
Issue Number 33 $3.00

Data File Conversion
Writing a Filter to Convert Foreign Formats

Advanced CP/M
Z3PLUS& Relocation

SCSI for the S-1 00 Bus
Another Example of SCSI's Versatility

Use a Mouse on Any Hardware
Implementing the Mouse on a Z80 System

Systematic Elimination of MS-DOS Files

Part 2— Subdirectories and Extended DOS Services

ZCPR3 Corner
ARUNZ, Shells and WordStar 4.0

Data Base
A Data Base Primer

ISSN # 0748-9331

l- -iin?>?i
, *

:i

12

l«S^.. Mi.-, • ' '
••

v
.
':*««

;

rr*';

Bigf
for smaller systems
Little Board/286 is the newest
member ofour family ofMS-DOS
compatible Single Board Systems. It gives

you thepower ofanAT in the cubic inches

ofa halfheight 51/4" disk drive. It requires

no backplane. It's a complete AT-compat-
ible system that's functionally equivalent to

the 5-board system above. But, in less than

6% ofthe volume. It runs allAT software.

And its low-power requirement means
high reliabilityand great performance in

harsh environments.

Ideal forembedded& dedicated
applications. The lowpower and tiny

form factor ofLittle Board/286 are perfect

for embedded microcomputer applica-

tions: data acquisition, controllers,

portable instruments, telecommunica-

tions, diskless workstations, POS terminals

. . . virtually anywhere that small size and

completeAThardware and software

compatibility are an advantage.

you see here*
THEAMPRO LITTLEBOARD/286

Compare features.

Both systems offer:

• 8 or 1 2MHz versions

• 512Kor 1Mbyte on-board

DRAM
• 80287 math co-processor

option

• FullsetofAT-compatible

controllers

• 2RS232Cports

• Parallel printer port

• Floppy disk controller

• EGA/CGA/Hercules/MDA

video options

• AT-compatible bus

expansion

• A wide range of expansion

options

• IBM-compatible Award

ROM BIOS

But onlyLittle

Board/286 offers:

• 5.75" x 8" form factor

» EGA/CGA/Hercules/MDA

on a daughterboard

with no increase in

volume

« SCSI bus support for a

wide variety of devices:

Hard disk to bubble

drives

i Onboard 1Kbit serial

EPROM. 512 bits

available for OEMs

> Two byte-wide sockets

forEPROM/RAM/

NOVRAM expansion

(usable as on-board

solid-state disk)

i Single voltage operation

(+5VDConly)

• Less than 10W power

consumption

• 0-70°C operating

range

•AT is a Registered Trademark of IBM Corp

Betteranswers forOEMs.
Little Board/286 is not only a smaller

answer, it's a better answer . . . offering

the packaging flexibility, reliability, low
power consumption and I/O capabilities

OEMs need. . . at avery attractive price.

And like allAmpro Little Board products,
Little Board/286 is available through

representatives nationwide, and world-
wide. For more information and the name
ofyour nearest Rep, call us today at the

number below. Or, write forAmpro Little

Board/286 product literature.

408-734-2800
Fax: 408-734-2939 TLX: 4940302

COMPUTERS, INCORPORATED
1130 Mountain View/Alviso Road

Sunnyvale, CA 94089
Reps: Australia-61 3 720-3298; Belgium-32 87 46.90.12; Canada-(604) 438-0028; Denmark-45 3 66 20 20; Finland-358 585-322; France-331 4502-1800; Germany, West-49 89 611-6151;

lsrael-972-3 49-16-95; ltaly-39 6 811-9406; Japan-81 3 257-2630; Spain-34 3 204-2099; Sweden-46 88 55-00-65; Switzeiland-41 1 740-41-05; United Kingdom-44 2 964-35511; USA, contact AMPRO.

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, Montana

59912

406-257-9119

Editor/Publisher

Art Carlson

Art Director

Donna Carlson

Production Assistant

Judie Overbeek

Contributing Editors

Joe Bartel

Bob Blum

BUI Kibler

Rick Lehrbaum

Brldger Mitchell

Jay Sage

The Lillipute Z-Node sysop has

made his BBS systems available to

the TCJ subscribers. Log in on

both systems (312-649-1730 & 312-

664-1730), and leave a message for

SYSOP requesting TCJ access.

Entire contents copyright©

1988 by The Computer Journal.

Subscription rates—$16 one

year (6 issues), or $28 two years (12

issues) in the U.S., $22 one year in

Canada and Mexico, and $24 (sur-

face) for one year in other coun-

tries. All funds must be in US

dollars on a US bank.

Send subscriptions, renewals, or

address changes to: The Computer

Journal, 190 Sullivan Crossroad,

Columbia Falls, Montana, 59912, or

The Computer Journal, PO Box

1697, Kalispell, MT 59903.

Address all editorial and adver-

tising inquiries to: The Computer

Journal, 190 Sullivan Crossroad,

Columbia Falls, MT 59912 phone

(406)257-9119.

The COMPUTER

JOURMAL

Features Issue Number33

Data File Conversion

Data files received from other people are often in

the wrong format and must be converted. Here's

an example written in C.

by Art Carlson 6

Advanced CP/M

Information on ZCPR3PLUS, and how to write self

relocating Z80 code.

by Bridger Mitchell 9

Data Base

This primer on data bases and information

processing is the start of a regular section.

by Art Carlson 16

SCSI for the S-1 00 Bus

SCSI is the preferred port for peripherals, and this

is an example of an S-100 implementation.

by John C. Ford 17

Use a Mouse on Any Hardware

Mice aren't limited to the Macintosh or PC, here's

how to add one to yourZ80 system.

by Richard Rodman 24

Systematic Elimination of MS-DOS Files

This second part covers subdirectories and
extended DOS services.

by Edwin Thall 27

The ZCPR3 Corner

Revisions to ARUNZ, how WordStar Release 4

(CP/M version) works with Shells and how to patch

it.

by Jay Sage 32

Columns

Editorial 2

Reader's Feedback 4

Computer Corner by bhi Kibier 44

The Computer Journal / Issue #33

Editor's Page

Small Companies—part2

In the last issue, I mentioned that the

small software companies were in trouble.

That situation has worsened during the

past two months, and it is not just the sof-

tware companies. The hardware and

publishing (book and magazine) portions

are also feeling the heat. The past two

years has seen a tremendous surge in PC
clone sales, but now there are an expan-

ding number of vendors battling over a

shrinking market.

I have been told that 80Micro has

published their last issue, after almost 10

years in the business. Byte is in its fifth

year of declining page counts. As the

troubled companies cut their advertising

expenditures, I expect more of the com-

mercial magazines to fold or make major

reductions in their size. Perhaps Byte is in

a stronger position because of its gradual

reduction; some of the other fat

magazines may not survive a sudden

reduction. I have repositioned TCJ as a

user supported journal, with a minimum
of advertising support from the vendors

seriously interested in our market. We are

small, we don't have fancy color, and we
can only pay our authors a small

honorarium; but we publish information

that you won't find in the commercial

magazines—and we are planning on ex-

pansion.

The book publishing field is being taken

over by three or four large publishers and

a few large bookstore chains. The chains

prefer to deal with as few publishers as

possible, and the large publishers prefer to

deal with a few chains instead of a lot of

little booksellers. They both prefer ap-

plication books with a broad general in-

terest so that they can load the shelves in

every store with the same assor-

tment—they want to market them like the

mass distribution paper backs at the

supermarket. Some of the chains will not

even special order a book for you unless it

is on their approved list (from one of their

favorite vendors). This leaves no outlet

for the small publisher with the specialized

technical books we need. Someone should

develop a centralized distribution center

where we can order advanced books. The

C User's Group (P.O. Box 97, McPher-

son, KS 67460) carries a selection of about

100 C and UNIX related titles which are

available by mail order. Suport them by

ordering any C books from them! We
need another place to order other books,

anyone out there interested?

S-100 is Not Dead
You don't hear much about those

massive S-100 dinosaurs with 8" drives,

the ones with the 'boat anchor' power
supplies, but there are still a lot of them in

heavy use. Most of them originally used

eight bit 8080 or Z80 CPUs, but many of

them have been upgraded to 16 or 32 bit

CPUs.
We still have two Morrow Decision I S-

100 systems, and I'm holding on to them
for when I can get the time to work on
numeric machining and motion control.

The large cards and easy-to-work-with

bus make an ideal combination for lear-

ning and experimenting. I can build

'smart cards' with their own CPU to take

some of the burden off the main CPU, or

even use several single board computers in

a master slave configuration. If I need a

large memory space and maximum speed

I'll switch to something like AMPRO's
new Little Board/286® or Hawthorne's

68000 Tiny Giant® , but it's much easier

to learn with the simpler eight bit

system—and it's easy to add lots of I/O.

If you need something like six bidirec-

tional parallel ports, and ten 20ma serial

ports, plus an IEEE-488 instrumentation

port, it can be done.

The S-100 hardware hackers bible In-

terfacing to S-100/IEEE 696 Microcom-
puters, by Garetz and Libes has been out

of print, but it is now available again

($24.95 + $2.25 shipping from M&T
Books 501 Galveston Dr., Redwood City,

CA 94063 (800) 533-4372). If you have

any interest in S-100, and don't have this

book, get a copy now. The fact that the

book was reprinted is another example

that S-100 is not dead. Now if we could

only get some more articles . .

.

Z-Support Moves
Joe Wright, who you have read about

in Sage's column, has taken over the

distribution of the Z software from
Echelon. I still don't have all the details,

but contact Joe at Alpha Systems Corp.,

711 Chatsworth Place, San Jose, CA
95128 (408) 295-5594 for any Z type sof-

tware.

CP/M 3 Bonanza
If you have an original distribution disk

for CP/M 3, check the directory with DU
or a similar disk utility—whatever you do,

don't write to the disk. An anonymous
caller told me that he bought an OEM
disk marked "update" for $2.00 at a sur-

plus sale. When he snooped at the direc-

tory, he found that all the version 3 ASM
source code was there as deleted files! He
just un-deleted them, and is now the hap-

py possessor of the source code. Either

some disgruntled programmer decided to

give us a gift, or else they just didn't

realize that the undeleted files were there.

They must have used a track by track disk

duplication instead of a file copy program
to dupe the distribution disks. Check
whatever you have, and let me know what
you find—even if you too want to remain
anonymous.

Special Bar Code Issue Coming
Bar codes, those funny lines that the

supermarket scanners use, are becoming a

very important computer related tool.

They have already found many uses in in-

dustry, but we have not even begun to

realize their potential.

Most of the needs I see are in the area of
information and data programming, but

there are also many non-business ap-

plications. One example is adapting a
hand held laser scanner with a menu sheet

for computer interfacing by the han-

dicapped—or by executives with keyboard
phobia.

There is a definite need for system

designers and programmers to implement
bar code interfaces. Even more, there is a

need for the people who can visualize the

new applications for bar codes.

We are preparing a special issue on bar

codes, and will also carry additional

material in future issues. We invite your
participation in the form of articles, ideas,

comments, software, etc. We are

especially interested in information on
unusual applications.

The Shrinking Computer
AMPRO has just announced an AT

compatible single board computer which
is about the size of a half-height 5 14 " disk

drive. It includes 1M bytes of DRAM, 3

(Continued on page 5)

The Computer Journal / Issue #33

C CODE FOR THE PC
source code, of course

Bluestreak Plus Communications (two ports, programmer's interface, terminal emulation) $400

PforCorPforCe++(COM, database, windows, file, user interface, DOS & CRT) $345

CQL Query System (SQL retrievals plus windows) $325

Graphic 4.1 (high-resolution, DISSPLA-style scientific plots in color & hardcopy) $325

Barcode Generator (specify Code 39 (alphanumeric), Interleaved 2 of 5 (numeric), or UPC) $300

NEW! Vmem/C (virtual memory manager; least-recently used pager; dynamic expansion of swap file) $250

PC Curses (Aspen, Software, System V compatible, extensive documentation) $250

Greenleaf Data Windows (windows, menus, data entry, interactive form design) $250

Vitamin C (MacWindows) $200

TlirboTEX (TRIP certified; HP, PS, dot drivers; CM fonts; LaTeX) $170

Essential resident C (TSRify C programs, DOS shared libraries) $165

Essential C Utility Library (400 useful C functions) $160

Essential Communications Libraiy (C functions for RS-232-based communication systems) $160

Greenleaf Communications Library (interrupt mode, modem control, XON-XOFF) $150

Greenleaf Functions (296 useful C functions, all DOS services) $150

OS/88 (U«»x-like operating system, many tools, cross-development from MS-DOS) $150

ME Version 2.0 (programmer's editor with C-like macro language by Magma Software; Version 1.31 still $75) $140

Turbo G Graphics Library (all popular adapters, hidden line removal) $135

PC Curses Package (full Berkeley 4.3, menu and data entry examples) $120

CBTree (B+tree ISAM driver, multiple variable-length keys) $115

Minix Operating System (U»*x-like operating system, includes manual) $105

PC/IP (CMU/MIT TCP/IP implementation for PCs) $100

B-Tree Library & ISAM Driver (file system utilities by Softfocus) $100

The Profiler (program execution profile tool) $100

Entelekon C Function Library (screen, graphics, keyboard, string, printer, etc.) $100

Entelekon Power Windows (menus, overlays, messages, alarms, file handling, etc.) $100

NEW! TurboGeometry (library of routines for computational geometry) $90

NEW! QC88C compiler (ASM output, small model, no longs, floats or bit fields, 80+ function library) $90

Wendin Operating System Construction Kit or PCNX, PCVMS O/S Shells $80

C Windows Toolkit (pop-up, pull-down, spreadsheet, CGA/EGA/Hercules) $80

Professional C Windows (windows and keyboard functions) $80

JATE Async Terminal Emulator (includes file transfer and menu subsystem) $80

MultiDOS Plus (DOS-based multitasking, ink riask messaging, semaphores) $80

WKS Library (C program interface to Lotus 1-2-3 program & files) $80

Professional C Windows (lean & mean window and keyboard handler) $70

NEW! lp (flexible printer driver; most popular printers supported) $65

Quincy (interactive C interpreter) $60

EZ_ASM (assembly language macros bridging C and MASM) $60

PTree (parse tree management) $60

HELP! (pop-up help system builder) $50
Multi-User BBS (chat, mail, menus, sysop displays; uses Galacticomm modem card) $50

Make (macros, all languages, built-in rules) $50

Vector-to-Raster Conversion (stroke letters & Tektronix 4010 codes to bitmaps) $50
Coder's Prolog (inference engine for use with C programs) $45

C-Notes (pop-up help for C programmers... add your own notes) $40
Biggerstaff 's System Tools (multi-tasking window manager kit) $40

PC-XINU (Comer's X1NU operating system for PC) $35

CLIPS (rule-based expert system generator, Version 4.1) $35

Tiny Curses (Berkeley curses package) $35

TELE Kernel or TELE Windows (Ken Berry's multi-tasking kernel & window package) $30
Clisp (Lisp interpreter with extensive internals documentation) $30
Translate Rules to C (YACC-like function generator for rule-based systems) $30
6-Pack of Editors (six public domain editors for use, study & hacking) $30
Crunch Pack (a dozen file compression & expansion programs) $30
ICON (string and list processing language, Version 7) $25

NEW! FLEX (fast lexical analyzer generator; new, improved LEX) $25

LEX (lexical analyzer generator; an oldie but a goodie) $25

Bison & PREP (YACCworkalike parser generator & attribute grammar preprocessor) $25

AutoTrace (program tracer and memory trasher catcher) $25

C Compiler Torture Test (checks a C compiler against K & R) $20
Benchmark Package (C compiler, PC hardware, and Unix system) $20

TN3270 (remote login to IBM VM/CMS as a 3270 terminal on a 3274 controller) $20
A68 (68000 cross-assembler) $20

List-Pac (C functions for lists, stacks, and queues) $20

XLT Macro Processor (general purpose text translator) $20

NEW! C/reativity (Eliza-based notetaker) $15

Data
WordCruncher (text retrieval & document analysis program) $275

DNA Sequences (GenBank 52.0 including fast similarity search program) $150

Protein Sequences (5,415 sequences, 1,302,966 residuals, with similarity search program) $60
Webster's Second Dictionary (234,932 words) $60

U. S. Cities (names & longitude/latitude of 32,000 U.S. cities and 6,000 state boundary points) . $35

The World Digitized (100,000 longitude/latitude of world country boundaries) $30

KST Fonts (13,200 characters in 139 mixed fonts: specify TgX or bitmap format) $30

USNO Floppy Almanac (high-precision moon, sun, planet & star positions) $20

NBS Hershey Fonts (1,377 stroke characters in 14 fonts) $15

U. S. Map (15,701 points of state boundaries) $15

The Austin Code Works Voice: (512) 258-0785

11100 Leafwood Lane acw!info@uunet. uu.net BBS: (512) 258-8831

Austin, Texas 78750-3409 USA FidoNet: 1:382/12

Free shipping on prepaid orders For delivery in Texas add 7% MasterCard/VISA

Reader's Feedback

Wants Hardware Construction Articles

I own a XEROX 820-11 which serves me
very well except I would like more
memory and graphics capability. I own
two printers, a Diablo 620 daisy wheel and

a Centronics 702 dot matrix.

I would like to see a construction

project in your magazine once in a while.

Projects worthy of consideration are

stand alone prom burner, HD64180 com-

puter, and a 68000 computer which would

run IBM software (which I would like) all

with wire lists and large schematics, both

of which you could sell.

If you venture into the construction

area just remember to do only one project

at a time and finish it or you will go the

way Computer Smyth went.

Another area you might venture into is

to start an assembly language course for

the Z80, HD64180 and 68000.

H.D.

Jay Sage Fan
I subscribe to TCJ simply because of

Jay Sage's column and for the other ZC-

PR support you provide. One recent sub-

scriber was moved to do the same after

seeing a couple issues of TCJ at my house,

and yet another has his "check in the

mail."

But I am also the owner of a S-100

system and therefore have a great deal of

interest in many of the hardware articles

you provide. Like at least one other letter

writer, I am intrigued at the idea of

replacing my 8" dives with "work-alike"
3" or 5" (as have been reported in the

various articles on floppy disk formatting,

etc.), but am incapable of figuring out

how to do that for myself. Articles in S-

100 Journal and Microsystems/Journal

on building/modifying the DRC LS-100

RAM disk, for example, are just the thing

for people like me.

Manage to read through nearly every

article in your magazine, even when its

subject matter or technical level exceeds

my own. That's how I've learned as much
as I have about computers over the years

and I intend to keep up the effort.

Thanks for keeping it all going.

M.B.

1
The Computer Journal

PO Box 1697

Kallspell, MT 59903

Seagate 225 Feedback

Regarding your general inquiry in the

last issue concerning overheating of

Seagate 225s, please be advised that I have

run with one in my Katpro '84 series

CP/M machine (with TurboROM, SWP
Board, etc.) nearly everyday for the past

2+ years without even a hint of a

problem. I am aware of others also with

225s of about this age and they also say

that they experience no problems.

We have one common denominator,

however, that might be the reason why
ours have worked flawlessly and yours

reacts adversely to its heat; our fans. I

don't notice your saying that your heat-

plagued system had a muffin fan cooling

the 225. We all do. As I recall, these small

fans cost under $10 when originally pur-

chased new. I've seen them used for less.

This might not be why five of us never

have had a problem with our hot 225s.

But the guy without the fan can't say that.

On another matter, I found the last

issue quite exciting. I'm a CP/Mer who is

not as advanced as I should be (either I'm

a slow learner or it just takes longer than

4+ years to understand everything I

should know in order to more fully ap-

preciate all the articles in TCJ). But sud-

denly I felt as if you either had found my
level or I had somehow made it to yours

(the latter is doubtfull).

It could be that the writing was a bit

more understanding of those of us from

"technically-disadvantaged" backgroun-

ds who still need some mental hand-

holding. I notice that Jay Sage even took

notice of this in his last (very interesting)

article. And it also might have been what
was covered. Welcome to Bridger Mitchell

(one of CP/M's all-time all stars) and to

Phil Hess's investigation of DOS WS4 for

the SWP board and vanilla DOS world.

And of course, Jay's irrepressible energy

always seems to have something to excite

CP/M advocates.

I may not know as much as I need to in

order to fully appreciate everything in

TCJ. But I sure know what I like. And I

liked #32

H.V.
Editor's Note: The 225 was running

with very little cooling when I had the

problems. It's still running fine since I

moved it to the bigger box with a good

fan. We are at 3, 000 feet, does the lower

air density have an effect under marginal

conditions?

Another S-100 User
Like your magazine very, very, much,

glad you're still with us.

Glad to see 1) CP/M columns.

Especially glad to see CP/M, Z80, 64180

stuff; it's getting extremely scarce these

days. We've a ton of CP/M hard and soft

ware. I'm still trying o get a RAM drive

up and running on my S-100 system. 2)

680X0 hardware and assembly language

articles. 3) Generic hardware articles. 4)

Nitty gritty, down and dirty, hardware ar-

ticles.

Don't care about MSDOS, 80XXX,
clone, etc. world. There's too much writ-

ten about them as it is.

Would like to see (and I know you can't

print something someone doesn't write

for you) something on the Atari 680X0
machines. The 520 and 1040 STs are such

a good buy, they simply have to be about
the best test bed around for 680X0 projec-

ts, taking nothing away from the

Hawthorne Tech. product.

C.H.

S-100 Again

I have three systems. (1) A CP/M S-100

system with 8" drives which I built myself.

I use it for frequency counter, modem,
and EPROM burner. (2) A CP/M
MORROW Design with 5'/i" drives. I

recently assembled this from surplus

boards and use it for environmental

logging. I built a 12 channel A/D and ex-

panded I/O with 32 bits input and 16 bits

output. (3) A IBM clone with 20 meg drive

The Computer Journal / Issue #33

used for AUTOCAD (schematics, etc.).

My main interest is in real time control

applications and the hardware/software

compromises necessary.

I really enjoy TCJ and realize that we

seem to be a dying breed (those who are

interested in what is behind the

keyboard).

D.C.

Still More S-100

I would like to read more about ZCPR
and K-OS ONE, and any S-100 projects.

I have a Morrow Decision I Z80 S-100,

a Cromemco System III Z80 S-100, and an

IBM-AT clone with MSDOS and EGA. I

also have a Vector Grafic chassis S-100

with Z80 and 68K CPU, an Itegrand S-100

with 68K CPU, a Momentum "Hawk-32"
68K UNIX multiuser, and six Momentum
"Eagle" 68K single user work stations—

I

want to put K-OS ONE on all these 68K

systems.

J.S.

Editor's Note: There are still a lot of
very active S-100 users. We would like to

see more S-100 articles.

From Down Under
My systems are a Heathkit/Zenith 150

(PC clone), and a Pinnacle 68000 (much
like the Sage). I'll probably buy the K-OS
ONE and try to get it running like Bill

Kibler has done on the Sage. I'm in-

terested in general OS stuff for the 68000

and 8086/8088.

Your issue #31 arrived here in Australia

in the middle of April— that's OK. Don't

do like some other magazines and only

send them by air—makes the other

magazines unaffordable.

R.A.

Editor

(Continued from page 2)

counter-timers, 7 DMA channels, 16 level

interrupts, optional 80287, real time

clock, parallel printer port (with bi-

directional data lines), two RS-232C serial

ports, 2 drive floppy controller, optional

onboard EGA/CGA/MDA/Hercules
video controller, and SCSI interface— all

this on a 5 x 8 board!

