
Issue Number 54 January / February 1 992 US$3.95

Z-System Corner
Ten Years of ZCPR

B. Y. O. Assembler

Local Area Networks

Advanced CP/M

ZCPR On a 16-Bit Intel Platform

Real Computing

Interrupts and the Z80

8Mhzon anAmpro

Hardware Heaven

What Zilog Never Told You About the Supers

An Arbitrary Waveform Generator

The Development of TDOS

The Computer Corner

I88N 1 0T4»-9SS1

Now $4.^ Stops The Clock

On Over

100 GEnie Services

For the first time ever, enjoy
unlimited non-prime time* usage of

many popular GEnie^"^ Service fea-

tures. For just $4.95 a month.
Choose from over 100 valuable serv-

ices including everything from elec-

tronic mail and stock closings to ex-

citing games and bulletin boards.
Nobody else gives you so much for

so little.

You can also enjoy access to a
wide variety of features like software
libraries, computer bulletin boards,
multi-player games, Newsbytes, and
the Computer Assisted Learning
Center (CALC) for just $6.00 per
non-prime hour for all baud rates

including 2400. That's less than
half of what some other services

charge. Plus with GEnie there's no

sign-up fee.

Now GEnie not only gives you
the information and fun you're look-

ing for. But the time to enjoy them,
too.

Follow these simple steps.

1. Set your modem for half duplex
(local echo), at 300, 1200 or 2400
baud.
2. Dial toU free 1-800-638-8369.
Upon connection, enter HHH.
3. At the U#=prompt, enter
XTX99486,GENIE then press RE-
TURN
4. Have a major credit card or your
checking account number ready.

For more information in the
U.S. or Canada, call us voice at

1-800-638-9636.

TCJ readers are invited to join us in the CP/M
SIG on page 685 and the Forth Interest Group
SIG on page 710. Meet the authors and editors

of The Computer Journal! Enter "M 710" to join
the FIG group and "M 685" to join the CP/M and
Z-System group.

We'll meet you there!

/fJUST $4.95
=\

Moneyback
Guarantee

Sign up now. If you're
not satisfied after using
GEnie for one month

. we'll refund your $4.95. ,.

•Applies only in U.S. Mon.-Fri., ePM-SAM local time and all day Sat., Sun., and select holidays. Prime time houriy rates $18 up to 2400 tiaud. Some features sutsject to surcharge and may not t]e
availabte outside U.S. Prices and products listed as of Oct. 1 ,

1990 suijject to change. Telecommunications surcharges may apply. Guarantee limited to one per customer and applies only to first
month of use. GE Information Services, GEnie, 401 N. Washington Street, Hoci<ville, MO 20850. © 1991 General Electric Company.

The Computer Journal

Founder

Art Carlson

EdHor/Publisher

Chris McEwen

Technical Consultant

William P. Woodall

Contributing Editors

Bill Kibler

Matt Mercaldo

Tim McDonough

Frank Sergeant

Brad Rodriguez

Clem Pepper

Richard Rodman
Jay Sage

The Computer Journal is published

six times a year by Socrates Press,

P.O. Box 12, S. Piainfield, NJ 07080.

(908) 755-6186

Opinions expressed in The Com-

puter Journal are those of the respec-

tive authors and do not necessarily re-

flect those of the editorial staff or pub-

lisher.

Entire contents copyright © 1991

by The Computer Journal and respec-

tive authors. All rights reserved. Re-

production in any form prohibited with-

out express written permission of the

publisher.

Subscription rates* Within US:

$18 one year (6 issues), $32 two

years (12 issues). Foreign (surface

rate): $24 one year, $44 two years

Foreign (airmail): $38 one year, $72

two years. All funds must be in U.S.

dollars drawn on a U.S. bank.

Send subscription, renewals, ad-

dress changes, or advertising inquires

to: The Computer Journal, P.O. Box

12, S. Piainfield, NJ 07080, telephone

(908)755-6186.

Registered Trademarks
It Is easy to get in the habit c* using company

trademarks as generic terms, but these trademarks are

the property of the respective companies. It is important

to acknowledge these trademarks as their property to

avoid their losing the rights and the term becoming pub-

lic property. The foiiowing frequently used trademarks

are acknowledged, and we apislogize for any we have

overkxiked.

Apple II, lit, lie, lie, Lisa, Macintosh, DOS 3.3,

ProOos; Apple Computer Company. CP/M, DOT, ASM,

STAT, PIP; Digital Research, DateStamper, Back-

Grounder ii, Dos Disk; Plu*Perfect Systems. Clipper,

Nantucket; Nantucket, Inc. dBase, dBASE II, dBASE III,

dBASE III Plus, dBASE IV; Ashton-Tate, Inc. MBASIC,

MS-DOS, Windows, Word; MfcroSoft. WordStar; Micro-

Pro Internatkxial, IBM-PC, XT, and AT, PC-DOS; IBM

Corporatksn. Z80, Z280; Zilog Corporatkjn, Turbo Pas-

cal, Turbo C, Paradox; Borland International. HDe4180

Hitachi America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The

Computer Journal, they are acknowledged to be the

property ol the respective companies even if not spe-

cifically acknowledged in each occurrence.

TP / ^^^ Computer Journal
a \JU Issue Number 54 " January / February 1 992

Editor's Desk 2

Reader-to-Reader 2

Z-System Corner 3

Ten Years of ZCPR
By Jay Sage.

B. Y. O. Assembler 8

A 6809 Forth Assembler

By Brad Rodriguez.

Local Area Networks 13

Bridges and Routers

By Wayne Sung.

Advanced CP/M 15

I/O Redirection in CP/M Plus

By Bridger Mitchell.

ZCPR On a 16-Blt Intel Platform 19

By Brian Moore.

Real Computing 24

Minix Miscellany, Being Two Places at Once,

and Hungarian Ghoulish

By Rick Rodman.

Interrupts and the Z80 26

By David Goodenough.

8 Mhz on an Ampro 30

Double Your Clock Speed

By George Warner.

Hardware Heaven 33

Dallas Smartwatch and Data Books

By Paul Chidley.

What Zilog Never Told You About the Supers 35

By Brad Rodriguez and Doug Fleenor.

An Arbitrary Waveform Generator 37

Using the Harris RTX2001 A. Part Three

By Jan Hofland.

The Development of TDOS 45

By Guy Cousineau

The Computer Corner 48

By Bill Kibler.

Editor's Desk

By Chris IVIcEwen

Ten Years of 2CPR

The lead article this issue commemorates the tenth

anniversary of the release of ZCPR to the public domain. This
event is more significant than it may seem. ZCPR, the first

building block of what we today call Z-System, represents a
monumental contribution to public domain programming.
To this day, I know of no other project more ambitious.

ZCPR is an essential element of an operating system. Few
operating systems have been released in this way. It was
developed to improve and replace the product of a major
corporation. It is always used by licensees of the commercial
version who use it in preference. In comparison, Minix was
developed to provide an educational sample, a limited model
of a more powerful system for those

who lacked the full system. ^^mb^^^i^^^
ZCPR stands as a monument to

cooperation and teamwork. It was first

released through the Amateur
Computer Group of New Jersey

(ACGNJ), one of the world's largest

and most prestigious user groups.

Work today continues through the joint

efforts of people who gather
electronically on Z-Nodes and on
computer networks around the world.

While this community has its elders as

any would, it remains a grassroots

movement. It has never been the

domain of lone wolves.

Work on ZCPR continues after a

decade. This is an eternity in the world
of micro computers! To put this is

perspective, the Altair was introduced

in 1976. If we consider that event the

beginning of recorded history for this

industry, then 1982 would equate to

the time of Moses! Yet ZCPR continues

as a viable, useful system.

I asked Jay Sage if he would do the

honors for us. We know Jay as the

author of ZCPR versions 3.3 and 3.4,

and the TCJ series on ZCPR that has

continued urunterrupted since 1987. He
has been a mover and shaker in this

commuruty nearly from the begirming.

His bulletin board system is Z-Node
#3, from a universe that at its height

was over 70.

Join us in this celebration of the

human spirit. May our next ten years be as good as our first!

Bridger's Back.

Bridger Mitchell returns with his Advanced CP/M column
this issue! This is big news!

Bridger joined forces with Derek McBCay to form
Plu*Perfect Systems in 1985. Their firet product was an
upgrade to Perfect Writer. They wrote the Kaypro
TurboROM, which became a Must Have upgrade for Kaypro
owners and was the beginning of Bridger's work in fbcing

hurting operating systems.

The two next wrote Backgrounder which allowed users to

See Editor, page 34

ReadeMo-Reader

In issue 53, a reader from Bonn,
Germany refers to a rumored way to

add a SCSI controller to a Z80 system
by unplugging the CPU and installing

an adapter card. This is probably a

reference to a product sold by Emerald
Microware somewhere in Oregon; they

used to advertise in Micro Cornucopia,

but I don't seem to have any issues

handy.

The product that they sell is a
connection to the WD1002-05 ST506

hard disk controller. AUhough this

controller is generally believed to be
either SASI or SCSI, this is not the case;

it is just a simple 8-bit interface

involving 3 address lines, 8 data lines,

a Chip Select, Read, and Write. The
module in question decodes the

address for the WD1002-05 and places

the stuff needed by that controller onto

a connector that can be cabled over to

the WD1002-05. In addition to this

module. Emerald Microware also sells

the WD1002-05, software to control it,

spare parts for Kaypros, and lots of

other nifty stuff.

I have purchased this module and a

WD 1002-05, but their NorthStar format

and mine disagree on the interleave of

the disk so I have not had any
experience with their software. I

intended to write my own BIOS for the

thing anyway, so it's no biggie. Just

haven't gotten around to it. I have

done enough to know that the module
is correctly communicating with the

WD1002-05, however.

By the way, no one at Western
Digital remembers the WD1002-05, so

don't call them and ask about it. It also

See Reader, page 44

Letters to the editor and other readers are welcome. Submit to The Computer Journal,
Post Office Box 11, South Plainfield, N} 07080-0012. Letters may also be electronically

submitted via Internet to "cmcewen@gnat.rent.com," via GEnie™ to "TCJ$' or to

Socrates Z-Node at (908) 754-9067. Submission implies permission to publish your letter

unless otherwise stated. Letters may be edited as necessary.

The Computer Journal / #54

Z-System Corner

Ten Years of ZCPR

By Jay Sage

On February 2, 1992, exactly ten years have passed since

the first version of ZCPR was released. I have been involved

with it one way or another most of that time, and I think it is

amazing how vibrant the activity in the field still is.

Our editor, Chris McEwen, had hoped that we could

make this issue a special celebration of ZCPR with contribu-

tions from some of the original developers, most notably

Richard Conn. I exchanged email with Richard several times

about this, but he never picked up on it. Since of all those still

active in the Z community I may be the one who goes back

the farthest, it is perhaps fitting that 1 take on the task.

Announcement

Before 1 start on that, I do have one important announce-

ment to make. 1 would like to call your attention to the new

Sage Microsystems East ad in this issue. You will notice that

there have been quite a number of significant price reduc-

tions. We hope that by lowering the entry price to Z-System

from $70 to $49 we will encourage more people who still do

not use Z-System to try it out.

The History of ZCPR

Much of the material in this column comes from the intro-

ductory chapter of my book, the ZCPR33 User Guide. When

Echelon made my revision of ZCPR3 the official product re-

lease in 1987, naturally they wanted a manual to go with it.

Besides including all the necessary technical information,

such as what the new command processor did and how it

should be installed, 1 also included two other items that were

Jay Sage has been an avid ZCPR proponent since the very first version appeared.

He is best known as the author of the latest versions 3.3 and 3.4 of the ZCPR com-

mand processor, his ARUNZ alias processor and ZFILER, a "point-and-shoot" shell.

When Echelon announced its plan to set up a network of remote access computer

systems to support ZCPR3, Jay volunteered immediately. He has been running Z-

Node #3 for more than five years and can be reached there electronically at 617-965-

7259 (MABOS on PC Pursuit, 8796 on Starlink, pw=DDT). He can also be reached

by voice at 617-965-3552 (between 11 p.m. and midnight is a good time to find him

at home) or by mail at 1435 Centre Street, Newton Centre, MA 02159. Jay is now

the Z-System sysop for the GEnie CP/M Roundtable and can be contacted as

JAY.SAGE via GEnie mail, or chatted with live at the Wednesday real-time confer-

ences (10 p.m. Eastern time).

In real life. Jay is a physicist at MIT, where is tries to invent devices and circuits

that use analog computation to solve problems in signal, image and information

processing. His recent interests include artificial neural networks and supercon-

ducting electronics. He can be reached at work via Internet as SAGE@LL.MIT.EDU.

of great importance to me: a statement of what I was trying

to achieve with ZCPR33 and the history that led up to it.

Here in TCJ 1 often talk about the goals of Z-System; this

time I will review some of the history,

ZCPR1
"Don't you know about ZCPR!" I remember very well

being greeted with that exclamation from one of the veteran

club members when, as a neophyte computer user, I

attended a CP/M computer club meeting. He could not

believe that someone would still be using standard CP/M. I

soon felt the same way and still do today!

The ZCPR he was referring to was what we would now

call ZCPRl. ZCPR, which stood for "Z80 Command Proces-

sor Replacement," was the work of a group of computer

hobbyists who called themselves "The CCP Group." They

were Frank Wancho, Keith Petersen, Ron Fowler, Charlie

Strom, Bob Mathias, and Richard Conn. Richard, as we will

see, was the main force behind the effort.

Ron Fowler is well known as the author of the MEX
telecommunications program, which I still use and enjoy

immensely. Keith Petersen wrote a simplified version of

Ward Christensen's CBBS, the original computerized bulletin

board system. Keith's program was called MINICBBS; my
own customized version of it runs to this day on my Z-Node.

It is, to be sure, outmoded, but it gives me a sense of

connection with history that I still treasure.

Keith Petersen was for a long time a sysop of one of the

finest BBS systems in the country. Royal Oak. Though it

branched out to MS-DOS software, it never neglected CP/M.

It was, perhaps, unique in that callers to Royal Oak found

themselves immediately at the operat-

' ing system prompt. There was no re-

quest for a name or password. If you

wanted to use MINICBBS, you had to

invoke it yourself.

Frank Wancho is involved in the

administration of the SIMTEL20

computer at the White Sands Missile

Range. This machine houses a huge

archive of CP/M programs (and many

others). Keith is on contract to

SIMTEL20 to help maintain the

collections. I continue to see both their

names. Frank, via email, gave me some

of the information on the birth

of ZCPR.

Sometime around 1981 Richard

Conn sparked the group's enthusiasm

The Computer Journal / #54

over rewriting the CP/M console command processor, or
CCP, to take advantage of the more efficient and elegant
opcodes of the new Zilog Z80 microprocessor. The people in
the CCP Group were not in physical proximity. I believe that

they maintained contact, as we do today, via electronic mail.

Frank Wancho provided the computer access that made that

contact possible.

The original ZCPR was released by
SIG/M of the Amateur Computer Group

of New Jersey

With some space opened up in the CCP, the programmers
were able to add a number of convenient new features. The
most important new concept was that of a search path for

COM files. With CP/M version 2, Digital Research had intro-

duced user numbers, but the way they were implemented
made them virtually worthless, because there was no way
from one user area to run or access files in another user area.

ZCPR, with its ability to automatically search drive A/user 0,

overcame this problem and opened up the possibility of put-
ting the new user areas to effective use.

Also introduced with ZCPR was the GO command, which
permitted the most recently executed transient program to be
run again without having to reload it from disk. That was a
real a boon in those days of slow floppy drives. Many
small—but very useful and helpful—improvements were
made in the resident commands. For example, in CP/M,
when a REN or SAVE command specified a destination file

that already existed, the command would simply abort. The
user would then have to erase the old file manually and start

over again. With ZCPR, the REN and SAVE commands made
life easier by asking the user if the old file should be
overwritten.

The original ZCPR was released to the public on a disk
published by SIG/M (Special Interest Group / Micro-
computers), the public-domain software distribution arm of
the Amateur Computer Group of New Jersey (ACGNJ). The
disk was volume 54, dated February 2, 1982. Interestingly

enough, this is volume 54 of The Computer Journal that you
are reading ten years later!

Several additional refinements were made to ZCPR by
other programmers, leading to a train of development
known as NZCPR (New ZCPR). Version 1.6 of NZCPR was
released on SIG/M volume 77 at the end of October, 1982.

This branch eventually reached version NZCPR21, a version
never published in disk form but distributed over the remote
access computer system network.

Jim Byram, of the Boston Computer Society CP/M Group,
produced a privately distributed version of NZCPR using
only Intel 8080 code, which showed that efficient coding, and
not simply the use of the new Z80 opcodes, was a major
factor in improving the command processor. Jim, by the way,
may be the one who made the remark to me that I quoted
eariier. I eventually became the leader of that group, which
merged with several others and ultimately became the Zi/Tel
Group, of which 1 am now the CP/M director and the bulle-

tin board sysop. That group supports CP/M, Z-System, and
MS-DOS.

ZCPR2
While ZCPRl was a significant improvement over CP/M,

it was not a revolutionary advance. Richard Coniv however,
had a vision of a truly advanced operating system, and he
continued the development. On February 14, 1983, almost
exactly one year after ZCPRl appeared, ZCPR2 was released

in a set of ten SIG/M volumes (98-107), an unprecedented
and monumental contribution of public-domain software.

ZCPR2 made a very significant conceptual advance: it

used memory buffers in protected memory above the BIOS
to hold new operating system modules. The command line,

which had always resided in the command processor, was
put in one of these buffers so that it would not be destroyed
by warm boots, during which a fresh copy of the command
processor is loaded from disk. In that way multiple com-
mands on a line could be implemented.

The command search path was also placed in one of these
buffers instead of hard-coding it into the command proces-
sor. In this way the search path could be changed by the user
at any time. The concept of named directories was also intro-

duced, using still another memory buffer to store the index
of names.

Many of the utilities that we are familiar with in ZCPR3
first appeared with ZCPR2. These include ZEX, WHEEL,
HELP, PATH, PWD, MKDIR, and MENU. A rudimentary
shell concept was used in MENU. When this program placed
a command into the multiple command line buffer, it would
always add its own name at the end of the command se-

quence so that control would eventually return to MENU.
This worked fine for single levels of shells. Extended com-
mand processing was also introduced with ZCPR2.

The ZCPR2 documentation alone ran

to more than half a megabyte

The ZCPR2 documentation, alone, ran to more than half a
megabyte! It included a concepts manual, an installation

manual, a users guide, and a rationale manual (I guess Rick
felt he had to prove he wasn't crazy in doing all this

wonderful stuff).

Shortly after the initial ZCPR2 SIG/M release, an upgrade
to version 2.3 was published in volume 108. Up to this point
ZCPR2 still followed in the tradition of ZCPRl and used
Zilog opcodes. The features of ZCPR2 were now so exciting,

however, that owners of computers based on Intel's 8080 and
8085 microprocessors wanted to have them, too. Charlie
Strom, a member of the original CCP Group and well-known
later as the sysop of the CompuServe CP/M Special Interest

Group, converted the command processor code and some of
the key utilities to Intel-compatible code and released the
result in SIG/M volume 122. At the time, believe it or not, I

was using at work an Intel MDS-800 microprocessor devel-
opment system, the computer for which Gary Kildall, then at

Intel, invented CP/M, and 1 remember very well bringing up
this 8080 version of ZCPR2. It was marvelous!

2CPR3
But ZCPR2 was by no means the end of the evolution. On

Bastille day, July 14, 1984, not quite a year and a half after

ZCPR2, Richard Conn offered ZCPR version 3 in the form of

The Computer Journal / #54

another nine volumes of SIG/M disks (184 to 192). At this

point more than 10% of all the software ever released by

SIG/M had come from one contributor—Richard Conn!

One time when 1 was talking with Richard, 1 must have

expressed my amazement at the incredible amount of soft-

ware he had written and released to the public. 1 was equcdly

impressed by Richard's response. He said that the code that

others had offered to the public had taught him and helped

him so much that he felt a tremendous obligation to contrib-

ute what he could to the community. He certainly did that!

And that same spirit still pervades the 8-bit community.

ZCPR3 brought both significant new
concepts and major refinements

ZCPR3 brought both significant new concepts and major

refinements. Three of the innovations were flow control,

error handling, and the message buffer.

Flow control made it possible to achieve a vastly higher

degree of automated operation, since the command proces-

sor was no longer dependent on the user for all command
decisions but could now make wide-ranging decisions on its

own. The message buffer made possible communication be-

tween the command processor and programs and between

successively run programs.

Error handlers made it possible for improperly entered

commands to be corrected, an important facility to have in

connection with multiple commands on a line. Having to

retype a single command after a mistake had been bad

enough; having to retype a whole, long string of commands
because of a single mistake seriously discouraged one from

making use of the multiple command facility.

ZCPR3, by the way, unlike it predecessors, was written so

that it could be assembled to either Intel or Zilog opcodes. In

the former case, the code was considerably longer and fewer

features could be included, but it would work on an 8080 or

8085 computer.

ZCPR31

The chain of refinements to ZCPR3 that led to version 3.3

started in March, 1985, when I produced a private,

experimental version of ZCPR3 called ZCPR31 for use on my
Z-Node. It was modified so that the command processor

would get the values for maximum drive and user from the

environment descriptor (more on this later).

This was my first close look at operating system code,

something that had always frightened me, as I am sure it has

many others. There is a mystique about those words,

"operating system," that makes one think that only the most

advanced programmers could possibly understand the code.

In fact, I discovered that the code did not look much different

from that in ordinary utility programs. To my amazement, I

was able to make changes that worked and improved the

CCP. The most significant advances occurred in August,

1985, when three further major enhancements were

introduced.

First, the code was changed to prevent the infinite loop

that Z30 experienced when the specified error handler could

not be found (perhaps because the path was changed or the

error handler renamed). In that situation, a command error

would invoke the error handler. When the error handler

could not be found, that constituted another error that caused

the error handler to be invoked, and so on until one pressed

the reset button or turned off the power.

Second, the code was modified so that it could determine

the addresses of the RCP, FCP, and NDR modules from the

environment and respond to dynamic changes in these ad-

dresses.

Finally, additions were made to the code that allowed an

extended command processor to return control to the com-

mand processor if it also could not resolve the command.

The command processor would then invoke the error han-

dler. Now the extended command processor really was a

full-fledged extension of the CCP, and a ZCPR3 system could

take advantage of both extended command processing and

error handling. The same mechanism also made it possible

for ordinary programs to initiate error handling.

In January, 1986, the first steps were taken to fix serious

bugs in the way the minimum path and root path were com-

puted. The fix, however, had errors of its own, and it was not

until June, 1986, that Howard Goldstein finally implemented

a complete and proper solution.

The next major set of advances came in March, 1986,

when Al Hawley, sysop of Z-Node #2 and now a familiar

TCJ author, introduced several new concepts. One was a

new way to implement wheel-protected commands
(commands that can be executed only by specially authorized

users). In Z30 wheel protection had to be hard coded into the

command processor (and RCP), and when one of the

restricted commands was invoked with the wheel off, an

There is a mystique about those

words, "operating system," that makes
one think that only the most advanced

programmers could possibly

understand the code

error message resulted. Al introduced the idea of setting the

high bit of the first character of a command to signal that the

command was off-limits to non-wheel users.

This concept had several important advantages. First, the

code was shorter. Second, the new code automatically made
the same technique apply to commands in other modules

(RCP and FCP), so that wheel-checking code could be

eliminated from those modules. Third, when the wheel byte

was off, wheel-protected commands instead of displaying an

error message simply vanished as far as the command
processor was concerned. In this way, transient programs or

aliases with the same name as the resident command could

automatically step in and provide whatever action the system

implementer desired.

Al Hawley also introduced two concepts that made deal-

ing with secure systems easier. He made it possible for the

command processor to determine dynamically whether or

not to recognize the DU form of directory reference in re-

sponse to the setting of the DUOK flag in the environment,

and he allowed the option of bypassing password checking

when the wheel byte was set. These features made it possible

for a sysop or system implementer to live comfortably with a

secure system (though they did not make life any easier for

the restricted user).

The last major advance that occurred in the development

The Computer Journal / #54

of ZCPR31 resulted from a conversation I had with Bruce

Morgan in July, 1986. We were discussing the annoying way
that ZEX functioned under shells, with the shell program
being reloaded for each command line, only to realize that

ZEX was running. It would then feed the next command line

from ZEX to the multiple command line buffer. I conceived a

small change in the code that made this problem vanish in a

flash.

ZCPR33
At the very end of January, 1987, 1 got a call from Echelon.

Richard Conn had decided to discontinue his involvement

with ZCPR3, and Echelon asked if I would be willing to write

the official ZCPR version 3.3 release based on the

experimental ZCPR31. I agreed. During the months of

February, March, and April of 1987 an enormous amount of

additional development took place, the results of which are

described in detail in the ZCPR33 User Guide. Only some key
concepts will be mentioned here.

The decision was made no longer to make any attempt to

support 8080/8085 computers. The code was written using

Zilog mnemonics, and extensive use was made of Z80-

spedfic instructions, including relative jumps, block moves,
block searches, direct word transfers to register pairs other

than HL, 16-bit subtractions, and the alternate register set.

This approach has continued to the current ZCPR34. To my
knowledge, no one has even tried to make an 8080 version;

there just are not many of those machines still in operation.

One of the nicest features introduced with ZCPR33 was
the automatic installation of programs. Until this point,

before a ZCPR-aware program could be used, it had to be

"installed" for the specific system configuration. If one forgot

to do this, the program would likely behave in bizarre ways,

and this was a very common source of difficulty for new and
experienced users alike.

In ZCPR2 installation was a very elaborate procedure in

which a large block of code had to be patched using the

special GENINS utility. With ZCPR3 the information about

the system configuration was placed in a memory buffer

(called the environment or ENV) where all programs could

access it. More importantly, the system configuration could

be changed without reinstalling all the

programs. Now installation amounted
only to patching the ENV address into

the program.

As soon as I heard that Richard

Conn had figured out a way to elimi-

nate this annoying installation step, the

solution became obvious to me as well.

Since the command processor already

loads a program from disk, and since it

already knows the ENV address, why
couldn't it install the address directly

into the memory image of the pro-

gram? That's just what it does.

One truly revolutionary concept

was introduced with ZCPR33. Until

that time, all CP/M transient programs
were loaded to and ran at a standard

address, lOOH. With CP/M there was
no reason to do otherwise, but with

ZCPR3 there was. From the time of

ZCPRl, I had become quite

accustomed to using the GO command to rerun the previous

program. To my puzzlement, GO sometimes produced
bizarre results under ZCPR3.

Under CP/M, programs get loaded only when the user

instructs the system to run them. Under ZCPR3, however,

there are quite a few programs that are loaded and executed

automatically by the command processor. These include

extended command processors, error handlers, shells, and
transient (COM) versions of otherwise resident commands,
such as ERA or REN. Sometimes, using the GO command
resulted in rerunning these programs instead of the last

program the user specified.

One day as I was working on the ZCPR33 code, I noticed

that a trivial change would allow the command processor to

load a file to an address other than lOOH. This, I realized,

could overcome the problems with the GO command. User
programs could be loaded, as usual, to lOOH, but programs
invoked automatically by the command processor could be

loaded to a higher address, such as 8000H. User programs in

low memory would not be overwritten, and the GO com-
mand would still be able to rerun them.

One more group of major innovations was introduced

with ZCPR33. ZCPR30 provided a number of security fea-

tures that made it particularly suitable for use on a remote

access system (BBS). The so-called wheel byte could be used

to control access to both resident and transient programs.

Dynamically changeable limits on the range of drives and
user numbers and named directories with passwords could

keep callers out of certain disk areas.

This security made it possible to allow remote users to run
a system directly from the command line prompt, in sharp

contrast to MS-DOS remote systems, where a user who gets

to the command prompt has free reign to access or destroy

any part of the system.

The security system under ZCPR30, while fully effective,

however, could be an unnecessary nuisance. For example,

there could be situations where a user could access a direc-

tory area by name, because it had no password, but not by
drive/ user value, because they exceeded the allowed range.

Under ZCPR33, if a directory is accessible by name, then it

could also be accessed by drive/ user.

The CPU280, designed and built by Tilmann Reh, was described in issue 53. It

uses a Zilog Z280 at 12.5 MHz and accepts up to 4 MB ofRAM.

The Computer Journal / #54

Tilmann Reh, Jay Sage and Uwe Herczeg with a CPU280 during Jay's visit to

Germany in June 1991. Uwe is working on software to integrate Tilmann's IDE

controller to this computer. The group met at Uwe's computer store in Brackenheim.

ZCPR34
The current state of the art of the ZCPR command proces-

sor is version 3.4. It was first released some time around

March of 1988 along with NZCOM and Z3PLUS and was

described in issue 32 of TCJ. Relative to Z33 it was an evolu-

tionary advance, a refinement; there were no radical new
ideas, as there had been in Z33. Nevertheless, the changes

were significant and useful. There have been several minor

revisions since the original release.

One change introduced with ZCPR34 was an extended

environment descriptor. We removed some information that

had proved to be of little use and added new information.

The most important addition was a drive vector word. The

ENV always had a max-drive byte that specified the highest

letter drive available on the system. However, this was not

adequate for systems that had drives that were not contigu-

ous, such a A:, B:, and E:. The new drive vector tells exactly

which drives are available for use at any time.

The new ENV also contains the addresses of the CCP,

BDOS, and BIOS and the sizes of the first two. This is to

prepare us for some future enhancements in which we will

not necessarily adhere to the standard component sizes that

were specified in the original CP/M. Hal Bower and Cam
Cotrill, as part of the development of a new banked version

of ZSDOS (which is nearing release), have been experiment-

ing with a CCP that is larger than the usual 2K and a banked

DOS that will be significantly smaller than the standard 3.5K.

I mentioned earlier that ZCPR33 had rationalized the im-

plementation of directory security so that any area accessible

by name would also be accessible by drive/user, even if the

drive or user exceeded the limit set in the environment. With

ZCPR34 the symmetry was completed. Now if there is a

password-protected directory that could be accessed freely

using the DU: format, then its password will be ignored.

Now there will never be directory areas that can be accessed

in one way but not the other.

The extended command processor interface was liberal-

ized so that commands that would

formerly have been considered illegal

and processed immediately as errors,

such as those with wildcard characters

('?' or '*') or with an explicit file type,

can be passed to the ECP. For example,

the ALIAS.CMD file that defines

aliases for the ARUNZ extended

command processor can now have an

entry for the command '?' that invokes

the program HELP.

The most sigiuficant advance in

ZCPR34 was support for what we now
call a type-4 program. Type-3 pro-

grams, as we described earlier, are

loaded and run at an address other

than lOOH, but the address is still fbced

at the time the program is compiled. It

was clear to me at the time I wrote Z33

that it would be ideal if the load/run

address of a program could be deter-

mined dynamically (that is, at the time

it is loaded by the CCP). However, I

opted for the very simple code that sufficed for handling the

type-3 program.

Joe Wright was not satisfied with that compromise and

soon wrote an initial implementation of a type-4 program,

which would relocate the code automatically to the top of

free memory. With a lot of cooperation between us, we
honed the approach to the point where it functioned very

nicely and added very little code to the command processor.

The secret to this lay in Joe's use of what is called a PRL

(page relocatable) program for the executable file. The details

of this are described in TCJ issue 32. The standard PRL file

begins with two 128-byte header records, and I suggested

placing the code required to calculate the proper load ad-

dress and the code to perform the address relocation in these

header records rather than in the command prxacessor itself.

Joe found a brilliant way to implement this.

