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ABSTRACT

In this work we articulate our methodology for evaluating and composing algo-
rithmic improvements in training efficiency of deep learning models. We first
show that by using our library of efficiency methods, it is possible to achieve
training speedups and cost reductions of 2.9X on ResNet-50 on ImageNet, 3.5X
on ResNet-101 on ImageNet, and 1.7X on GPT-125 language models. Some of
these methods are widely used, some were developed de novo, but many have not
been evaluated in the context of efficiency. We frame our evaluation methodology
for these methods by first defining the two quantities necessary to measure effi-
ciency: model quality (e.g. accuracy) and resources (e.g. training time, monetary
cost to train). Motivated by the observation that quality and resources are typ-
ically interchangeable, we emphasize the importance of evaluating methods for
improving efficiency by examining tradeoffs between resource usage and model
quality. From that lens, we define an efficiency improvement as either achieving
the same model quality while utilizing fewer resources or achieving higher model
quality while utilizing the same amount of resources, relative to a baseline model.
While our results demonstrate that it is possible to find significant efficiency im-
provements, these improvements result from the combination of several efficiency
methods, that jointly induce complex interactions between their behavior and the
underlying hardware. We term the analysis and navigation of these complexities
as the composition problem. Our results show that the broader machine learn-
ing community has developed a powerful set of methods that when methodically
evaluated and composed offer the promise of dramatically reduced time, cost, and
resources for deep learning.

1 INTRODUCTION

At MosaicML, our mission is to reduce the cost of training neural networks. We do so by modifying
the training process at the algorithmic level: changing the details of the training recipe. We believe
that the existing way of training neural networks is inefficient but that, by studying how neural
networks behave in practice, we can leverage those findings to develop better training algorithms
and significantly reduce the cost of training.

We develop methods that modify the training procedure to achieve better tradeoffs between the final
model quality and the time or cost to train the model. The end result is that, to train a model to a
particular level of quality, we can get there in less time or for fewer dollars. These methods change
the training procedure in a variety of ways: for example, altering the data or the order in which
they are presented to the model; tweaking the structure of the model; and changing the way forward
propagation and back propagation take place.
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Over the past few months, we have pursued this approach on common settings for computer vi-
sion—ResNets (He et al., 2016) on ImageNet (Deng et al., 2009), UNet Ronneberger et al. (2015)
on BraTS (Baid et al., 2021)—and natural language processing—Transformer/GPT language mod-
els (Radford et al., 2019). We carefully evaluated 20 different methods and how they compose,
and we implemented them in our Composer library. The compositions in this library have allowed
us to achieve training speedups and cost reductions of 2.9X on ResNet-50 on ImageNet, 3.5X on
ResNet-101 on ImageNet, and 1.7X on the GPT-125 language models (as compared to the opti-
mized baselines on 8xA100s on AWS), all while achieving the same model quality as the baselines.
To make sure that these results reflect fair comparisons, all of these data come from training on a
fixed hardware configuration on publicly available clouds, and none of these methods increase the
cost of inference.

These results demonstrate the enormous opportunity to accelerate neural network training across a
wide variety of settings. In the coming months, we will continue to grow our open-source library
of methods and work with customers to reduce the time and cost of their existing workloads and
take on more ambitious machine learning problems. We are excited to share our ideas, tools, and
infrastructure with the community, and we are eager for feedback and collaboration as we pursue our
mission to make deep learning efficient for everyone. Don’t hesitate to reach out if you’re interested
in getting involved as a contributor, collaborator, customer, or - especially - as a researcher, research
engineer, or intern on our team.

2 THE SCIENCE OF ALGORITHMIC IMPROVEMENTS TO TRAINING

Our goal in modifying the training algorithm is to improve the efficiency of training. We start with
a baseline training algorithm and compare it to training with one or more methods. To evaluate the
result, we typically ask one of the following questions:

* What is the fastest or cheapest way that we can train a particular model while maintaining
the same quality as the baseline? For example, if the baseline ResNet-50 reaches 76.6%
top-1 accuracy on ImageNet, can we reach this accuracy in less time or for less money than
the baseline?

* What is the highest quality we can reach while maintaining the same time or cost budget?
For example, if the baseline ResNet-50 takes four hours to reach 76.6% top-1 accuracy, can
we reach a higher quality model while investing those same four hours?

Model Quality

Training Time

Figure 1: Improving efficiency can mean achieving the same model quality
(y-axis; e.g. accuracy) with fewer resources (e.g. training time or money; x-
axis), or achieving higher model quality with the same resources. The black
point denotes a baseline model, while the red points denote a more efficient
training scheme, enacted for different durations of training.

2.1 MEASURING SUCCESS

We measure three quantities when developing improvements to training efficiency:
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* Quality: Metrics that characterize the quality of the model. For example, accuracy in image
classification and perplexity in language modeling.

