, and observe that if we decrease the distance from the
current conditional distribution matrix to U by a factor of 1 − γ each round, at round i,
∥U − C(Ai)∥2 ≤ (1 − γ)i∥U − C(A0)∥2. Further, recall that ∥U − C(A0)∥2 ≤

√
2 because

both U and C(A0) must lie in the unit simplex. Setting ∥U − C(Ai∗)∥2 ≤ β, we have
β ≤ (1 − γ)i∗√

2 =⇒ β√
2 ≤ (1 − γ)i∗ =⇒ i∗ ≥ ln β−ln

√
2

ln (1−γ) . Then, after i∗ = ln β−ln
√

2
ln (1−γ)

rounds, ∥U − C(Ai∗)∥2 ≤ γ. Finally, because our linear program constrains splits to only
those that guarantee α-disclosiveness, the final proxy must be α-disclosive in-sample. ◀

Theorem 3 allows us to upper bound the number of times that Algorithm 4 performs a
split and, therefore, the number of unique proxy groups generated. The theorem’s hypothesis
states, informally, that it must be possible to find a splitting function at each round that
makes both a sufficiently large split (i.e. the new vertex is sufficiently far from the old
vertex compared to the current distance from the convex hull to the target uniform) and the
split is sufficiently in the direction of the target. This theorem, in turn, allows us to state
generalization bounds depending on both the number and size of each proxy group.

▶ Theorem 4 (Generalization). Let ϵ, δ, γ > 0 and G be the proxy class. Let there be K

sensitive groups. If each proxy group has at least 1
2ϵ2 ln 8K·V C(G)(ln β−ln

√
2)

δ ln (1−γ) samples, with

probability 1 − δ, an (α, β) proxy in-sample will be an (α + 2ϵ, β + Kϵ
√

ln β−ln
√

2
ln (1−γ) ) proxy

out-of-sample.

Theorem 4 presents the number of samples needed in each proxy group to obtain a
sufficiently small generalization gap in both the disclosure level and imbalance – it is based
on the size of the smallest proxy group in-sample, which might get quite small in practice.
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Furthermore, the generalization gap for β scales by an additive factor of the number of
sensitive groups, K. Therefore, as our problem becomes more challenging, more samples are
required to achieve a proxy that performs similarly out-of-sample compared to in-sample.

5 Experiments

Here, we test our two main methodological contributions. The first is to use Algorithms 1 and 2
to solve minq∥qA − U∥2 subject to qi ≥ 0 ∀i and

∑
i qi = 1 and derive the corresponding

acceptance probabilities ρ for the given proxy. The second is to additionally use Algorithms 3
and 4 to learn a decision-tree proxy guaranteed not to exceed a specified level of disclosure.
1. QP Regression and Decision Tree Proxies: We train a multinomial logistic regression

model or decision tree to directly predict the sensitive attribute but select our acceptance
probabilities by employing Algorithms 1 and 2.

2. (α, β) Proxy: We use Algorithm 4 to develop a proxy for a specified disclosure budget.
We compare the performances of these proxy functions against those of two baselines:7
1. Naive Regression and Decision Tree proxies: We train models to directly predict sensitive

attributes then sample the same number of points from each predicted group, inducing a
conditional distribution matrix of the distribution of sensitive attributes in each proxy
group. We then calculate the degree of disclosure and imbalance of the sampled set.

2. SMOTE [8]: We train a decision tree to directly predict groups and then, using these
predictions as input for SMOTE, balance the data by synthesizing minority examples.

5.1 Data, Hyperparameters, and Compute Time
We evaluate the disclosure, α, and imbalance, β, obtained by each proxy filtering scheme on
the Bank Marketing [25, 12], Adult [12], and Communities and Crime data sets [12, 35, 37, 38,
39, 30], for which we have 5, 4, and 12 sensitive attribute values, respectively. The Marketing
data set consists of 45211 labeled samples with 48 non-sensitive attributes and a sensitive
attribute of job type. The downstream classification goal is to predict whether a client will
subscribe a term deposit based on a phone call marketing campaign of a Portuguese banking
institution. The Adult data set consists of 48842 labeled samples with 14 non-sensitive
attributes, and we select race as the sensitive attribute. The associated classification task is
to determine whether individuals make over $50K dollars per year. The Communities and
Crime data set consists of 1594 samples with 132 non-sensitive features, race as the sensitive
group, and the number of violent crimes per population as the prediction task.