Not only did this approach keep the CCP code shorter, it

also made the whole type-4 program more flexible by

making it independent of the command processor. My next

TCJ column will introduce the first examples of alternative

versions of the type-4 loader routines that are placed in the

PRL header. These new headers can be installed by the user

in any existing type-4 program to change the way the

program relocates itself. This is another example of the

beauty of the modular approach that has been one of the

hallmarks of ZCPR.

My next column will also introduce the latest revision of

ZCPR34, version 3.4E. Howard Goldstein prepared this ver-

sion by integrating a number of ideas, most notably a small

change in the type-4 loader code to make it even more flex-

ible than it was originally.

So, after ten years, an eternity in the computer industry,

ZCPR—the concept Richard Conn initiated—is still

developing and still challenging the creativity of users and

programmers alike. As always, these developments arise

from the cooperation of a large community of people willing

and eager to share ideas.©

One Of the advantages of being disorderly is that one is constantly mai<ing exciting discoveries.

—Alan Alexander Milne

The Computer Journal / #54

B. Y. 0. Assembler

A 6809 Forth Assembler

By Brad Rodriguez

Introduction

Part 1 of this two-part series, published in issue 52,

described the fundamental concepts used when writing

postfix, structured assemblers in Forth, This article examines,

in detail, an actual assembler for the Motorola 6809

microprocessor.

1 will begin with the "programmer's guide" for the 6809

assembler. I've found, when building assemblers, that it's

helpful to write this first. This is good practice, and is also in

keeping with Rodriguez' First Rule for Metacompiler Writers:

always keep in mind what you want the result to look like!

In the off-chance that someone actually wishes to use this

assembler on a 6809 project, I've also included a conversion

chart from Motorola to Forth notation. If you're ever writing

an assembler for others to use, please do them a favor and
make one of these charts!

Finally, I'll go over the source code, and (hopefully) ex-

plain all of the obscure tricks and techniques.

The complete source code for the 6809 assembler accom-
panies this article. It is written for a fig-Forth derivative, and
so will require translation for 79- or 83-Standard machines.

This code was originally a Forth screen file; it has been trans-

lated to a text file for the editor's convenience.

Programmer's Guide
The syntax of 6809 assembler instructions is:

operand addzessing-mode opcode

For many instructions the addressing mode is optional.

Some instructions (TFR and EXG) have two operands.

Valid non-indexed addressing modes are:

nn # jjnmedlate value
nn <> direct (DP-page) addressing
nnnn extended addressing
nnnn [

]

extended Indirect addressing

Valid indexed addressing modes

All of the indexed modes except autoincrement/
decrement by 1 also have an Indirect form. This is specified

by appending the suffix [] after the addressing mode, e.g.:

5^ .++ [] indirect autoincrement by 2

The TFR and EXG instructions take the form:

are dot TFR arc dst EXG

where src and dst can be any of the 16-bit registers D, X, Y,

U, S, PC; or any of the 8-bit registers A, B, CCR, DPR.
Branch offsets for relative jumps are computed internally

by the assembler; the operand for a relative jump is the desti-

nation address.

The following control structures are provided by the as-

sembler:

CO IF, ... THEN,

do code if cc satisfied

cc IF,

do code

. .1.. ELSE, ..2.. THEN,

.1.. if cc satisfied, else do code

BEGIN, ... cc UNTIL,
loop through code until cc satisfied;
always executes at least once

BEGIN, ..1.. cc WHILE, ..2.. REPEAT,
loop through code until cc satisfied;
exit is evaluated and taken after
code ..1.. is executed (always at
least once)

where the condition code cc is any of the following:

cc carry clear HI higher
CS carry set HS higher or same
EQ equal/zero LE less than or
GE greater or equal equal

are:

r 0, zero offset
r nn , constant offset
r A, accumulator A offset
r B, accumulator B offset
r D, accumulator D offset
r ,+ autoincrement by 1

r ,++ autoincrement by 2

r ,- autodecrement by 1

r ,— autodecrement by 2

nn ,PCR constant offset from PC

"r" is one of the registers X, Y, U, or S.

nn is a twos-complement (signed) off-

set.

Brad Rodriguez lives a double life. On odd-numbered days he is T-Recursive

Technology, consulting in hardware and software design for real-time and embedded
microprocessor applications. On even-numbered days he is a student, pursuing a

Ph.D. in Electrical Engineering and exploring the possibilities of artificially-intelli-

gent control systems. Brad discovered Forth in 1978, has been using it professionally

since 1982, and has been known to annoy people with his incessant tales of how
quickly things can be accomplished in Forth. He has written Forth assemblers for the

6809, 6801, 6502, Z8, SuperS, TMS320,and two generally-unknown microprogram-

med machines. The 6809 is his favorite 8-bit processor, partly because it and the 16-

bit PDP-11 share the distinction of being "the best Forth processors that were not

designed to be Forth processors." Brad prefers to be contacted as B.RODRIGUEZ2
on GEnie, but will accept email as bradford@maccs.dcss.mcmaster.ca on the In-

ternet.

The Computer Journal / #54

\ 6809 assembler: utilities (c) 14 11 85 BJR

\

VOCABULARY ASSEMBLER IMMEDIATE ASSEMBLER DEFINITIONS HEX

! WITHIN ROT SWAP OVER \ n lo hi - f
|
teat within limita

< ROT ROT > OR 0= ;

8BIT? -80 7F WITHIN ;

5BIT7 -10 OF WITHIN ;

(.) . ;

\ I ALIGN ; (for byte-addressing hosts)

\ Buffoonery to allow byte-oriented assembly on word machines.

\ Assembler does ALIGNing, thus always knows when to de-ALIGNI

\ Include if host is word-aligned.

VARIABLE ALIGNED \ flag indicating HERE was adjusted

; ALIGN HERE 1 AND DUP ALLOT ALIGNED I ; \ align HERE

: DEALIGN ALIGNED i MINUS ALLOT ALIGNED 1 ; \ cancel ALIGN

! HERE HERE ALIGNED i - ; \ true HERE for address calc'n

: C, DEALIGN C, ALIGN ; \ redefine C, for assembler

\ 6809 assemblers addressing modes (e) 03 06 85 BJR

\

: W, DUP >< C, C, ; \ store word as hibyte, lobyte

: OPCODE, \ store opcode with prefix (if any)

DUP FFOO AND IF W, ELSE C, THEN ;

30 VARIABLE MODE \ 0=immed,10=direct ,20=indexed, 30=extended

: # MODE 1 ;

s <> 10 MODE 1 ;

! INDEXREG 20 MODE 1 \ rval postbyte - postbyte
|

SWAP 1- DUP 3 WITHIN 0= 3 TERROR \ must be x,y,u, or s

20 * OR ;
\ put reg # in postbyte

: XMODE <BUILDS (,) \ postbyte -
|
Simple Indexed Modes

DOES> i INDEXREG ; \ rval - postbyte

84 XMODE 0, 86 XMODE A, 85 XMODE B, 8B XMODE D,

80 XMODE ,+ 81 XMODE ,++ 82 XMODE -, 83 XMODE -,

6809 assembler: addressing modes (c) 04 06 85 BJR

s , SWAP 89 INDEXREG ; \ rval n - n postbyte
|

: ,PCR 20 MODE I 80 ; \ n - n postbyte
|

: [] MODE 8 20 = \ Indexed: postbyte - postbyte

\ Extended: n - n postbyte

IF DUP 9D AND 80 = 3 TERROR 10 + \ Indexed Indirect

ELSE 20 MODE 1 9F THEN ; \ Extended Indirect

; RESET 30 MODE 1 ;

\ register definitions

CONSTANT D 1 CONSTANT X 2 CONSTANT Y

4 CONSTANT S 5 CONSTANT PC 8 CONSTANT A

OA CONSTANT CCR OB CONSTANT DPR

3 CONSTANT U

9 CONSTANT B

Y CONSTANT IP U CONSTANT SP S CONSTANT RP X CONSTANT W

\

\ 6809 assembler: inherent instruction (c) 03 06 85 BJR

\

: INHOP <BUILDS (,) \ opcode —
|
Inherent Addressing

DOES> t OPCODE, RESET ; \ -
|
lay one or two bytes

3A INHOP ABX,

57 INHOP ASRB,

53 INHOP COMB,

4C INHOP INCA,

44 INHOP LSRA,

50 INHOP NEGB,

46 INHOP RORA,

ID INHOP SEX,

13 INHOP SYNC,

48 INHOP ASLA,

4F INHOP CLRA,

19 INHOP DAA,

5C INHOP INCB,

54 INHOP LSRB,

12 INHOP NOP,

56 INHOP RORB,

3F INHOP SWI, 1

4D INHOP TSTA,

\ 6809 assembler: immediate instructio(c) 03 06 85 BJR

\

IMMOP <BUILDS (,) \ opcode -
|
Immediate Only (8-bit)

DOES> MODE t 3 TERROR « C, C, RESET ; \ operand -

3C IMMOP CWAI, 34 IMMOP PSHS, 36 IMMOP PSHU, 35 IMMOP PULS,

37 IMMOP PULU, IC IMMOP ANDCC, lA IMMOP ORCC,

: RROP <BVHDS (,) \ opcode -
|
Register-Register

DOES> i C, SWAP 10 + C, RESET ; \ srcrval dstrval -

IE RROP EXG,

\

IF RROP TFR,

6809 assembler: -fmode (c) 03 06 85 BJR

\

58 INHOP ASLB, 47 INHOP ASRA,

5F INHOP CLRB, 43 INHOP COMA,

4A INHOP DECA, 5A INHOP DECB,

48 INHOP LSLA, 58 INHOP LSLB,

3D INHOP MUL, 40 INHOP NEGA,

49 INHOP ROLA, 59 INHOP ROLB,

3B INHOP RTI, 39 INHOP RTS,

03F INHOP SWI2, 113F INHOP SWI3,

SD INHOP TSTB,

-rtWDE \ operand — operand |
modify operand per mode

MODE i + DUP OFO AND 50 = IF OF AND THEN ; \ chng 5x to Ox

6809 assembler; pcrel, cofset (c) 29 03 85 BJR

! PCREL \ operand postbyte -
|
lay PC relative

SWAP HERE 2+ - DUP 8BITT \ try 8 bit relative offset

IF SWAP OFE AND C, C, \ it fits... lay postbyte , offset

ELSE 1- SWAP C, W, THEN ; \ no good... use 16 bit relative

: NOTINDIRT 10 AND 0= ; \ postbyte - f | test for indirect

t COFSET \ operand postbyte -
|
lay constant offset

OVER 0= IF OFO AND 4 OR C, DROP \ no offset

ELSE OVER 5BIT? OVER NOTINDIRT AND IF

60 AND SWAP IF AND OR C, \ 5 bit offset

ELSE OVER 8BITT IF OFE AND C, C, \ 8 bit offset

ELSE C, W, THEN THEN THEN ; \ 16 bit offset

6809 assembler: indexed, Jjnmed (c) 03 06 85 BJR

: EXTIND \ operand postbyte —
|
lay extended indirect

C, W, ; \ lay postbyte and operand

: INDEXED \ operandi postbyte -
| lay indexed poststuff

DUP 8F AND CASE \ check postbyte for modes w/ operands

89 OF COFSET ENDOF \ const. offset

8D OF PCREL ENDOF \ PC relative

8F OF EXTIND ENDOF \ extended indir

SWAP C, ENDCASE ; \ simple modes, postbyte only

: IMMED \ operand opcode-pfa -
| lay immediate poststuff

2+ t DUP 0= 3 TERROR \ test iiranedsize

1- IF W, ELSE C, THEN ; \ lay immed. operand in reqd.size

\ 6809 assembler: general addr instr (c) 03 06 85 BJR

\

GENOP <BUILDS (,) (,) \ iramedsize opcode -
|
Gen'l Addr

DOES> DUP i +MODE OPCODE, \ [see below]
|
lay opcode

MODE i CASE OF IMMED ENDOF \ immediate

10 OF DROP C, ENDOF \ direct

20 OF DROP INDEXED ENDOF \ indexed

30 OF DROP W, ENDOF \ extended

ENDCASE RESET ;

INXOP <BUILDS (,)

DOES> MODE « 20

\ opcode -
I

Indexed Only

3 TERROR t OPCODE, INDEXED RESET

\ Stack action of general addressing instructions

\ (1) immediate, direct, extended; operand

\ (2) all indexed except (3): postbyte

\ (3) const. offset, PCR, extended indir: operand postbyte

6809 assemblers general addr instr (c) 29 03 85 BJR

89 GENOP ADCA,

CB GENOP ADDB,

C4 GENOP ANDB,

48 GENOP ASL,

81 GENOP CMPA,

118C GENOP CMPS,

108C GENOP CMPy,

43 GENOP COM,

86 GENOP LDA,

C9 GENOP

C3 GENOP
85 GENOP

47 GENOP

CI GENOP

1183 GENOP

88 GENOP

4A GENOP

C6 GENOP

ADCB,

ADDD,
BITA,

ASR,

CMPB,

CMPU,

EORA,

DEC,

LDB,

8B GENOP

84 GENOP
C5 GENOP

4F GENOP

1083 GENOP

8C GENOP

C8 GENOP

4C GENOP

CC GENOP

ADDA,

ANDA,
BITS,

CLR,

CMPD,

CMPX,

EORB,

INC,

U>D,

The Computer Journal / #54

2 lOCE GENOP LDS,

2 108E GENOP LDY,

48 GENOP LSL,

1 8A GENOP ORA,

2 CE GENOP LDU,

4E GENOP JMP,

44 GENOP LSR,

1 CA GENOP ORB,

2 BE GENOP LDX,

8D GENOP JSR,

40 GENOP NEG,

49 GENOP ROL,

6809 asBembler: general addr instr (c) 29 03 85 BJR

\

\

\

46 GENOP ROR, 1

87 GENOP STA,

lOCP GENOP STS,

108F GENOP STY, 1

2 83 GENOP SUBD,

82 GENOP SBCA,

C7 GENOP STB,

CF GENOP STU,

80 GENOP SUBA,

4D GENOP TST,

C2 GENOP SBCB,

CD GENOP STD,

8F GENOP STX,

CO GENOP SUBB,

32 INXOP LEAS, 33 INXOP LEAU, 30 INXOP LEAX, 31 INXOP LEAY,

(c) 03 06 85 BJR\ 6809 assembler: branches
\

I CONDBR <BUILDS
(,) \ opcode -

| Conditional Branch
DOES> i SWAP HERE 2+ - \ addr -
DUP 8BIT7 IF SWAP C, C, \ 8 bit
ELSE 10 C, SWAP C, 2- W, THEN RESET ; \ 16 bit

! UNCBR <BUILDS (,) \ short: long-
|
Uncondit'l Bran

DOES> t SWAP HERE 2+ - \ addr -
DUP 8BIT? IF SWAP >< C, C, \ 8 bit: use short opcod
ELSE SWAP C, 1- W, THEN RESET ; \ 16 bit: use long opcod

\

\ 6809 assembler; branch instructions (c) 29 03 85 BJR
\

24 CONDBR BCC, 25 CONDBR BCS, 27 CONDBR BEQ, 2C CONDBR BGE,
2E CONDBR BGT, 22 CONDBR BHI, 24 CONDBR BHS, 2F CONDBR BLE,
25 CONDBR BLO, 23 CONDBR BLS, 2D CONDBR BLT, 2B CONDBR BMI,
26 CONDBR BNE, 2A CONDBR BPL, 21 CONDBR BRN, 28 CONDBR BVC,
29 CONDBR BVS, 2016 UNCBR BRA, 8D17 UNCBR BSR,

6809 assembler: conditions (c) 03 06 85 BJR

24 CONSTANT CS 25 CONSTANT CC 27 CONSTANT NE 2C CONSTANT LT
2E CONSTANT LE 22 CONSTANT LS 24 CONSTANT LO 2F CONSTANT GT
25 CONSTANT HS 23 CONSTANT HI 2D CONSTANT GE 2B CONSTANT PL
26 CONSTANT EQ 2A CONSTANT MI 21 CONSTANT ALW 28 CONSTANT VS
29 CONSTANT VC 20 CONSTANT NVR

\ 6809 assembler: structured cond'ls (c) 03 06 85 BJR
\

: IF, \ br. opcode - adr. next. instr 2 | reserve space
C, C, HERE 2 ;

: ENDIF, \ adr. instr. after.br 2 -
|
patch the forward ref.

2 7PAIRS HERE OVER - DUP 8BIT7 0= 3 7ERR0R SWAP 1- CI ;

: ELSE, \ adr.after.br 2 - adr.after.this.br 2

2 7PAIRS NVR C, C, HERE SWAP 2 ENDIF, 2 ;

: BEGIN, \ - dest.adr 1

HERE 1 ;

: UNTIL, \ dest.adr 1 br. opcode -
SWAP 1 7PAIRS C, HERE 1+ - DUP 8BIT7 0= 3 7ERR0R C, ;

8 WHILE, \ dest.adr 1 br. opcod - adr. after. this 2 dest.adr 1
IF, 2SWAP ;

! REPEAT, \ adr. after.while 2 dest.adr. of .begin 1 -
NVR UNTIL, ENDIF, ;

! THEN, ENDIF, ;

: END, UNTIL, ;

\ 6809 assembler: code, ;code, ;c (c) 14 11 85 BJR
\

FORTH DEFINITIONS ASSEMBLER
ENTERCODE [COMPILE] ASSEMBLER ASSEMBLER ALIGN ICSP ;

CODE CREATE ENTERCODE ;

;CODE 7CSP COMPILE (,-CODE) [COMPILE] (ENTERCODE ;

IMMEDIATE

ASSEMBLER DEFINITIONS

; ;C CURRENT t CONTEXT I 7CSP
: NEXT, Y ,++ LDX, X 0, [] JMP,
: NEXT NEXT,

;

FORTH DEFINITIONS DECIMAL

SMUDGE

GT greater
LO lower PL plus
LS lower or same ALW always
LT less than NVR never
MI minus VC overflow cleeu:
NE not equal/not zero VS overflow set

Infinite loops should use the 'NVR' (never true) condition

code:

BEGIN, NVR UNTIL,

Internal Glossary and Description

This assembler was written before I acquired the habit of

"shadow screen" documentation. So, I'll document all of the

unusual words and features here. (Please refer to the pro-
gram listing.)

The word WITHIN is a common Forth extension. The
words 5BIT7 and 8BIT? decide if a given value will fit in a 5-

bit or 8-bit signed integer, so we can choose the correct in-

dexed addressing mode.
The synonym {,) is defined because later I redefine , as an

addressing mode.

ALIGN, et cetera, deserve some comment. This assembler
was originally written for a metacompiler running on a 68000
system, which insisted upon word-aligning the DP after each
Forth word was interpreted. This meant that any 6809 in-

struction which assembled an odd number of bytes would
have a filler byte added—with catastrophic results! I fb<ed

this by causing all of the assembler words to do the aligning

themselves. Thus, the 68000 Forth never inserted any filler,

and I always knew when the DP had been adjusted. HERE
and C, were redefined accordingly.

The word W, allows 6809 word operands to be compiled
on either big-endian or little-endian host machines. >< is a
byte-swap operator provided by the Forth I used.

Some 6809 instructions have a one-byte opcode, and some
have two bytes. Opcodes are stored as a 16-bit value. If the

high 8 bits are nonzero, they are the first opcode byte.

OPCODE, lays down one or two bytes, accordingly.

The MODE variable indicates whether the addressing
mode is Immediate, Direct, Indexed, or Extended. # and <>
set the first two modes; Extended is the default when no
mode is set. (This is the first addressing-mode technique de-

scribed in the previous article.)

The Indexed addressing modes in the 6809 add a
"postbyte" to the opcode, which contains mode information
and a register number (for X, Y, U, or S). INDEXREG puts
the two-bit register number into the postbyte, and also sets

MODE. Note that the postbyte is passed on the stack. (This is

the second addressing-mode technique.)

XMODE defines the "simple" Indexed modes. These
modes each have a fixed postbyte, modified only by the

register number (as supplied by INDEXREG). For example,
the word ,++ fetches the postbyte 81 hex and then invokes
INDEXREG to insert the hvo register bits.

The word , rearranges the stack and builds the postbyte

for the constant-offset Indexed mode.
The word ,PCR provides the postbyte for the PC-relative

Indexed mode. Since this has no register operand,
INDEXREG isn't used. MODE must be explicitly set to

20 hex.

The word [] indicates indirection. For the Indexed ad-

dressing modes, this is done by setting the "indirect" bit in

10 The Computer Journal / #54

Figure i; Forth and Motorola Aasanblarii Couparison Chart

This chart shows the Forth assembler's equivalent for all

of the Motorola assembler instructions and addressing modes.

This is not an exhaustive permutation of addressing modes and

instructions; it is merely intended to illustrate the syntax

for all possible addressing modes in each instruction group.

Refer to a 6809 data sheet for descriptions of allowable

operands, operand ranges, and addressing modes for each

instruction.

Instructions which require two operands (TFR and EXG) have

the operands specified in the order: source, destination.

(This is only significant for the TFR instruction.

)

INDEXED ADDRESSIHO NODES

-NON-INDIRECT- -INDIRECT-

TYPE MOTOROLA FORTH MOTOROLA FORTH

no offset ,r

5 bit offset n,r

8 bit offset n,r

16 bit offset n,r

A-reg offset A,r

B-reg offset B,r

D-reg offset D,r

incr. by 1

incr. by 2

deer, by 1

deer, by 2

,r+

,r++

r 0,

r n ,

r n ,

r n ,

r A,

r B,

r D,

r ,-

r ,—

[,r] r 0, []

defaults to 8-bit

[n,r] r n , []

[n,rj r n , []

[A,r]

[B,r]

[D,r]

r A, []

r B, []

r D, []

not allowed

t,r++] r ,++ []

not allowed

[,r—] r ,— []

PC ofs. 8 bit n,PCR

PC ofs. 16 bit n,PCR
n ,PCR

n ,PCR

16 bit address not allowed

[n,PCR]

[n,PCR]

[n]

n ,PCR []

n ,PCR []

n []

where n = a signed integer value,

r = X (00), y (01), U (10), or S (11)

X = don't care

INSTRUCTION SET

Inh*r*nt addrassing group

fiOTPRPUV FORTH MOTOROLA FORTH

ABX ABX, NEGA NEGA,

ASIA ASLA, NEGB NEGB,

ASLB ASLB, NOP NOP,

ASRA ASRA, ORA ORA,

ASRB ASRB, ORB ORB,

CLRA CLRA, ROLA ROLA,

CLRB CLRB, ROLB ROLB,

COMA COMA, RORA RORA,

COMB COMB, RORB RORB,

DAA DAA, RTI RTI,

DECA DECA, RTS RTS,

DECB DECB, SEX SEX,

INCA INCA, SWI SWI,

INCB INCB, SWI2 SWI 2,

LSLA LSLA, SWI 3 SWI 3,

LSLB LSLB, SYNC SYNC,

LSRA LSRA, TSTA TSTA,

LSRB LSRB, TSTB TSTB,

MUL MUL,

Hagistar-raglatar group

POSTBYTE

IrriOlOO

Orrnnnnn

IrrilOOO

IrrilOOl

IrriOllO

IrriOlOl

IrrilOll

IrrOOOOO

IrriOOOl

IrrOOOlO

IrriOOll

IxxillOO

IxxillOl

10011111

MOTOROLA
EXG s,d

FORTH
s d EXG

MOTOROLA

TFR s,d

laBadiata-addraasing-only group

^^OTOROLA FPRTH

ANDCC #n n # ANDCC,

CWAI #n n # CWAI,

ORCC #n n # ORCC,

PULU regs n # PULU,

FORTH

s d TFR

MOTOROLA FORTH

PSHS regs n # PSHS,

PSHU regs n # PSHU,

PULS regs n # PULS,

a register list. The Forth assembler requires the programmer

to ccn¥>ute the bit maslt for this list and supply it as an

immediate argument.

Indaxad-addraasing-only group

(with example addressing modes)

LEAS D,U

LEAU -5,Y

MOTOROLA
ADCA #20

ADCB <30

ADDA 2000

ADDB [1030]

ADDD ,S

ANDA 23,

U

ANDB A,X

ASL B,¥
D,X

FORTH

U ,D LEAS,

Y -5 , LEAU,

fWTOROLA

LEAX [,5++]

LEAY [1234]

FORTH

S ,-H- [] LEAX,

12 34 [] LEAY,

Ganaral-addrasslng group

(with example addressing modes)

ASR
BITA ,S+

BITB ,X++

CLR ,Y-

CMPA ,U~
CMPB -5,PCR

CMPD [,Y]

CMPS [7,Y]

CMPU [A,S]

CMPX [B,U]

CMPY [D,X]

EORA [,Y+]

EORB t ,U-H-]

COM [,S-]

DEC [,X—

)

INC [5,PCR]

JMP [300]

JSR 1234

LDA #20

FORTH
20 # ADCA,

30 o ADCB,

2000 ADDA,

1030 [] ADDB,

S 0, ADDD,

U 23 , ANDA,

X A, ANDB,

Y B, ASL,

D, ASR,

,+ BITA,

,++ BITB,

,- CLR,

,— CMPA,

-5 ,PCR CMPB,

Y 0, [] CMPD,

Y 7 , [] CMPS

,

S A, [] CMPU,

U B, [] CMPX,

X D, [] CMPY,

Y ,+ [] EORA,

U ,++ [] EORB,

S ,- [] COM,

X ,-- [] DEC,

5 ,PCR [] INC,

300 [] JMP,

1234 JSR,

20 # LDA,

MOTOROLA
LDB <30

LDD 2000
LDS [1030]

LDU ,X

LDX 23,

Y

LDY A,S
LSL B,U

LSR D,S

NEG ,X+

ORA ,3++

ORB ,U-

ROL ,Y—
ROR 12,PCR

SBCA [,U]

SBCB [7,U]

STA [A,X]

STB [B,Y]

STD [D,S]

STS [,U+]

STU [,Y++]

STX [,S-]

STY [,X~]

SUBA [3,PCR]

SUBB [300]

SUBD 1234

TST #2

FORTH
30 o LDB,

2000 LDD,

1030 [] LDS,

X 0, LDU,

Y 23 , LDX,

S A, LDY,

U B, LSL,

S D, LSR,

X ,+ NEG,

S ,++ ORA,

U ,- ORB,

Y ,— ROL,

12 ,PCR ROR,

U 0, [] SBCA,

U 7 , [] SBCB,

X A, [] STA,

Y B, [] STB,

S D, [] STD,

,+ [] STS,

,++ [] STU,

,- [] STX,

,— (] STY,

,PCR [] SUBA,

300 [] SUBB,

1234 SUBD,

2 # TST,

Note that, in the Forth assembler,

signifies Immediate addressing, and

<> signifies Direct addressing.

Many instructions do not allow immediate addressing. Refer to

the Motorola data sheet.

Branch inatructiona

MOTOROLA

BCC label

BCS label

BEQ label

BGB label

BGT label

BHI label

BHS label

BLE label

BLO label

BLS label

FQjtTH

adrs

adrs

adrs

adrs

adrs

adrs

adrs

adrs

adrs

adrs

BCC,

BCS,

BEQ,

BGE,

BGT,

BHI,

BHS,

BLE,

BLO,

BLS,

MOTOROLA

BLT label

BMI label

BNE label

BPL label

BRA label

BRN label

BSR label

BVC label

BVS label

FORTH

adrs
adrs

adrs
adrs

adrs

adrs

adrs

adrs

adrs

BLT,

BMI,

BNG,

BPL,

BRA,

BRN,

BSR,

BVC,

BVS,

The branch instructions in the Forth assembler expect an

absolute address. The relative offset is ccoputed, and the

"long branch" form of the instruction is used if necessary.

Note: Motorola allows the PSH and PUL instructions to contain

"Did you know that if a beaver two feet

long with a tail a foot and a half long can

build a dam twelve feet high and six feet wide

in two days, all you would need to build the

Kariba Dam is a beaver sixty-eight feet long

with a fifty-one foot tail?" —Norton Juster

The Computer Journal / #54 11

the postbyte. (This is an example of the third addressing-

mode technique.) For the Direct addressing mode, [] must
change the mode to Indexed and supply the Extended Indi-

rect postbyte.

Register definitions are simple CONSTANTS. Note that

the synonyms W, IP, RP, and SP are defined for the registers

X, Y, S, and U. I use these synonyms when writing

Forth kernels.

INHOP defines the Inherent (no operands) instructions.

IMMOP defines the Immediate-only instructions. These

all expect a byte operand, and they check to make sure that

the # addressing mode was specified (MODE=0).
RROP defines the register-register instructions, TFR and

EXG. Note that it doesn't check that both operands are the

same size; the programmer is presumed to know better.

+MODE is a fudge. All of the general-addressing

instructions form their opcodes by adding 0, 10, 20, or 30 hex
to a base value, except those instructions whose Direct opcode
takes the form Ox hex. These instructions use 6x for Indexed

mode, and 7x for Extended, so the assembler assumes a
"base opcode" of 4x, and adds 10, 20, or 30 hex. (There is no
Immediate mode for these instructions.) Then, if the

resulting opcode is 5x, we know that Direct mode was
specified, and the opcode should really be Ox hex. +MODE
applies the MODE value to the base opcode; it then checks

for 5x opcodes and changes them to Ox.

PCREL lays the postbyte and operand for PC-relative ad-

dressing. If the signed offset fits in 8 bits, the postbyte is

modified for the short form and a single-byte operand is

used. Otherwise, the long form postbyte and two-byte oper-

and is used.

NOTINDIR? checks the indirection bit in the postbyte.

COFSET lays the postbyte and operand for constant-offset

Indexed addressing. If the offset fits in 5 bits, and indirection

is not used, then the postbyte is modified for the 5-bit offset.

Otherwise, if the offset fits in 8 bits, the postbyte is modified

for the 8-bit form (single-byte operand); if the offset requires

16 bits, the long form is used (two-byte operand).

EXTIND lays the postbyte and operand for Extended In-

direct addressing.

INDEXED lays the postbyte and (if required) operand for

all of the Indexed modes. COFSET, PCREL, and EXTIND
are the special cases which require operands; a CASE state-

ment identifies these by the postbyte value. All other

postbyte values are "simple" modes which have no oper-

ands; they are handled in the default clause of the CASE
statement.

Some 6809 Immediate instructions require an 8-bit oper-

and, and some a 16-bit operand. Others don't allow

Immediate mode. IMMED handles this by testing the second

parameter in an opcode word defined by GENOP, and
laying one or two operand bytes, accordingly. If "zero"

operand bytes are indicated, this means that this addressing

mode is invalid with this instruction.

GENOP defines the instructions which can have any ad-

dressing mode. It selects one of four actions depending on
MODE. As noted above, the parameter "immedsize" can be
used to disallow Immediate mode for any instruction.

INXOP defines the instructions which can have Indexed
addressing mode. It checks that the MODE value is correct

(20 hex) before assembling the instruction.

CONDBR and UNCBR build the branch instructions.

They are identical, except in how they modify the instruction

when the long form is required. CONDBR makes the long

form by prefbcing a 10 hex byte; UNCBR makes the long

form by substituting an alternate opcode (both opcodes are

stored in a 16-bit value). Both of these words take an absolute

address, and compute the relative offset from the branch
instruction; the short or long form of the branch is then

automatically chosen.

CS through NVR are condition code CONSTANTS for

the structured conditionals. These are actually the opcodes
which must be assembled by the conditionals such as IF, and
UNTIL,. As noted in the previous article, IF, and UNTIL,
must actually assemble the logical inverse of the stated

condition; this is handled in the 6809 assembler by defirung

each of these constants to contain the "inverse" opcode. For
example, the constant CS (carry set) actually contains the

opcode for a BCC instruction. This is because the phrase CS
IF, must assemble a BCC.