This board is intended for embedded

applications, only needs about 8 watts at

+ 5 volts, standard PC and AT bus plug

in cards can be connected, and SSD sof-

tware is available to EPROM MS-DOS
based applications for diskless DOS
operation.

All this power on a small low power

board which generates little heat and

which can run with out a disk drive makes

me want to design a system with three or

four of these in a single box— I don't want

multi-users on a single CPU, I want one

user on multi-CPUs.

M O v In G?
Make certain that TCJ follows you

to your new address. Send both old and

new address along with your

expiration number that appears on

your mailing label to

:

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, MT 59912

If you move and don't notify us, TCJ
is not responsible for copies you miss.

Please allow six weeks notice. Thanks. '

FOR SALE

SB180 built into a Lear Siegler ADM-12 terminal, with

detached keyboard and 2 360K drives, plus power

supply,

$195.00

(714)581-6748

Call For Papers

TCJ is establishing a forum on the

following areas, and we welcome your
submissions and proposals.

Candidates for membership in the

peer review and advisory groups,

including group coordinators, will

al so be considered.

• Education in the Next Decade —
Our contacts with both the educators
who are preparing the curriculums
and the people in industry who need
to employ workers with the necessary
skills, indicate that the requirements
are changing. Industry sources say
that current graduates do not have
the knowledge to fill available real

world positions, and the educators
say that they do not have the course
material and specific requirements
needed to implement the courses.

TCJ invites papers from both
Academia and Industry to discuss the

problem and propose solutions.

• Language Development — There
is a great need for language
development in the areas of

command parsers, user interfacing,

custom languages, ROM based
embedded controller systems, etc.

We need papers covering both the
theoretical and practical aspects
from the viewpoints of both the

developers and the users.

• Database Development — The
commercial programs are very

powerful, and there are good texts

which explain the commands and
functions. What is missing is

tutorials on the concepts of the

practical aspects of designing and
developing a database — the nitty-

gritty details on implementing a

database rather than an explanation
of the tools.

There is also a need for papers on
using high level languages to replace
or supplement DBMS programs
where it is easier or more efficient to

perform some of the operations

outside of the DBMS.

Other suggested topics are

welcome. Query regarding book or

monograph manuscripts.

The Computer Journal
190 Sullivan

Columbia Falls, MT 59912
(406)257-9119

The Computer Journal / Issue #33

Data File Conversion
Writing a Filter to Convert Foreign Formats

by Art Carlson

Data handling programs, such as

database management systems, use many
different structures for their internal data

files. Some of the variations are fixed

length fields versus random length fields,

field and/or record delimiters versus no
delimiters, the delimiters used, and how
numeric data is stored. Since there is often

the need to transfer data from one

program to another, most database

programs make some kind of provision

for importing or exporting data, but the

systems are often incompatible. A lot of

our work involves filtering files in order to

enable transfer between programs.

The first database program I acquired

was the CP/M version of Condor®
,

which provides five formats for reading

and writing ASCII files. The one we
usually use is the [B] option which creates

a standard MailMerge® file with variable

length fields. Each character type field

(which might contain commas) is enclosed

in quotation marks, the fields are

separated by commas, and each record is

ended with a carriage return and a line

feed.

I am currently starting to use dBase®

(actually I'm using Nantucket's Clipper®

dBase compiler) which can use the COPY
or APPEND command to import or

export data using the same MailMerge
format.

This makes it easy to create compatible

forms and then move data from one

system to the other. I can receive data files

as either Condor files, dBase files, or

MailMerge ASCII files, and then transfer

them through the MailMerge format

intermediate file. Unfortunately things are

not always that simple. There are many
other data handling programs with

different import/export schemes, and the

person sending the data does not always

understand what is required—some

programs don't even provide for data

import/export through the use of disk

files. With those programs you have to

retype everything!

We recently received a mailing list

which was prepared using a Macintosch®

database program. It had been output as

an ASCII file for use in a form letter, but

neither Mailmerge nor Condor could read

the file. Whenever I have problems with a

text or data file, the first thing that I do is

to DUMP a portion of it to the printer in

both HEX and ASCII. The debuggers can

be used, but I use a simple DUMP
program because some of the debuggers

(DDT for example) can not handle a file

which is larger than available memory.
The dump showed that the file had

variable length fields, with the fields

terminated with a tab character (
A

I or

09HEX) and the record terminated with a

carriage return (
AM or ODHEX). Empty

fields and fields which contained a comma
were enclosed in quotation marks. I have

converted similar files by using the

WordStar® search and replace function,

but that would take too long for a file this

size. It was an ideal opportunity to write a

simple filter program.

I consider these filters as throwaway

programs because they are written for one

time use. Anything which does the job is

acceptable, and they are "quick and

dirty" with little user interfacing and a

minimum of comments. I will probably

never use the program again, but I may
modify it or use parts of it for another

project. I chose to write it in C because I

am comfortable with C and it is well

suited for the job. It could just as well be

written in BASIC or Pascal. It could also

be done in assembler, but that would

involve too much programming time for

one time use.

Everyone has their own style. They talk

about top down programming, bottom up
programming, and middle out

programming. It all boils down to first

figuring out what has to be done, and then

figuring out how to do it. Sometimes I use

flowcharts, and sometimes I use pseudo

code. If I hit a wall, I may even use both

at the same time. It seems that flowcharts

are helpful for visualizing the overall

structure of an involved program and

planning the method of attack, while

pseudo code assists in writing the code. In

this example I could see what had to be

done and wrote the following pseudo

code.

Write '

'

While not End Of File

Pass chars until A
I or AM

If A
I write ","

If AM write " AM A J "

The C source code shown in Figure 1

was written for the BDS C® Compiler,

but could easily ported over to another

compiler. There is a problem, in that this

program writes an extra quote after the

last record, but it was easier and faster to

edit out the extra quote than it was to to

write the code to keep checking for the

last record.

This program does a bare minimum of

error checking or user interfacing. It was

tempting to dress it up with a nice

interface for this article, but I felt that it

would be more truthful to show it just the

way I used it. The most glaring fault is

that it does not check to see if the output

file already exists, and will just overwrite

it. In this article we'll talk about

converting data files and leave error

checking and interfacing for another time.

Writing a Filter in C
It is always difficult to decide on the

amount of detail to include in the

description of a program. I don't want to

include all the basics of C programming

every time; but then again, I don't want to

ignore someone who is just getting started

in C. This time I'll cover a lot of the

fundamentals. In future articles I'll place

the fundamentals in a separate sidebar.

Lines 1 through 10 contain comments

and information. In C programming,

comments start with /* and end with */.

BDS C allows comments to be nested,

which makes it easy to comment out

blocks of code for testing. The UNIX®
standard does not allow comment nesting.

Datalight® follows the UNIX standard

by not allowing comment nesting, while

Lattice C® version 3.00 does allow

nesting. Both BDS and Lattice provide a

compiler option to disable comment
nesting, causing comments to be

processed in the same way as UNIX.

The Computer Journal / Issue #33

1: /*

2 PRDB.C 2/2/88

3

4

5

Written for BDS C VI. 6 RAC

A program to convert the MAC database ASCII file to comma

6 delimited for Condor and MailMerge

7 The file we received has 13 fields, delimited with 09hex,

8

9

10

with a 0Dhex record delimiter

*/

11

12 ^include <stdio.h>

13

14 FILE *ifd, *ofd;

15 int c;

16

17 main(argc,argv)

18 char **argv;

19 {

20 if (argc!=3)

21 {

22 printf (
'

' \nllsage; prdb oldfile newfile\n' ');

23 exit();

24 }

25 if((ifd = fopen(argv[l],"r")) == NULL)

26 {

27 printf("\nCan't open file *s\n",argv[l]);

28 exit()

;

29 }

30 if((ofd = fopen(argv[2],"w")) == NULL)

31 {

32 printf (" NnCan't open file %s\n' ' ,argv[2]);

33 exit();

34 }

35

36 fprintf(ofd,"!?c",0x22); /* send " */

37 while ((c=fgetc(ifd)) != EOF)

38 {

39 if(c==0x09)

40 fprintf (ofd
, '

'

%c%c%c •

•

,

0x22 , 0x2c , 0x22)

;

41 else if(c==0x0d)

42 fprintf(ofd, ' 'JcJcitcJSc' ' ,0x22,0x0d,0x0a,0x22);

43 else if(c==0x22)

44 continue;

45 else

46 fprintf(ofd, ' 'Jfc' ',c);

47

48 }

49 : printf (" \nOperat ion Completed — Returning to CP/M\n M);

50 : fclose(ifd);

51 : fclose (ofd);

52 : }

53

Line 12 tells the compiler to include the

standard I/O header file which defines

certain system dependent data structures,

and macros such as the EOF (End Of File

marker). For BDS C, this must be the first

statement after the initial comments.
Lines 14 thru 34 constitute a block of

code for programs which read one file and
write to a second file. I store this block on
disk, read it in when writing a program,

then make minor modifications for the

individual program. I could place it in the

library and just call it as a function, but it

usually needs some changes. In C,

variables must be declared before they are

used. Line 14 declares *ifd and *ofd as

type FILE, for the input and output files.

Line 15 declares the integer c which is used

for the individual characters which will be

tested. Even though these are characters,

in BDS C they are declared as an integer

because a char can not have a negative

value (in BDS C) and the program would
not find the EOF marker of - 1 if c was
declared as char. I spent hours trying to

find out why a program would not stop at

the end of a file, and the problem was that

I had declared c as a char!

Every C program must have the

function main. This is the function which

is run, and which calls any other

functions. Main's arguments argc and
argv are the only arguments that main can

have, and they are obtained from the

command line.

argc contains the number of individual

command line strings, which are delimited

with spaces on the command line, argc

will always be at least 1 , because the name
of the executing program counts as the

first one. Lines 20 thru 24 check to see if

both the input and output files are given

on the command line, and returns to the

system with an error message if there are

not exactly three arguments. A good user

interface would ask for the missing

information instead of dumping back to

the system.

Lines 25 thru 29 attempt to open the

input file (argv[l]), and return to the

system with an error message if the file

can not be opened as entered in the

command line. The option "r" in line 25

specifies that the file will be opened as a

text file in the read mode, fopen initializes

the buffer, and returns a file pointer (Ifd)

to be used in all subsequent references to

operations on the associated file.

Lines 30 thru 34 attempt to open the

output file (argv[2]) in the text write

mode. If it can not open the file, possibly

because of a full or write protected disk, it

returns to the system with an error

message. If the file already exists, it will be
overwritten, destroying the contents of

the original file! A safer approach would
be to first attempt to open the file in the

read mode. If it can be opened to read, it

already exists, and the program can then

ask if it is OK to destroy it. If it does not

exist, then it can be opened to write to.

After line 36 writes an initial quote

mark to the output file, the real action

starts in line 37. The while loop gets one
character at a time until the end of the file

(EOF) is reached. Each character is tested

in lines 39 thru 43, with the appropriate

action taken. In C, hes numbers are

preceeded with 'Ox', and the 0x09 in line

39 is the ASCII code for a control I. If the

character fails all the tests, lines 45 and 46
send it to the output file unaltered.

Finally, line 49 sends a completion

message to the console, and the files are

closed in lines 50 and 5 1

.

I'm sure that there is a lot that could be
done to improve the program, but I only

had to write 10 lines of code. The rest was
a block read with WordStar. It only took
a few minutes to code and compile the

program— it took about 5 minutes to run
(it was finished when I got back with my
cup of coffee)—and I was back to

working with the database. Data file

manipulations are very interesting, and
they can get very involved. Let me know if

you'd like to see more advanced articles

on the subject. Perhaps you'd like to

respond with an article describing what
you do, or how you do it with assembler,

BASIC, Pascal or something else.

The Computer Journal / Issue #33

DosDisk™ -- An MS-DOS Disk Emulator for CP/M

DosDisk, for CP/M 2.2 and CP/M Plus Z80 computers,

allows CP/M programs to use files stored on an MS-DOS
(PC-DOS) floppy disk directly - without intervening

translation or copying. You can log into the pc disk,

including subdirectories. Regular CP/M programs can

read, write, rename, create, delete, and change the

attributes of MS-DOS files. The disk, with any modified

files, can immediately be used on a pc.

Preconfigured Versions are available for:

all Kaypros with a TurboRom
all Kaypros with a KayPLUS rom and QP/M
Xerox 820-1 with a Plus 2 rom and QP/M
Ampro Little Board

SB180 and SB180FX with XBIOS
Morrow MD3
Morrow MD11
OneacON!
Commodore C128 with CP/M 3 and 1571 drive

The resident system extension (RSX) version uses about

4.75K of main memory (plus 2K for the command
processor). For the SB180 and SB180FX, a banked

system extension (BSX) version is also available; it needs

about 5K of the XBIOS system memory and uses no main

memory.

A Kit Version requires advanced assembly-language

experience in Z80 programming and technical knowledge

of your computer's BIGS. You will need to write a special

DosDisk overlay.

The BIOS must be able to be configured to use the

physical parameters of an MS-DOS disk and to use the

logical disk parameter header (dph) and disk parameter

block (dpb) values supplied by DosDisk. The driver code

itself (the code that programs the disk controller, reads and

writes sectors, etc.) must reside in the BIOS.

On DateStamper, QP/M and CP/M 3 systems DosDisk

automatically stamps MS-DOS files with the current date

and time when they are created or modified.

DosDisk supports the most popular MS-DOS format:

double-sided double-density 9-sector 40 track disks. It

cannot format disks or run MS-DOS programs.

Z3PLUS™ --The Z-System for CP/M Plus

The state-of-the-art ZCPR version 3.4 system for CP/M
Plus (CP/M 3) Z-80 computers installs automatically and

retains CP/M Plus advantages - fast disk operations,

redirection of screen, keyboard and printer; automatic

execution of submit files.

Z3PLUS is fully configurable and requires no assembly. It

is shipped with key Z tools and will run most Z-System

CP/M 2.2 utilities without modification.

DosDisk and Z3PLUS are available directly from the Check Product:

author of DateStamper and BackGrounder ii: ,,„„.. ,.

[] DosDisk preconfigured version $30.00

Plu'Perfect Systems [l
DosDisk kit version $ 45.00

410 23rd St. [] DosDisk manual only $ 5.00

Santa Monica, CA 90402 [1 DosDisk BSX and RSX,
for SB180/SB180FX with XBIOS $35.00

[
]Z3PLUS $69.95

Name: (in California, 6.5% sales tax)

Address: shipping/handling $ 3.00

total enclosed $

Computer: DosDisk ©, Z3PLUS ©
Copyright 1987, 1988 by Bridger Mitchell

Operating system:

Disk format:

Advanced CP/M
Z3PLUS& Relocation

by Bridger Mitchell

Z3PLUS is Here!

The ZCPR3 System is arguably the most important advance in

CP/M® operating system capabilities that has appeared to date.

Each year, its community of users with CP/M 2.2 compatible

comupters has continued to press forward with vigorous new

developments. Yet, for too long, users of CP/M Plus® (CP/M
3) computers have been unable to benefit from ZCPR3, apart

from the limited capabilities provided by CCP105 and a named-

directory RSX.
I have now completed the "port" of ZCPR version 3.4 and the

Z-System® utilities to Z-80® compatible computers running

CP/M Plus. The system is called Z3PLUS. It is a state-of-the-art

system that installs automatically and can be very easily con-

figured for different system components and buffer sizes;

moreover, these settings can be changed on-the-fly, even within

one multiple-command line.

Z3PLUS is implemented as a special type of RSX. This means

that the major advances introduced in CP/M Plus, including

directory hashing, track buffering, console and list redirection,

automatic submit file execution, and RSX support, are fully

available when the Z3PLUS system is running. And because the

ZCPR3 buffers are located in the TPA memory bank, virtually all

Z-System utilities will run without modification on Z3PLUS
systems. (Limited upgrading is required for programs that

calculate the free space on a disk or use BIOS file services.) In

fact, with Z3PLUS, users have the best of both worlds—CP/M
Plus and ZCPR3!
By the time this column appears in print Z3PLUS will be

available from Plu*Perfect Systems, Sage Microsystems East, and

Echelon. If you have a Morrow MD-5, Commodore 128, Osborne

Executive, Amstrad, S100, or other CP/M Plus Z-80 computer,

here at last is your chance to leap effortlessly to a more powerful

and flexible operating environment.

ZCPR3? Absolutely Not!

The ZCPR3 system has been a curious mix—innovative con-

cepts that greatly extend the performance of the CP/M com-

mand-processing system combined with a clumsy and antiquated

method of generating the necessary system files. The original ZC-

PR3 developers were obviously acquainted with macro assemblers

and regularly used routines from relocatable library files, the ZC-

PR3 system itself has required both the first-time and veteran user

alike to specify tedious and arcane sets of assembly-language

equates and then re-assemble an entire batch of files almost any

time ZCPR3 was installed on a new, or even modified system.

Many potential users gave up in frustration. Others who even-

tually succeeded, cringed at the thought of modifying their

systems once they had them running.

Echelon eased the pain for many by supporting the develop-

ment of "bootable disk" Z-Systems incorporating both ZCPR3
and a replacement BDOS, pre-assembled and installed on the

system tracks for a specific computer. And Joe Wright came up

with Z-COM, a method of automatically installing a ZCPR3
system of one specific size in a running CP/M 2.2 system. Yet

Bridger Mitchell is a co-founder of Plu*Perfect Systems. He's

the author of the widely used DateStamper (an automatic, por-

table file time stamping system for CP/M 2.2); Backgrounder

(for Kaypros); BackGrounder ii, a windowing task-switching

system for Z80 CP/M 2.2 systems; JetFind, a high-speed string-

search utility; DosDisk, an MS-DOS disk emulator that lets

CP/M systems use pc disks without file copying; and most recen-

tly Z3PLUS, the ZCPR version 3.4 system for CP/M Plus com-
puters.

Bridger can be reached at Plu*Perfect Systems, 410 23rd St.,

Santa Monica CA 90402, and via Z-Node #2, (213)-670-9465.

these important advances remained bound to absolute addressing.

During this period, at Plu*Perfect Systems Derek McKay and I

had designed the TurboRom for Kaypros with support for full

relocatation of the BIOS, BDOS, command processor, and

DateStamper. And in writing BackGrounder ii I had extended this

approach to a full task-switching command processor with

multiple overlays.

From these experiences I understood that a fully-relocatable

ZCPR3 system could readily be achieved. In the TurboRom
utilities we had provided the user with software that would create

any sized TPA system (in 0.25K increments) to accomodate
varying BIOS requirements. Even more than its convenience, this

flexibility is important because it allows the user to add disk

drivers, more or different-sized disks, and other system software

as the need arises, without ever reassembling the system files. It

was clear that similar techniques could be applied to the ZCPR3
command processor, Z-System segments, and a replacement

BDOS.
Thus, when I took up the task of getting ZCPR3 to run on

CP/M Plus computers, my design goal from the outset was a fully

relocatable Z-System, one that would run the same files on any

CP/M Plus system with no assembly! The specific method that I

developed uses named-common address spaces. This technique is

not widely known to Z-System programmers, but it was en-

thusiastically adopted by Jay Sage and Joe Wright for ZCPR34
and NZCOM, and is now the foundation for a truly portable set

of Z-System files.

The development of a fully-relocatable Z-System is a milestone

in the evolution of CP/M operating systems. These new standards

mean that you can now take the same Z-System segment file (for

example, a resident command package) and run it on any ZC-
PR34 compatible system, regardless of the TPA size or con-

figuration of that system.

I've organized the remainder of this issue's Advanced CP/M
column around the concepts of relocatable code and named-
common address bases, and how they are used in both the new Z-

System and for other operating-system needs. I'll discuss several

closely related topics, first reviewing how an assembler uses

named-common address bases to make use of different segments

of code and data that have known structures but unknown

The Computer Journal / Issue #33 9

locations. This leads to the new ZRL file type for Z-Systems and

to a new multi-purpose linking loader called JetLDR. Finally,

we'll look at one solution to this issue's puzzle: how can you write

a routine that will run anywhere in memory?
I'd expected to discuss Resident System extensions in this

space, but the completion of the named-common standard for

Z3PLUS, ZCPR34 and NZCOM took priority. The next column
should get to that topic, and will make use of the new multi-

purpose JetLDR for convenient installation and initialization of a

CP/M2.2RSX.

Assemblers and Relocation

To discuss relocation, we first need to understand some basic

operations of a Z-80 assembler.

An assembler generates code (instructions for the central

processor) by converting symbols in the input stream into op-

codes, constants and addresses. It processes a number of other

useful directives, called pseudo-ops ("pseudo" because they are

not actual CPU operation codes), that make the assembly

programmer's life easer, but don't need to be covered here.

Translating "RET" into a "C9" byte or "defw 80" into the

byte pair "00 50" is straightforward. The real action is in

manipulating symbolic references and calcaulating addresses.

An assembler has two addressing modes—absolute and

relative. In absolute mode all addresses are "resolvable" (can be

determined) from the information in the source file. (The actual

production of the addresses may require several passes throught

the source, depending on the technology used in the assembler).

The output of an absolute mode assembly is an absolute file,

ready-to-run at a specified address, normally lOOh.

In relative mode, some of the addresses are not resolvable

without external information. The assembler does what it can

with the source file information, generating all op codes, constan-

ts and absolute addresses, and does some processing of the

relocatable addresses. The output of the assembly is a relocatable

(REL) file which contains all of the code, but with some ad-

dresses not yet calculated and with "tags" for the bytes that

require further processing.

The format used by the assembler for the relocatable file varies

by assembler. Microsoft uses a bit-encoded format; SLR and

TDL use two different byte-oriented formats. Each format en-

codes addressing tags and symbols differently. Unfortunately, the

formats are incompatible; fortunately, we don't have to concern

ourselves with these details in this column!

Linkers

The standard tool for processing a REL file is a linkage-editor

(linker). It takes as input one or more REL files plus infor-

mation about the values of external symbols and produces an

output file. The most common use of a linker is to merge several

REL files (e.g. a main file, and a library of standard subroutines

called from the main code), resolve the references between them

into absolute addresses, and output an absolute file ready-to-run

at a specified address, usually lOOh.

Some linkers can merge and resolve addresses with the available

input and produce relocatable output for a subsequent linking

step. For example, the SLR + ® linker will generate output in

PRL and SPR relocatable formats (which we'll discuss later).

The TDL linker has the very useful ability to produce an output

file in REL format file; using this feature one can merge a number

of REL files into a single module that can still be relocated to any

ready-to-run address. (Unfortunately, the TDL relocatable for-

mat is totally different from both SLR and Microsoft! Output to

a REL file is a feature I'd very much like Steve Russell and Al

Hawley to incorporate into their linkers.)

You might think that a linkage editor is necessary in order to

use a program in relocatable format, but sometimes it isn't. If all

of the code needed by the program is contained in the one REL
file, the process of resolving addresses is simpler than that

required for merging several files. This opens up a very interesting

opportunity—postpone resolving the final addresses of a program
until the moment that it is loaded into memory. By using a linking

loader we can keep code in relocatable format and convert it to

absolute addresses to fit the needs of the system on which it will

run. JetLDR is a new utility I have written that performs exactly

this function, for a wide variety of applications. But before

describing it we need to understand named-commons.