* Training Time: The amount of time necessary to train the model on a given system config-
uration.

* Training Cost: The amount of money necessary to train the model on a given system con-
figuration.

There are many other quantities that we might wish to measure. For example, it is important to
understand the effects that methods have on the time and cost required for inference (using the model
after it is trained). For simplicity in our top-line numbers, we only consider changes to the training
procedure that have a negligible impact on inference time and cost. For example, we do not modify
the model architecture in significant ways, nor do we report numbers here that reflect comparisons
across different model sizes. These constraints make it possible to isolate and characterize how
changes to the training procedure affect the three metrics above.

In addition, there are many other inputs that could affect the time and cost of training, for instance,
varying the hardware platform. In our experience, using an NVIDIA T4 rather than an NVIDIA
A100 significantly increases training times, but it can also reduce training costs because the cost per
hour for a T4 is often significantly lower than the cost per hour for an A100 on public clouds. For
simplicity in our top-line numbers, we only make comparisons between models trained on identical
hardware. In doing so, all improvements in training time lead to equivalent improvements in training
cost.

For ease of interpreting the top-line numbers we report here, we make the simplifying assumption
that inference costs and hardware configurations are fixed. In the Explorer - which includes thou-
sands of data points we have collected on different combinations of models, hardware platforms,
and methods - you can go beyond these constraints. For example, you can make comparisons across
different model sizes (e.g., ResNet-50 vs. ResNet-101) and hardware platforms (e.g., A100s vs.
V100s vs. T4s and Amazon Web Services vs. Google Cloud Platform) in order to find the most
cost-effective training configuration.

2.2 EVALUATING METHODS BY EXAMINING TRADEOFFS

Any method can have two effects on training a model:

* It can affect model quality, either positively or negatively.

* It can affect training time, either positively or negatively. Training time can then be trans-
lated into training cost. Since we focus on fixed hardware here, all improvements to training
speed lead to commensurate improvements in training cost.

If a method improves quality at the same or better training time (or improves training time at the
same or better quality), then this method is strictly better than the baseline and using it is clearly
worthwhile (Figure 2).

But what if, instead, a method improves training time but reduces quality, or improves quality but
worsens training time (Figure 3)? How does one decide whether to use such a method?

To answer this question, we evaluate the tradeoff between model quality and the available training
budget (as measured in training time or cost). Consider a particular model, say ResNet-50 on Im-
ageNet. In its standard configuration, we train for 90 epochs and reach 76.6% top-1 accuracy. But
who’s to say that this is the correct configuration? If we train for 45 epochs, we will cut training
time in half, but quality will decrease. If we train for 180 epochs, we will achieve higher quality,
but training time will increase. No single one of these configurations is “right” per se, nor does any
single data point accurately capture this time-quality tradeoff.

Instead, we describe tradeoffs in model training efficiency using a collection of points on a tradeoff
curve that represent the quality attained for a given training budget (Figure 4). Ultimately, the
researcher or engineer training the model must choose which point on a tradeoff curve best suits his
or her goals, and only by showing the full collection of points may domain experts make informed
decisions.



MosaicML Methodology Whitepaper #1 October 2021

Model Quality

Training Time

Figure 2: The model to which efficiency interventions have been applied (red)
improves both training time (x-axis) and model quality (y-axis) compared to
the baseline model (black).

Model Quality

Training Time

Figure 3: Applying a method to a model (red) could improve training time
(x-axis) at the cost of model quality (y-axis), or improve model quality at
the cost of training time compared to a baseline model (black). In either of
these scenarios, determining whether the method constitutes and efficiency
improvement requires examining a tradeoff curve (Figures 4 and 5).

Let’s walk through an example tradeoff curve (Figure 4). On the x-axis, we plot the amount of
time or money necessary to train a model. On the y-axis, we plot the quality of this model. For
a given training configuration, we consider a wide range of training budgets. For example, on
Resnet-50 on ImageNet, we train for 90, 72, 60, 54, 30, and 22.5 epochs (representing speedups
and cost reductions of 1x, 1.25x, 1.5x, 2x, 3x, and 4x). When we scale the training time in this
way, we correspondingly dilate the learning rate schedule. We then evaluate the resulting quality of
these models and plot the points. The curve connecting these points characterizes the quality-speed
tradeoff, shown in blue above.

Now, let’s see the effect of applying a method to modify the training algorithm (Figure 5). When
we modify the training configuration, we re-train the model for each of these budgets. This allows
us to create a second tradeoff curve (red). To determine whether a method is beneficial, we compare
the two tradeoff curves. If the curve moves upwards and to the left, it means that using this method
attains a better overall tradeoff between quality and training time than the baseline. Note that, in the
example above, the red points are all slower than the corresponding blue points because the method
applied on its own costs extra time. However, the improvements in quality are such that the method
still leads to a better overall tradeoff: to reach any particular quality, you can train for fewer steps,
leading to an overall speedup despite the fact that each step is slightly more expensive.