Structured conditionals were described in detail in the

previous article. Since the condition codes are in fact

opcodes, the requisite conditional jumps can be assembled
directly with C,. Also, these conditionals use the fig-Forth

"compiler security": each conditional leaves a constant value

on the stack, which much be verified (by 7PAIRS) by its

matching word. For example, IF, leaves 2 on the stack; ELSE,
and ENDIF, (a.k.a. THEN,) do a 2 7PAIRS to resolve this.

ENTERCODE CODE and ;CODE are, of necessity,

"tuned" to a particular Forth implementation. For example,

since this fig-Forth model's CREATE automatically sets up
the code field properly, it's not necessary for CODE to patch
the code field to point to the new machine code. Other Forth

models have a different assumption, so some phrase such as

CREATE HERE 2- I

will no doubt be needed to set the code field pointer.

ENTERCODE (and thus CODE and ;CODE) also use
!CSP to check for stack imbalances. This means that each

CODE defirution must end with ;C (which uses 7CSP to

resolve !CSP). ;C also unSMUDGEs the Forth word being
defined. These are also fig-Forth usages, which may not

apply to your Forth model.

Finally, NEXT, is an example of a simple assembler

macro. It assembles the two-instruction sequence which is

the inner interpreter (NEXT) of an indirect-threaded 6809
Forth. NEXT is a synonym.

•

TCJ On-Line
Readers and authors are invited to join in dis-

cussions with their peers in any of three on-line

forums.

• GEnie Forth Interest Group (page 710)
• GEnie CP/M Interest Group (page 685)
• Socrates Z-Node 32
For access to GEnie. set your modem to half

duplex, and call 1-800-638-8369. Upon connec-
tion, enter HHH. At the U#= prompt, enter
XTX99486.GENIE and press RETURN. Have a
credit card or your checking account number
handy.

Or call Socrates Z-Node, at (908) 754-9067.
PC Pursuit users, use the NJNBR outdial.

=^

i^

12 The Computer Journal / #54

Local Area Networks

Bridges and Routers

By Wayne Sung

Ethernet has a specified physical distance limit due to the

timing mechanisms in use, but even those types of networks

which are less dependent on timing will have bounded sizes.

This is mostly due to signal losses in the physical wiring.

To extend a network to a distant place, it will be necessary

to have both a delivery system, such as the broadband

system discussed last time, and a device which is built

specifically for extending networks. Two types of devices

often used to accomplish this are bridges and routers. Both

operate on the assumption that only a small proportion of

the traffic on a LAN is meant to be sent to a distant point.

In either case, the device can be viewed as having two or

more "sides." One of these is an Ethernet and the others may

be point-to-point lines or just as easily more Ethernets.

Bridges

Bridges are the simpler device. In most cases, a bridge

tries to learn what devices are on each of its sides. It does this

by examining every packet that passes by, and remembering

the source addresses.

Having built such a table, it looks at the destination ad-

dress of a packet. If this address exists in the table, there is no

further need to process the packet because it is "local." If the

destination address is not local, then the packet gets passed

to another side. This action is called filtering.

During the packet transition it is possible to apply some

administrative conditions to prevent the packet from going

across. This is called custom filtering. For example, you

could filter out all broadcasts.

Since bridges function only according to Ethernet ad-

dresses, there is no sensitivity to different types of software

that might be in use. Thus bridges are very easy to set up,

and generally work correctly.

However, the software must understand that it is possible

to have networks larger than a single Ethernet. The packet

delivery time within a single Ethernet is quite small. If two

Ethernets are joined by bridges, even if operating at Tl rates

(1.5 Mb/s), there will necessarily be about a 6 to 1 slowdown.

This extra delivery time often causes trouble, because the

software was not expecting it and once again we have a re-

transmission problem—the software thinks packets are lost

when actually they simply have not arrived yet.

Another drawback of bridges is that they don't normally

Wayne Sung has been working with microprocessor hardware and software for

over ten years. His job involves pushing the limits of networking hardware in

attempting to gain as much performance as possible. In the last three years he has

developed the Gag-a-matic series of testers, which are meant to see if manufacturers

meet their specs.

do anything about broadcasts and multicasts, since by defini-

tion these are supposed to go everywhere. It is possible to

use filters to cut out some of these, but this requires you

know something about the packets.

A severe problem with bridges is the possibility of loops.

If I took a bridge with one Ethernet port and one serial port,

cormected its serial output to its serial input, and then con-

nected the Ethernet, what would happen?

The easiest case to see would be a broadcast. It goes in the

Ethernet port, passes out the serial port, returns to the input

side of the serial port, and ends up right back on the

Ethernet.

Why would I do something like this? Well, I don't do it on

purpose! However, sometimes transmission equipment fails

and causes a loop condition. Otherwise someone might be

testing an adjacent line and inadvertently plugs into mine.

Since the serial line is considerably slower than the Eth-

ernet, a duplicate packet is quite possible. Many types of

software will fail with duplicate packets. In another case, the

address becomes learned on more than one side of a bridge,

causing that address to lose communication with the distant

side.

This last case can cause a lot of problems, simply because

it's not what you would expect. Let's look at a two-port

bridge. The two sides are called A and B, and host address 1

(which is on side A) has been learned on both sides because

of a loop.

If host 1 sends to host 2 (which is on side B) the packet

will go through fine. When host 2 replies, the B side of the

bridge will match the destination address (host 1) in its table

and not pass the packet through. Functionally host 1 cannot

talk to anyone off side A

.

This loop problem also prevents using multiple links for

redundancy without some extra effort. Most solutions to this

problem taJce the form of putting one in standby or splitting

traffic by type across several links.

Two terms you will encounter in the bridge numbers war

are the "filtering rate" and the "forwarding rate."

Since a bridge has to examine every packet to decide

whether to take any action on it (as well as to learn the ad-

dresses) it pays to have a high filtering rate, which is the rate

at which the bridge is able to watch packets pass by. Note

that this does not include custom filtering.

Given that a packet should indeed

be passed to another side, the rate at

which packets can be continuously sent

through is called the forwarding rate.

Custom filtering often reduces for-

warding rate, and can affect filtering

The Computer Journal / #54 13

rate if address matching is done in software.

Even though you normally want a high filtering rate, for-

warding rate is less important. If you need forwarding rates

exceeding 20% of one Ethernet you should try to rearrange

the layout so that more traffic can stay local. If a large

amount of traffic is passing through a bridge then it's not

doing you much good.

Also, in those cases where a bridge connects to a serial

link to go to some distant location, there is no point having

forwarding rates higher than the serial side can handle. A Tl

line, for example, can only handle about 2000 minimum size

packets per second.

Some vendors have taken the number of interfaces in their

units and multiplied the total rates by the number of inter-

faces. This gives impressive but unrealizable numbers. Each
Ethernet can have at most 14880 packets per second. If either

rate is quoted as higher than that there is a problem in the

way the number is generated.

The fallacy is that when a packet is forwarded it has to

occupy more than one interface and so the numbers cannot

simply be added together. There is also the problem of what
mix of packets is being watched. If the same addresses are in

all of them there won't be much work for the bridge. If a
continuously changing set of addresses is present the bridge

will spend a considerable amount of time building its ad-

dress tables and will slow down.

Routers

A router looks and connects the same way as a bridge, but

acts only on packets it recognizes. This is called "protocol

specific" operation, and setting up a router definitely re-

quires that you know something about the protocol you are

using.

Earlier routers handled only one or two protocols, but this

is no longer true. However, not all protocols are capable of

being routed. Fundamental to router operation is the neces-

sity of a protocol having an address structure that allows

inter-networking (more specifics on this next time).

Since a router looks at some detail into a packet, it cai\

avoid the bridge loop problem. Packet forwarding is now
done based on protocol specific addresses rather than Eth-

ernet addresses and so it can immediately be determined

which addresses are local and which are not. A looped

packet will have a local source address and can be discarded

immediately.

A router also solves the broadcast problem to a large ex-

tent, because most broadcasts are of a local nature and are

not passed through.

Finally, routers generally allow the use of not only mul-
tiple links, but essentially an arbitrary set of links across a
very large number of routers. This would be much more
difficult to get right with a system of bridges. This is also

because packets do not get looped with multiple links.

Note, though, that having multiple links between two
routers does not guarantee they can provide total throughput

beyond what one link provides. This is very dependent on
the exact protocol in use. Having multiple links does allow

automatic reconfiguration when one link fails.

Routers have a different kind of looping problem, though
not normally visible to users. This is known as a routing

loop. When a router has knowledge of the existence of a

network, it is said to have a route to that network. This

knowledge is generally sent from one router to another, and

each router will merge the knowledge of its own networks

and those that can be reached remotely.

When a router has only one remote link, it is just as well

to say all networks are through this one link. This is called

using a default route.

One easy way to cause a loop, then, is to connect two
units together where each defaults to the other.

In the case where you get a data packet for a destination

not local to you, you promptly send it away via the default

route. This causes the other unit to send it back again, be-

cause it thinks you're the proper way to handle it. This con-

tinues until some other mechanism decides this has gone on
long enough and kills the packet.

Many protocols have a trip counter, which is to be decre-

mented each time a packet passes a router. This is to prevent

packets from looping forever. With the rather high speed

equipment available today, this becomes very important be-

cause one looping packet could use up an entire link.

Another possible cause of a routing loop is a problem

similar to an unstable feedback control mechanism. The rout-

ing knowledge that gets passed among units can suddenly
change. For example, a line goes down causing a network to

no longer be reachable. Although this state change will even-

tually be passed adong, in general routers are set up not to

respond to changes too quickly because many of these are

transient.

For the amount of time it takes the state change to be fully

propagated into the system of routers, there is a potential

routing loop. Let's say I just lost a network. I stop telling my
neighbor that I have that network. Some time later the neigh-

bor will realize I have not been announcing that network and
will then delete that knowledge.

Until then, however, it will continue to send packets des-

tined for that network to me. However, since I have lost

knowledge of that network I will send them back via my
default, which in this case happens to be my upstream neigh-

bor. It sends them back to me. And so it continues until the

trip counter expires.

It has traditionally been easier to stop announcing a net-

work than to explicitly announce it as unreachable, although

there are certainly other ways to do it. There is much ongoing

study concerning convergence in routing protocols.

Filtering rates do not apply to routers, because they do not

read every packet. Only those packets specifically addressed

to them are received and processed. You can also set custom

filters in routers to further limit packet forwarding.

Forwarding rates do apply, and again it makes no sense to

have forwarding rates that exceed any link's capability to

handle that rate.

By the way, some readers will probably have caught the

tradeoff between packets-per-second and bits-per-second.

Since the maximum bit rate of an Ethernet is fixed, larger

packets will result in fewer packets per second. This is usu-

ally advantageous, because this means lower interrupt rates

in the packet handlers.

This is why larger packets are said to be more efficient

(but only if they are actually full of data). There is one kind

of traffic where you cannot store up enough data to make a

large packet before sending it - terminal traffic. Here you
want the quickest response possible, so even a minimum
sized packet would have some unused space.

Software response rates often limit the number of packets

See LAN, page 18

14 The Computer Journal / #54

Advanced CP/M

I/O Redirection in CP/fA Plus

By Bridger Mitchell

Perhaps this column should be titled "The Return of the

Oxymoron." After all, nearly all personal computer users

outside the CP/M and Z community would suspect anyone

who juxtaposes "advanced" and "CP/M" of brain damage!

Nevertheless, I'm glad to be resuming the Advanced CP/M

column after an absence of several issues.

I'll be focusing on CP/M Plus, also known as CP/M 3, the

last general-purpose operating system for the 8080 processor

from Digital Research. We'll cover several topics in this and

the following columns to highlight features introduced in

CP/M Plus and significant differences from the more

familiar CP/M 2.2 version. This time we'll examine the

redirection of input and output and aspects of banked

memory. A later column will take up how the Z-System was

ported to CP/M Plus—some of the key design decisions that

are built into Z3PLUS. Since these topics are necessarily

complex and interrelated, I'll also refer to other TCJ articles

at several points.

I/O Redirection

The UNIX operating system is justly famous for its ability

to effortlessly redirect both input and output from the

console. By simply typing "prog < in_file" at the command

prompt the user can cause what would normally be the

keyboard input to come instead from a file; all that is

required is the redirection symbol "<" followed by the name

of a suitable file. Similarly, he can redirect the output of the

program into a file with the command "prog > out_file", thus

capturing everything that would otherwise be output to the

terminal's screen.

At the heart of the UNIX design is the decision to treat

character (unit-record) and mass-storage (block) devices

identically when making operating system calls. Thus, you

"read(...)" a byte from a file, and you also "read(...)" a byte

from the console. The code is identical code—the actual

source of the data is determined by what device (console or

file) has been previously opened. So, when the unix shell

(command processor) sees "<" on the command line it sim-

Bridger Mitchell is co-founder of Plu*Perfect Systems. He is the author of the

widely used DateStamper (an automatic, portable file time stamping system for CPI

M 2.2); BackGrounder (for Kaypros); BackGrounder ii, a windowing task-switching

system for Z80 CP/M 2.2 systems, fetFind, a high-speed string-search utility;

DosDisk, an MS-DOS disk emulator that lets CP/M systems use PC disks without

file copying; and most recently Z3PLUS, the ZCPR version 3.4 system for CP/M

Plus computers.

Bridger can be reached at Plu*Perfect Systems, 410 23rd Street, Santa Monica

CA 90401 or at (213) 393-6105 (evenings).

ply changes the open device and otherwise executes the same

code for processing character input.

The CP/M 2.2 operating system has nothing like this flexi-

bility. There are separate system calls for each type of device

(console input, console output, file output, ...). And there is

no provision for redirection of output. With some difficulty,

some redirection of input is possible, using the SUBMIT and

XSUB utilities or the more flexible ZEX in a CP/M 2.2 Z-

System. Also, under the Z-System with the more advanced

BDOS provided by ZSDOS or ZRDOS, plus a suitable Z-

Sysfem I/O Package, console output can be redirected to a

file. And somewhat more general output redirection is avail-

able under BackGrounder ii with standard CP/M 2.2.

CP/M Plus made some significant improvements on redi-

rection. Like CP/M 2.2 it also maintains separate system calls

for individual types of devices, but it builds hooks into the

operating system to make redirection possible. Submit files

can be automatically executed by typing at the command

prompt the name of a script file with type "SUB"; they can

also be invoked in CP/M-2 fashion by typing the command

"SUBMIT" followed by the name of the script file.

CP/M Plus provides two general-purpose redirection

utilities—GET.COM and PUT.COM. Executing GET with an

appropriate command line causes the command processor

and programs to get their console input from a specified

script file. Executing PUT shunts the console output into a

file. (GET.COM should not be confused with the Z System

built-in GET command, which loads a file to a specified ad-

dress in memory.)

We'll examine how CP/M Plus implements this redirec-

tion a little later. First, however, let's look at how banked

memory affects the operating system.

Banked Memory

CP/M Plus gives the user a larger program area (TPA)

than is available in CP/M 2.2. It does this by moving much of

the operating system and its data structures into alternate

memory. Figure 1 sketches the memory map. The always-

resident portion of the operating sys-

tem is at the very top of memory. Be-

low it somewhere, perhaps at OFOOOh

or OFBOOh, alternate banks of memory

can be active. Conventionally, "bank 0"

contains the rest of the operating sys-

tem, and "bank 1" holds the user pro-

gram and data. In addition, other

banks may be used for disk buffers, a

copy of the CCP, et cetera. In many im-

plementations the code portioiis of the

The Computer Journal / #54 15

Table 1

hex
offset

CP/M 3 SyatMD Control Block (SCB)

CCP105 additions, zz = Z3PLUS additions)

hex

off-gPh

var. name,

bits
description

These vectors called by the banked BDOS, GET and PUT RSXs
redirect 10 through them by setting "JP addr" to
"LD HL,rBx_addr", ensuring bank 1 (TPA) access.

S8

6b

ee

71

7a

7d

80

83

86-8f

jp 7wboot

jp execute: set bank 1,

.. jp (hi), set bank

jp Tconst

jp execute

jp 7conin

jp execute

jp 7cono

jp execute

jp 71ist

jp execute

spares? The extended status
. . vectors were never
, . implemented here

.

90-91 10-11 e STAMP stamped drive vector
92-92 12-13 JRELOG relog drive vector
93-97 spare?
98-99 18-19 resident BEWS addr
98-9b spare?

Start of 100 byte (decimal) SCB; address of structure at
this point is returned by BDOS function 49.

9c Ic 8HSHCK Hash check byte.
9d Id 8HSHDRV Drive compare byte.
9e-9f le- If 8HSHNAME Filename code

aO 20 IHSHEXT Extent code byte.
al 21 8VERSI0N CP/M version number
a2 spare?
a3 spare?
a4 24 **

a5 25

bO-b4

b5

b6

b7

bO-b4

b5

be

b7 **,

ab 2b

ac-ad 2c-2d SRTNCODE
ae 2e

af 2f

bO 30

bl-b2 31-32

b3 33 SCHAIN

bO

bl

b6

b7
b4 34 SSVBUF

bO-bl

submit file user number (+1;

.. 0=use default)

reset-disk system flag

erase submit file flag
display named dir. flag

user number (+1) for loader
. . (0=use default)

unused?

PRL file flag, for loader
not zz LBR file flag, for loader

submit drive

BDOS return code word
next command page (multiple
. . command line RSX page)
CCP drive (0=A)

CCP user number (O=zero)

ptr to next cmd if multiple
. . command

program chain flags
submit flag (file search
.. found '$')

RSX flag - delete inactive
. . RSX '8

change default U/D to last
. . program

chain flag

Flag saying to use previous
. . line buffer.

display DU: when loading
.. file

hex hex var. name,

fi££asl off-80h bits

b3-b4 zz

b5 77

b6

b7

description

b5 35

dd 5d

bl

b6 36 JWIDTH
b7 37 SCOLUMN
b3 38

b9

ba-bb 3a-3b gBUFPTR

bc-bd 3c-3d JPOINTR

be-bf 3e-3f 8CIVEC

cO-cl 40-41 SCOVEC

c2-c3 8AIVEC

c4-c5 iAOVEC

c6-c7 8LOVEC

c8 48 **

c9 49 **

ca 8CTRLH
cb SRUBOUT
cc 4c 8KEYST

cd 4d

de 4e

cf-dO 4f-50 SMODE

bO

bl

b2

b3

b8-b9

dl-d2 51-52 SBNKBF
d3 53 JDELIM
d4 54 SOUTFLG
d5 55 IKEYLK

d6-d7 56-57 scb

d8-d9 58-59 JCRDMA
da 5a 8CRDSK
db-dc 5b-5c 8VINF0

JRESEL

de 5e 8MEDCHG
df 5f SFX

eO 60 {USRCD
el-e2 61-62 SENTRY

e3-e4 63-64 8HOLDFCBH
e5 8MATCH

e6 66 8MLTI0

e7 67 8ERMDE
e8-eb 68-6b

ec 6c __

ed 6d iERDSK

Z3PLUS search order: 00; COM
only, 01; COM, SUB,

10: SUB, COM, 11; PRL,
COM **

(DRI uses: 00: COM, 01:

SUB, 10: PRL)

reset disks

l=use default page mode
CCP is executing flag (used

. . by "W edit fn.

)

auto-start ccminand done flag
Console width byte
Console cursor column number
console page length
spare?

if NZ, ptr to redirected
. . console input

if NZ, ptr to next line of
. . redirected input
bit mapped console input

. . phys . devices

bit mapped console output
. . phys . devices
bit mapped console aux.

. . input phys . devices
bit mapped console aux.

. . output phys . devices
bit mapped list output phys
. . devices
current page mode (0=page
.. pause)

default page mode
Control-H active flag.

Rubout active flag.

submit mode keyboard status
. . byte

spare?

spare?

Console mode bytes.

fn 11 true only on 'C

no 'S-'Q, TAB, "P

no TAB, *P

no *C action

redirection status: 00:

.. conditional, 01; false,

.. 10: true, 11; no

. . redirection

Print string delimiter.
List output flag.

Keyboard lock byte.
addr of this (100-byte only)
.. SCB structure (=xx9c)

Current DMA address
BDOS current disk
(de) registers on entry to
. . this BDOS

Flag byte indicating a file
. . i/o function
Media change flag byte
BDOS function number

BDOS current user number
Main file position entry
. . storage

char, count for matching
. . filenames
Multi-sector count byte
Error mode flag byte
drive search chain (0=def,
. . f f = end of chain)

drive for temp, file
disk with error

16 The Computer Journal / #54

Figure 1 CP/M Plu« He«iory Map

BIOS }

SCB } — common memory

BDOS }

loader

RSX
I

I

0100: CCP or Application
|

I

0000: page

banked BIOS

banked BDOS

/

bank 1 memory
\ /

bank memory

banked operating system are in read only memory. In what

follows I will assume for this discussion that barJc extends

from OOOOh to EFFFh and that the address range FOOOh to

FFFFh is common to both banks.

The CP/M Plus resident BDOS manages the activation of

the appropriate memory, switching in the correct bank before

accessing it. It does so by calling one of the extended BIOS

calls for memory bank switching, and this process is entirely

transparent to a user application. In fact, as we are about to

see, a normal application program should never attempt to

manipulate banked memory!

The flow of an ordinary BDOS call to get a character from

the console looks something like this, where the level of in-

dentation indicates the level of subroutine nesting:

0100: Id c,l

0102: call BDOS (0005)

0005: jp resident-BDOS (at F600)

F600: call bank-switch and return

F603: call console input (at 0200)

0200'; call BIOS console input

F800: BIOS console input driver

ret

0203': etc.

ret

F606: call bank-switch and return

F609: ret

0105: process returned char, etc.

I've marked addresses in bank with a prime symbol.

Between the two calls to the bank-switching function the

user's program will be "invisible," and during that time the

banked BDOS, with its console input function at 0200', will

hex hex var . name

,

description

offset

ee

off -«nii bits

6e spare?

fO SMEDIA possible media change flag

. . (door open)

fl spare?

f2 spare?

f3 73 8BFLGS

b6

b7

BDOS flags.

double alv's

expanded error messages

f4-f5 8DATE Julian date.

f6 SHOUR hour, bed

f7 SMIN minute, bed

f8 eSEC second, bed

f9-fa 79-7a eCOMMON addr of common memory (0000

.. if not banked ays.)

fb-fd 8ERJMP jmp to error inatr. in

.. banked BDOS

fe-ff 7e-7f «MXTPA top of tpa+1/lowest RSX

.. (protected memory addr)

be available to be called.

Actually, this pseudocode fragment contains a disastrous

"gotcha." If the user program has set a stack located in the

user program area of memory, the return address pushed

onto the stack by the call to the bank switching routine will

be invisible. On return from that routine the processor will

pop a garbage value off whatever address the stack pointer is

now pointing to in bank and "return" to continue execution

at that address. So, the resident BDOS must save the stack

pointer and set a safe stack in permanently-resident memory

before calling the bank-switch routine. Before returning to

the user program it must restore the original stack pointer.

The memory map in Figure 1 shows most of the significant

components of a CP/M Plus system. The System Control

Block (SCB) is a 152-byte data structure that is used for

intimate communication between components of the

operating system. We will take up a few of the SCB items in

this column and examine several others in the future. Refer

to Table 1, which combines the information in Digital

Research's CP/M Plus manuals, Jim Lopushinsky's

additional documentation developed when he created

CCP105 (an improved version of the DRI command

processor), and my own discoveries made while designing

Z3PLUS.

Resident System extensions (RSXs) are located in high

memory, below the resident portions of the operating sys-

tem. SUBMIT and GET commands both cause the GET.RSX

to be loaded, and similarly the PUT command installs

PUT.RSX.

Implementing Redirection by Indirection

When console input is redirected from a file, the charac-

ters will be read from the file, placed in a buffer within the

GET RSX portion of memory, and then supplied one by one

each time the console input system call is executed. CP/M
Plus implements the following strategy. It replaces the BIOS

console input vector, which normally points to the console

input driver in the resident BIOS, with a vector pointing to a

substitute input routine in the GET RSX, That routine will

hand out a character from its buffer and do whatever house-

keeping is required to refill its buffer periodically. When the

end of the file is reached, the RSX will restore the original

BIOS console vector, do some final housekeeping, and even-

tually vanish when overwritten by a new application.

Now, look back at the first code fragment. At 0200' the

banked BDOS calls the resident BIOS for a character. But

now, with the GET RSX installed, instead of vectoring to the

console driver, control jumps to an address in the RSX. But

hold on! The RSX may be in invisible memory, covered up by

bankO!

CP/M Plus's designers anticipated this potential catastro-

phe, and they avoid it by indirection. Instead of directly

jumping to the BIOS console vector, they jump to a second

vector of BIOS functions located at the start of the SCB. So,

for console input the BDOS calls:

xx74 jp BIOS_conin

xx77 jp execute

But when the RSX is loaded this code is changed to:

xx74 Id hl,rsx_conin

xx77 jp execute

The Computer Journal / #54 17

so that control first passes to this resident routine:

execute: set bank 1

push exec_ret address

JP (hi)

exec_ret: set bank

ret

The resuh? Calls from the bar\ked BDOS to console input

switch in the user's bank, transfer control to the substitute

conin routine in the rsx, then switch the operating system

bank in again and return to the banked BDOS. (Again, of

course, other code at the entry to the resident BDOS has en-

sured use of a stack that is always visible to all banks.)

If you look at the full SCB table you will see that there are

similar indirection jumps for the warmboot, console status,

console output, and list output functions.

File Access during Redirection

So far, CP/M Plus's designers have kept from crashing the

system. But we're not done. Unlike CP/M 2's SUBMIT,
which reads one file record at a time in the command proces-

sor, and XSUB and ZEX, which read the entire script file in

advance and store it entirely in memory, CP/M Plus reads

the script file as it needs it. That's nice, because only one
record needs to be stored in memory, leaving a larger user

program area.

But consider what would happen if your program were
running on "automatic"—writing its output to a database

file, say, while getting commands from a script instead of the

keyboard? When 128 keystrokes have been supplied to the

program, the SUBMIT RSX will have to read the next record
from the script file. The file could quite easily be on a
different drive and user number, and the RSX will necessarily

have the BDOS read the data to a different DMA address.

How can CP/M Plus read the script file and avoid damaging
the user's file the next time his application writes to the

database?

The solution was to have the RSX save the state of the file

system before reading the script file and then restore that

state before returning. The essential state data are kept in the

SCB, beginning at xxD8 (see Table 1). The GET and PUT RSXs
incorporate the necessary code to switch states between the

primary process (the user's application program) and the

subsidiary process (fetching console input from a file or writ-

ing screen output to a file).

When 1 designed ZEX 5.0 for use under Z3PLUS, it was an
easy choice to make the redirection code into a CP/M Plus

type of RSX. I also considered mimicking the approach of

reading the script file as a subsidiary process. However, with
version 5, ZEX provides for a rich range of control features

specified by a syntax of full-word directives (see TCJ 38 and
40). In the CP/M 2.2 version, the script is compiled into a
more compact, intermediate code that is stored in its entirity

in the RSX's memory, and I used the identical method for the

Z3PLUS version. Clearly, an alternative approach (perhaps

for ZEX 6, anyone?) would be to write the intermediate code
script to a file and have the RSX mimick the GET RSX by
reading the file one record at a time.

New Applications of Redirection

Subsidiary-process access to the file system is a powerful
capability that has not often been exploited. In order to create

BackGrounder ii 1 had to develop a complete second- task

capability that would leave any type of disk access that an
application might make unaffected by background file acfiv-

ity. This, as it turns out, is a very stringent requirement —
one that, for example, neither CP/M Plus nor Joe Wright's
BPRINTER redirection utilities can fully satisfy. (They fail,

for example, on programs such as DU that perform disk ac-

cess by direct BIOS functions.) With this functionality in BGii
it was then possible to write a spooler command that redi-

rects console or printer output to a file and can print files

asynchronously in the background while regular user pro-

grams are running in normal fashion.

An excellent use of CP/M Plus's secondary file access ca-

pability would be to write a background print spooler that

runs as an RSX. The spooler would fetch data from a file, one
record at a time, and spool it to the printer (list) device. The
RSX itself can be quite small, leaving it to a separate applica-

tion program to manage the details of the user interface, file

opening, and the print queue.

A second interesting application would be a file transfer

utility that would send or receive files through a modem
port. This would allow the user to initiate a file transfer and
let it proceed in the background while he proceeded to use
other programs. Again, good design can keep the size of the

resident code small.

The CP/M Plus operating system provides the advanced
programmer with support for 1/0 redirection, secondary file

access, and resident system extensions. Using these built- in

tools, perhaps some of TCJ's readers will take up the chal-

lenge of developing new applications. As always, I look for-

ward to getting your feedback and ideas in the mail.#

LAN, from page 14

per second that can be handled, thus for smaller packets the

number of bits per second that can be handled goes down.

Spondulice is the Radix

of Everytliing Pernicious

—Michael Kaczmarelc

Next Time

The largest internetwork in the world (outside of the tele-

phone network) is the Internet, consisting of thousands of

individual networks joined together. Typically a campus
would have a LAN system of some sort and at one point

there will be an internetwork router with one or more links

to other routers. Wait! Isn't that the tandem switching ar-

rangement mentioned earlier? Certainly.

Next time we will look more carefully at IP (the Internet

Protocol) which is what runs across this worid-wide
Internet.*

18 The Computer Journal / #54

ZCPR On a 16-Bit Intel Platform

By Brian Moore

A few issues back. Jay Sage brought up the idea of run-

ning ZCPR3 under a CP/M emulator. Since I've been using

exactly such a system for some time, I'll pass on just what

bringing it up has entailed.

The system 1 use for most of my work is a Vector Graphic

model 4/40. This is a dual-processor system using an 8088

and a Z80 (similar to CompuPro's and Macrotech's SlOO

Dual Processor boards). In native mode, it runs CP/M-86 and

to run Z80 programs, it uses a program called RUN8.CMD

that sets up an artificial CP/M environment.

Having used CompuPro systems for many years, RUNS

was a familiar concept: much like CompuPro's SW! program.

In fact, the same method described here should work on

CompuPro's systems, as well as any other Z-80 CP/M emu-

lator, even under other operating systems. I have also done a

similar version for Vector Graphic's multi-user CP/M sys-

tem. The concept should also work on Turbo-DOS systems,

though that has yet to be tried. (I'm trying to do it under

MS-DOS, too, but finding a good Z80 emulator has proven

difficult.)

What does it take to bring up such a system? Surprisingly,

not much! The only real requirement is an emulator that

supports all the standard BIOS calls. Actually, even that isn't

really necessary, if you want to do some extra work, but

more on that later.

I'll take you through the evolutionary steps this system

has gone through to get where it is now (full ZSD0S/ZCPR3

system) and this should answer your questions.

The Initial Problem

Under the original emulator provided by Vector Graphic,

there was no command processor. If you gave an illegal com-

mand to the CP/M-86 CCP, it would look for a .COM and, if

found, invoke RUN8 with the original command as the tail.

At this point it would set up an environment that looks

somewhat like CP/M 2.2, load the requested program into

that area and execute it. All the program's BIOS and BDOS

calls would run through the emulator and be mapped into

equivalent CP/M-86 calls.

The first version of the emulator had a serious bug: the

BIOS jump table was not aligned on a page boundary. I

checked the CP/M manual, and it never does say that the

table must be page aligned, but many programs expect it to

be.