Relocation Bases

An assembler accepts directives to place the source code or data

into any of several different address spaces. In absolute mode,
only one address space is used, and its relocation base address is

OOOOh. The assembler maintains a program counter,, and the

ORG pseudo-op instructs the assembler to set the program coun-

ter to a specified address. Then, as the assembler converts code

from the input into machine instructions and data, it increments

the program counter by the number of bytes used.

In relocatable mode, several address spaces are available, and
each has its own program counter. The pseudo-ops CSEG and

DSEG instruct the assembler to assemble the code that follows in-

to the code segment's address space (CSEG) or data segment's

address space (DSEG).

These two directives are ordinarily used as their names suggest,

to separate code and data in a program. You can intermix the

two, for example, by writing:

Id de,msg

DSEG

g: db 'Hello !$'

CSEG

Id c,9

call bdos

This works, because the assembler will continue to increment

the program counters for the code and data segments whenever

the corresponding directive appears in the input stream. Actually,

their names notwithstanding, there's no reason you can't put code

in the DSEG, or data in the CSEG.
Unless you've worked with FORTRAN you may be unaware

that full-featured assemblers also have a number of named-

common address spaces. Named-common is often used to pass

data between FORTRAN subroutines by placing the data in

commonly-accessable memory and labeling the memory block

with a commonly-shared name.
Named-commons work very much like CSEG and DSEG. You

instruct the assembler to use a named-common address space with

the COMMON directive. For example,

COMMON /MSGS/

msgl: db

msg2 : db

'first message$

'

' another one$

'

The assembler will tag the addresses for msgl and msg2 to in-

dicate that the associated bytes are to be found in the MSGS ad-

dress space. These tags, along with the data bytes themselves, will

go into the REL output file for later processing by the linker or

linking loader.

The assembler does treat the program counters for named-
commons a little differently. If the same named common is

declared again, the program counter does not continue where it

left off, but starts again at 0. The reason for this difference is to

allow several REL modules to refer to the same addresses in

named-common address spaces. Suppose, for example, we had a

second named common in our source file:

10 The Computer Journal / Issue #33

COMMON /PDATA/

pools: db 80

prows : db 66

one that contains printer parameters. Then, in another rel file,

routines could refer to these parameters by:

COMMON /PDATA/

pools equ $

prows equ $+1

Using Named Commons for System Segments

An operating system is made up of several segments of code

and data structures, such as the BIOS, the BDOS, the command
processor, and the terminal capabilities buffer. For the most part

each code segment is self-contained except for references it makes

to routines or data in other segments by position. A routine that

calls a BIOS function refers to a jump vector at a known offset

from the start of the BIOS; a ZCPR34 command processor

routine that is checking the error code of the previously-executed

command refers to an offset from the start of the message buffer;

and so forth.

In each case, the inter-segment references are to known offsets

from unknown base addresses. Given this type of structure, it is

convenient to assemble each segment separately and use named-

commons to provide the intersegment connections.

The New ZRL File Type
For the Z-System—Z3PLUS, ZCPR34 and NZCOM—we have

established a standard set of named commons, shown in the

Z3COMMON.LIB file in Listing 1. Each name begins and ends

with an underscore character () to emphasize that the symbol

describes a segment address base rather than an address itself.

Relocatable files that are assembled using these named-common
bases are termed "ZRL" (Z-system ReLocatable), to distinguish

them from ordinary REL files.

Suppose,now, that the external environment's message buffer

is located at OFCOOh. In the traditional ZCPR3 command
processor, there would be an equate

z3msg equ OFCOOh

in an "include" or "maclib" file, and references to the message

buffer in the code would be of the form

Id hl,z3msg

When assembled, this address (OFCOOh) is hard-wired into the

resulting command processor file, and that command processor

can be used only in a system in which all hard-wired addresses

match those in the system. Even if the assembler outputs a REL
file, the z3msg address is fixed, and the command processor file

will only work on systems that have the message buffer at that

exact address.

Using the named-common approach we omit all hard-wired

references to addresses outside the module's own segment (other

that absolute addresses on page 0, such as "call 5"). Instead, we
declare "z3msg" to be in the named-common address space
" MSG " and equate "z3msg" to its base address

COMMON /_MSG_/

z3msg equ $

We place all of the command processor code in the code segment

Figure 1

The Procedure for Creating and Running Your Program ANYWHERE.

To create the program file:

(1) assemble your code into REL file

Z80ASM file/n/r,file,,

(2) link it into a PRL module

SLRNK+ file/k,file/j,file/e

With a debugger:

(3) patch the length of code into 104h

ZSID ANYWHERE.COM

iFILE.PRL

rl00

display the length, which is the word at 201

DW 201,203

patch the length into ANYWHERE at 104

SW 104

length

(4) append the code+bitmap at l47h

m300, xxx, 1*47

(5) save into a COM file

g0

save nn myprog.com

To run the file:

(6 A>myprog<cr> (execute at 100)

or

(7 A>get nnnn myprog.com

A>jump nnnn (execute at nnnn)

CSEG

Id hl,z3msg ; sample reference to z3msg

The result: the address in the relocatable ZRL file for "z3msg" is

not OFCOOh, but 0000 plus a tag to the named-common base

_MSG__.

JetLDR—A Linking Loader for ZRL Files

The ZRL file requires one more step of processing to become

executable—linking to the final run-time addresses for the system

where it is to run. This process is conventionally performed by a

linking editor (such as SLRNK or L80). The user supplies final

addresses for each segment (CSEG, DSEG, and named com-

mons), and the linker produces an absolute image file (COM or

perhaps CIM).

This is where JetLDR comes in. It performs the linking step by

obtaining the final addresses from the current external environ-

ment of the computer system in which it is running. Thus, a Z-

System ZRL file is tailored to the exact system that is running at

the moment.
JetLDR provides rapid loading and relocation for all types of

ZCPR3 system packages. Packages (segments) may be loaded as

separate files or as members of a library. Thus, JetLDR should

fully replace LDR and LLDR. The complete command-line syn-

tax is:

A> JetLDR //
gives usage message

The Computer Journal / Issue #33 11

Listing 1

Z3C0MM0N.LIB
Standard named-common relocation bases for the Z-System

COM /_BI0S_V
bios equ $

COM /_ENV_/

z3env equ $

>

COM /_SSTK_/
shstk equ $

COM /_MSG_/

z3msg equ $

t

COM /_FCB_/

extfob equ $

t

COM /_MCL_/

z3cl equ $

\

COM /JSTK_/
extstk equ $

; BIOS location (xx00h)

; environment descriptor

; shell stack

; message buffer

; external fcb

; multiple command line buffer

external stack

The following named commons are for use of Z3PLUS only.
The declarations are listed here for reference;
they should appear in the command-processor source file,
not this ' 'include 1

' file.

command processorccp

COM

equ

/_CCP_/

$

scb

COM

equ

/_SCB_/

%

rsx

COM

equ

/_RSX_/

$

; cp/m 3 system control block (xx00h)

cp/m 3 RSX containing Z-system

The following named common is for use of NZCOM only.
The declaration is listed here for reference;
it should appear in the bios source file,

not this "include" file.

COM /_CBI0^/

cbios equ $

CSEG

; base of original system bios

; ensure code segment

If the file type is ZRL or REL (in SLR or MS-relocatable for-

mat) then JetLDR will relocate and load the FCP, RCP, IOP,
CCP, DOS, BIO, or CFG package, provided that its correspon-

ding module name (created by the assembler using the NAME
directive) is:

FCPxxx

RCPxxx

IOPxxx

CCPxxx

CP3xxx

DOSxxx

D03xxx

BIOxxx

CFGxxx

xxxxxx

xxx = any ASCII characters

(for CP/M 2.2)

(for CP/M 3)

(for CP/M 2.2)

(for CP/M 3)

for configuring following module (s)

a custom module

Which named commons should be used by different modules
requires some discussion. At the time it loads a new segment,

JetLDR will correctly resolve all of the named-common segment
addresses shown in Z3COMMON.LIB to those of the system that

is in memory.
Initially, I had expected the code in an RCP, for example, to

refer to a command processor address by useing offsets from the

CCP named common. (That address would be needed, for

example, for parsing service or obtaining the names of the com-
mand processor's built-in commands.) However, the final ver-

sions of Z3PLUS and NZCOM provided the capability of
changing the sizes and locations of some Z-System buffers while

leaving intact the code in others. Thus, it is possible with NZ-
COM, for example, to enlarge the named-directory buffer and
reload the command processor at a lower address, without
reloading the existing RCP. In order to use this advanced feature,

an RCP must use only the named commons for segments whose
addresses will not change dynamically.

RCP, FCP, and IOP modules should use only _ENV_
references, and obtain the addresses of other segments from the

ZCPR3 external environment, The other named-commons are

provided for the command processor, BDOS, and special

Z3PLUS and NZCOM modules.

To convert an existing source file (e.g., an RCP) to ZRL
form, remove any "include" or "maclib" statements for either

Z3BASE.LIB or other files with absolute system segment referen-

ces. Then check the source file for any external references and
convert them to named-common base references. For example, to

access the wheel byte, replace

Id a, (z3whl)

with

; old way

A> JetLDR [du:]filel.typ, [du:]file2.typ, ...

loads filel.typ, file2.typ, . .

.

A> JetLDR [du:]lbrfile[.lbr] filel.typ file2.typ . .

.

loads membvrs filel.typ, file2.typ,
... of the library file ' ' lbrfile . Ibl '

'

The optional "du:" may be a drive/user spec, or a named direc-

tory. If neither is given, JetLDR searches the path for the file.

The file types may be:

FCP - flow commands ENV - environment
IOP - input/output NDR - named directories
RCP - resident commands ZJl - terminal capabitlities
ZRL — FCP, RCP, IOP, CCP, CP3, DOS, D03,

BIO, or CFG In relocatable format

push hi ; new way

Id hi, (z3env+29h) ; get ptr to wheel byte
Id a, (hi)

pop hi

Using M80 or an SLR assembler, assemble the file to

relocatable format, and to help distinguish it from an "or-
dinary" REL file, specify the output file type, or rename it, to

type ZRL.

Loading Command Processor, BDOS and BIOS Modules
On CP/M 2.2 systems, JetLDR relocates a CCP package and

writes the absolute image to a file in the root directory, because
there is no general-purpose method of installing that image into

the warm-boot procedure of the host computer. The user can then
run SYSGEN or the corresponding utility for his system to install

the image. On CP/M Plus systems, JetLDR loads the command
processor directly into memory within the Z3PLUS RSX buffer.

12 The Computer Journal / Issue #33

JetLDR loads a DOS package to the current BDOS base

(xxOOh or xx80h) address and executes BDOS function 13 (reset

disk system) before returning. JetLDR loads a BIO package to

the current BIOS base address (xxOOh) as pointed to by

(OOOlh). As soon as a BIO package is moved into position

JetLDR executes a cold boot; no further messages or loading are

attempted!

I have focused on using JetLDR to load Z-System packages in

ZRL format. Of course, it will also load named-directory

(NDR) and terminal capability (Z3T) files , and will load the

traditional absolute-code forms of RCP, FCP, and IOP
packages. JetLDR does extensive checking for addressing conflic-

ts before loading a package, and it will not load a package too

large for the current buffer size. This will help to catch most

mistakes that result from specifying the wrong absolute code

package for the current system, an easily made slip if you have

several system sizes. In the longer term, I recommend that users

switch to using only ZRL files for Z-System segments containing

code (i.e. everything but Z3ENV, Z3T and NDR). Only one

ZRL file is needed for all system sizes, and its addresses will be

correct in every case.

De-installing an IOP
As originally defined, an IOP had no way of being de-installed.

Now, before loading an IOP package, JetLDR calls the existing

IOP SELECT routine with register B = OFFh. This value is an in-

valid device selection. It is used here to enable any new IOP to

execute its deinitialization routine before being overloaded by

another IOP.

The ID Named Common
JetLDR, Z3PLUS and NZCOM normally require that the

named-common segments include only addresses, not actual

code. However, there is one exception: the ID segment. This

relocation base is special—it may include up to 256 bytes of null-

terminated ASCII data. Its purpose is to embed identifying in-

formation in the ZRL file, such as version number, date, and
supported features.

For example, an RCP source file might contain:

COMMON /_ID_/

defb '3/26/88 vers. 1.2c 1.0K' ,0dh,0ah

defb 'H, SAVE, P, POKE, SP',0

JetLDR will display the ID text when it loads the file. It can

also be viewed, somewhat clumsily, with a debugger or disk

utility. Perhaps someone will eventually write a simple librarian

that scans ZRL files and displays their names and ID fields.

The Extended Externa! Environment Type
ZCPR34, NZCOM and Z3PLUS have extended the traditional

ZCPR3 external environment to support additional vital system

information. An extended environment is identified by an en-

vironment type byte that has a value of 80h or greater. Currently,

type 80h is defined to include the following data (future exten-

sions will use higher type values and be compatible with these

parameters):

environment type

valid drives vector

CCP base address (xxOO or xx80)

CCP buffer size (80h records)

BDOS base address (xx00orxx80)

BDOS buffer size (80h records)

z3env+ 08h db

z3env+ 34h dw

z3env+ 3Fh dw

z3env+ <+lh db

z3env+ 42h dw

z3env+ AAh db

z3env+ <*5h dwdw BIOS base address (xxOO)

JetLDR supports the extended external environment types

(type > = 80h) and provides an automatic way for existing ZC-
PR3 systems to upgrade the in-memory external environment to

include the extensions.

JetLDR's algorithm is this:

1

.

If the host environment is not type > = 80h, JetLDR
assumes a standard system (BDOS size OEOOh, CCP size 800h),

and computes the BDOS and CCP addresses from the value at

OOOlh. It installs these addresses and sets environment type 80h. It

sets valid bits for all drives up to the environment's current

"maxdrv."
2. Otherwise, it preserves the environment type and system ad-

dresses, overlaying them on any ENV segment that may be
loaded.

Sharp-eyed readers will note that the extended environment has
"stolen" bytes originally defined for CRT1 and Printers 2 and 3.

As the Z-System has actually developed, these parameters are of
very limited use, and almost no program actively refers to them.
An application can determine whether an environment descrip-

tor contains valid system data by testing bit 7 of the environment
type byte (z3env + 8). By using JetLDR to load any system
segment, you will automatically convert the running environment
to type 80h, with current system parameters. Thus, JetLDR
provides a painless, assembly-free method for you to upgrade an
existing environment to the new standard and be able to use the

new extended-environment Z-System tools.

User Configuration of JetLDR
There is has one additional module type, CFG, that adds great

flexibility. JetLDR loads a CFG module into one of its own buf-
fers. Once loaded, the CFG code can control or supplant any of
JetLDR's normal relocation, validation, and loading steps. This
feature has potentially wide application. One immediate use, for

example, is to cause JetLDR to write the command processor to

the system tracks of the A: drive disk, so that the new file will in

fact be warm-booted. JetLDR doesn't provide this service itself,

because it is machine-dependent, but a user can write his own
CCPCFG module to do so.

A more far-ranging application is to load quite different types

of modules, such as resident system extensions (in either main or
banked memory). In the next column I will show how JetLDR
can simplify and routinize the installation and initialization of
CP/M 2.2 RSX modules.

Why the Jet?

JetLDR does load multiple files faster than traditional loaders,

JetFind searches a set of files for matching expressions with
alacrity, and Z3PLUS is also fleet-footed. In each case I've been
able to boost performance by minimizing the time spent stepping

between tracks on a physical disk. I hope to discuss some of these

Jet techniques in a future column.

Anywhere in Z-80 Space

How would you write a program that must run, without

external assistance, anywhere in memory it happens to be
located? Such code is position-independent. I've needed this

capability several times, yet I never stopped to construct a really

satisfactory solution, until, in the midst of nailing down the final

Z3PLUS code for handling type-4 environment files with Joe
Wright and Jay Sage, I suddenly looked at this curious puzzle in a

new way.

Before peeking at my solution you may want to try your hand
at an answer. To be position-independent, your code must solve

two problems: determining what its actual location is, and
relocating itself to run at that address.

Most memory references in Z-80 code are absolute; the

exceptions are relative jumps and stack operations. If a program
can be written to use just those two types of opcodes, it will run

anywhere. Unfortunately, that doesn't make for much of a

program!

The Computer Journal / Issue #33
13

It seems, then, that in general a

program must follow one of two paths.

Either it is assembled or linked to resolve

all of its adddresses to absolutes at the

location at which it will actually run. This

is a standard COM file. Or, it must be in

relocatable format and loaded by a linking

loader that resolves the addresses relative

to the program's runtime address. This is

how EXE files in MSDOS are loaded, and
how JetLDR loads ZRL files.

The ANYWHERE Linker/Loader.

Can you devise a way to do the

relocation without the assistance of an
external loader or linker? ANYWHERE
(Listing 2) is my solution.

Imagine that ANYWHERE has just

been loaded into memory at some
address, perhaps 9123h. How does it

work?
ANYWHERE 's "Where Am I"

routine, at 0006' solves the first problem
by calling a routine and then retrieving its

own return address from the stack.

WAI temporarily puts a RET
instruction at OOOOh and then calls that

address with an efficient, one-byte RST
instruction. The "routine" at OOOOh
immediately returns to the address "me",
but in the process the address of "me"
has been pushed (by the "call") and then

popped (by the return). So, by
decrementing the stack pointer by two
bytes, we can retrieve the address of

"me" with a "pop hi" at 0017'.

Of course, this wouldn't work if

something else had used the stack between
the call and completing the decrementing

of the stack pointer! Therefore, we
.ensure no interference by disabling

interrupts in this critical section. Actually,

the code is more conservative; it is

remotely possible that an interrupting

routine would refer to location OOOOh, so

we disable interrupts just before

modifying that byte.

Now that ANYWHERE knows the true

address of "me", it proceeds to calculate

its own starting address ("anywhere")

and the address of the code that will be

executed ("prog").

While doing so, the routine patches its

very first byte to a null—the Z-80 opcode
for a NOP instruction. This is an

important precaution—it ensures that

ANYWHERE will re-execute correctly,

by skipping over the relocation routine

and jumping directly to the (already-

relocated) code at prog. The original byte

at the start ofANYWHERE is the opcode
for "Id hl.nnnn". It acts as a dummy
instruction, simply loading the hi register

with the data value generated by the "jr

prog" instruction, and allowing execution

to proceed in line to the next instruction at

0003'. When the NOP replaces the first

byte, the "jr prog" at 0001' becomes
effective and control branches to the code

ANYWHERE. ASM - Poslti

Listing 2_

on-Independent Code Linker/Loader

0001 prl equ 1 i if spr

0000 anywhere

:

0000 21 db 21h ; op code for LD hl,nnnn. It becomes

NOP after initial execution, so that

0001 18 45 jr prog ; re-execution will skip to code

0004' length equ $+1

0003 01 0000 Id

; The Where Am

be,$-$;

I routine:

patch in length of code here

0006 21 0000 uai: Id hi, 0000 ; point at rst location

0009 E5 push hi ; set ix =

000A DD El pop ix ;

000C DD 39 add ix,sp ; and save sp in ix

000E 7E Id a, (hi) ; save the byte at 0000

000F F3 di ; ensure no interrupts

0010 36 C9 Id (hl),0C9h ; plug in RET

0012 C7 rst ;
' 'call 0000"

0013 77 me : Id (hi), a ; restore 0000 byte

0014 3B dec sp ; move stack pointer

0015 3B dec sp ; . .so we can pop ' 'me' '

0016 FB ei J again safe for interrupts

0017 El pop hi ; fetch addr of "me"
0018 11 FFF2 Id de,anywhere-me ; subtract to get..

001B 19 add hl,de ; hi = true location of 'anywhere'

001C 36 00 Id (hl),0 ; store NOP, to prevent second ...

relocation, should code be re-executed

001E 11 0048 Id de
,
prog-anywhere

0021 19 add hl,de ; hi -> prog

; Word-wide PRL relocator

; enter: hi = base of code to be relocated

; be = length of code

0022 reloo:

0022 E5 push hi ; set de' = base addr of code

0023 D9 exx

0024 Dl pop de

0001 if prl

at "prog".

The PRL Relocatable Format.

The ANYWHERE code at 0022'

relocates the code that begins at "prog"
based on a PRL bitmap. PRL-format
code consists of relocatable code,

assembled relative to lOOh, with an

appended bit map that indicates which

bytes require relocation. There is one

relocation bit (0 = absolute, 1 =

relocatable) for each byte of code.

Actually, the term Page ReLocatable is

a bit (!) of a misnomer, because the

bitmap information applies to individual

words in the code, and the PRL image can

be relocated anywhere in memory. In

contrast to the general REL format

generated by an assembler in relative

mode, the PRL format is very simple. All

that it contains is the code and a tag bit

for each byte of code. There are no named
commons or symbols. (If a DSEG is used,

it begins at the byte following the CSEG
code).

The SPR (System Page Relocatable)

format is similar to PRL. The code image

is assembled relative to OOOOh, rather than

lOOh, and DSEG bytes are separated from
the CSEG code, with a separate bitmap,

so that they could potentially be loaded to

a different area of memory. By setting the

PRL equate false when assembling

ANYWHERE you could use it with an

SPR format. But if the code contains

DSEG data, you'd have to move the

DSEG and the bit maps around; it's

simplest to stick with the PRL format.

Relocation requires operating on word
values, and ANYWHERE uses stack

operations in an unusual and effective

way. We set the stack pointer to the

address of the word we need to relocate,

use a "pop" to fetch a word of code

requiring relocation, add the base address

to it, and "push" the relocated value back

into position. To use the stack pointer this

way, we must save its value and disable

interrupts.

Initialization of the relocation routine,

at 0022', consists of:

a) Setting DE' to the base address of

the code (less lOOh for PRL code, which is

assembled for an origin of lOOh).

14 The Computer Journal / Issue #33

0025' 15

endlf

dec d ;
- 100h if prl assembly

0026 D9 exx

0027 F3 di no interrupts while we use sp

0028 F9 Id sp.hl ; sp -> start of code, lag 1 byte

0029 3B dec sp ;
..because prl marks the high byte

002A 09 add hi, be ; add code length, hi ->prl bitmap

002B IE 01 Id e, 00000001b ; init the rotation byte

;

it will set CY every 8 bytes

002D 78 rloop: Id a,b ; check byte count

002E Bl or e

002F 28 13 jr z, rdone

0031 0B dec be reduce byte count

0032 CB 0B rrc e , every 8 bits the CY is set

0034 30 02 jr ne, rsame ; . .not set

0036 56 Id a, (hi) get d = next byte from bitmap

0037 23 ino hi and advance bitmap pointer

0038 CB 02 rsame

:

rlc d shift bitmap byte left into CY

003A 30 05 jr nc,noof no relocation needed

003C D9 exx get word to relocate from '' stack'

003D El pop hi

003E 19 add hl.de relocate by de' = load addr (-100h if prl)

003F E5 push hi put it back

0040 D9 exx

0041 ^ noof

:

inc sp -> next byte of code

0042 ' 18 E9 jr rloop and loop

0044 ' DD F9 rdone

:

Id sp.ix , restore the stack

0046 1 FB el , and permit interrupts again

Assemble with a =£ET instruction here.

This ensures that ANYUHERE.COM will run

harmlessly if no code is overlayed at 'prog 1
.

; Overlay the code, followed by the PRL bit map, here:

0047 ' C9 prog: RET

end

b) Setting the stack pointer to point to

the first byte of the code, minus 1

.

c) Setting HL to point to the bitmap.

d) Initializing the E register as a bit

counter that will generate a carry on every

8 rotations.