For each experiment, we run trials with 20 different seeds, and for each seed, we input a
grid of values with increments of 0.1 for the disclosure parameter, α, evenly spaced between
0 and 1. We then average over the seeds for each α and calculate empirical 95% confidence
intervals (which are displayed as the shaded region around each line in the plots). Each
data set is split into three parts of sizes 50%, 30%, and 20%. The first is used to train the
proxy. The second is used first to test the filtering effects of the proxy out-of-sample and
then to train a classification model on to study downstream performance. The third is the
set upon which we apply these classifiers trained on filtered and unfiltered data to see how

7 For the Naive Proxies, QP Proxies, and SMOTE, we interpolate between a uniform and proxy-specific
sampling strategy by post-processing: We predict z with the proxy and then, with probability η ∈ [0, 1],
uniformly re-assign the prediction. Finally, we apply Algorithm 2 to sample according to the post-
processed proxy labels and plot the balance and disclosure of the corresponding data set with respect to
the post-processed proxy values. We use a large point marker for the results without post-processing
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the group-wise accuracy levels are affected. For brevity, we will refer to these three splits as
the “Train” set, “Test” set, and “Post-Test” set, respectively. See Appendix B for an analysis
of downstream fairness effects induced by our strategy.

On the Adult and Communities and Crime data sets, one run over the grid of α values
typically took between 20 minutes and two hours for the (α, β) proxy. On the Marketing
data set, running one full experiment over the grid of α values took about three hours. The
parameter γ was set to 0.0001, the maximum height of the proxy tree was set to 15, and the
learning process was stopped once the distance between the convex hull of the conditional
distribution matrix and the uniform distribution fell below 0.05. As we used publicly available
tabular data sets that has already been cleaned, there were no missing values.

Finally, the choice of oracle (the base model class for the (α, β) proxy) is heuristic – as we
do not have a true cost-sensitive classification oracle for Algorithm 3, we choose two models
that allow us to predict the cost of each example and then classify based on the cost’s sign.
We experiment with a linear threshold function – the paired regression classifier (PRC) used
in [19] and defined below – as well as the XGBoost Regressor model. We found that the
PRC was simpler and seemed to perform at least as well as the XGBoost Regressor, so we
relegate the analysis for the latter to Appendix B.

▶ Definition 23 (Paired Regression Classifier [19]). The paired regression classifier operates as
follows: We form two weight vectors, z0 and z1, where zk

i corresponds to the penalty assigned
to sample i in the event that it is labeled k. For the correct labeling of xi, the penalty is 0. For
the incorrect labeling, the penalty is the current sample weight of the point, wV . We fit two
linear regression models h0 and h1 to predict z0 and z1, respectively, on all samples. Then,
given a new point x, we calculate h0(x) and h1(x) and output h(x) = argmink∈{0,1} hk(x).

5.2 Results
In Figure 1, on the Communities data set, the (α, β) proxy Pareto-dominates the other
approaches in sample, while the QP proxies Pareto-dominate SMOTE and the Naive proxies.
All methods generalize well. On the Adult data set, the (α, β) proxy primarily dominates
the remaining approaches in-sample. The generalization performance for all methods, but
particularly the (α, β) proxy, is weaker on the Adult data set. This is likely because there
are slightly more sensitive groups than in the Communities data set, and the acceptance
probabilities were sparse. On the Marketing data set, the (α, β) and QP Decision Tree proxies
exhibit favorable performance in-sample, driving the imbalance to just above zero at higher
levels of disclosure. The plot on the test set shows a more modest improvement in balance
for all methods. One source of variance in Figure 1 is the generalization performance by the
(α, β) proxy. We believe this to be due to the size of the smallest proxy group being quite
low (especially for the Marketing data set which has 12 sensitive groups). Recall that the
generalization gap depends directly on this quantity. There is also nothing in our method to
prevent a sparse sampling scheme. Empirically, we found that in cases where generalization
results were weak, the acceptance probabilities were nonzero for only a handful of the final
proxy groups. Addressing these weaknesses, if possible, could strengthen our approach.

