
Issue Number 34 September / October 1988

Developing a File Encryption System
Keep MS-DOS Files Private with a Customized Encoding Scheme

Data Base
Choosing Your Tools

A Simple Multitasking Executive
Designing an Embedded Controller Multitasking System

CP/M's Magical lOBYTE
Using Tables for Space Efficient implementation

ZCPR3 Corner
PRL Files and Type-4 Programs

New Microcontrollers Have Smarts
Program with ROM Based On-Chip BASIC or Forth

Advanced CP/M
Extending the Operating System

Data File Conversion
Converting Macintosh Files with Turbo Pascal

$3.00

ISSN # 0748-9331



THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, Montana

59912

406-257-9119

Editor/Publisher

Art Carlson

Art Director

Donna Carlson

Production Assistant

Judie Overbeek

Contributing Editors

Joe Bartel

Bob Blum

Bill Kibler

Rick Lehrbaum

Bridger Mitchell

Jay Sage

The Lillipute Z-Node sysop has

made his BBS systems available to

the TCJ subscribers. Log in on

both systems (312-649-1730 & 312-

664-1730), and leave a message for

SYSOP requesting TCJ access.

Entire contents copyright©

1988 by The Computer Journal.

Subscription rates—$16 one

year (6 issues), or $28 two years (12

issues) in the U.S., $22 one year in

Canada and Mexico, and $24 (sur-

face) for one year in other coun-

tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or

address changes to: The Computer

Journal, 190 Sullivan Crossroad,

Columbia Falls, Montana, 59912, or

The Computer Journal, PC Box

1697, Kalispell, MT 59903.

Address all editorial and adver-

tising inquiries to: The Computer

Journal, 190 Sullivan Crossroad,

Columbia Falls, MT 59912 phone

(406)257-9119.

The COMPUTER
JOURMAL

Features issue Number34
September/ October 1988

Developing a File Encryption System

How to scramble data, and how to develop your

own customized encryption/password system.
by Dr. Edwin Thall 4

Data Base

Some of the factors to be considered when
choosing the data base management system.

by Art Carlson 11

A Simple Multitasking Executive

Designing an embedded controller multitasking

system, with code examples for the Z80 and NS32.
by Richard Rodman 12

CP/M's Magical lOBYTE

A fully implemented lOBYTE is very useful. Here's

how to do it with time and space saving tables.

by Donald C. Kirkpatrick 16

ZCPR3 Corner

More on relocatable code, PRL files, ZCPR34, and
Type-4 programs.

by Jay Sage 20

New Microcontrollers Have Smarts

Chips with BASIC or Forth in ROM make these
chips easy to program without having to use
assembly language.

byR.E. McCain 26

Advanced CP/M

Operating system extensions to BDOS and BIOS,

RSXs for CP/M 2.2.

by Bridger Mitchell 30

Macintosh Data File Conversion in Turbo Pascal

Many people don't realize that you can write a

plain vanilla computer program on the Mac. Here's

an example In Turbo Pascal,

by Tim McDonough 38

Columns

Editorial 2

Computer Corner by biii Kibier 44



Editor's Page

Industry Trends

The microcomputer market is

dominated by the IBM PC-DOS and Ap-
ple Macintosh systems, with Atari and
Commodore playing a secondary low-

level role. The majority of the consultants

and custom programmers I talk to are

working with PC/MS-DOS systems.

Some of them are using Macs, but very

few are programming for them.

When you are in the business of con-

sulting and developing programs for other

people's computers you have to work with

the systems which they have chosen, and

not what you would choose for yourself.

A study of the computer publications

shows that the IBM-PC related

publications cover both end user products

and programming tools and techniques,

while the Mac publications concentrate on

the end user products. Apparently, the

Macs are selected by people whose needs

are filled by existing software such as

spreadsheets, wordprocessors, and

desktop publishing, while the people who
need custom programming use the PC.

The majority of the Mac and PC
programs have a fundamental difference.

Most Mac programs stress the ease of use,

and because they avoid any confusing

complications in the form of user

decisions, they can only do the tasks in the

manner that the designer implemented

them. While there are also some simple-

minded PC programs, many PC programs

require more involvement by the user, and

can handle more complicated tasks.

Because it takes a lot of time and effort to

develop a program for the Mac, most of

the Mac development is being done by

larger organizations. Individual in-

novative entrepreneurs do not have the

resources to develop Mac applications. Or
perhaps, innovative individual program-

mers do not like the Mac atmosphere.

PCs, on the other hand, are being

programmed by many individuals, and

there is a much wider range of programs

available. There are exceptions, of course,

but in general terms, the Mac is for users,

and the PC is for both users and

programmers.

The relative status of the Mac and the

PC is changing, as more people become
famiUar with the Mac programming en-

vironment and more Mac programming
tools are sold. There are also increasing

numbers of PCs being purchased for use

in applications by people who have no in-

tention of programming. As the trend

towards Mac-like interfaces for the PC
continues, and as OS/2 or other '386

operating systems with multitasking, win-

dows and icons become more common,
the PC will become as difficult as the Mac
to program.

"The driving force in the

mass maritets is not the

features of the system, but

rather the software which

is availabie."

It will be interesting to see what hap-

pens with OS/2. Most developers do not

like it, but will be forced to use it if the

market chooses it. There are better

systems available, but using them is pretty

much a custom programming situation.

There is no apparent successor to the

Mac and the PC at this time, and we will

probably be using these systems for the

next two to five years. At which time they

will have such a large established base,

that we will most likely see improvements

to these basic systems instead of the major

changes we encountered when switching

from Apple II to Mac or CP/M to PC.

The driving force in the mass markets is

not the features of the system, but rather

the software which is available. The
developers follow their perception of their

market, and the market (generally)

follows the availability of the software.

Hardware has to be sold to develop a

market for the software, and people won't

buy the hardware until the software they

need is available. These facts make it ex-

tremely difficult for someone without the

marketing power and resources of Apple
or IBM to break into the market with a

new system.

We're Going Desktop

I've been fighting our old archaic Com-
pugraphic typesetter, waiting till the DTP
(Desk Top Publishing) hardware and sof-

tware evolved to the point at which I

would be comfortable with it. The time

has finally come, and we will be changing

over to DTP.
The first DTP programs performed a

lot of amazing tricks, but they were

designed for producing letters, reports,

and resumes, and they did not provide the

typographical refinements I wanted.

Now, the current revisions of the

programs have eliminated most of the ob-

jectionable faults of the original releases. I

still held back, hesitant to give up
something with which I was familiar. The
final push came when the local paper in-

stalled a system which can output to either

a laser writer or a phototypesetter.

Modern technology finally arrived in Nor-

thwest Montana!
Going to DTP obviously required a new

computer system. I would have to get

something besides a CP/M system (I now
have seven of them!). The big decision

was whether to go with an MS-DOS or

Mac machine. I had been thinking about

this for some time, and had reached the

decision that I was more comfortable with

the MS-DOS machines. A major factor in

the decision was that only a small portion

of the time would be spent using the ac-

tual DTP programs. Most of the time

would be spent in wordprocessing, and I

am very fond of WordStar. If you think

that Revision 4 was an improvement, wait

till you see Revision 5 (sorry, MS-DOS
only, not CP/M). It is so good, that I was

not willing to give it up by going to a Mac
system—I'll have more on WordStar
Revision 5 after I wring it out. MicroPro

has been very busy, and has given me a lot

to work on. Another very important fac-

tor was that the primary non-editorial use

will be for C and data base programming,

and there are a lot more tools available

from multiple sources for the PC than

there are for the Mac.
We won't be purchasing an output

device for a while. It will be a nuisance to

run out for printouts—especially since

everyone in this remote area interfaces to

a Mac. I may have to transfer the files to a

The Computer Journal / Issue #34



Mac disk in order to get output. A
modem? No such luck. The nearest place

with telecommunications is almost 400

miles away, and I don't want to face the

problems and delays which that would in-

volve. I would rather transfer the files and

drive 15 miles to where I can deal with

things one-on-one.

Getting into laser printers is a whole

new ball game with lots of new buzz wor-

ds and jargon. Postscript® vs. PDL.
White printing vs. black printing. Lots of

new things to consider. There are a lot of

laser printers being sold at very attractive

prices—much less expensive than the Ap-

ple LaserWriter® . But be careful, and be

sure you know what you are buying! All

of the cheap ones which I have seen use

PDL instead of Postscript, and everyone

is changing over to Postscript. It is

something like the non-IBM compatible

MS-DOS machines sold a few years ago

(and still being dumped very cheap). If

you get a PDL machine you'll end up with

an orphan, so don't get anything except a

Postscript machine unless you really know
exactly what you are getting into.

A New Computer
I had decided that the new system

should be MS-DOS, but that still left a lot

of choices. The first decison was to select

the CPU. 8088, 80286, or 80386? I chose

an AT clone with the 80286 because the

8088 systems are too slow for the DTP
programs which make heavy use of

graphics and require a high resolution

monitor, and the '386 systems are too ex-

pensive. Another criterion was that I wan-

ted something which I could subject to

heavy use without any problems. There

have been some real lemons on the

market, and I wanted to avoid them.

I selected the Austin '286 (contact

Dwayne Derrick, Austin Computer

Systems, 7801 N. Lamar, Suite D-95,

Austin, TX 78752, 1-800-752-1577). It

runs at 12.5 Mhz, comes with 1 Meg on

board expandable to 4 Meg on the board,

has two serial ports, parallel port, PS/2

mouse port, hard and floppy disk con-

trollers, and the graphics, all on the

mother board. It uses the Western Digital

six layer motherboard which is currently

made here in the U.S. The wafers are

made here, packaged overseas, and retur-

ned here for stuffing using surface mount
technology.

Austin supplied a copy of the Western

Digital Tech Manual (120 pages) with

good solid information. The parallel port

is bidirectional, so it can be used for both

input and output, the hard drive con-

troller uses 1:1 interleaving, and there is a

32 Kbyte disk cache.

I chose this product for three reasons:

1) It is a high quality product with advan-

ced technical features, and it is cost com-

petitive. 2) I'll support U.S. products

where they are available. 3) I talked to

people at both Austin and Western Digital

who had good product knowledge, and

were courteous and interested in solving

any problems (there weren't any

problems, I just called to check their

response).

The third point was very important to

me. I called some other vendors with

uniform poor results.

If you're upgrading to an AT, want

something that works instead of a con-

stant hardware troublshooting project

with questionable compatibility, and

value support, give Austin a call.

Training Classes Help

I've learned most languages and

programs by spending long hours at the

keyboard with the books and manuals.

One of the reasons that I've used this

method is because of our isolated

geographic loctaion. The other reason is

that too many of the training sessions are

so poorly done that they are useless—the

audience knows more about the product

than the trainer.

I recently started learning Raima's

db Vista III, and took advantage of the

opportunity to attend their one week class

in Bellevue Washington. It was very wor-

thwhile, and was a good example of what

a class should be. The Monday and

Tuesday basics class is usually given by

Mark Hervol, but he was not feeling well,

so we had Randy Merilatt who is the

president and co-developer of the

product. Mark was feeling better and gave

the Wednesday advanced class. Wayne
Warren, vice president of development

and the other co-developer, gave the

Thursday and Friday internals class.

Needless to say. Randy and Wayne
really knew the product, since they

developed it. Mark also had good product

knowledge, because he actually writes ap-

plications using db Vista. Frequently,

the people who developed the product and

wrote the code can no longer relate to the

users, but all three of the trainers were

very good at listening to the class and in

understanding the questions. When there

was a question which they could not an-

swer, they didn't try to bluff their way
through. They either dug the information

out of the manuals, or said that they

would have to get the information—and

then they did get the information back to

us!

db Vista is a very powerful network

model DBMS which is used in C
programs, and the source code is available

from Raima. Taking the class will make it

much easier to use than if I had tried to

learn it from just the manuals.

The company, its people, and their at-

titude are very important factors to con-

sider when selecting a product. I talked to

a lot of Raima people besides Randy,

Wayne, and Mark. I also talked to users

who had dealt with both the product and

the company. I left with good feelings

about Raima, and feel that they are really

interested in working with their

customers.

Data-on-a-Disk

The high capacity CD ROM optical

disks are attracting a lot of attention, and

everybody is talking about the amount of

reference material that can be packed on

one disk. But, there is another develop-

ment which I have not seen mentioned

anywhere.

A number of companies are starting to

market specialized reference material on

floppy disks. While the CD ROM can

store huge amounts of data, there are a lot

more floppy drives than there are optical

drives, and the high capacity floppies can

hold the needed data for a narrowly

focused special interest.

A few of the examples v/hich I remem-
ber are: 1) A data base of short run prin-

ters. We purchased this for use in locating

printers for our books. 2) Business Week
Top 1000 companies listing the top of-

ficials and financial data. 3) Tide data for

the U.S. Coasts. 4) Nutritional database

for 4,589 foods. 5) Rare stamp infor-

mation and valuations for collectors.

I have been considering this market for

some time, and feel that it has real poten-

tial for a small publisher. The largest

markets will be appliance computer users

who are interested in following their in-

terests, but don't want to become com-

puter or database experts. In order to ser-

ve this market, we'll have to provide a

complete ready-to-run product which in-

cludes the data plus the database

management system—this is one reason

why I am concentrating on DBMSs which

do not require a run time licensing fee.

For now, I'll be concentrating on PC ap-

plications, but I'll be looking back over

my shoulder at HyperCard® on the Mac
because it may really take the lead in this

field.

We would be very interested in articles

on these types of databases, or on Hyper-

card concepts and design.

The Computer Journal / Issue #34



Developing a File Encryption System
Keep MS-DOS Files Private with a Customized Encoding Scheme

by Dr. Edwin Thall

Dr. Edwin Thall, Professor of Chemistry at The Wayne
General and Technical College of The University of Akron,

teaches chemistry and computerprogramming.

Some excellent commercial packages for encrypting data files

are available. Not only do they scramble data, but many offer a

variety of options including unique passwords for different users,

passwords that don't work after a certain time frame, a log in-

dicating which files were accessed and by whom, directories which

cannot be copied, and inoperable drives. Typically, these utilities

modify the operating system and require special installation.

Many users may not need an elaborate computer security

system, but rather some reasonable method to keep out the casual

snoop. A customized encryption system may be the answer,

especially if you do not store state secrets, and enjoy the challenge

of programming. In this article, I explain how to scramble data,

as well as how to develop your own customized MS-DOS encryp-

tion/password system. Also, ENCRYPT.EXE is presented, a

utility that should satisfy the needs of many users.

Encryption By Rotation

Although it is relatively easy to encrypt data, keep in mind that

scrambled data is useless to everyone, including the rightful

owner. Therefore, any potential file encryption scheme must be

entirely reversible. Two operations, rotate and XOR, are well-

suited for this game.

Let's begin by rotating bits, first to the right and then to the

left. The ASCII code for character "A" is 41H in hexadecimal

and 01000001B in binary. If contained in the AL register, these

eight bits rotate two places to the right when the following in-

structions are invoked:

MOV CL,2

ROR AL,CL

Successive rotations modify the contents of the AL register from

41H to 50H in two steps:

0100 0001 > 1010 0000 > 0101 0000

AlH AOH 50H

1 1^1 1 I t t 1 T ipl I

The original data (41H) is readily restored when bits in the AL
register are rotated two places, but, this time, to the left.

MOV CL,2

ROL AL,CL

A short program, written in assembly language, to scramble

eight consecutive bytes of data is provided in Figure 1. From

DEBUG, use the assemble command to enter the program (omit

comments):

A> DEBUG
-AlOO

After typing in the code, display the eight bytes of data (offsets

01 15-01 ICH), run the program, and then display the data again:

-D115,11C

DS:0115 53 A3 52-'il AD 42 AC A5 SCRAMBLE

-G

-D115,11C

DS:0115 DA DO 9A-50 53 90 13 51 TP.PS..Q

DS:0100 MOV BX,0115 ; point to data

DS:0103 MOV CX,0008 ; count 8 bytes

DS:0106 PUSH CX ;save count

DS:0107 MOV AL, [BX] ;move data to AL register

DS:0109 MOV CL,2 ; rotate AL register

DS:010B ROR AL.CL ;2 times to right

DS:010D MOV [BX],AL ; restore coded data

DS:010F INC BX ; point to next byte

DS:0110 POP CX ; restore count

DS:0111 LOOP 0106 ; process next byte

DS:0113 INT 20 ; return

DS:0115 DB "SCRAMBLE" ;data

Figure 1 . Assembler code to rotate data two bits to the right.

Notice how every byte was rotated two places to the right and the

original data (SCRAMBLE) now exhibits gibberish (TP.PS..Q).

To restore the original data, substitute ROL for ROR, execute the

program a second time, and display the data:

-AlOB

DS:010B ROL AL,CL

<ENTER> 2X

-G

-D115,11C

DS:0115 53 A3 52-Al AD A2 AC A5 SCRAMBLE

As you can see, an equivalent ROL cancels a previous ROR,
and vice versa. Since bits can be rotated right or left, from 1 to 7

times, the following parameters are possible:

IR 2R 3R AR 5R 6R 7R

IL 2L 3L AL 5L 6L 7L

Rotating the bits eight places in either direction (8R or 8L) results

in no change in the bit pattern.

To increase the number of encryption possibilities in the

previous program, you could specify different rotation

The Computer Journal / Issue #34



parameters to sequences of data. For example, rotating the odd
bytes twice to the right and even bytes five times to the left (2R5L)

represents one of 256 possibilities (16'). But keep in mind that

four of these combinations (8R8R, 8R8L, 8L8R, or 8L8L) give no
change in the data.

ROT2X.COM, hsted in Figure 2, demonstrates how to in-

dividually rotate odd and even bytes. The data, originally 10 con-

secutive bytes of 41H, is scrambled by specifying the parameters.

Remember to convert ROT2X.ASM into ROT2X.COM and to

enter R/L in caps. Each time new parameters are input, the

modified data is displayed on the screen. To terminate the

program, you must hit Ctrl break. Try running the program with

parameters 2R5L:

A>R0T2X
ENTER PARAMETERS (2R5L, 8R3R, etc.): 2R5L

P(P(P(P(P(

ENTER PARAMETERS (2R5L, 8R3R, etc.): '^C

A>

The five odd data bytes were changed from 41H ("A") to 50H
("P"), while the five even data bytes altered from 41H ("A") to

28H ("(")• To restore the original data, the directions are rever-

sed with the odd bytes rotated twice to the left and even bytes five

places to the right (2L5R):

A>R0T2X
ENTER PARAMETERS (2R5L, 8R3R, etc.): 2L5R

AAAAAAAAAA

ENTER PARAMETERS (2R5L, 8R3R, etc.): '"'C A>

If the wrong parameters are entered during the restoration

procedure, the data is rotated a second time and rendered vir-

tually useless.

ROT2X can be easily modified to ROT3X, ROT4X, R0T5X,
etc. For example, ROT5X requires the input of five parameters in

the form 2R3L4R6L7L. With over one million (16') combinations

possible, guessing the algorithm—the special formula to solve the

problem—is unlikely.

Encryption By XOR
XOR stands for "exclusive or" and refers to either one or the

other, but not both. In terms of how it operates on bits, XOR
behaves like this:

XOR =

XOR 1 = 1

1 XOR = 1

1 XOR 1 =

When 41H is XORed with 03H, 42H is returned:

0100 0001 Am "A"
0000 0011 03H XOR operand

;R0T2X .ASM converts to R0T2X .COM

; Select rotation parameters for odd/even bytes.

;Hit Ctrl Break to terminate program

.

CSEG SEGMENT

ASSUME CS : CSEG, DS: CSEG, ES: CSEG |

ORG 100H

START; JMP SKIP jsklp data

MESS DB BAH, 0DH, 'ENTER PARAMETERS (2R5L,8R3R,etc. ) : $'

FARM DB 5,5 DUPC'P")
PRINT DB 0DH,0AH

DATA DB 10 DUP("A"),0DH,0AH,24H 1

; Display message to enter rotation parameters |

SKIP: MOV AH,

9

MOV DX, OFFSET MESS

INT 21H

; Input parameters

MOV AH, 10

MOV DX, OFFSET FARM

INT 21H

; Scramble data

MOV BX, OFFSET DATA ; point to data

MOV CX,5 ; count 5 passes

ROT: PUSH CX jsave count

MOV AL, [BX] ;odd byte to AL

MOV CL,PARM+2 ;get odd rotation value

SUB CL,30H ; convert asoii to hex

CMP PARM+3,"R" ;get odd direction

JZ RIGHT ;jump if direction right

ROL AL.CL ; rotate left

JMP NEXT jjurap if direction left

RIGHT: ROR AL.CL ; rotate right

NEXT: MOV [BX],AL ; restore odd byte

INC BX ; point to even

MOV AL, [BX] ;even byte to AL

MOV CL,PARM+4 ;get even rotation value

SUB CL,30H ; convert asciiz to hex

CMP PARM+5,"R" ;get even direction

JZ RITE ;jump if direction right

ROL AL.CL ; rotate left

JMP NEXT2 ;Jump if direction left

RITE: ROR AL,CL ; rotate right

NEXT2

:

MOV [BX],AL ; restore even byte

INC BX ; point to odd byte

POP CX ; restore count

LOOP ROT ; process next 2 bytes

jDisplay dat a

MOV AH, 9

MOV DX, OFFSET PRINT

INT 21H

JMP SKIP ; repeat entire process

CSEG ENDS

END STARl

Figure 2. Assembler code for R0T2X.COM.

0100 0010 ';2H "B"

If 42H is XORed again with 03H, the original value (41 H) is

restored:

source, scramble the data, and then write the encoded data back
to the original file. The next example, utilizing separate programs
for code/data, demonstrates encryption by means of the XOR in-

struction.

First, let's create a simple data file. From DEBUG, generate 10

bytes of 41H, write the file to disk as A:TEST, and display its

contents:

0100 0010 A2li

0000 0011 03H

0100 0001 AlH

XOR operand

Because consecutive operations scramble and unscramble data,

the XOR operation is ideal for file encryption. In the previous

examples, both data and code were stored in the same program.

However, an effective utility must read data from an external

A> DEBUG
-NA:TEST

-F100,109 Al

-RCX

CX ????

:00A0

-RBX

BX ????