The relocation loop itself, at 002D', is

straightforward. We count down the

number of code bytes, rotate the bit

counter, and fetch a new bitmap byte

when the carry flag is set every eighth

time. Next we rotate the bitmap byte

itself; if the bit is set we fetch the code
word and relocate it. Finally we increment

the stack pointer to the next byte of code
and loop.

The final instructions restore the stack

pointer and enable interrupts. Control

then proceeds to execute the relocated

code, at "prog".

Using ANYWHERE
To use ANYWHERE you need to

assemble your code, link it into a PRL
file, and then patch that file and its length

into ANYWHERE. Instructions are

shown in Figure 1

.

What's it good for? The elegant and

efficient ANYWHERE code serves to

illustrate word-relocation using the PRL
relocatable format, stack pointer

operations, interrupt management, and

an answer to the where-am-I question.

Beyond that, I can invisage several

interesting applications:

An operating system could be user-

extensible by providing a buffer of

adequate size and interface specifications

to accomodate a user-written driver for a

new disk device, real-time clock, or other

hardware. The user needn't know the

location of the buffer to write the driver,

and indeed, the operating system may not

know until it loads the code.

Programs that require user-coded

configuration or hardware driver routines

could provide a configuration buffer

"anywhere". The hardware-specific code

can be assembled separately, once, and

patched into any buffer location; the same
driver module could thus be used in

several programs that require it,

regardless of their buffer addresses.

No doubt there are other interesting

uses for position-independent code. Send
me your best ideas for publication in this

space!

Limitations and Extensions

The overhead is 47h bytes for

ANYWHERE, plus up to one-eighth of

the length of the code for its bitmap (if the

code has an unitialized data area at its

end, with labels assigned by equates rather

than "defs" directives, the bitmap can

overlap this area).

This ANYWHERE could be enhanced
to save entering registers and pass them to

the code at "prog". A second change,

which might be needed for some interface

specifications, would be to have the code
pull itself on top of the ANYWHERE
code when it is relocated, overlaying that

code and leaving just the relocated image
in the buffer beginning at the anywhere
address.

Registered Trademarks

It is easy to get in the habit of using

company trademarks as generic terms, but

these registered trademarks are the

property of the respective companies. It is

important to acknowledge these

trademarks as their property to avoid their

losing the rights and the term becoming
public property. The following frequently

used marks are acknowledged, and we
apologize for any we have overlooked.

Apple II, II + , He, He, Lisa, Macin-

tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-

per, BackGrounder ii, DosDisk; Plu*Per-

fect Systems; Clipper, Nantucket; Nan-
tucket, Inc. dBase, dBase II, dBase III,

dBase III Plus; Ashton-Tate, Inc.

MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.

IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Cor-

poration. Turbo Pascal, Turbo C;

Borland International. HD64180; Hitachi

America, Ltd. SB180Micromint, Inc.

Where these, and other, terms are used

in The Computer Journal, they are

acknowledged to be the property of the

respective companies even if not

specifically acknowledged in each oc-

currence.

The Computer Journal / Issue #33 15

Data Base
A Data Base Primer

by Art Carlson

More programming and consulting hours are spent on business

programming than in any other single field. The majority of these

activities are concerned with the handling of data. Not all of the

work involves data bases as we normally think of them, but a

good understanding of data bases is needed because they form the

basis for most business programming.
The first large scale computer applications were for processing

mailing lists, orders, and accounting transactions—and most of

us still think of these examples when someone mentions data

bases. It sounds like a very dull, boring subject. This is unfor-

tunate, because data programming covers a much wider range of

activities—much more than just printing labels and invoices, and
keeping track of account balances.

The early uses merely replaced clerks and bean counters.

Business managers told the programmers to make the computers
duplicate what people had been doing. The managers had no con-

cept of what additional information and guidance the computers
could provide, and they wouldn't have know how to apply the in-

formation if they had it. At that time, the U.S. was the business

center of the world, and their main concern was to ship the

product and put the money in the bank. Today, things are dif-

ferent, and every business (regardless of size) has to extract in-

formation from their data and to use it for management and
planning. Information processing is also being used for non-

business uses such as laboratory numeric data acquisition and
analysis.

The Need for Information Processing

There is a tremendous amount of information available—and
the amount is increasing rapidly. It's more than we can handle.

It's overwhelming, and whether the information is in the form of

text or numbers, it's all data.

The emphasis has been on processing data in order to count

items or to total accounts, and there is still much to be done in

that area (especially for small businesses). The real need is to

process the data in order to extract information, and to develop

management decisions based on the information.

There are too many variables, and things are changing too

rapidly, for individuals to assimilate the information and make
the required decisions. We have microprocessor control systems

in our cars, and in our automated factories. What we need now
are management control systems—and for them we have to learn

how to extract information from data files.

Our Goals

There is a lot of published material on how to use the major
programming tools, but there is very little published on what the

program should do. What is missing is information on the prac-

tical aspects of designing and developing a database—the nitty-

gritty details on implementing a database rather than an ex-

planation of the tools. Our goal is to cover the basic design of the

data structure, what it should do, and how to select the best way
to do it.

Our audience is the programmer who is looking for the right

solution for a specific application, not the end user who just wan-
ts to plug-n-play (although he may very well be the programmer's
customer). We will talk about data bases, user interfaces, the uses

for data, and the programming tools available. We don't intend

to merely publish code for one product, but rather to cover many
different products demonstrating their weak points and their

strong points.

Our goal is to cover the basic

design of the data structure, what it

should do, and how to select the

best way to do it.

What is a Database?

In simple terms, a database is a collection of related data

organized for convenient access. It could be a list of baseball

players with their batting averages. It could be the scores for your
bowling league. It could be General Motor's inventory of unsold

vehicles, on both the company and dealer lots.

In order to justify a database, it has to serve a useful purpose.

There has to be some reason why you want to use it to arrange,

select, compile, or report the data. If you had data on a dozen ball

players, a handwritten list would be sufficient for you to eyeball

and pick out the three best hitters. If there were a thousand
players, a DBMS would make the selection easier. If you had to

locate a vehicle with the right prameters of model, engine, tran-

smission, color, etc. from GM's inventory to fill an order, it

would be impossible without a DBMS.
There are several ways of arranging the data, and different

systems call the same things by different names. In this series we'll

use the following more or less common generic terms. The fun-

damental elements are: (1) The file, which is a collection of recor-

ds treated as a unit. (2) A record, which is a collection of data

fields treated as a unit, (3) A field, which is a data element. A
short example should help clarify this.

In order to keep track of the stock market, you might want to

work with the following data:

Company Name

Date

Closing Value

Change (in dollars)

Each of the above four lines is a field. The combined data in the

four fields for one company is a record, and each entry for a dif-

ferent date or a different company is a another record. The collec-

tion of all the records is a file. It is convenient to visualize the file

(Continued on page 42)

16 The Computer Journal / Issue #33

SCSI for the S-100 Bus
Another Example of SCSI's Versatility

by Dr. John C. Ford, Indiana University of Pennsylvania

The small computer system interface

(SCSI) is a standardized protocol for

linking computers to other computers, to

mass storage devices, or to other devices

which observe the protocol. It is perhaps

most commonly used for attaching a hard

disk to a single computer, although the

full standard supports many other tasks.

In this article, I'll present a description of

one manufacturer's solution to

interfacing SCSI devices to an SI 00

system, including an outline of the

software necessary to support SCSI, and

an example of an MSDOS program to

access the SCSI system.

First, more specifically, what is SCSI?

Several articles (1-8) have appeared

recently which outline the protocol in

some detail. Additionally, the full

specification is available (9). Briefly, it

consists of the definition of signals in a 50

pin bus which connects the host

processors (initiators) and the device

controllers (targets), an electrical

specification for those signals, and a

description of the system states which

define the communications occuring over

the bus.

Typical SCSI systems are shown in

Figure 1 . While this article deals primarily

with a simple, single-initiator system such

as shown in la or lb, one of the more
attractive features of the SCSI protocol is

the ability to have multiple initiators

sharing the bus, accessing the same I/O
devices (Figure lc).

Communications over the bus occur as

follows: a host processor receives a

request (e.g., from the operating system)

for information which it must acquire

from the SCSI storage device. The host

then configures itself into the initiator

mode, and begins arbitration. This

arbitration involves requesting access to

the SCSI bus; if the host is the highest

priority initiator, other initiators on the

bus will relinquish the bus to our example

host. After winning arbitration (which is

optional in single-initiator systems), the

host requests the attention of the selected

target. Following response by the desired

target, the entire SCSI transaction

becomes target-controlled. The initiator

monitors the state of the SCSI bus, and

SCSI Bus

initiator

Figure 1: Diagram of possible SCSI
configurations. A) Single initiator, single

target; B) Single initiator, multiple target;

C) Multiple initiator, multiple target.

Listing 1) Phase-driven SCSI low-level format routine, showing the

method of accessing the SCSI bus.

Listing 1 - SCSI test driver

adapted from Rick Lehrbaum's example SCSI driver in

The Computer Journal, issue 26, page 12 ff, 1986

assembly by J. C. Ford, 4/88conversion to

macro to slow down S100 and

this is to prevent the 8086 from accessing the I/O ports

too quickly, it forces the instruction queue to empty

pause macro

jmp $+2

endir

; general equates

If equ 0Ah

cr equ 0Dh

; the next address is Lomas specific. I used the default

ncrbase equ 40H ; base address of ncr 5380

; 5380 input-only and input /output registers

The Computer Journal / Issue #33 17

the target signifies what information is to

be put on the bus, who (the target or the

initiator) is to put the information on the

bus, and, finally, when the entire

transaction is complete. After beginning

the transaction, the initiator simply

responds to the state dictated by the

target.

Attaching an S100 system to a SCSI bus

may seem inappropriate. After all, we
could buy an S100-to-ST412 hard disk

controller and forget about the SCSI
controller. However, as mentioned above,

an SlOO-to-SCSI board (a host adapter

)

allows not only our SI00 to access the

hard disk, but also provides the same
access to any other SCSI initiator. It is

conceivable to attach multiple SlOO's to a

single hard disk, or an SI 00 and several

Macintoshes, etc. The only limitation is

the address space of the SCSI bus. (There
can be upto eight SCSI devices, and a

typical SCSI hard disk controller can

control two drives.) A second advantage

is that once the SCSI adapter software is

installed, all SCSI devices can be accessed;

adding a tape backup unit becomes a

matter of installing a SCSI-to-QUIC
controller board and a QUIC tape drive.

The software to copy the files from one
device to another is essentially the same as

the software to copy the files on the disk

itself. Yet another advantage, which has

yet to fully materialize, is that, as other

systems use SCSI and create a demand for

SCSI devices, the price for a device and its

SCSI controller will become lower than

the cost of a specialized SI 00 interface

card and the device. It's also worth

mentioning that a wide variety of SCSI
controllers are available, including RAM-
disks, printer servers, and real-time I/O
controllers which attach the SCSI to the

STD bus (1). Finally, SCSI is a high-

performance bus; the early SCSI cards

could support 500 Kbytes/sec and current

versions can exceed 1 Mbyte/sec
transactions. Information bandwidths of

these magnitudes mean that we are not

compromising the performance of our

systems.

The SCSI electrical definition is

essentially a 50 pin parallel bus. Eight of

the lines are defined as data lines, nine as

control lines, and the bulk as ground
lines. While it is possible to use

conventional parallel ports to implement a

SCSI interface, or to design a specialized

SCSI adapter using TTL (10), there is

now available a single LSI SCSI interface

chip, the NCR 5380, which fully supports

the protocol and is as easy to attach to the

S100 bus as a conventional LSI parallel

port. This article focuses on the Lomas
Data Products host adaptor (LDP-HA),

which uses this chip. The LDP-HA also

supports four RS-232 serial ports and a

clock-calendar, although these features

are not discussed here. The cost of the

norosd equ ncrbase+0

ncricr equ ncrbase+1
nerrar equ ncrbase+2

ncrtcr equ ncrbase+3
norosbs equ ncrbase+4

norbsr equ ncrbase+5
ncridr equ ncrbase+6
ncrrpi equ ncrbase+7

; the next addresses are also

nordack equ norbase+18h

scsi_ctrl equ ncrbase+0Bh

scsi_portc equ ncrbase+0Ah

current scsi data register

initiator command register

mode register

target command register

current scsi bus status

bus & status register

input data register

reset parity/interrupt

dack pseudo-dma

control port for an 8255

the SCSI ID for the LDP-HA is set by DIP
switches at this port of the 8255

5380 output-only registers

ncrodr equ ncrbase+0 ; output data register
ncrser equ ncrbase+4 ; select enable register
ncrsds equ ncrbase+5 ; start dma send
ncrsdtr equ ncrbase+6 ; start dma target receive
ncrsdir equ ncrbase+7 ; start dma initiator receive

; flag masks for current SCSI bus status register

ncrrst equ 10000000b
ncrbsy equ 01000000b
ncrreq equ 00100000b
ncrmsg equ 00010000b
ncrcd equ 00001000b
ncrio equ 00000100b
ncrsel equ 00000010b
ncrdbp equ 00000001b

; flag mask for bus and status register

ncrphm equ 00001000b ; phase mismatch

; flag masks for SCSI status

BUSY_STATUS

CHECieSTATUS

target_ID

code

assume

start:

main:

scsi_trial:

equ 08h

equ 02h

equ 01h SCSI device - NOTE this is system specific
the address used here will depend on the target
address of the controller board in your system

segment

cs:code, ds:code, es:code, ss:stack

lbusy:

continue:

mbusy:

mov ax, code

mov ds, ax

mov es, ax

call hdinit

call scsireset

call zero_unit

call test_ready

mov al, status

test al, BUSY_STATUS

jnz lbusy

test al, CHECK_STATUS

jz continue

call req_sense

call mode_select

mov al, status

test al, BUSY_STATUS

jnz mbusy

test al, CHECK_STATUS

j z cont2

call req_sense

this also does SCSI init

loop if busy

there was an error

18 The Computer Journal / Issue #33

cont2:

fbusy

:

call format_unit

mov al, status

test al, BUSY_STATUS

jnz fbusy

test al, CHECK_STATUS

Jz cont3

call req_sense

cont3

:

mov ah, 4Ch

int 21h ; exit

hdinit: mov al, 92h ; set up 8255 mode

out scsl_ctrl, al

paus

mov al, 55h

out scsi_portc, al

\ fall through into a 5380 reset

ncrinit: xor ax, ax ; just reset 5380

out ncricr, al

paus

out ncrmr, al

paus

out ncrtcr, al

paus

out ncrser, al

ret

sosireset: mov ax, 0000000010000000b

out ncricr, al

mov al, 100 ; generate long delay

rstl: dec ax

jnz rstl

xor ax, ax

out ncricr, al

delay: mov ex, ; set up counter

rst2: mov ax, ex

dec ex

jnz rst2

in al, ncrrpi ; reset interrupt indicator

ret

disbyte: push ax

push bx

push ex

push dx

push ax ; save byte

mov cl, 4

shr al, cl ; get high nibble

call disnibble

pop ax

and al, 0fh ; get low nibble

call disnibble

mov al, 20h ; output a space between bytes

mov ah, 2 ; DOS output byte

Int 21h

pop dx

pop ex

pop bx

pop ax

ret

disnibble: add al, 30h ; change to ASCII

cmp al, 39h

jle dn2 ; jump if less than or equal

add al, 7 ; change hex to ASCII

dn2: mov ah, 2 ; DOS output byte

int 21h

ret

if you're going to add arbitration code,

calling select

it would be done before

board ($375) is quite reasonable in

comparison to the same (and other)

manufacturer's charge for S100 hard disk

controllers.

[The SCSI controller used in my system

(the Adaptec ACB 4000) was $100.

While this controller is appropriate for

single-initiator systems, it will be

necessary to switch when I opt to add a

second initiator to the system. However, it

will not be necessary to change the

software, excepting perhaps the device-

specific information in the formatting

routines.]

Lomas supplies a technical manual with

the LDP-HA, although I have found

numerous errors in it. Error is perhaps

overly harsh, but I find it hard to describe

otherwise differences between the jumper

numbering on the board and in the

manual, omission of board jumper

numbers, and an incorrectly modeled

example driver. Lomas does include a

schematic, although the numbering of

jumpers on the schematic is not in full

agreement with the board, and one set of

jumpers is unnumbered on the schematic.

Finally, the selection of the wait-states

and of the SCSI ID number would have

been easier if the board had clearly

indicated the proper orientation of the

jumpers. (In other words, I couldn't tell

whether I was selecting seven wait states,

or none!) In all fairness, Lomas does not

encourage direct sales, so that presumably

you will be able to direct questions to your

dealer. Further, the individuals at Lomas
were extremely helpful when I called

them.

Excepting omissions in the screen mask
indicating jumper and cable orientation,

such as those mentioned above and the

orientation of pin 1 on the SCSI bus, the

board appears well designed. There were

no wire-wrap jumpers or cut traces, and

the traces are nicely organized, indicating

that the design is solid. The board

includes card ejectors, a nice touch. It

comes with jumpers installed for a full

LDP system, i.e., the address is 40H,

compatible with Lomas's other I/O cards,

and it ran without reconfiguration.

My system is a Lomas Data Products

S100-PC, running MSDOS 2.11. The
processor card is the LDP Lighting 1, with

the 8086 and a ROM monitor. For an

additional $35, Lomas supplied me with

replacement ROMs which contain

routines to access the SCSI adaptor, a

binary image which Lomas says will boot

DOS from the hard disk, a modified

version of IO.SYS compatible with the

hard disk, the assembly source code for a

loadable MSDOS driver to read and write

sectors from the disk, and a utility

program to create a data file needed in the

assembly of the driver. (It is necessary for

the user to supply MASM and LINK, or

equivalents.) Lomas does NOT supply

The Computer Journal / Issue #33 19

information on how to directly access the

SCSI, although that information can be

obtained from a listing of the monitor

ROM source (available for $15). This

latter information would be useful, since a

hard disk needs a low-level format before

the DOS format (which simply sets up the

directory structure). Unfortunately,

Lomas cannot provide a low-level format

routine, since this command varies among
controllers, and would in any event vary

according to the capacity of the hard disk

used.

Lomas does provide a generalized

example SCSI driver in the manual, which

could be entered, modified for MSDOS
(it is written for CP/M-86), and used,

although there is no real description of

how to utilize it. However, SCSI is a state-

driven protocol: the driver should not

count the bytes output, nor assume which

state is occuring, but rather let the target

control the information flow (2, 3). The

SCSI standard specifies that certain (six-

byte) commands are mandatory, but the

manufacturer is permitted to incorporate

into their design optional and/or vendor-

unique commands, which may be ten-byte

commands. While the end-user may not

care, the systems integrator may find that

use of these commands results in higher

performance. The LDP driver

accomodates both types of commands,

but does so by expecting the calling

routine to supply it with a count of the

number of bytes to transfer.

Further, the Lomas ROM monitor does

not seem to be compatible with the ACB
4000. Attempts to use the provided Lomas
DOS driver (which relies on the ROM
routines) resulted in no response;

moreover, the error light on the ACB 4000

lit. This suggested a software

incompatibility, and the need to create my
own SCSI routines.

No problem. Part of Rick Lehrbaum's

excellant SCSI series included an example

SCSI driver for the Z-80 (5). I converted

this to 8086 assembly language and

attempted to perform a low-level format,

to no avail. After much teeth-gnashing, I

realized that Mr. Lehrbaum's code has a

flaw. In the original code, the routine to

output a byte (wscsi) enabled the data

bus upon entry, watched for the REQ,
then enabled the acknowledge (ACK).

However, in the 5380, enabling ACK
involves a write to the same register which

controls the data bus enable, and Mr.

Lehrbaum's code disabled the data bus

when it enabled the ACK. This resulted in

the LDP-HA removing the data from the

bus at the same time it told the target to

accept it!

The code presented in Listing 1

overcomes these problems. Since this code

directly accesses the 5380, it eliminates the

need to use the ROM routines, and thus

makes possible the creation of a SCSI

j************** ENTRY POINT FOR SCSI DEVICE ACCESS ***********

select: xor ax, ax

out ncrtor, al

mov al, target

out ncrodr, al

mov al, 00000101b

out ncrlor, al

pause

waltblp: in al, ncrcsbs

test al, ncrbsy

jz waitblp

xor ax, ax

out ncrlcr, al

; clear register in order to set all

; Assert bits in TCR. Prepare phase

; get target ID from memory

; set Assert Data Bus and SEL bits

; get current scsi bus status

; look at busy line

; wait for busy

; clear SEL and release data bus

; drop through Into phase

;************** MASTER BUS PHASE PROCESSING ROUTINE ************

phase: xor ax, ax

out ncrmr, al ; reset ncr Ctrl registers
mov ax, offset message ; ready message_pointer

mov message_pointer, ax

xor ax, ax

out ncricr, al

mov ax, offset status ; now ready status_pointer

mov status_pointer, ax

phi: in al, ncrcsbs ; check for BSI active

test al, ncrbsy

j nz ph2

ret ; return if BSY drops out

ph2:

cmdout

:

statin:

msgout:

msgin:

undefined:

test al, ncrreq

jz phi ; not valid if REQ not valid

and ax, 0000000000011100b ; get MSG, C/D, 1/0

shr ax, 1 ; move it to set up for tcr

shr ax, 1

out ncrtcr, al

mov bx, offset phasetable

add bx, ax

; point to correct phase

; go do it

jump table for SCSI modes

add bx, ax

J mp cs: [bx]

phasetable: dw dataout ; j

dw datain

dw cmdout

dw statin

dw undefined

dw undefined

dw msgout

dw msgin

dataout: mov bx, offset datptr

jmp wscsi

datain: mov bx, offset datptr

jmp rscsi

mov bx, offset cmdptr

jmp wscsi

mov bx, offset status_pointer

jmp rscsi

mov bx, offset message_pointer

jmp wscsi

mov bx, offset message_pointer

jmp rscsi

ret

20 The Computer Journal / Issue #33

wscsi:

wscsil:

waitreq:

noreq:

push bx

pop di

raov bx, [di]

in al, ncrbsr

test al, ncrphm

jz gotophase

in al, ncrcsbs

test al, ncrbsy

jz gotophase

test al, ncrreq

jz wsosil

raov al, [bx]

out ncrodr, al

ino bx

mov [di], bx

mov al, 01h

out ncrior, al

pause

mov al, 00010001b

out ncrior, al

pause

in al, ncrosbs

test al, ncrreq

jnz waitreq

xor ax , ax

out ncrior, al

push the address

di points to address location

of pointer

bx points to data

check for phase mismatch

check for busy

loop unti req or phase change

get the data to send

send it

increment pointer

store it

; assert data bus

; set ack and data bus

; wait for req to go away

; and when it does, clear ack

; drop through to phase

gotophase: jmp phase

push bx

pop di

mov bx, [di]

in al, ncrbsr

test al, ncrphm

jz gotophase

in al, ncrcsbs

test al, ncrbsy

j z gotophase

test al, ncrreq

rscsi

al, ncrcsd

[bx], al

bx

al, 00010000b

ncricr, al

in

mov

inc

mov

out

pause

in al, ncrcsbs

test al, ncrreq

jnz noreq

xor ax, ax

out ncricr, al

jmp phase

check for phase mismatch

check for busy

check for req

loop until phase change, etc.

get data

save it

increment pointer

set ack

wait for req to go away

loop back

test_ready:

zero_unit

:

req_sense

:

mov cmdptr, offset tr_cmd

mov datptr, offset datbuf

call select

ret

raov cmdptr, offset zu_crad

mov datptr, offset datbuf

call select

ret

mov cmdptr, offset rs_cmd

raov datptr, offset datbuf

call select

now add code to print out the four bytes of returned data

this returned data contains specific information about

the nature of the error

driver without the ROM source listing. Be
aware, however, that Listing 1 is NOT an

MSDOS SCSI driver, although it could be

changed into one.