5.3 Discussion and Future Work
Our primary conceptual point is that even though the final goal (balance) references the
protected attributes, it is a condition on the aggregate composition of the final selected set.
Therefore, achieving it does not necessarily require finding a predictor strongly correlated with
the protected attribute. We emphasize that while the QP proxies (our secondary contribution)
are appealingly simple and provide a range of disclosure levels after post-processing, they
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(a) Communities.

(b) Adult.

(c) Marketing.

Figure 1 Trade-off of Disclosure and Balance of Proxies on Communities, Adult, and Marketing.

still involve explicitly training a classifier for the attribute. In contrast, the (α, β) proxy (our
primary contribution) never involves training a classifier at any step of the process that is
more disclosive than a pre-specified threshold. While this does not solve the challenging legal
and technical problems associated with proxy use in high-stakes selection processes, it takes
a step in this direction by permitting controlled trade-offs between balance and disclosure.
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A Omitted Proofs

▶ Lemma 20 (Progress via Vertex Split). When a vertex V is split, forming new vertices V 0
and V 1, the distance from the convex hull to U decreases by at least a factor of 1 − γ if

⟨R(V 1) − R(V ), U − U ′⟩/∥U − U ′∥2 ≥ f(γ) and (1)

∥R(V 1) − R(V )∥2 ≥ (1 − γ)−1
√

2γ − γ2∥U − U ′∥2, R(V 1) − U ′ ⊥ U − U ′′ where

f(γ) :=

√
(2γ − γ2)

(
2 − ∥R(V ) − U ′∥2

2 + 2∥R(V ) − U ′∥2(1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2
2 + 2

)
Proof. We want to find sufficient conditions for ∥U − U ′′∥ ≤ (1 − γ)∥U − U ′∥. Let ϕ be
the angle between the vectors U − U ′′ and U − U ′. Then ∥U − U ′′∥ = ∥U − U ′∥ cos ϕ.
So, we would like to find conditions for which cos ϕ ≤ (1 − γ). By the law of cosines,
∥V 1 − U ′∥2 = ∥V − U ′∥2 + ∥V 1 − V ∥2 − 2∥V − U ′∥∥V 1 − V ∥ cos(90 + θ) and

cos(ϕ) = ∥V − U ′∥2 + ∥V 1 − U ′∥2 − ∥R(V 1) − R(V )∥2

2∥V − U ′∥∥V 1 − U ′∥

= ∥V − U ′∥ − ∥R(V 1) − R(V )∥ cos(90 + θ)√
∥V − U ′∥2 + ∥R(V 1) − R(V )∥2 − 2∥V − U ′∥∥R(V 1) − R(V )∥ cos(90 + θ)

= ∥V − U ′∥ + ∥R(V 1) − R(V )∥ sin θ√
∥V − U ′∥2 + ∥R(V 1) − R(V )∥2 + 2∥V − U ′∥∥R(V 1) − R(V )∥ sin θ

Setting −(1 − γ) ≤ cos ϕ ≤ 1 − γ and solving for sin θ, we see that this is satisfied by

sin θ ∈ (γ2 − 2γ)∥R(V ) − U ′∥
∥R(V 1) − R(V )∥ ±

(1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2

∥R(V 1) − R(V )∥

To find a set of values for cos θ that make the above expression always true, we will
consider only γ for which the set of values of sin θ includes the origin. This is true for
γ ∈

[
0, 1 −

√
∥V −U ′∥2

∥V −U ′∥2+∥R(V 1)−R(V )∥2

]
. Then,

cos2 θ ≥ 1 −

(
(γ2 − 2γ)∥R(V ) − U ′∥

∥R(V 1) − R(V )∥ +
(1 − γ)

√
(γ2 − 2γ)∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2

∥R(V 1) − R(V )∥

)2

Rearranging, we have

∥R(V 1) − R(V )∥2 cos2 θ ≥

∥R(V 1) − R(V )∥2 −
(

(γ2 − 2γ)∥R(V ) − U ′∥ + (1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2
)2

=
(
2γ − γ2) ·

(
∥R(V 1) − R(V )∥2 − ∥R(V ) − U ′∥2+

2∥R(V ) − U ′∥ (1 − γ)
√

(γ2 − 2γ) ∥R(V ) − U ′∥2 + ∥R(V 1) − R(V )∥2
)