:0000

The Ck>mputer Journal / Issue #34



jCODK.ASM converts to C0DE.COM DIGIT2 : ADD AL,DL add high/low

jThls program XORs data in A:\TEST MOV CODE,AL store code

; Select XOR hex code (01-FFH) in CAPS ;Open A:\TEST

CSEG SEGMENT MOV AH,3DH open function

ASSUME CS:CSEG, DS:CSEG MOV AL,2 read/write access

ORG 100H MOV DX, OFFSET ASCIIZ asciiz specification

START: JMP SKIP ;sklp data INT 21H call dos

MESS DB 0DH,0AH , 'SELECT XOR CODE (01-FF): $' MOV HANDLE, AX store file handle

• CODE DB ;Read file's data into buffer

ASCIIZ DB 'A;\TEST' ,0
MOV AH,3FH read function

HANDLE DW MOV BX, HANDLE file handle

PRINT DB 0DH,0AH MOV CX,10 No. bytes to read

BUFFER DB 10 DUP (0) ,2'iH MOV DX, OFFSET BUFFER offset of buffer

SKIP; INT 21H call dos

; Display message for XOK hex code ;XOR the entire buffer
'

AGAIN: MOV DX, OFFSET MESS MOV CX,10 buffer count

MOV AH,

9

MOV BX, OFFSET BUFFER point to first byte

INT 21H NEXT: MOV AL, [BX] store byte in AL

; Input and store XOR hex code XOR AL,CODE get xor code

MOV AH,1 ; input high digit MOV [BX],AL restore modified data

INT 21H INC BX point to next byte

CMP AL,30H ; check for hex LOOP NEXT process next byte

JB AGAIN ;lf wrong, try again ;Set file pointer to beginning of A: \TEST |

MOV DL,AL ; store high in DL MOV AH,42H file pointer function

SUB DL,30H ; change ascil to hex MOV AL,0 to beginning of file

CMP DL,9 ; compare with 9 MOV CX,0 I r

JBE DIGITl ;if less /equal, skip MOV DX,0 r I

SUB DL,7 ; subtract 7 MOV BX, HANDLE file handle

CMP DL,9 ; check for hex INT 21H call dos

JBE AGAIN ;if wrong, try again ; Write coded data to A: VTEST

CMP DL,16 ; check for hex MOV AH,40H write function

JAE AGAIN ;if wrong try again MOV BX, HANDLE file handle

DIGITl: MOV CL,-; MOV CX,10 No. bytes to write

SHL DL.CL ; shift DL ^ bits to left MOV DX, OFFSET BUFFER offset of buffer

MOV AH,1 ; input low digit INT 21H call dos

INT 21H ; Close A: \TEST

CMP AL,30H ; check for hex MOV AH,3EH close function

JB AGAIN ;if wrong, try again MOV BX, HANDLE file handle

SUB AL,30H ; change ascii to hex INT 21H call dos

CMP AL,9 ; compare with 9 ; Display data to screen

JBE DIGIT2 ;if less/equal, skip MOV AH,

9

SUB AL,7 ; subtract 7 MOV DX, OFFSET PRINT

CMP AL,9 ; check for hex INT 21H

JBE AGAIN ;if wrong, try again INT 20H return

CMP AL,16 ; check for hex CSEG ENDS

JAE AGAIN ;if wrong, try again END START

Figure J. Assembler code for C0DE.COM

Writing OOOA bytes

-Q

A>TYPE TEST

AAAAAAAAAA

The utility to scramble A:TEST, CODE.COM, is listed in

Figure 3. Here is how CODE.COM works: It opens the data file,

saves the file handle, reads data into a buffer area, and XORs the

data with a hexadecimal code (01-FFH) selected by the user. The

file pointer is reset to the beginning of the file, the encoded data is

written to A:TEST, the file is closed to finalize changes, and the

modified data displayed on the screen. Before running, make sure

TEST is stored in drive A and the caps-lock key is set.

A>CODE
SELECT XOR CODE (01-FF)

:

BBBBBBBBBB

03

To restore A:TEST to its original form, CODE.COM is executed

a second time with the same XOR hex code.

A>CODE
SELECT XOR CODE (01-FF)

:

AAAAAAAAAA
03

CODE.COM is quite limited since it is only capable of scram-

bling one file (A:TEST) and anyone can access it. If the incorrect

hex code is specified during the deciphering procedure, the data is

scrambled a second time and made useless. To improve the worth

of any data encryption utility, it must be able to scramble all data

files, as well as approve authorized file access. This takes us to the

next topic, the application of passwords.

Passwords

A competent file encryption utility needs the abiUty to

recognize authorized users. Passwords are probably the most
common means of identification. The computer requests an iden-

tifying password from the operator and compares his or her

response to the correct password. If the keyed-in password and
the one in memory match, access is allowed.

Password schemes are easy to implement; all they require is an
input statement and a string comparison. A simple program that

The Computer Journal / Issue #34



demonstrates verification of a password is listed in Figure 4. The

string "DECIPHER" was included in the data segment of

PASSW0RD.COM. If the user enters this password, the message

"ALLOW ACCESS TO FILE" is displayed on the screen. Any
other password displays "DENY ACCESS TO FILE." Convert

PASSWORD.ASM to PASSWORD.COM and enter

"DECIPHER" in caps.

A> PASSWORD
'ENTER PASSWORD: DECIPHER

ALLOW ACCESS TO FILE

A>PASSWORD

ENTER PASSWORD: DECIPHE

DENY ACCESS TO FILE

For this example, the containment of the password was made
easy because it was assembled with the rest of the program. But

where in a file encryption scheme is the entered password con-

tained? Let's consider a few options.

The most effective commercial security systems add extra ROM
memory to your system so that a password is required for access

even before the booting begins. But making a security ROM is

difficult, requires special equipment, and is beyond the scope of

most users.

Special sectors on the floppy or hard disk may be designated to

store the password(s). This scheme could be developed to require

either a single password for all files, or individual passwords. Of
course, the sectors would have to be declared immediately after

the disk format operation.

Another technique creates a special independent file, similar to

the subdirectory file, for the purpose of containing file names and

their corresponding passwords. This special file is permitted to

; PASSWORD. ASM converts to PASSW0RD.COM

; Demonstrates test of password

;Must enter password (DECIPHER) In CAPS

CSEG

START:

MESS

PASSWORD

ID

ALLOW

DENY

SEGMENT

ASSUME CS : CSEG, DS: CSEG, ES: CSEG

ORG 100H

JMP SKIP ;skip data

DB 0AH,0DH, 'ENTER PASSWORD: $'

DB 'DECIPHER' ; stored password

DB 9,10 DUP(0) ; input password

DB 0AH,0DH, 'ALLOW ACCESS TO FILE$'

DB 0AH,0DH, 'DENY ACCESS TO FILE$'

;Display message to enter password

SKIP: MOV

MOV

INT

; Input password

MOV

MOV

INT

AH,

9

DX, OFFSET MESS

21H

AH, 10

DX, OFFSET ID

21H

; Compare ID to password

MATCH:

PRINT:

CSEG

MOV

MOV

CLD

MOV

REPE

JZ

MOV

JMP

MOV

MOV

INT

INT

ENDS

END

SI, OFFSET PASSWORD

DI, OFFSET ID+2

CX,8

CMPSB

MATCH

DX, OFFSET DENY

PRINT

DX, OFFSET ALLOW

AH,

9

21H

20H

START

; point to password

jpoint to ID

; clear directional flag

; compare 8 bytes

; repeat if equal

;Oump, if match found
;' 'DENY ACCESS' ' message

' 'ALLOW ACCESS'

print message

call dos

return

message

Figure 4. Assembler code for PASSW0RD.COM.

grow to accommodate a maximum number of entries. Whenever
a file is deciphered, the password information is removed from

the special file.

Passwords may also be stored at the end of the encoded file. A
few bytes are added when the data is scrambled, and then

removed during the deciphering operation. I chose this technique

for ENCRYPT.EXE, my customized encryption utility. But prior

to the introduction of ENCRYPT.EXE, I will describe this

password strategy.

The scheme begins with the loading of the entire data file into a

64K buffer within the utility program. The user inputs the

password, up to 8 characters, and selects the option to scramble

<S> or unscramble <U>. When a file is scrambled, the entered

password is XORed and appended to the end of the file. A special

8-byte code immediately follows the encoded password. The
special code is used to recognize files that were previously scram-

bled. The encrypted data, password, and special 8-byte code are

written from the buffer to the data file. The scrambled file is now
17 bytes larger than the original data file.

When the data is deciphered, the password is entered and com-
pared to the original password contained at the end of the file. If

they agree, the entire file is read into the buffer area and decoded.

The data file is truncated to zero length and the buffer area,

minus the 17-byte appendix, is written to the file. This procedure

permits data files to be scrambled/unscrambled any number of

times without growing in size.

Introducing ENCRYPT
Many of the techniques described in this article have been

assimilated into the file encryption utility offered in Figure 5.

ENCRYPT.EXE, effective for files less than 64K in size, requires

the user to select a password up to eight characters and an XOR
hex code (01-FFH). ENCRYPT.ASM must be assembled into

ENCRYPT.EXE at some time prior to execution.

To demonstrate ENCRYPT.EXE, A:TEST is scrambled once

again. Check the contents of A:TEST for its original data:

A>TYPE TEST

AAAAAAAAAA

Load ENCRYPT and enter the path, file name, password, op-
tion, and XOR hex code as shown:

A> ENCRYPT

ENTER DRIVE, PATH, FILE NAME:
(EXAMPLE: A:\PATH\FILENAME.EXT)
A: EST

ENTER PASSWORD (UP TO 8 CHARACTERS) : PASSWORD

PRESS: <S> SCRAMBLE <U> UNSCRAMBLE <Q>QUIT
S

SELECT XOR CODE (01-FFH): 29

FILE SCRAMBLED
A>TYPE TEST

hhhhhhhhhhyhzz " f{m$AWBXCYDZ

After entering the file name (A \ TEST), password
(PASSWORD), option (S), and XOR hex code (29), the file is

opened. The file size is determined (DOS Function 42H) and only
files less than 64K are processed further. To resolve whether the
data is already scrambled, the last 17 bytes of the file are read into
a buffer area. If the special 8-byte code (AWBXCYDZ) is

located, the file is closed and the program terminates. Whenever
ENCRYPT.EXE terminates, one of these six messages indicates
the status of the operation:

The Computer Journal/ Issue #34



Figure 5. Assembler code for ENCRYPT.EXE.

; ENCRYPT. ASM converts to ENCRYPT.EXE

jSelect XOR hex code (01-FF)

.

; Stores password at end of encrypted file.

; Input option and hex code In CAPS.

SSEG SEGMENT STACK

DB 20 DUP ('STACK ')

SSEG ENDS

DSEG

FILE

PASSW

HANDLE

SIZEH

SIZED

POINTH

POINTL

OPTION

BUFPC

CODE

MESSl

MESS2

MESS3

MESS-i

MESS5

MESS6

MESS7

MESSH

MESSP

MESSB

DSEG

SEGMENT

DB 6^,65 DUP (0)

DB 9,10 DUP (0)

'AWBXCYDZ'

'

jascllz string

;
password

; special 8-byte EOF code

file handle

file size high
' ' ' ' low

file pointer high
' ' ' ' low

scramble, unscramble, or quit

password/code buffer

XOR hex code

0AH,0DH, 'ENTER DRIVE, PATH, FILE NAME:
'
,0AH,0DH

'(EXAMPLE: A: \PATH\FILENAME.EXT)
'
,0AH,0DH,2^H

0AH , 0AH , 0DH , ' FILE SCRAMBLED
'

, BAH , 0AH , 0DH , 2'4H

0DH,0AH,0AH,'FILE NOT LOCATED' ,0AH,0AH,0DH,2'lH

0AH,0AH,0DH, 'PRESS: <S>3CRAMBLE <U> UNSCRAMBLE'
' <Q>QUIT$'
0AH,0AH,0DH, 'INCORRECT PASSWORD'

'OR FILE NOT SCRAMBLED' ,0AH,0AH,0DH,2';H

0AH,0AH,0DH,'FILE ALREADY SCRAMBLED' ,0AH,0AH,2'tH

0AH,0AH,0DH, 'FILE UNSCRAMBLED' ,0AH,0AH,0DH,2'lH

0DH,0AH,0AH, 'SELECT XOR CODE (01-FF): $'

0DH,0AH,0AH, 'ENTER PASSWORD'

' (UP TO 8 CHARACTERS): $'

0DH,0AH,0AH,'FILE TOO BIG TO SCRAMBLE'

0AH,0AH,2AH

DB

DW ?

DW

DW

DW

DW

DB

DB 17 DUP(0)

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

ENDS

ESEG SEGMENT

C0DE2 DB ;XOR hex code

BUFFER DB 0FFFEH DUP( "B ' '
) ;6^K read/write buffer

ESEG ENDS

CSEG SEGMENT

MAIN PROC FAR

ASSUME CS : CSEG , DS : DSEG , ES : ESEG , SS : SSEG

;Set return and DS/ES registers

START: PUSH DS

SUB AX, AX

PUSH AX

MOV AX, DSEG

MOV DS,AX

MOV AX, ESEG

MOV ES,AX

; input file/password/option

; check option for termination

; if Q, quit program

;get hex code for xor

; scramble/unscramble file

jinput file, path, password, and option to scramble /unscramble.

INPUT PROC NEAR

CALL INPUT

MOV AL, OPTION

CMP AL, "Q"
JZ QUIT

CALL HEX

CALL CRYPT

QUIT: RET

MAIN ENDP

MOV AH,

9

; display message

MOV DX, OFFSET HESSl ;to enter file path

INT 21H

MOV AH,0AH ; input file path

MOV DX, OFFSET FILE

INT 21H

MOV BX, OFFSET FILE+1 ;get string size and

MOV AL,[BX] ; store in AL

MOV AH,0

ADD BX,AX ; point to last byte

INC BX ;point to CR

MOV AL,0

MOV [BX],AL ; store null character

MOV AH,

9

; display message to

MOV DX, OFFSET MESSP ; enter password

INT 21H

MOV AH,0AH ; input password

MOV DX, OFFSET PASSW

INT 21H

;Select option to scramble/unsoramble/quit

REPEAT: MOV AH, 9 ; display option message

MOV DX, OFFSET MESS'i

INT 21H

MOV AH, 8 ; input option

INT 21H

CMP AL, "Q" ; repeat if key other

JZ OK ;than Q, S, or U pressed

CMP AL,"S"
JZ OK

CMP AL,"U"
JZ OK

JMP REPEAT ; repeat option message

OK: MOV

RET

OPTION, AL ;save option

INPUT ENDP

; Input hex code for xor operat Lon

HEX PROC NEAR

AGAIN: MOV DX, OFFSET MESSH ; display code message

MOV AH, 9

INT 21H

MOV AH,1 ; input high digit

INT 21H

CMP AL,30H ; check for hex

JB AGAIN ;if wrong, try again

MOV DL,AL ; store high in DL

SUB DL,30H ; change ascii to hex

CMP DL,9 ; compare with 9

JBE DIGIT ;if less/equal, skip

SUB DL,7 ; subtract 7

CMP DL,9 ; check for hex

JBE AGAIN ;if wrong, try again

CMP DL,16 ; check for hex

JAE AGAIN ;if wrong try again

DIGIT: MOV CL,-;

SHE DL,CL ; shift DL 'i bits to left

MOV AH,1 ; input low digit

INT 21H

CMP AL,30H ; check for hex

JB AGAIN ;if wrong, try again

SUB AL,30H ; change ascii to hex

CMP AL,9 ; compare with 9

JBE DIGIT2 ;lf less/equal, skip

SUB AL,7 ; subtract 7

CMP AL,9 ; check for hex

JBE AGAIN ;lf wrong, try again

CMP AL,16 ; check for hex

JAE AGAIN ;if wrong, try again

DIGIT2 ADD AL,DL ;add high/low

MOV CODE,AL ; store code in DS

PUSH DS

MOV DX,ES

MOV DS,DX

MOV C0DE2,AL ; store code in ES

POP DS

RET

HEX ENDP

;Open the data file, check password/code, and

; perform xor operation on entire file.

CRYPT PROC NEAR

;Open the data file

The Computer Journal / Issue #34



(Figure 5 continued)

MOV AH,3DH jopen file

MOV AL,2 ; read/write access

MOV DX, OFFSET FILE+2
; point to asoiiz

INT 21H

JNC OPENED ;jump if file opened
MOV AH,

9

jfile not located

MOV DX, OFFSET MESS3

INT 21H

RET ;quit program
OPENED: MOV HANDLE, AX ;save file handle
;Get file si ze

MOV AH,42H ;move file pointer
MOV AL,2 ;to end of file

MOV CX,0

MOV DX,I3

MOV BX, HANDLE ;get handle

INT 21H

MOV SIZEH,DX ;save file size high
MOV SIZEL,AX ; " " " low

CMP DX,0 ; check file size

JE CONTINUE ;quit if file > e^K

CMP AX, 65500 ; check file size

JL CONTINUE jquit if file > UY.
MOV AH,

9

; display message
MOV DX, OFFSET MESSB ;"FILE TOO BIG"
INT 21H

JMP CFILE ;quit program
;Read password/code

CONTINUE:

MOV AH,'i2H ; reset file pointer
MOV AL,0 ;from start of file

MOV CX,SIZEH Jfile size high

MOV DX,SIZEL jfile size low
SUB DX,17

; point to password
MOV BX, HANDLE ;get handle

INT 21H

MOV AH,3FH jread file

MOV BX, HANDLE ;get handle

MOV CX,17 ;No. of bytes to read

MOV DX, OFFSET BUFPC jpoint to pass/code buffer
INT 21H

;Set ES same as DS

PUSH ES

PUSH DS

POP ES

; Check opt lor for scramble

MOV AL, OPTION

CMP AL, "S" ;for "S" option.
JZ SCRAM jjump to SCRAM

; Unscramble the file

MOV CX,9

MOV BX, OFFSET BUFPC jpoint to password
DECODE: MOV AL, [BX] J decode the password

XOR AL,CODE
J stored in scrambled file

MOV [BX],AL

INC BX

LOOP DECODE

; Verify password

MOV SI, OFFSET PASSW+2 jpoint to input password
MOV D I, OFFSET BUFPC jpoint to original passwor
MOV CX,9

CLD

REPE CMPSB compare

JZ MATCH if match, unscramble file
MOV AH,

9

display

MOV DX, OFFSET MESS5 "INCORRECT PASSWORD"
INT 21H

POP ES
J restore ES

JMP CFILE quit program

J Check special EOF code for previous scramble
SCRAM: MOV SI, OFFSET PASSW+11 jpoint to EOF code

MOV DI, OFFSET BUFPC+9 jpoint to end of file
MOV CX,8

CLD

REPE CMPSB

JNZ MATCH J scramble if no match found
MOV

MOV

INT

AH,

9

DX, OFFSET

21H

MESS6
J display message

; "ALREADY SCRAMBLED"

POP ES J restore ES
CFILE:

J close file
MOV

MOV

AH,3EH

BX, HANDLE
J close function

Jfile handle
INT 21H

J Read

RET

file into buffer
J quit file

MATCH; POP ES J restore ES
CALL READ J read file into buffer
JC FAIL

J XOR the entire buffer
J quit if read failed

MOV

PUSH

CX,SIZEL

DS
J get file size

MOV DX,ES J set DS = ES
MOV DS,DX

CRYPTl

MOV

MOV

XOR

BX, OFFSET

AL, [BX]

AL,C0DE2

BUFFER jpoint to data

J byte into AL

J XOR byte
MOV

INC

LOOP

POP

[BX],AL

BX

CRYPTl

DS

J restore coded data

jpoint to next byte

J process next byte

J Close file

MOV

MOV

AH,3EH

BX, HANDLE
J close function

Jfile handle
INT 21H

J Truncate file to zero

MOV

MOV

MOV

INT

AH,3CH

CX,0

DX, OFFSET

21H

FILE+2

J truncate function

Jfile attribute

jpoint to asciiz

MOV

CALL

HANDLE, AX

WRITE
J save new handle

J write to file
JC

CMP

JZ

MOV

JMP

FAIL

OPTION, "I
UNMESS

DX, OFFSET

SMESS

"

MESS2

J quit if operation failed

J check option and

jpoint to unscramble message
;

'

' FILE SCRAMBLED '

'

UNMESS MOV DX, OFFSET MESS7 J
'

' FILE UNSCRAMBLED '

'

SMESS

:

MOV

INT

JMP

AH,

9

21H

CLOSE

J display appropriate message

FAIL: MOV

MOV

INT

JMP

AH, 9

DX, OFFSET

21H

DONE

MESS3
J display message

J "FILE NOT LOCATED"

CLOSE: CMP

JZ

OPTION, "L
SKIP

' 1

J check option

SKIP:

CALL

MOV

MOV

INT

PASSWORD

AH,3EH

BX, HANDLE

21H

J if scramble, add password

J close file

J get handle

DONE: RET

CRYPT ENDP

J Reads data file into buffer
READ PROC NEAR

MOV

MOV

MOV

AH,42H

AL,0

CX,0

J reset file pointer

J from start of file

MOV DX,0

MOV

INT

BX, HANDLE

21H
J get handle

MOV

MOV

MOV

PUSH

AH,3FH

BX, HANDLE

CX,SIZEL

DS

J read file

J get handle

J No. of bytes to read

MOV

MOV

DX.ES

DS,DX
J set DS=ES

MOV

INT

DX, OFFSET

21H

BUFFER

The Computer Journal / Issue #34



POP

RET

READ ENDP

DS

; Writes buffer to data file

WRITE PROC NEAR

SKIP2;

WRITE

MOV

MOV

MOV

MOV

MOV

INT

MOV

MOV

MOV

CMP

JZ

SUB

PUSH

MOV

MOV

MOV

INT

POP

RET

ENDP

AH.-iSH

AL,0

CX,0

DX,0

BX, HANDLE

21H

AH.-lBH

BX, HANDLE

CX.SIZEL

OPTION,' 'S"
SKIP2

CX,17

DS

DX,ES

DS,DX

DX, OFFSET BUFFER

21H

DS

; reset file pointer

;from start of file

;get handle

jwrite to file

;get handle

;No. of bytes

; check option

;for unscramble, subtract

; Write password/code to end of data file

PASSWORD PROC NEAR

MOV

MOV

CRYPT2: MOV

XOR

MOV

INC

LOOP

MOV

MOV

MOV

MOV

INT

RET

PASSWORD ENDP

CX,9

BX, OFFSET PASSW+2

AL, [BX]

AL.CODE

[BX],AL

BX

CRYPT2

AH,';0H

CX,17

BX, HANDLE

DX, OFFSET PASSW+2

21H

; encrypt password

;with the same hex

jcode used to scramble

;data file

jwrite to file

;17 bytes (password/code)

;get handle

jpoint to password

CSEG ENDS

END START

FILE SCRAMBLED

FILE UNSCRAMBLED

FILE NOT LOCATED

FILE ALREADY SCRAMBLED

FILE TOO BIG TO SCRAMBLE

INCORRECT PASSWORD OR FILE NOT SCRAMBLED

If A:TEST was not previously scrambled, it is read into a buf-

fer area and XORed with the selected value, in this case 29H.