Listing If consists of two major parts.

The first consists of the generalized SCSI
routines. These are the SCSI
initialization, SCSI reset, select, phase,

and associated subroutines. The
initialization code simply initializes the

LDP-HA's parallel port to read the SCSI
ID and sets the 5380 into initiator mode,
while the reset routine issues a reset

command to the SCSI bus. While this is a

good idea when initializing the bus, it may
also cause the various SCSI devices to go

through long initialization routines.

The actual SCSI transactions are

performed by calling the select

subroutine. On entry, the variable cmdptr

must point to a buffer containing the

SCSI command, datptr must point to a

buffer which will receive data from the

SCSI target or which contains data to be

sent to the target, and the variable target

must contain the desired SCSI device ID.

Pointers to status and message will be set

up in the routines. Select will awaken the

appropriate target and pass control to

phase. Phase monitors the state of the

SCSI bus signals, and passes control (via

jumps through phasetable) to routines

which set up the appropriate pointers and
either read (rscsl) or write (wscsi) a

byte from or to the SCSI bus. Unlike the

Lomas driver, this code is completely

state-driven. After performing each bus

read or write, the routine passes control

back to phase.

When the target signifies the

completion of the transaction, control is

returned to the point in the program
which called select. Status contains data

representing whether or not the

transaction was completed—this is not the

same as successful completion. On the

ACB 4000, a status of indicates

completion, a status of 2 signifies the

availability of error information (check

status), and a status of 8 means that the

selected device is busy and could not

accept the command. A busy status

requires repeating the entire SCSI
transaction, while the check status should

be followed by a SCSI request sense

command, which will result in more
complete error information being

transferred.

The routines rezero, test-ready, sense,

mode-select, and format demonstrate the

use of select to handle SCSI transactions.

The SCSI commands are handled by

t This was my first attempt at 8086

assembly language. If there are

instructions which represent gross

inefficiencies, I apologize and look

forward to your suggestions. However,

the program does work.

The Computer Journal / Issue #33 21

initializing cmdptr and datptr to point to

appropriate buffers containing the

information. Mode-select is particularly

instructive, because this command sends

information about the capacity of the disk

to the ACB 4000. The ACB 4000 stores

this information on the disk, and upon
subsequent power-ups, rereads it. Thus
the ACB 4000 does not have to be retold

what size disk it is dealing with.

Main in this program performs a low-

level format, expecting the ACB 4000 to

be attached to an ST 225 hard disk as unit

0. It simply calls the routines described

above in the appropriate sequence and

performs some testing of status. This not

only provides you with a low-level SCSI

format routine, should you be in my
position when I wrote this, but also gives a

general example of direct access to the

SCSI bus.

However, this driver is not complete.

Just as Mr. Lehrbaum's model, this driver

does not support the entire SCSI protocol,

including arbitration, disconnect-

reconnect, etc. In order to utilize this code

as a generalized MSDOS driver, it is

necessary to add conversion of the DOS
block-device driver information into the

appropriate SCSI commands and to

establish the appropriate pointers.

In spite of the vaguenesses and

inconsistencies of the manual, I have

found the LDP-HA to have integrated

easily into my system. I am already

attempting to increase the sophistication

of the driver to support arbitration and to

use the pseudo-DMA mode of the 5380,

and am looking forward to being able to

expand my system into a multiprocessor

data acquisition system, using the SCSI

bus as the interprocessor link.

Acknowledgement
The funds to purchase the LDP-HA

were made available to me by The College

of Natural Science and Mathematics,

Indiana University of Pennsylvania, and

the release time necessary to perform this

work was funded by the Provost's

Scholarly Activities Fund.

mov dx, offset errormsg
raov ah, 09h

int 21h

raov bx, offset datbuf

mov ex, 04h
loopout

:

format_unit

:

raode_select:

mov al, [bx]

inc bx

call dlsbyte

loop loopout

ret

mov cmdptr, offset fu_cmd

mov datptr, offset datbuf
call select

ret

mov cmdptr, offset ms_cmd
mov datptr, offset mode
call select

ret

; output error message

; set up counter

; get byte

; increment pointer

; display byte in al as hex

target

message

status

db target_ID

db

db

a generalized routine would put
appropriate target ID here before
calling select

actual variable locations

I used the following pointers to allow me to use the same form for
the statin, msgin, and msgout routines as for the datain, etc. Rick
Lehrbaum's example didn't, but that was because his routine didn't
return to PHASE after each byte, but rather output (input) a series of
bytes until the controller was happy

message_pointer dw 2(

status_pointer dw 2(

)

cmdptr

datptr

dw

dw

2(?)

2(1)

pointers to variable locations

pointers to storage locations

datbuf db 512 dup (0) ; general purpose buffer

; notes on the following -

; first of all, these commands are all set up for the Adaptec 4000
; SCSI controller - while most of the commands are SCSI standard, the
; ordering of data for the mode select isn't, so watch yourself.

the logical unit zero is specified by the three HIGH bits of
of the byte. If you want to attach two disks, you need to
include code to select between the different l.u. numbers

tr_cmd

zu_cmd

rs_cmd

db
; test unit ready command

db ; logical unit zero
db 0, 0, 0, ; reserved

db 1 ; rezero unit command
db ; logical unit zero
db 0, 0, 0, ; reserved

db 3 ; request sense command
db ; logical unit zero
db 0, 0, 4, ; request four bytes of info

22 The Computer Journal / Issue #33

fu_omd

ms_cmd

db

db

db

db

db

db

15h

22,

format unit command

logical unit zero

interleave of 2

mode select command

logical unit zero

going to send 22 bytes

the following info is set up specifically for the

Adaptec 4000 SCSI controller driving an ST225 as l.u.

mode db

db

db

db

db

db

db

db

db

1

2, 105

1, AA

1, 44

1

1

; mode select parameter list

3,2,0 ; extent descriptor list (512 byte blks)

number of tracks (617 total)

number of heads

reduced write current cylinder (300)

write precompensation cylinder

landing zone beyond outermost track

step rate, 28 usee

errormsg

code

stack

stack

label

db cr, If,

db ' SCSI error reported

db cr, If, '$'

ends

request sense data follows

segment para stack 'stack

db 200 dup (00h)

ends

end

200 bytes of stack space

SAGE MICROSYSTEMS EAST
Selling & Supporting The Best in 8-Bit Software

• Piu'Perfect Systems

- Backgrounder 1 1 : switch between two or three running tasks

under CP/M ($75)

- DateStamper: stamp your CP/M files with creation, modification,

and access times ($49)

• Echelon (Z-Svstem Software)

- ZCPR33: full system $49, user guide $15
- ZCOM: automatically installing full Z-System ($70 basic package, or

$119 with all utilities on disk)

- ZRDOS: enhanced disk operating system, automatic disk logging

and backup ($59.50)

- DSD: the incredible Dynamic Screen Debugger lets you really

see programs run ($130)

• SLR Systems (The Ultimate Assembly Language Tools)

- Assemblers: Z80ASM (Z80), SLR180 (HD64180), SLRMAC (8080),

and SLR085 (8085)

- Linker: SLRNK
- Memory-based versions ($50)

- Virtual memory versions ($195)

• NlghtOwl (Advanced Telecommunications)

- MEX-Plus: automated modem operation ($60)

- Terminal Emulators: VT100, TVI925, DG100 ($30)

Same-day shipping of most products with modem download and support

available. Shipping and handling $4 per order. Specify format.

Check, VISA, or MasterCard.

Sage Microsystems East

1435 Centre St., Newton, MA 02159

Voice: 617-965-3552 (9:00 a.m.- 11:15 p.m.)

Modem: 617-965-7259 (24 hr., 300/1200/2400 bps,

password = DDT, on PC-Pursuit)

References

1 R. Lehrbaum, The SCSI Interface:

Introductory Column To A Series, The
Computer Journal, vol 22, 25 (1986).

2 R. Lehrbaum, The SCSI Interface:

Introduction To SCSI, The Computer
Journal, vol 23,7 (1986).

3 R. Lehrbaum, The SCSI Interface: The
SCSI Command Protocol, The Computer
Journal, vol 24, 9 (1986).

4 R. Lehrbaum, The SCSI Interface:

Building A SCSI Adapter, The Computer
Journal, vol 25,23 (1986).

5 R. Lehrbaum, The SCSI Interface-

Software for the SCSI Adapter, The
Computer Journal, vol 26, 12 (1986).

6 R. Lehrbaum, Using SCSI for Real

Time Control: Separating the Memory
and I/O Buses, The Computer Journal,

vol 28, 25 (1987).

7 R. Lehrbaum, Using SCSI for

Generalized I/O: SCSI Can Be Used for

More Than Just Hard Disks, The
Computer Journal, vol 31, 6 (1987).

8 H. Tytus, Interfacing Using The SCSI
Bus, Micro/Systems Journal, vol 2, 46

(1986).

9 ANSC X3T9.2 SCSI Specification,

Computer and Business Equipment
Manufacturer's Association.

10 ACB-4000 Series User's Manual,
Adaptec, Inc., 1985.

11 LDP-SCSI Owner's Manual, Rev 0,

Lomas Data Products, Inc., 1987. g

Need I/O Ports
For Your Z80?

expansion is possible, even if there
is no expansion bus in your system

Add a Bus: Z80 CPUport™
With the CPUport™ you can add 1/0 Devices to

your Z80 based computer via the existing CPU
IC socket. The Z80 is replaced by a piggyback
daughterboard that brings out the bus to a ribbon

cable compatible with HiTech's standard I/O
,

such as RS-232 and parallel I/O.

* Simple Installation

* Provides Multi-Device Connection
* Low Power and Hi Speed versions
* Fully compatible with Z80 family

Prices Start at $99

HiTech Equipment Corporation

9560 Black Mountain Road, San Diego, CA 92126

(619) 566-1892

The Computer Journal / Issue #33 23

Use a Mouse on Any Hardware
Implementing the Mouse on a Z80 system

by Richard Rodman

The Logimouse® R7 and C7 mice

(Logitech, Inc., 6505 Kaiser Dr.,

Fremont, CA 94555, (415) 795-8500)

are widely available and interface via a

standard RS-232 serial port. It seemed

that this mouse could be easily used with

my Z-80 system. After some experimen-

tation, this proved to be true.

The Logimouse R7, which I used, has

an external power supply connecting to a

DB-25 female connector. Data comes out

on pin 3; pin 7 is grounded. I'm not sure if

it's necessary to drive DTR on pin 20, but

I did. The Logimouse C7 does not require

an external power supply.

The mouse is held in the hand with the

cord proceeding away, in the opposite

direction from the arm. The palm rests on

the flat area on the top of the mouse, and

the fingers operate 3 buttons on the far

end of the mouse. This is important—the

directions "up," "down," "left" and

"right" below depend on this orientation.

The mouse sends data in 5 -byte packets

at 1200 baud. The first byte of the packet

has bit 7 set, and bits 0, 1, and 2 set or

reset according to the status of the 3

mouse buttons. Bit will be if the right

button is down, or 1 if it is up. Bit 1 con-

tains the status of the middle button, and

bit 2 that of the left button. Bits 3 through

6 are all zero.

The second and fourth bytes are

movement values in the horizontal or X
direction (left to right). A value which is

negative indicates motion to the left; a

value which is positive indicates

movement to the right.

The third and fifth bytes are movement

values in the vertical or Y direction (up

and down). A value which is negative in-

dicates motion downward (toward the

user); a value which is positive indicates

motion upward (away from the user).

The program given in the Listing is writ-

ten in Software Toolworks C for CP/M.
It tracks the movement of the mouse with

the cursor of a video terminal, and

displays the status of the three buttons in

the lower right corner of the screen. The

program has in-line assembly code for a

Z80-CTC and a Z80-SIO working

together. To modify for other serial port

/* MOUSE. C Read serial Logimouse on arbitrary hardware

Implementation given is for Software Toolworks C.

Hardware port logic is for Z80 SI0 f CTC.

By Richard Rodman. Any use whatsoever of this code is heartily

encouraged.

Usage:

If a command line parameter is used, it will simply display

the bytes received in hex. Otherwise, the cursor will track

movement of the mouse, and the button status of each button will

be displayed.

Press esc to stop.

Mouse data packet structure:

First byte: 10000LMR L = if left button down, else 1

M = if middle button, else 1

R = if right button, else 1

Second byte: delta x, negative = left, positive = right

Third byte: delta y, negative = down, positive = up

Fourth byte: Another delta x value

Fifth byte: Another delta y value

The entire packet is sent if anything changes.

History:

870706 rr orig version */

/* for debugging only */

/* cursor location */

^include ''tprintf.c'

int cursx, cursy;

main(argc, argv)

int argc;

char *argv[]

;

{

int i, byte[5];

char butstr[4-]

;

minit(); /* init serial port for mouse */

clrscn(); /* clear the terminal screen */

butstr[3] = '\0'; /* terminate string for display */

cursx = 40;

cursy =12; /* center the cursor */

goxy(cursx, cursy); /* and display it */

while (1) { /* do forever */

/* Check local console for press of ESC key. */

24 The Computer Journal / Issue #33

if(bdos(6, 0X00FF) == '\033') break;

/* Check the mouse for a character */

if(mstat()) {

/* If command line parameter was present, just display it. */

if(argc > 1) printf("%02x ", minput());

else {

/* Read the 5-byte packet from the mouse */

for(i = 0; i < 5; ++i) {

while(! mstat()) /* wait */ ;

byte [i] = minput ()

;

}

/* Process buttons in byte */

butstr[] = butstr[1] = bjtstr[2]
= '

'

if(! (byte[] f 0x04)) butstr[] = 'L'

if(! (bste[] f 0x02)) butstr[1]
= 'M'

if(! (byte[] f 0x01)) butstr[2]
= 'R'

goxy(75, 23);

printf(butstr);

/* The cursor movements are signed characters. Process these. Use a

slew of 256 as full-screen. The Y movement needs to be negated. */

cursx += 80 * (extend (bste[1])

+ extend(byte[3 1))/ 256;

cursy -= 24 * (extend (bste[2])

+ extend(byte[A])) / 256;

/* Make sure the cursor stays on the screen */

if(cursx <) cursx = 0;

if(cursx > 79) cursx = 79;

if(cursy <) cursy = 0;

if(cursy > 23) cursy = 23;

goxy(cursx, cursy);

/* extend sign on integer */

int extend (c)

int c;

{

if(c > 128) c -= 256;

return c;

}

/* clear the terminal screen */

clrscn()

{

printf("\033E");

}

/* go to x, y */

goxy(x, y)

{

hardware, modify the routines minit ()

,

mstat() and minput ().

Since I couldn't determine the reason

for the two movement values in each

direction, I simply added them. This gives

values in each direction of - 256 to + 254.

This value, once calculated, needs to be

scaled to the resolution of your display, so

that moving the mouse produces propor-

tional movement on the screen. Because I

was using a normal 80 by 24 video ter-

minal, I scaled the horizontal values by

multiplying by 80 and dividing by 256, the

vertical values by multiplying by 24 and

dividing by 256. The resulting movement
values are added to the current X and Y
cursor position.

If you use a graphics display, multiply

by your actual horizontal and vertical

resolutions instead. Remember to insure

that the X and Y values don't exceed the

dimensions of the display.

You may desire to divide by a value less

or greater than 256. Smaller values make
the mouse respond with greater

movement; larger values with less

movement. The "best" value would be a

value which allows accurate positioning of

the cursor anywhere, without requiring

the user to constantly "row" the mouse

(repeatedly rolling the mouse, then

picking it up and moving it back without

rolling).

Since you have control of this

parameter, you can make your targets

large and your divisor small, and

eliminate the rowing for all but the most

crowded of desks.

Another point to remember: The mouse
is a relative movement device. It does not

keep track of its absolute position.

Therefore, your program can only follow

it when it actively examines the serial port.

I suggest checking for characters

periodically, and processing the mouse
movement whenever a packet is waiting.

This can be done by converting the

main() in the listing into a function, and

removing the while (1) loop. This fun-

ction then should be called periodically to

update the mouse position while other

program activity is going on.

The Computer Journal / Issue #33 25

>i

g
«<

en cq
a
o c\

tc\

X
a »
3 E

CD

^O
h<

a >}
•p
o

«
•o <c
G cq

hH

a*

o
Q

U
o
a.

1

cq

cda
c

<
En
CO

1-H > l-H

ss o >< E E 3
g

Eh < <S< « «
« .J 33

>s o
i-H E a!a

a

<4H E
CD o cd
T3 mi
3 a
rH G
O 0)

G >,
•H * h.

hi
(0

o^
CD o

CM > Eh
C°i cd O
+ rH o

03 hH G hi

><!
CO O o

C3 to

•st G u •H
t> o cd >

CM JD •H
c^ to hi e -a

+ s CO 3
l-H o G

B •p
>i

1 3
G

rH
CD

cd

•
to G
CD -P G •o
G hi cd 3o •H cd .G cd

%^ -p 3 O CM .Qo 3 + hi

>H o Eh Eh o
u 03 D3 to

r^\ < <c •H
c^\

cj> » 33 >
Si frHo +o +O •H

Q
hH hH vO

- -a
G

rH rH CO CO
-P

rH

— cd 33 X 3> 3) ZD » cd 33
tn CO o o at a <y 03 Of
•p o CM CM w w w w w
G n a
•H co » 3> 3 S
hi o o cd CO

a. IS w w CQ s> cd

6 CO Eh < Eh s X)
to i o o S i^ -=c CM G
cd t-j Eh t-H 33 < Eh rH CD

r-*-* =tt O CO » o Q CO ••• CQ Hfc

G 3
>> hi

CO 1

«* G
O

CD
CD

•^f U
\D co MH
* Eh

-p 03
a> CD

CO -p -. > a
CD •H G O o
03

§
O CD

u
CO

-P
E

rH 03 a. hi

CD to l-< CO 3 CD

G p Q -p hi P
a •H •H hi G
cd 43 •P X) CD 3
J3 CD P O

CO

CD
CS3

cd
•H
-P

-4" <
- H

=« CQ

Eh

CO

C3
rH
K>
rH
rH Eh
-H -*

CQ
rH
s>
CS
CS
CS

< CO <

t-l rH
. < rH
Eh -

CO <

Eh

- H
«j; co

3
cd

CQ

EH EH
C3 >O E

Eh M
C3 >O S

Eh HH Eh EH
3 > » >O E O E

EH EH
> P r _-E O E O

H H H H H
> S > CD

CQH
rH
a ss
<C es <X S KO CM O
+ rH +O CQ O
Eh ~ HO <£ CJ>

hH EH hH Eh
> 33 > C3E O E O

26
The Computer Journal / Issue #33

Systematic Elimination of MS-DOS Files

Part 2— Subdirectories and Extended DOS Services

by Edwin Thall

Dr. Edwin Thall, Professor of Chemistry at The Wayne
General and Technical College of The University of Akron,
teaches chemistry and computerprogramming.

MS-DOS files may be created and manipulated by two different

approaches. In Part I (Issue #32), the file control block (FCB)
method was described and DATACIDE, a utility capable of

removing files from the root directory, presented. In Part II, the

more versatile extended DOS services, introduced with version 2,

are explored. These functions, besides providing a more
convenient method to access files, fully support the hierarchical

file structure. XFILE, a utility similar to DATACIDE but able to

remove files from any directory, will be presented.

Extended DOS Services

Extended DOS services specify files by either a code (file

handle) or an ASCIIZ string. A listing of selected functions,

designated "H" for handle and "A" for ASCIIZ string, is

provided in Table 1

.

Function

39H

Operation

Create subdirectory (A)

3AH Delete subdirectory (A)

3BH Create file (A)

3DH Open file (A)

3EH Close file (A)

3FH Read file or device (H)

40H Write to file or device (H)

4lH Delete file (H)

4EH Search first match (A)

4FH search next match (A)

Table 1. Extended DOS Functions

(A=ASCIIZ string, H=handle)

The ASCIIZ format consists of a series of conventional ASCII
characters terminated by a byte of zero (00H). Here.is an example
of an ASCIIZ string:

'A: \ SUB \ NAME.EXT',0

The drive (A:), path (\ SUB), and file name (\ NAME.EXT) are

stored in memory as:

41 3A 5C 53 55 42 5C 4E 41 4D 45 2E 45 58 54 00

The null byte (00H) cannot be entered directly by way of the

keyboard since keystrokes of zero and Alt<0> return 30H and
nothing, respectively. The backslash (\) serves as path

separators.

Whenever you create or open a file (functions 3CH/3DH), you
pass the name of the file as an ASCIIZ string. DOS maintains the

file's control information in its own area, and returns a number in

the AX register. This number, known as the file handle, must be

referred to for future access of the file.

The extended DOS services rely on file handles, instead of an

FCB, to keep track of files and input/output devices. The number
of files that DOS can open concurrently may be declared during

the boot with CONFIG.SYS (FILES = N). If the number of files

are not specified, the value N = 8 is used by default. During the

boot, DOS assigns file handles 0000-0004 to the following I/O
devices:

0000 Standard input device (keyboard)

0001 Standard output device (screen)

0002 Standard error output device

0003 Standard auxiliary device (COM 1

)

0004 Standard printer device (printer)

File handles for standard devices are preassigned and do not have

to be opened or created. Any message can be sent directly to the

screen by means of file handle 0001. To do so, load the DEBUG
utility and execute the series of instructions (omit comments):

A> DEBUG
-A100

DS:0100 MOV AH, 40 WRITE TO DEVICE
DS:0102 MOV BX,0001 OUTPUT TO SCREEN
DS:0105 MOV CX.ll 17 BYTES
DS:0108 MOV DX,010F POINT TO MESSAGE
DS:010B INT 21 CALL DOS
DS:010D INT 20 RETURN
DS:010F DB 'HANDLES ARE HANDY'
<ENTER>
-G

HANDLES

2X

ARE HANDY

Creating Files

Extended DOS function 39H creates a subdirectory by pointing

the DX register to an ASCIIZ string. Let's create \ SUBDIR in

the root directory of a floppy disk. To a newly formatted 360K
floppy, which includes the operating system and the DEBUG
utility, enter the following program:

-A100

DS:0100 MOV AH, 39 ; CREATE SUBDIRECTORY

DS:0102 MOV DX,0109 ;P0INT TO ASCIIZ STRING
DS:0105 INT 21

DS : 0107 INT 20

DS:0109 DB 'A:\SUBDIR',0 ;ASCIIZ STRING

<ENTER> 2X

-G107

To determine the status of this operation, the program is executed

up to offset 107H. The register dump signals a successful

operation when the carry flag is clear (NC). Return to DOS and
display the root directory.

The Computer Journal / Issue #33
27

-Q
A>DIR

The file appears in the listing as SUBDIR <DIR>, the

designation for a subdirectory file. To see the entries stored in this

newly formed subdirectory, enter:

A>DIR \ SUBDIR

.You should be looking at two listings, a single-period and a

double-period.