I couldn't run many of my CP/M programs like this, in-

cluding WS and anything written with SYSLIB (probably

99% of my software). I set about to write a little program that

would move the jump table to a page boundary and then run

the command specified as a parameter.

This worked as a partial solution, but this environment

would disappear after each 8-bit program. I then set out to

work around this.

Figure 1 - Before and After Memory Maps

RUNS Z-Syetem emulator

1 Disk Bitmaps | {
Same |

1
DPB'S 1

F800 1
Same |

1
Memory-Mapped Video

|

1
RAM 1 FOOD

1
Resident Command

|

1
Processor |

1
Interface code to | EEOO

1
8088 1 EDOO

1
Same |

1
TPA 1

1 1
E300

1 1
D500

1
Z-System segments |

1 "Tiny BIOS" |

1
ZSDOS 1

1
ZCPR3 Command Proc

|

1
TPA 1

Brian Moore has been playing with Z80 software since 1978, when the computer

addiction first bit. Since then, he has done hand-installations of ZCPR3.0 and 3.3

on several systems, and can't fathom why anyone would use Vanilla CP/M. Brian is

the author of ARKl 1, the CP/M tool for creating ARC compatible archives. He can

be reached on GEnie as BRIAN-CPM, The Machine BBS (503-747-8758) or at home

(503-687-8531). His mailing address is 1048 Lincoln St, #1, Eugene, OR 97401.

Phase i : The Command Processor

On a regular CP/M-80 system the environment is set up at

cold boot time, and certain maintenance of that environment

is done with each warm boot.

I realized I needed to provide my own cold boot function,

and to intercept the warm boot calls where I would do my
own work, instead of returning to CP/M-86. This was done

with a simple program 1 called (for brevity) X. X would first

move the BDOS and BIOS entry points down in memory and

space them 3.5k apart from each other.

I found through bitter experience that

some programs really don't like seeing

the BDOS and BIOS jammed up next to

each other as is common in emulated

environments.

The BIOS was moved with a simple

LDIR instruction and a patch to the

The Computer Journal / #54 19

Listing 1 - 86Z.COM

86Z-A Loader for ZCPR3 for the Vector 4. The ZCPR3 system
image is loaded at ODSOOh, and various parameters are
intialized to appease juat about any program that will run
under ZCPR3.

modified 9/19/89 for RUN8 vl.2
modified 6/14/91 for Z80DOS24, which will let RUN8 act as

the BIOS ONLY. This should fix some of the quirks in
RUNS, and speed things up a bit.

modified 7/25/91 for ZSDOS for better date handling.
Clock driver is loaded with pseudo-BIOS.

Cuirks in Vector's environment
RealBIOS equ OeeOOh ;Where the simulator's BIOS
NewBIOS equ Oe300h ;is a better place for it
TinyBEWS equ OdSOOh ;low enough to save Z3
SimBDOS equ 0ed06h ;segments simulator's BDOS
Wboot equ NewBIOS + 36h ; entry where we will put

;the loader

maclib Z3BASE.LIB ;get sane constants

.z80

aseg

org

Id

Id

call

Id

Id

Id

Id

Idir

Id

Id

Id

Idir

Id

Id

Id

Idir

Id

Id

Id

Id

Id

Idir

Id

Id

Id

Id

Id

Id

Id

Idir

Id

Id

call

xor
Id

Id

Id

call

Id

Id

call

lOOh

de , signon

c,9

5

hl,CCP

de,CCP + 1

bc,0ED00h - CCP
(hl),0

;what the heck,

; zero out the memory

hi , initcommand

de,z3cl

bc,initclen

hi , initpath
de , expath
be, 3

a,Offh

(z3whl) ,a

hi, RealBIOS

de, NewBIOS
bc,33h

;copy the initial STARTUP

; ccmmand into the Z3

; command buffer

initialize the path
(just need AO: for now)

(someone else can set
the rest)

;3et wheel byte non-zero

;set up our bogus BIOS

a,0c3h ;Set up a jump to ZSDOS
(NewBIOS + 33h),a ;tirae routine
hl.TIHE ;

(NewBIOS + 33h + l),hl

hl,mywboot

de , wboot

bc,chsize

Copy in our artificial
warm boot code.

c,Ofh ;open file

de,Z80DOSPCB ;the Z80DOS binary image
SimBDOS ; (we assume it was found)

a ; clear the record count
(Z80DOSFCB + 32),

a

c,44

e,16

SimBDOS

c,26

de , TinyBDOS

SimBDOS

;set multi-sector count

;set the dma address

; where to load Z80DOS

Id c,20 •read sequential
Id de,Z80DOSFCB (recs 0-15)
call SimBDOS

Id c,44 Set multisector count
Id e,12 for next chunk
call SimBDOS

Id c,26

Id de, TinyBDOS + (128 * 16)
call SimBDOS
Id c,20 read sequential
Id de,Z80DOSFCB (recB 16-27)
call SimBDOS
Id de,Z80DOSFCB

Id c,16 close our file
call SimBDOS

Id hl,0EF7Fh Set up scratchpad area
Id (0efl7h),hl (The simulator doesn't
Id (0ef27h),hl do this for us so the
Id (0ef37h),hl simple solution is to
Id (0ef47h),hl fudge the entries so

that a Z80 OS will be
happy.

)

The following patch is to overcome a special quirk in the
CP/M-80 simulator. Instead of directly calling the
simulator BIOS on this, we do it ourselves. We just patch
our routine into the NewBIOS jump table.

Id hi,WRITE ; Our WRITE replacement
Id (NewBIOS + 02aH + l),hl

Id

Id

xor

Id

JP

hi,wboot ; Can't have a real WBOOT
(NewBIOS + 3 + l),hl ; either

(4),

a

(hi)

; Force a log to AO; for

; no good reason

; load Z3 and execute the

; startup command . .

.

; (force a warmboot)

signon: db Odh,Oah, 'ZCPR 3.3 Loader for the Vector 4'

db Odh,Oah, 'Version 1.00 by BEHoore' ,0dh,0ah
db 0dh,0ah, 'Please Stand By: Loading System.'
db •$•

initcommand:

initclen

dw

db

db
db

db

equ

initpath: db

db

Z80DOSFCB; db

ds

z3cl + 4

z3cls

' STARTUP ; START

'

? - initcommand

'A'-'8',0

; pointer to first char

; length of buffer

; offset into buffer

; end of command

force AO;

1, 'Z80DOS

25,0

IMG'

; This is our own Mini-BIOS. It serves mainly as a
; replacement for the WBOOT entry point to the BIOS, but it
; is also our opportunity to add some features and a fix to
; the BIOS.

mywboot!

. phase Wboot
Id ap.OOfeh ;Get the stack out

;of harm's way

Id c,Ofh ;open file
Id de,z3binary ;the binary image of Z3
push de ;3avB this
call SimBDOS ;(assume it was found)

Id c,44 ; set the multisector count
Id e,16 ;to 2k (the exact file
call SimBDOS ; length)

20 The Computer Journal / #54

new "Tiny BIOS" was made at location 0001. The BDOS,

however, was only slightly more complex. X itself contained

a copy of a "Tiny BDOS", and this was assembled with M80's

PHASE directive. X would copy this to the proper location

and patch the address at 0006 to point to this "Tiny BDOS".

The "Tiny BDOS" would pass all BDOS calls to the CP/M
emulator except for function (warm boot). This one func-

tion was trapped and would make a series of calls to the

emulator to open and read a file containing the CCP, and

then jump to it. The "Tiny BIOS" WBOOT jump went to this

little routine, so a]P to location would perform a

warmboot.

The reason the above works, 1 realized, is because the CCP

is just a special program, unique only that it's loaded by the

BDOS and by its address.

Note that even at this stage I had, in effect, two BDOS's.

One acts just like a CP/M 2.2 BDOS, reloading the CCP on

function 0, and the other one drops back to CP/M-86 on

function 0. But the "TinyBDOS" has a unique capability: it

can do its reading by making BDOS calls (to the emulator)

instead of the much lower-level BIOS calls.

This made it quite simple to read in the CCP at warm

boot: 1 had all the standard CP/M BDOS calls for file I/O and

even one for doing multi-sector reads. In effect, the BDOS

could act like a transient program and call the "real" BDOS.

Phase II: A Real BDOS.
The above method had limitations: like trusting the

emulator to behave properly (it has numerous bugs). For

example, the BDOS input line function would echo an extra

CR/LF, and would drop back to CP/M-86 on ^C. 1 also

wanted to use programs like ZEX and BYE, which make

direct patches to the BIOS. This would have odd effects, as

the Tiny BDOS never called my Z80 BIOS, though some

programs make direct BIOS calls.

I realized that the BDOS is much like the CCP: a special

sort of program file loaded at a given point in memory. Actu-

ally, it's easier than the CCP in that the file need not be

reloaded at warmboot time—^just a few modifications to my
'X' program would give me a BDOS loader.

1 used a copy of Z80DOS that I happened to have here—

I

assembled it for the proper address and saved it as a file

called 'Z80DOS.BIN'. The CBOOT routine in the loader

merely loads the BDOS in, then jumps to the WBOOT routine

in the Tiny BIOS.

Of course, life is never that simple. Now that I was using

a 'True' BDOS, I found that the BIOS emulation routines in

RUNS had some quirks, the worst of which was that calls to

the WRITE routine would not properly flush a dirty buffer.

Alternating drives, or just re-specifying the same drive, be-

tween calls to WRITE would introduce garbage into the

buffer.

Without source code, I figured I had little chance of fixing

this in the emulator. So, I wrote a replacement for the emula-

tor's WRITE, or more precisely, an intercept for it. This relies

on the information passed to the WRITE routine as to

whether or not to do a pre-read, and whether an immediate

flush is necessary. I force every call to WRITE to do a pre-

read and immediate write.

There is a definite loss of speed with this method (and I'm

still trying to figure out a better one), but the HD on this

system has 256-byte physical sectors, so the overhead isn't

that large. And actually, the Z80 is so much faster than the

8088 that by using a Z80 BDOS, I had a noticeable improve-

ment in speed over the emulated version.

I also tried adding a SmartWatch to the system at this

time, and found that the hardware wouldn't allow it. The

Chip Select line to the ROM is always on, and the address

lines always active, so it was impossible to pass the proper

information to the SmartWatch. But, I realized that CP/M-86

has an interrupt driven clock built into it. My problem was

finding it.

After some hacking at various system programs, I discov-

ered how to manipulate the memory-manager (an address

line latch, actually) to let the Z80 peek into the 8088's address

space and read the clock.

This brings up an important point (and something I will

be using when 1 get this ported to MS-DOS): the BIOS can

deal with the system in any way it wants. For example, my
WBOOT routine loads a disk file using the BDOS calls sup-

ported by the Emulator. That's much easier than having posi-

tion-dependent files. The Clock routine works by peeking

and poking into the other processor's memory.

While running under the emulator, then, the BIOS is also a

special sort of program—capable of making BDOS calls! Just

be careful to call the emulator BDOS, not Z80DOS or ZSDOS.

Phase III: Upgrading to ZSDOS
It didn't take too long using Z80DOS to realize I wanted

the features of ZSDOS, but when I received it I realized it

would involve another trick to install it.

ZSDOS is very easy to ir^stall on more normal systems. If

you have MOVCPM or SYSGEN, it will figure out how to

install itself into either of those. But 1 have no MOVCPM,
since this system has never run real CP/M 2.2, and no SYS-

GEN since the system has no reserved tracks. (Actually, they

are mapped out at a very low level of the OS.)

The trick was actually simple: I pretended I had SYSGEN
and constructed in memory an image of what the boot tracks

would look like if 1 had them. Z8E is real useful for this, since

you can load the separate files at different addresses, and

then move the BIOS jump table down just above them.

I saved this file out as ZSYS.IMG and pretended this was

my SYSGEN image file. When 1 finished configuring ZSDOS,

I returned to Z8E and stripped out the BDOS and saved it as

its own file. It was so quick I saved it as Z80DOS.BIN, so I

wouldn't have to change the filename in the loader—it does

contain ZSDOS.

Additional Thoughts:

The trick to the whole operating system I'm using is that it

is all considered by CP/M-86 to be one ver)' strange transient

program. As far as the CP/M-86 side goes, 1 make some

BIOS and BDOS calls through the RUNS program, and even-

"What's new?" is an interesting and broadening

eternal question, but one which, if pursued

exclusively, results only in an endless parade of

trivia and fashion, the silt of tomorrow. I would like,

instead, to be concerned with the question "What

is best?" a question which cuts deeply rather than

broadly, a question whose answers tend to move

the silt downstream.

—Robert M. Pirsig

The Computer Journal / #54 21

xor

Id

Id

Id

call

Id

pop
push

call

Id

Id

call

di

Id

Id

Id

Id

Id

Id

Id

Id

Id

a ; clear the record count
(z3binary + 32) ,a

c,26

de , ccp
SimBDOS

c,20

de
de

SimBDOS

c,44

e,l

SimBDOS

a,0c3h
(0),a

(5),

a

;3et the dma address

; where to load z3

;read sequential

;file will now be loaded.

;bac)c to 1 record. .

.

hl,TinyBDOS + 6 ;mak;e the BDOS vector
(6), hi ; point to the the

; "Tiny BDOS"

ei

JP

hl,NewBIOS + 3

(l),hl

a, (4)

ccp

; set up the initial
;bios area

; Replacement for RUNS's WRITE routine.
WRITE: Id c,l ;force it to be

jp RealBIOS + 2Ah ; "directory" write (ie,

; force buffer flush each
time)

z3binarys db 1,'Z33CPR BIN'
ds 24,0 ;rest of the fcb

As long as we're in the BIOS,

throw in a ZSDOS clock driver routine.

TIME:

getloop;

Id a,c
or a

ir nz , noset

call clockon

Id hl,0f8c0h
Id de, buffer
Id b,6

Id a, (hi)

and Ofh

add a,

a

add a,

a

add a,

a

add a,

a

Id c,a

inc hi

Id a, (hi)

and Ofh

or c

Id (de),a

inc de
inc hi

inc hi

djnz getloop
call clockoff

Id hl,(outbuffer)

Id a,(cyear)
Id (hi),

a

inc hi
Id a, (cmonth)

Id (hi),

a

inc hi

is command GET_TIME7

no — go set the time

ASCII clock data address
mm/dd/yy hh:mm:ss
Six fields to convert

Strip off ASCII bias
Shift over to hi nybble

Get next digit

Strip off ASCII Bias
mask into hi-order
and save it

putloop:

skip to next

Skip delimiter

point to output buffer

buffer!

cmonth:

cdate

:

cyear:

chour

:

cmin:

Id a
,

(cdate

)

Id (hi),

a

inc hi

Id a, (chour)

Id (hi),

a

inc hi
Id a, (cmin)

Id (hi),

a

inc hi

Id a, (csec)

Id e,(hl)

id

call

Id

ret

(hi),

a

save the hours

the minutes

get the old seconds
value for ZSDOS and the
seconds (all in BCD)

id

ret

a,l

;and go awayl

call clockon
Id hl,(outbuffer)
Id a, (hi)

Id (cyear),

a

inc hi

Id a, (hi)

Id (cmonth) ,

a

inc hi

Id a, (hi)

Id (cdate),

a

inc hi

Id de, buffer + 3

Id be, 3

Idir ;YYMMDD -> MMDDYY
Id hl,0f8c0h ;ASCII clock data address
Id de, buffer

J

Id b,6 ;Six fields to convert

Id a,(de)
#

and OfOh ; Strip off lo-nybble
rra ; shift over to lo-part
rra

rra

rra

add a,'0' ;add in ASCII BIAS
Id (hi),

a

inc hi
Id a,(de) ;Get next digit
and Ofh ; Strip off hi-nybble
add a,'0' ;Make into ASCII
Id (hi),

a

;and save it
inc de
inc hi ,-skip to next
inc hi ;Skip delimiter
djnz putloop

clockoff

a,l

t

clockoff

:

Id a,(0ED13h)

Id b,0f8h
Id d,a

Id c,16h

out (c),d

ei

ret

clockon: Id (outbuffer) ,de

Id b,0f8h
Id d,05h

Id c,16h
di

out (C),d
ret

db

db

db
db
db

Flag that clock was set

Get FSOO's original
map back

Point back to
CP/M-86's bitmap
RAM address map port

make Of800 map to 2s 8000
RAM address map port
ACKl NO Interrupts 1

Note — this is the
format CP/M-86, has the
date in — we need to
swap it around to what
ZSDOS wants.

22 The Computer Journal / #54

csec: db

outbuffer: ds 2

chslze

.dephase

equ S

end

- mywboot (•Number of bytes to move.

tually I do a function and reboot—CP/M-86 doesn't notice

anything weird is going on behind its back. It's for that rea-

son that I think this could be done with little effort on other

CP/M-like systems, such as TurboDos. They will see a pro-

gram load, and make a bunch of BIOS and BDOS calls and

then at some point end.

From the user's perspective, though, the system looks and

behaves just like a normal system, except for some of the CP/

M-86 features, like interrupt driven console input.

Occasionally I do have to exit Z-System (some things that

fiddle with CP/M-86 are not accessible yet from my Z-

System), so I have a simple alias to do this:

EXIT poke 100 c3 00 ee;go

This forces a jP to the WBOOT routine in the emulator,

which returns me gracefully to CP/M-86.

As for incarnations under MS-DOS: it seems possible. The

trick is dealing with the differences in the structure of the

disk. I am convinced that for now the best way to do this is to

use a BDOS like Z80DOS, but strip out all the disk I/O calls,

and change them to use the emulator's BDOS. This will allow

for programs that hook into the character I/O functions

(BYE, ZEX, AT and others) and should allow most programs

to run fine using the emulator's BDOS for disk I/O. I will

confess that I can't predict the behavior of a program like

DU3 under such a system.

Note that 22NICE, a CP/M emulator for MSDOS (which I

am currently analyzing to see if it will suit my odd purposes)

allows for 'drive/user' areas to be mapped onto MSDOS di-

rectories. Setting up a named directory register to match the

DOS names with the simulated user areas should make navi-

gation compatible between the two systems.

At a later date, it would be interesting to use a full ZSDOS
and DOSDISK—in theory, that should work quite well. But

for now, I'm still in pursuit of a good fast Z80 emulator for

my very slow clone.

Drop me a note at one of the addresses shown at the start

of this article if you have a Vector4 and would like a copy of

the operating system we've discussed here, with Z80DOS in-

stead of ZSDOS.«

Computer Comer, from page 48

text you least expect it.

They supply plenty of documents to explain how their

stuff works, but I am afraid it is mostly done by program-

mers and as such leaves the novice user in complete confu-

sion. I finally traced my problems to one sentence that ex-

plained their MAKE utility. The utility has a tree structure

starting from a single branch(a reference file) and you must

carefully select that branch to get it to work correctly at all

(must be only one file). That explanation is mine, theirs made

less sense.

In the case of the PVCS program 1 can see some reasons

for keeping some the installation and security secrets a bit

cryptic. After all you do not want your user to know exactly

how the security system works, else they will break it just for

fun. That is why the course is most helpful, you get to see

and play with setting it all up under controlled conditions

(without others seeing you make the changes). That also was

my biggest complaint about the course.

The objective was to learn how to set the system up under

a LAN based environment, using some of the LAN features

(it will work as single user as well). We learned on a non-

LAN system and as such missed some of the extra playing

that might be helpful later. It worked ok, but not as well as

the real thing. It also prevented the instructor from doing

some demos that a more complex LAN environment would

have allowed.

LANs in the Training Lab

That showed me what a modem day instruction environ-

ment should be like. The instructor travels between several of

the companies locations and as such really needs to take a

system with him or her. Thanks to Motorola it will be pos-

sible to do a better job soon. How so?

In the next year or so it will be possible to hook a small

transmitter/receiver to your serial or parallel port that con-

nects to a LAN without any wires. For our traveling instruc-

tor it means a portable 386 with large hard disk and 6 or 8 of

the LAN transceivers. Now all that is necessary is to have as

many computers rented for the class as needed (at the train-

ing site) and the instructor carries everything else with them.

Even what they carry is not so much really, the standard lug-

able 386 seems to be pretty standard carry on luggage these

days. I saw at least 4 four people dragging them around in

the airport in the first 5 minutes 1 was there.

For those teaching computer training programs, I feel the

future will only get better. Think about being able to setup all

your training and sample programs and directories once.

Gone will be the days of redoing all the hard disks after each

class and making sure you got all the floppies back from

students. Sounds pretty good to me.

Brief but Sweet

Overall I found PVCS to be an ok product and definitely

recommend you use some form of version control on your

products. The thing to remember is that VCS still does not

replace good and plentiful comments in the source file, it just

makes it possible to find out who didn't comment their

changes.

I will leave you with a hint about next time. FORTH day is

just around the comer and WESCON will be happening as

well. So next time. ..keep plugging away.#

Basic research is when I'm doing

what I don't know I'm doing.

—Wernher von Braun

The Computer Journal / #54 23

Real Computing

Minix Miscellany, Being Two Places at Once, and Hungarian Ghoulish

By Rick Rodman

Minix IVIiscellany

Before I got my 32381 chip, I was restless to do some
programming on my PC-532. Since gcc requires the 32381, I

was limited to assembly language. But I've noticed that as-

sembly language under Minix is something nobody talks

about. The listing shown (Listing 1) is an assembly-language

program called this.s which makes two system calls under
Minix. It's written in NS32 assembler. An 8086 version

should be very similar.

You have to remember that Minix is a message-passing

operating system, and the familiar system calls such as write,

read, iodl, et cetera, under Minix are actually implemented
using message structures passed to the real system calls,

which are send and receive. Constructing these messages in C
is simplified by a number of macros, but under assembly

you're on your own.

Each message can be 28 bytes or more in length. Each of

the various system call messages has its own message struc-

ture. Some system calls need to get sent to FS, and some to

MM. If you send a message to the wrong kernel task, it'll get

some kind of error in reply.

In the example in listing 1, I build a "format 1" message
for the write system call to send a message to the screen

(actually, to stdout). Six fields in the message structure have

to be set up, then two registers to identify the destination and
type of service call, before executing the svc instruction (a far

call under Minix).

In order to simplify matters, I just used the C startup

routines and named my entry point jnain. From looking at

the listing, you'll see that setting up the message structure is

quite a bit of work. Remember too, that for each system call,

you need to know the message format, which field goes

where, and what destination task to send the message to.

Obviously, Minix has not been designed for convenience of

assembly language programming!

I recently ported Richard Campbell's Tiny Basic to Bare

Metal and hope to port it to Minix soon. Another Basic inter-

preter, written in C, is supposed to be available, but 1 have
not been able to obtain source to it.

But now my 32381 has arrived and

is installed and working, in all its re-

splendent numericity, in my PC-532.

You have to admit. National has some
high-tech-looking chips—with those

bypass capacitors mounted on top,

they really look like they mean busi-

ness. And now, I'm all set for some
heavy number crunching.

Only technoids look at chips anyhow, right? Intel's chips

look like big blank walls, on which they have lately started to

print fairly gaudy advertising. Intel's recent advertising

blitzes "The Computer Inside" and "Intel Inside" are so mo-
ron-targeted that they're alienating anyone with even a pass-

ing awareness of technology. You'd think they were selling

light beer or something.

386 IMinix

In unrelated developments, patches have been developed

for a 386 version of Minix, under which the Gnu tools are

used for software development. With all the "smallness" of

Minix out of the way, it becomes reasonable to implement

subsystems like TCP/IP and X Window under Minix. How-
ever, Andy Tanenbaum, the author of Minix, originally in-

tended it as a tutorial operating system for classes, and he

doesn't want tremendous increases in the complexity of the

package. For this reason, it is unlikely that the 386 version

will be available from Prentice-Hall. Instead, if you want to

run 386 Minix, you will have to either obtain ftp access to

Internet and spend hours transferring files so you can have
the fun of trying to cobble the system together from a bunch
of patches, after which you can have the joy of trying to

debug it. Some call the result "Advanced Minix".

See Listing! for the files you would need.

The Mars Hotel BBS in Maryland (1-301-277-9408) is sup-

posed to have all these files. It also has a great deal of the /

it/comp.os.minix postings. For the moment, I've decided

against bringing up 386 Minix, because I already have Minix

with GCC on my PC-532.

Now for some other Minix miscellany. The TTY (console,

and external terminals—Minix works great as a multiuser OS
on a PC) driver doesn't handle non-blocking I/O. It'll work
fine for files and named pipes, but the TTY driver just

doesn't have any code to implement it. If you want to write a

program that only "samples" the keyboard, such as a screen

editor with intelligent repaint or maybe a video game, you'll

run into a problem.

Next, Andy Tanenbaum himself has distributed a new

Rick Rodman works and plays with computers because he sees that they are the

world's greatest machine, appliance, canvas and plaything. He has programmed mi-

cros, minis and mainframes and loved them all. In his basement full of aluminum
boxes, wire-wrap boards, cables running here and there, and a few recognizable

computers, he is somewhere between Leonardo da Vinci and Dr. Frankenstein. Rick

can be reached via Usenet at uunetlvirtechlrickr or via 1200 bps modem at 703-330-

9049.

24 The Computer Journal / #54

Listing 2

12259 Dec 12 1991 pub/Minix/oz/mx386.tute.Z John Nall'B tutorial

3623 Jul 11 1990 pub/Minix/oz/nix386_1.1.01.Z patch to nix386

45155 Jun 15 1990 pub/Minix/oz/mx386_l.l.t.Z tar file with 386 patches

12063 Jun 14 1990 pub/Minix/oz/bcc.tar.Ztar file with 386 C coo^iler frontend.

121962 Jun 15 1990 pub/Minix/oz/bccbinl6.tar.Z C compiler 16-bit binary

118254 Jun 15 1990 pub/Minix/oz/bccbin32.tar.Z C compiler 32-bit binary

43492 Jun 15 1990 pub/Minix/oz/bcclib.tar.Z 386 library sources.

96151 Aug 14 1991 pub/Minix/oz/cpp.tar.Z C preprocessor (optional?)

30659 Nov 15 1991 pub/Minix/oz/cppmake.tar.Z Earl Chew's cppmake program.

version of cdiff which uses CRCs to ensure that the version

being patched is the right one, and that the resuh of the patch

is correct.

Computer-security fanatics who were enthralled by the

account in The Cuckoo's Egg of breaking the password file of a

Unix computer may be interested in a surprisingly simple

program which implements the concept. It works under

Minix just as well as under Unix. The general idea is that

most users use either proper names or dictionary words as

their passwords. Since the encryption algorithm is accessible,

it's quite easy to run through a dictionary, encrypting words

and comparing the result to the encrypted password in the

password file. No matter what system administrators tell

people, users keep using dictionary passwords. (Not me.

Bub! I use made-up but pronounceable words like

'zlofsnerb').

Last time I discussed the Named Pipes under Minix. Alas,

there are problems. It seems that each writer receives his own
file pointer, so that multiple messages sent at the same time

will cause trashing of messages. The way this is fixed in Unix

is by using two bytes of the "i-node" for a write pointer;

patches have been developed implementing this solution, but

not everyone is very happy with it.

The above miscellaneous items are available on my BBS

(1-703-330-9049, evenings, up to 9600 baud) in the form of

two big text files, which are simply transcripts of Usenet

messages, called uminix.21 and umimx.22. If you want only

a brief item and don't want to transfer these masses, leave me
a message.

Being Two Places at Once Has Its Drawbacks

I know TCJ is not a Windows-related magazine, but many

of you may have fooled around with Windows, and if you

have any occasion to do programming under it, you need to

know what I am about to pass on to you.

In a standard state-machine design, states are atomic—
each state, or message, executes to completion before another

is processed. You can rely on this condition to save yourself a

lot of worry about data consistency. Multiple state machines

can be synchronized by semaphores or other operating sys-

tem mechanisms.

I've learned to my chagrin that, under Windows, you can

be two places at once and can't do anything about it.

The problem is that Windows is not preemptively multi-

tasking. When doing something time-consuming, you have

to voluntarily relinquish the processor. The usual way is to

call a function named YieldProc or something like that, which

has a quick message loop allowing other messages to be dis-

patched—^but guess what? Messages can be dispatched to

your program as well! For example, you might be computing

values to be displayed in a window, and the window re-

painting message comes in to display them before you're fin-

ished!

Unfortunately, because Windows is

not a real OS, there's not much you can

do about it. There are no semaphores

or other mechanisms. Many commer-

cial libraries include YiddProc-like calls

without telling you, too. The upshot is,

you have to program extremely defen-

sively. You ccin never know, in a mes-

sage-processing routine, whether sev-

eral different routines in your code are being executed at

once.

The most common problem is with WM_PA1NT. Make

sure that your WM_PAINT, WMSIZE and other window-

painting-related routines do little or no computation, so they

can execute atomically. I know it's tempting to recalculate on

display, but don't—keep the data in a buffer. With

See Real Computing, page 29

LISTING 1 ASSBffiLY LANGUAGE UNDER MIHIX

;test assembly language program

;Asaeinble with: cc this.s -o this

;This causes the crtso.o file to be linked first.

. static

mytext:

.byte 'This is a test' ,13,10,0

12345678901234

;Minix message structure will be built in this buffer

message:

.blkd 7

;Offsets for message structure. Each system call has a

particular

;message structure; some need to go to FS, some to MM.

off_src .equ

off_type: .equ 4

offjnlil: .equ 8

off_mli2: .equ 12

off_mli3: .equ 16

off_mlcpl: .equ 20

.program

(•start: :

_main:

:

;Entry point from crtso.o

movd me8sage,rl

movd O,off_src(rl) ;build message format 1

movd 4,off_type(rl) ;SC 4 = write

movd l,off_mlil(rl) ;1 = stdout

movd 16,off_mli2(rl) ; count of bytes

movqd 0,off_mli3(rl) ;unused

movd mytext, off_mlcpl(rl) ;buffer pointer

movqd l,r2 ;destination = FS

movqd 3,r3 ;send and receive

SVC ;make the call

; return result is in message. off_type

;naw need to exit, (actually don't; since crtso

linked first,

; returning is all that' s necessary.

movd message, rl

movqd 0,off_3rc(rl)

movd l,off_type(rl) ;SC 1 = EXIT

movqd O,off_mlil(rl) ; return

movqd 0,r2 ;destination - MM

movqd l,r3 ;send only

BVC ;make the call

ret ; should not get here

for write

The Computer Journal / #54 25

Interrupts and the Z80

By David Goodenough

Figure 1

#dwf200

Most of the time when a CPU is executing a program, it

will get on with the job with almost single minded devotion

to the task. It has the program to execute, and it sits there

executing instruction after instruction. Unfortunately the real

world is a little different: there are sometimes external stim-

uli that need to be dealt with. For example, what does the

system do when you press a key on the keyboard?

The naive approach to this would be to only inspect the

keyboard when you're actually waiting for input, a technique

known as polling. This has the advantage that it's very

simple to implement, but has the obvious disadvantage that

keys pressed when the keyboard isn't being checked stand a

very good chance of being lost.

Wouldn't it be better if we could temporarily stop the

CPU running the program and go off and

handle a keyboard press, whenever one

happens. This would let us save all the key-

strokes in a buffer somewhere until they're

needed. This is what an interrupt does: it

interrupts the CPU's current task, and

makes it go off and do something else, and

when this second job is finished the main

task can be continued, as if nothing had

ever happened.

The Z80 is an interesting CPU in it's

handling of interrupts. It allows the

programmer to select between three

different modes, which can be selected

under software control. The third of these modes is very

powerful, working at a level that would be expected more in

a mini-computer rather than an eight bit micro.