Next, A:TEST is truncated to zero (DOS Function 3CH) and the

XORed data written to its file. Before closing A:TEST, the 17-

byte appendix is written to the end of the file. The DOS TYPE

command displays the contents of the scrambled file. The first 10

characters (hhhhhhhhhh) represent the encrypted data; the next 9

bytes (yhzz"f{m$) the XORed password and carriage return; and

the last 8 bytes (AWBXCYDZ) the special code to identify a

previously scrambled file.

To restore A:TEST, execute ENCRYPT.EXE again, but this

time choose the <U> option to unscramble the file. If you enter

the same password (PASSWORD) and XOR hex code (29),

A:TEST is reinstated to its original data and size.

Summary
Now that you are familiar with file encryption techniques, you

may wish to design your own system. Although, in theory, no en-

coding system is absolutely secure, you can make it extremely dif-

ficult to decipher files. For example, the algorithm to generate the

data-scrambling pattern may be based upon the password. Thus,

the user's password also serves as the unique key required to

decipher the coded information. If "CRYPT" is chosen as the

password, the file's data ("COMPUTER FILES ARE
SECURE") is XORed in sequences of five as shown:

data: COMPUTER FILES ARE SECURE

XOR with: CRYPTCRYPTCRYPTCRYPTCRYPT

Bytes 1,6,11,16,21 are XORed with 43H (character "C"); bytes

2,7,12,17,22 with 52H (character "R"); and so on. You could

make the password as large or small as you wish, but the only

means to decipher the data is to know the unique algorithm.

Sometimes, a simple customized encryption system with no

documentation may prove more effective than a highly

sophisticated, well-documented utility. Assigning a deceptive file

name and disguising what the program attempts to do may prove

advantageous. For instance, refer to ENCRYPT as FLOWERS
and have it display misleading messages during the execution:

A> FLOWERS

ENTER FLOWER

ENTER KEY

PRESS: <C>CROSS <U>UNCROSS <Q>QUIT

CLASSIFICATION NUMBER:

' 'FLOWER CROSSED'

'

ENCRYPT is easy to use, does not modify the operating

system, and requires no special installation. Also, the design of

the password and XOR hex code is not difficult to remember.

While ENCRYPT keeps out the casual snoop, it cannot deter

sabotage in the form of unauthorized duplication or erasure of

files. The complexity of your system should depend on the secrets

you are protecting and from whom.

If You Don't Contribute Anything..

.Then Don't Expect Anything

TCJ is User Supported

10
The Computer Journal / Issue #34



Data Base
Choosing Your Tools

by Art Carlson

The discussion of tools is a very emotional subject and it

generates a lot of heated arguments. If you are ever with a group

of programmers and the conversation drags, just start talking

about your favorite word processor! Even the meek, quiet in-

troverts will get loud and boisterous.

We all tend to settle on a favorite tool, and then use it for every

conceivable application—whether or not it is the best tool for that

situation. But, it is better to be familiar with several tools so that

we can match them to the application. The choices are not simple,

because they include many intangible factors, one of which is the

programmer's temperment and working style.

There is no one DBMS which is best for all applications.

Usually there is not even one DBMS which is absolutely the best

choice for a given application. In the next few issues we'll look at

some of the factors which should be considered when selecting the

DBMS. Hopefully, readers will respond with their ideas and ex-

periences.

Defining tlie Needs
I like to break the requirements into four areas: 1) The ap-

plication, 2) The end user, 3) The developer, and 4) Anything else,

which can include things such as time or money limitations. The
requirements don't fit into these nice little boxes, because they

overlap and are mutually dependent. I'll try to discuss each

category separately, but at times we'll wander into other areas in

order to consider how one decision will affect others.

Simple or Complex
A good place to start is to consider the size and complexity of

the application. Is it simple or involved?

An example of a simple application could be a program which

is used to print labels once a month for a small church mailing list.

An example of an involved application could be a point-of-

SEiles (POS) package for a chain of retail stores.

The church program would contain a single data file without

any references to any other data file, and would be set up as a

single user system. This is called a flat file. This could be easily

programmed using C, Pascal, or BASIC—you wouldn't have to

use a formal DBMS, but there are easy to use flat file managers
available. In this case the dominant factor will probably be

minimum development time and expense. The speed at which it

runs is not critical because it is only used once a month on a small

list and the run time will be largely determined by the printer. A
system crash or loss of the data files is an inconvenience, but not a

disaster as long as there is a back up available.

The POS application can be very complex and demanding.

Each store may have a number of registers with laser scanners,

which requires multiuser capability. During peak periods the

useage could reach 500 or more transactions per minute, and it

will be used 12 or more hours per day. In this case the dominant

factors are high speed performance, preserving the consistency of

the database, and automatic recovery in the event of a crash. If

the system goes down or can not keep up with the transactions on

the Friday after Thanksgiving (frequently the busiest retail sales

day of the year), it is a major disaster for the retailer. The loss of

the transactions in progress in the event of a momentary power
outage would merely mean that those items would have to be run

back thru the scanner. However, the corruption of the data files

would be extremely serious as it would shut the store down until

the files could be restored.

In addition to tending the laser scanners and the registers, the

POS system will have to keep track of the sales of each item to ad-

just the inventory, prepare daily sales summaries, record the ef-

ficiency of the register operators, balance the cash in the registers,

record the sales activity during the day so that the proper number
of register operators can be scheduled, etc. This requires

multitasking (in addition to being multiuser for the registers), and
may be too much for a single microcomputer to handle. There

would probably be an embedded controller at each register, and I

would probably go with several networked high-performance

micros in the office to distribute the work load.

I realize that I am a rebel and that I refuse to do something just

because everybody else is doing it, but I get very nervous about

putting all the multiuser and multitasking functions on one CPU.
I worked in product design and manufacturing, and I have seen

what can happen to a production line when something goes down.
A computer system for a production process or for POS just can

not hang up or fail to keep up with the demand. The only accep-

table down time is when there is a power outage, because all the

other machinery and registers also stop—and then it had better

come up running with no corruption of the files as soon as the

power returns. These applications are much more demanding
than the non-real-time office type systems, such as order

processing, with which most programmers are familiar. If order

processing goes down for an hour, you can alway work late or

over the weekend to catch up. But, if a production line goes down
you may have several hundred workers standing around drawing

wages. If a POS system goes down, the sales are lost because the

customers will leave and go somewhere else.

I do not feel that even a 25 MHz '386 system with the best

operating system is good enough for some applications. I would
rather install several networked systems and distribute the

workload.

If there are six or eight stores in the chain, there will have to be

provisions for reporting to the central office, and provisions for

more extensive data analysis there.

Real Time or Batch

In the church application, they would probably pile up any
changes or deletions and someone would update the file once a

month. I prefer to keep the data entry person out of the main data

files whenever possible in order to minimize the possibility of

trashing the files—especially where they use volunteer help who
only do the job occasionally. I also like to have transaction files

which can be used to figure out what went wrong.

(Continued on page 25)

The Computer Journal / Issue #34 11



A Simple Multitasking Executive
Designing an Embedded Controller Multitasking System

by Richard Rodman

In embedded controller applications,

the processor often must be shared among
a number of dissimilar tasks (e.g. waiting

for the user to press a key, sampling a

number of remote sensor switches,

waiting to send characters to a

peripheral). There are several general ap-

proaches to the problem.

The first is to construct a large polling

loop which performs all of these things in

a kind of intermingled fashion. The

drawback to this approach is that the logic

is difficult to understand, and changes to

one part of the system can cause

seemingly unrelated parts of the system to

stop working.

The second method, if all of the

operations are more or less parallel and

identical, is to construct a state machine.

The drawback to this approach is that the

task is broken into little pieces, much like

sharing a novel among many people by

tearing out all of the pages and passing

them around, and the complexity can be

difficult to comprehend.

The most elegant method is to write and

debug each task without knowledge of the

others, as a separate program, and then

link them together with a multitasking

executive. There are two basic "types" of

multitasking. The first is called "preem-

ptive" multitasking. Usually, a clock tick

interrupts each task and moves execution

to the next task. These interrupts are not

synchronized with the task's execution.

The second is called "non-preemptive"

multitasking, where each task voluntarily

surrenders the CPU at times when it is

convenient. In most commercial operating

systems, of course, both techniques are

used at the same time.

When a task gives up the CPU (dispat-

ching), the executive can decide the next

task to run in a number of ways. The sim-

plest way is to just run the tasks one after

each other, "round-robin". Other

methods involve multiple priority queues

and other more complicated schemes, the

end result of which is to tie up more and

more of the CPU's time in the scheduler

itself. Of course, in some real-time ap-

plications, you need to have certain tasks

run as soon as some events occur.

JOBSP_

I

I I I I I I I I I I I I I

SP lY IX JHL'|DE'|BC'|AF'|HL |DE |BC |AF |LNK|

J_|_|_|_|_|.

Version

I

next TCB

JOBSP_

\/

I I I I I I I I I I I I I I I

|R7 |R6 |R5 |R4 |R3 JR2 |R1 |R0 JPSRJFP |SB |MOD|SP |LNK|

|_|_|_|_|_|_|_|_|_|_l_l—l_l—

I

NS32 Version next TCB

Figure 1. TCB structure.

Some executives described m the

literature are completely equipped with

routines for adding and deleting tasks,

and are thus extensible to operating

systems. Others switch tasks inflexibly

and are more suited for small control ap-

plications with a known, small number of

tasks. The executive presented here is one

of the latter. Although the routines are

not included, adding and deleting tasks

can be accomplished by modifying the

executive's task list. The executive has

been optimized for task-switch time,

which is as it should be—that is its main

job. This requires the Task Control Block

(TCB) to be designed somewhat around

the CPU architecture, which could make

adding and deleting tasks a little more dif-

ficult. Both Z-80 and NS32 (National

Semiconductor 32016, 32032) versions are

presented. The Z-80 version of the

executive switches tasks in a consistent 446

T-states (112 microseconds at 4MHz),

saving and restoring all registers.

The routine switches tasks by use of

task control blocks which each point to

the next task control block, and contain

the register values (including stack poin-

ter) for each task. The last task control

block points back to the first one. In this

way, to switch tasks, the executive has

only to save all registers, pick up the next

task control block, then restore all

registers and return. The current task con-

trol block is pointed to by the memory
location JOBSP. Figure 1 is a diagram of

the task control block structure.

In some Z-80 applications it may not be

necessary to save the alternate registers

(perhaps they are used only within in-

terrupt handlers), or it may not be

necessary to save any registers at all. In

such cases, great improvements can be

made in switching speed.

In general, the programmer should

identify "slack times" within each task

wherein the task can relinquish the

processor, and, at those points, call the

entry point, call the location DISPAT.
Care should be taken not to call DISPAT
too often, or to consume too much CPU
time in a task without calling DISPAT, as

12 The Computer Journal / Issue #34



this will prevent an even flow of control

between the various tasks.

Alternatively, a periodic "tick" in-

terrupt can be used to cause task switches.

In such a case, the RET at the end of the

executive must be replaced by a RETI in-

struction if Z80 peripherals are used

(where the comment reads "all done"). If

both voluntary and "tick"-initiated task

switching is desired, the best thing to do is

use a second copy of the executive with a

RETI on the end for the "tick" interrupt.

They can both share JOBSP and SAVSP.
The Z-80 executive itself is presented in

Listing 1. Listings 2 and 3 present a three-

task example which prints characters to

the console of a CP/M system. As an
exercise, try to figure out how many I's

and 2's will be printed. Later, try moving
the calls to DISPAT around and seeing

the effect on performance.

Listing 4 presents the equivalent

multitasking executive and example tasks

in NS32 code. This version uses 52-byte

TCB's (although actually not all 52 bytes

are needed). It does not save the floating-

point registers.

The Z-80 is today probably the most
commonly-used processor for embedded
applications. The software tools are quite

sophisticated, the CPU has sufficient

computational power, and the cost is low.

In some applications, though, the Z-80
runs out of steam. While some have con-

sidered the 80186, it is not significantly

more powerful than the Z-80. Larger em-
bedded systems commonly employ 68000
or NS32 (National Series 32000) family

processors. However, it is difficult to con-

struct a low-cost 68000-family system,

even with the 68008. The NS32 family has

full object code compatibility across all

CPU's, meaning that no software changes
are necessary if it is necessary to move to a
more powerful CPU. Besides, the code is

easier to write in the first place. After

studying the three, I decided I liked

programming in NS32 assembler the best.

When reading the listings, remember
that while the Z-80 moves from right to

left (Intel style), the NS32 moves from left

to right (National and Motorola style).

REFERENCES

1. Multitasking Scheduler works
without DOS, David M. Howard, EDN,
September 15, 1982, page 194.

2. Add Multiple Tasks to your Com-
munication and Control Program, Jerry

Hotter, BYTE, September 1983, page 445.

3. A Kernal (sic) for the MC68000,
Steve Passe, Dr. Dobb's Journal,

November 1983, page 20.

4. Non-Preemptive Multitasking, Joe

Bartel, The Computer Journal, issue #30

(1988), page 37.

—LISTING ONE—

;—MultltasKing Executive

—

; Each job has a stack area of 22 bytes for storing registers.

; Above this, and pointed to by JOBSP for each task, is a pointer

; to the next task in round-robin order.

; Call here to relinquish processor to next task

DISPAT:

DI

LD ( SAVSP ),SP

ID SP, (JOBSP)

PUSH AF

PUSH BC

PUSH DE

PUSH HL

EX AF.AF'

EXX

PUSH A?

PUSH BC

PUSH DE

PUSH HL

PUSH IX

PUSH lY

LD HL, (SAVSP)

PUSH HL

POP BC

POP AF ; restore pri registers

LD SP, (SAVSP)

EI

RET ;all done

SAVSP:

DEFS 2 jtemp storage location
JOBSP:

DEFS 2
; pointer for this job

-LISTING TWO—

; Task control blocks. Notice how each task block points to the
; next one, and the last one loops around to the first.

;save primary registers

;save alternate registers

jsave index registers

;save stack pointer

; Cold start entry point

DISPA0:

LD SP, (JOBSP) jpiok up pointer to next Job

POP HL ;get address of next job

LD ( JOBSP), HL jsave in memory

LD DE,-22 ; offset to bottom of stack

ADD HL,DE

LD SP,HL ;put into SP to pop registers

POP HL

LD (SAVSP), HL ;get stack pointer first

POP lY

POP IX ; restore index registers

POP HL

POP DE

POP BC

POP AF

EXX

EX AF.AF'

POP HL

POP DE

; restore alt registers

DEFW TSKISP ; stack pointer
REPT 10

DEFW

ENDM

TSKl:

DEFW TSK2 jlink to next process

DEFW TSK2SP ; stack pointer
REPT 10

DEFW

ENDM

TSK2:

DEFW TSK3 ;llnk to next process

DEFW TSK3SP ; stack pointer
REPT 10

DEFW

ENDM

TSK3:

DEFW TSKl Jlink to next process

DEFS 2^^

TSKISP:

DEFW TASKl

DEFS 2-4

TSK2SF

:

DEFW TASK2

DEFS 2^

TSK3SP:

DEFW TASK3

The Computer Journal / Issue #34 13



CO OJ <D 4J
-H -p m c:
bO to aJ •>-<

<U -rH ^ o

a, fl) e o

IP. -<r iTv ^ tf\ -4" r^ -4- (^ -^ r^ -^

(D U CO
+J a ft

W w w
<r1 <a; <*;

ni m cQQ Q
w 5^ E 2:
r/) 1 1

Q
Q m CQ W

^*i W W
5^ Q Q

1 1—

(

-nT -<r --J- e*

QQ
nW w

CQ n]w2 f >n u

+^ >r m
>i r/1 u
f

)

f > u m (NJ

TD ,H
r\j i-i (-; CO
^(^ hH CO (X,

>. 4:1 CD 1X4 tH
X3 n

^.
r/i (SI

fl) n
U Tl d (SJ -4-

OJ CO

OJ O -H C

M e CQ "^ ;=! Cli

0) fl> fl) (11 a) Q) \n
> > > > > cr.

01 OJ 01 (Tl 01
i/l tiO CO III tn tn Ul ITN

.^ cr;

rH CL. Oh
rn ,^ M cd c^n m (U
01 c: m u c^ \D

0] +-

-p

CC <r\

(Tl ^ +J ~<t (3 n n
d CO !»i ffi ^ cr; «

fl) QJ l-L.

r, J^ ir\ --t
4-»

fl)

0) cc^ -^

fii n \D 03
I—

i

O^ -sT <
rH

01 n 01 D- CV C/l

W •< -*-> Pd u^ Q

P-. fl. rn CEi

ro t/i Eh ro C )

(/) h-. tH
<t. P-. \-i C ) < > rr.m •-5 CO M M

> i \ U) M
P-. Oh < tu

CO fc, IZD L_i ^,

Q Q Q Q W
cr; pd PH Cd >
Ph CL, &s p., o;
W M 0:1 CO to

(1) .H •»

CO vD
<+H -p ct;

! O & "^

tsi e=a a. ^ ff:

nri rr; ro
5a

P-, ( ) ,-r; csi

rn ra •—

>

Pi
m p:; CNi (Si

i(^ U->

-T. Q p:; 1 CO

f~i 1

1

ri rr; f 1 M
r^" ^ WE s E -a; J ca

- r\J r^ <s

w iTs W m €«

a 3 < Q
<t:

•-3

- r\j OD s CO

: ry

v CO
1 <<
: ^ CQ «e- Q W

I <

CO

es3 >-A

2: t-J CJ
•-3 < WQ CJ> Q . ^ < ^ O o

c\J

CO

CO -P -H

^ 0) CO

14 The Computer Journal / Issue #34



+> Ih OJ Fh

+^ "in C ->!-

H c; <d P^
O <U ^ 0)

O, rH O 01

H cq cG CC

m <H ta ^

to Xi TJ
O C

-o JC Ol
o a ^

0)
l-t etJ -H cd
»->

H •H (M o
iH t3 r^ ho

>J^ < \0 tH
Cri CU CC i^
^ W •> CO

iH I—( .tH -a;

<U tH cO

P Q Q, X>

iH 73 nH bO

CQ <
^ ^
-a; <<

u~N <: ^x> rj
ITN

K -^ W - CO
tH l-( ^ <

ITS << \0
cn; CL, cc
- CO -v

u
o

« cy o* o"Q > > > O
E E E CO

CQ _ CQm cc CQo CO o a:
«i: CQ <i; CQ

Q Q Q
ce: o- o- o-Q > > > (

9 o o o :

=< CQ <« CQ

CQ CQ« m OQO CO CJ
«: CQ •<

CO

P OJ QJ +^
c m -p c:

o X3 •H o +J
a, o (1)

Uh

(U hH F^ ^ +Jp f) c
Fh cd aJ TJ a1
m ^t n
p. «M CO s m F^

:3
C!

ID QJ a) a)
Fh ^ u fH 0) C]> fl>

o o o o o Fh rHp -p p (Ll^ r;
w m 0] en U) -a •H
<D Q) a) a> (1) c; 1

u u F-t u Fh o) W
n

CO
CO

tH CO CO O CO
•^ O O £-1 O

ffi E-t H * ^
CO •- -^ Q ->

a* a. CQ o D-.^ &^ CO S CO s

ffi K c2 I

OJ -P
Fh r^ (d
O CO

H c\i r^ <Si
CO Ccl Cd Kw ^ ^ -
E-i ^O S -Nf

Q > > > OQ O O O >

u ^ o o M-l

o -p
c

0) Ph CQ X CM &H c^ e^ CO ^+J O OJ O JH mm TD CO M CM ^ r^ o CO—

(

P" Ui CQ p, P"hO CO ^ CO cd ^ cO ^ o 4-3
0) OJ CO -p CO P> CQ o F^
;h U to Cm tiD CO bo CO ho rH tO +j

P* O a> bD o p> bO a> bO o +3 bO OJ bD +J>
tH 0) u ? p* OJ Fh QJ p* QJ Fh QJ QJ m Mcb ji: O F-. Fh F^ o u Fh Fh O U f-, Fh ^ QJ•H +^ P> T=l 13 to 4J p> 13 CO p> 4-> Id to -p ^O T3 g XI

r'=^
a "H (X J=> a, a. -H o. o JZi (X a tn cj

OJ o -P CO s CO Cm :n p> CQ CO Cm ;3 P> CO E Ui c ;3 Q) ^ H
P. -p c:: >J 1=: -i*5 t; CO p,
CO c: •H +J -p 4^ +3 -p C -H P> -P p> p> +^ c: •H p> p p" -p -•^ o QJ P•H o :3 QJ 0) 0) OJ H O Q) QJ QJ QJ d) .H o QJ QJ QJ QJ QJ rH F-< QJ

-o
Cl^ G, CO m to CO

7^
a tQ to CQ CQ to (H a CO CO CQ tQ Ui O Q. CQ

+^ 0)

T3
1+^ to

o O
"s ,^^ s" ^ "S" Q-i CL, Ph

CO cc (SD p:^ Si Cd S> CO CO CO
OJ P cc; cc: -—^ Cd '--- iH CM c^ CL,
;u P •^ s o S IS -vT (S S) s S) sr SJ <s SI -.— SI t«i tid bd CO^ bO 1 cc cc; CC cs 0=; 1 Cci cci S si cc 1 3 5. Pd SI Cd CO CO CO m
cU S "^ CM s CM s» OJ -—

'

E-H ^ E^ o> P cc: a. 00 CM vO 1 SI cc Q-. CO CM xO 1 Si Cd fC 00 CM ^0 1 S) t-3 S)
•« CO iH iH CO 1 tH ^ CO 1 H tH iH CM c^ -x

<D a <H H 1 cr: r\j Cvj cy 1 or; (^ r^ r*\ 1 cd H tei i< :^ tH Cu
j=: m tac; t!< Q CO i< ^ ^ Q CO i< ^ i< Q CO ^ CO CO CO y; to
+=> <D CO CO o CQ Q-. CL,

V^
CO CO O m &H a. CO CO CO O m CL, Q-. CO -a; cC cC CO 1—

(

^ o
13

b-i E-t E CO tL. :=> ^ E-t E- s CO U-, tz> E-< ^ ^ e: CO [XH S tH s &-< ^ b-< Q
-H

l+H

•H Cm

O p g g g R g g g g Q Cd
Cd C3 g g Q

Cd g gg g g g gP CO

T-t
99 CL,

CO
Q-.

CO
CL.

CO
cu
CO 9 Q< § cu

CO
cu
CO CO CO 9 9 9

0-,

CO
Q-.