Normal files are created in a manner similar to subdirectories,

except function 3CH is called and DOS passes the 16-bit file

handle in the AX register. First, create

\ SUBDIR \ HANDLE.TXT, and then write to the file:

-A100

DS:0100 MOV AH.3C CREATE FILE

DS:0102 MOV CX,0000 NORMAL FILE

DS:0105 MOV DX,0118 POINT TO ASCIIZ STRING

DS:0108 INT 21H

DS:010A MOV BX.AX STORE HANDLE IN BX

DS:010C MOV AH, 40 WRITE TO FILE

DS:010E MOV CX,16 WRITE 22 BYTES

DS:0111 MOV DX,012D POINT TO BUFFER

DS:0114 INT 21H

DS:0116 INT 20H

DS:0118 DB 'A:\SUBDIR\H;INDLE.TXT',0

DS:012D DB 'HANDLES ARE IANDY

'

<ENTER> 2X

-G116

The register dump indicates that the write operation was

successful (NC), 22 bytes were written to the file (AX = 0016), and

the file handle is 0005 (BX = 0005). The handle assigned to the

first open file is always 0005. When nothing is declared for FILES

in CONFIG.SYS, three additional files may be opened and

assigned handles 0006, 0007, and 0008.

Extended DOS function 3EH closes the file and releases the

handle for reuse. If the file was modified, these changes are

updated in the directory during the close. Set the instructional

pointer register to 100H and close \ SUBDIR \ HANDLE.TXT,
the file identified by handle 0005.

-RIP

IP 0116

:100

-A100

DS:0100 MOV AH.3E ; CLOSE FILE

DS:0102 MOV BX.0005 ;FILE HANDLE

DS:0105 INT 21

DS:0107 INT 20

<ENTER> 2X

-G107

The carry flag (NC) should indicate that the file was successfully

closed. Return to DOS and issue the TYPE command to read the

contents of this newly created file.

-Q
A>TYPE \SUBDIR\HANDLE.TXT
HANDLES ARE HANDY

What's Inside a Subdirectory

Every disk has one root directory from which all searches

begin. The size and location of the root directory is established

during the format operation. While the 360K format assigns

logical sectors 5-11 to store the root directory sectors,

subdirectories are maintained as ordinary files and may be located

anywhere on disk. The only limit on the size or number of

subdirectories is available disk space.

Both root and subdirectory require the same 32-byte field (see

Table 5 in Part I) to maintain control information for each entry.

These entries may be data files or pointers to other subdirectories.

Return to DEBUG, and invoke the L command to load the disk's

7 root directory sectors, beginning with logical sector 5, into

offset 100H.

-L100 5 7

-D100.1A0

You should be viewing the first 160 bytes of the disk's root

directory (Figure 1). The first two entries (IBMBIOS.COM and
IBMDOS.COM) have an attribute byte of 27H (offsets 10BH &
12BH), the designation for system/hidden files. The next two
entries (COMMAND.COM and DEBUG.COM) have attributes

of 20H (offsets 14BH & 16BH) and, therefore, are normal files.

The last entry, SUBDIR, is our subdirectory and was assigned an
attribute of 10H (offset 18BH). In theory, a subdirectory can be
read like any other file. However, the designers of DOS elected to

store zero as the subdirectory's file size (offsets 19C-19FH). As a

result, DOS assumes the file to be of zero length and refuses to

read it.

If you are the curious type, you probably want to see what's

stored inside \ SUBDIR. I can think of two approaches to

directly access the contents of \ SUBDIR. The conventional

method determines the subdirectory's entry point into the FAT,
chains through its clusters until the last one, and then performs a

disk read. The unconventional method offers an element of

danger. The subdirectory is converted into and read like a normal
file. I have opted to demonstrate the unconventional method. Use
the E command to modify attribute and file size in the entry field

of \ SUBDIR:

-E18B

DS:018B 10.20

-E19D

DS:019D 00.04

The size of the subdirectory is now 0400H (1,024 bytes) or two

sectors, the smallest file permitted by the 360K format. The two

sectors can hold a maximum of 32 entries, more than enough for

\ SUBDIR at this time. As needed, the size of the subdirectory

file will grow. To finalize these changes, write the directory

sectors to the disk. Warning! You must invoke the W command
with the identical parameters previously entered with the L

command: _^m % 5 ?

-Q

A>DIR

There it is! The file SUBDIR appears in the root directory as an

ordinary file with a size of 1,024 bytes. If you try to look at this

file with the DOS TYPE command, gibberish appears on the

screen because \ SUBDIR is not an ASCII file. Return to

DEBUG with the loaded file and dump offsets 100-17FH:

A>DEBUG SUBDIR

-D100

The first 128 bytes of \ SUBDIR are shown in Figure 2. The

first two entries of any subdirectory begin with the two special 32-

byte entries (single-period and double-period). These two special

entries are established when the subdirectory is created, and they

cannot be deleted. The single-period entry contains the cluster

field entry in the FAT for \ SUBDIR, while the double-period

entry stores the cluster field in the FAT of the subdirectory's

parent directory. Both entries are necessary since subdirectories

may be nested to any number of levels.

The data file stored in \ SUBDIR (HANDLE.TXT) possesses

the typical 32-byte entry field. \ SUBDIR does not point to other

subdirectories, but if it did, the nested subdirectory would be

28 The Computer Journal / Issue #33

DS:0100 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00 00 00 00 IBMBIO COM'

DS:0110 00 00 00 00 00 00 00 60-54 07 02 00 80 12 00 00 T

DS:0120 49 42 4D 44 4F 53 20 20-43 4F 4D 27 00 00 00 00 IBMDOS COM'

DS:0130 00 00 00 00 00 00 00 60-54 07 07 00 80 42 00 00 T B..

DS:0l40 43 4F 4d 4d 41 4E 44 20-43 4F 4D 20 00 00 00 00 COMMAND COM

DS:0150 00 00 00 00 00 00 00 60-54 07 18 00 80 45 00 00 T E..

DS:0160 44 45 42 55 47 20 20 20-43 4F 4D 20 00 00 00 00 DEBUG COM

DS:0170 00 00 00 00 00 00 00 60-54 07 2A 00 80 2E 00 00 T.*

DS:0180 53 55 42 44 49 52 20 20-20 20 20 10 00 00 00 00 SUBDIR

DS:0190 00 00 00 00 00 00 F4 18-64 10 36 00 00 00 00 00 t.d.6

Figure 1. First five entries of root directory

DS:0100 2E 20 20 20 20 20 20 20-20 20 20 10 00 00 00 00

DS:0110 00 00 00 00 00 00 71 D3-64 10 36 00 00 00 00 00 qSd.6

DS:0120 2E 2E 20 20 20 20 20 20-20 20 20 10 00 00 00 00

DS:0130 00 00 00 00 00 00 71 D3-64 10 00 00 00 00 00 00 qSd

DS:0140 48 41 4E 44 4C 45 20 20-54 58 54 20 00 00 00 00 HANDLE TXT

DS:0150 00 00 00 00 00 00 2C 16-64 10 37 00 16 00 00 00 ,.d.7

DS:0160

DS:0170

Figure 2

00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

. First 128 bytes of \SUBDIR

; DISPLAYS FILE NAMES OF SPECIFIED DIR

CSEG SEGMENT

ASSUME CS : CSEG

ORG 100H

START: MOV AH, 9 ; DISPLAY MESSAGE

MOV DX, OFFSET MESS

INT 21H

MOV AH,0AH ;INPUT ASCIIZ STRING

MOV DX, OFFSET STRING

INT 21H

;CRLF

MOV AH, 9

MOV DX, OFFSET CRLF

INT 21H

ESTABLISH NULL STRING

MOV BX, OFFSET STRING+1 ;POINT TO STRING SIZE
MOV AL,[BX] ;GET SIZE

MOV AH,0 ; INITIALIZE AX

ADD BX,AX ; POINT TO STRING END

INC BX ; POINT TO CR

MOV AL,0

MOV [BX],AL ; STORE NULL

;SET DTA

MOV AH.1AH

MOV DX, OFFSET DTA

INT 21H

MOV AH,4EH ; SEARCH FIRST MATCH

MOV CX,20H ;NORMAL FILE

NEXT: MOV DX, OFFSET STRING+2 ;ASCIIZ STRING
INT 21H

JC NOMATCH

MOV AH, 9 ; DISPLAY FILE NAME

MOV DX, OFFSET DTA+30

INT 21H

; BLANK DTA

MOV BX, OFFSET DTA+30

MOV CX,13

MOV AL, " "

BLANK: MOV [BX],AL

INC BX

LOOP BLANK

; SEARCH NEXT MATCH

MOV AH.4FH

JMP NEXT

NOMATCH: INT 20H

MESS DB 0AH.0DH, 'ENTER ASCIIZ STRING:
'
,0AH,0DH,24H

STRING DB 65,65 DUP(0)

CRLF DB 0DH,0AH,0AH,24H

DTA DB 43 DUPf ' ' '),0AH,0DH,24H

CSEG ENDS

END START

Figure 3- Assembler code for SEARCH.COM

assigned an attribute and file size of 10H
and zero, respectively. Now that you have

had the privilege to see what's inside a

subdirectory, restore \ SUBDIR to its

original status:

-L100

-E18B

DS:018B

-E19D

DS:019D

-W100

5 7

20.10

04.00

5 7

I recommend that you do not attempt

the unconventional approach to view sub-

directory files maintained within a fixed-

disk. If you make an error in writing to

the directory sectors, data stored on the

disk may be rendered useless. As you will

see in the next section, extended DOS
functions (4EH/4FH) provide a safer and

easier method to access information con-

tained inside subdirectory files.

Searching Directories

Extended DOS function 4EH searches

the specified directory for the first mat-

ching file, while function 4FH continues

the file search that was begun by function

4EH. A short program called SEARCH, a

simplified version of the DIR command,
demonstrates how to use these functions

to display the file names stored in any

directory.

The assembly code for SEARCH.COM
is listed in Figure 3. The program displays

a message and waits for you to enter the

file specification/ After M\e string is en-

tered, the program changes it to an

ASCIIZ format by replacing the carriage

return (ODH) with the null byte (OOH).

Remember to include at least one global

file name character (*,or ?). Otherwise,

only the specified file name can be mat-

ched. Some file specification examples are

shown in Figure 4.

The search functions assume that you
have previously used 1AH to declare a

disk transfer area (DTA). Whenever a

match is found, the 43 byte DTA is filled

with information regarding the file's

name, date, time, size, and attribute (see

Table 2). The last 13 locations of the DTA
(bytes 30- 42) store the file's name/exten-

sion in the form of an ASCIIZ string. It is

this portion of the DTA that is displayed

after every match. An unsuccessful search

(CY) terminates the program.

Introducing XFILE
Extended DOS function 41H allows

you to erase files from any directory. To
delete \ SUBDIR \ HANDLE.TXT from
the disk, type the commands shown in

Figure 5.

The operation fails only if an element of

the path name does not exist, or the

designated file has the read-only attribute.

The Computer Journal / Issue #33 29

The assembly code for XFILE.EXE, the utility capable of
deleting files from any directory, is listed in Figure 6. The
program is organized to:

1

.

Position the cursor in the upper left corner.

2. Save the original caps state and set the caps-lock key.

3. Wait for the file specification to be entered and then convert
it to an ASCIIZ string (FSTRING).

4. Move drive/path from FSTRING to DSTRING.
5. Set up the DTA, search for first match, and then move the

DTA's ASCIIZ string to DSTRING.
6. Display file name on screen and offer the option to delete

file and search next match <Y>, search next match <N>, or
quit program <Q>

.

7. Restore original caps state before returning to DOS.

You must enter the drive/path/file as stipulated in SEARCH.
Remember to include backslashes because XFILE moves all

memory locations to the left of the last backslash in FSTRING to
DSTRING.

Let's compare XFILE to DATACIDE. Whereas DATACIDE
relies on FCB functions and can access files only from the root
directory, XFILE utilizes extended DOS services and supports
tree file structures. DATACIDE loads the disk's entire directory
into memory and searches for file names on its own. A hard-disk
contains 32 directory sectors and DATACIDE needs to set aside

16,384 bytes to hold this data. On the other hand, XFILE
depends on DOS to search directories for specified file names. As
a result, not only is XFILE more powerful, it is considerably
smaller than DATACIDE.

Bytes Represents

0-20 Reserved by DOS

21 Attribute of matched file

22-23 Time

2-4-25 Date

26-29 size

30-42 File name /extension (ASCIIZ)

Table 2. Information returned in the

A:\XX.x

B:\SUBl\x.COM

displays files beginning with X from drive A

displays .COM files from B:\SUB1

C:\SUBl\SUB2\x.x displays all files from C:\SUB1\SUB2

Figure 4.

-A100

DS:0100 MOV AH, 41 ; DELETE FILE
DS:0102 MOV DX,0109 ; POINT TO FILE SPECIFICATION
DS:0105 INT 21

DS:0107 INT 20

DS : 0109 DB ' A : \ SUBDIR \ HANDLE . TXT
'

,

<ENTER> 2X

-G

Figure 5

.

; POSITION CURSOR IN UPPER LEFT CORNER
Figure o.

CURSOR PROC NEAR

;
xxxxxxxxxx»x*xxxxxxxxxxxxx*x»xxxxxxxxxxxx*xxxxxxxxxx»xxx*x*»xxxxxxxxx MOV CX,25

SSEG SEGMENT STACK CLEAR: MOV DL,0AH ; CLEAR SCREEN

DB 20 DUP ('STACK ') MOV AH,

2

SSEG ENDS INT 21H

;»X*X*XXXXXXXXX*XXXXXXXXXXX»X»XXXXXXXXXXXX»XXXXXXXXXXXXX*X*XXXX*XXXXXX LOOP CLEAR

DSEG SEGMENT MOV AH, 2 ; POSITION CURSOR

FSTRING DB 64,65 DUP (0) ASCIIZ FILE STRING MOV BH,0

DSTRING DB 64,65 DUP (0) ASCIIZ DELETE STRING MOV DX,0

DTA DB 43 DUP (0) DATA TRANSFER AREA INT 10H

, FENTRY DW ? FILE ENTRY IN DSTRING RET

CPS DB ? ORIGINAL CAPS-LOCK STATE CURSOR ENDP

MESS1 DB 0AH, AH, 0DH, 'ENTER FlLH Sftuif icaiiuk: ' ,BAn,»UH >

DB '(EXAMPLES: A:*.» , B: \PATH*.C0M , C:\PATHl\PATH2\DATA.x)' ;SET CAPS LOCK

DB 0DH,0AH,0AH,24H CAPS PROC NEAR

MESS2 DB 0DH,0AH,' DELETE FILE? <Y>YES <N>NO <Q>QUIT $' PUSH DS

MESS3 DB 0DH.0AH, 'FILE REMOVED FROM DIRECTORY $' MOV AX,0

MESS4 DB 0DH.0AH, 'FILE COULD NOT BE DELETED $' MOV DS,AX

MESS5 DB 0DH,0AH,0AH, 'NO FILES LOCATED' ,0DH,0AH, AH, 24H MOV BX,04l7H ; POINT TO CAPS-LOCK STATE

CRLF DB 0DH,0AH,0AH,24H MOV AL, [BX]

DSEG ENDS POP DS

;»XXXXXXXXXXXX»XXXXXXXXXXXXX*X»XXXXXXXX»X»XXXXXX»X»XXXXXXXXXXXXXXXX»XX MOV CPS,AL ;SAVE ORIGINAL CAPS STATE

CSEG SEGMENT PUSH DS

MAIN PROC FAR MOV DX,0

ASSUME CS : CSEG , DS : DSEG , ES : DSEG , SS : SSEG MOV DS.DX

OR AL,40H ;SET CAPS-LOCK BIT

START: MOV [BX],AL

;SET RET AND DS/ES REGISTERS POP DS

PUSH DS RET

SUB AX, AX CAPS ENDP

PUSH AX J

MOV AX, DSEG ; RESTORES ORIGINAL CAPS--LOCK STATE

MOV DS,AX CAPS2 PROC NEAR

MOV ES.AX MOV

PUSH

AL,CPS

DS

;GET ORIGINAL CAPS-LOCK STA

CALL CURSOR POSITION CURSOR MOV DX,0

CALL CAPS SET CAPS-LOCK KEY MOV DS.DX

CALL STRINGS INPUT & SET UP ASCIIZ STRINGS MOV BX,04l7H

CALL SEARCH SEARCH DIR & OFFER DELETE OPTION MOV [BX],AL

CALL CAPS2 RESTORE ORIGINAL CAPS STATE POP DS

RET RET

MAIN ENDP CAPS2

t
— — — -

ENDP

30 The Computer Journal / Issue #33

;SET UP ASCIIZ STRINGS

STRINGS PROC NEAR

; DISPLAY MESSAGE

MOV AH,

9

MOV DX, OFFSET MESS1

INT 21H

; INPUT FILE STRING

MOV AH, BAH

MOV DX, OFFSET FSTRING

INT 21H

; INPUT FILE STRING

; STORE

J.J1J.

NULL

.CJ.il

AT END OF FSTRING

MOV BX, OFFSET FSTRING+1 ; POINT TO FSTRING SIZE

MOV AL, [BX] ;GET SIZE

MOV AH,0

ADD BX.AX ; POINT TO END OF FSTRING

INC BX ; POINT TO 0DH

MOV AL,0

MOV [BX],AL ; STORE NULL

;SET DSTRING FOR DELETION

MOV SI, OFFSET FSTRING+2 ; POINT TO PATH OF FSTRING

MOV DI, OFFSET DSTRING ; POINT TO STRING FOR DELETION

SLASH: DEC BX ; POINT TO END OF FSTRING

MOV AL, [BX] ;GET FSTRING CHAR.

CMP AL, "\" ;LOOK FOR LAST \

JZ FOUND ;JUMP IF \ FOUND

JMP SLASH ;KEEP LOOKING FOR \

FOUND: INC BX

MOV CX,BX

SUB CX,SI ;SET COUNT

CLD ; CLEAR DIRECTIONAL FLAF

REP MOVSB ;MOVE PATH FROM FSTRING TO DSTRING !

MOV FENTRY,DI ;SAVE FILE ENTRY IN DSTRING

RET

STRINGS ENDP

;SEARCF DIR FOR MATCH 8c OFFER OPTION TO DELETE FILE

SEARCH PROC NEAR

MOV AH.1AH ;SET UP DTA

MOV DX, OFFSET DTA ,

INT 21H

MOV AH,4EH ; SEARCH FIRST MATCH
[

MOV CX,20H ; NORMAL FILE

MOV DX, OFFSET FSTRING+2 ; POINT TO ASCIIZ STRING

INT 21H

JC NOMATCH ;JUMP IF NO MATCH FOUND

JMP MATCH

NEXT: MOV AH,4FH ; SEARCH NEXT MATCH

MOV CX,20H

MOV DX, OFFSET FSTRING+2

INT 21H

JC QUIT

; BLANK OUT PREVIOUS ENTRY IN DSTRING

MATCH: MOV BX,FENTRY ;GET FILE ENTRY IN DSTRING

MOV CX,13

MOV AL, " "

BLANK: MOV [BX],AL

INC BX

LOOP BLANK

;MOVE FILE NAME TO DSTRING

MOV DI , FENTRY ;GET FILE ENTRY

MOV SI, OFFSET DTA+30 ; POINT TO FILE NAME IN DTA

MOV CX,13 ;13 CHARAC. ASCIIZ STRING

CLD ; CLEAR DIRECTIONAL FLAG

REP MOVSB ;MOVE ASCIIZ FROM DTA TO DSTRING
MOV AH, 9 ;SKIP LINE

MOV DX, OFFSET CRLF

INT 21H

; DISPLAY FILE NAME

MOV BX, OFFSET DTA+30 ;POINT TO ASCIIZ IN DTA

SCREEN: MOV DL, [BX]

CMP DL,0 ;END OF ASCIIZ STRING?

JE OPTION

MOV AH, 2 ; DISPLAY FILE NAME CHARAC.

INT 21H

INC BX

JMP SCREEN

; OPTION TO DELETE

OPTION: MOV AH, 9 ; DISPLAY OPTION MESSAGE

MOV DX, OFFSET MESS2

INT 21H

MOV AH,1

INT 21H

CMP AL, ' 'Y'

'

JZ DEL ;IF ' 'Y' ', DELETE FILE

CMP AL, ' 'N'

'

JZ NEXT ;IF "N", NEXT FILE

CMP AL, "Q"
JZ QUIT ;IF "Q", QUIT PROGRAM

JMP OPTION ; REPEAT OPTION

DEL: MOV AH,4lH ; DELETE FILE FUNCTION

MOV DX, OFFSET DSTRING

INT 21H

JC FAILED

MOV DX, OFFSET MESS3

MOV AH,

9

INT 21H

JMP NEXT ; DISPLAY NEXT FILE NAME

FAILED: MOV AH,

9

; OPERATION FAILED

MOV DX, OFFSET MESS4
INT 21H

JMP NEXT ; DISPLAY NEXT FILE NAME
NOMATCH :MOV AH,

9

;NO FILES LOCATED

MOV DX, OFFSET MESS5

INT 21H

QUIT: RET

SEARCH ENDP

CSEG ENDS

END START

Figure 6. Assembler code for XFILE.EXE

If You Don't Contribute Anything.

.Then Don't Expect Anything

TCJ is User Supported

The Computer Journal / Issue #33 31

The ZCPR3 Corner

by Jay Sage

For my column this time I plan to cover two subjects, both of
which I have dealt with somewhat at length in the past. Never-
theless, there just seems to be a lot more to say on these subjects.

The first is ARUNZ; the second is shells in general, and the way
WordStar® 4 behaves (or rather misbehaves) in particular.

I was quite surprised and pleased by the enthusiastic response
to my detailed treatment of ARUNZ in issue 31. Apparently,

there were many, many people who were unaware of what
ARUNZ was and who are now quite eager to put it to use. There
are two specific reasons for taking up the subject of ARUNZ here

again so soon.

First of all, I think that readers will benefit from a discussion of
some additional concrete examples. Since my own uses are the

ones I know best, I plan to take the ALIAS.CMD file from my
own system as an example and discuss a number of interesting

scripts. My first cut at doing that for this column came out much
too long, so I will cover half of the file this time. The other half

will be covered in the next column.

The second reason is that I have just gone through a major
upgrade to ARUNZ. It is now at version 0.9J. Several aspects of
its operation as described in my previous column have been
changed, and quite a few new parameters have been added.
The changes in ARUNZ were stimulated by two factors. One is

the two new dynamic Z Systems that will have been released by
the time you read this: NZCOM for Z80 computers running

CP/M 2.2 and Z3PLUS for Z80 computers running CP/M-Plus.
These two products represent a tremendous advance in the con-

cept of an operating system, and everyone interested in ex-

perimenting with or using Z System—even if he already has a

manually installed ZCPR3 running now—should get the one that

is appropriate to his computer.

With these new Z System implementations, if your level of

computer skill is high enough to run a wordprocessor or menu
program, then you can have a Z System designed to your
specifications in a matter of minutes. You can change the design

of your Z System at any time, even between applications. As
described later, ARUNZ now has some parameters to return ad-

dresses of system components so that aliases can work properly

even when those system components move around, as they may
do under these dynamic systems.