The first of the three modes, mode zero, was designed to

be the same as the interrupt handling on the 8080. Since the

Z80 is an upgrade of the Intel 8080, that was a logical deci-

sion to make. In this mode, when the 8080 (or Z80) is ac-

knowledging an interrupt, the interrupting device is able to

write a single instruction onto the data bus that the CPU will

then execute. In almost all cases this will be one of the single

byte call instructions that the 8080 and Z80 support. The net

result of this is that when the interrupt occurs, the CPU calls

to a specific location in memory, and is able to execute an

interrupt routine residing there.

The second mode, mode one, is the

simplest, in that all it does is a

unilateral call to a specific location, so

that the code to handle all interrupts is

in one big subroutine. As the address

that the CPU calls to cannot be

changed, this is the least versatile, but

is the easiest to work with in a simple

application.

The third mode, mode two, is where the Z80 stands head

and shoulders above the rest. This is a complex method, but

once it's learned, the power it gives can be put to good use.

The Z80 has a special eight bit interrupt register, which can

be loaded from the accumulator. This register is intended to

hold the address of a 256 byte page somewhere in the ad-

dress space of the Z80. Taking my Televideo system here as

an example, the interrupt register contains 0F2H, so the page

being addressed is 0F200H through 0F2FFH. When an inter-

rupt is generated, in a similar manner to mode zero, the

interrupting device is expected to write a byte onto the data

bus. This byte becomes the low eight bits of the address in

the interrupt page. This allows selection of any one of 128

; dump words, from 0F200K

F200: F1C3 C3FC F9BA 80C3 C3F2 F2A6 BEC3 C3F2

F210: F334 2BC3 C3F3 F323 BDC3 C3F4 F4A9 BFC3

F220: C3F4 F4C4 C9C3 C3F4 F534 59C3 C3F5 F299

F230i CEC3 C3F4 F28A 8EC3 35F2 86FC 2513 2620

F240J 9106 0019 8000 E500 0001 0000 0000 FFFF

F250: F3F6 F3F6 F3F6 F3F6 F3F6 F3F6 F428 F467

F260: F3F6 F3F6 F3F6 F3F6 F33D F3F6 F3F6 F3F6

F270: F3F6 F3F6 F3F6 F3F6 F3F6 F3F6 F3F6 F3F6

.4..Y.

.% t

.(.g.

sixteen bit words in the page. For example, when the clock

tick interrupt goes off, the CTC chip puts 068H on the data

bus, and the Z80 then builds the address 0F268H. Then the

Z80 reads the word at that address, and calls to that location.

Figure 1 shows a dump of the page in question shows.

[Note—Most of the vectors point to a "null" subroutine that

simple re-enables interrupts and then returns.]

Let's look then at the code at 0F33DH:

#lf33d
F33D LD (FCC2),SP

F341 LD SP,FCC2

F344 PUSH AF

F345 PUSH HL

F346 PUSH DE

F347 LD HL,(F239)

David Goodenough programs both professionally and for a hobby. Professionally

he uses C for projects under both DOS and UNIX. In the hobby world, his first

choice is Z80 assembler. He cut his teeth in the computer world programming a

National Semiconductor SPMP in HEX in 1974, and has been at it ever since. He
lives at 1236 15th Avenue, San Francisco, CA 94122, and can be reached at (415)

6653721 when his computers allow him to use the phone.

26 The Computer Journal / #54

F34A INC HL

F34B LD (F239),HL
of it's lEO to the next device in the chain. This is the "idle"

condition: any device that sees +5 on it's lEI line is at liberty

When the Z80 reads from 0F268H, it reads the word

0F33DH, as shown above, and starts there. As the

disassembly at 0F33DH shows, this is the entry of the timer

tick routine. This means is that the Z80 can have 128 separate

interrupt routines accessible, and each interrupting device

can select what routine to use by providing the low word of

the address in the interrupt page.

This explains how the Z80 handles interrupts as far as the

software is concerned, but what happens at the hardware

level?

The Z80 itself has only one general purpose interrupt

Figure 2

To Z80 IRQ Line ,

+5V

1 r~ 1
1 1 1

lEI IRQ lEO

Device 1

iEi IRQ lEO

Device 2

iEi IRQ lEO

Device 3

Listing I

icode; di

push hi

push af

iclp: in a,(0x2d)

add a,

a

jr nc , iedone

here: Id hl,0

inc (hi)

res 5, (hi)

Id a, (hi)

inc hi

add a,l

Id l,a

jr nc , hok

inc h

hok: in a,(0x2f)

Id (hi),

a

jr iclp

iedone

!

pop af

pop hi

ei

reti

endl:

make sure further interrupts are disabled

save just two registers

read the status port

check the MS bit

MS bit not set, so it's time to exit

filled in later [*] - this will point

hi at the buffer area

increase the save index

but limit it to 32 bytes

now get the updated index

point hi at the buffer

these last four instructions add a to hi

this effectively points hi at the correct

place in the buffer to save the character

read a character from the modem port

save it in the buffer

jump back to try again

all done: restore the registers

re-enable interrupts

and return from the interrupt

to generate an interrupt.

When device 1 wants to interrupt, it

asserts IRQ to inform the Z80 that it

wants attention. All the IRQ lines from

the interrupting devices are gated to-

gether to go into the Z80's IRQ line. It

also drops it's lEO to Ov, and this con-

dition propagates down the line, de-

vice 2 sees Ov on it's IEI and drops it's

lEO to Ov, and so on. Any device that

has Ov on it's IEI line can't generate an

interrupt, so device 1 knows that no

other device in the chain can interrupt.

Similarly, if device 2 wanted to in-

terrupt, and device 1 was idle, device 2

would have +5 on it's IEI, and it would

drop it's lEO to Ov. This has the same

effect: device 2 knows that no device

further down the chain can interrupt

because the Ov it has on it's lEO is dis-

abling them, and it also knows that de-

vices above it in the chain (device 1, in

this case) won't want to interrupt be-

cause they see +5 on their IEI line. So

again, device 2 knows that it heis the

exclusive attention of the Z80.

request line, but there may be several

devices that wish to generate

interrupts. How do they arbitrate who
has the CPU's attention?

Note that the CPU actually has two

interrupt lines, IRQ (Interrupt request,

which is what is under discussion

here) and NMI (Non-maskable

interrupt). NMI is generally reserved

for very special use, since it cannot be

disabled. It operates in a manner

similar to mode one, calling to a

specific address. Typical uses for NMI
include fatal error handling, when

some error condition absolutely has to

be dealt with.

Figure 2 shows (rather crudely)

what happens. If device 1 does not

need to interrupt, it lets it's lEO (Inter-

rupt Enable Out) line follow it's IEI

(Interrupt Enable In), so a +5 comes

out, and device 2 also sees +5 on IEI

and (being idle as well) passes +5 out

Listing

install:

di

Id

xor

Id

Id

inc

Id

Id

Id

hl,(OxffOO)

J, hi

(hi),

a

(_base_

hi

(hi),

a

(_here_ + 1) ,hl

de,33

add hl,de

ex de,hl

push de

Id hi, icode

Id be, {endi

Idir

Id c,OxlO

pop de

jr endit

icode)

turn off interrupts while we do this

the word at OxffOO contains the address

of the buffer we'll use.

set the first buffer index to zero

save the base address of the buffer area

set the second index to zero

THIS is where the address in the interrupt

code gets filled in: we point it at the

second index

move a further 33 bytes up. This allocates

34 bytes altogether with the inc hi above:

two for the indexes, and 32 for the buffer

itself

get that address to de for the target

and save a copy on the stack

source is icode

get the length of the interrupt routine

go move it

This is a byte value that will be used to

turn on interrupts in the UflRT

get the interrupt address back

The Computer Journal / #54 27

Listing 3.

do_exit:

di

Id

Id

; interrupts off while we work
de, (ivec)

; ivec contains the original vector,

; when the code below is explained, it will

; become obvious how it got there
c,0

; set c to zero to stop the UART generating

; interrupts

; OK, this is the code that actually does the work.
endit! Id a,i

Id h,a

Id 1,0x78

Id a, (hi)

Id (hl),e

Id e,a

inc hi

Id a, (hi)

Id (hl),d

Id d,a

fetch the refresh register - this is the
page address of where the vectors live
save it in h

we want the vector at XX78h
get the low byte of the old one to a

install the low byte of the new one from e
save the old low byte in e
point to the high byte

repeat the switch, but this time with d

; OK, those last few instructions swapped the word in de with the word
; in the interrupt page: this means we have the new vector installed
; frcm de, and the old one saved back in de

; and we save the old one away in ivec.

initialise the UART with the value in C

Id (ivec) de
Id a, 0x65

out (0x28) a
Id a,o

out (0x20) a
out (0x27) a

Id a, 0x64

out (0x28) a

ei

ret

and a little more setup,

interrupts back on, now that we're done

The Z80 will acknowledge the interrupt, and at that time

device 2 will place the correct byte on the data bus that the

Z80 uses to select the interrupt routine, and device 2's inter-

rupt will be serviced.

So far, I've talked about how interrupts work, and what
different methods exist for dealing with them at a software

level. Now let's look at a real life example. As many people
can attest, terminal programs written for Z80 machines
spmetimes exhibit a very bad habit of losing the first few
characters of each line. This is such a well known problem
that many BBS's in the CP/M and Z-System community offer

the ability to transmit some NUL characters at the start of

each line, to act as "sacrificial" characters that can be lost

without problems.

However this is really only curing

the symptom, to address this problem

it is necessary to find out why the

characters are being lost. Taking the

Kaypro machines as an example of

this, when the terminal program
outputs a linefeed to the screen, this

will usually cause the screen to scroll.

On the Kaypro, this means that the Z80
has got to shift almost 2K of data,

using a LDIR instruction. On a 2.5MHz
system this takes quite a bit of time, in

fact it takes so much time that while

the scrolling is in progress, there is

sufficient time for several characters to

arrive from the modem, and these are

the ones that get lost. What we are

seeing is a polled system (the terminal

program polls the modem port), and
there are times when the CPU is so tied

up doing something that it can't get to

the modem fast enough.

Suppose we were able to use an in-

terrupt for this, so that whenever there

was a character waiting at the modem
port, an interrupt would be generated.

Now what happens? The linefeed is

processed, and the CPU goes off and
starts moving characters on the screen.

While it's doing this, a character ar-

rives from the modem, causing the

CPU to stop shifting screen characters

for a few moments, just long enough to

get the character from the modem and
save it somewhere. Then it carries on
shifting screen characters. In the time

taken to move the entire 2K of data

needed, it might get interrupted five or

six times, or even more, but none of the

characters will be lost because as each

one of them Jirrives, the CPU saves

them away. What is the result of doing

all of this? No more character loss.

Another issue that needs to be ad-

dressed is what pitfalls exist in using

interrupts. If the CPU is in the middle

of doing something, and then all of a

sudden it has to drop everything to go
do something else, it is absolutely es-

sential that everything is dropped in such a manner that it

can be picked up again.

Taking another look at the timer interrupt routine, the first

thing it does is:

F33D LD (FCC2),SP

F341 LD SP,FCC2
F344 PUSH AF
F345 PUSH HL
F346 PUSH DE
F347 LD HL,(F239)

F34A INC HL
F34B LD (F239),HL

It starts by saving the stack pointer, and then loading the

stack pointer with the address of an area of memory that is

Listing 4,

; modist - return with z flag clear iff there is a char waiting at modem port
modist

:

Id

Id

inc

xor

hl,(_base_)
; go get the address of the buffer area

; where things are saved
a, (hi) ; fetch the first index
hi ; point at the second on
(hi)

; set the accumulator and z flags based

; on whether there's data in the buffer
ret

; modin - read char from modem port
modin;

hl,(_base_)

(hi)

5, (hi)

e,(hl)

hi

hi

d,0

hl,de

a, (hi)

Id

inc

res

Id

inc

inc

Id

add

Id

ret

modist has been used to check it's there

get the buffer address again
increase the read index
but limit it to 32

fetch the offset to e

point hi at the buffer
extend e to de
point at the byte to read
and go get it.

28 The Computer Journal / #54

set aside for use of this interrupt routine alone. The very next

thing it does is to push several registers onto the stack. This is

what it has to do to preserve the state of the CPU before the

interrupt happened. After pushing the registers it gets down
to the real work, starting by increasing a tick value at

0F239H. It goes without saying that since AF, HL and DE are

the only registers saved (BC and the index registers aren't),

these are the only registers that can be used. If it became
necessary to use BC in this interrupt routine, then the entry

code of the routine would have to push BC onto the stack, so

that the original value could be restored on exit.

This typifies the main thing necessary in writing interrupt

routines it is essential to restore the CPU state to exactly what
it was on entry to the interrupt routine. Changing so much as

one bit in a register, or the state of one flag, will eventually

cause a problem, and problems like that are almost impos-

sible to catch, since they will not be easily repeatable. An
interesting side note to this is that the Z80 has another nice

feature that was designed mainly for use in interrupt han-

dlers. It has two sets of registers: the first set that can be

accessed with instructions like 'Id a,(01234H)' and 'add

hl,de'. However there is a second set that are normally hid-

den away, but these can be exchanged with the main set very

quickly. The idea here is to use only the first set of registers

in the main line code, and reserve the second set for interrupt

handling. This allows a very fast save and restore, which in

turn is a real advantage to people writing interrupt routines.

Sadly, in real life, code often uses these alternate registers,

hence making them unavailable for use in interrupts, al-

though in a dedicated environment where the programmer
has complete control over the system, this could be done.

It is unfortunate that interrupts are always very specific to

the machine being used, since the examples provided will

only be actually testable in it's current form by people who
have Televideo 803's or TPC-l's. To show a complete inter-

rupt setup, including installation of the code, the interrupt

code itself, and how it is removed when the program exits, I

am going to pull some code from QTERM. First of all, the

interrupt routine itself. See Listing 1.

OK, that's the interrupt routine itself. One thing that

should be fairly apparent is that it is written to be as small

and fast as possible: this is always a desire in interrupt rou-

tines: make them as quick as possible, so that they steal the

least amount of time from the main task.

Another interesting point is that the buffer address is not a

constant. The reason for this is that the interrupt routine gets

installed up in the BIOS in a small buffer up there, this is

necessary because the Televideo 803 can switch between sev-

eral pages of memory, and there is no way of guaranteeing

that page 1 (which is where CP/M programs normally re-

side) will be paged in when an interrupt occurs. So it is

necessary to place the interrupt routine in high memory,
above the area where the paging takes place. How this is all

done is shown in the installation code. See Listing 2.

Well, it looks like I kinda left that hanging, however when
QTERM finishes it's necessary to re-install the original vector.

If I didn't, then the next time a modem interrupt occurred it

would call to the buffer area. Since this is used by other

programs, there would be no guarantee that our interrupt

handler would still be in place, and so the CPU could wind
up executing anything. So what does the "de-installer" do?

Look at Listing 3.

The important things to remember from the above are that

while the vector is being changed in the interrupt page, it is

essential to have interrupts disabled. During the update proc-

ess, there is a small window when the integrity of the table is

not complete. If an interrupt arrived during that window, it

would almost certainly cause a system crash. Also note how
the original vector is restored on exit, and how the UART has

interrupts disabled on exit. This sort of cleanup is also very

important to prevent problems after QTERM has exited.

Finally a couple of small routines are needed to read char-

acters back from the buffer where the interrupt routine has

saved them. We have them in Listing 4.

In conclusion, interrupts provide a means for external

"real world" events and stimuli to be handled by the CPU
without the necessity for continuously polling. This can have

a dramatic improvement on system performance, both in

terms of the CPU cycles saved by not needing to poll, and
because the event will often get much more rapid processing.

Of course "There ain't no such thing as a free lunch": it is

almost always far more complex to produce an interrupt

driven system. Despite of this, the advantages of an interrupt

system generally outweigh the disadvantages. While it can

take a while to get comfortable writing interrupt drivers, it is

well worth taking the time to do so, and learning by doing is

usually a very good teaching help. From personal experience,

I can assure you that you have a very good chance of locking

up your machine several times before getting it all sorted out,

but it pays back many times over when all the bugs are out

and the system finally works.#

Real Computing, from page 25

WM_COMMAND, there's not much you can do. Code with

the assumption that it will be re-entered, possibly multiple

times.

Think of Windows as being like sausage. It looks great,

tastes great—but you don't want to know what's inside it.

OS/2, by contrast, is a real OS, and needs none of this

YicldProc nonsense.

Hungarian Ghoulish, or What a Pane
Not meaning any slight to our friends of any national

persuasion, I still find that so-called "Hungarian notation"

Microsoft seeks to push on everyone offensive. My C
experience of ten years teaches me to use upper-case letters

to denote macros. At a glance, I can tell whether a data item

is a macro or the "real thing." This crazy new style makes
your programs look like some kind of advertising. They got

it from Pascal—the language where you can't even tell if

SillyNonsense is a variable or a procedure, for crying out

loud. If you ask me, It'sALotHarderToRead, and I'm going to

keep using "break characters." That way, the Windows and
OS/2 calls stick out like the sore_thumbs_they_are.

Next time

Next time I hope to return to the home-control topic with

some neat new X-10 hardware and ideas. Also, I hope to

fiddle around with some image compression and decompres-

sion on my PC-532. Just because there are parts out there

called DSPs doesn't mean you have to have one to do it!#

The Computer Journal / #54 29

SMHzonanAmpro
Double Your Pleasure, Double Your Fun. Double Your Clock Speed and Watch It Run!

By George Warner

A few years back I was browsing through a local BBS
when I read a message telling how to modify an Ampro
Little Board Z80 to run at 8 Mhz. My silicon-slave of the time

was a very modified California Computer System SlOO ma-
chine happily chugging along at 4 Mhz Always interested in

enhancing my system's performance via hardware hacking, I

immediately made a rush for my bookshelf of hardware
manuals; 23 mods and 1209600 wait states later (okay, two
weeks), my CCS was okay. For eight! It was almost six

months later before I ran across additional dialog concerning

the Ampro 8 Mhz mod. Returning to the original message
my curiosity was peeked by the extensive number of modifi-

cations (six cuts, eight jumpers and 120 ns DRAMs) required

to "make it work" (with wait states!). My Ego having been

well stoked with my previous success, 1 mentioned to several

fellow BBS'ers my opinion of this supposedly "simple" 8

Mhz mod. Being the extremely practical persons they are,

they immediately capitalized on my comments and sug-

gested I "put my money where my mouth was". A very

generous individual donated an unused lA to the cause and
"the game was afoot!" Had I known that he would later be

taking over editor-ship of this publication my brain might

have kicked in and a hastily retreat taken. But noooooo.

'nough said. Now for the nuts and bolts.

A five-minute addition to my normal daily commute
dropped me into Ampro's lobby where a kind individual

delivered six crisp 14"xir schematics for the lA and IB. The
first task at hand was to "speck" the standard parts in order

to determine what parts just weren't fast enough and would
have to be replaced.

Obvious (to me) was the Z80ACPU, CTC & DART (4 Mhz
max.). The CPU was quickly swapped with it's 8 Mhz
counterpart, the Z80H. Not so lucky with the DART, it

wasn't available locally in any speed over 4 Mhz. Lucky for

us the rumor mill said (pause) that the SIO-0 was pin-com-

patible. A quick call to Zilog verified this true and also pro-

vided some additional information. Most 6 Mhz SIO's were 8

Mhz manufacturing failures! If the synchronous test failed at

8 Mhz but passed at 6.5 Mhz the part was produced as a 6

Mhz part! Since the original DART we were replacing didn't

run synchronous this was no great loss to us. I replaced the

DART with a SIO-OB (6 Mhz). A quick look in the speck-

books confirmed a lesson learned from my CCS system. The
CTC could work with a 8 Mhz as long as it's clock inputs

weren't faster than 4 Mhz. In other words, you can access it

at 8 Mhz. It just can't count faster than 4 Mhz. No change

there. The only things left to consider are the WD 1770 floppy

disk controller, the NEC5380 SCSI controller (IB only) and
the DRAM. Both the WD1770 and NEC5380 will work at 8

Mhz. No problem there. That leaves the memory. We will get

back to it later. For now....

We swap in the faster parts, power-up, boot and every-

thing still works at 4 Mhz. Time for the knife. Note: My
original mod was done on a little board lA. The references in

parentheses, below are for the IB. They have been tested and
do work.

First things first, I disconnect the ZSO's clock input from 4

Mhz where it is generated on U10(U3)P13 and reconnect it to

8 Mhz where it is generated on pin 14. Note: this has also

changed the CTC & DRAM address mux. delay flip-flop

clock frequency to 8 Mhz. Not important now, but later....

With my finger crossed I then turned on power; hit reset and
boom! nothing. Reset again and... nothing. Well no big sur-

prise there, the DRAM just ain't' hacking it. Wait; the floppy

drive has a light on! And the door is open! Duh, Hello? Insert

boot disk, close door, reset and... Click, click, click (drive

noise) and... nothing. Hmmm. Wait, the boot program is in

EPROM! It works! But why did it stop? Well no big surprise

there, the DRAM truly ain't' hacking it. Time to hit the books.

DRAM's are funny little Anti-mules; I don't think any two
people (or manufacturers) will agree on which timing is the

most critical. (The truth: the one that keeps it from working
is the most critical.) In a nut-shell (where I belong) this is

how DRAM read and write cycles are supposed to work:

1. The DRAM address lines are driven with the row address.

Usually the CPU's A8-15.

2. RAS* is pulled active (low) by the CPU.
3. If this is a write cycle, the CPU puts data on the DRAM's

data input.

4. If this is a write cycle, W* is pulled active (low) by the

CPU.

5. The DRAM address lines are driven with the col. address.

Usually the CPU's AO-7.

6. CAS* is pulled active (low) by the CPU.
7. If this is a read cycle, the DRAM drives it's data output.

8. If this is a write cycle, the CPU releases (high) W* .

9. The CPU releases (high) both RAS* and CAS*.

The (very debated) critical design criteria (in random or-

der) for DRAM are:

1. Row address setup time. (#1 to #2)

2. Row address hold time. (#2 to #5)

3. Precharge or Recharge time. (#9 to next cycle's #2)

4. Data valid to write enable time. (#3 to #4)

5. Read access time. (#6 to #7)

6. Refresh time. (See text)

30 The Computer Journal / #54

The row address setup time is the time from when the

row address have settled on the DRAM address lines (#1

above) to when RAS* is pulled active (low) (#2). The 4116

DRAM specification gives this as 30 nsec. minimum.

The row address hold time is the time from when RAS* is

pulled active (low) (#2) until the DRAM address lines can be

changed (#5). The specification shows 25 nsec. minimum.

The precharge or recharge time is the time after one cycle

(#9) that allows the DRAM to charge internal parts prior to

the next cycle (#2), The minimum specification is 150 nsec.

The data valid to write enable time is the time from when
the CPU data lines settle (#3) until the write line (W*) is

pulled active (low) (#4). The specification for this is 40 nsec.

minimum.
The read access time is measured from when the CAS*

line goes active (low) (#6) until the DRAM's data output is

stable (#7). Almost all DRAM chips SIP's & SIMM's are sold

by this speed (and their density of course). Typical 4164's for

the Ampro's 1 have seen range from 150 to 200 nsec. For a 8

Mhz clock, each cycle is 125 nsec. The Z80 has a worst case

read cycle of 1 1/2 clock cycles for the Ml (op-code fetch)

cycle. 125 nsec. * 1.5 = 187.5 nsec. This means that 200 ns.

DRAM won't work at 8 Mhz As you will see later, because of

chip delays 150 nsec. parts are a tight squeeze.

One of the most annoying differences between static and

dynamic RAM's is the DRAM's refresh. If the contents of

DRAM's aren't periodically refreshed it "forgets". The

DRAM RAS* only refresh cycle consist of:

1. The DRAM address lines are driven with the refresh row

address. This is usually incremented after every refresh

access.

2. RAS* is pulled active (low) by the CPU.

3. RAS* is released.

This must happen once for each row of address every 2

msec. Since the 4164 has 128 rows, one row needs to be re-

fresh every 16 usee. On the Z80 refreshes occur during the

last two clock cycles of every Ml (op-code fetch) cycle. Dur-

ing this time the Z80 is involved in internal operations. Since

a Z80 operating at 8 Mhz takes 3 usee, to execute the longest

instruction in its set. Ml cycles occur frequently enough for

the memory to be refreshed.

Time for the o'scope.

1. Row address setup time. (30 nsec. min.) 45 nsec.

2. Row address hold time. (25 nsec. min.) 85 nsec.

3. Precharge or Recharge time. (150 nsec. min.) 100 nsec*

4. Data valid to write enable time. (40 nsec. min.) 125 nsec.

5. Read access time. (150 ns. min.) 85 nsec*

6. Refresh time. (16 us. max.) 3 usee

Well, worst thing worst, how can we extend the read

access time to greater than 150 ns.? I guess we could insert

wait states.... Wrong! 1 want 8 MHz! How about making CAS*
active (low) sooner? According to our schematic, the first

flip-flop of U18 (U37) is used to delay MREQ* from the Z80

for 125 nsec. to generate our ROW/COL address mux. on pin

5; the second flip-flop is then used to delay this by an

additional 125 nsec. to generate CAS* on pin 9. Although not

mentioned as critical, the 4164 DRAM's column address

setup time is 30 nsec. The 125 nsec. delay introduced by the

second flip-flop seems a little unnecessary. We do need some

delay however. A quick trip to the 74S74 spec sheet shows

it's clear (C*) to output low delay to be 30 nsec. Just what we
need! By disconnecting the clear input on pin 13 from it's

pull-up resistor and connecting it to the ROW/COL address

mux. signal coming in on pin 12; we can extend our read

access time by about 90 nsec. Some quick math reveals 85 +

90 = 175. Everything looks good on paper. So, let's put the

proof into the pudding.

How do we disconnect pin 13 from its pull-up resistor?

The first time I did this I desoldered U18(U37) and looked

under it. A trace goes from pin 1 to pin 13 and then to

U19(U35)P1. This signal needs to be cut and reconnected

around pin 13. Once I determined what had to be done; I

quickly came up with an easier way: Rather than removing

U18(U37), cut off pin 13's lead where it hits the P.C. board,

bend it up and then solder it to pin 12.

Quick hint: When you are working on a board which costs

a hundred dollars and more and need to remove, replace or

socket a fifty-cent IC, cut off all the leads to the IC with dikes;

desolder the leads from the board one at a time and then

solder in the new part or socket. I've seen experienced techs

destroy two-hundred dollar boards trying to save a fifty

cents part! Using this hint has removed all but a few of my
needs for a de-soldering station.

Crossing my fingers again I turned on power; Insert boot

disk, close door, reset and... Click, click, click (drive noise)

and... up it comes! I guess the Precharge or Recharge time (#3

above) wasn't as critical as was thought. Ta-Da! 8Mhz!

Just in case you were bored by this exciting (yawn) discus-

sion and skipped to the end, here is the good stuff:

1. Replace CPU with Z80H (Z0840008PSC).

2. Replace DART with 6 or 8 Mhz DART or SIO-0. (My 6

Mhz SIO-0 works fine.)

3. On the component side of the board cut the trace coming

from U10(U3) pin 13 going to a small through pad. Con-

nect this pad on the circuit side to U10(U3) pin 14.

4. On the component side of the board, cut the lead coming

from U18(U37) pin 13 AT THE BOARD; then bend it up

and over and solder it to pin 12.

That's it! I have lost count of the number of boards (lA's

& IB's) I have done this to and have had no problems. Joe

Wright of Alpha Systems even came up with a quick patch

for the BDOS/BIOS to determine the clock speed by using

the CTC clocked at 2 Mhz as a reference.

SPEED: LD C,CTCO Get port address of

CTC -> register C.

LD A, 3

OUT (C),A Reset CTC
OUT (C),A Again.

LD A,047H set mode & load divisor commaiK

OUT (C),A

LD A, 100 output divisor

OUT (C),A

IN L,(C) Get first value frciti counter

IN H,(C) Get second value from counter

(12 cpu cycles later)

LD A,H Move second value -> Ace.

SUB L Subtract first value

CP 6 Compare to 6 counts.

RET 4Mhz = 6 counts (No carry)

8Mhz = 3 counts (carry).

Note: I haven't been able to make this work reliability

with Terry Hazen's (n/ Systems) 1 Mbyte memory disk.9

The Computer Journal / #54 31

YCU ^^^ Computer Journal f^^f[^Q\ P|aC6
Discover

The Z-Letter

The Z-Letter is the only monthly

publication for CP/M and Z-System.

Eagle computer and SpellBinder

support. Licensed CP/M distributor.

Subscriptions: $15 US, $18 Canada
and Mexico, $45 Overseas

Write or cali for free sampie.

The Z-Letter

Lambda Software Publishing

720 South Second Street

San Jose CA 951 12-5820

(408)293-5176

Advent Kaypro Upgrades

TurboROM. Allows flexible configura-

tion of your entire system, read/write

additional fonnats and more. $35

Hard drive conversion kit. Includes

interface, controller, TurboROM, soft-

ware and manual—Everything needed

to install a hard drive except the cable

and drive! $175 without clock, $200
with clock.

Personality Decoder Board. Run more
than two drives, use quad density

drives when used with TurboROM. $25

Limited Stock— Subject to prior sale

Call 916-483-0312 eves/weekends or

write Clunk Stallord. 4111)0 Noriis

/Vvemie. Saeriiiiieiito CA 95S21

JQJ The Computer Jour^llfJ^g^f^^^Q^ p| ggg

Advertising for Small Business

Looking for a way to get your message across?

Advertise in the Marltet Place!

First Insertion:

Reinsertions:

$50

$35

Rates include typesetting. Payment must accom-

pany order. Visa, MasterCard, Discover, Diner's

Club, Catle Blanche, JOB, EuroCard accepted.

Checks, money orders must be in US funds

drawn on a US bank. Resetting of ad constitutes a

new advertisement at first insertion rate. Inquire

for rates for larger ads if required. Deadline is

eight weeks prior to publication date. Mail to:

The Computer Journal

Market Place

POBox12
S.PIainfieldNJ 07080-0012 USA

CP/M SOFTWARE

100 page Public Domain Catalog, $8.50 plus $1.50 shipping

and handling. New Digital Research CP/M 2.2 manual, $19.95

plus $3.00 shipping and handling. Also, MS/PC-DOS Software.

Disk Copying, including AMSTRAD. Send self addressed,

stamped envelope for free Flyer, Catalog $1.00

Elliam Associates

Box 2664

Atascadero, CA 93423

805-466-8440

Kenmore

ZTime-1

Real Time Clocks

Assembled and Tested with

90 Day Warranty

Includes Software

$79.95

Send check or money order to

Chris McEwen
PO Box 12

South Plainfield, NJ 07080
(allow 4-6 weeks for delivery)

Z-System Software Update Service
Provides Z-System public domain software by mail.

Regular Subscription Service

Z3C0M Package of over 1 .5 MB of COM files

Z3HELP Package with over 1.3 MB of online documentation

Z-SUS Programmers Pack, 8 disks full

Z-SUS Word Processing Toolkit

And More!

For catalog on disk, send $2.00 ($4.00 outside North America)

and your computer format to:

Sage Microsystems East

1435 Centre Street

Newton Centre MA 02159-2469

32 The Computer Journal / #54

Hardware Heaven

Dallas Smartwatch and Data Books

By Paul Chidley

What's Going On Here?

The last few years have seen many changes in Europe and

the former USSR. On a personal note, it has seen me switch

jobs, move west, and give up on Ohio Scientific 6502 for the

land of Z-80, Z-systems, and other z-things. It has also led me
to build the Yasbec and in the process meet many new
friends. One glaring fact has come to my attention from talk-

ing to Yasbec builders and other such z-people. Even in the

CP/M world there just aren't many hardware hackers left out

there. (TCJ folk excluded, of course!)