CO CO CO 9 9 9 9 DC
CQ

The Computer Journal /Issue #34
15



CP/M's Magical lOBTYE
Using Tables for Space Efficient Implementation

by Donald C. Kirkpatrick

Don Kirkpatrick has been designing

hardware and software since he graduated

from college 19 years ago. He has a Ph.D.
in electrical engineering and is a registered

professional engineer. He works for
Tektronix designing logic analyzers. He
built his first CP/M system cira 1980 and
has been improving it ever since. In his

spare time, he teaches a graduate class in

switching and automata for Oregon State

University. He can be reached via elec-

tronic mail at thefollowing net addresses:

donkgdadla . LA . TEK . COM

UUCP: {lhnp4
|
decvax

|
uobvax}!

tektronix ! dadla ! donk

ARPA: donkitdadla.LA.TEK.COM

gRELAY.CS.NET

I Still remember my feeling of despair as

the realization of what would be required

for a full lOBYTE implementation slowly

seeped into my mind. I was writing my fir-

st CP/M BIOS, with my Digital Research

CP/M 2.2 Alteration Guide on my left,

my Z80 Assembler Manual on my right,

and my new terminal before me. I could

see no way of implementing the fun-

ctionality described in the Alteration

Guide without utterly abandoning my
BIOS space budget. Fortunately, first im-

pressions are often deceiving. A full

lOBYTE implementation need not be the

multiheaded monster I first envisioned.

How can one byte take up so much
space? It can't, but if not managed
properly, the code required to make use of

that byte can consume an inordinate

amount of space. The major disadvantage

to implementing the lOBYTE has always

been that a complete implementation

requires a very large fraction of the space

available for the BIOS. A typical im-

plementation of two terminals and two

printers can consume about '/s of the en-

tire space normally allocated to the BIOS,

so its implementation has always been op-

tional. Many systems just ignore the

lOBYTE. Presented here is a remarkably

space efficient method to completely im-

plement the lOBYTE. This method also

has the advantage of greatly simplifying

the task of adding new device drivers.

Each new physical device is added by
changing one byte of code in a table and
adding five to fifteen bytes of new code.

The Function of the lOBYTE
The purpose of the lOBYTE is to make

it easy to redirect input or output between
several devices. Suppose, for example,

you have two printers. You could buy a

switch box or unplug one and plug in the

other every time you switch between
them. With the lOBYTE implemented,

you have a third option; the value of the

lOBYTE determines which printer

receives the output. Changing printers is

as easy as typing a STAT command.
The CP/M has four logical input/out-

put devices: CONSOLE, READER,
PUNCH, and LIST. Also, there are 12

physical input/output devices: TTY:,
CRT:, BAT:, UCl:, RDR:, URl:, UR2:,

PUN:, UPl:, UP2: LPT:, andULl:. The
sole function of the lOBYTE, which is

found at address 0003H in memory, is to

inform the BIOS how to map the four

logical devices to the 12 physical devices.

To make it easier to interpret the mapping
algorithm, the lOBYTE may be thought

of as four fields, one field for each logical

device. The bit pattern in each field

determines which physical device will be
active when the logical device that owns
that field is called upon for input or out-

put. Since each field contains two bits,

each logical device can be assigned four

different ways. The fields and their values

are as shown in Figure 1

.

If the lOBYTE is implemented,

whenever any logical device is addressed,

the BIOS examines the appropriate field

in the lOBYTE. Based on the bit pattern

in that field, the request is directed to the

proper physical device.

lOBYTE BITS

7-6 ^-i* 3-2 1-0

I

LOGICAL DEVICE

> CONSOLE

019

01

10

11

> READER

00

01

10

11

> PUNCH

00

01

10

11

>

PHYSICAL DEVICE

TTY:

CRT:

BAT:

UCl:

TTY:

RDR:

URl:

UR2:

TTY:

PUN:

UPl:

UP2:

LIST

00

01

10

11

Figure 1

lOBYTE Fields and Physical Device Mapping

TTY:

CRT:

LPT:

ULl:

16 The Computer Journal / Issue #34



The device BAT: is not really a device at

all. Rather, BAT is an abbreviation for

batch. If the BAT: encoding appears in

the CONSOLE field of the lOBYTE, then

all CONSOLE reads and writes are

redirected to the logical READER and

LIST devices. When the READER or

LIST receive the redirected console

requests, they in turn look to the lOBYTE
a second time to determine the actual

physical driver to process the request.

The lOBYTE is initialized by the BIOS
during the cold boot. Warm boots (^C)

do not change the lOBYTE. Rather,

device sissignments are changed via the

STAT utility.

Input/output redirection can be very

handy. For example, a friend brought

over her CP/M machine one day for a file

transfer session. When it came time to

connect the serial ports from the two

machines, her system had only one cable

with one kind of connector. No problem,

we just plugged that connector into the

serial port on my machine with the proper

mating connector and redirected my con-

sole to that serial port. All of a sudden,

her machine was the console for my
machine.

Does Your System Already Implement

The lOBYTE?
One reason for the success of CP/M is

it can be used with many different har-

dware configurations. CP/M is organized

so all hardware dependent code resides in

the BIOS. It is the responsibility of the

person writing the BIOS to implement the

lOBYTE. You can determine if your

system uses the lOBYTE by running a

simple test. The value of lOBYTE can be

displayed and changed by the standard

CP/M transient command STAT. To
display the current logical to physical

mapping, type:

STAT DEV:

and you should see something like the

following:

CON: IS TTY

RDR: IS TTY

PUN: IS TTY

LST: IS TTY

Your actual display depends upon what

your BIOS lOBYTE default selections

are, but many systems just set the

lOBYTE to zero and then ignore it, so the

above display may be quite typical. To see

if you have the lOBYTE implemented,

change the LST: device to the same device

as the console (if it is not already):

STAT LST:=TTY:

and then type a control P. If the lOBYTE
is implemented, then for each character

typed, two will appear on your display. If

the second character goes to your regular

print device, the lOBYTE is not im-

plemented.

What Makes the lOBYTE so difficult?

Most example implementations involve

a great number of loads, mask operations,

tests, and conditional jumps (see for

example. Inside CP/M by David E Cor-

tesi, pp. 258-260). Even a carefully written

implementation involving only four

physical devices can easily exceed 200

bytes. A programmer pressed for space is

likely to write cryptic code. We all know
such code is likely to contain errors and

can be very difficult to debug. A better

way is needed.

When an implementation makes use of

regular structures such as tables, it is

much easier to update and change as new

features are added. My method of im-

plementing the lOBYTE uses three

regular structures: a standardized form

for the five BIOS serial input/output

calls, a table of addresses mapping a call

to the proper input/output hardware

driver, and a standardized form for the

driver itself. Using common structures for

these routines results in dramatic space

savings over the random test and jump
method normally given in lOBYTE im-

plementation examples. Changes and ad-

ditions are trivial using the structures

presented here.

The code listed in the following figures

is the actual code from my BIOS. I have

split the listing into separate figures for

clarity, but the code in each figure is

separated from the code in the adjacent

figure only by a PAGE pseudo-op.

Logical and Physical Device Drivers

All byte oriented input/output is per-

formed via calls to five BIOS routines:

CONIN, CONOUT, READER, PUN-
CH, and LIST. In addition, there are two
routines to return the status of the console

and list devices: CONIST and LISTST.
These seven routines are mapped to fif-

teen physical devices, three console

devices and four reader, punch, and list

devices. There is also the special console

BAT: option for a double layer of in-

put/output redirection.

You probably do not have fifteen dif-

ferent physical input/output devices. On
my system there are just three serial ports

and one parallel port. These four physical

devices are repeated in the mapping. For

example, the console driver can be map-
ped to the three serial devices while the list

driver can be mapped to all four physical

devices. I have chosen names for my
physical devices to make it easier for me to

remember which is which. These names
are: TTY, CRT, and DTE for the three

serial devices and LST for the parallel

port. It is easier to remember than the

Digital Research chosen generic names
suchasURl.

CONOUT: CALL CONOST console output

JR Z, CONOUT output device not ready

JR OUTPUT go output character

READER: CALL READST reader input

JR Z, READER no input yet

DEC L get port number

LD C,(HL) into c register

IN A,(C) ; get character

RET ; reader returns all eight bits

PUNCH: CALL

JR

JR

PUNST

Z, PUNCH

OUTPUT

; punch output

LIST: CALL

JR

LISTST

Z.LIST

; list output

OUTPUT DEC L ; point HL at port number

LD A,C ; save output character

LD C,(HL) ; port number to o reg

OUT (C),A ; and output

RET

CONIN: CALL

JR

DEC

LD

IN

CONIST

Z, CONIN

L

C,(HL)

A,(C)

; console input

AND 7FH ; console returns only 7 bits

RET

Figure 2 j

Logical Input/Output Driver Routines

The Computer Journal / Issue #34 17



All logical device routines have the

same structure. First, the device calls a

status routine to determine whether or not

the physical device is able to perform the

indicated operation. If the device is not

ready, the driver repeatedly calls the status

routine until the operation is possible.

Next, the requested operation is perfor-

med. Lastly, the device returns to the

caller.

One key to space efficiency is to note

that once a physical device is ready, only a

port number is required to complete the

operation. Knowing which physical device

is responding with "ready" is not infor-

mation the logical driver needs to know.

An important space saving fact emerges

from this observation: the entire mapping

task can be isolated to the physical status

routines. We only need to make the status

routines return the port number along

with the wait/ready status.

Status Subroutines

Thus, we see the burden of determining

the logical to physical mapping falls upon

the status routines. This makes sense

when you consider that two of the status

routines (CONIST and LISTST) must

themselves be callable from CP/M. The

real breakthrough comes when the

algorithm for performing the mapping is

reduced to a small, simple table of twenty

bytes. No more test and jump code! This

table contains one entry per bit pattern for

each of the five I/O status routines

(CONIST, CONOST, and so on).

It is important to have an efficient

method of finding an entry in the table.

Every status routine calls the same table

search subroutine. A status routine

provides two calling parameters: the

number of times to rotate the lOBYTE to

bring the appropriate bit field to the two

least significant bit positions and an offset

into the table so the proper block of four

status routine entries is addressed. The

SEARCH subroutine finds the proper

table entry and jumps to the hardware

dependent ready routine. By forcing all of

the lOBYTE routines to be in the same

page (same high address byte) the table

need only contain the lower byte of the

ready routine address.

The easiest way to return the port ad-

dress is to make use of the ready routine

address left in the HL register when

SEARCH jumps to the ready routine.

Suppose the byte before the entry point to

the ready routine is the port address for

performing the indicated operation. If

only status is needed, the HL register is

discarded by the calling routine. But when

input/output is required, the calling

routine need only decrement HL and load

the C register using the HL as a pointer.

Armed with the port number in the C
register, the transfer can be completed

TABLE

:

; Console Input mapping

DEFB LOW TTYST ; conist tty

DEFB LOW CRTST ; conist crt

DEFB LOW READST ; conist bat

DEFB LOW DTEST ; oonist dte

; Console output mapping

DEFB LOW TTYOST ; conost tty

DEFB LOW CRTOST ; conost crt

DEFB LOW LISTST ; conost bat

; Reader input mapping

DEFB LOW TTYST

DEFB LOW CRTST

DEFB LOW TTYST

DEFB LOW DTEST

; Punch output mapping

DEFB LOW TTYOST

DEFB LOW CRTOST

DEFB LOW LPTST

DEFB LOW DTEOST

; List output mapping

DEFB LOW TTYOST

DEFB LOW CRTOST

DEFB LOW LPTST

DEFB LOW DTEOST

conost dte

; readst tty

; readst crt

; readst tty

; readst dte

punst tty

punst crt

punst Ipt

punst dte

listst tty

listst crt

listst Ipt

listst dte

Figure 3

lOBYTE Cross Reference Table

CONIST

:

LD

JR

HL,800H

SEARCH

+ LOW TABLE ; console input status

CONOST

:

LD

JR

HL,804H

SEARCH

+ LOW TABLE ; console output status

READST: LD

JR

HL,208H

SEARCH

+ LOW TABLE ; reader status

PUNST: LD

JR

HL,';0CH

SEARCH

+ LOW TABLE ; punch status

LISTST: LD HL,610H + LOW TABLE ; list status

enter search with:

H —> amount to shift iobyte to move proper bits to 0-1

L —> amount to add to iobyte bits to index into adr table

all iobyte code must be in the same page

get iobyte

shift

done?

not yet

mask off undesired bits

add table displacement index

to form low table address byte

load high address byte

extract address of routine

go to ready routine

Search Routine To Find Physical Device Ready Routine

SEARCH: LD A, (IOBYTE)

SRCHl: RRCA

DEC H

JR NZ, SRCHl

AND 00000011B

ADD A,L

LD L,A

LD H.HIGH TABLE

LD L,(HL)

JP (HL)

Figure K

18 The Computer Journal / Issue #34



') Input ready routines

DEFB SIO+1 ; tty input port

TTYST: IN A,(SI0+3) ; get tty input status

JR SET0

DEFB UARTD i ort input port

CRTST: IN

RLA

RLA

SBC

RET

A,(UARTC)

A,

A

; get ort input status

DEFB SIQ+0 ; dte input port

DTEST; IN

JR

A,(SI0+2)

SET0
; get dte input status

i Output ready routines

DEFB SIO+0 ; dte output port

DTEOST: IN

JR

A,(SI0+2)

SET2
; get dte output status

DEFB SIO+1 ; tty output port

TTYOST: IN

JR

A,(SI0+3)

SET2
; get tty output status

DEFB PRDATA ; printer parallel port

LPTST: IN A, (PRSTAT) ; get printer output status

CPL

JR SET0

DEFB UARTD ; crt output port

CRTOST: IN

RLA

JR

CPL

A,(UARTC)

NC, CRTSTl

; get crt output status

SET2; ERA

RRA

SET0: RRA

CRTSTl: SBC

RET

A,

A

IF HIGH $ - HIGH CONOUT ; Force an assembly error
*** I/O routines must be in one page ***

ENDIF

Figure 5

dy RoutinesMy Hardware Dependent Rea

with just an IN A,(C) or OUT (C),A in-

struction, completely independent of
which physical device responded
"ready".

Notice the only hardware specific code
is the portion to determine the ready
status. If all driver routines use the same
ready convention as CP/M requires, then
the status routines can be called by either

a driver or CP/M, again doing double
duty. The convention is: the accumulator
contains zero if the device is unable to

perform input/output and OFFH if the

device is ready. This permits the CONIN,
READER, and LIST routines to use
CONIST and LISTST exactly the same as

any other CP/M routine.

My hardware dependent ready routines

are shown in Figure 5. Clearly, you do not
have the same port numbers or bit num-
bers for your UARTs as I. But just this lit-

tle bit of code is all you have to rewrite to

implement this lOBYTE scheme. Notice
even here in the hardware ready routines,

commonality is used to good advantage.
By rotating the proper bit from each port
into the carry, making the accumulator
or OFFH is accomphshed by one of two
SBC instructions, no matter which
physical device is checked.

Customizing STAT
Names should be easy to remember and

meaningful. Terms like UPl and UR2 can
be cryptic. You may find it difficult to

remember which device corresponds to

which mnemonic. A much better way is to

use an acronym meaningful to you. Now
that you have a full lOBYTE implemen-
tation, why not customize STAT to reflect

the meaningful names you have chosen
for your physical devices? At the start of
STAT is a table to control which acronym
corresponds to each bit pattern. This table

begins at address 0159H and consists of
sixteen entries of four alphanumeric
characters per entry. These entries can be
easily changed using DDT, SID, or ZSID
to whatever you choose. After you have
completed your customization, you can
check your work by typing:

STAT VAL:

and you will receive a complete display of
your modified lOBYTE selections.

Try a full lOBYTE implementation. I'll

bet you will find the space consumed a
bargain when compared to the increased
usefulness of your system.

The Computer Journal / Issue #34 19



The ZCPR3 Corner

by Jay Sage

• For this issue I am going to live up to a

long-standing tradition: once again I am
not going to cover the material that I said

I was. Last time I presented half the new
material on ARUNZ and said I would

cover the second half this time. Well, I am
not going to. ARUNZ is now up to ver-

sion 'N' (it was 'J' last time). Until it set-

tles down a bit, it is probably futile to try

to describe it. Besides that, I am getting a

little bored with the subject (though ob-

viously not with the program), and

perhaps you are, too.

Though living up to tradition, I am
going to reverse a trend. For some time

now my columns have been getting longer

and longer. This time I really am going to

write a short one. Besides the fact that

because of me Art Carlson is apparently

running low on printer's ink, I am just

about written out, having just completed

the manuals for NZ-COM and Z3PLUS.

NZ-COM and Z3PLUS
Those manuals started out being simple

Elffairs, but I just don't seem to be able to

get my obsession with thoroughness and

completeness under control, and they

soon turned into full-fledged books about

the respective product and Z-System in

general. I've been burning the midnight

(actually, 2 a.m.) oil for the past two or

three months. Each manual now runs

about 80 pages! No wonder I don't have

many words left in my system at this

point.

Though somewhat reluctant to indulge

in self-praise, I have to say that the

manuals are really quite good, and the

products (NZ-COM and Z3PLUS) are ab-

solutely fantastic. Joe Wright (NZ-COM),
Bridger Mitchell (Z3PLUS), and I have

had a very enjoyable and highly produc-

tive partnership in this effort. I sincerely

urge you all to buy the automatic, univer-

sal, dynamic Z-System appropriate for

your computer: NZ-COM for CP/M-2.2
computers and Z3PLUS for CP/M-Plus

computers. Both are $69.95 from Sage

Microsystems East, Plu*Perfect Systems,

or Alpha Systems (see ads in TCJ).

After the experience bringing these

products to market, I will no longer laugh

so heartily when I hear stories about

Borland or Lotus or Ashton-Tate not

delivering their products on the promised
dates. Hopefully you have lost your TCJ
issue #32 and have forgotten that I wrote

there, and I quote: "By the time you read

this, they will definitely be available." In

issue #33 I said, "the two new dynamic Z-

Systems that will have been released by
the time you read this." That almost
made a double liar out of me. Luckily,

issue #33 was delivered just enough
behind schedule to let that statement

squeak through—barely.

With respect to NZ-COM, Joe Wright
and I have agreed to publicly blame each

other for the delay. Actually, following

common practice, we originally both
agreed to blame Bridger Mitchell, though
he, of course, had nothing to do with the

NZ-COM delay (Z3PLUS is another

story). However, now that Bridger has a

TCJ column, too, we worried that such a

slander might not go unanswered.

Anyway, Joe can blame me for not getting

the manual done on time, and I can blame
Joe for not writing the code to conform to

my description of it in the manual! You
can readily see that no one should ever get

involved in a product development all by
himself. Always make sure there is

someone else to blame.

The truth of the matter is that we really

thought the coding was complete by early

April and that a simple manual could be

knocked off in a week (naive!!). In fact,

as I alluded to above, the scope of the

manual kept expanding. At the same time,

as we attempted to describe the programs

very precisely, we discovered a number of

deficiencies in the code. Some coding

limitations that we thought we would ac-

cept in the current version of NZ-COM
and would upgrade later just didn't seem
acceptable any more once we wrote them
down on paper. As a result, we have really

skipped version 1 of NZ-COM and have

gone directly to version 2. There are quite

a few exciting new features beyond what I

described in issue #32; many will appeal

especially to those with a penchant for the

unconventional (but I won't say any more
about them now).

PRL Files and Type-4 Programs
One of the new features introduced

with ZCPR34 is the type-4 program. A
number of questions have been appearing

in messages on Z-Nodes, so I thought I

would say a few words on this subject.

Just to refresh your memory, ordinary

CP/M program files are loaded beginning

at an address of lOOH. This was also true

of Z-System programs. They differ from
standard CP/M programs in that the code
starts with a special header. One item in

the header is the text string 'Z3ENV'
beginning with the fourth byte of the

program. This string is used to identify the

program as a Z-System program.

After the text string comes a number,
now called the program type identifier. If

the number is 2, then the so-called en-

vironment descriptor is included in the fir-

st page of the program file. These type-2

programs are rarely seen today. If the

number is 1, then the program was
designed to run in a ZCPR3 system with a

permanent operating system memory buf-

fer containing the environment descrip-

tor. The program only has to store the ad-

dress of that descriptor, and it can then

adapt to any system in which it is run.

The environment or ENV address is

stored in the two bytes immediately

following the program type byte. Prior to

ZCPR version 3.3, the address had to be

installed into programs using a utility Uke
Z3INS before they could be used. Starting

with ZCPR33, the command processor in-

stalls the value as part of the process of

loading the file from disk.

With ZCPR33, the type-3 program was
introduced. These programs are not

limited to execution at lOOH, as all

previous programs had been. The two
bytes after the ENV address contain the

address at which the code is designed to

run. The Z33 command processor

examines the program type byte, and if it

is 3, it reads the load address from the

header and proceeds to load the program
to the designated address and execute it

there.

The type-3 program made it possible to

load and run programs at addresses other

than lOOH, but the address at which any
given program file would run was still

20 The Computer Journal / Issue #34



fixed. In his column in the last issue,

Bridger Mitchell described a fascinating

and remarkable program structure that

allows a program to run at whatever ad-

dress it is loaded to. That same idea is the

basis for the new type-4 program.

Bridger's ANYWHERE program could

be loaded manually to any address and

then executed. Type-4 programs are

loaded automatically by the command
processor to the highest address in

memory at which they can run without

overwriting the command processor or

any resident system extension (RSX) that

is present. I would like to provide some
additional details on how type-4 programs

work and how they are constructed.

As with ANYWHERE, type-4

programs are derived from so-called (and,

as Bridger pointed out, mis-named) page-

relocatable or PRL files. Bridger defined

and described those files in his column in

the last issue, but another shot at it

probably won't hurt. I will approach the

subject somewhat differently—with a

concrete example. Consider the short and

simple program in Listing 1. It is set up
for a starting address of lOOH. Figure 1

shows the binary image of the sort one

would see if the program were loaded with

a debugger (e.g., DDT) and displayed.

If we change the argument of the ORG
directive from lOOH to 200H and assem-

ble again, we get the results shown in

Listing 2 and Figure 2. You should

examine those results and note the things

that have stayed the same and the things

that have changed. Note in particular that

only three bytes in the code have actually

changed. One is the high order byte of the

address of the initial jump instruction.

The destination of that jump is in the

program, and, since the program has

moved up by lOOH, the jump address has

increased by an identical amount. The
second change is in the data word con-

taining the entry point address. Obviously

that address changes when the program

origin is changed. The third change is in

the value loaded into the DE register pair.

It is the address of the message string,

which is likewise a part of the program.

Note that the argument of the jump to

DOS has not changed. It is an absolute

address outside the program. Therefore, it

does not change.