My New Computer System

The second impetus came from my finally building for myself a

state-of-the-art computer! For most of my work in the past I have

used a BigBoard I with four 8" floppy disk drives and an SB 180

with four 5" disk drives. Neither machine had a hard disk.

The SB 180, my main system for the past year and a half, had
been sitting on the floor in the study. The printed circuit board
was mounted in a makeshift chassis with two power supplies, just

as I got it from someone who bought it at the Software Arts

liquidation auction and after they had stripped out the disk drives

(at $25 I could hardly complain!). I added my own drives, which
sat in the open air (for cooling among other reasons) in two
separate drive cabinets elsewhere on the floor. All in all not very

pretty and not as functional as it could have been.

The sad part of it is that during all this time I had everything

needed to turn the SB180 into an enjoyable and productive

system. A high-speed 35 Mb hard disk was collecting dust on a

shelf; an attractive surplus Televideo PC-clone chassis adorned
the work bench in the basement; the XBIOS software disks sat

ignored in one of my many diskette boxes.

Finally one weekend I decided that it would be more efficient in

the long run to take some time off from my programming and
writing work to reconstruct the system. Indeed, it has been! The
SB 180 is now attractively mounted in the Televideo chassis with

one 96-tpi floppy and one 48-tpi floppy. The hard disk is con-

figured as four 8 Mb partitions and runs very nicely with the fast

Adaptec 4000 controller.

With the hardware upgraded, I then did the same to the sof-

tware. Installing XBIOS on the SB 180 took so little time that I

really had to kick myself for not doing it sooner. Richard Jacob-
son was quite right in his description of it in issue 31 . Thank you,

Malcom Kemp, for a really nice product.

Once I was fixing things up, I decided I should really do it up
right, so I also purchased the ETS180IO+ board from Ken
Taschner of Electronic Technical Services—this despite the fact

that a Micromint COMM180 board was also a part of my
longstanding inventory of unused equipment. I cannot compare
the ETS board to the COMM180, never having used the latter,

but I certainly am highly pleased with it. XBIOS includes com-
plete support for the ETS board, so configuring the system to

make use of the extra ETS180IO+ features, like the additional

parallel and serial ports and the battery-backed clock, was very

easy.

I have been so pleased with the new system that I even went out

and bought a real computer table for it to sit on. For the past

years, the terminal's CRT unit had been sitting on one of those

flimsy folding dining-room utility tables, with a yellow-pages

phone book under it to jack it up to the right height. The
keyboard sat on a second folding table, and the whole thing was
always in imminent danger of toppling over. What a pleasure it is

to sit at the new system.

While I'm waxing enthusiastic, let me mention one other thing I

did to reduce the disarray in the study. I bought four Wilson-

Jones media drawers to house my vast collection of floppies.

These diskette cabinets resemble professional letter filing

cabinets. A drawer, which can hold more than 100 floppies, pulls

out on a full suspension track so that one can easily reach all the

way to the back. Since there is no top to flip open, units can be
stacked on top of each other to save a great deal of table space.

Clips are provided to secure the units to their neighbors both
horizontally and vertically.

The only drawback to these disk drawers has been their cost.

Inmac and the other major commercial supply houses want more
than $60 each! But Lyben, which sends its catalogs out to many
computer hobbyists, offers them for only $35. Extra dividers,

which I recommend, are just under $6 per package of five. Lyben
can be reached at 313-589-3440 (Michigan). [Note added at last

32 The Computer Journal / Issue #33

moment— I am sorry to say that I just received the new Lyben

catalog, and the price has now gone up to $45. Although this is

still a bargain when compared to other vendors' prices, I'm glad I

put in my order when I did.]

ARUNZ VERSION 0.9J

Now that I have had my chance to show my excitement over the

new state of my computer and computer room, let's get on with

the discussion of ARUNZ. First we will discuss the changes in-

troduced since version 0.9G, both the old features that have

changed and the new features that have been introduced.

Changes in Old Features

Because, as noted in my last column, ZCPR34 can pass com-

mands containing explicit file types or wildcard characters (
'?'

and '*'
), the characters used to define special matching con-

ditions in the alias names in ALIAS.CMD had to be changed. The

period, which had been used to indicate the beginning of optional

characters in the alias name, has been replaced by the comma.

The question mark had been used to indicate a wild-character

match in the alias name. Since it can now be an actual character to

be matched, the underscore has replaced it.

Since the command verb can now include an explicit file type

(not necessarily COM) and/or a directory prefix, several

changes have been made to the parameters that parse the com-

mand verb. In general, all of the command line tokens are now
treated in the same way; all four token parsing parameters ('D',

'U', ':', and '.'
) now work with digits from to 9 and not just 1

to 9. Thus the command line

C3 : TEST> arunz bl2:test.z80 commandtail

or, with ARUNZ running as the extended command processor

(ECP), the command

C3:TEST>bl2:test.z80 commandtail

will have the following parameter values for token 0, the com-

mand verb:

There is also a new parameter to denote the entire command
line, including both the command verb and the command tail.

Many people in the past confused "command line" with "com-
mand tail" and attempted to use the parameter $* for the former.

The new parameter is '$!'. It is roughly equivalent to '$0 $*', but

there is one important difference. The latter parameter expression

always includes a space after the command verb, even if there was

no tail (
'$*' was null). This space caused problems with some

commands. For example, when the SLR assembler SLR 180 is in-

voked with nothing after it, it enters interactive mode and allows

the user to enter a series of assembly requests. Unfortunately, the

code is not smart enough to distinguish a completely nonexistent

command tail from one with only spaces. When the command
"SLR180 " is entered, where ' ' represents a blank space, the

assembler looks for a source file with a null name. Not finding it,

it returns with an error message.

I used to deal with this problem by writing a complex alias of

the form:

SLR180 if nu $*;asm:slrl80;else;asm:slrl80 $*;fi

With the new parameter, all this complication can be avoided.

The script is simply:

SLR180 asm:$!

If you are wondering why one would want an ali?s like this, just

wait a while. It will be explained later.

There is also a whole set of new parameters that generate the

addresses of almost all of the Z System modules. This capability

will become important with the dynamic Z Systems now being

introduced (NZCOM and Z3PLUS). With those systems, the

addresses of the RCP, FCP, CCP, and so on can all change

during system operation. The new parameters permit one to make
reference to the addresses of those modules even when they move

around. My ALIAS.CMD file described below will have some

examples of how these parameters are used.

These parameters begin with $A ('A' for address) and are

followed by an additional letter as follows:

$D0 B

$U0 12

$:0 TEST

$.0 Z80

This is s significant change, please take careful note of it. The

parameters $D0 and $U0 no longer necessarily return the logged

in drive and user. For the standard configuration of ZCPR33
(and 34) a verb of the form B12:TEST cannot be passed to the

extended command processor; the presence of an explicit direc-

tory specification results in the immediate invocation of the error

handler (skipping the ECP) if the file cannot be found in the

specified directory. However, if a file type is included, the 'bad'

command will be passed to the ECP.

New Features

There are now three new parameters that do return information

about the directory that was current (logged in) when ARUNZ
was invoked. These parameters are shown below with their

meaning and the values they would have with the example com-

mand above:

parameter

$HD

$HU

meaning

Home Drive (D)

Home User (U)

Home Both (i.e.

,

DU)

value

C

3

C3

B BIOS L MCL (command Line)

C CCP M MSG (message buffer)

D DOS N NDR

E ENV P PATH

F FCP R RCP

I I0P S STK (shell stack)

X XFCB (external FCB)

Amazingly enough, these names are all mnemonic except for the

conflict over 'M' between the multiple command line buffer

(MCL) and message buffer (MSG). I resolved this by using 'L'

(think of LINE) for the MCL.
Finally, there is a new symbol that can be used to make a

special kind of alias name specification in ALIAS.CMD. If a

name element begins with a '>', then only the file type of the

command verb is used in the comparison. Without this feature

one had to use very complex forms to recognize a file type. For

example, suppose you want to be able to enter the name of a

library file as LBRNAME.LBR as a command and have VLU
invoked on it. The following script used to be required:

?.LBR=??.LBR=???.LBR=????.LBR=?????.LBR=??????.LBR=

???????. LBR=????????.LBR vlu $0

Every possible number of characters in the library name had to be

dealt with explicitly. With the new symbol and the other

ARUNZ09J features, one can define this script more simply as

follows:
>LBR vlu $:0

The Computer Journal / Issue #33 33

Example ALIAS.CMD File

Now that we have described the new resources available in

ARUNZ09J, we will begin our look at part of the ALIAS.CMD
file that I am using right now on the SB 180. It will be the second

half of the file, because that part contains some items of

immediate relevance.

First some words of philosophy. There are many ways in which

Z System can be used effectively, and I am always amazed and

impressed at the different styles developed by different users.

What I will now describe is my approach. As they say, yours may
differ! In any case, I hope these comments will stimulate some
good ideas, and, as always, I eagerly await your comments and

suggestions.

I am a strong believer in short search paths. When I make a

mistake in typing a command, I do not want to have to twiddle

rny thumbs while the command processor thrashes through a lot

of directories searching for the nonexistent command. I want the

error handler to take care of it as quickly as possible. As a result,

the search path on my SB 180 includes only one directory, A0, the

RAM disk. (With XBIOS, the RAM disk can be mapped to the A
drive.)

When I enter a command, it is searched for only in A0. If it is

not found there, then ARUNZ (renamed to CMDRUN.COM) is

loaded from AO, and it looks for a script in ALIAS.CMD, also in

AO. If ARUNZ cannot resolve the command, then the error

handler, EASE in my case, is invoked (you guessed it, also on

AO). Thus no directory other than the RAM disk is accessed

except by an explicit directory reference generated either by an

alias script or by a manually entered command. Everything

appears to operate instantaneously.

into "B0:AFIND TAIL. .
.". Note how compact the definitions

can be. You do not need a separate line for each command.
Similar scripts could be constructed, by the way, for COM files

kept in COMMAND.LBR and extracted and executed by LX. I

do not use LX, so I have no examples to show.

There are several fairly easy ways to automate the construction

of these entries in the ALIAS.CMD file. If you use PMATE or

VEDIT as your text editor, you can write macros that will

perform the entire process. That is how I generated the aliases you
see. With the PMATE macro, I can easily repeat the process from
time to time to make sure that all my COM files are represented

by aliases. So far I have run my PMATE macro on user areas 0, 1

,

2, 3, and 4 of hard disk partition B.

Lacking these tools, you can run "SD *.COM /FX" to get a

file DISK.DIR containing a horizontally sorted listing of all the

COM files in a directory (without going to a lot of trouble, I do
not get a sorted listing from PMATE). Then use your favorite

editor, whatever it is, to add carriage returns so that each file is on
its own line and to delete all of the text after the file name (i.e.,

the dot, file type, and file size). If there are any commands for

which you want to have special aliases (we'll see some examples

shortly), you may delete their names from the list (or you can

leave them—they do no harm). Then close up the list, inserting

equal signs and, when the line is wide enough, add the command
script. Finally, merge this with the rest of your ALIAS.CMD file.

Aliases for Special Command Redefinitions

Just before the simple redefinition aliases there are six

commands that have been separated out for special treatment.

Consider the first of them:

Aliases to Provide Explicit Directory Prefixes

Obviously, I cannot keep all the COM files that I use in

directory AO. In fact, with the tiny RAM disk on the SB 180 (and

allowing about 100K for a BGii swap file), there is barely enough

room for CMDRUN.COM (ARUNZ), ALIAS.CMD,
EASE.COM, EASE.VAR, IF.COM, ZF.COM (ZFILER),

ZFILER.CMD, SAVSTAMP.COM, ZEX.COM, ZEX.RSX,
and a few directory programs. Fortunately, this is all that really

needs to be there.

So what do I do about all the other COM files that I want to

use? There are two possibilities. I could invoke them manually

with explicit directory references, as in "B0:CRC FILESPEC",
but this would clearly be a nuisance (and contrary to the spirit of

Z System!). The other alternative is to provide alias definitions in

ALIAS.CMD for all the commands in other directories that I

want to use.

A second half of my ALIAS.CMD file is shown in Listing 1.

The group of aliases at the very end comprises several sets of

definitions that do just what I have described for several of the

directories on the hard disk. As I use programs in other

directories, I add them to the ALIAS.CMD file.

These aliases are included at the end, by the way, so that other

definitions can preempt them as desired. If you look carefully,

you will see some aliases defined here that are also defined earlier

in the ALIAS.CMD file. The earliest definition always takes

precedence, because ARUNZ scans ALIAS.CMD from the

beginning and stops as soon as it encounters a matching name
specification.

Directory BO, named SYS, contains most of my system utilities.

Directory Bl, named ASM, contains my assembly language

utilities. A few commonly used files are in other directories. The

aliases defined in these sections do nothing more than add an

explicit directory prefix to the command entered. For example,

the script definition

AFIND bO:$!

would take my command line "AFIND TAIL. .
." and turn it

ZP,ATCH bOizpatch $*

I find that my fingers have some difficulty typing the full

ZPATCH correctly, and this alias permits me to enter simply ZP.
Note that in this case we cannot use "b0:$!" for the script

because the alias name allows for forms other than an exact

ZPATCH. If the script used the $! parameter and the command
was entered as ZP, then the expanded script would become
"B0:ZP . .

.

", which would not work.

The alias for crunching is similar in some respects but more
elaborate. The letter combination CH must give me trouble,

because I often type CRUNCH wrong, too, unless I work very

carefully. This alias not only lets me use the short form CR; it also

allows the command to work with named directories.

CR.UNCH bO: crunch dlul: $:!.$.! $d2$u2:

By expanding the first and second parameters explicitly, named
directory references can be converted to the DU: form that

CRUNCH can deal with.

The alias for DATSWEEP goes a little further than the other

two insofar as alternative forms are concerned.

DATSW,EEP=DS=SWEEP bO:datsweep $*

It allows abbreviated forms as short as DATSW, but it

additionally allows alternative nicknames for the command, such

as DS or the more familiar SWEEP, which it replaces on my
system.

The next example in this section shows how a program that

does not know about Z System file specifications at all can be

made to work with them anyway.

LDIR dlul:;bO:ldir $:l;$hb;

For LDIR I just started to use LDIR-B, which displays date stamp
information about files in the library. Unfortunately, it does not

know about named directories; in fact, it does not even know

34 The Computer Journal / Issue #33

anything about user numbers. If he is true to form, Bruce

Morgen, the Intrepid Patcher, will soon have a ZLDIR-B or an

LDRZ-B that will accept full Z System file specs, and I will be

able to retire this alias.

At present, however, LDIR-B accepts only the standard CP/M
syntax for files. As a result, it is not enough simply to pick apart

the token, as it would be if LDIR would accept the form

DU:NAME.TYP. Instead, the directory specified for the library

is logged into, then the LDIR command is run on the library

name, and finally the original directory is relogged. This will work

very nicely unless the user number specified is higher than 15

(and your Z33/Z34 is not configured for logging into high user

numbers).

The last two examples in this series illustrate still another way to

make aliases lighten the typing burden. With XBIOS, alternative

' versions of the operating system are described in model files.

These typically have a file type of MDL, but that type is not

required or the default. Consequently, the SYSBLD system-

defining utility and the XBOOT system-loading utility must be

given an explicit file type. Since I always use MDL for the type, I

created these aliases to add the file type for me so that I can enter

the commands simply as "SYSBLD TEST" or "XBOOT
BIGSYS".

SYSBLD

B00T=XB00T

bO:;bO:$0 $l.mdl;$hb:

bO:;bO:xbtot $l.mdl

The XBOOT alias lets me save a little typing by omitting the

leading 'X' if I wish. The SYSBLD alias returns to the original

directory when it is finished. Since XBOOT coldboots a new
operating system, any trailing commands are lost anyway. The

XBOOT command will soon support a warmboot mode, in

which, like NZCOM and Z3PLUS, the new system is created

without affecting the multiple command line, shell stack, or other

loaded system modules that have not changed their address or

size. I might then add an alias REBOOT or WBOOT
(warmboot) that will load a new system and return to the

original directory.

Memory Display Aliases

In my system development work I often have occasion to

examine various parts of memory. I might want to look at the

beginning of the BIOS to check the hooks into an RSX (resident

system extension), or I might want to see the contents of the

ZCPR3 message buffer to see how some flags are being used.

I used to have a set of aliases like these with explicit addresses in

the script ("P FEOO" to look at the ENV, for example). This

relieved my mind of the task of remembering the addresses where

these modules were located in memory. With the new dynamic

systems, even a good memory will not suffice, since the modules

can move around, and one can not easily be sure just where they

are at any given time.

By using the new parameters that I described earlier, the scripts

always have the correct addresses. [Actually, they can still be

fooled if these parameters are used in multiple-command-line

scripts that include the loading of a new dynamic system. As I

warned in my earlier article on ARUNZ, all parameters are

expanded at the time the alias is invoked. If the system is changed

after that, the parameter values may no longer be correct when
that part of the script actually runs.]

Shells and WordStar Release 4
As I noted in an earlier column, WordStar Release 4 was a very

exciting event for the CP/M world in general and the Z-System
world in particular. It was the first major commercial program to

recognize Z System and to make use of its features.

Unfortunately, the Z System code in WS4 was not adequately

tested, and many errors, some quite serious, slipped through.

Some of the most significant errors concern WS4's operation as a

ZCPR3 shell.

Let's begin with a little background on the concept of a shell in

ZCPR. Normally, during Z System operation the user is

prompted for command line input. This input may consist of a

string of commands separated by semicolons. When the entire

sequence of commands has been completed and the command
line buffer is again empty, the user would be prompted again for

input.

This prompting is performed by the ZCPR command
processor, which, because it is limited in size to 2K, is

correspondingly limited in its power. Richard Conn, creator of

ZCPR, had the brilliant idea of including a facility in ZCPR3 for,

in effect, replacing—or, perhaps better said, augmenting—the

command processor as a source of commands for the system.

This is the shell facility.

Under ZCPR3, when the command processor finds that there

are no more commands in the command line buffer for it to

perform, before it prompts the user for input, it first checks a

memory buffer called the shell stack. If it finds a command line

there, it executes that command immediately, without prompting
the user for input. The program run in that way is called a shell,

because it is like a shell around the command processor kernel.

The shell is what the user sees instead of the command processor,

and the shell will normally get commands from the user and pass

them to the command processor. In effect, the outward

appearance of the operating system can be changed completely

when a shell is selected.

A perfect example of a shell is the EASE history shell. To the

user it looks rather like the command processor. But there are two
very important differences. First of all, the command line editing

facilities are greatly augmented. One can move the cursor left or

right by characters, words, or commands; one can insert new
characters or enter new characters on top of existing characters;

characters or words can be deleted. One has, in a way, a

wordprocessor at one's disposal in creating the command line.

The second feature is the ability to record and recall commands
in a history file. Many users find that they execute the same or

similar commands repeatedly. The history feature of EASE
makes this very convenient. These two command generation

features require far too much code to include in the command
processor itself, so it is very convenient to have the shell

capability.

Programs designed to run as shells have to include special code

to distinguish when they have been invoked by the user and when
they have been invoked by the command processor. ZCPR3
makes this information available to such programs. When
invoked by the user, they simply write the appropriate command
line into the shell stack so that the next time the command
processor is ready for new input, the shell will be called on. After

that, the user sees only the shell. Shells normally have a command
that the user can enter to turn the shell off.

ZCPR3 goes beyond having just a single shell; it has a stack of

shells. A typical configuration allows four shell commands in the

stack. When the user invokes a command designed to run as a

shell, it pushes its name onto the stack. When the user cancels that

shell, any shell that had been running previously comes back into

force. Only when the last shell command has been cancelled

(popped from the shell stack) does the user see the command
processor again.

Let's look at some of the shells that are available under Z
System. We have already mentioned the EASE history shell.

There is also the HSH history shell, which offers similar

capabilities. It was written in C and cannot be updated to take

advantage of innovations like type-3 and type-4 commands. I

would say that EASE is the history shell of choice today. This is

especially true because EASE can do double service as an error

handler as well, with the identical command line editing interface.

Then there are the menu shells, programs that allow the user to

initiate desired command sequences with just a few keystrokes.

The Computer Journal / Issue #33 35

0) -p 4^
in- C cd
to iH

o
a,

rH CD 43 Ph CO
rH 43 -p *H

-P a 43
43 43 o H
0] c

o
CO

3
•H
43

a) D, *
43 <D r-H 43
+^

1
OP P

cd
rH OP

a c 43 • cd

•H
CO

M M CO
to

a.

s 4^> 43 a cd

(U rH +> cd > o £3

rH O •P •H .H
a ho 4J to -P -p 4^
o c cj ca 3
^ •H 4J cd 43 o
a rH

rH
O
c

43
-p

P M
43

05 a) 43 S3 3
-P CO p. +> •H to

-P 0) o
o C o a. to rH S3

0) •H TJ rH O
fH to E 3 •H
£h S3 -P o S3

4J

o CD •H o o cd

o 43
„

-a
43

CO
•H -H

o >» 4^ rH
4^>

3
-P
P.

•H M,
o M

cd

>> CJ e V cd +J 4^
cd ^f •P <a CO 4H C H
rH M -P to a
rH CD o >3 •H t-H

CU CO 43 rH X mh1

> cd L0 -P si CJ

o
1-1 C

c
-p

•p cd
•p

CO a CD SH •H S3 to

CO o 03 mh M •Ho -H cd 3 a a
rH

cd
rH
cd

-P
CO

O
43

a (3
o

u -p •H CO * o 43
X xO a co S •H 43 On hB <M a .. to 43 4J

On a) •H M cd mh H a 3 cd

h3 CO 43 Cm o O cd 43 43 43 to P.
X a C 3 CO cd > si 43 43 C-v 43 4^ 4J

CO >> fH O -p +J 43 43 U^ •H •H
co cd cd O c m* to * -p C^ c-\ -sf S3 S3

3 hj as
cd

CO
•H

.H

a
o
o

cd
-p

CQ3
43

Cm

o

p.

cd

43
-p

ho

cd

43P
to

to
CO

S CS IS

a
o
a

H •H

hH 3 !-! M 3 3 3 43 ho
TJ ho 43 3 M cr cr1 O* o M P.

p O c 6 to M to tj p O ••-s

3 fj CJ H cd TJ cd

u o •• rH rH A •H ho to <C 43 43 (3-,

bo 43 CQ tj 43 o M 3 3 •P
o +J +J •H c o cd -P >J X 1 to to cd 1

rH 3 CO 43 cd M -p a S3 cd 1 -p -p a, 1 4^

X < Q EH £: X tn cd E 1

a
•H

•H
!-!

M
o
6

1 •H
S3

...

4^
cd

S3,
M
o
E

i-3

33

to CO
CO a)

SH

M T)
T) T1n rrt

cd M^ C)

C3 c; cd

o cd 4->

crt 4J 4-> to

CD cd to
Sh P. rH
crl CO rH rH

S3 10 rH
cl C) (1) a W
c> •H SH c3 CO r 1
4-> +> n to

cd cd T1 O <>

P, cd o
4^

4-1 4->

rH rH > SH to

cd al s; 4-> U)

H ^H w a; 4^
0) 4J to S3 M
S3 ^H 4-> Cm •H TI
<1> (3 Cm t) T)
CJ hH o O Oh <

rH R J 3
rH () S3 (3
3 rH 4->

« 43 S3 to
t) Sh T-t H

CO SH >>
•H P. 4^ Sh >> >s

(3 4-> M SH

>1 O •H S3 +> 4->

M (3 () (3 S3
4J P, Ml
a M rr:

> > CJ a H
cd z cd o S3 CO

4J 43 SiJ +-> 4' CM 43
to ro S3 4J
(H () •H Cm
•rH * +J Cm O CI)

Cm (> SH

CD N to 3
Cm 4-> c> •H to CO
-H O S3 N to

S3 crl •H Sh tl)

> tn 4J T3 aCm T) til T3
10 HH < O <C E

43O
tH

43T343 043T3 cd Cd S34343rH4343'

• T3 T) tJ T3 C^TJTJ
43rHrH CdrH-rHrHrH

CO

P.