Using the fact that ∥R(V 1) − R(V )∥2 ≤ 2, we upper bound the right-hand side to say
that a split satisfying the following condition will guarantee that we decrease the distance
from U to the convex hull by (1 − γ):

∥R(V 1) − R(V )∥ cos θ ≥(
2γ − γ2) 1

2
(

2 − ∥R(V ) − U ′∥2 + 2∥R(V ) − U ′∥ (1 − γ)
√

(γ2 − 2γ)∥R(V ) − U ′∥2 + 2
) 1

2 := f (γ) ◀
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▶ Theorem 2 (Learning an (α + ϵ)-Disclosive Proxy). Fix α, ϵ, suppose H has finite V C

dimension, and suppose ∃ h̃∗
V ∈ ∆H that is a feasible solution to Program (4). Then,

Algorithm 3 returns a distribution h̃V that is an ϵ-optimal solution to Program (4).

Proof. We begin by upper bounding the L2 norm of the gradient:

∥∇λL(λ, h̃V )∥2 =
(

K∑
k=1

m∑
i=1

EhV ∼h̃V
w(xi)hV (xi) (1zi=k − rk − α)

)2

+

(
K∑

k=1

m∑
i=1

EhV ∼h̃V
w(xi)(1 − hV (xi)) (1zi=k − rk − α)

)2

+

(
K∑

k=1

m∑
i=1

EhV ∼h̃V
w(xi)hV (xi) (rk − 1zi=k − α)

)2

+

(
K∑

k=1

m∑
i=1

EhV ∼h̃V
w(xi)(1 − hV (xi)) (rk − 1zi=k − α)

)2

≤ 4K2m2 (1 + α)2

We now apply the regret bound for Online Gradient Descent from [45]. With an appro-
priate choice of η (derived below), we bound the Auditor’s average regret over T rounds:

RT

T
≤

supλ,λ′∈Λ∥λ − λ′∥∥∇λL(h̃, λ)∥
√

T

T
≤

2Km (1 + α) supλ,λ′∈Λ∥λ − λ′∥
√

T

Setting T ≥
(

2Km(1+α) supλ,λ′∈Λ∥λ−λ′∥
ϵ

)2
and η = supλ,λ′∈Λ∥λ−λ′∥

2Km(1+α)
√

T
, we have that RT

T ≤ ϵ.
Because the Learner plays a no-regret strategy, we can apply Theorem (1) to assert that
the mixed strategy of the Auditor and Learner together form an ϵ-approximate equilibrium.
Next, we must show that an approximate solution to the game corresponds to an approximate
solution to Program (4). We will show this using two cases. In the first case, we consider some
h̃∗

V that is a feasible solution to Program (4) at vertex V and a λ̂ that is an ϵ−approximate
minimax solution to the Lagrangian game specified in the Lagrangian above. Now we will
analyze the case in which we have a solution h̃V that is an ϵ-approximate solution to the
Lagrangian game but is not a feasible solution for Program (4) – we will show that this is
impossible. To illustrate this, assume that we do have such a h̃V . Because it is not a feasible
solution for Program (4), some constraints must be violated. Let ξ be the magnitude of the
violated constraint, and let λ be such that the dual variable for the violated constraint is set
to λmax := supλ,λ′∈Λ∥λ − λ′∥. By definition of an ϵ-approximate minimax solution, we know
that L(λ̂, h̃V ) ≥ L(λ, h̃V ) ≥ EhV ∼h̃V

∑m
i=1 wV hV (xi)

∑K
k=1 1zi=k (U ′

k − Uk) + λmaxξ − ϵ.
Then,

EhV ∼h̃V

m∑
i=1

wV hV (xi)
K∑

k=1
1zi=k (U ′

k − Uk) + λmaxξ

≤ L(h̃V , λ̂) + ϵ ≤ L(h̃∗
V , λ̂) + 2ϵ ≤ EhV ∼h̃∗

V

m∑
i=1

wV hV (xi)
K∑

k=1
1zi=k (U ′

k − Uk) + 2ϵ

Finally, because EhV ∼h̃∗
V

∑m
i=1 wV hV (xi)