Now let's look at a PRL file for the

same program. I am not aware of any

assemblers that can produce a PRL file

directly. The usual procedure is to remove

the ORG statement from the source code,

assemble the program to a REL (normal

relocatable format), and then use a linker

to generate the PRL file from the REL
file. Figure 3 shows the binary image of a

PRL file produced using the SLR virtual-

memory linker SLRNK + . Unfortunately,

inexpensive linkers, such as SLRNK and

ZLINK, are not able to produce PRL

00 01 02 03

=========

04 05

s: = = = = = = =

06 07 08 09 OA OB 00 OD OE OF

0100 C3 13 01 5A 33 -^5 4e 56 03 00 00 00 01 48 65 60

Olio 6C 6F ZA OE 09 11 OD 01 03 05 00

Figure 1. Binary image of the sample program in Listing 1.

00 01 02 03 04 05 06 07 08 09 OA OB 00 OD OE OF

0100 C3 13 02 5A 33 45 4e 56 03 00 00 00 02 48 65 60

0110 6C 6F 2A OE 09 11 OD 02 03 05 00

Figure 2. Binary image of the sample program in Listing 1

when linked to run at a starting address of 200H and loaded at lOOH.

Z80ASM SuperFast Relocating Macro Assembler Z80ASM 1.31 Page 1

PRLTEST Z80

1

2

3 0100

0100 org lOOh

entry

A 0100

5

6 0103

03 0113 Jp start

5A 33 -is AE db 'Z3ENV'

7 0108 03 db 3

8 0109 0000 dw

9 OlOB 0100 dw entry

10

11 OlOD AS 65 60 60 msg: db 'Hello','?'

12

13 0113 start

14 0113 OE 09 Id 0,9

15 0115 11 OlOD Id de.msg

16 0118 03 0005 Jp 0005h

17

18 end

Error(s) Detected.

27 Absolute Bytes. 3 Symbols Detecte d.

Listing 1. Simple example program assembled for a load

address of lOOH.

Z80ASM SuperFast Reloeating Macro Assembler Z80ASM 1.31 Page 1

PRLTEST Z8C

1

2

3 0200

0200 org 200h

entry

A 0200

5

6 0203

03 0213 Jp start

5A 33 -^5 AE db 'Z3ENV'

7 0208 03 db 3

8 0209 0000 dw

9 020B 0200 dw entry

10

11 020D A6 65 60 60 msg: db 'Hell9','$'

12

13 0213 start

U 0213 OE 09 Id c,9

15 0215 11 020D Id de,msg

16 0218 03 0005 Jp 0005h

17

18 end

Error (s Detected

27 Absolute Bytes. 3 Symbols Detected.

Listing 2. Simple example program assembled for a load address

of 200H.

========

The Computer Journal / Issue #34 21



=======

00 01 02 03 QU 05 06 07 08 09 OA OB OC OD OE OF

0100 00 IB 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Olio 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0200 03 13 01 5A 33 -45 -^E 56 03 00 00 00 01 48 65 6C

0210 6C 6F 2U OE 09 11 OD 01 03 05 00 20 08 01 00

Figure 3. Binary image of PRL file produced for the same test

program and loaded at address lOOH. Some memory regions

containing bytes of 00 have been omitted from the display here.

files. Later we will show you a method,
though somewhat tedious, that allows you
to construct a reasonable approximation

to a PRL file using an ordinary assembler

(no linker at all).

SLRNK+ actually cannot produce a

PRL directly using the source code as

listed. The SLR manual discusses in a

somewhat opaque way the technique for

generating a correct PRL file. The
problem is that the one-page nearly empty
header at the beginning of the program is

not generated. Joe Wright invented the

trick of linking in the file SLR.REL
derived by assembling source code with

the sole statement

DS 256

Sage Microsystems East

Selling & Supporting the Best in 8-Bit Software

• New Automatic, Dynamic, Universal Z-Systems

- Z3PLUS: Z-System for CP/M-Plus computers ($69.95)

- NZ-COM: Z-System for CP/M-2.2 computers ($69.95)

- ZCPR34 Source Code: if you must customize ($49.95)

• Plu'Perfect Systems

- Backgrounder II: switch between two or three running tasks

under CP/M-2.2 ($75)

- DateStamper: stamp CP/M-2.2 files with creation, modification,

and last access time/date ($50)

- JetFind: Super fast, extemely flexible text file scanner ($50)

- DosDisk: Use DOS-format disks in CP/M mjichines (only if ordered

with other items, $30 - $45 depending on version)

• SLR Systems (The Ultimate Assembly Language Tools)

- Run on Z80 or compatible computers

- Assembler Mnemonics: Zilog (Z80ASM, Z80ASM-f), Hitachi

(SLR180, SLR180-(-), Intel (SLRMAC, SLRMAC-I-)

- Linkers: SLRNK, SLRNK-t-

- Memory-Based Versions ($50); Virtual-Memory Versions ($195)

• NightOwl (Advanced Telecommunications)

- MEX-Plus: automated modem operation with scripts ($60)

- Terminal Emulators: VTIOO, TVI925, DGIOO ($30)

Same-day shipping of most products with modem download and support available.

Shipping and handling $4 per order (USA). Specify disk format. Check, VISA, or

MasterCard.

Sage Microsystems East
1435 Centre St., Newton, MA 02159

Voice: 617-965-3552 (9:00am ~ 11:30pm)

Modem: 617-965-7259 (24hr, 300/1200/2400 bps

password = DDT, on PC-Pursuit)

This allocates one page of memory. The
PRL file is produced by the hnker com-
mand

SLRNK+ TEST /K, SLR, TEST, /E

The term "TEST/K" defines the out-

put file, the term "SLR" allocates the

empty header, and the term "TEST"
links in the actual program code.

You should notice in Figure 3 the

following things. First, the PRL file

begins with a one-page header, which is

entirely zero except for a word at address

lOlH (you can't tell from this example

that it is a word, but it is). This word is the

length of the code, 001BH or 27 decimal

in this example. The program code itself

begins on the next page (200H) and is the

same as the code in Figure 1

.

The other new bytes in the PRL file are

those that follow the last byte of the

program code. These bytes comprise the

relocation bitmap that Bridger Mitchell

described in his column in the previous

issue of TCJ. The first byte is 20H, which

expanded to binary is 00100000. This

means that the third byte in the program

code is the high byte of an address that

must be relocated to make the program
code execute at an address other than

lOOH. Indeed, the third byte is the address

to which the JP instruction jumps. The
second byte in the bitmap is 08H or

00001000 binary. This tells us that the

13th byte in the program code is an ad-

dress that has to be relocated when the

program is relocated. Indeed, this is the

address of the start of the program in the

Z-header. The third byte in the bitmap is

OIH or 00000001 binary. It tells us that

byte 23 is an address. If we look carefully,

this is the address part of the "LD DE,M-
SG" instruction.

How Does ZCPR34 Load and Execute a

Type-4

Bridger Mitchell explained last time in

some detail how a PRL file can be

relocated to run at any address. It really is

22 The Computer Journal / Issue #34



not necessary to understand all the details.

The basic idea is that the bitmap tells a

loader which bytes in the code to adjust.

The Z34 command processor has a

special mechanism for processing type-4

programs. After the command processor

has located a transient program, it loads

the first record of the file into the default

buffer at 80h. Here it can examine it to see

what kind of program it is. If it is a stan-

dard CP/M program or a type-1 or type-2

Z-System program, it sets up the load ad-

dress as lOOH and proceeds to load the en-

tire file into memory, starting over with

the first record. If it is a type-3 program,

the same procedure is followed except that

the load address is extracted from the

program header.

With the type-4 program things are not

so simple, because the load address has to

be calculated and the code has to be

relocated. Z34 gets these tasks accom-
pUshed in a very clever and tricky way. It

could have done all the work itself, but

that would have added a lot of code to the

command processor. Instead, we took ad-

vantage of the fact that a PRL file has

that two-record header with almost

nothing in it. To make a type-4 program,

we overlay onto this header a special

loader program. Z34 executes the code

there to calculate the load address and
then to perform the code relocation.

The loader is available in HEX format

(TYP4LDR.HEX) and can be grafted on-

to the PRL file using the command

MLOAD file=flle.PRL,TYP'iLDR

where 'file' is the name of the PRL file

that you want to convert to a type-4

executable file.

By putting the loader code in the

program rather than in the command
processor, we provide additional

flexibility. TYP4LDR calculates the

highest address in the TPA to which a

program can be loaded, but other loaders

could return the address of the RCP or

FCP and make possible self-installing

modules. Clever users will undoubtedly
come up with some other interesting ap-

plications that use special header code.

How Do We Make a PRL File

The easiest way to make a PRL file, and
from that a type-4 program, is with a

capable linker like LINK from Digital

Research or SLRNK+ from SLR
Systems. LINK came with my CP/M-Plus
computer; I do not know how much it

costs or how to obtain it otherwise. SLR-
NK + , which offers many very useful and
powerful features besides the ability to

make PRL files, costs $195. For someone
who wants to experiment casually with

IMAKEPRL.HEX<or> ; Ready to load PRL maker routine

R,<or> ; Load it to address lOOh

ITEST100.COM<cr> ; Ready to load program ORGed for lOOh

R100<cr> ; Load it to address 200h (offset 100)

ITEST200.C0M<cr> ; Ready to load program ORGed for 200h
R<nextaddr-100> <or> ; Load it to proper offset

slOE<cr> ; Ready to patch in code size

low-nextaddr<or> ; Low byte of code size

>high-nextaddr <or> ; High byte of code size

.<cr> ; End patch with period

G<or> ; Run MAKEPRL code at lOOh

X<cr> ; Display registers — note value of HL

F103,1FF,0 ; Clean up the header area

GO<or> ; Exit from DDT

Figure 4. Coramands issued to DDT to produce a PRL file from

two COM files assembled to rur at addresses of lOOh and 200h.

SuperBASIC 68K
by Custom Computer Products

A BASIC FOR THE K-OS ONE OPERATING SYSTEM

* LOAD and RUN most standard HS BASIC programs without change.

* Integer, single precision floating point and 64 bit double
precision floating point for arithmatlc and called functions.

* Variable names can be any length up to 255 characters, all
of them significant.

* A full set of string functions is included. Strings can
be any length up to 255 chars.

SuperBASIC 68K is the newest software package available for the

K-OS ONE operating system. It is a small (approx 32K), full

featured BASIC that can utilize all available memory.

For a full specification, contact Hawthorne Technology.

K-OS ONE OPERATING SYSTEM

Get the K-OS ONE operating system for your 68000 hardware.
Hlth It you can read and write HS-DOS format diskettes on
your 68000 system. Included in the package are:
K-OS ONE w/source code. Editor, Assembler, HTPL Compiler
Sample BIOS Code.

68000 SOFTWARE

* K-OS ONE operating system
uses HS-DOS disks
w/source code .... $50

* K-OS ONE manual ... $10
* HT68K SBC w/K-OS ONE S395

* Screen Editor Toolkit $50
* HT-FORTH $100
* BASIC $149

Free Newsletter & Spec Sheet

HAWTHORNE TECHNOLOGY
1411 SE31st, Portland, OR 97214

(503) 232-7332

The Computer Journal / Issue #34
23



type-4 programming, this is probably too

much money to spend. If you are not

going to do it very often and don't mind a

little work, you can hand craft a PRL file

using a debugger Uke DDT. I will take you
through the procedure using our sample

program from Listing 1

.

Making the bitmap is the hard part of

the procedure. You should key in the

program called MAKEPRL.Z80 in Listing

3 and assemble it to a HEX file. We will

use that code in the debugger first to make
a "byte-map" and then to convert the

byte-map into a bitmap. We assume that

we have already assembled versions of the

program with ORGs of lOOH and 200H.
, To construct the PRL file, we invoke

the debugger (assumed to be DDT) and

issue the commands shown in Figure 4.

The first pair of commands loads the

utility program MAKEPRL. The next two

lines load the version of our program that

was assembled to run at lOOH. At this

point we have to note the "next load ad-

dress" reported by the debugger (I suggest

you write it down). Now we load the ver-

sion of the program assembled to run at

200H so that it follows right on the end of

the lOOH version. To do this, we use an

offset value in the "R" command that is

lOOH lower than the "next address" that

was reported a moment ago.

There is one other very important step

we need to perform at this point.

MAKEPRL has to be told the address at

which the second program image was

loaded. The value is patched in at address

lOEH using the commands shown in

Figure 4 starting with "SlOE". For our

example program, the next address is

reported as 0280. Therefore, low-

nextaddr is 80 and the high-nextaddris 02.

Now we let MAKEPRL do the hard

part by running it with the "G" com-

mand. When it is finished, we need to

examine the value in the HL register, since

it tells us the next address after the bit-

map. After leaving DDT we have to save

the code image from lOOH up to but not

including that address. For the example

program, the value in HL is reported to be

290H. Since we are presumably running

Z34 and have the type-4 SAVE program,

we save the result using the command

SAVE 100-28F PRLTEST.COM

If you do not have the type-4

SAVE,you will have to calculate the num-
ber of sectors to save.

Figure 4 lists one DDT command that

we did not discuss. The "F103,1FF,0"

command fills the part of the header after

the code size word with zeros. This makes

the file look prettier, but it is not ab-

solutely necessary, especially if you are

later going to overlay the type-4 loader as

described below.

Listing 3. Utility program to perform the hard part of making

a PRL file using a debugger.

; This code, which assists In the generation of a PRL file from a

; pair of COM files assembled for execution at lOOH and 200H, is by

; no means optimized for speed or size. I have tried to optimize it

; for clarity!

org lOOh

size:

c200:

start:

db

dw

Jp start

db 'C0DE200:

dw

; Standard PRL header (and NOP)

; PRL file size (filled in by code)

; Identification string

; Patch to address of code linked to 200h

The first step is to compute the size of-the code and store the

value at address lOlh as required for a PRL file. We also put

this value in BC. We set up DE to point to the code assembled

for 200H and HL to point to the code assembled for lOOH.

Start of code for 200h

Start of code for lOOh

id hl,(c200)

Id de,200h

xor a

sbc hl.de

Id (size), hi

Id b,h

Id c,l

Id hl,(c200)

ex de.hl

Difference is assumed size of code

Store in proper place for PRL file

. . and in BC

DE -> code for 200h, HL -> code for lOOh

Now we subtract the code for lOOh from the code for 200h to

generate the map of bytes that are addresses that have to be

relocated. There will be a byte of 01 corresponding to each byte

in the code that is the high order byte of an address that must

be relocated. There will be bytes of 00 everywhere else.

bytemap

:

Id a,(de)

sub (hi)

Id (de),a

Inc hi

Inc de

dec be

Id a,b

or

Jr nz, bytemap

; Get byte from 200h version

; Subtract byte from lOOh version

; Replace 200h code with byte map

; Point to next bytes

; Any more to do?

; Loop until done

Now we have to compress the byte map Into a bit map, taking

each 8 bytes of the byte map and packing the values Into a

single byte in the bit map. The result is written immediately

following the code (i.e., at the location of the code linked

to 200h).

divide:

makeraap

:

id hi, (size)

Id b,3

xor a

rr h

rr 1

djnz divide

Id (raapslze),hl

Id de,(c200)

Id hl,(o200)

Id b,8

Id 0,0

Get number of bytes in byte map

Divide by 8 (2 to the 3rd power)

Clear carry

Rotate H right, low bit to carry

Rotate L right, carry Into high bit

Repeat 3 times

Save the value

Point to byte map

Point to bit map (same place!)

Process block of 8 bytes into 1 byte

Initial value for byte in bit map

24 The Computer Journal / Issue #34



makebyte:

Id a,(de) ; Get byte from byte map

inc de ; Advance pointer

rr a ; Move relocation bit into carry flag

rl c ; Move carry flag into byte in C

djnz makebyte ; Repeat 8 times

Id (hl),o ; Put result into bit map

inc hi ; ..and advance its pointer

push hi

Id hl,(mapsize) ; See if we are done

dec hi

Id (mapslze) ,hl

Id a,h

or 1

pop hi

jr nz,makemap

rst 38h ; Breakpoint to end program

mapslze:

ds 2 ; Scratch area

end

The PRL files made this way can be

used to malce type-4 programs, and they

can be used in Bridger Mitchell's

ANYWHERE program. However, we
should point out that these PRL files are

not as efficient as those produced by a

linker. We assumed that the code in the

COM files extended to the end of the last

record in the file.

Perhaps you can build on my simple

method and figure out how to extend it to

produce an optimal PRL file just like the

one from SLRNK + . It would also not be

too difficult to write a program using

routines in SYSLIB to read in the pair of

COM files and generate a PRL file from

them completely automatically. The most
elegant method for doing this would use

random-record writes. I invite readers to

send me such a program.

Database Primer

(Continued from page 11)

I would set up the church system using a data entry set for ad-

ditions as a separate batch file which is appended to the main set

after saving a copy of the main set before the additions, along

with the batch file. Some systems can trash the files if the system

goes down (or is turned off) with a file open, so we want to

minimize the time that the main file is open. Keeping the main file

open should not be an operator option. In order to catch

duplicate entries, we could open the main file for read only, sear-

ch for a dup, close the file, and either advise of the dup or write

the record to the batch entry file. For changes or deletions I would

follow the same scheme, reading the main file to verify that the

record does exist, then writing the record to the update batch file.

After all the data entry is completed, I would add the new entries,

replace the changed records, and remove the deleted records. I

also feel that the main data file before the changes and the batch

files should be saved to a floppy for archiving.

The above batch operation is OK for the single user church ap-

plication, but not for most multiuser POS, inventory, or accoun-

ting systems. For example, an airline reservation system has to

update the data in real time so that the next travel agent can

determine the available seats on a specific flight. Even though

batch operations are not used, it is still necessary to write transac-

tion files recording who changed what when, so that the files can

be rebuilt or in order to determine who made certain changes.

Next Time
In the next issue, we will continue our discussion of the factors

which need to be considered in order to select the most suitable

data base sytems. We start on the next issue while this issue is still

at the printer, so don't delay in sending your letters, comments,

or articles.

Need I/O Ports
For Your Z80?

expansion is possible, even if tiiere

is no expansion bus in your system

Add a Bus: Z80 CPUport™
With the CPUport™ you can add I/O Devices to

your Z80 based computer via the existing CPU
IC socket. The Z80 is replaced by a piggyback

daughtertDoard that brings out the bus to a ribbon

cable compatible with HiTech's standard I/O
,

such as RS-232 and parallel I/O.

* Simple Installation

* Provides Multi-Device Connection
* Low Power and Hi Speed versions
* Fully compatible with Z80 family

Prices Start at $99

HiTech Equipment Corporation

9560 Black Mountain Road, San Diego, CA 92126

(619) 566-1892

The Computer Journal / Issue #34 25



New Microcontrollers Have Smarts
Program with ROM based On-Chip BASIC or Forth

by R.E. McCain

For many years the industrial and em-
bedded controller market has been

dominated by machine dependant assem-

bly language programming, primarily

because of the cost involved in creating an

environment capable of supporting a

higher level language. In order to use a

high level language it was often necessary

to add floppy disks and controllers, or

write your own language and load in

EPROM. Both the Apple ][ and IBM/PC
had ROM BASIC of this sort, but the user

was forced to use external program
storage or use another system to develop

and burn EPROM for application code.

Recently both Intel and Zilog have

begun to supply microcontrollers with on-

board ROM that may optionally be

preprogrammed with either a BASIC or

Forth operating system. The Intel

8052AH-BASIC chip with 8K of ROM
costs about $25/unit for a floating point

BASIC with many system features.

Zilog's Z867I chip has a 2K ROM with in-

teger BASIC and costs about $8/unit.

Zilog also plans to bring out a similar chip

with Forth in ROM. Both chips have a

serial I/O port, counter/timers, interrupts

and a small internal memory. The Intel

chip also requires a minimum of IK of ex-

ternal memory while the Zilog chip may
run in a standalone mode. On the 8052,

three of the four I/O ports have been

frozen into address/data and other system

functions. The user is free to configure all

four of the I/O ports on the Z8671

.

Either of these chips allow the

developer to use the BASIC as either a

debug for assembly programs or as a fully

functional BASIC interpreter. Because of

the low cost, the Zilog part could easily be

incorporated into many low end control

applications, while the more expensive In-

tel unit is better suited for those ap-

plications requiring floating point

operations or for multi-chip peripheral

control uses. The 8052 has many
development system capabilities not

found in the Z8671, such as the ability to

print numbers in hex or decimal, user

defined console drivers, string

manipulation, and the ability to program

either EEPROM or EPROM. (Though he

added many features and dedicated chips,

Steve Ciarcia used an 8052 in his stan-

dalone Serial Eprom Programmer.)
I have been using an 8052 system for the

past few months for development of an
industrial controller. We used TASM-51
(available from PC-SIG, disk # 643) to

assemble the console drivers and assembly
subroutines and Procomm (PC-SIG disk #

499) to communicate with our PC/XT
host system. Intel has done an outstan-

ding job of providing a road map through

the 8052 with their MCS BASIC-52 User's

Manual. It actually provides real world
hints and tips that make using the system

enjoyable!

An 8052 based system is shown in

Figure 1. Note that this could be the

schematic both for the development

prototype (using the 8052AH-BASIC
chip) and the final product (using an
80321 chip) simply by changing the jum-
per on pin 31 of Ul. 8051 family chips

come in many different flavors and
enhancements, but most of the develop-

ment effort for even the most exotic could

be accomplished on a stand-alone system

using your personal computer as the host

terminal.

Let's take a brief look at the features of

this system. It can interface to any
keyboard or switch matrix. A 16 character

or numeric display can be driven from U8
and a bus structured LCD provides user

feedback from the system. There are 6

byte wide I/O ports which may be con-

figured as inputs, outputs or bidirec-

tional. The PWM command in BASIC

RAM ROM I/O
0000H Used by Basic Reserved for Basic
0800H Begin Basic Programs

|

1 1

1

V
1

V

2000H End c f RAM Assembly code pointers
2090H

1
avaliable

1
User code area 1

1
for RAM V

4000H
1

expanslon More pointers
'i200H

V
1
User code Area 2

V

8000H Common memory space for RAM or ROM

Configure options
8010H Begin Basic Programs

1

FFF0H
V

Disabled Keyboard Data
FFFIH V Command
FFF2H LCD Command
FFF3H V Data
fff';h Unused
FFF5H

FFF6H

FFF7H V
FFF8H I/O #1 Port A
FFF9H Port B
FFFAH Port C

FFFBH V Control
FFFCH I/O #2 Port A
FFFDH Port B

FFFEH Port C

FFFFH V V Control

Figure 2

26 The Computer Journal / Issue #34



The Computer Journal / Issue #34 27



B052 SMmfm from Fiour« 1

-o—Printer

-rHo.t S.ri.l Link >- ^Serial 1/Q

-Q :

o
LCD Divplay

-n

—

K«ubaard

Dd^ «PLZT

^^

Pou«r SupplM

Serial Printer 1^0 1 Port a Ll

lyo 1 Port ft H^

I/O 1. Port B L|

1/-0 1 Port B H*

1/0 2 Port ft Ll

I/O 2 Port C-O.H

H/0 1 Port C I/O 2 Port ft H'

I/O 2 Port C-2,3'

1/0 2 Port B L<

I/O 2 Port C-4,S<

I/O 2 Port B H<

-g5>
MOTOR SERUO

MOTOR SERUO

N«w Microcontroller* have Smart*

Typical NC Controller

Figure 3

can drive the PLZ transducer with a

variety of sounds.