Yes, I know, there are lots of engineers that have degrees

up to their ya hoos, but have they ever seen a soldering iron?

{ya hoo: a term shouted as loud as possible at hockey games

when the Calgary Flames score.) The average tech today can

solder fine but if the part isn't available from Radio Shack

he's lost as to where to look for it. Or how about the average

PC user that doesn't want to know what's under the hood.

If you disagree then prove me wrong, write an article for

TCJ to tell the world (or our small part of it) what you are

doing. You don't have to be an exceptional writer. This ar-

ticle proves that. You just have to write something resem-

bling English about almost anything and send it it! The worst

that can happen is that Chris prints it! [Ttiat's tiardly the worst

ttiing to happen. The worst is that no one will know all the things we all

do and conclude that only plug-and-play users remain if you don't

share your work.—Ed.]

So against my better judgment I am going to attempt to

write a hardware hacker's column. You know; the chip-of-

the-month club, what's new in old surplus junk, where to

buy a Z8018012VSC, how to avoid the $200 minimum order,

how to get samples and data books, etc.

There is nothing more frustrating than seeing a plea for

help on the old BBS from a guy living in Cupertino or Moun-
tain View (the valley) that just can't find anywhere to buy

parts. They should repossess his couch! My old job sent me
down there at least once a year and like most places it is a

gold mine of parts. You just have to know where to look. 1

am seriously considering a family vacation driving to

Disneyland just so I can go via "the valley" for a shopping

trip. I'm sure my wife would understand. Would the bank?

Enough rambl'in so lets move on to the meat.

Paul Chidley is a senior technologist at NovAtel, an Alberta based cellular phone

company. He's a neophyte ZCPR user, but has been active in homebrewed hardware

and software design for many years, primarily in the Ohio Scientific and 6502/816

area. Paul can be reached on GEnie (email address: P.CHIDLEY), by regular mail

at 162 Hunterhorn Drive NE, Calgary Alberta, Canada, T2K 6H5, or by phone at

(403)274-8891 during reasonableMST hours.

The DS1216E

I suggested that a Dallas Semiconductor DS1216E be in-

stalled under the EPROM in the Yasbec to provide a battery

backed up real time clock. The number of questions about

this one part amazed me. The DS1216 is a neat part, or more
accurately module. Basically it is a socket. You simply re-

move the moiutor ROM from your system and plug in the

DS1216 in its place and place your ROM into the DS1216.

The Smartwatch is accessed by executing a very specific

pattern on the address lines. When you complete the right

combination, the DS1216 disables the ROM plugged into it

and instead makes itself available on the data bus. No cuts or

jumpers to your circuit; just plug it in. If you see an IBM type

ad for a "Smartwatch" or "Smartclock," chances are it is a

DS1216E. As far as I know there is only one similar product

on the market. But don't buy a DS1216E from an ad for

clones. They usually come with software to use it on an IBM
at twice the price of the chip alone.

How can you tell if it is a DS1216E? The IC in the middle

of the socket will have DS1216 printed on it. But where's the

"E?" Look again, the socket comes in various flavours (B-F)

and the magic letter is etched in the copper of the circuit

board at the end of the IC. It is usually about twice the height

of the IC. Its so big that no one can see it.

Programs to talk to the SmartWatch can be found on most

CP/M boards, GEnie, Z-Nodes, CRS, et cetera.

I won't go into the details of how this chip works. That's

what data sheets are for. You have a Dallas Semiconductor

Data book right? Why not?

Data Books

Engineers would be lost without them. Some are even lost

with them. But how do you get up-to-date data books?

Some distributors will sell data books. They are reason-

ably priced in the US since shipping is usually the only

expense to the distributor. Canada customs however can not

understand that companies give these thick books away.

They decide how much they might be worth and charge tax

and duty accordingly. Buying them from the Car\adian

distributor is the easy way, but you will them often over

priced and out of date. The newer ones

being saved for the "big" customers.

Do you want one for free? Phone

and ask for one. Real tough, eh? Get

the number for the company's main

office and ask for the literature depart-

ment, marketing, or admit you want a

The Computer Journal / #54 33

data bcxjk and see where you get transferred.

Ride Number One: Never tell anyone you are a student or

hobbyist, especially if you are. Big companies are often very

short sighted. To them a student is a person in school,

someone that will never actually have a job and place a big

order with them. Even if you are going for your PhD in

electrorucs you are still a "student." A "hobbyist" is even

worse, this is someone that builds Heathkits, reads Popular

Electronics and has a pocket protector for every day of the

week! Big companies don't realize that many "hobbyists" do

this for a living. Even if your day job involves

superconductors at MIT, at night you are only a "hobbyist."

So what are you? Well, if you tinker in hardware then you

are a "hardware systems designer." If software is your game
then how about a "software consultant" or "embedded
controller programmer" or even a "C mercenary!" (Don't

mention Forth. They won't know what it is!) Now I'm not

saying you should lie. If you do, their next question could

need a bigger one for an answer. Tell the truth but tell them

what they want to hear. When they ask for the company
name you can give your day job address as long as it is

something suitable like "WKTV Idaho," or "Ingenious

Devices Incorporated," and not "Cockrane Cattle Feed and

Farm Supplies." Or use your home address and say you are a

consultant, free-lancer, or that you are currently between

assignments, i.e. an unemployed engineer. What ever is most

suitable.

There are also manufacturer representatives. I'm not

exactly sure, in this age of telecommunications, where a

manufacturer rep fits in. I have asked several and they are

not sure either. If you have no luck with the manufacturer

you can always try the rep. These are listed in the data

book—the one you don't have. So you're back to calling head

office again anyway.

What data books do you want? Check the ads in trade

magazines. Trade magazines? I think that better be next

issue's topic, I recently answered an ad from IDT to get a

data sheet on their new fact logic parts. I left my name and

such on their answering machine along with what I was
looking for. A week later it arrived in the mail. The next day

a box arrived, a big box, with their complete set of 1992 data

books. Trade magazines are a gold mine for finding what is

available on the market.

Now that you have some idea how to get a data book
make sure you get one from Dallas Semiconductor. If you are

a true technomaniac you will get many hours of enjoyment

discovering some of their truly unique products. You will be

pleased to learn that they provide a parts hot line. You can

order any Dallas Semiconductor product for quick shipment

by using a Visa, MasterCeird or American Express. Ccill and

ask for their Overnight Delivery Service at 800-336-6933. If

you are calling from outside North America, dial 214-450-

5351. Or you can fax your order to them at 214-450-0470.

Every electronics company should sell parts this way. Many
companies have a lot to learn about marketing from these

fellows.

Next time

Anyway enough is enough. If you liked this article let our

editor know and I'll write some more. If you hated it let him
know and I'm off the hook. If you caught any spelling or

grammatical errors, tough. I is a techy, failed English. I'm

only a technologist but I have heard that good engineers are

lousy spellers so I must be doing OK! See you all in Trenton

(I hope).*

Addresses of firms mentioned:

Dallas Semiconductor

4401 South Beltwood Parkway

Dallas, Texas 75244-3292

(214) 450-0400

Editor, from page 2

suspend tasks and do several functions similar to SideKick,

though it predated the MS-DOS utility. From there, he wrote

BackGrounder ii, a full task swapper. Jay Sage describes BGii

as "the most spectacular piece of CP/M programming that

has ever been written. Just incredible."

DOSDisk is another of Bridger's products. It maps
MSDOS file structure into CP/M and is the only disk

emulator to handle directory trees.

Trenton 1992

For the last seventeen years, spring has marked the

gathering of the micro computing faithful to a college

campus mid-way between Princeton and Philadelphia. Some
15,000 attend. Most come from a region spanning Boston to

Washington DC, and west to Ohio and Tennessee, though

occasional "Left Coasters" wander in.

This event, known as the Trenton Computer Festival, has

become the annual event for CP/M afficiados. This breed

does not limit its reach to the northeastern United States.

Alberta, Washington State, California—the entire continent of

North America seems to send 8-bitters to Trenton!

Spring returns. Again you can see birds return to their

nests and CP/Mers return to their roots. Almost sounds like

the practice of a strange cult, eh? Make no mistake about it,

Trenton, the event, is nearly here.

Ah, what an event! A legendary fleamarket where anything

that was ever put in a computer case can be bought for a

song. One TCJ reader needed a flatbed truck to carry the

VAX 730 just purchased to fit in the spare bedroom. (True

story, except it didn't fit. The fellow had to haul it to the

basement with a crew of five guys and a small crane). Imsai's

are frequently sighted.

Ah, what an event! Hundreds upon hundreds of

commercial booths. If there is a company that sells it, you'll

find it at Trenton.

Ah, what an event! There are seven programs of special

interest groups running concurrently! You would have to

bring Uncle Harry and the kids to cover all the meetings! The

CP/Mers hold their yearly Gathering of the Faithful all day

Saturday and not a minute is wasted.

See Editor, page 36

34 The Computer Journal / #54

What Zilog Never Told You About The Supers

Brad and Doug's Excellent Adventure

By Brad Rodriguez, T-Recursive Technology, Toronto, Ontario

and Doug Fieenor, Doug Fleenor Design, Arroyo Grande, California

Reset

The Supers is very finicky about its reset signal. A Zilog

memo says "If the SuperS reset pulse is shorter than specifi-

cation, or if V,-^ is not stable throughout the reset sequence,

the Supers may latch up, requiring power down."

Zilog says this has been fixed in the rev A part, but we've

had problems with it, too. Although rev A is much im-

proved.

In general, we've had bad luck with RC reset circuits. We
use a MAX690 or equivalent "microprocessor supervisory

circuit" to generate our RESET \ signal.

Initialization

The Supers is rather particular about the sequence of ini-

tializing its control registers, and some of the Zilog-supplied

demo files are actually incorrect. Particular notes:

• It seems necessary to initialize the PM register before the

POM register.

• It also seems necessary to allow a short time delay — 3

NOPs— after changing PM or POM.
• When using P05-P07 as address bits (ROMless parts only);

since Port is enabled as all outputs BEFORE it is enabled

as an address bus, you must write the high byte of the

program counter to Port bi^ore setting PM or POM. (Usu-

ally this high byte is 00 hex, depending on where your

initialization code is located.)

Our recommended initialization sequence:

Id pO,#'HB($) ; output high adrs byte to PO

Id pni,#20h ; PI adr/dta, PO output, push-pull

nop

nop

nop

Id pOm,#Offh ; enable 16 bit address output

nop

nop

nop

Clock

We've had bad luck deriving a clean 20 MHz external

clock from the on-chip oscillator. When we need the 20 MHz
clock elsewhere in the system, we use a TTL oscillator tied to

XTALl.

High Address Bits

A word of warning about EPROM emulators: many

Supers designs use weak (~100K ohm) pulldowns on A13-

A15, to make these address bits zero until the irutialization

code takes effect. Many EPROM emulators have puUup

resistors on these lines! It may be necessary to remove the

puUups from your EPROM emulator in order for it to work

in your SuperS circuit.

WArr\ (on P34)

Zilog issued a memo about WAIT\ timing. It says:

• WAIT\ must be asserted low within 90 nsec of AS\ going

high.

• WAIT\ must have a rise time of 20 nsec maximum.
• The fall time of WA1T\ is not critical, as long as it meets

the 90 nsec requirement.

• WAIT\ going high must be stable within 20 nsec of

XTALl going high.

To be safe, WAIT\ should be synchronized with a flip-

flop clocked by the falling edge of XTALl. This will also give

the required rise time.

DM\ (on P35)

You must enable P35 as an output bit (in P2CM), for DM\
to work.

Counter/Timers

You should stop a counter/ timer before reloading it. Fail-

ure to do so can cause invalid data to be loaded occasionally.

Zilog says this is iixed on the rev A parts; we haven't tested.

Zilog doesn't say much about the counter/ timer output

pin. We've found by experimentation (rev parts):

• When the counter is disabled, the counter output pin (if

used) is set to zero.

• When running continuously, the output toggles at end of

count.

• When the Bi-value mode is initialized, the output is zero.

So, the Time Constant register holds the length of the low

output, and the Capture register holds the length of the

high output.

• When rurming in single cycle mode, we observe a high

pulse of about 100 nsec duration at end of count. Our sup-

position is that the end of count toggles the bit high, im-

mediately followed by a "counter disable" which forces

the bit back low.

UART
The wake-up function doesn't work as advertised on rev

parts, (rev A is OK.) We will have more details forthcoming.

Using CLR UIO to send a null character, also clears the

receive character available flag. Use LD UIO,#0 instead.

The Computer Journal / #54 35

Interrupts

DI (global interrupt disable) does not disable fast

interrupts! The Super8 Tech Manual says: "when fast

interrupt processing is used, the IMR bit for the selected level

must also be set." In fact, fast interrupts seem to ignore IMR.

DMA
The DMA address register is physical register pair %C0-

%C1, not working register RRO. This is unclear in the Zilog

Tech Manual. Relocating the working registers away from

%C0 allows RRO to be used without disturbing the DMA
address.

When doing DMA INPUT through port 4, handshake

channel 0, strobed mode, we have found this setup sequence

necessary:

• set up DMA address to the desired address, and DMA
count to the desired count - 1.

• enable handshake channel 0.

• read and discard port 4.

• Then enable DMA.

The "read and discard" operation seems to be necessary

only when switching port 4 from output to input. Our
supposition is that data strobed out on port 4 is also latched

as a valid input byte, which must then be discarded.

When doing DMA OUTPUT through port 4, handshake
channel 0, strobed mode, we have found this setup sequence

necessary:

• set up DMA address to the desired address + 1, and DMA
count to the desired count - 2.

• enable handshake channel 0.

• write the first byte of data manually to port 4.

• Then enable DMA.

incorrect. We use named sections to group related code, e.g.,

we will declare a PROM section and a RAM section, and
switch back and forth in the assembly source file. We have

found that the first appearance of the name should specify

the attributes, including the "C" (concatenate) option. All

subsequent appearances should have only the "C" attribute.

Example:

.SECTION PROM,A,X,C

Omitting the "C" attribute will cause the linker to attempt

to put all of the like-named sections at the same address!

Debugger

Be advised that the debugger uses RAM from FOOO to

FFFF, and many registers. It also traps the UART receive

interrupt.

We have found that the debugger really can't access

physical registers CO to CF. When debugging, you should

locate your working registers somewhere else. We usually

use SRP #0.

Despite what the manual says, the debugger does not

access External memory when the X option is used. This is a

bug in the code. The debugger also does not enable the DM\
output, even when the X option is used.

Bank must be active ("SBO") when a breakpoint is

encountered. Bank 1 will cause a crash.

The breakpoint resets the stack pointer to a private stack,

so you can't determine where your stack pointer was when
the breakpoint was encountered. (The stack pointer is

correctly restored when execution is continued, so it must be

saved somewhere.)©

In particular, enabling the DMA before writing to port 4

^ems to give incorrect results. (The Zilog manual says you
have to write the first byte manually, but implies that you
should enable DMA first.)

Assembler and Linker

When assembling indexed-addressing LDE and LDC
instructions, when the offset is between 128 and 255 decimal,

the assembler incorrectly uses the short offset form. (The

Supers uses one-byte signed short offsets.) You can force the

correct long-offset form by applying the "WORD operator to

the offset. Example:

IJ>E R6,192(RR8) should be written LDE R6,'W0RD(192)(RR8)

Note: **WORD also works with symbolic labels.

The assembler requires the forms "3FH" or "3FX" or

"%3F" for hex numbers (using 3F as an example). However,

"3F" is not reported as an error, and does not assemble the

correct value. Be wary of hex numbers without a base

indicator!

Do not use relocatable symbolic labels with the SRP
instructions (e.g., SRPO #WKGREGS where WKGREGS is

defined in a relocatable .SECTION). The linker cannot

relocate these, and you get SRPx #0.

The linker's rules for combining like-named .SECTIONS
are not clear, and in some cases we believe the manual is

Editor, from page 34

Ah, what an event! A banquet on Saturday night. This year

the 8-bitters are planning their own, complete with evening

working sessions at the hotel.

Ah, what an event! If you're an 8-bitter, you need to be

there. Mark it on your calendar: April 11 and 12 at the

Mercer County Community College, Mercer NJ. Call Lee

Bradley at (203) 666-3139 or log on his Z-Node at (203) 665-

1100.

Ah, what an event!

Adminlstrata

A little bit of business news for those who may have an

interest. TCJ completed its ninth year of publication, and its

first under the current publisher, with circulation up 27%.

We published 328 pages in 1991, against 236 in 1990. By
moving advertising to the covers, we increased editorial

content over 50%. While success at TCJ is not measured in

the traditional business sense but in the involvement of its

readers, we completed the year in a stronger position. This

bodes well for the future of grassroots computer publishing,

particularly as it was accomplished during a deep recession.

Measuring our success by the involvement of the readers,

we had an even better year! Our Reader-to-Reader column has

See Editor, page 43

36 The Computer Journal / #54

An Arbitrary Waveform Generator

Using the Harris RTX2001A

By Jan Hofland

IWe conclude this three part series on the building of a wav^orm generatorfor structural testing with thefull source code. Please

refer to issues 51 and 53 for hardware, schematics and Forth extensions.—Ed.]

(>p«r«tlD9 Sourc* Cod*

HEX

4300 DUP H 1 H-FENCE I

67FE H-TOP I

6800 DUP R 1 R-FEHCE 1

8FFE R-TOP 1

The follcwing definition is based on the definition of U< and

is here because it's faster than the signed version of >

U> (ul u2 - fig)

SVIAP- DROP

-c ;

(ul u2 - u

2DUP U<

IF NIP

ELSE DROP

THEN ;

returns TRUE if unsigned ul is

greater than unsigned u2, else

return FALSE

unsigned version of MAX

if ul < u2 keep u2

otherwise keep ul

: UMIN (ul u2 — u) unsigned version of MIN
2DUP U< IF DROP ELSE NIP THEN ;

Some low level operations for the external devices added to

the ASIC bus

! DACl (n -
)

18 Gl ; MACRO

: fifoj (- n)

19 G« ; MACRO

! filtCntl (n -
)

IE GJ ;

: cntrEnabl (—
)

IC Gl ;

: cntrDisabl (—)

ID Gl ;

: toglFC (-)

IF Gl ;

write 16 bit value to the DAC

shift register

fetch a value frciti the Input

fifo

store an 8 bit value to the

filter clock losuj register.

Actual value can be 16 bits

Only the lower 8 bits are used.

enable the filter clock counter.

This is a form of a pseudo-

register. The data written

doesn't matter.

disable the filter clock counter

toggle the filter clock output

A pseudo register. Used when the

filter clock is under software

control.

s fifoMT? (— fig) return zero if fifo is not

IB G(1 AND ; MACRO en^ty, non-zeroif it is empty

: fifoFul? (— fig) return zero if the fifo is not

IB G8 2 AND ; MACRO full, non-zero if it is full

This code sets the interrupt routine for the non-maiBkable

interrupt. A pushbutton switch is connected to NMI to abort

the current process

: pbStop (—) NMI Interrupt service routine

TRUE ABORT" Stopped" ;

Install tb* routina

The following GOES> and DOES> definitions courtesy Jack Hoehr

: _DOES R> U2/ USE ;

I GOES> COMPILE _DOES BEOl , COMPILE % 1 -OPT 1 ; IMMEDIATE

: DOES> COMPILE _DOES BEOl ,

table (

(
nl

) CREATE DOES>

— n2 runtime)

1 -OPT 1 ; IMMEDIATE

SWAP CELLS -I- t ; define a table

;in code space

returns value of nth entry at

runtime table sine build a 800

point sine wave

table, amplitude 28284 peak

0000 OODE OIBC 029A 0378 0456 0534 , 0612 ,

06EF 07CD 08AB 0988 0A65 0B42 OCIF , OCFC ,

0DD8 0EB5 0F91 106D 1148 1223 12FE , 13D9 ,

14B3 158D 1667 1740 1819 18F2 19CA , 1AA2 ,

1B79 1C50 1D27 IDFD 1ED2 1FA8 207C , 2150 ,

2224 22P7 23C9 249B 256C 263D 270D , 27DD ,

2 8AC 297A 2A47 2B14 2BE0 2CAC 2D77 , 2E41 ,

2F0A 2FD3 309B 3162 3228 32EE 33B2 , 3476 ,

3539 35FC 36BD 377E 383D 38FC 39BA , 3A77 ,

3B33 3BEE 3CA8 3D61 3E19 3ED1 3F87 , 403C ,

40F0 41A4 4256 4307 43B7 4466 4514 , 45C1 ,

466C 4717 47C0 4869 4910 49B6 4A5B , 4AFF ,

4BA1 4C43 4CE3 4D82 4E1F 4EBC 4F57 , 4FF1 ,

S08A 5121 51B7 52 4C 52E0 5372 5403 , 5492 ,

5521 55AE 5639 56C3 574C 57D4 585A , 58DE ,

5962 59E4 , 5A64 5AE3 SB61 5BDD 5CS7 , 5CD1 ,

5D48 5DBF 5E34 5EA7 5F19 5F89 5FF8 , 6065 ,

60D1 613B , 61A4 620B 6271 62D5 6337 , 6398 ,

63F8 6455 , 64B2 650C 6565 6SBD , 6612 , 6667 ,

66B9 670A , 675A 67A7 67F3 683E , 6887 , 68CE ,

6913 6957 , 6999 69DA 6A18 6A5e , 6A91 , 6ACB ,

Jan Hofland is employed with Hewlett Packard as a hardware design engineer,

working primarily on 68K based systems. His personal interests include woodwork-

ing, and playing with electronics for over 20 years. His current favorite system is

the F68HC11 from New Micros. Jan can be contacted at 2419 n3rd Ave. SE,

Everett WA 98205 or by telephone (206) 334-0738 during the evenings.

As the Internal Revenue

Service sees it,

the United States is a land of

untold wealth....

The Computer Journal / #54 37

6B03 6B39 6B6E eBAl 6BD2 SC02 6C30 6CSC ,

6087 6CAF 6CD6 6CFC 6D1F 6D41 6D61 6D80 ,

SD9C 6DB7 6DD1 6DE8 6DFE 6E12 6E24 6E3S ,

6E44 6E51 6E5C 6E66 6EeE 6E74 6E78 6E7B ,

6E7C 6E7B 6E78 6E74 6E6E eE66 6E5C 6E51 ,

SE44 6E35 6E24 6E12 6DFE 6DE8 6DD1 6DB7 ,

6D9C 6D80 6D61 6D41 6Dir 6CFC 6CDe 6CAr ,

6C87 6C5C 6C30 6C02 6BD2 6BA1 6B6E 6B39 ,

6B03 6ACB 6A91 6A56 6A18 69DA 6999 6957 ,

6913 68CE 6887 683E 67F3 67A7 675A 670A ,

66B9 6667 6613 65BD 6565 650C 64B2 6455 ,

63F8 6398 6337 62D5 6271 620B 61A4 613B ,

eODl 6065 5FF8 5F89 5F19 5EA7 5E34 5DBF ,

SD48 5CD1 5CS8 5BDD 5B61 5AE3 5A64 59E4 ,

5962 58DE 585A 57D4 574C 56C3 5639 5SAE ,

5521 5492 5403 5372 52E0 52 4C 51B7 5121 ,

508A 4FF1 4F57 4EBC 4E1F 4D82 4CE3 4C43
,

4EA1 4AFF 4A5B 49B6 4910 4869 47C1 4717 ,

466C 45C1 4514 4466 43B7 4307 4256 41A4 ,

40F0 403C 3P87 3ED1 3E1A 3D61 3CA8 3BEE ,

333 3 3A77 39BA 38FC 383D 377E 36BD 35FC ,

3539 3476 33B2 32EE 3228 3162 309B 2FD3 ,

2F0A 2E41 2D77 2CAC 2BE0 2B14 2A47 297A ,

28AC 27DD 270D 263D 256C 249B 23C9 22F7 ,

2224 2150 207C 1FA8 1ED3 IDFD 1D27 1C50 ,

1B7A 1AA2 19CA 18F2 181A 1741 1667 158E ,

14B3 13D9 12FE 1223 1148 106D 0F91 0EB5 ,

0DD8 OCFC OCIF 0B42 0A65 0988 08AB 07CD ,

06F0 0612 0534 0456 0378 02 9A OIBC OODE
,

0000 FF22 FE44 FD66 FC88 FBAA FACC F9EE ,

F911 F833 F755 F678 F59B F4BE F3E1 F304 ,

F228 F14B F06F EF94 EEB8 EDDD ED02 EC27 ,

EB4D EA73 E999 E8C0 E7E7 E70E E636 ESSE ,

E487 E3B0 E2D9 E203 E12E E059 DF84 DEBO ,

DDDC DD09 DC37 DB65 DA94 D9C3 D8P3 D823 ,

D7S5 D686 D5B9 D4EC D420 D354 D289 DIHF ,

D0F6 D02D CF65 CE9E CDD8 CD12 CC4E CB8A
,

CAC7 CA04 C943 C882 C7C3 C704 C646 C589 ,

C4CD C412 C358 C29F C1E7 C12F C079 BFC4 ,

BFIO BE5C BDAA BCF9 BC49 BB9A BAEC BA3F ,

B994 B8E9 B840 B797 B6F0 B64A B5A5 B501 ,

B45F B3BE B31D B27E BlEl B144 B0A9 BOOF ,

AF76 AEDF AE49 ADB4 AD20 AC8E ABFD AB6E ,

AADF AA52 A9C7 A93D A8B4 A82C A7A6 A722 ,

A69E A61C A59C A51D A49F A423 A3A9 A32F ,

A2B8 A241 AlCC A159 A0E7 A077 A008 9F9B
,

9F2F 9EC5 9E5C 9DF5 9D8F 9D2B 9CC9 9C68 ,

9C08 9BAB 9B4E 9AF4 9A9B 9A43 99EE 9999 ,

9947 98F6 98A6 9859 980D 97C2 9779 9732 ,

96ED 96A9 9667 9626 95E8 95AA 956F 9535 ,

94FD 94C7 9492 945F 942E 93FE 93D0 93A4 ,

937A 9351 932A 9304 92E1 92BF 929F 9280 ,

9264 9249 922F 9218 9202 91EE 9 IDC 91CB ,

91BC 91AF 91A4 919A 9192 918C 9188 9185 ,

9184 9185 9188 918C 9192 919A 91A4 91AF ,

91BC 91CB 91DC 91EE 9202 9218 922F 9249 ,

9264 9280 929F 92BP 92E1 9304 932A 9351 ,

9379 93A4 93D0 93FE 942E 945F 9492 94C7 ,

94FD 9535 956F 95AA 95E8 9626 9667 96A9 ,

96ED 9732 9779 97C2 980D 9859 98A6 98F6 ,

9947 9999 99ED 9A43 9A9B 9AP4 9B4E 9BAB ,

9C08 9C68 9CC9 9D2B 9D8F 9DF5 9E5C 9EC5 ,

9F2F 9F9B A008 A077 A0E7 A1S9 AlCC A241 ,

A2B7 A32F A3A8 A42 3 A49F A51D A59C A61C ,

A69E A721 A7A6 A82C A8B4 A93D A9C7 AA52 ,

AADF AB6D ABFD AC8E AD20 ADB4 AE49 AEDF ,

AF76 BOOF B0A9 B144 BlEl B27E B31D B3BD ,

B45F B501 B5A5 B64A B6F0 B797 Ba3F B8G9 ,

B993 BA3F BAEC BB9A BC49 BCF9 BDAA BE5C ,

BFOF BFC4 C079 C12F C1E6 C29F C358 C412 ,

C4CD C589 C646 C704 C7C3 C882 C943 CA04
,

CAC6 CB8A CC4D CD12 CDD8 CE9E CP65 D02D ,

D0F6 DIBF D289 D354 D41F D4EC D5B9 D686 ,

D754 D823 D8F3 D9C3 DA94 DB65 DC37 DD09
,

DDDC DEBO DF84 E058 E12D E203 E2D9 E3AF ,

E486 E55E E636 E70E E7E6 E8BF E999 EA72 ,

EB4C EC27 ED02 EDDC EEB8 EF93 F06F F14B ,

F227 F304 F3E1 F4BE F59B F678 F755 P833
,

F910 , F9EE , FACC , FBAA , FC88 , FD66 , FE44 , FF22 ,

VARIABLE phase

VARIABLE phaseinc
VARIABLE delPhase

VARIABLE delPhaseInc

DECIMAL
800 CONSTANT twoPi

200 CONSTANT pi/2

slnewave phase range 0..799

phase Increment between points
Intermediate value between phase
points used only for high
accuracy sine mode
delPhase increment between points

table index corresponding to 2

pi radians

Using scratchpad register RH to hold the next data to load
into the DAC and scratchpad RX to hold a flag that denotes
whether the data in RH is new or has already been sent to the
DAC.The flag will be cleared when data ia loaded into RH and
set when it's transferred to the DAC

: >RH (n -
) transfer n to RH & clear RX flag

RHI FALSE RXl ; MACRO

: phaseAdj (nl - n2) adjust phase if it exceeds 1

DUP twoPi cycle
U< IF EXIT THEN twoPi - ; this was the fastest

if.. then

: nextPt (-)

phase i DUP sine >RH
phaseinc (+

phaseAdj

phase 1 ;

! newPt { —
)

RHe DACl RX- ;

Aeeurat* Sin* Mod*

put next slnewave point in

scratchpad and then update phase
fetch sine from tiible & store it

fetch phase increment and add
euljust to keep within one cycle
update phase

output data to DAC from
scratchpad RH and set RX flag

Will interpolate between sine table points according to the
formula sin(x+delta_x) = sin(x) * cos(delta_x) + sin(delta_x)
* coB(x) for small angles cos(delta_x) about equals 1 and
8in(delta_x) is approximately delta_x, where x is in radians.
Thus, sin(x+delta_x) will be approximated by sin(x) +
delta_x*cos(x). Will scale the result in 50 mVrms increments
and subtract a constant offset.

VARIABLE offset

VARIABLE scale

40 CONSTANT scaleTop

newPhase (—
)

subtracted from scaled sine
value

a value between 1 & scaleTop
the sinetcible points correspond
to an output amplitude of 2

Vrms. l/40th of this value
corresponds to 50 mVrms

calculate next phase and
delPhase from phaseinc and
delPhaseInc

delPhase i delPhaseInc i + the part between table
twoPi /MOD

SWAP delPhase I

phase (+ phaseinc

phaseAdj

phase I ;

points does it bump up into next

point the new delPhase value
+ add carryover plus phaseinc to
phase

adjust if it goes over one cycle

div512 (nl - n2

DUP 0< IF
) divide top of stack by 512

want to avoid division of small
numbers

NEGATE 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ NEGATE returning -1
ELSE 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/ 2/

THEN ;

cosAdj (
— n)

phase t pi/2 +
phaseAdj

sine

delPhase t 995 /

return the cosine correction for

the current values of phase and
delPhase

8in(x+pi/2) = cos(x)

keep it within one cycle
cosine

512 times delta x

38 The Computer Journal / #54

dlv512 ;

accuPt (— n)

phase i sine

cosAdj +

scale i sealeTop */

offset i -
;

: newAccuPt (—
)

accuPt >RH
newPhase ;

GUARD

HEX

: initTlmers (-
)

IBCg FCFF AND IBCl

TIMERO MASK
TIMERl MASK

TIMER2 MASK ;

divide by 512

return sine of current phase

scaled by scale/sealeTop and

subtract offset

current sine

cosine correction
apply scale factor

and subtract offset

load sine point into the DAC

scratchpad and then
update phase

set all three timers for

internal clock

and mask off all three
interrupts

S*t up tlnar and timer 1 Interrupt vectors

: intSetup (—
)

['] newPt

7 1 INTERRUPT

[
'] toglFC

8 1 INTERRUPT ;

Set Filter Cutoff Point

move copy of service routines

into interrupt vector space

DAC load interrupt

level 7 interrupt
filter clock toggle interrupt

level 8 interrupt

The Icwpaas filter cutoff is controlled by a clock that is 100

times the selected lowpass frequency. For wide bandwidths, it

is controlled by a programmable hardware down counter

connected to the ASIC bus. Whenever the counter reaches

terminal count, the filter clock is toggled. For lower

bandwidths, the toggle rate is controlled by interrupts from

timer 1. The crossover is for a period of 256 counts,

corresponding to a cutoff frequency of sdx>ut 160 Hz. For wide

bandwidths, the cutoff is quantized to some rather wide

values, in that the toggle period must be an integer.