∑K
k=1 1zi=k (U ′

k − Uk) ≤ m(K−1)
K , we have that

λmaxξ ≥ m(K−1)
K + 2ϵ. Therefore, the maximum constraint violation is no more than

m(K−1)
K +2ϵ

λmax
. Setting λmax = m(K−1)

Kϵα
+ 2, h̃V does not violate any constraint by more than

ϵ. ◀
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▶ Theorem 4 (Generalization). Let ϵ, δ, γ > 0 and G be the proxy class. Let there be K

sensitive groups. If each proxy group has at least 1
2ϵ2 ln 8K·V C(G)(ln β−ln

√
2)

δ ln (1−γ) samples, with

probability 1 − δ, an (α, β) proxy in-sample will be an (α + 2ϵ, β + Kϵ
√

ln β−ln
√

2
ln (1−γ) ) proxy

out-of-sample.

Proof. Let Ãk,j = Pr(x,y,z)∼P [z = k, g(x) = j] and Ai,j = 1
n

∑n
i=1 wj(xi)1zi=k,g(xi)=j . Then,

Hoeffding’s inequality gives us that, for fixed k, j, g

Pr
D∼Ω

[∣∣∣∣∣ 1n
n∑

i=1
wj(xi)1zi=k,g(xi)=j − E(x,y,z)∼P [1zi=k,g(xi)=j ]

∣∣∣∣∣ > ϵ

]
≤ 2e−2ϵ2n

Recall from Theorem 3, our decision tree proxy will contain at most ln γ−ln
√

2
ln (1−γ) splits, and

therefore there will be at most ln γ−ln
√

2
ln (1−γ) unique proxy groups. Applying a union bound over

all k, j pairs and fixed g, we see that

Pr
D∼Ω

[
∩k,j1| 1

n

∑n

i=1
wj(xi)1zi=k,g(xi)=j−E(x,y,z)∼P [1zi=k,g(xi)=j ]| > ϵ

]
≤ 2K

ln β − ln
√

2
ln (1 − γ) e−2ϵ2n

Again applying a union bound, this time over the model class g – with VC dimension d –
as well as k, j pairs, we see that for all k, j, g,

Pr
D∼Ω

[
∩k,j1| 1

n

∑n

i=1
wj(xi)1zi=k,g(xi)=j−E(x,y,z)∼P [1zi=k,g(xi)=j ]| > ϵ

]
≤ 2dK

ln β − ln
√

2
ln (1 − γ) e−2ϵ2n

Setting this to be less than δ
3 , we obtain 2dK ln β−ln

√
2

ln (1−γ) e−2ϵ2n ≤ δ
3 , which implies n ≥

1
2ϵ2 ln 6dk(ln β−ln

√
2)

δ ln (1−γ) . Then, with probability 1 − δ
3

∥
(
A − Ã

)
ρ∥2 ≤

√√√√√ J∑
j=1

(
K∑

k=1

(
Ak,j − Ãk,j

)
· ρj

)2

<

√√√√ J∑
j=1

(Kϵρj)2 ≤ Kϵ

√
ln β − ln

√
2

ln (1 − γ)

This bounds the degradation we expect in balance when we apply the proxy out of sample.
Next, we consider the degradation in disclosiveness, which will depend on our estimates of
Prz∼Pz [z = k] and Prz|x∼Pz|x

[z = k|g(x) = j]. First, we bound the empirical estimate of
Prz∼Pz

[z = k]. Applying Hoeffding’s inequality gives
PrD∼Ω

[∣∣ 1
n

∑n
i=1 1zi=k − Ez∼Pz [1zi=k]

∣∣ > ϵ
]

≤ 2e−2ϵ2n. Applying a union bound over the
range of Z gives PrD∼Ω

[
∩k

i=1
∣∣ 1

n

∑n
l=1 1zi=k − Ez∼Pz [1zi=k]

∣∣ > ϵ
]

≤ 2Ke−2ϵ2n. Setting this
to be less than δ

3 gives us: 2Ke−2ϵ2n ≤ δ
3 =⇒ n ≥ 1

2ϵ2 ln 6K
δ .