This brings us to a key point in thinking about efficiency: time and quality are typically inter-
changeable. Most quality improvements can be converted into time improvements by training for
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Model Quality

Training Time

Figure 4: An example tradeoff curve plotting model quality (y-axis) against
training time (x-axis).

Model Quality

Training Time

Figure 5: Example tradeoff curves for a baseline (black) and improved (red)
model.

fewer steps, and most time improvements can be converted into quality improvements by training
for more steps. In this way, regularization, which is typically thought of as a way to improve model
quality, can also be used as a speedup method.

One final note: the example above is particularly clean: one curve is above and to the left of the other
across the full range of training budgets we consider. This is not always the case; it is possible that
different configurations may be optimal depending on the time or cost budget available for training.
We have found that certain methods excel when budgets are very small, while others (especially
regularization) thrive in larger-budget regimes.

In summary, we think about efficiency of training in terms of tradeoffs between quality and time or
cost, and we consider a method beneficial when it makes it possible to reach a better tradeoff curve
than the baseline.

2.3 THE COSTS OF NEURAL NETWORK TRAINING

If one is trying to improve the efficiency of neural network training, it is helpful to understand the
steps of the training process and the system resources they utilize. As mentioned in the previous
section, methods typically have one or more of the following effects on the cost of training:

1. They reduce the number of optimization steps required for training to reach a particular
quality.

2. They reduce the cost of each step in order to make it possible to train for the same number
of steps in less time.
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Each step of training comprises several operations:

1. Data is loaded off of the local disk or over the network and into main memory.

2. Data is pre-processed (e.g., JPEG decompression, data augmentation, tokenization). This
can take place on CPU, an Al accelerator (e.g., a GPU), or some combination of the two.

3. Data is loaded onto the AI accelerator.

4. Data is forward propagated and backward propagated through the network, which involves
several steps of loading data from accelerator memory, computing using the data, and writ-
ing data back to accelerator memory. This process may be bound by the amount of compute
available on the accelerator or the amount of memory bandwidth on the accelerator, and
different steps can be bound by one or the other.

These operations are often performed in a pipelined manner, with data loaded for the next step while
forward and backward propagation take place for the current step. One of these components will
always impose a bottleneck on the overall speed of training. In an ideal world, that bottleneck will
be the amount of compute or memory bandwidth on the accelerator, since accelerators are typically
the most expensive resources. However, if a system is not tuned properly, it is possible that other
steps — for example loading data from disk — may become a bottleneck, hampering the ability to
take full advantage of the accelerator and wasting money.

Although our methods typically focus on reducing the cost of forward and backward propagation
(Operation 4), they often have side-effects on Operations 1-3 that create new bottlenecks or shift
the location of the bottleneck. For example, while the main effect of RandAugment (Cubuk et al.,
2019) is regularization that improves model quality and reduces the number of steps necessary to
train the model, it requires additional data augmentation that has the side-effect of significantly
increasing CPU usage. In fact, in some cases, we found that CPU usage became such a bottleneck
that it slowed down training. Similarly, some of our combinations of methods were so successful at
speeding up Operation 4 that JPEG decoding on the CPU became a bottleneck, restricting our ability
to speed up the model further without developing a more efficient dataloader pipeline.

In summary, it is important to understand how methods improve the efficiency of training and which
resource is currently imposing a bottleneck in order to target further interventions. This is a basic
tenet of computer system optimization, and it is important not to lose sight of it in the midst of the
many other considerations present in deep learning.

2.4 COMPOSITION: COMBINING METHODS

Thus far, we have only considered the effects of applying a single method to improve training.
But what happens when we compose multiple methods? In an ideal world, the effects of different
methods would compose linearly or even synergistically, where the benefits of composition are at
least as good as the combined benefits of the constituent parts. But composition is complex in
practice, and methods interact nonlinearly.

Composition is the cornerstone of MosaicML’s research program: it demonstrates how our diverse
suite of methods and best practices may be combined together into a usable toolset. It is also the basis
of our company name: we address the research problem of assembling the “mosaic” of individual
methods proposed in the literature in order to see what the complete picture looks like. We have
developed several strategies to reason about composition.

Central to our thinking about composition is Amdahl’s Law, an idea for reasoning about efficiency
in computer architectures. In our context, Amdahl’s Law (Amdahl, 1967) states that optimizing
a portion of a system responsible for N% of the costs can lead to, at most, an N% speedup. For
example, assuming there are no other bottlenecks to the training process, back propagation consumes
about 2/3 of the cost of training. Thus, any reductions to the cost of back propagation can reduce
the cost of training by at most 2/3.