DECIMAL
40000 CONSTANT maxBW

1 CONSTANT minBW

VARIABLE cutoff

upper bandwidth limit

lower bandwidth limit

setCutoff { n —) set filter cutoff to about u Hz

maxBW UMIN minBH UMAX check limits

DUP cutoff 1 store a copy of the limited

value

maxBW ROT UM/MOD NIP 1- calculate toggle period
DUP 256

U< IF

filtCnt

I

TIMERl MASK
cntrEnabl

ELSE

TCll

cntrDisabl

TIMERl UNMASK

THEN :

if the interval is less than

256, use the hardware counter

store period in counter load
register

mask off timer 1 interrupts

and enable the hardware counter

otherwise, use timer 2 for

interval

store period in timer 1

disable the hardware counter

and unmask the timer 1 interrupt

Set XlsMbae* and Phase Incraiwnt for Slnemve Generation

The relationship between phase increment, timer

(the timebase) and the desired frequency is:

interval

phase increment = ((#table_point8 per cycle) * (timer
period)

* frequency) / timer clock frequency

Set up a table of minimum timebase intervals for each of the

five operating modes

table minlval

431 ,

mode fast sine 100

mode 1 accurate sine

KHz sample rate

18.5 KHz san^le rate

79 , mode 2 circular buffer 100 KHz saiqile rate

132 , mode 3 ping pong queue 60 KHz sample rate

79 , mode 4 once through queue 100 KHz sanple rate

The minimum timebase intervals have been extended to

acccnodate software simulation of the hardware ccomand queue

95 , mode fast sine 83.3 KHz sample rate

455 , mode 1 accurate sine 17.5 KHz san^le rate

95 , mode 2 circular buffer 83.3 KHz sample rate
199 , mode 3 ping pong queue 50 KHz san^le rate

99 , mode 4 once through queue 80 KHz sample rate

VARIABLE mode

VARIABLE sineFreg
VARIABLE tbPeriod

table maxFreq 40000 7200

mode i minlval tbPeriod 1

what is the operating mode

output frequency
actual timer preload value

upper limit for output frequency
mode dependent

initialize interval

calcint
(
phaseinc delPhaaeInc —) calculate timebase

interval from phase incranent
and sinewave frequency

fractional phase increment
contribution

integer phase increment

contribution

divide by sine frequency
+ 1- round result and subtract 1

make sure it's at least minimum

store result

25 2 */ S>D

ROT 10000 UM* I>+

sineFreq t UM/MOD
SWAP 2* sineFreq « /

mode t minlval UMAX

tbPeriod I ;

calcPhaseInc (freq —
)

tbPeriod i 1+ UM*

10000 UM/MOD

SWAP 2 25 */

mode

IF

400

i 0=

/ +

1 MAX

THEN
2DUP delPhaseIno

phaaeinc 1

calcint :

calculate phase increment from

frequency

multiply by timebase period

divide by timebase clock ratio
to # of phase points per cycle

fractional phase adjust range to

{0.-799}

mode 7

yes

increment phase

Inc if fractional part > 1/2

must be at least 1

mode delPhaselnc

store fractional phase increment
and the integer part

must now recalculate the
timebase interval to account for

having to set the phase
increment to a non-zero value

Calculate the actualYfrequency given the timebase Interval and

the phase increment. Presumes that a valid value has been

stored in interval.

: calcFreq (—
) calculate actual frequency from

phase increment & timebase

interval

phaseinc (10000 UM*

delPhaselnc 8 25 2 */ S>D Df

tbPeriod t 1+ UM/MOD

sineFreq 1 DROP ;

! setFreq (freq —) set up sine freq, san^le rate

mode t minlval tbPeriod I first set minimum sample rate
mode t maxFreq UMIN max frequency is mode dependent

DUP sineFreq I store the value

calcPhaseInc and calculate phase increment

tbPeriod t TCOl store interval In timer load

register

calcFreq ; calculate actual frequency frcm

interval and phase increment

setPeriod (period —
)

mode t minlval UMAX

mode t

2 WITHIN

IF

3200000.

set sample rate

check against mode dependent min

if mode or mode 1 (sine

output) , then need to adjust

phase increment

find maximum interval based on

2-1/2 points per cycle

The Computer Journal / #54 39

BlneFreq « UM/MOD NIP 1- 4 + e get headPtr
UMIN tbPerlod 1 keep the smaller period «+2 get value & increment pointer
aineFreq « calcPhaseInc and calculate new phase DUP check pointer upper bound

increments R8 6 + g get endPtr
calcFreq U> IF adjust if tailPtr past endPtr

ELSE tbPerlod 1 not sine mode so just store DROP discard out of bounds pointer
period R« 8 + and make it point to the first

THEN cell
tbPeriod (TCOl ; finally, set the timer load THEN

register R8 4 + 1 store headPtr
GUARD -1 R> +1 ; decrement #values

Data Buffar Satup : >Que (n addr - f fIg) put n into the queue & return a

FALSE flag if it isn't full.
Going to use two circular data queues for arbitrary data input Otherwise return the value
and output. The queues can be of any length up to a maximum of (n addr - n addr tflg) & address & TRUE flag. |

2K vrords. They can be used in a circular fashion, repeating DUP i CET.TS get #values
the data sequence, or they can be used in a first-in first-out OVER 6 + DUP « SWAP- calculate queue size from endPtr
manner with non-repeating data. They can also be used in a U< IP >Cbuf FALSE there is room if 2x #values
ping pong fashion where data is flushed first from one and ELSE TRUE less than size
then the other. THEN ;

Set up to build queue structures in code space and in data : Que> (addr - n tflg) fetch a value from the queue t
memory space. The underlying routines can be common to both. return a TRUE flag if the queue
The onlydifferences have to do with allocation of memory. The isn't empty. Otherwise,
structure consists of a cell containing the number of values, (addr - f fIg

)
return FALSE flag.

a tail pointer where new items are inserted, a head pointer DUP t get #values
where items are removed from the queue, and an end pointer IF Cbuf> TRUE
keeping track of the last cell in the storage area. ELSE DROP FALSE

THEN ;

DECIMAL

! peeQue (<naine> — n) return value at head of queue
: clears (addr -

)
given the start address of a without removing it
queue structure clear the 4 + 88; fetch the value pointed to by
#values variable and initialize headPtr
the head and tail pointers.

OVER 1 initialize #values I #Que (<name> — n
) return number of values in the

DUP 8 + DUP ROT 2+ queue
1+2 1 ; initialize the tailPtr t

headPtr
8 ; MACRO

2048 CONSTANT bufMax maximum buffer size in words
! buildCQ (n <name> -

)
build a queue in code memory bufMax buildDQ DQO
apace of n cells bufMax buildDQ DQl

CREATE create the dictionary head
HERE >R save start address Circular Buffer Mode
4 + CELLS DUP total number of bytes for

structure Control start and stop with timer interrupt enable/disable
GAP allocate data storage space
R« clearC initialize #values, headPtr, VARIABLE readPtr address of current buffer being

tailPtr read from
R« + 2- R> 6 + 1 ; set endPtr VARIABLE writePtr address of current buffer being

written to
: buildDQ (n <name> -

) build an n cell queue in data

memory space : ciroBuf (—) fetch value from current
THERE >R save start address circular buffer and put it in
VARIABLE create the dicitonary head and the DAC scratchpad

allocate the first cell readPtr 8 get address of current buffer
3 + CET.TS DUP total number of bytes minus 2 Cbuf> >RH ; get a value and put it in the

for structure scratchpad
ALLOT allocate data storage space

M clearQ initialize fCvalues, headPtr, I atop (-
) stop the output by turning off

tailPtr TIMERO MASK ; MACRO the time base
R8 + R> 6 + 1 ; set endPtr

: stop? (- fig
)

tst for timer interrupt
: >Cbuf (n addr -

) insert a value into the queue TIMERO MASKED? ; MACRO disabled |

overwriting the existing value
DUP >R save buffer address Ping Pong Buffar Operation
2+ « get tailPtr
1+2 store value & increment pointer Read the current queue until it is empty. Then switch the
DUP check pointer upper bound queue pointer to the other queue and continue. Start/stop
R8 6 + « get endPtr with timer interrupt enable/disable.
U> IF adjust if tailPtr past endPtr

DROP discard out of bounds pointer ! pingPong (—
) fetch a value from the current

R« 8 + and make it point to the first cell buffer. If the read enpties the
THEN buffer, then swap read buffer

R« 2+ 1 store tailPtr pointers
1 R> +1 ; increment #values readPtr 8 DUP get buffer pointer

Que> fetch value and flag
: Cbuf> (addr - n) extract next value from the IF >RH If true then put new value in

queue scratchpad
DUP >R save buffer address #Que get #value8 left in queue

40 The Computer Journal / #54

0= IF

readPtr 8

DQO =

IF DQl

ELSE DQO

THEN

readPtr 1

THEN

ELSE stop
THEN ;

: setBufSlz (addr n —

bufMax MIN 1 MAX

3 + CELLS

OVER +

SHAP e + I

if zero then swap queue pointers

which buffer are we using now?

if using then switch to 1

else switch to

otherwise the queues are en^ty.

set size of circular buffer at

the given address to n words,

range 1 to bufMax actually done

by setting endPtr

first check limits

offset frcm start of the buffer

to end
add to start of buffer
and store in endPtr

Output Buff*r One* and Stop When it is Eqpty

! onceOut (—
)

readPtr i

Que>

IF >RH

ELSE stop

THEN ;

fetch a value from the current

queue. If the queue is empty,

suspend output,

get buffer pointer

and fetch a value

if flag TRUE then output valid

point
otherwise the queue is empty

mask off timer interrupts

GUARD

This routine is used for inputting data from the FIFO and

will be set up for vectored execution to allow alternate

input mechanism for demonstration.

: _readFifo (— n)

BEGIN

fifoMT? NOT
UNTIL

fifoS ;

VARIABLE 'readFifo

read the next value from the

input FIFO

need to wait if the FIFO is

empty

and then fetch a value frcm it

the execution address for

reading input

: bufLoopl (—
)

: readFifo 'readFifo i EXECUTE ;

VARIABLE goAdr holds the execution address for

the mode to fast sine mode

HEX OFFF CONSTANT cntMak DECIMAL Block Size Mask

Tb* Individual Input CoMHiiid Routines

fastsine (-)

mode I

['] nextPt goAdr 1

readFifo

setFreq ;

operate in constant ctmplitude

fast sine mode

execution address for fast sine

mode
read frequency from input queue

and set sine frequency

accuSine (—)
accurate sine mode

1 mode 1 allows more accurate amplitude

generation, amplitude scaling,

and DC offset
[

'] newAccuPt gofldr 1 execution address for accurate

sine mode

readFifo read frequency frcm input queue

setFreq ; and set sine frequency

bufLoopO (—)

2 mode I

[
'

] circBuf goAdr 1

DQO readPtr I ;

set up to loop on circular

buffer, buffer

circular buffer execution

address

2 mode 1

[
'
] circBuf goAdr 1

DQl readPtr 1 ;

set up to loop on circular

buffer, buffer 1

circular buffer execution

address

pingPongO (—

3 mode I

) set up to output from queue

until it's empty and then from

queue 1 until en^y
['

] pingPong goAdr I ping pong mode execution euidress

DQO readPtr I ;

pingPongl (—) set up to output from queue 1

3 mode 1 until it's empty and then from

queue until mpty
['] pingPong goAdr I ping pong mode execution address

DQl readPtr I ;

bufOutO (-
)

4 mode 1

[
'

] onceOut goAdr 1

DQO readPtr I ;

bufOutl (-
)

4 mode I

[
'] onceOut goAdr 1

DQl readPtr I ;

start { -)

TIMERO UNMASK

BEGIN

RXe

set up to output frcm queue

until it is empty
once out buffer execution

address

set up to output from queue 1

until it is eit^ty

once out buffer execution address

the start output command

enable tlmebaae interrupts

go into an infinite tjutput loop

read stale data flag

IF goAdr i EXECUTE THEN if set then output a new data

point

stop? terminate if timer stopped

UNTIL ;

setAir^l (—
)

readFifo

MAX 2000 MIN

50 /

scale I ;

setOffset { -
)

readFifo

offset I ;

setFilt (-
)

set amplitude scaling factor in

millivolts range 0..2000. Will

be quantized to a multiple of 50

millivolts RMS. Used only for

accurate sine mode

read the next input value

make sure it is within limits

and scale it

set the offset that is

subtracted from the calculated

amplitude in accurate sine mode

get the value from the input

stream

and store it without any bounds
checking

set the lowpass filter cutoff

frequency

readFifo setCutoff ;

getPeriod
readFifo

setPeriod ;

IdBuf

readFifo

DUP 0<

IF DQl ELSE DQO THEN

DUP writePtr 1

DUP clearQ

SWAP cntMsk AND

TUCK setBufSiz

1- FOR

readFifo

set sample period
read value frcm input stream

load data into the queue
specified by the data words

get the parameter block to

determine which queue to load

and what size

if MSB set then use buffer 1

else use

reinitialize the queue

mask upper four bits of

parameter block ;

set buffer size

now set up a loop to load the

data in

get a value

The Computer Journal / #54 41

writePtr t >Que

IF

2DROP

EXIT
THEN

HEXT ;

and put it in the queue

>Que returns TRUE if queue is

full throw away the address &

data and exit

T«bl« of Execution Vectors for the Allowable Coanaads

is a NOPtable parse ' NOP , cGiiEnand

fastsine , cdnmand 1

accuSine , command 2

aetAmpl , ccmmand 3

bufliOopO , conmiand 4

bufLoopl , ccmmand S

pingPongO , ccmmand 6

pingPongl , ccmmand 7

bufOutO , ccmmand 8

bufOutl , ccmmand 9

IdBuf , command 10

setOffset , command 11

setFilt , command 12

getPeriod
, cominand 13

stop , ccnonand 14

start , ccnnnand 15

HEX

FFFO CONSTANT cmdMsk

docmd (n -
) parse input word and perform the

command
DUP cmdMsk AND check that upper 12 bits are zero
IF If not zero then it is an
DROP unrecognized ccmmand. Discard
." Unrecognized Command " CR

ELSE parse EXECUTE Otherwise, execute it via the
THEN ; parse table

DECIMAL

: initialize

DISABLE

initTimers

initialization routine
disable interrupts

set timer clock sources to all
internal

install timer and timer 1

interrrupt routines
initialize variables

100 phaseinc 1 initialize the phase
variables to seme

delPhase 1 delPhaseInc I default values
offset 1 40 scale 1 initialize variables to some

value

initialize lowpass filter cutoff
initialize mode

sinewave frequency to 1000 Hz
DQO readPtr I DQO writePtr I initialize buffer pointers
('] _readFifo 'readFifo I pointer to read FIFO

executable
SELCPR all code page memory
ENABLE ; enable interrupts

intSetup

phase

I40000 cutoff
mode 1

1000 sineFreq I

: main (—)

initialize

BEGIN
readPifo

doCmd
AGAIN ;

GUARD

the main high level loop

get a command from input stream
and execute it

an infinite loop

Deaionstratloii Cod* Source Listings

These are some sequences for demonstrating the operating modes

.

DECIMAL

512 CONSTANT cqMax
cqMax buildCQ cmdQ a queue for commands

: >cq (n —
) cmdQ >Oue used for loading a value into

the and queue
IF 2DR0P the queue is full

." ccmmand queue full" CR

THEN ;

fixCQ (—) used to adjust end pointer and
omdQ DUP #Que setBufSiz tail pointer
cnidQ DUP 4 + « SWAP 2+ I ;

demoCircSq (—)

cmdQ clearQ

cmdQ cqHzix setBufSiz
4 >cq
13 >cq 799 >cq

12 >cq 40000 >cq
10 >cq
20 >cq
1 FOR

4 FOR 10000 >cq NEXT
4 FOR -10000 >cq NEXT

NEXT

generate square wave 2V pk-pk,

1 KHz using circular buffermode

buffer loop, buffer 0, comnand
set period ccnnnand, 100

microseconds

set filter cutoff to 40 KHz
load buffer ccmmand

buffer 20 values

five points of +1V
five points of -IV

15 >cq
fixC« ;

demoFsine20 (-
)

cmdQ clearQ

cmdQ cqMax setBufSiz

1 >cq 20000 >cq
12 >cq 20000 >cq
15 >cq

fixCC ;

demoFsinel (—)

cmdQ clearQ
cmdQ c<^4ax setBufSiz

1 >cq 1000 >cq
12 >cq 1000 >cq

15 >cq
fixCQ ;

demoAsinel (—)

cmdQ clearQ
cmdQ c<^4ax setBufSiz

2 >cq 1000 >cq
3 >cq 1000 >cq

11 >cq 900 >cq
12 >cq 1000 >cq
15 >cq
fixCQ ;

demoPp

cmdQ ClearQ

cmdQ cqMax setBufSiz

6 >cq
13 >cq 399 >cq
12 >cq 40000 >cq
10 >cq 30 >cq
10 DO

I 40 * sine 2/ >eq
LOOP

9 FOR >cq NEXT
10 DO

start command
adjust endPtr and tailPtr

generate a 20 KHz sinewave, fast
mode

fast sine command, 20 KHz
set filter cutoff to 20 KHz
start command

adjust endPtr and tailPtr

generate a 1 KHz sinewave, fast
mode

fast sine ccmmand, 1 KHz
set filter cutoff to 1 KHz
start

adjust endPtr and tailPtr

generate a 1 KHz sine, accurate
mode

90 mV offset, IVRMS

accurate sine mode, 1 KHz
set amplitude to 1000 mV
set offset to 90.0 mV
set filter cutoff to 1 KHz
start command
adjust endPtr and tailPtr

set up ping pong command queue

ping pong mode, buffer start
50 microseconds sample period
set filter cutoff to 40 KHz
load buffer with 30 points
the first 10 points
half sine cycle

ten points of zero

ten points of another 1/2 cycle
I 40 * sine 2/ 2/ >cq half sine cycle

LOOP

10 >cq 21 -32768 OR >cq load buffer 1 with 21 points
9 FOR >cq NEXT ten points of zero
11 DO

I 80 * sine 2/ >cq one cycle of 4 KHz
LOOP
15 >cq

fixCQ ;

start

adjust endPtr and tailPtr

demoOnce (—
) set up command queue for 1 cycle

cmdQ ClearQ of linear attenuated 100 Hz sine
cmdQ cqMax setBufSiz
9 >cq once out from buffer 1 conniand

13 >cq 199 >cq 25 microsecond sample period
10 >cq 400 -32768 OR >cq loadbuffer 1 with 400 points
800 DO

I sine 800 I - 800 */ >cq
2 +LOOP

15 >cq start command
fixCQ ; adjust endPtr and tailPtr

42 The Computer Journal / #54

_rdCQ (— n)
return next value from coomand

BEGIN ondQ Oue> UNTIL ; queue

oiKlQMT? (- fig)

cmdQ #Que 0=

return TRUE if and queue empty

s demolnit (-
)

initialize for demonstration

initialize mode

['] _rdCQ 'readFifo 1 ; revector read FIFO caranand

demoMain (
—

demolnit

BEGIN

readFifo
doCmd

cndQWr?

UNTIL ;

demo execution loop eimllar to

application main. The only

difference is that this loop

isn't an infinite loop

get a command

and execute it

loop if there is another connnand

dMenu (—
)

build choice menu

CR ." Choose a demo waveform"

CR ." a - IKHz square wave using circular buffer'

CR ." b - 20KHZ sinewave fast sine mode"

CR ." c - IKHz sinewave fast sine mode"

CR ." d - IKHz sinewave accu sine mode"

CR ." e - ping pong mode"

CR ." f - lOOHz attenuated sine once out mode"

CR ." q - quit"

CR ." Choice: "
;

: choose (— n)

menu choice

dMenu

BEGIN

KEY DUP ASCII

ASCII a - DUP

NOT WHILE

DROP
." error."

CR ." Choice:

REPEAT CR ;

table dVect
' demoCircSq ,

' demoFsine20 ,

' demoFsinel ,

return a value 0..5 based on

IF DROP QUIT THEN

WITHIN

a table of queue setups

demoAsinel

demoPp ,

demoOnce ,

: dono (—)

BEGIN

choose dVect EXECUTE

demoMain
AGAIN ;

start up a demo

shoSpaxms CR
CR
CR

CR
CR
CR
CR

shdPanns CR

." phase: ' phase t .

." increment: " phaseino g .

." delta phase: " delPhase i .

." delta increment: " delPhaselnc (

." frequency: " sineFreq (U.

." offset: " offset (.

." scale: " scale (. ;

" mode; " mode t DUP .

2 WITHIN IF shoSparms THEN

CR ." cutoff: " cutoff « U.

CR ." timebase period: " tbPeriod I 1+ U. i

Sobs Perfomance Tasting

VARIABLE high

VARIABLE low

: tst NOP newPt NOP

BEGIN RX8 IF goAdr » EXECUTE THEN

stop? UNTIL ;

: atst 1 high 1 10000 low 1

stop
9999 FOR

TC2J tst TC28 -

DUP low i UMIN low 1 high i UMAX high 1

NEXT

CR ." max " high i .

CR ." min " low I . CR ;

: btst 1 high 1 10000 low 1

stop

39 FOR

TC2J tst TC2! -

DUP low t UMIN low I high t UMAX high I

NEXT

CR ." max " high t .

CR ." min " low J . CR ;

Editor, from page 36

been a resounding success. I am happy to report several

outstanding articles in the wings, including XIO home

control, work with the NZCOM virtual BIOS, and a

discussion of CRC in Forth and telecommunications

protocols. A wirewrapped universal SCSI adapter will be ein

upcoming topic. A particularly bright note concerns a new

column you will find in this issue: Paul Chidley brings us to

Hardware Heaven.

Our readers are our authors, our critics and our collective

editors. I have never worked for a finer group of people!

We have two new services. One is specifically to make life

easier for overseas subscribers: No longer must you have a

bank draft in US funds cut to renew or purchase back issues.

We now accept seven different charge cards! Use your Visa,

MasterCard, Discover, Carte Blanche, Diner's Club, JCB and

EuroCard instead.

US and Canadian readers can use the cards, of course.

plus our new 24-hour tollfree telephone number. Call us at

800-424-8825. I'll have an answering machine on if we aren't

available.

Take Some Credit

TCJs growth is a joint effort. You, the readers and our

authors have brought many of our new readers. TharJc you!

This is what a grassroots effort is all about—^working

together gives us a resource, in this case a magazine, that we

couldn't have alone. I have recognized the value of word-of-

mouth advertising since the beginning. That is why we have

the "Sponsor a Friend" program. When a friend or colleague

of yours enters a subscription as a result of your discussions,

you should get something for it. I'll add a free issue to your

subscription when the friend sends payment with the order

and identifies you as the sponsor.

See Editor, page 44

The Computer Journal / #54 43

Editor, from page 43

It bothers me to see new people coming in and I don't

know who sent them! How can I reward you?

Addresses, Back Issues and Such
Ever hear that if an infinite number of monkeys were

given infinite time to pound on typewriters that they would
eventually write a best selling novel? Monkeys are intelligent

creatures. I hope one day to be their equal.

. A handful of invoices are returned every month with
address corrections. This bothers me; these folks aren't

getting their copies. Sure enough, the requests to remail

"lost" copies soon follow. 1 want to help, friends, but this

gets real expensive, right fast. So I gave it infinite effort and
have a solution. It comes in two steps:

1) For last issue and this, I have put the notice ADDRESS
CORRECTION REQUESTED on the mailing cover. For this,

the post office "sells" me the new addresses. (Yes, we pay for

this). This will get the stray addresses in line.

2) Once this is done, I will add FORWARDING POSTAGE
GUARANTEED. The post office will forward the issue to

you and ask you to pay. It will cost US subscribers about

$1.75 a copy. If you refuse it, I will pay your $1.75 and then

another $1,75 when the issue is returned, as well as the

address correction.

This seems as far as 1 should go to ask for folks to send in

address changes. Any replacements will then be treated as

back issue sales. Does this sound reasonable?

Speaking of back issues: Ester warns me that we are just

about sold out of several issues. I don't have the list in front

of me, but we have already dropped issues 8 and 19. They
are no longer available. In time I hope to have the ability to

reprint sold out issues, but don't count of it any time soon.

Just thought I'd be fair and let you know.
Meanwhile, you will get a refund check if you order an

issue that has sold out.

The Chicken Heart that Ate New York City

I remember one of Bill Cosby's early comedy albums
when he had a skit about listening to scary radio shows as a

child and frightening himself silly. In one, there was The
Chicken Heart that Ate New York City. I am here to report that

I met that Chicken Heart and He Is Me. Though I am on the

way back down, 1 put on an extra twentyfive pounds since

we last communicated. How?
I quit smoking!

Yeah, big deal. Nothing to tell the world about, certainly

not related to computers. But it's a personal victory. I have
chewed my way through the Mid-Atlantic states and eaten

half of New England. New Hampshire no longer exists. I

gained control of my appetite somewhere in southern
Vermont. But I have been off cigarettes since November. And
I feel great.

I'll make a deal with you. I will give two free issues to any
TCJ subscriber who quits smoking and goes six months
without a cigarette. We'll do this on the honor system. You
tell me you did smoke and you don't any longer. Tell me
when you quit and how long you smoked. I'll add the issues

to your subscription. Guess we need an "expiration date" for

this. If you quit now, six months would be the end of

August. So, the offer expires the end of September, 1992.

Sound good?

And 1 will make another deal. The first TCJ reader who
sees me smoking a cigarette will have a free lifetime

subscription. No expiration on this deal!

Well, enough of this. It's time. Enjoy yourself.*

Reader, from page 2

seems to be sold by a number of Radio Shack Color
Computer places, so you can find it there as well. The
interface is quite simple and it should be possible to hook it

to almost anything; I'm currently planning connections to

one of my PDP-lls and an rtVAX.

R.I., Logan UT
The device discussed in last issue was not the Emerald

Microware unit. Ampro had sold a true SCSI daughter board, and
George Warner tells me he still wirewraps them for friends. I am
hoping George will tell us what he does.

By the way information gives 503-641-8088 as the number to

reach Emerald Microware. They are in Aloha, OR.—Ed.

I was happy to receive issue 52, especially the articles

about the Yasbec and the CPU280. I'm working towards a

"reinvention" of the CPU280 but with a SCSI interface

instead of the floppy.

M.D-S, Holte Denmark
/ understand that Tilmann Reh and Uwe Herczeg are cooking

up an IDE interface for the CPU280. For myself I'd rather the

SCSI—Ed.

I have a suggestion concerning typesetting in TCJ. It is

most important to have every article on contiguous pages.

This is the main rule of making the articles readable and
should have the absolutely highest priority. Every other rule

has to be considered only after this main rule is already true.

The easiest way of grouping the articles would be to simply
add one after another. This would sometimes cause articles

to start in the middle of a page but that wouldn't bother me.
If you have a rule saying that articles have to start at the

top of a page, then you could achieve this without injuring

the main rule: just put the rest of the previous article (which

in this case will always be less than one page) on the bottom
of the new page and the next article at the top.

T.R.,Siegen Germany
I've taken some heat for continuing articles on other pages but

accepted this as the cost of providing as much information in each

issue as we have space for. This is, after all, the way most other

magazines in the United States are laid out. Your suggestion

seems to come from the other extreme: lay the journal out as if it

were a letter. Friends from Europe tell me this is standard practice

in Germany so I understand. The readers in this country would
not befamiliar with such a layout, however.

I will keep the articles together as much as possible but will put

the tailends where we can make best use of the remaining pages.

Meanwhile, I will use this and my own column to fill the small

voids as much as I can to leave thefeatures more intact.—Ed.

Is Wayne Masters still around? I noticed in the RCP/M
lists that his Potpourri BBS isn't listed and I am having a bit

of a problem trying to get BYE on an Altos 8000 to work
correctly with an AMT 2400 modem.

Good question. Anyone with an answer?—Ed.9

44 The Computer Journal / #54

The Development of TDOS

By Guy Cousineau

COLECO introduced the Adam computer several years

back. At the time, it was one of the great buys in the home
computer arena and offered CP/M 2.2. Unfortunately, it

came with digital tape drives instead of disks. A disk operat-

ing system such as CP/M was unfriendly at best. I had a look

and asked myself, "What can I do with this?" I shelved it.

Months later, Tony Morehen, a long time friend, bought

an Adam and became interested in CP/M. He worked on it

from tape for a while. During this time, I was still working in

BASIC. Once disk drives became available, Tony started

working in improving the Adam implementation of CP/M.
The BIOS was not flexible enough to handle all the devices

that were, by then, becoming available. He wrote a patch to

support a parallel printer and another for disks. Other

patches fixed bugs in the allocation vector sizes for the ex-

pansion RAM disk. There were patches for 80 column
screens; previously we used a 32 column television screen.

My interest in CP/M grew. I learned Z80 code by
disassembling and fixing the Adam's BASIC. CP/M modem
programs became available and we began acquiring

software. One of the more useful was a Z80 assembler.

Tony decided we would rewrite the CCP resulting in a 2K
CCP. Among other things, it included a sorted directory

function, and built-in copy command supporting user areas.

After our success with the CCP, we turned to the BDOS.
Tony looked at P2D0S, Super BDOS and others. He found

merits in each but we felt we could do better. Basing our-

selves on these systems, we developed a BDOS with time

stamping and automatic disk logging. That first crack at the

BDOS was relatively easy.

Now we were playing with power.

We turned to the big task: the BIOS. Working on a combi-

nation 32/80 column system, we rewrote the entire BIOS. We
speed up the disk drivers and added support for four differ-

ent formats. With the entire system in source code, we were
finally able to get away from the SYSGEN, SAVE, DDT,
LOAD, GO sequence which made patch installations so tedi-

ous. We could append a SYSGEN function to the code which
would install the entire system in one pass. By this time, we
discovered the Video Display Processor was capable of a 40

column display. I started work on patching that support code

in. Eventually, we dropped the 32 column mode entirely.

Development did not stop there. Tony wrote an installa-

tion program which would prompt for disk drive sizes, serial

port settings, default colours, macro key configurations, I/O

Guy Cousineau represents the present day CP/Mer. Not content to use a system

written by others, he has joined with others to delve deeply into the inner workings

of his computer to vastly expand its capabilities. He offers the fruits of his labors

while gaining intimate knowledge of micro processors. Guy may be contacted at

1059 Hindley Street, Ottawa K2B 5L9, Canada.

byte settings and the like prior to installing the system. The
user does not need to install patches at all. When system con-

figuration changed, they only needed to reinstall the system.

SUBMIT was another thorn in our side. It was slow! We
worked on a new type of Submit which worked like MSDOS
Batch files. Support for 32 user areas became a necessity

when we developed support for hard disk drives. We added
named directories as well. Finally, we made the installation

program smarter by scanning the network and configuring

the system based on the devices we found.