There is 8K of RAM (of which BASIC
uses 512 bytes) and 64K of EPROM
(OOOOH to IFFFFH is reserved for

BASIC). In an 80321, the space from

OOOOH to IFFFH could be loaded with

either the BASIC operating system or

used for custom code. (The source code

for the BASIC is available through IN-

SITE—the Intel user group). Assembly

code usually occupies the space from

2000H to 7FFFH where the driver poin-

ters are mapped, and the space from

8000H to FFEFH is used for tokenized

BASIC program storage. The default ad-

dressing for the RROM# commands
begins at 801OH. You may load as many
different basic programs into EPROM as

you need (until you run out of memory)
and access them by number or use the first

program as a menu to point to the others.

The space from FFFOH to FFFFH is used

for the memory mapped I/O devices,

which are accessed through the PAL at

U2. See Figure 2 for the memory map.

The 8052 has a memory mapping scheme

which allows you to use up to 96K of

memory by switching from RAM to ROM
in the space below 8000H.
The system could easily be used for an

NC (Numeric Control) application such as

that in Figure 3, where it could control a

machine tool. In such an application, you
may want to increase the RAM to 32K if

large downloads are anticipated. An ad-

vantage of such a system is that one could

have a battery backup for power failures

or transient protection.

Our NC controller uses all the features

of this system. The serial I/O is used to

download and save setups. The local

keyboard and motion switches allow the

operator to control and interact with the

system. The LCD provides operator feed-

back, while the numeric display gives

relative position of the work in the X,Y
and Z axes. The PLZ transducer generates

warning and error alerts. The I/O con-

trollers are used to control the servo

motors, to sense position and end of

travel, and to monitor any miscellaneous

safety functions, such as operator hazar-

ds, low fluid levels, etc.

A real world NC controller might

require more precision than our example

allows, and a third I/O controller could

be mapped to the unused addresses from

FFF3H to FFF7H to allow the position

sensors 12 bit accuracy. We used servo

motors because of the high slew rates

possible, but some applications might use

stepping motors to improve positioning

accuracy. The real world application

might also require a multiple redundant

approach for failsafe operation. It would

be possible to design an inexpensive

multiprocessor system with coincidence

checking and other high reliability

features to minimize downtime.

The flexibility of the floating point

BASIC comes into play with the NC con-

troller, as we can access the floating point

routines from an assembly level, and the

controller could easily accept and send

setups in the various formats used in the

industry.

28 The Computer Journal / Issue #34



Everythirislii
see

V 12MHZ80286
AT-Compatible.

1Mb on board DRAM

Full set of AT-

%^at"'. compatible controllers

Jf^ EGA, CGA, MDA, Hercules
'1 video

^ * SCSi/FD contrbllers

...and more

Bigpower
forsmaller systems.

Little Board/286 is the newest

member ofour femilyofMS-DOS
compatible Single Board Systems. It gives

you diepower ofanAT in the cubic inches

ofa halfheight 51/4" disk drive. It requires

no backplane. It's a completeAT-compat-

ible system that's functionally equivalent to

the 5-board system above. But, in less than

6% ofthe volume. It runs allAT software.

And its low-power requirement means
high reliability and great performance in

harsh environments.

Ideal forembedded& dedicated

applications. The lowpower and tiny

form feictor ofLittle Board/286 are perfect

forembedded microcomputer applica-

tions: data acquisition, controllers,

portable instruments, telecommunica-

tions, diskless workstations, POS terminals

. . . virtuallyanywhere that small size and

completeAT hardware and sofl^vare

compatibility are an advantage.

you see here^
THEAMPRO LITTLEBOARD7286

'Compare features.

Both systems offer:

• 8 or 12MHz versions

• 512K or 1Mbyte on-board

DRAM
• 80287 math co-processor

option

• Full set ofAT-compatible

controllers

• 2RS232Cports

• Parallel printer port

• Floppy disk controller

• EGA/CGA/Hercules/MDA

video options

• AT-compatible bus

expansion

• A wide range of expansion

options

• IBM-compatible Award

ROM BIOS

But only Little

Board/286 offers:

• 5.75" X 8" form factor

EGA/CGA/Hercules/MDA

on a daughterboard

with no increase in

volume

SCSI bus support for a

wide variety of devices:

Hard disk to bubble

drives

Onboard 1Kbit serial

EPROM. 512 bits

available for OEMs

Two byte-wide sockets

forEPROM/RAM/

NOVRAM expansion

(usable as on-board

soUd-state disk)

• Single volt^e operation

(-H5VDConly)

• Less than low power

consumption

• 0-70°C operating

range

•ATisaHegisleredTrademarkoflBMCorp

Betteranswers forOEMs.
Little Board/286 is not onlya smaller

answer, it's a better answer . . . offering

thepackaging flexibility, reliability, low
power consumption and I/O capaJbUities

OEMs need ... at avery attractiveprice.

And like allAmpro Little Boardproducts,
Little Board/286 is available through

representatives nationwide, andworld-
wide. Formore information and the name
ofyour nearest Rep, call us today at the

niunber below. Or, write forAmpro Little

Board/286 product literature.

408-734-2800
Fax:408-734-2939 TLX: 4940302

COMPUTERS, INCORPORATED
1 1 30 MountainView/Alviso Road

Sunny\ale,CA 94089

Reps: Australia-61 3 720-3298; Belgium-32 87 46.90.12; Canada-(604) 438-0028; Denmark-45 3 66 20 20; Finland-358 586-322; France-331 4502-1800; Germany, West-49 89 611-6151;

lsrael-972-3 49-16-96; Haly-39 6 811-9406; Japan-81 3 257-2630; Spain-34 3 204-2099; Sweden-46 88 55-00-65; Swit2e(iand-41 1 740-41-05; UnHed Kingdom-44 2 964-35511; USA, contact AMPRO.



Advanced CP/M
Extending the Operating System

by Bridger Mitchell

Sooner or later, the CP/M user bumps
up hard against the limitations of the

operating system and wonders—can

something be done? Yes, CP/M can be

enhanced at several levels.

Command Processor Extensions

A great deal of effort has been directed

to improving the external, command-
processing part of CP/M® . The "com-
mand shell" is readily replaced; it is the

most immediately noticed component;

and it can be extended by placing added

code in files that can be manipulated by
the existing system. Z3PLUS, NZ-COM,
and ZCPR34 are the latest achievements

at this level; they both replace the com-
mand processor and provide well-defined

resident buffers for communication bet-

ween successive tasks. There have been a

number of other replacement command
processors, such as CNIX® , CONIX® ,

andQPM® .

BDOS and BIOS Extensions

The next level of extension is adding

new operating system functions—extra

BDOS calls. CP/M Plus® provides a par-

ticularly convenient method, called a

Resident System Extension (RSX), for

adding such capabilities. Under CP/M
Plus, an RSX can be attached to a

program that needs extended services and

loaded automatically along with the

original program. It is rather easy to

modify existing BDOS functions, for

example, to keep statistics on the frequen-

cy with which key files are accessed.

More elaborate RSXs have been

developed for CP/M Plus to emulate the

CP/M 2.2 BIOS file functions so that

programs that make direct BIOS calls can

run under CP/M Plus by attaching the

necessary RSX but leaving the program it-

self unchanged. The most complex CP/M
Plus RSX is the brand-new Z3PLUS
system. Within the single RSX are the

ZCPR34® command processor, and

program and RSX loader, the Z-System

buffers for named directories, resident

commands, messages, command line, file

control block, and environment descrip-

tor.

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He's
the author of the widely used DateStamper ( an automatic, por-
table file time stamping system for CP/M 2.2 ); Backgrounder
( for Kaypros ); BackGrounder ii, a windowing task-switching
system for Z80 CP/M 2.2 systems; JetFind, a high-speed string-

search utility; DosDisk, an MS-DOS disk emulator that lets

CP/M systems use pc disks without file copying; and most recen-
tly Z3PLUS, the ZCPR version 3.4 system for CP/M Plus com-
puters.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,

Santa Monica CA 90402, and via Z-Node #2, ( 213 )-670-9465.

However, more basic changes to CP/M
2.2, such as adding time and datestamping

or redirection of console and printer ser-

vices, are much more difficult. They are

necessarily inner extensions to CP/M and
require intimate knowledge of the BDOS
and BIOS.
Another area that frequently needs ex-

tension is an interface to the hardware.

The original BIOS may provide for only a

limited number of disk formats. Function
keys that transmit escape sequences may
need to be timed and mapped into defined

character strings. Printers could need
character translation tables to generate

control sequences or foreign characters.

These system extensions are primarily

BIOS modifications.

The most extensive extension of CP/M
2.2, and the most complex piece of sof-

tware I have ever written, is BackGroun-
der ii. It is installed as an RSX that makes
extensive modifications to selected BIOS
and BDOS functions, replaces the com-
mand processor, and adds virtual swap-
ping memory to the basic system. The
result is effectively two virtual CP/M
computers on one machine, with user-

controlled ability to switch between two
running programs at any time, and to

preserve the exact screen display of each

on most terminals.

RSXs for CP/M 2.2

An RSX is not necessarily the first, or

the best, choice for adding capability to a

computer system. The operating system

can be extended by rewriting the BIOS

(provided the source code is still

available!). This is the most fundamental
approach. Specific to one computer, it is

permanent and totally non-portable.

The system can be extended for only a
single application, as when a program is

run by first loading a debugger. Quick
and dirty, this approach is sometimes
useful for temporarily modifying system
behavior or pre-testing a more permanent
approach.

A resident system extension is a ver-

satile, intermediate approach. An RSX
can be installed and left in place to extend
the system for as long as it is needed, then
removed to restore the original system and
full memory. If well designed, it can be
quite portable. It can be used to add both
BDOS and BIOS features to the vanilla

CP/M 2.2 system. And several RSXs can
be used together to combine system
power.

In this issue's column I discuss System
Extensions that modify the behavior of
the BDOS and/or BIOS. Because these

services must essentially be available at all

times (whenever a BDOS or BIOS call is

made), the extension code must be
resident This is unlike extensions of

the command processor, which can be
reloaded from the system tracks (or from
a file) when a new command is ready for

processing.

I will limit the examples to extensions

for the CP/M 2.2 operating system (and
its clones). CP/M Plus already includes

RSX capability for BDOS (but not BIOS)
extensions and it also includes provision

30 The Computer Journal / Issue #34



Figure 1 CONVENTIONAL MEMORY MAP

0000: jp blos+3 >

0005: jp bclos+6 —>»
> > »

» ?
ocp+3

:

> > bdos+6:

»-> blos+3: jp bioswb

bloswb: ...

jp cop+3

0100; tpa, to bclos+5

for character-device redirection (so that,

for example, the printer output can be

diverted into a file). The basic ideas,

however, carry over to CP/M Plus. In-

deed, I have used them effectively in im-

plementing both Z3PLUS and DosDisk
on CP/M Plus computers.

No Free Lunch
Although smart coding and clever uses

of the RSX concept can greatly extend the

vanilla CP/M system, there are limits im-

posed by a 64K address space Z-80

operating system. As 1 was preparing this

column a potential DosDisk customer

called, hoping that DosDisk would let him
run Lotus 1-2-3 on his Z-80 computer with

8 inch disks! I trust that anyone who has

read this far has somewhat more modest
expectations.

The Conventional CP/M 2.2 System

In the remainder of this column I will

describe how an RSX modifies the con-

ventional memory map and flow of con-

trol, using a standard RSX header data

structure. We will then turn to a complete

example.

In order to see how RSXs fit into the

CP/M 2.2 system, let's first review a few

key points about a "vanilla" system.

The end of the TPA (transient program
area), the memory available to appUcation

programs, is specified by the address

stored on page-zero at location 0006.

Initially, that value is the address of the

entry to the BDOS, and a "call 5" instruc-

tion will jump directly to the BDOS.
Beginning at the address whose value is

stored at 0006, memory is said to be

"protected"— it is not available to ap-

plications, and data and code in that area

should remain "resident" from one ap-

plication to the next.

The command processor is assembled

or hnked to be loaded in the top 2K of the

TPA memory. The command processor is

not resident, and that 2K of memory is

available to applications. Therefore, on
each warm-boot—a jump or call to

0000—the BIOS reads a fresh copy of the

command processor into high memory. (It

may also read in a fresh copy of the

BDOS, depending on the implementation

in the BIOS.)

Figure 1 shows the essential flow of

control. The address at 0006 is

"bdos-l-6", the entry to the BDOS, and

the TPA extends from lOOh to bdos -(- 5. A
jump to 0000 vectors to "bios + 3", which

jumps to "bioswb", the BIOS warm-boot

routine. That routine reloads the com-

mand processor, installs fresh values of

"bios -i-
3" and "bdos + 6" at 0001 and

0006, and then jumps to the command
processor entry "ccp-l-3" to process the

next command.

The Standard RSX Header

In order to insert a resident extension

into this scheme we must deal with

memory management, BDOS and BIOS
calls, provide for removal of the RSX
when it is no longer needed, and an-

ticipate the loading of other RSXs while

this one is active.

In addition to being intrinsically com-

plex, implementing all of this is tedious

and error-prone. Several years ago, to

provide a standard approach, I

established a Plu*Perfect Systems RSX
header—a uniform data structure at the

beginning of every RSX—to permit

several RSXs to coexist peacefully. And
for this column I extended JetLDR to

recognize a relocatable RSX module in

named-common ZRL relocatable format

and load it automatically.

The header (Figure 2) begins with three

jumps to routines in the RSX—to the

BDOS intercept routine "rsxstart", to the

warm-boot intercept routine "rsxwb",

and to the removal routine "rsxremove".

Next come three addresses. First, "rsx-

wba" is the address of the (original) BIOS
warmboot vector which is used to,

hopefully, correct the problems created by

programs that erroneously change the

contents of 0001 . The second word is the

"protect" address, the lowest byte in the

RSX that must be in protected memory.

This is followed by the address of the null-

terminated ASCII name of the RSX.
Two jumps and a final word complete

the header. The chain of a warm-boot

(jump 0000) flows through "rsxnext",

which points to either the next-higher

RSX, or to the command processor entry.

Similarly, the call BDOS chain flows

through "next", which points to either

the next-higher RSX, or to the BDOS en-

try. The final item, "nextwb" holds the

address from the BIOS warm-boot vector

at the time the RSX is loaded, so that it

can be restored by the remove routine.

Adding an RSX to Memory

In order to add an RSX to a running

system, we must arrange to:

1) Allocate sufficient memory for the

RSX.
2) Deduct that memory from the

available TPA, so that an application will

not attempt to use the memory occupied

by the RSX.
3) Prevent the BIOS from undoing the

memory allocation at the next warm-boot.

We will locate the RSX in high

memory, immediately below the com-

mand processor—see Figure 3. To do this,

we change the value at 0006 to point to the

first byte of the RSX, and arrange to have

a jump instruction there that (eventually)

causes control to enter the BDOS (this is

the initial jump in the standard RSX
header). The TPA is now reduced to the

areal00hto"rsxl-l".

To keep the BIOS routine "bioswb"

from undoing our handiwork by resetting

the value of 0006, we must either modify

the "bioswb" routine, get control back

Figure 2. Standard RSX Header

rsx: jp rsxstart BDOS Intercept 00

jp rsxwb warm-boot intercept , +03

jp rsxremove remove-rsx entry ; +06
rsxwba: dw $-$ original 0001 value , +09
rsxprot :dw rsx lowest rsx address , +0B

dw rsxname -> rsx name ; +0D
rsxnext :Jp $-$ -> next wb or ccp entry ; +0F

next: jp $-$ -> next rsx or bdos ; +12
nextwb

:

dw $-$ original blos+i addr , +15

The Computer Journal / Issue #34 31



Figure 3 MEMORY MAP WITH ONE RSX

«— >-

0000: Jp blos+3-»

0005: jp rsxl

0100: tpa, to rsxl-1

> >—

«

» < <—+ <—

«

-+> rsxl: jp entryl »-> cop+3: *— > blos+3: jp rsxl+3-*
*--> +3: jp rsxlwb / »-> bdos+6:

/ /

+F: jp ocp+3-» /

nextl: jp bdos+6 »

rsxlwb : ...

jp rsx+F

entryl : ...

jp nextl

Figure 4 MEMORY MAP WITH TWO RSXs

»„> > >—

«

0000: jp bios+3 * * < <—

+

<—

»

0005: jp rsx2 +> rsx2: jp entry2 rsxl: jp entryl «-> oop+3: *— > bios+3: jp rsx2+3-»
«—> +3: jp rsx2wb *->+3: jp rsxlwb / *-> bdos+6:

0100: tpa, to rsx2-l ... / ... / /

+F: jp rsxl+3— « +F: jp oop+3-* /

next2: jp rsxl nextl: jp bdos+6 *

rsx2wb : ... rsxlwb : ...

jp rsx2+F jp rsxl+F

entry2: ... entryl: ...

jp next2 jp nextl

Here, the labels ''ccp'', ''bios'', and ''bdos'' refer to the base address of the corresponding CP/M operating system

segment. The entry to the bdos is at bdos+6; don't confuse it with the common equate for the page-zero

vector: ''bdos equ 0005''.

after that routine has completed, or

prevent it from executing. Prevention is

the only portable solution; and it must be

done intelligently.

The System Loadstone

The "obvious" method of bypassing

the warm-boot routine is to change the

address at 0001 to point to a copy of the

(modified) BIOS jump table located in the

RSX. However, this would be fundamen-

tally wrong, because this is the one ad-

dress in the CP/M system that must

remain fixed. Why? Consider what will

happen when a second RSX is being

loaded. It will be unable to locate the

BIOS and therefore cannot correctly in-

tercept BIOS functions!

The warm-boot address at 0001 should

never be altered! It is the one fixed point,

the lodestone, of the entire CP/M system.

Instead, the warm-boot chain should be

intercepted at the BIOS vector (at

bios -I- 4) and redirected to the RSX from

that point.

Unfortunately, this absolutely essential

role of 0001 has apparently not been

widely understood. Beth Digital Research

(in XSUB)—the designers of

CP/M!—and MicroPro (in the WordStar
"R" command) occasionally commit the

error of changing 0001 , ana their mistakes

have been perpetuated by several public-

domain programs as well.

Figure 3 shows a correctly modified

warm-boot chain with the RSX installed.

At 0000, control continues to jump to the

BIOS, where it is then redirected to

"rsxl+3" and then to the RSX's warm-

boot routine. Eventually, control flows to

the copy of the command processor that is

already in memory, bypassing the bios

warmboot routine and without reloading

the command processor. We will cover the

details of the RSX warmboot routine in

the example below.

A Second RSX
Adding a second RSX is similar to

loading the first one (see Figure 4) and in-

volves splicing the new RSX into the

BDOS and warmboot chains. Memory is

allocated below the first RSX, 0006 is

redirected to the head of rsx2 where

BDOS calls are intercepted and eventually

vectored to rsxl . The warm-boot intercept

at bios + 4 is redirected to rsx2 + 3, which

eventually vectors to rsxl's warmboot
routine.

Removing an RSX
The standard RSX header includes an

entry that is called to remove the routine.

It deallocates the RSX's memory and

removes itself from the BDOS and warm-
boot chains. It also removes its BIOS in-

tercepts, if any. If there is more than one
RSX in memory, the lowest one must be

removed first, to ensure that the addresses

(or data) that are restored are correct.

Each RSX's remove routine first deter-

mines that it is, in fact, lowest before

executing the rest of the removal code.

The standard header anticipates that

most RSXs will be self-removing,

provided that they are the bottom RSX
when the remove entrypoint is called.

However, some RSXs, such as DateStam-
per and DosDisk, make extensive

modifications to the BIOS and BDOS. A
good deal of additional code and data

would have to be resident in the RSX for

these RSX's to be self removing.

Therefore, these RSXs are removed by
their own customized loaders. If the

remove entrypoint is called by any other

program it will do nothing except to

return the carry flag clear, indicating that

the RSX has not been removed.

OKDRIVES, or, Who's On Line?

This is the third Advanced CP/M
column, and by now some readers will

have anticipated my penchant for turning

to an actual application to illustrate the

32 The Computer Journal / Issue #34



DosDisk™ -- An MS-DOS Disk Emulator for CP/M

DosDisk, for CP/M 2.2 and CP/M Plus Z80 computers,

allows CP/M programs to use files stored on an MS-DOS
(PC-DOS) floppy disk directly - without intervening

translation or copying. You can log into the pc disk,

including subdirectories. Regular CP/M programs can

read, write, rename, create, delete, and change the

attributes of MS-DOS files. The disk, with any modified

files, can immediately be used on a pc.

Preconfigured Versions are available for:

all Kaypros with a TurboRom
all Kaypros with a KayPLUS rom and QP/M
Xerox 820-1 with a Plus 2 rom and QP/M
Ampro Little Board

SB180 and SB180FX with XBIOS
Morrow MD3
Morrow MD11
OneacON!
Commodore CI 28 with CP/M 3 and 1571 drive

The resident system extension (RSX) version uses at)0ut

4.75K of main memory (plus 2K for the command
processor). For the SB180 and SB180FX, a banked

system extension (BSX) version is also available; it needs

about 5K of the XBIOS system memory and uses no main

memory.

A Kit Version requires advanced assembly-language

experience in Z80 programming and technical knowledge

of your computer's BIOS. You will need to write a special

DosDisk overlay.

The BIOS must be able to be configured to use the

physical parameters of an MS-DOS disk and to use the

logical disk parameter header (dph) and disk parameter

block (dpb) values supplied by DosDisk. The driver code

itself (the code that programs the disk controller, reads and

writes sectors, etc.) must reside in the BIOS.

On DateStamper, QP/M and CP/M 3 systems DosDisk
automatically stamps MS-DOS files with the current date

and time when they are created or modified.

DosDisk supports the most popular MS-DOS format:

double-sided double-density 9-sector 40 track disks. It

cannot format disks or run MS-DOS programs.

Z3PLUS™ -The Z-System for CP/M Plus

The state-of-the-art ZCPR version 3.4 system for CP/M
Plus (CP/M 3) Z-80 computers installs automatically and

retains CP/M Plus advantages - fast disk operations,

redirection of screen, keyboard and printer; automatic

execution of submit files.