One consequence of Amdahl’s law is that there are diminishing returns in optimizing the same part
of a system more than once. For example, suppose a method reduces the cost of back propagation
by 50%. This will reduce the overall cost of training by 1/3, assuming there are no other bottlenecks
in the training process. Because back propagation now comprises less of the training cost than it
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did before, introducing a second method that also reduces the cost of back propagation by 50% will
only reduce the overall cost of training by 1/6 (assuming it composes perfectly with the first method).
And if each of these methods also reduces model quality, it is possible that composing these methods
could actually lead to a worse tradeoff curve than using either method individually. Early in our
research, we encountered this exact problem. We combined two methods that each resulted in
improved tradeoffs individually, but when combined led to worse tradeoffs than the baseline model
because they were optimizing the same part of the training process.

As a consequence of this experience, we have learned that composition tends to be most successful
when the methods affect all parts of training in a balanced way. For example, it is more beneficial to
compose a method that reduces the cost of forward propagation with another that reduces the cost of
back propagation. Or, alternatively, to compose a method that increases the cost of back propagation
but improves quality with another method that reduces the computational cost of each step back to
the original level.

Our best results occur when we combine many methods. For example, on ResNet-101, they occur
when we combine BlurPool, Channels Last, Label Smoothing, Mixup, Progressive Resizing, and
Sharpness-Aware Minimization while training for fewer steps using Scale Schedule. You can use
the Explorer to view these combinations

3 SETTING BASELINES

As the previous section illustrates, an essential part of improving the efficiency of neural network
training is choosing appropriate baselines to compare against. One common failure mode in machine
learning research is to optimize the configuration of a proposed method without optimizing the
corresponding baseline, potentially overestimating the value of the method. At MosaicML, we take
great care to ensure that our baselines are as strong as possible, presenting the most difficult possible
scenario in which to improve training time, training cost, or model quality.

Our baselines reflect standard best practices for efficient training:

* We use mixed precision training.
* We have tuned the data loading pipeline to maximize throughput.
* We have performed hyperparameter search across batch size and learning rate.

* We use a step-wise (rather than epoch-wise) learning rate schedule, which we have found
to improve quality across our range of settings.

* Rather than select a specific training budget, we produce tradeoff curves reflecting a range
of possible training budgets to ensure that our baselines reflect the minimum possible bud-
get to reach a particular level of quality.

* We use decoupled weight decay (Loshchilov & Hutter, 2017) to ensure that the level of
weight decay is appropriate for a range of batch sizes and learning rates.

* On GPT models, we have been guided by scaling laws (Kaplan et al., 2020) in choosing
our model sizes and hyperparameters, but we have explored around these hyperparameters
to ensure that our choices are as strong as possible.

These baselines are challenging. Our ability to still reduce time, reduce cost, and improve quality in
comparison to these baselines reflects the immense opportunity to improve the efficiency of training
algorithmically.

These baselines reflect a significant amount of tuning. We recognize that many research and indus-
trial models may not have been subjected to this level of tuning. In order to provide context for
those scenarios, several of our benchmarks in the Explorer also include unoptimized baselines that
use mixed precision training and tuned hyperparameters but no other enhancements.
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4 DATA COLLECTION

To evaluate our methods, we collected data on thousands of combinations of models, datasets, meth-
ods, and hardware platforms. You can view these results in the Explorer. In this section, we provide
the system details for how we collected this data so that you can replicate our results.

We collected all of our data on the publicly available Amazon (AWS) and Google (GCP) clouds.
We determined the quality of each combination of model, dataset, and methods by training on a
single hardware configuration (8xA100 on AWS - p4d.24xlarge). We determined the time and cost
required for conducting this training run on all other hardware configuration by profiling the training
throughput and extrapolating the time that would have been required for the full training run. For
methods that behave uniformly throughout training, we profiled the initial epochs of training and
extrapolated. For methods that change their behavior and throughput over the course of training
according to a schedule, we profiled relevant points in training and extrapolated.

Performance and quality were obtained with our MosaicML Composer open-source library using
the Composer Docker Image. The Docker Image is built with the following software dependencies:
Ubuntu 18.04, Pytorch v1.9.0, Python 3.8.0. CUDA 11.1.1.

AWS Configuration

Image: EKS Optimized AMI Version 1.19 with GPU Support
/aws/service/eks/optimized-ami/1.19/amazon-linux-2-gpu/recommended/image_id
CUDA Driver:460.73.01

For more setup information, see here

GCP Configuration

Image: COS with ContainerD, Version 1.18.16-gke.502

CUDA Driver: 450.119.04

For more setup information, see here and here
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