Finally, repeating the exercise for Prz|x∼Pz|x
[z|g(x)], we have that for fixed g ∈ G and

z ∈ Z,

Pr
D∼Ω

[∣∣∣∣∣
n∑

i=1

wj(xi)∑n
i=1 wj(xi)

1zi=k|g(xi)=j −
n∑

i=1
wj(xi)Ez|x∼Pz|x

[1zi=k|g(xi)=j ]

∣∣∣∣∣ > ϵ

]
≤ 2e−2ϵ2

∑n

i=1
wj(xi)

Applying a union bound over z, g, and the VC dimension of G, and setting the
probability to be less than δ

3 gives us 2dK ln β−ln
√

2
ln (1−γ) e−2ϵ2

∑n

i=1
wj(xi) ≤ δ

3 , which implies∑n
i=1 wj(xi) ≥ 1

2ϵ2 ln 6dK(ln β−ln
√

2)
δ ln (1−γ) . Then, with probability 1 − δ both of our estimates for

Prz|x∼Pz|x
[z|g(x)] and Prz∼Pz

[z] must be within ϵ of the true parameters if we have sample
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count n ≥ 1
2ϵ2 max{ln 6K

δ , ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) }. Note that max{ln 6K

δ , ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) } ≤

ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) . Then, taking n ≥ 1

2ϵ2 ln 6dK(ln γ−ln
√

2)
δ ln (1−γ) suffices. Finally, we can ap-

ply our concentration bounds to the expression for disclosure level. If we obtain an
α-disclosive proxy in-sample, this is equivalent to satisfying, for all z ∈ Z and g ∈ G,
|Prz|x∼D[z|g(x)] − Prz∼D[z]| ≤ α =⇒ |Prz|x∼Pz|x

[z|g(x)] − Prz∼Pz
[z]| ≤ α + 2ϵ ◀

B Additional Experimental Details

In Figure 2, we show trade-off curves for balance and disclosure when using XGB as the
base model. In these plots we also explore a slight relaxation of our (α, β) Proxy, in which
we remove the constraint

∑
i qi = 1 when solving minq∥qA − U∥2 subject to qi ≥ 0 ∀i. We

find that both the original and relaxed version perform similarly. On Communities, there
is less stability displayed by the proxies trained with the XGB base model compared to
those trained with the PRC base model. On Adult, the proxies trained with XGB as a base
model exhibit a smoother trade-off curve. On the Marketing data set, our proxy approach
dominates in sample for smaller levels of α but struggles to generalize.

(a) Communities. (b) Adult. (c) Marketing.

Figure 2 Trade-off of Disclosure and Balance for Proxy Models on the Communities, Adult, and
Marketing data sets with XGBoost Base Model.

Next, we analyze the downstream fairness impact resulting from using our proxy filtering
approach to prepare machine learning training datasets. Here, we train a model for the
data-specific classification or regression task on an unfiltered sample and a filtered sample
of the same size, and we compare the differences in gropup-wise accuracy obtained by each
model. We consider the downstream fairness impact of training a model on data that has
been filtered by our (α, β) proxy function but find our results are inconclusive. While we are
able to theoretically guarantee a certain level of balance in the filtered data set, we cannot
guarantee that the distribution over features and labels will not be skewed in the filtered set,
nor can we guarantee that the distribution over features and labels given sensitive attributes
will not be distorted. To test this, we first use an (α, β) proxy with a specified α budget to
filter the Test set into a balanced sub-sample. Then, we train two model for the dataset
specific classification task, one on the filtered data, and the other on a down-sampled version



S. Deng, E. Diana, M. Kearns, and A. Roth 4:23

(a) Communities.

(b) Adult.

(c) Marketing.

Figure 3 Difference in accuracy between models trained on filtered and unfiltered data on the
Communities, Adult, and Marketing data sets with PRC base model.

of the original Test set of the same size. We calculate the accuracy of the models on each
sensitive group and then plot the difference in accuracy between the two models, calculated
as the group accuracy on the filtered data minus the group accuracy on the unfiltered data.
Thus, positive values indicate an improvement in group accuracy from training on the filtered
data, while negative values indicate a decrease. Between the three data sets, we see mixed
results, displayed in Figure 3. On the Communities data set, we broadly see improvement on
lower accuracy groups when using the model trained on the filtered data. However, results
from the Adult data set in show a decrease in performance across all groups, and results
from the Marketing data set show improvement for one of the least represented groups, but
a decrease in performance for most others.
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