Z3PLUS is fully configurable and requires no assembly. It

is shipped with key Z tools and will run most Z-System
CP/M 2.2 utilities without modification.

DosDisk and Z3PLUS are available directly from the Check Product:

author of DateStamper and BackGrounder ii:

[ ] DosDisk preconfigured version $30.00

Plu*Perfect Systems [ ] DosDisk kit version $ 45.00

410 23rd St. [ ] DosDisk manual only $ 5.00

Santa Monica, CA 90402 [ ] DosDisk BSX and RSX,
for SB180/SB180FX with XBIOS $35.00

[
]Z3PLUS $69.95

Name: (in California, 6.5% sales tax)

Address: shipping/handling $ 3.00

total enclosed $

Computer: DosDisk ©, Z3PLUS ©
Copyright 1987, 1988 by Bridger Mitchell

Operating system:
'^' ^ /a

Disk format:



technical subject at hand. This example

grew out of a conversation with Ben Grey,

who was seeking a general-purpose

method of limiting access to certain drives

on a remote system.

Many users have computers with a mix
of actual and "missing" logical drives.

For example, A: and B: might be floppies

and M: a ram disk.

How can an application program
determine whether it should attempt to

use a particular drive? Simply trying to

select the drive with a BDOS call is playing

Russian roulette. If the drive is invalid, or

doesn't exist, the BDOS will complain

with an error message and terminate the

application with extreme prejudice—an

abrupt warm-boot.

ZCPR34 allows the user to specify a

vector of vjilid drives, stored in the Z-

System extended external environment at

offset 34h. The ZCPR34 command
processor tests this vector before attem-

pting to log in a drive, and the same test

can be made by an application once it

determines that it is indeed running in a

system with an extended external en-

vironment. The extensions are listed in my
previous Advanced CP/M column.

Frequently, however, the programmer
wants his application to run smoothly on

other CP/M systems that aren't (yet) run-

ning ZCPR34. And users occasionally

need a method of taking an erratic drive

"off line" for maintenance. Is there a

general, portable method of (1) deter-

mining which drives are currently

available? and (2) making individual

drives inaccessible?

, OKDRIVES in Figure 5 is one method
of dealing with this challenge. It is a small

RSX that maintains a vector of valid

drives and monitors all BIOS disk-select

calls. If a drive is selected that is not in the

vector, it returns a select error. Otherwise,

it allows the BIOS to select the drive. In

order to set and change the list of valid

drives, the RSX adds one BDOS function

to the system. That function call serves

the dual purpose of setting the valid (and

invalid) drives, and reporting what the

current setting is.

Structure of the RSX
OKDRIVES is written to be assembled

into a ZRL (Z-ReLocatable) file and
loaded with JetLDR, which I also

described in the previous column.

The RSX is made up of the standard

RSX header, custom code to perform the

operations on the valid-drives vector, and

an initialization section, I have written the

RSX in a quasi-modular fashion, so that

almost all of the tedious code to install

and remove the RSX can be copied in a

few blocks and reused in any other RSX.
This RSX uses one extended BDOS

function number—241. When the RSX
has been installed and the BDOS is called

Figure 5

title okdrlves . asm 6/25/88 (o) 1988 Bridger Mitchell

This rsx sets the vector of valid drives allowed by the bios.

If called with de == 0, it returns the current valid-drives vector.

usage to set valid drives:

Id

Id

call

CDRIVEFN
de, <veotor>

5

; bit = A:, .... bit 15 = P:

usage to determine currently-valid drives:

Id

Id

call

CDRIVEFN
de,0000

5

We need an extended bdos function number.

; 0FlhDRIVEFN equ

ABORT equ

21,1

0ffh

Name the REL image with ''RSX'' plus 0-3 characters of identification.

In this case, we've used the rsx's bdos function number (24l)

.

name RSX241 'RSX" required

All of the code within the bracketed regions Is the same for any rsx

loaded by JetLDR. It can be copied intact when creating a different rsx.

Plu«Perfect Systems RSX Extended Header-

The rsx code goes in the CSEG (code segment).

CSEG

rsx: .IP rsxstart

jp rsxwb

.1P rsxremove

rsxwba: dw $-$

rsxprot :dw rsx

dw rsxname

rsxnext :JP $-$

next: JP %-%

nextwb

:

dw %-%

;\

-> next wb or ccp entry

-> next rsx or bdos

+03

+06

+09

+0B

+0D

; +0F

; +12

; +15

The custom code for this rsx begins here.

rsxname : db

i

vector: dw

'OKDRIVES',0 ; nul-terminated name of rsx.

millllllllllllb ; <-- set bits for valid drives

PONMLKJIHGFEDCBA ; <— must be terminated by 'B' char.

This RSX'S bdos function.

enter: c = DRIVEFN

de == to get current ok-drives vector

de != to set the current vector to de

return:

hi = vector of ok drives

34 The Computer Journal / Issue #34



rsxstart:

get:

set:

Id a,o

op DRIVEFN ; if not our function

Jr nz.next ; . . on to the next rsx/bdos

Id a,e ; set vector?

or d

Ji- nz,set ; ..yes

Id hi, (vector) ; no, return the drive vector in hi

Id a,l ; return a !=

ret

ex de,hl

set 0,1 ; ensure drive A: always valid

Id (vector) hi ; save the new drive vector

Id a,l ; and return it in hi

ret

The bios seldsk intercept

enter: c = requested drive

exit: hi == if drive not allowed

else continue to bios seldsk

rsxseldsk:

Id hi, (vector

Id a, 16

sub c

rsxsl: add hi, hi

dec a

Jr nz, rsxsl

Id hi, 0000

ret nc

j seldsk :jp $-$

shift ok-drives vector left

; prime error return

; NC if bit wasn't set

; jmp to bios seldsk routine

Restore this rsx's particular patches.

oustoin_remove

:

Id hl,(jseldsk+l) ; restore bseldsk address

Id (bios+lch),hl ; to bios jmp vector

ret

Standard RSX Code «

The warm-boot intercept.

rsxwb

:

call

Id

Id

or

sbc

Jr

Id

Id

rsxwbl: Id

JP

fix0001

hl,(blos+'i)

de , rsx+3

a

hl,de

nz, rsxwbl

hi, (rsxprot)

(0006), hi

bc,(000'lh)

rsxnext

.new

; ensure correct page

; does bios wb addr

; point at us?

; no, we're not the bottom rsx

; we are, set our protect address

; get c = logged du for cop

; in case we're top rsx

The removal routine.

rsxremove

:

call oustom_remove ; do extra restoration for this rsx

Id

Id

hi, (nextwb)

(bios+'4),hl

; get saved original warmboot addr

; and restore it to bios jmp vector

When the caller terminates to a warmboot,

the next module (or bios, if none), will correct 0006.

Set CY flag to inform the removarl tool that this routine

has indeed taken action. (Some RSX's are not self-removing).

with this function number, it will set a

new vector of valid drives (if DE is non-

zero), or report the current vector (when

DE is zero). For example, to make drives

A:, B: and D: valid, call the BDOS with C
= 241, DE = 11 = 1011b.

The RSX must have a module name of

the form "RSX. .
.", so that JetLDR can

identify it. Following that, the standard

header begins the code segment at label

"rsx:".

Next come the unique data and code for

this RSX, beginning with its null-

terminated ASCII name and the vector of

valid drives. The static value of the vector

is assembled with all drives enabled.

The action begins at "rsxstart". Every

BDOS call is intercepted here and tested

for this RSX's function number. Most of

the time, it will be some other function,

and so control jumps to "next"—and
then on to either an RSX immediately

above this one, or the BDOS. However,
when the function number is for this

RSX, the routine proceeds to test DE for

zero and either load the valid-drives vec-

tor into HL, or set the vector to the value

in DE. In either case, the RSX returns to

the caller.

That's all there is to the added BDOS
function. But to make it work, the RSX
must also intercept the BIOS select-disk

routine, at "rsxseldsk". The code checks

the requested drive number against the

valid-drives vector, using a simple loop

that does a 16-bit left shift into the carry

flag. If the drive is not active, it returns

the BIOS select error (HL = 0). Other-

wise, it continues to the BIOS select-disk

routine.

Housekeeping Code
These two routines—"rsxstart" and

"rsxseldsk"—do all of the work; the rest

is necessary housekeeping. The
initialization code is needed only to verify

conditions and set up the RSX, so it is

assembled, beginning at label "init" in

the INIT named-common address

space. JetLDR will relocate this code into

a working buffer in low memory and
execute it there; it takes up no space in the

resident system extension. JetLDR
relocates the code segment of the RSX,
allocating space for it immediately below
the command processor or the lowest

RSX already in memory.
Initialization involves verifying that the

RSX can be correctly loaded, linking the

rsx into both the warm-boot and BDOS
call chains, and installing any additional

BIOS intercepts needed for this particular

RSX.
The "initlp" code checks each RSX in

memory, beginning with the lowest, to see

if an RSX with the same name is already

in memory. If so, it (indirectly) calls the

routine "custom twin". This routine

The Computer Journal / Issue #34 35



can accept, or reject a duplicate RSX; for

OKDRIVES a duplicate RSX would be an
error.

Provided no duplicate RSX has caused
termination, the search eventually reaches

the end of the RSX warmboot chain. If

there is no RSX currently in memory, then
the "rsxnext" address is set to the ccp en-

try. However, if one or more RSXs are

•already resident, the address is set to the

warmboot address in the header of the

currently lowest RSX.
Next, the RSX's warmboot routine is

linked into the BIOS's warmboot chain,

and the RSX's BDOS entry is linked into

the chain that begins on page-0 with the

jump instruction at 0005.

The final initialization step is to call

"custom init". For this particular RSX,
that code Unks the select-disk intercept

routine into the BIOS jump table.

Now, look back at the "rsxremove"
routine. It is in the code segment, because

the remove function must be resident

within the RSX. It first calls

"custom remove", to take care of

unlinking the BIOS select-disk intercept.

Then it unlinks the warmboot intercept

and exits with the carry flag set to signal

successful removal of the RSX.
There is one more step to unlinking the

RSX. When the next warm boot occurs, it

will be processed by the RSX immediately

above this one, or, if there is none, by the

BIOS. In either case, that routine will set a

new "protect" address on page-zero at

0006. Of course, this RSX must have an

essentially similar routine; it is at "rsx-

wb". It first calls "fixOOOl", a precaution

that ensures the correctness of the pointer

at 0001 to the actual BIOS jump vector.

Next, it determines whether this RSX is,

in fact, the lowest RSX in memory; it does

this by checking the BIOS jump's address

against the RSX address. Only if it is in-

deed the lowest does it set the protect ad-

dress on page-zero. Finally, it jumps to

the next higher RSX, taking care to first

load the current drive/user byte into C, in

case the next "rsx" is in fact the com-
mand processor.

The details of managing the two linked

lists—one pointing upward to higher

RSXs, the other pointing initially down-
ward from the BIOS and then to suc-

cessively higher RSX's—are tedious, but

necessary. But now, with JetLDR, most

of the work can be avoided, and only the

particular, custom elements of an RSX
need to be specially coded.

fix0001:lcl hi, (rsxwba)

Id (0001h),hi

sof

ret

; restore (0001) in case an errant

; application has tampered with It

; set CY to signal success

Before loading an RSX, JetLDR will first check for protected memory.
If it detects that memory is protected by a non-RSX header (e.g. a debugger)
it will cancel the load. Otherwise, JetLDR will call any
code in the _INIT_ named common, after the rsx module has been
loaded and relocated. This code will be located in non-protected
memory, and takes no space in the RSX.

Return parameter: A = indicates a good installation

A = ABORT = 0FFh = not installed

common /_INIT_/

Install the rsx. This code is standard for all rsx's,

except for:

custom_init

custom_twin

init: Id

Id

initlp: push

Id

add

Id

inc

Id

Id

or

sbc

pop

hi, (0006)

0,0

hi

de,09

hl,de

e,(hl)

hi

d,(hl)

hi, (0001)

a

hl,de

hi

nz,inittop

; hi = possible rsx, or bdos

; initialize count of rsx's

stack (possible) rsx base address

if candidate is an rsx

..the wbaddr will be here

get address

and compare

; warmboot addr not there, stop looking

we have an rsx in memory, is it our twin?

; count an rsx foundinc

push

call

pop

Jr

Id

add

Id

inc

Id

Id

dec

dec

dec

Jr

c

hi

ckname

hi

z,twin

de,0Fh+l

hl,de

a, (hi)

hi

h,(hl)

l,a

hi

hi

hi

initlp

; that rsx was't a twin, check for more

; get addr of next rsx's wboot Jmp

; back up to head of that next rsx

; now check that rsx

we're at the top of the (possibly empty) rsx chain

inittop:

inc

dec

Id

Jr

Id

hl,ccp+3

ZjSetnext

; any rsx's found?

; prepare to use cop entry address

; . .no

setnext:

Id

hi, (0006) ; yes, use bottom rsx's address

(rsxnext+1) ,hl ; save the next addr

; in the rsx chain to bdos/cop

install the rsx into the running system

Id hl,(blos+'i) ; save the bios's wb addr

Id (nextwb),hl ; in the header
Id hl,rsx+3 ; point the bios wb jump

Id (bios+'4),hl ; at the rsx wb vector

36 The Computer Journal / Issue #34



Id hl,blos+3 ; store wb addr

Id (rsx+09),hl ; in rsx header word

Id hi, (0006) ; get addr of next rsx or bdos

Id (next+l),hl ; and install it

Id hl.rsx ; finally, protect the rsx

Id (0006), hi

call oustoriLinit ; take oare of extras

ret

ckname : Id de,0dh ; offset to candidate rsx name point

add hl.de

Id a, (hi) ; get address

Inc hi

Id h,(hl)

Id l,a

Id de , rsxname ; compare to our name
cknamel : Id a,(de)

op (hi)

ret nz

ino (hi) ; candidate must be nul-terminated
dec (hi)

Jr nz,o!cname2

or a ; . .at our same byte

ret

oknaraeS : ino hi

ino de

Jr oknamel

; Handle, the case of a previously -loaded copy of this RSX.

twin: oall custom_twin

ret

»

Custom Initialization code goes here.

Do the particular patches for this RSX.

Note; this code is in the _INIT_ segment.

custom_init:

Id

Id

i

Id

Id

ret

hi, (bios+lch) ; get bseldsk address

(jseldsk+1) ,hl ; install it in rsx

hl.rsxseldsk

(bios+lch), hi

divert bios jump

to the rsx

This particular rsx should not be duplicated.

A different rsx might wish to query the user here,

print a warning, or whatever.

oustom_twin:

Id a, ABORT

ret

Include Identification info in the REL image.

JetLDR will display the bytes up to the first NUL byte

when the RSX is loaded.

common /_1D_/

i

db 'OKDRIVES: RSX prevents bios logins'

db 13,10

db 'Use BDOS function 241 (0Flh) to set de = drive vector',

e

Include whatever other named-commons are needed for this RSX.

JetLDR will resolve these labels for us.

common /_BIOS_/

bios equ $

common /_CCP_/

ccp equ $

end jokdrives.asm

Extending System Extensions

As the wag said, "I like standards,

because there are so many to choose
from!" The Plu*Perfect Systems RSX
header is just one way to add resident ex-

tensions to CP/M 2.2. But it is well tested,

provides for BIOS as well as BDOS system

extensions, and takes care to be com-
patible with other RSXs.

I have used these RSX structures in

BackGrounder ii—as well as its spooler,

printer redefinition module, and secure

memory allocator—in DateStamper, and
in DosDisk, achieving a high degree of

compatibility between them. More recen-

tly, Carson Wilson, Joe Wright and
others have adopted the Plu*Perfect

Systems header structure to add such ex-

tensions as quad-density disk drivers to a
BIOS and resident conditional-execution

processing (IF.COM) to ZCPR34.
This experience shows that a uniform

RSX header can, indeed, allow diverse

programs and applications to work
together. Several older programs, in-

cluding versions of BYE for remote
operation of a CP/M system, and ZEX
for in-memory submit processing could be
revised to use this interface, so that other

RSXs could be run while those extensions

are active.

In a CP/M 2.2 system that includes ad-

ditional memory, it is possible to make
system extensions "resident" without
subtracting from scarce memory for ap-

plications. Malcom Kemp has pioneered
this approach, called Banked System Ex-
tensions, by defining a similar BSX header
and providing loading/removal service in

the XBIOS system for the SB 180 and
SB180/FX computers. I developed both a
banked-memory DateStamper and a
DosDisk for this system. In fact, I am
completing this column on an XBIOS
system with banked DateStamping and a
DOS disk in drive C:, with no loss of
TPA!
The next time you wish your computer

had some missing capability, consider

whether it might be added as an RSX.
Those features may already be available in

products such as DosDisk, BackGrounder
ii, or Z3PLUS. If not, you may be able to

code the routines yourself and bring your
system to new levels of performance and
versatility.

The Computer Journal / Issue #34 37



Data File Conversion
Converting Macintosh Files with Turbo Pascal

by Tim McDonough

Art Carlson's recent article on conver-

ting foreign data files (Data File Conver-
sion, Writing a Filter to Convert Foreign
Formats. TCJ Issue #33) got me to

thinking. How many times does one of us

solve some application problem and then

take the solution for granted without ever

bothering to share it with the other users

around? Fairly often I would guess.

A few months ago, my wife and I con-

tracted with a local publisher to input the

data for thousands of mailing labels that

were to be used in a direct mail campaign.

We have both Macintosh and CP/M
machines available. The publisher uses a

Commodore C-128 to run his local office.

It was unimportant to the customer what
type of machine we used to enter the data

as long as he ended up with a file that had
a fixed number of fields per record, using

only a carriage return (ASCII 13) as a field

separator and a record delimiter.

The program that we normally use for

day to day operations on the Macintosh is

Microsoft Works. This program combines
word processing, spreadsheet, database

managment and telecommunications into

a single integrated package. What Works
doesn't do is give the user many options

when it comes to exporting database files

for use in other programs or other

machines. If you instruct Works to export

a file, it creates a plain ASCII text file that

has a tab character at the end of each field

and a carriage return at the end of each

record.

The problem was simple. What we
needed was a program or filter that would
search the exported file for tab characters

and replace them with carriage returns.

No problem, except that if you've ever

seen or used a Macintosh before, you will

recall that there is no command line inter-

face. Instead there is a sort of electronic

desktop with pull down menus, icons,

mice, etc. that make the machine quite

unlike a CP/M or MS-DOS computer.

This is not a tutorial on Macintosh
programming so I won't delve into a lot of

detail but let's just say that in order for a

normal Macintosh application to be so

user friendly the programmer has to go to

great lengths to craft a well behaved

program with all of the features Macin-

tosh users have come to expect.

The key things in the preceding
paragraph are normal and well behaved.
This filter program we need to write is

very limited in its use. Like Art Carlson's
PRDB.C, it would only be used a few
times and then archived.

One of the things that Apple never men-
tions too often is that the sophistication of
the Macintosh lies in the hundreds of
carefully crafted routines that are a part

of the Mac ROMs and that the computer
itself is a fairly traditional, 68000 based
design. It is possible, although generally

not desireable from the user's point of
view, to write a plain vanilla computer
program on the Macintosh. In fact most
of the Macintosh software development
systems such as Borland's Turbo Pascal

make this type of program just as easy to

write on a Mac as it is on a CP/M based
computer.

The solution to our conversion problem
is just such a program. Listing 1 is the

Turbo Pascal source code for TAB-
Con.pas, the program that converts tabs

to carriage returns. When the program is

run, it prompts the user for two file names
and then procedes to convert the input

file, displaying a running count of the

number of records processed as it goes.

When the program ends, the user id retur-

ned to the Apple Finder program, which is

what nearly all normal Macintosh ap-

phcations do when the user exits.

The Pascal Program
The first block of most Pascal programs

is the const block where constant

declarations are made. Constants are used
to improve the readability of a program
and make software maintenance easier

when necessary. Two constants are

decalared, TAB and CR. The symbol
TAB is given the ASCII value 9 and CR is

given the ASCII value 13.

The next block of the program is the var

block which contains the programs global

variable declarations. RawText and
AsciiText are decalred to be of type text.

Text is the Pascal type that refers to a file

of ASCII characters. InFile and OutFile
are decalred to be type string. These
variables will be used to hold the names of

the input and output files involved in the

conversion. The variable C is declared to

be of type char. This variable is used to

hold a single character as it is processed by
the program. Next to be declared is an in-

teger vax'iatoXt count. Count is used to hold

the value of the running counter that is

displayed to show the conversions process

along the way. Finally, the variable valid

is decalred to be of type boolean. A
boolean variable can be only one of two
states, true or false, as its name implies.

Valid is used as a flag to indicate the result

of some crude error checking on the file

names supplied by the user.

The remainder of TABCon.pas consists

of two Pascal procedures and a short

main program. The first procedure,

initialize, clears the Mac's screen, displays

some static text and messages and prom-
pts the user for the names of the input and
output files. Before trying to open either

file, the input is checked and if the user

has pressed the RETURN key in response

to either prompt, the flag valid is left set

to false and neither file is opened. The
second procedure, cleanup, checks to see

if the valid flag is true and if it is the files

are closed and a message printed to the

user. These procedures perform no action

by themselves and must be called from the

main program in order to have any effect.

LISTING 1

program TABCon;

{

Program: TABCon.pas

Language: Turbo Pascal

Environment: Macintosh

Author: Tim MoDonough

Cottage Resources

Suite 3-672
KB? Stevenson Drive

Springfield, IL 62703

Date: December 4, 1987

38 The Computer Journal / Issue #34



TABCon was written to remove the TAB characters used by

Microsoft Works to seperate fields in exported databases. It

replaces every occurence of a TAB charcater with a carriage

return

.

T. MoDonough December 4,1987

)

) and ( OutFile <>

const

TAB = 9;

CR = 13;

RawText, AsciiText : text;

InFile, OutFile : string;

C : char;

count : integer;

valid : boolean;

procedure initialize;

begin

count := 0;

ClearScreen;

Writeln( 'ASCII Conversion Program

GotoXY( 1, 5 );

write ( 'Input file name:' );

GotoXY( 1, 7 );

write ( 'Output file name:' );

GotoXY( 1, 9 );

write ( 'Records processed;' );

GotoXY( 21, 5 );

readln( InFile );

valid := FALSE;

GotoXY( 21, 7 );

readln( OutFile );

if ( InFile <>
begin

reset ( RawText, InFile );

rewrlte( AsciiText, OutFile );

valid := TRUE;

end;

end; (* of procedure *)

procedure cleanup;

begin

if valid = TRUE then

begin

close ( RawText );

close ( AsciiText );

end;

GotoXY( 1,11 );

Write ( 'Conversion complete. '

)

end; (» of procedure *)

begin

Initialize;

while not eof( RawText ) do

begin
read( RawText, C );

if C = chr( CR ) then

begin

count := count + 1;

GotoXY( 21,9 );

Write ( count: 10 );

end;

if C = chr( TAB ) then

C := chr( CR );

write( AsciiText, C );

end;

cleanup;

end.