Incompatibilities arose: certain drive specifications, hard

drive interfaces, clock chips and such gave trouble. Terminal

installation also became a problem. Inexperienced users were

having difficulty installing programs for all the different ter-

minals available. We developed a standard header for all

TDOS programs. Each user requires one terminal overlay

which he can MLOAD to all our programs. We extended this

approach to our generic CP/M work as well, which made it

quite easy for the average person to install our programs.

TDOS was now available in several versions and comes
with a complete set of utilities:

Change file user area without copying

Named directories

Sort directories with directory name first to speed

Change Directory command
Prepare directory for date stamping

Format disks with sysgen and clear directory options

Set date (for systems without clocks)

I/O Byte setting (replaces STAT)
Logical disk size changes to temporarily read other

logical formats

Set search path

Time/Date directory with command line date mask

These and other utilities, along with the TDOS system, re-

place all the utilities which came with CP/M 2.2. and help

get the most productivity out of CP/M. Some of the latest

TDOS development include ZCPR. A few people use it, but I

find that with what we have in TDOS right now, we don't

need to go to ZCPR unless we want to use some of its more
advanced features. Our next project is to go to CP/M Plus

emulation by introducing bank switching.

The nice thing about TDOS is that it is free. We would
have done it just for ourselves anyway, by why not share it.

Developing TDOS taught me a great

deal about machine language pro-

gramming. I have become an expert on
writing fast and compact code. Now
that I have the CP/M bug, I don't

know why I would ever want to

change operating systems.©

The Computer Journal / #54 45

7UA The Computer Journal
The Spirit of the Individual Made This Industry

Back Issues
Telephone Orders: (800) 424-8825 / (908) 755-6186, 24 hours

Special Close OU Sale

Issues 1,2, 3^4, 8 criy

3 ormos, $1^ eedipos^ h t» US

$300po^ alimd outside US.

Issue Number 1:

• R&aazintetfacePaitl

• Teiectnpuing witi tK Apple II

• Beglrei'sCdum Geting Started

•Bddan'^iam'

Issue N^^mtler 2:

• He TiansferProjattB far CP/M

•RS-232lnlei<aoePart2

• BJd Hardvnie Pirt Spooler Part 1

'Reww of Floppy Disk Rxmals

• Sendng Motse Code vtlti an Appie II

• Beginnei's Cdum: Basic Ccncepis and Foimias

Issue Numt>er 3:

• Add an 8067 MalhOip toYour Dual Processor Board

• Biid anAn CcnmiterforApple II

• Modems iorMoos
• The CP/M Operaing System

• BUkt HanMsre Print Spooler Part 2

Issue Numt)er 4:

• Optincs, Part 1: Detedng, Generating and Using

Li^inBednrics

• Mli-Uset An IntTDducicn

• Maidng t» CPM User Fincion Mom UseU
• BJd Haidmre Print Spooler Part 3

• Beginwi's Cdum: Power Sipply DeslTi

Issue Number 18:

• Paiaiellnteifaoe forApple II Gairte Port

• The Hadiei's MAC: A [better fiom Lee Felsenstein

• S-1W Giapiics Screen Durrp

• The LS-1 00 Disk Simulator Kit

• BASE Part Six

•Intertadng Tips & Trtxjbies: Communicating with

Telephcm Tone Ccnbd, Part 1

Issue Number 20:

• Deagwigan803eS6C

•Using Apple GtapNcs from CP/M: Turt)o Pascal

CoitolsAi:file Graphics

• Sddeiing & Otnr Strange Tales

• BuikJ an S-100 Fk)ppy Dsk Contraller WD2797
CortrolerforCPM68K

Issue Number 21:

• Bdendng Tuibo Pascal: CustoiTize Mlh PiDceduies &

Fircfons

• Unsokleilng: The Aicane Art

•Anak)g Dab Acqiisitkn & Ccntid: Comecfng Your

ConfutertotieHs^Wbild

•Piugiamming tie 8036 SBC

|??w Nwmby 22;
• NEW-DOa Wiile YourOwn Cperaing System

' Variabity in tie BOS C StandanJ Ubiav

• The SCSI Interface: intioductoiy Cdunn
• Using Tuibo Pascalla^M Fles

• The Ampro Utie BoanJ Cduntu

Issue Number 23:

• CCdum Fkw Cortnii i> Piogram Studuie

• The Z Cdum: Getting Started wlti Qredoiies & User

AiBas

• The SCSI Hertaoe: Intraduciai Id SCSI

• NEW-DOS; The Console Ccmmand Pnxsssof

• EtHngtie CPM Operating System

• INDEXER: Tubs Pasc^ Pngram to Create an Index

• The AmpiD UHe Board Cdutm

Issue Number 24:

• Selecfng & Buldrg a System

• The SCSI Intertace: SCSI Command Prolocol

• tttJDducion to Assemble Code tor CPjM

• The C Cdunn: SoltviaTe Text Rteis

• Ampio 186 Cdum IrEbftig MS-DOS SotrniB

• TheZ-Cckirm

• NEW-DOS: The CCP Intemal Comman*
• ZTme-1: A Real Tme Ckxj(lortie Airpio Z-80 LHe

Boaid

Issue Number 25:

• Repaiing & Modifying Printed CiraJIs

•Z-Comvs.HackerVeiskjnofZ-System

• E)filoi{ng Single Linked Lists in C
• Add»ig Serial Port to Ampro LB

• BuktigaSCSIAd^er
• NEW-DOS: CCP Intemd Ccrmands, Ft. 1

• Arrfiio 186 Netwoiliing Wth SipertXK)

• ZSiGColiiTin

Issue Number 26:

• Bus Systems: Selecing a System Bus

• Using the S8180 Real Tine CkxJc

• The SCS intertace: Software lorthe SCSI Ad^er
• Inside AmpiD Corrputeis

• NEW-DOS: CCP Intetni Comnaids, PI2

• ZSIG Coiner

• AffoidableCCcnpfeis

• Concunent MJfJtaskIng: A Review ol DouUeDOS

Issue Number 27:

• 68000 TmyGianl: Hawtnme's Low Cost l^blt SBC
and Operalhg System

• The Art of Source Code Generaion: Disasseonbing Z-

80Softwaie

• Feedback Ccrtrti System Analysis: Using Root Locus

Analysis Ji Feedback Loop ConnpensatKn

• Tlie C Cdunm: A Gi^itics Piinive Package

• The Hitachi HD64130: New Uts fcrSbitSy^
• ZSIG Comer Command Une Generators and Aiases

• A Tutor Program n Forth: Writing a Forth Tutor ii Forth

• Disk Paiameteis: Mod^ tie CP/M Disk Paiameter

Block for Foreiji Disk Foimals

Issue Number 28:

Sta liing YourOvm BBS

Biikj anAD Conve rter kir tie Annpni Die Boaid

HD64180: Seting tie Wait States & RAM Refresh

using PRTiDI*
Using SCSI kr Real Tme Contrd

Open LettertoSTD Bus ManutacUeis

PatchngTurtx) Pascal

Choosing a Language tor Machine Ccnlroi

ssu? Number g?;
Better Software Filter Desi^

MDISK' Adding a 1 Meg RAM Disk to Ampro Litle

Boaid, Parti

Using the HitacN Iide4l80: Bnbedded Processor

Desiyi

68000: Why use a new OS axl tie 68000?

Deteding tie 8087 Mati dip

Fioppy Disk Trade Stiuclure

The ZCPH3 Coiner

Issue Number 30:

Doitle Density Fk:ppy Ccntroler

ZCPflSIOPtortieAnproUlle Board

3200 hiackeis' Language

MDISK: Addrg a 1 Meg RAM Disk to Ampro Utle

Boaid, Part 2

Non-Pieempive MUitasking

SdtwaieTneis for tie 68000

LiHiputZ-Node

The 2CPR3 Coiner

The CP/W Coiner

Issue Number 31:

Using SCSI for Generalized lO

ComtHncafng wti Roppy Disks: Disk Paiameteis &
tieirvariations

XBIOS: A Replacement BIOS tor the S8180

K-OS ONE and tie SAGE: Denv^Hying Opeiaing

Systems

Remote: f^esigiing a Remote System Prtigram

The 2CPR3 Comer AHUNZ DoanMntatkn

Issue Number 32:

Language Devek^ment AutomatK Generation of

Parseis for tferadve Systems

Desi^tng Operalng Systems: A ROM based OS for

tieZSI

AchancedCPM Boosing Peifonnance

Systematic Elminalwn of MS-DOS Fles: Part 1,

Deleing Hoot Dlredoiies t> an In-Depti Look at tie

FC8

WadSbr4.0 on Generic MS-DOS Systems: PatdUng

torASCII Teiminai Based Systems

K-OS ONE and the SAGE System Layout and

Hanlware Conigjaicn

The ZCPR3 Coiner NZCOM and ZCPfi34

Issue Number 33:

Data RIe Conversion: Wrtfing a Filter to Convert

Foreign Fie Fomiats

Advwiced CP/M: ZCPR3PLUS & How to Write Self

RekicaingCode

DataBase: The Ristin a Series on Data Bases and

totoimafon Processing

SCSI tor tie S-100 Bus: Another Exanpie of SCSTs

Veisaity

A Mouse en any Hanjwaie: Implementiig tie Mouse

onaZSO System

Systematic Eiminatkxi of MS-DOS Fles: Part 2,

Silidrectories & Bdended DOS Servkxs

ZCPR3 Comer ARUNZ Shels & Patcting WordStar

4.0

Issue Number 34:

Devetoping a Fie Biaypfon System.

Database: A oontinuatkin of tie data base primer

series.

A Simple Multttasking Executive: Designing an

entedded corMernriiftasking execuive.

ZCPRa Rekicat*le code, PRL les, ZCPR34, aid

Type 4 programs.

New McroconMleis Have Smarts: Clips witi BASIC

or Forth in ROM are easy to program

Advanced CP/M: Operalng system extensions to

BOOS and BIOS, RSXs tor CP/M 22.

Madntosh Data Rte CdiveisKn in Turtxi Pascal.

The Computer Comer

Issue Number 35:

All This & Modiia-2: A Pascal-ike altenialive wlh

scope and parameter passing.

A Short Course in Source Code Generation:

Disassenting 8088 sollvens to produce modifHbie

assently source code.

Real Compultig: The NS32032

S-10O: EPROM Bumer projed tor S-100 hardware

iBdceis.

Manxi CPAt An i{>-t>date DOS, pks detais en

lite stiucture and foimals.

Ra-Styte Assembly Language for CP/M and Z-

System. Part 1: Selecing ycur asseirtier, lier and

debugger.

TheCcmputerComer

ssue Number 36:

Inknnaion Enuring: Introducioa

Modula-2 A ist d reference becks.

Temperature Measurement & Contrd: Agricultuiai

coirputerapptcatkn

ZCPR3 Comer Z-Nodes, Z-Plan, Annstiand conputer,

andZRl£

Real Ccmpuling: NS3E032 fBrdware tor ffifierimenter,

CPUs in series, soflmre cpions.

SPRINT: A review.

REL-Slyie Assembly Language tor CP/M li ZSystems,

part2

Advanced CP/M: EnvirormentalpitigFamirrig

The Conruter Comer

Issue Number 37:

C Pdnteis, Anays & Stiudures Made Easier Part 1,

Pdnteis.

ZCPR3 Comer Z-Nodes, patchtog tor NZCOM,
ZFILER.

InfoimalKn Engineering: Bask: Concepts: iekls, idd

deinitkn, dicnl WQiksheels.

Shells: Using ZCPR3 named shel variaUes to store

date variables.

Resident Piograms: A detaled took al TSRs i how

tiey can lead to chaos.

Advanced CP/M: Raw & cocked consde tO

Real Ccmpufeig: The NS 32000.

ZSDOS: Anatcny of an Opeiaing System Part 1.

The Carpiter Coiner

Issue Numt>ef 38:

C Mati: HarvSng Ddkus and Cents W«h C.

AdvancedCRM Bafch PiDcessingandaNewZEX.

C Pdnteis, Anays & SiuduRS Made Easier Part 2,

Allays.

Ttie Z-System Comer Sfiells and ZEX, new Z-

Node Central, system security

kifcimafon Entering: The portabte totoanaicii Age.

Computer Aided Pitfshing: Intodudton to piUsHng

and Desk Top Pubishing.

Shels: ZEX and fiaid dsk badojps.

Rea! Computing: Ttie National Semiconductor

NS320XX.

ZSOCS: Anatomy of »i Operaing System, Pt 2

Issue Number 39:

Programming tor Pertoimance: Assembly Language

techniques.

Computer Aided Pubishing: The HewleJ Padcaid

LaserJet

The Z-System Comer System enhanoemenis will

NZCOM.

Generaing LaserJet Fonts: A review of Dig-Fdnls.

Advanced CPAI: Making dd pnigrams Z-Syslem

aware.

C Pdnteis, Anays i Stiuctures Made Easier Part 3:

Sftuctures.

Shels: Using ARUNZ alias witi ZCAL
Real Computing: Ttie National Semiconductor

NS320XX.

The Conputer Comer

ssue Number 40:

Piogramiring tie LaseiJet Usiig tie escape codas.

Beginritig Forth Cdurm: Intiodudioa

Advanced Forth Column: Variant Records and

Modies.

LINKPRL: Generaing tie bit rt^s tor PRL les fion a

RELIIe.

WoidTech's dSXL Wiling your owi custDm deslgied

business program

Advanced CP/M: ZEX S.OTfie machine and tie

language.

Programming tor Pertoimance: Assently language

tediiic|ues.

Programming Input/Output With C: Keyboant and

screen Uicttons.

The Z-System Coner Remote access systems and

BOSC.

ReiCompulng:TheNS320XX

The CoirputerComer

Issue Numtaer 41:

Forth Cdum ADTs, Objed Oriented Conoepb.

bnpiovrig tie Ampio LB: Ovenxining tie 88Ui fiaid

drive M.
How to add Data StiucUes h Foti

Advanced CP/M: CP/M is hadcet's haven, and Z-

System Conmand Schedutet

The Z-System Comer Extended MJIiple Command

Liie, and aliases.

Programming disk & printer fundkns vwC.

UNKPRL Making RSXeS easy.

SCOPY: Copying a series of ineialed Iks.

The Computer Coiner.

46 The Computer Journal / #54

TC^ The Computer Journal
The Spirit of the Individual Made This Industry

Back Issues
Sales limited to supplies in stock.

Issue Number 42:
• Dynaniic Memoy Alccalion: Alocalng memory at

nrfme witi exan^s in Forth.

• Ust^BYEwltlNZCOM.
• C and the MSDOS Screen Character Attnbutes.

• Forti Cdunn: Usis and ctject Qtiented Forth

• The Z-System Comer Gene, BOS Z and Z-Syslem

Ftudamenlals.

• 68705 EnteddedContiderAfipicafon: An example

ofasln^frcHpmicnxonliolerappication

• Adkwced CRU PluPerted Wiiter and using BOS C

v«h Rates.
• Heal Con^ulng: The NS 32000.

•TheCcmpuJerComer

Issue Number 43:
• Slandaidize YourFloppy Disk Dilves.

• ANewHtetoiyShelforZSyslem.

• Heali's HDOS, Then and No*.

• The ZSystetn Comer Software i^idate seivice, and

cusbnlzingNZCOU
• Graphics ProgBimingVWh C: Grapt*»

oUkies tor Ihe IBM PC, and tie Tuibo C graphics

fcraiy.

• Lazy Evaiuaion: End te evaluatkn as soon as the

resUtisKnowi

• S-100: There's si He in tie old Ike.

•Advanced CPM Passing parameters, and complex

enoriecoveiy.

• Real Compuliig: The NS32000.

• The Conjiuter Comer.

Issue Number 44:
• Arimallcn will Turtx) C Part 1 : The Basic Tods.

• Mittasigng In Forth: New Miooe F68FC1t sni Max

Fofti

• Mysteiles ti PC Floppy O^ Revealed FM, MFM,

and tie twisted cable.

• DosOsIc MSOOS dBk tomnat emulator (or CP/M.

• Advanced CP/M: ZMATE and using lool(up and

dispalchforpassing parameteis.

• Real Compuing: The NS32000.

• Forti Cokirr: Handng Strings.

• Z-System Coiner k€X i teiecaimiKatlons

• The ComputerCoiner

Issue Number 45:
• Entedded Systene for lie Tenderioot Getfng started

will the 8031.

• The Z-Syslem Coiner Using sciipts wit) MEX.

• The Z-System and Tuito Pascal: Patching

TURB0.COM to access tie Z-System

• Embedded Applicalions: Designing a Z80 RS'232

oommunicaions gateway, part 1

.

• A(hanced CPM String seaiohes and tirtig Jettxl

• Arimaion will Turix) C: Part 2, saeen intefacions.

• Real COTfUrg: The NS32000.

• The Cofr^iuter Coiner.

Issue Number 46:
• Biild a Lcng DIslanw PititerDilver.

•Using the SCSI's built-in UART for serial

commuricatians.

• Fomdaional ModJes In Modiia 2.

•The Z-System Comer Pakhing The Word Plus spel

checker, tie ZMATE macio text edtor.

• Animalcn will Turtle C: Text in tie graphks mode.

• Z80 Ccmmuricaions Gateway: Pmtilyping, Cxulal

Tmere, and using tie Z80 CTC.

Issue Number 47:

Controlling Stepper Motors will tie 68HC1 1

F

Z-System Coiner ZMATE Macm Langmge

Using 8031 Inlen^its

T-1 : What it is i Why You Need to Know

ZCPH3iModUa,Too

Tips on Using LC13s: inlertadng to tie 68HC706

Real Ccitipuling: Debugging, NS32 MuM-lasklng k

Distiibuled Systems

Lcng Distance Printer Driver coneckn

ROBO-SOG90

The CcmputerComer

Issue Number 48:

Issue Number 49:

Fast Mall Using Loganlms

Forth and Forth Assentler

Modula-2 and tie TCAP

Adding a BemaJi Drive to a CP/M Conputer (Buktng

aSCSilrteiface)

Review of BDST
PMATBZMATE Macros, PL 1

Real Computing

Z-Syslem Conor Patching MEX-Plus and TheWord,

Using ZEX

Z-Best Software

The CcmputerComer

Computer Netwoik Power FVoleckn

Rcppy Df^ Aignment tunTXEB, PL 1

MotorCcntol will Ihe F68HC11

Conlroing Home Heaing & Lifting, PL 1

Gating Staited In Assembly Language

LAN Basks

PMATE/ZMATEMaaos,Pl2

RealCompufng

Z-System Comer

Z-Best Software

The ConputerComer

Issue Number 50:

OfloadaSyslemCPUwititieZIBI

ncppy Disk Afjimenl wflTXEB, PL 2

MotorCcntnl will the F68HC11

ModUa-2 and tie Command line

Conliokig Home Heaing & U^ftig, PL 2

Gating Started in Assently Language Pt 2

Local Area Netwoiks

Using the ZCPR3iGP

PMATE/ZMATEMacios,Pl3

Z-System Comer, PCED

Z-BestSollware

Heal Ccmpuing, 32FX16, Caches

The CcmputerComer

Issue Number 51:

introducing He YAS8EC

Rcppy Disk Algrment »*RTXEB, R 3

High Speed Modems enB^ Bit Systems

AZ8Tal(erandHoel

Local Area Networics—Biemet

UNIX CcmecWty en tie Cheap

PC Hard Disk PaiitknTaUe

AShortintoducionbRiti

Stepped tterence: A Technk^ lor inteigert Real-

Tine Bnbedded Contid

Real Computing: tie 32CG160, Swoidfish, DOS
Ccmmand Processor

PMATE/ZMATE Macros

Z-System Comer, The Trenlcn Fesivai

Z-Best Software, IK 23HELP System

The CcmputerComer

Issue Number 52:

•YASBEC, The Hardware

•AnArtxtraiyWavefoim Geneiator, P1

1

• B.Y.O. Assembler...in Forth, ft 1

• Gedng Staited in Assently Language, Pt 3
• TheNZCOMlOP
• Sew»andtheF68HC11
• Z-System Comer Programming torCarpaM^
• Z-Best Software

• Heal Computing, X10 Hevisled

• PMATE/ZMATE Macros

• Conlrcing Hone Heafng i. Unfiling, ft 3

• The CPU280, A High Pertoimance Sin^t-Boaid

Corputer

• The CcmputerComer

Issue Numl>ef 53:
• The CPU280, Haidware desi^i

• Local Area Netwoiks—Broadband cabing

•An Aibitiaiy Wavefcmi Generator, ft 2

• Heal Compufng, RBOCs, C Skkiess, MHx
• ZedFest"91

• Z-Syslem Comer Geiman User Gratis, Wital BOS,

More Programming for Ccmpalfaity

• Assembling language Prograimilng: Imptonienltig

luncfons

• The NZCOM DP. General purpose lOP kBder

• Z-Best Software, Spoli^ on Gene Pizzetb

• The CcmputerComer

U.S. Foreign Foreign Totai

Subscriptions (Surface) (Airmaii)

lyear (6 issues) $18.00

$32.00

$4.50 ea.

$24.00 $38.00

2 years (12 issues) $44.00 $72.00

Back Issues $6.00 ea.

6 or more $4.00 ea. $5.50 ea.

Bacl< Issues Ordered:

Subscription Total

Back Issues Total

Order Total

Method of Paynnent:

Visa MC Discover

JCB Diner's Club Carte Blanche

EuroCard Checl< Money Order

Acct No: Exd; /

Signatufie:

Name:

Company:

Address:

My Interests:

'Checks must be in US funds, drawn on a US bank.

'Sales limited to supplies in stock. Subject to prior sale.

P.O. Box 12, S. Plainfield, NJ 07080-0012

(800) 424-8825 / (908) 755-61 86

The Computer Journal / #54 47

The Computer Comer

By Bill Kibler

Well another month has gone by, with revelations galore.

For myself, 1 have finally sold one house that has been on the

market for over a year. Hopefully I can get more work done
now. 1 have also been checking out lots of software and even
went to one course last month. 1 have played with DR DOS
6.0 and have something to say about version control software

(the course 1 attended).

What Works

1 tried to load DR DOS and found some problems. Our
company has been checking out other network systems. For

those who didn't see the trade journals, Novell Netware
bought Digital Research Inc. which gave them the rights to

DR DOS. You may remember DRl as the creators of CP/M.
From reading a few of the "help me" files, I can see what the

purchase of DRI really means to Novell. With DRDOS,
Novell no longer has to deal with all the bugs and uppity

dealings of Microsoft.

All this comes about from the many companies having
trouble with Microsoft and their shifting between 0S2 and
MSDOS. What also helped this along was Novell needing a
stable DOS environment as well as access to the source code.

DR DOS version 6.0 came with Novell's new NETLITE
program. NEWLITE is supposed to be able to provide a

server-less LAN network. We have just started testing the

product at work so more later.

DR DOS 6.0 has all the MSDOS features plus some. After

all, CP/M was the basis for MSDOS and most of the early

system calls were the same. 1 tried their SID, which replaces

DEBUG, and would much rather use it any day. It even has a

built in list of options. I always hate using DEBUG because I

will forget some syntax and have to hunt down a book to

complete my work. However their DOSBOOK program (a

system help manual) has an annoying problem. Hitting the

ESC key will put you at the main menu and not back at the

sub menu you just came from. With several hundred topics

to view, jumping back to main is most troublesome.

Looking at some of their utilities you can see how they

will be able to provide many new features because they have
control of the DOS source code. One of those features is a

multi-tasking like utility that 1 didn't get to try, yet! a

aThis makes me feel that any company doing LAN based
work needs to drop the other formats and move to Novell.

Doing so will kill two birds with one program, cut your LAN
problems in half and give you a better DOS.

vcs

What is VCS you might ask? VCS stands for Version Con-

trol Software. That means an automated means of tracking

changes in your software. Our programs have been on a

mainframe and as such have absolutely no method of track-

ing who did what to where. We have 6 and 7 year old files

that appear to have been changed, but the object module that

was being used was from before the changes. The question

then is what did happen and were the changes really needed
or not.

The product I have been sent to learn is Intersolv's

Poly VCS. There are many products from an assortment of

vendors that do the same thing and I would recommend you
check them all out before trying or buying one. PVCS
(Poly VCS) is being used elsewhere in our company and so

we too went with it. I feel that all of the available programs
will work the same, some may be better for your personal

environment, however.

PVCS, like most of the VCS programs, allows files to be
checked out of the hard drive and locked (read only so old

copy can't be written to). You then make your changes and
tests on your local drive. When you are sure it is all correct,

you then log it back into the server. At that point you are

prompted for a description of your changes and that is re-

corded in the log file. The log file contains all the source code
and all the changes as well. The changes are short sections of

differences and PVCS calls them DELTAS. By storing just the

changes (deltas) and not a second or third copy of the file, it

is possible to save hundreds of histories with a marginally

larger file. This also allows you to re-create or check out

older or past versions of releases if needed.

We have many past releases of our products in which we
have no way of re-creating them. There also is no way of

knowing if past bugs have in fact been fixed or in which
release version they were fixed. PVCS and its log and track-

ing system will do all that for us. It will also print out a list of

who tried to do what on the system. That means you have
full security if you want, complete with tracking who is

trying to break the system. Security can be set at the file or

group of files level. You can prevent programmers from get-

ting outside their area of responsibility if that is a problem.

In our case using PVCS is somewhat overkill for our proj-

ect. It is an older product that is slowing down as far as the

changes are concerned. Also we will only have about five

people using it and so a system that can handle hundreds of

users is a bit overkill. Here again is a product in which the

book will explain it all, but a course will cut the learning

curve to about 20 percent of the time. I worked with their

MAKE program (automated assembly and linking program)
and had problems finding all the fine print. I mean fine only

from the point of brief and well hidden in some part of the

See Computer Comer, page 23

48 The Computer Journal / #54

Internal Programmer for PC $139.95
NewlntelligentAveraging Algorithm. Prog rams64Am10sec.,256in1min.,1Meg(27010,011)in2m!n, 45 sec,

2Meg(27C2001)in5min,lnternalcardwithexternal40pinZIF.
^^ ^^^^^ 40pinZIF

• Reads, verifies, and prograins 271 6, 32, 32A, 64,

64A, 1 28, 1 28A, 256, 51 2, 51 3, 01 0, 01 1 , 301

,

27C2001,MCM 68764, 2532

" Automallcally sets programming voltage

' Load and save buffer to disl<

• Binary, Intei Hex, and Motorola S formats

• Upgr8llableto32MeiEPROMs
• Mo personailly modules requlreil

• 1 yearwarranty^lOday money back guarantee

• Adapters available for 8748, 49, 51. 751 , 52, 55,

TMS 7742, 27210, 57C1024, and memory cards

• MadeinJ,S.A,

NEEDHAM'S ELECTRONICS
4539 Orange Grove Ave, • Sacramento, CA 95841

M«n. Fri, Sam - 5pm PST CO.D.

Call for more information

(916) 924-8037
m FAX (916) 972-9960

Cross-Assemblers as low as $50 oo

OirnUl3tOrSaslowas$100 00

Cross-Disassemblers as lowas $10000

Developer Packages
as low as $200.00(a $50.00 Savings)

A New Project
Our line of macro Cross-assemblers are easy to use and full featured,
including conditional assembly and unlimited include files.

Get It To Market-FAST
Don't wait until the fiardware is finisfied to debug your software. Our
Simulators can test your program logic before tfie hardware is built.

No Source!
A minor glitch has shown up in the firmware, and you can't find the original

source program. Our line of disassemblers can help you re-create the
original assembly language source.

Set To Go
Buy our developer package and the next time your boss says "Get to work.",

you'll be ready for anything.

Quality Solutions
PseudoCorp has been providing quality solutions for microprocessor
problems since 1985.

BROAD RANGE OF SUPPORT
• Currently we support the following microprocessor families (with

more in development):

Intel 8048 RCA 1802,05
Motorola 6800 Motorola 6801
Hitachi 6301 Motorola 6809
Ftockwell 65C02 Intel 8080,85
Hitachi HD64180 Motorola 68000,8
• All products require an IBM PC or compatible.

So What Are You Waiting For? Call us:

PseudoCorp
Professional Development Products Group

716 Thimble Shoals Blvd, Suite F.

Newport News, VA 23606

(804) 873-1947 FAX: (804)873-2154

Intel 8051 Intel 8096
Motorola 68HC11 Motorola 6805
MOS Tech 6502 WDC 65C02
Zilog Z80 NSC 800
Motorola 68010 Intel 80C196

^ %

m William P Woodall • Software Specialist

Custom Software Solutions for Industry:

Industrial Controls

Operating Systems

Image Processing

Custom Software Solutions for Business:

Order Entry

Warehouse Automation

Inventory Control

Wide Area Networks

Publishing Services:

Desktop Systems

Books

CBT

Hardware Interfacing

Proprietary Languages

Component Lists

Point-of-Sale

Accounting Systems

Local Area Networks

Telecommunications

Format Conversions

Directories

Interactive Video

33 North Doughty Ave, Somerville, NJ 08876 • (908) 526-5980

% J

SAGE MICROSYSTEMS EAST

Selling & Supporting the Best in 8-Bit Software

(New Lower Prices on Many Items!)

• Automatic, Dynamic, Universal Z-Systems: Z3PLUS for CP/M-Plus computers,

NZCOM for CP/M-2.2 computers (now only $49 eacii)

• XDIOS: the banked-BIOS Z-System for SB180 computers ($50)

• PCED - tlie closest thing to Z-System ARUNZ, and LSH under MS-DOS ($50)

• DSD: Dynamic Screen Debugger, the fabulous full-screen debugger and simulator ($50)

• ZSUS: Z-System Software Update Service, public-domain software distribution service

(write for a flyer with full information)

• Plu*Perfect Systems

I3ackgrounder ii: CP/M-2.2 multitasker (now only $49)

- ZSDOS/ZDDOS: date-stamping DOS ($75, $60 for ZRDOS owners,

$10 for Programmer's Manual)

- DosDisk: MS-DOS disk-format emulator, supports subdirectories and

date stamps ($30 standard, $35 XBIOS BSX, $45 kit)

- .letFind: super fast, extemcly flexible regular-expression text fde

scanner (now only $25)

• ZMATE: macro text editor and customizable wordprocessor ($50)

• BDS C — complete pkg including special Z-System version (now only $60)

• Turbo Pascal — with new loose-leaf manual ($60)

• ZMAC — Al Ilawley's Z-System macro assembler with linker and librarian

($50 with documentation on disk, $70 with printed manual)

• SLR Systems (The Ultimate Assembly Language Tools)

- Z80 assemblers using Zilog (Z80ASM), Hitachi (SLR180), or Intel (SLRMAC)
mnemonics, and general-purpose linker SLRNK

- TPA-hascd ($50 each tool) or virtual-memory ($160 each, tool)

• NightOwl (advanced telecommunications, CP/M and MS-DOS versions)

- i\1EX-Plus; automated modem operation with scripts ($60)

- MEX-Pack: remote operation, terminal emulation ($100)

Next-day shipping of most products with modem download and support available. Order

by phone, mail, or modem. Shipping and handling: $3 USA, $4 Canada per order; based on

actual cost elsewhere. Check, VISA, or MasterCard. Specify exact disk formats acceptable.

Sage Microsystems East

1435 Centre St., Newton Centre, MA 02159-2469

Voice: 617-965-3552 (9:00am - 11:30pm)

Modem: 617-965-7259 (pw=DDT) (MABOS on PC-Pursuit)