- <TAB> -> <CR>' );

) then

The last few lines comprise the main
body of the Pascal program. First the

initialize procedure is called which opens

the files as described above. Next a loop is

executed as long as the the intrinsic fun-

ction, eofO, does not return the value

true. The loop performs the following ac-

tions: A character is read from RawText;
if the character is a carriage return then

the counter is incremented and displayed;

if the character is a tab then its value is

converted to that of a carriage return;

finally, the character either as originally

read or after it is converted to a carriage

return is written to the output file. This

process happens again and again until the

value of eof(RawText) becomes true

signalling the program that the end of the

input file has been reached. Finally the

procedure cleanup is called to close the

files as described above.

The very last line of the program is the

word end followed by a period. This

signifies to the Pascal compiler that this is

the end of the main body of the program
and the source file.

Loose Ends
The TABCon.pas program doesn't en-

tirely solve the conversion process. Con-
verted or not, stuffing 3.5 inch Mac disks

into a 5.25 inch Commodore C-128 disk

drive doesn't work very well. Aside from
the physical incompatibility, the Mac's
drives hold about 800K of data, much
more than a standard Commodore flop-

py. The solutions to both these problems

involved no programming. The mailing

list databases were broken up into chunks

of about 50K bytes each. This size was

chosen by the publisher to make them
easy for his mailing list management sof-

tware to manipulate. The physical incom-

patibility was solved by Minnie, a local

multi-user bulletin board system. As we
finished our data entry and format con-

version of the files, they were uploaded to

the publisher's private directory on the

BBS. He then downloaded them at his

convenience. If you use such a process for

your own work, check with the sysop fir-

st. We are fortunate in our area to have a

local system with several hundred
megabytes of online user storage and
multiple incoming phone lines. The tran-

sfer could have been done directly to the

publisher's computer but it was more
convenient to use the BBS. Transfering

hundreds of thousands of bytes to small

PC-based single user system might not win

you any friends.

The Computer Journal / Issue #34 39



E Back Issues Available:

Iggue Number 1:

• RS-232 Interface Part One
• Telecomputing with the Apple II

• Banner's Ckilumn: Getting Started
• Build an "Epram"

iMue Number 2;

• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler : Part 1

• Review of Floppy Disk Formats
• Sending Morse Code with an Apple II

• Bfqginner's Column: Basic Concepts

and Formulas

Issue Number 3;

• Add an 8067 Math Chip to Your Dual
Processor Board
• Build an A/D Converter for the Apple
II

• Modems for Micros
• The CP/M Operating System
• BuUd Hardware Print Spooler : Part 2

Issue Number 4:

• Optronics, Part 1: Detecting,

Generating, and Using Light in Elec-

tronics
• Multi-User: An Introduction
• Making the CP/M User Function More
Useful
• Build Hardware Print Spooler: Part 3

• Beginner's Column: Power Supply
Design

Issue Number 6:

• Build High Resolution S-100 Graphics
Board: Part 1

• System Integration, Part 1: Selecting

System Components
• Optronics, Part 3 : Fiber Optics
• Controlling DC Motors
• Multi-User: Local Area Networks
• DC Motor Applications

Issue Number 8:

• Build VIC-20EPROM Programmer
• Multi-User: CP/Net
• Build High Resolution S-100 Graphics

Board: Parts
• System Integration, Part 3: CP/M 3.0

• Linear Optimization with Micros

Issue Number 14:

• Hardware Tricks
• Controlling the Hayes Micromodem II

from Assembly Language, Part 1

• S-100 8 to 16 BitRAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter-

facing the Sinclair Computers, Part 2

Issue Number 15:

• Interfacing the 6522 to the Apple II

• Interfacing Tips & Troubles: Building

a Poor-Man's Logic Analyzer
• Controlling the Haye^ Micromodem II

From Assembly Language, Part 2

• The State of the Industry
• Lowering Power Consumption in 8"

Floppy Disk Drives
• BASE: Part Three

Issue Number 16:

• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the S-100 Bus and the 68008 CPU
• Interfacing Tips & Troubles: Build a
"Jellybean" Logic-to-RS232 Converter

issue Number 18:

• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• S-100 Graphics Screen Dump
• The LS-lOO Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-
trol, Part 1

• The Computer Comer

Issue Number 19:

• Using The Extensibility of Forth
• Extended CBIOS
• A $500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-
trol, Part 2

• Multitasking and Windows with CP/M:
A Review of MTBASIC
• The Computer Comer

Issue Number 20;

• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a S-100 Floppy Disk Controller:

WD2797 Controller for CP/M 68K
• The Computer Comer

Issue Number 21

:

• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:

Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Comer

Issue Number 22:

• NEW-DOS: Write Your Own Operating
System
• Variability in the EDS C Standard
Library
• The SCSI Interface: Introductory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner

issue Number 23:

• C Column: Flow Control & Program
Stmcture
• The Z Column: Getting Started with

Directories & User Areas
• The SCSI Interface: Introduction to

SCSI
• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System

40

• INDEXER: Turbo Pascal Program to

Create Index
• The AMPRO Little Board Column

Issue Number 24:

• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for

CP/M
• The C Column : Software Text Filters

• AMPRO 186 Column: Installing MS-

DOS Software
• The Z Column
• NEW-DOS: The CCP Internal Com-
mands
• ZTIME-1: A Realtime Clock for the

AMPRO Z-80 Little Board

Issue Number 25:

• Repairing & Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
issue Number 26:

• Bus Systems : Selecting a System Bus
• Using the SB180 Real Time Clock
• The SCSI Interface: Software for the

SCSI Adapter
• Inside AMPRO Computers
• NEW-DOS: The CCP Commands Con-

tinued
• ZSIG Comer
• Affordable C Compilers
• Concurrent Multitasking: A Review of

DoubleDOS
Issue Number 27

:

• 68000 TinyGiant: Hawthome's Low
Cost 16-bit SBC and Operating System
• The Art of Source Code Generation:

Disassembling Z-80 Software
• Feedback Control System Analysis:

Using Root Locus Analysis and Feed-

back Loop Compensation
• The C Column: A Graphics Primitive

Psckncc
• The Hitachi HD64180: New Life for 8-

bit Systems
• ZSIG Comer: Command Line

Generators and Aliases
• A Tutor Program for Forth: Writing a

Forth Tutor in Forth
• Disk Parameters: Modifying The
CP/M Disk Parameter Block for Foreign

Disk Formats
• The Computer Corner

Issue Number 28:

• Starting Your Own BBS: What it takes to

run a BBS.
• Build an A/D Converter tor the Ampro
L.B.: A low cost one chip A/D converter.

• The Hitachi HD64180: Part 2, Setting the

wait states & RAM refresh, using the PRT,

and DMA.
• Using SCSI for Real Time Control:

Separating the memory & I/O buses.

The Computer Journal



• An Open Letter to STD-Bus Manufactur-

ers: Getting an industrial control job done.

• Programming Style: User interfacing

and interaction.

• Patching Turbo Pascal: Using disassem-

bled Z80 source code to modify TP.

• Choosing a Language for Machine

Control: The advantages of a compiled

RPN Forth like language.

Issue Number 29:

• Better Software Filter Design
• MDISK: Adding a 1 Meg RAM disk to

Ampro L.B., part one.
• Using the Hitachi HD64180: Embedded
processor design.

• 68000: Why use a nes OS and the 68000?
• Detecting the 8087 Math Chip
• Floppy Disk Track Structure
• The ZCPR3 Corner
• The Computer Corner.

Issue Number 30:

• Double Density Floppy Controller
• ZCPR3I0P for the Ampro LB.
• 3200 Hacker's Language
• MDISK: 1 Meg RAM disk for Ampro LB,

part 2
• Non-Preemptive Multitasking
• Software Timers for the 68000

LilliputZ-Node

The ZCPR# Corner

The CP/M Corner

The Computer Corner

Issue Number 31:

• Using SCSI for Generalized I/O: SCSI
can be used for more than just hard drives.

• Communicating with Floppy Disks: Disk

parameters and their variations.

• XBIOS: A replacement BIOS for the

SB180.

• K-OS ONE and the SAGE: Demystifing
Operating Systems.
• Remote: Designing a remote system
program.
• The ZCPR3 Corner: ARUNZ documen-
tation.

• The Computer Corner

Issue Number 32:

• Language Development: Automatic
generation of parsers for interactive

systems.
• Designing Operating Systems: A ROM
based O.S. for the Z81.
• Advanced CP/M: Boosting Performance.

• Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FOB.
• WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCII terminal

based systems.
• K-OSONEandtheSAGE: Part 2, System
layout and hardware configuration.
• The ZCPR3 Corner: NZCOM and ZC-

PR34.

Issue Number 33:

• Data File Conversion: Writing a filter to

convert foreign file formats.
• Advanced CP/M: ZCPR3PLUS, and how
to write self relocating Z80 code.
• DataBase: The first in a series on data
bases and information processing.
• SCSI for the S-100 Bus: Another exam-
ple of SCSI's versatility.

• A Mouse on any Hardware: Implemen-
ting the mouse on a Z80 system.
• Systematic Elimination of MS-DOS
Files: Part 2—Subdirectories and extnded
DOS services.

• ZCPR3 Corner: ARUNZ, Shells, and pat-

ching WordStar 4.0

TCJ ORDER FORM
Subscriptions U.S. Canada Surface

Foreign

Total

6 issues per year
n New in Renewal lyear

2 years
$16.00

$28.00

$22.00

$42.00

$24.00

Back Issues—
Six or more—

_£s

$3.50 ea.

$3.00 ea.

$3.50 ea.

$3.00 ea
$4.75 ea.

$4.25 ea.

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank.

D Check enclosed D VISA D MasterCard Card#.

Expiration date Signature

Name.

Address.

City. _State_ .ZIP

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

The Computer Journal / Issue #34 41



M O V In G?
Make certain that TCJ follows you

to your new address. Send both old and

new address along with your

expiration number that appears on

your mailing label to

:

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, MT 59912

If you move and don't notify us, TCJ

is not responsible for copies you miss.

Please allow six weeks notice. Thanks.

Registered Trademarks

It is easy to get in the habit of using

company trademarks as generic terms, but

these registered trademarks are the

property of the respective companies. It is

important to acknowledge these

trademarks as their property to avoid their

losing the rights and the term becoming

public property. The following frequently

used marks are acknowledged, and we
apologize for any we have overlooked.

, Apple II, II +, lie, lie, Lisa, Macin-

tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-

per, BackGrounder ii, DosDisk; Plu*Per-

fect Systems; Clipper, Nantucket; Nan-

tucket, Inc. dBase, dBase II, dBase III,

dBase III Plus; Ashton-Tate, Inc.

MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.

IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Cor-

poration. Turbo Pascal, Turbo C;

Borland International. HD64180; Hitachi

America, Ltd. SBlSOMicromint, Inc.

Where these, and other, terms are used

in The Computer Journal, they are

acknowledged to be the property of the

respective companies even if not

specifically acknowledged in each oc-

currence.

FOR SALE

Apple II Plus, 64K RAM, two Apple Disk II drives, Apple drive

controller card, Epson parallel printer card, Zenith green monitor,

Original Apple manuals, Word processor, Database system,

Assembler, books. All software original disks, not pirated. . . $525

Vista A800 8 inch double density disk controller for the Apple

II -I- . Complete in box with manual and patch disks for DOS 3.3. I

used it with a Shugart 850 DSDD drive $120

John Bell Peripherals for the Apple II -i- and Me. 6522 Parallel

interface #79-295A, A-D Converter #81-132A, Eprom Programmer

#80-244A with Textool socket. All boards factory assembled.

Total forall three boards $100

Shugart 860 8 inch half height double sided drive, in box,

unused $250

Zenith Z-19 Terminal. Needs work (video board?) $95

Davidge DSB-4/6 Z80 single board computer. Nice litte board,

runs both 5.25 & 8 inch drives. With system/utilities disk and

manual $85

AMPRO Little Board Bookshelf unit. Z80 CPU, half height 5.25

double sided drive, 10 iVIbyte hard drive, SCSI port, ZCPR3. Up

and running, works perfect, but I have four of them. Good BBS
base unit. With system disks and manual $700

Morrow Micro Decision 2.2 Motherboard in Morrow case with

power supply— no drives. Manuals and disk included $150

Tektronix 4023 graphics terminal $95

All prices plus shipping.

The Computer Journal

190 Sullivan

Columbia Falls, MT 59912

Phone (406) 257-91 19

42
The Computer Journal / Issue #34



Computer Corner

(Continued from page 44)

MSDOS programs as well. The needed

additions for MSDOS are more memory
and the compatible video controller card.

Although this sounds good, my main

interest was bringing up CP/M 68K using

all the same cards except the CPU. I have

tried a few times so far, but have not

found all the problems yet. GodBout had

configured the CP/M 68K for their Disk

lA and I am using a disk 1. The main

difference is how they use ROM space at

boot time. The disk 1 has only 256 bytes

available, while the lA has more. This

means I have to put my boot ROM
elsewhere and have the disk 1 jump to it.

This is where my playing has left me at

present, burning new ROMs and trying it

all out. Since moving and rebuilding my
computer room are taking priority it will

be some time before I can report on this

project.

A Last Quick Shot

Another project has appeared on the

horizon, writing a book. As with all new
books out, this one has to do with the PC
systems. This forced me to buy another

PC clone, one more closely related than

my favorite Heath/Morrow 171/Pivot. I

tried a desk top publishing system on the

171 and got no where using the keyboard

(might work with a mouse—will try that

later). I have also been using an extension

box with the 171 and found it unable to

reset to a hard disk on crashes (must kill

^1 power to get HD working properly

again). The last problem with the 171 is

the CGA screen, which is just

unacceptable for desk top publishing.

The solution is a newer PC clone with

15 Meg of hard disk. I got all of that last

weekend at a swap for $475. It includes

Hercules graphics, which I like better than

CGA and EGA, as I am not that crazy

about color. I did have some problems

which I am sure is typical for many users.

I backed up the hard disk on the 171 using

utilities I had loaded on it some time ago.

The new PC had version 3.21 of DOS, the

same version that was suppose to be on

the 171. Well as you can likely guess,

when I went to restore my old data to the

new hard disk it didn't work.

I would load the disks into the system

and it would prompt me to add disks and

blink like it was working. I thought

something was wrong because it took only

5 minutes to load all the 18 disks.

Checking the directory showed that

nothing happened. I watched the whole

routine again and all that was happening

is the system read the disk and checked the

directories and for some reason decided

that none were usable and so asked for the

next disk in order. When I used the same

restore from the disk that I got the backup

from the program worked correctly. I also

noted that it displayed a new message

indicating that I was restoring data to a

fixed disk.

In trying to figure out whether or not I

was doing something wrong I checked the

Heath/Zenith manuals and their versions

of backup and restore. I like theirs better

as it contains a help screen as well as

telling you which version of the program

you are using. The official backup and

restore give you no idea which version you

are using and as such problem like I

describe are all to easy to occur. If most

readers are like myself, you too may have

6 to 10 versions of DOS floating around,

all with possibly different versions of

utilities.

The answer to these problems is proper

storing and cataloging of versions by the

user. I need to go through and make sure

all systems contain exactly the same DOS
and utilities. Microsoft on the other hand

could make life easier by adding prompts

to their programs that tell what version

you have just loaded. It also would have

helped if some form of error message

could be displayed saying that I was trying

to use an incompatible version of restore.

As I think about all this, it reminds me of

how people never learn. I can remember

saying things like this eight years ago with

some of the CP/M programs just then

out. Oh well, two steps forward and three

back . .

.

That also reminds me of the times past,

when finding time wasn't so hard. Right

now I am so busy and have so many plans,

like contacting Joe Bartel at the SOG next

week, that it gets hard for me to find the

time to write. Hopefully the SOG will give

me plenty to write about. I also hope that

my systems will be back together as they

are now in pieces in temporary

storage.

Call For Papers

TCJ is establishing a forum on the

following areas, and we welcome your

submissions and proposals.

Candidates for membership in the

peer review and advisory groups,

including group coordinators, will

also be considered.

• Education in tlie Next Decade —
Our contacts with both the educators
who are preparing the curriculums
and the people in Industry who need
to employ workers with the necessary
skills, indicate that the requirements
are changing. Industry sources say
that current graduates do not have
the knowledge to fill available real

world positions, and the educators
say that they do not have the course
material and specific requirements
needed to implement the courses.

TCJ invites papers from both
Academia and Industry to discuss the

problem and propose solutions.

• Language Development — There
Is a great need for language
development in the areas of

command parsers, user interfacing,

custom languages, ROM based
embedded controller systems, etc.

We need papers covering both the

theoretical and practical aspects
from the viewpoints of both the

developers and the users.

• Database Deveiopment — The
commercial programs are very

powerful, and there are good texts

which explain the commands and
functions. What is missing is

tutorials on the concepts of the

practical aspects of designing and
developing a database — the nitty-

gritty details on implementing a

database rather than an explanation
of the tools.

There is also a need for papers on
using high level languages to replace
or supplement DBMS programs
where it is easier or more efficient to

perform some of the operations
outside of the DBMS.

Other suggested topics are
welcome. Query regarding book or

monograph manuscripts.

The Computer Journal
190 Sullivan

Columbia Falls, MT 59912
(406)257-9119

The Computer Journal / Issue #34 43



THE COMPUTER CORMER

by Bill Kibler

BUSY, BUSY, BUSY. This article

catches me on the run and then some. We
are in the process of moving to a fixer up
house with some land and have been

finding everything needing fixing. Toss in

a pending trip to the SOG in Oregon and
that leaves little time for computing.

I do have some words of wisdom and

some experiences to relate, and they start

out with Forth. Since I bought the Novix

Forth engine, I have become interested in

other such machines. A friend of mine

gave me his Rockwell Forth evaluation

system. This machine uses the 65F11 or

65F12. These devices are 6502s, with

internal ROM, timers and I/O ports. The
ROM conteiins a small Forth kernel and

can be brought up to run your application

without any other Forth code.

The development system does have an

extra 2716 EPROM that contains utilities

for accessing a disk drive and reading and

writing screens. The development ROM is

still in need of more work to provide all

the features of a normal Forth, but what

you do get is enough to get the system into

working shape quickly.

My interests were in building a demo
module to show how Forth could be used

to control hardware. The idea is to have it

run a mock elevator system. A stepper

motor would run it up and down, while

switches control its stopping at the proper

floor. So far I have found a few bugs in

the system, which is why I got the unit in

the first place. The manual shows a timer

routine that uses the interrupt ability. The
screens of code will not work as listed. I

tried them and they would lock the system

up every time. The solution was minor but

makes me worry about the overall design.

Rockwell added some new instructions to

help in changing bits in memory locations.

Using these instructions will lock the unit

up as will using a push or pop inside of the

interrupt routine. By not using the extra

instructions and saving your registers to

allocated memory (in place of push and

pop) the program works most of the time.

This problem has stopped my project

currently, until I get a chance to contact a

company in Canada. The Forth

dimensions has a ad from the Canadian

company who has just released a new
product using the chips. I hope they have

found all the problems and have fixes for

them. I will let you know more about the

company and the problems after talking

with them.

RTX2000
At the last local Forth meeting, a sales

rep for Harris devices gave a talk on the

RTX20(X). The RTX is the Novix core

with several other ASIC devices added on.

Harris has bought the rights to use the

Novix Forth core in their ASIC library of
devices. The rep said that several big

companies have already used the Novix
core for their special applications. The
RTX is the first product from Harris in

which they have a general purpose

approach. They promise to produce
several more versions with various special

features and uses in mind.

The RTX2000 is their Real Time
express device. The market is real time

applications such as graphics, CNC
machines, and whatever you can dream
up. The device consists of the Novix core,

static RAM for the stacks, a stack

controller, a memory management unit,

interrupt controller, timers, and a ASIC
bus interface. The Novix needed external

stacks, so the RTX's internal RAMs save

48 pins. The RTX is housed in a 84 pin

array compared to the Novix's 121 pins.

There are also 18 address lines for 1 Meg
of memory (all 16 bits wide).

Harris has cleaned up the entire Novix
and solved a few problems from the past.

Their added devices make the unit perfect

for many applications that would be hard

to wire together using the Novix. I am
already hot to put it a few places, even at

$200 dollars a pop presently. Their are

some problems, like the 10 Megahertz

speed. At that speed you will need 50 NS
or better static RAMs for memory. They
have added a wait circuit which will help

with slow RAMS and the memory cost,

but you will be hard pressed to get a real

fast system for less than $2000.

I didn't really cover speed, but fast it is.

The 10 megahertz should produce about

15 MIPS, that is 15 million instructions

per second. One of the members
commented that a company back east

supposedly emulated the 80286 on a

Novix (6.5 MIPS) and was able to run

programs at twice the speed of the AT
type systems. Now I don't have any facts

to back that up, but my own Novix is so

fast it can do everything with time to

spare. It is currently housed in a clear

plexiglas® box to show off the very few

parts involved. In software it does all the

reading and writing of the disk drive,

reads the PC compatible keyboard, and

supplies all signetls to a TTL PC
compatible monitor. My system all fits

into the 8 by 9 by 9 inch box, including the

monitor, but not the keyboard.

Harris has two ways you can play with

their RTX, a PC development board and

a stand alone starter board. The PC unit

goes for about $4000, less if you buy
more, and comes complete with software

(lots, include a C compiler) and manuals.

The software allows using the DOS as

I/O. The stand alone has a monitor and
serial interface system for downloading

screens from a host PC. The stand alone

cost is about $1500 and we figure that is

cheaper than the cost of the parts

separately (remember it uses SONS static

RAMS!).
I will keep you informed about the

device as more information becomes

available. If I can find a buyer for my
Novix in a plexiglas box system, I will buy

a RTX and make a system around it.

Actually I think these are Christmas

dreams in the heat of the summer.

SlOO AGAIN?
Yup, I got some newer SlOO cards and

have been playing a little with them. I

recently bought a GodBout SlOO system

for $100. Now that is 2 eight inch drives

(double sided) and a complete CPU
8085/8088 system. It is now up and

running (had a few bad devices and

jumpers) and works rather nice. You can

jump between CP/M 85 and CP/M 86

programs just by typing their name. If I

had the money or time I could even get

their new concurrent CP/M and run

(Continued on page 43)

44 The Computer Journal / Issue #34