S3 C TJ TJ TJ T3
Sh «H «H rH rH tfl rH U

si
to

S3

hn
3
43

-J-
<1>

CI (1)

4-> to
cr)

X
•H rH
Cm

03
()
4-1 SH

crl

43 4->

C) r/l
4-> Tl
cd U
p. <)M
rrt

S3
Sh •H
t)
Cm hn

S3
rH

Tl P.
<> P,
r) O

P,
CD
C> T)
u C3
3 cd

(I
II) hn

C3
•H
43

IV to

3
hr u.
C3
•H >i
+J o

(S)S)tS)C3(S(S)(S(StStS
43434343434343434343

e» €« €«

W vH rH CM CM

X Em O PS 03 -P
11 < M CO rH O hH .H

w co Eh Eh c\ II O II X 03 *
II <c; O CO t-3 ~J- X O II Oh XX hH 03 II II Q Em tH O 03 CJ ts
Oh ^ Oh O CO X S 03 ^ X CO
< CO II CO z lr^ CO 03 03 rH
CO < Oh II ¥-{

3 Eh II tH X II CO m
II II HH hH 3 c-v CO r3 X h3 03 II toX Q 31 Oh O N tH II cy 03 CO 03O Z «: II X II CO O 11 X II i-3 > >s
Eh rH II w CO < 11 X X 03 Q 03 O E

CM < Oh X CO Oh Eh tH hH h3 -* II E
3 Oh < CO CJ r3 E-i r3 03 Q 11 O CD 03 E
«r> c-q II X <x OS II Oh -* h3 3c h3 hH X
CM 11 03 II Oh H Eh O Eh II X E X II fH
•a 3 1—t Eh II 03 H CO tH CO 11 h3 O1 Cm
69- 11 QX 03

CQ
X X

CO
COX 03

CO
II

CJ
iH
II

11O EX CO
II

11O
rH

43
i-l> 11

03
PS
03
<
Oh

II< co
II tH

03
tH hH

K
CO

CO
03

+
Oh

H
•H

ef> 43 11

Oh
Oh 03

II

II Oh
CO

os
HH

CO
03

CJ
Oh

pa
EH

11a «
<<

hH
Oh

55O Cm

r-i

rH
43
43 rH II

Eh
> 03Q CJE II

Oh g Eh
Dh O os 03

CJ
S
11 z O

CO g
©5-

93-
ea- TJ

E
X
03

II

03
Z 11

03 ^ S
II

E
II

03
03

tH
CO E h3 a

11

O
rH rn tNl O rH > Eh Oh E-i h3 II h3 X + CO
3 SH •a rH II Z O O CO 03 hH 11 Oh 11 O O Oh <
fr> * -H 6 5r> s CJ 03 E > 03 z >H < O Oh hH O hH
rH fr> TJ CO II II 11 O! 3= hH Oh s X II Oh z X

* a rH rH 4J 4J
II Oh CJ X CO CO Q O II Q 03 ts <

e* 6r} P.
ts

6% O
O

S3 aa CO
II

a
11

Ml
II

II

03 < S
II

OE tHO 11X Q
CO

CO
rH

X
CJ E

43 43 43 IS 43 rH CO 03 03 X Q Q h3 11 O 03 Q II X X 43 TJ
O > 69- X cd 11 > CO Z 11 hH CO 03 > 11 CM II X -p

4^ S3 to > Q < 03 CJ 03 03 Em OS X CO tH c-'N tH tn ho
cd 3 4^ rH CS1 s •H CO CO CO r3 > Eh CJ 03 II Q O z tH Cm S3

43 •O Cm H rH R S3 P. SH CO X P. SH cd 3 43 43 3 11 II O II <! < a > tH Q hH 1—

1

X O cd

cd cd cd cd cd cd cd cd cd cd cd cd N O TJ rr> cr z Q Q C\ CO Q X X < II 11 Oh X CO U
«f> !» «r> m- e» f» e* «r> rH a 3 11 CM 11 11 II II EH 03 S IS X 11 Cm rH

C3 C3 ts a S SI Oh Eh tH Oh 03 tH ts CO x: CO CO Q X rH cd

CO P. p. P, P. p. P. p. P. P, P. p. P. P. 43 43 43 fr> 43 43 4^ H II CO r^l < CJ hH tH CO < «$ rH pa Q 03 cd
Oh CJ 03 II to CO z O II E IS II 11 CO > 43 SH

to l-H m5 « -4- X hH O O -4- 00 IS 11 O
cd to SH II CJ CO rH ca- II X 03 X fcH 03 CO PQ X E TJ TJ
tH r-3 P -H < z l-H Eh ll 03 X h3 II II rH tH 03 11 a S3
rH r3 S3 TJ 03 II Q CJ CO CO II II II 03 + X C3 § X X cd

cd w PQ w t> 11 Oh Q <C Q w X > X hJ hH 3 X
X O rH Oh Cm II 00 Oh J H OS O E Q < Z CO Oh H CO < TJ

>> CO M cd M O ca PS Oh II CJ 03 > hH h3 CO X II K> CO tH Eh to

cd II II > 03 E-> Q t-H PS Oh z Oh tH t-i -si- h3 03 CO 11 < CO S3

rH r3 m -H S 4J 1—

1

rH O II CJ II II 03 ll M fcH rH O « z
a. X 3 CO Q i^ II z O II X z 1-3 Z II < II X hH 43 4J
to CO 0h o< II to 03 03 <C 9 hH Oh CO 03 II 03 « h3 O 9 X 3 Eh SH
iH 03 II Oh CO 11

1-3 Oh Ml CJ 03 O OS X Z X hH 03 II

TJ Oh m5 11 Q Em Q 03 II II CO O -.1- X 03 X h3 X CO 43w m3 PQ rH II Eh 4J t=> Oh II ^\ CJ Z z >H h3 II r3 II xi h3 O 03 3 to

>a II W O cd Oh O Oh l-J X II Oh 03 CO II n CO « z 11 O E 11 r-i

r/ rH Oh CO > Oh Oh r3 O 03 Oh X Oh •H 03 O rH k3 II E-" II O CO X h3 CJ z r3 h3 X II X >i
O 03 O O Z O O CO O O CO X O X X 03 CD Ph II z 03 Ph CO CO h3 E + 11 < to h3 O ho ^
e II O Q w Cm HH S S S 03 Oh II .. Q II E Z rH CJ O >H <e a CJ ^, ts h3 O hH II hJ z S3 P

CO II II II II II II II II 03 11 II CD P, tH z 3 h3 Eh O CJ 03 Ml CO n r3 Oh II CO 03 Oh X C3 < < •H 43s O Oh CO > P^ Oh m5 O OS H Oh r3 O CO < » CO 03 CQ O O 03 O II Eh II Ph 03 tn a rH II Z 03 X tH X 4^ ho
rH O O z O O CO Q «C O X Oh Eh HH CO O II 11 Oh O 03 hH to OS a CO CO tH CO CO •H

... CD O Q w Cm hH E S3 z Oh 03 CO X ... Oh 03 < Q >H CD ... E Oh Q r3 03 CJ OS >h tH 03 < 03 CJ W z to •H rH
a, Oh Oh Oh Oh Oh Oh Oh Oh Oh Oh Oh Oh CS) O a r3 CO X Oh 03 J Oh CO 03 CO CO -<r CO 03 03 X CO hH 3 X CO

36
The Computer Journal / Issue #33

ID
.a

01
T)

G
o

C3 o
•H mM P c >

n 01 Hi
01 O <
-H -H Ii<

en Cm pi
•H h-i

rH •n 7*.

rH ii HH
01 fcd

O Id (D fl

CO O O TJ
& -t-

3 CJ CD

O CD o a

-P -H
CD +

•H P Cm P. CO n inP CI 3 -p p
01 •H U en > 11

G O ill Z p •H
-H U. P 01 W in (1

H c 3 en u.
M -P •H rH P Cm
(!) 0) II 03 01 Cm 1-1

t-i o IX > o I_> ix:

si a)

rH +J
cd cr -a ai
O CD rH Jh

X.
T3 T3 T7
rH rH Cd

-P
CD

U

to
to
rH

CO

P, .H
g

o r/l

In t-i

1 m
1 1 o
UJ 3

Hi

rH
<"\. •H

G
hi' 3
CI
-H
P m
in Ph

no
itn. IS

c\ no
CM cn.

W
u"n

on
rH

on
CS

IS NO
CM

ca o
no o
a onO rH

a^ IS O 13O IS -P O
03 O

IS IS P.
IS CM rH

0) rH
NO rH 43 Ol
c\ rH -P 43

CO
-Nf rH Cm
IS IS O 01

43
ON CJN M -P
no CS 01

43 G
CM < P «H
CN. CM -H

oi enw ON E
t> o bo oi

G rH
^r -<r IS H 43
CS K> s rH O

rH M
UA ca ND CO P,
no NO cn. P>

CO CD
c\ Q ^r a 43O O CS •H +J

-p cd

>> CD

P X5

-p Oi
in II)

•H rH
i-l a)

03

M
rH Oi

+-*

III l/l

rH XI
43 tH
m O
tH 3

-P CD o 0> CD

id ^ q (h cd

o a o cd jz;

P, CD SH P1

6 M -h to
-H <D > -H to

W O CD E-h cd

F=
H G
G I)

-H
^ +->

f> cd

a) M

Ch P T3 03 CO

o. -H O) 0-,o bD
G
P
•H

o
rH

cd

rH
G
01

IS] -H
G ^ o

-p rH P 0) G >j en
o 01 C J3 3 rH rH
01 43 •H p M 01 cd

^ CO 4^
Ch CO no en cd CD

o CN. T3 G -H G M
o

cx
G
cd

•H
43 CO

3
-P

cd

o o g O 3 M CN,
p IS)

O
-P
cd Ol

o
Cm a,

>i cd O o. rH C o
a) ^r •H » CN]

rH en 43 >> 43
U Ol cd P 43 3 M
0) CO -H CD

> cd en 3 CO ^ f4 T3
o 01

rH
G
3 01

•H
43

O
CO
PH G

3
CO G 01 U G P p rH
CO O ce •H CO H a
ON •H M rH 01 43 G
rH P

o)
M CO

+3 3 s
43

rH
rH

cd CO

•V M p CO G cd 01 cd g
Cn o> NO 3 CO a cd CO 43 o o
Ck bo CM bo t3 M g •H CO ao cd -H fH o g T3 rH
1-1 CO 43 Ch o 3 o Ol rH — 43 43 43X O G 3 o G 43 CU CB 43 > 43
co >J fi O 0) cd P 43 43 43 IT\
CO ol cd o C en 01 o en CN, cn, -sr3 1^ £

cd

•H

01

3
cd

o

rH
P.
•H

0)

G
GH en

0)

43p en

C3 cs S

en 13 Ol P O CO -Nf CD
-H O

O
en rH

3
0)H CO
3

Cm
O

CO

CO
CO S h 01 3 3 3
T3 UO a -p en CO M O- o" 13*

o G is cd 01 C a) Ol a Ol CD CD
CD h o •H 01 43 0) rH u 13
J-i o rH rH G CO a 3 < 43 43
bo 43 a> CO o £> •H •H O cd -P 3 3 •P
O •p -p •H G O G M en cd i CO CO cd
M 3 cd 43 cd fn CO •H 01 •H 01 i -p P P.
ex, < Q IH 43 Ph 3 Cm N a Cm i

i

•H
G
•H

•H

0)

U
o
e

p f4 G N
ol 11) M I)
INI P 0) Cm I)
H G " P
rH -H H -P
01 II 3 •H -P
H
P P. G

ID

•H

H -P -P > +->

G 111 111 01 ID
t_H CJ O CO UJ

P rH ^v ^ res

cd 43 rH +J •,

a, CO 43 Ul

h "P --^ G rH
o Ol ^ CO 43

CO TJ T3 T3 CD

The Computer Journal / Issue #33 37

They come in several flavors. MENU stresses the on-screen menu

of command choices associated with single keystrokes. VFILER
and ZFILER stress the on-screen display of the files on which

commands will operate; the commands associated with keys are

not normally visible. Z/VFILER offer many internal file

maintenance commands (copy, erase, rename, move, archive).

VMENU and FMANAGER are in-between. Both the files in the

directory and the menu of possible commands are shown on the

screen.

WSWORK ws $l;ppip archive: =$1

Then we just enter the command "WSWORK MYTEXT.DOC"
when we want to work on the file and have it backed up

automatically when we are done.

Here is what WS4 does as a ZCPR3-type shell. The command
line starts out as:

WSWORK MYTEXT.DOC

What Kind of Programs Should be Shells?

Not all programs should be shells. From a strict conceptual

viewpoint, only programs that are intended to take over the

command input function from the command processor on a

semipermanent basis should be shells. The history shells and the

MENU and VMENU type shells clearly qualify. One generally

enters those environments for the long haul, not just for a quick

command or two.

ZFILER and VFILER are marginal from this viewpoint. One

generally enters them to perform some short-term file

maintenance operations, after which one exits to resume normal

operations. It is rare, I believe, to reside inside ZFILER or

VFILER for extended periods of time, though I am sure there are

some users who do so.

Many people (I believe mistakenly) try to set up as shells any

program from which they would like to run other tasks and

automatically return. This is the situation with WordStar. No one

will claim that the main function of WordStar is to generate

command lines! Clearly it is intended to be a file editor. Why,

then, was it made into a ZCPR3 shell in the first place? I'm really

not sure.

WordStar's 'R' command really does not offer very much. In

neither the ZCPR nor the CP/M configuration does any

information about the operating environment seem to be

retained. For example, one might expect on return to WordStar

that the control-R function would be able to recall the most

recently specified file name. But this does not seem to be the case,

although it could easily have been done. In the ZCPR version, the

name could be assigned to one of the four system file names in the

environment descriptor; in the CP/M version it could be kept in

the RSX code at the top of the TPA that enables WordStar to be

reinvoked after a command is executed.

The WordStar 'R' command does not save any time, either.

Essentially no part of WordStar remains in memory. The user

could just as well use the 'X' command to leave WordStar, run

whatever other programs he wished, and then reinvoke WS.

Nevertheless, I can understand why users would enjoy the

convenience of a command like the 'R' command that

automatically brings one back to WordStar. Shells, however, are

not the way to do this, at least not shells in the ZCPR3 sense.

ZCPR2-Style Shells

In ZCPR2 Richard Conn had already implemented an earlier

version of the shell concept which, interestingly enough, would be

the appropriate way for WordStar and perhaps even

ZFILER/VFILER to operate. He did not have a shell stack, but

he did have programs like MENU that, when they generated

commands, always appended their own invocation to the end of

the command line. Thus if the menu command script associated

with the 'W' key was "WS fn2", where fn2 represents system file

name #2, then the actual command placed into the command line

buffer would be "WS fn2;MENU". In this way, after the user's

command ran, the MENU program would come back.

Let's compare how the two shell schemes would have worked

with WordStar. Suppose we want to edit the file MYTEXT.DOC
and then copy it to our archive disk with the command "PPIP

ARCHIVE: = MYTEXT.DOC". We might have created the

following alias script for such operations:

When the alias WSWORK is expanded the command line

becomes:

WS MYTEXT.DOC; PPIP ARCHIVE:=MYTEXT.DOC

When WordStar runs, it pushes its name onto the shell stack so

that it will be invoked the next time the command line is empty.

Noting that the command line is not empty, it returns control to

the command processor. Then the PPIP command is executed,

backing up our unmodified file (horrors!!!) Finally the

command line is empty and WS, as the current shell, starts

running. Since it was invoked as a shell, it prompts the user to

press any key before it clears the screen to start editing. By this

time it has forgotten all about the file we designated and it

presents us with the main menu. All in all, a rather foolish and

useless way to go about things.

You might think that the problem would be solved if WS did

not check for pending commands but went ahead immediately

with its work. Indeed, this would work fine until the 'R'

command was used. Then either the pending PPIP command
would be lost (replaced by the command generated by the 'R'

operation) or executed (if the 'R' command appended it to the

command it generated). In either case we have disaster!

Now suppose WS4 had used the ZCPR2-style shell concept.

After the alias had been expanded, the "WS MYTEXT.DOC"
command would run, and we would edit our file. While in WS4,
suppose we want to find where on our disks we have files with

names starting with OLDTEXT. We use the 'R' command to

enter the command line "FF OLDTEXT". The 'R' command
would append ";WS" to the end the command we entered and

insert it into the command line buffer before the current pointer,

leaving the following string in the buffer:

FF OLDTEXT;WS;PPIP ARCHIVE:=MYTEXT.DOC

After the FF command was finished, WordStar would be

executed again. Just what we wanted.

In fact, under ZCPR3 WS could be much cleverer than this.

First of all, it could determine from the external file control block

the name (and under Z33 the directory) used to invoke

WordStar in the first place. There would be no need, as there is

now, to configure WS to know its own name and to make sure

that the directory with WS is on the command search path. The

'R' command could have appended "B4:WSNEW" if WSNEW
had been its name and it had been loaded from directory B4.

There is one problem, however. We would really like WS to

wait before clearing the screen and obliterating the results of the

FF command. With the ZCPR3-type shell, WS can determine

from a flag in the ZCPR3 message buffer whether it was invoked

as a shell. For the ZCPR2-style shell we would have to include an

option on the command line. WS could, for example, recognize

the command form "WS /S" as a signal that WS was running as

a shell. It would then wait for a key to be pressed before

resuming, just as under a ZCPR3-style shell. Of course, you

would not be able to specify an edit file with the name "/S" from

the command line in this case, but that is not much of a sacrifice

or restriction.

We could continue to work this way as long as we liked. Only

38 The Computer Journal / Issue #33

when we finally exited WS with the 'X' command would the PPIP

command run. This, of course, is just the right way to operate!

ZCPR2 vs ZCPR3 Shell Tradeoffs

Once I started thinking about the old ZCPR2-type shells, I

began to wonder why one would ever want a ZCPR3-type shell.

At first I thought that Z2-style shells could not be nested, but that

does not seem to be the case. Suppose we run MENU and select

the 'V option to run VFILER. The command line at that point

would be

VFILER; MENU /S

where we have assumed that a "/S" option is used to indicate

invocation as a shell. While in VFILER we might run a macro to

crunch the file we are pointing to. The macro could spawn the

command line "CRUNCH FN.FT". The command line buffer

would then contain

CRUNCH FN. FT; VFILER /S;MENU /S

After the crunch is complete, VFILER would be reentered. On
exit from VFILER with the 'X' command, MENU would start to

run. Thus nesting is not only possible with Z2-type shelling, it is

not limited by a fixed number of elements in the shell stack as in

ZCPR3 (the standard limit is 4). Only the size of the command
line buffer would set a limit.

What disadvantages are there to the Z2-style shell? Well, I'm

afraid that I cannot come up with much in the way of substantial

reasons. The shell stack provides a very convenient place to keep

status information for a program. I do that in ZFILER so that it

can remember option settings made with the 'O' command. On
the other hand, this information could be kept as additional flags

on the command line, as with the "/S" option flag. There is no

reason why the information could not be stored even in binary

format, except that the null byte (00 hex) would have to be

avoided.

If the 128 bytes currently set aside for the shell stack were

added to the multiple command line buffer, the use of memory
would be more efficient than it is now with Z3-style shells. Z3

shells use shell stack memory in fixed blocks; with Z2 shells the

space would be used only as needed. I rarely have more than one

shell running, which means that most of the time 96 bytes of shell

stack space are totally wasted. Of course, with the present setup

of ZCPR3, the multiple command line buffer cannot be longer

than 255 bytes, because the size value is stored in the environment

descriptor as a byte rather than as a word. The command line

pointer, however, is a full word, and so extension to longer

command lines would be quite possible (I'll keep that in mind for

Z35!).

Following this line of reasoning, I am coming to the conclusion

that only programs like history shells and true menu shells should

be implemented as ZCPR3-style shells. Other programs, like

ZFILER and WordStar should use the ZCPR2 style. If I am
missing some important point here, I hope that readers will write

in to enlighten me.

Forming a Synthesis

So long as the command line buffer is fixed at its present length

and so long as 128 bytes are set aside as a shell stack, one should

make the best of the situation. Rob Wood has come up with a

fascinating concept that does just that.

Rob was working on Steve Cohen's W (wildcard) shell. He
recognized that on many occasions one wants to perform a

wildcarded operation followed by some additional commands

(just as with the WordStar example followed by PPIP). As a

ZCPR3-type shell, W could not do this. It always executed what it

was supposed to do after the wild operation before the wild

operation!

Rob came up with a brilliant way to combine the ZCPR2 and

ZCPR3 shell concepts. When his version of W is invoked

manually by the user, it pushes its name, as a good ZCPR3 shell

does, onto the shell stack. But it does not then return to the

command processor to execute commands pending in the

command line. It starts running immediately, doing the thing it

was asked to do and using the shell stack entry to maintain needed

data.

In the course of operation, however, it does one unusual thing.

After each command that it generates and passes to the command
line buffer, it appends its own name, as a good ZCPR2 shell does.

This command serves as a separator between the shell-generated

commands and those that were on the original command line

after the W command. After the shell-generated commands have

run, W starts to run. It checks the top of the shell stack, and if it

finds its own name there, it says "Aha, I'm a shell", and proceeds

to use the information in the shell stack to generate the next set of

commands. This process continues until W has no more work to

do. Then it pops its name off the shell stack and returns to the

command processor. The commands originally included after the

W command are still there and now execute exactly as intended.

Beautiful!

WordStar Shell Bugs

It is bad enough that WordStar's conceptual implementation as

a shell is flawed. On top of that, the shell code was not even

written correctly. The person who wrote the code (not

MicroPro's fault, I would like to add) tried to take a short cut

and flubbed it. When a shell installs itself, it should always—

I

repeat, always—push itself onto the stack. WordStar tries to take

the following shortcut. If it sees that the shell stack is currently

empty, it just writes its name into the first entry, leaving the other

entries as they were.

When WordStar terminates, however, it pops the stack. At this

point whatever junk was in the second shell stack entry becomes

the currently running shell. The coding shortcut (which I would

think took extra code rather than less code, but that is beside the

point) assumed that if the current shell stack entry was null, all

the others would be, too. But this need not be the case at all. And
in many cases it has not in fact been the case, and very strange

behavior has been observed with WordStar. Some users have

reported that WordStar works on their computers only if invoked

from a shell! That is because WordStar properly pushes itself

onto the stack in that case.

There are basically two strategies one can take for dealing with

the shell problems in WordStar. One is to fix the above problem

and live with the other anomalies (just don't ever put commands
after WS in a multiple command line). The other is to disable the

shell feature entirely.

To fix the bug described above, Rick Charnes wrote a program

called SHELLINI to initialize the shell stack before using

WordStar. On bulletin boards in the past both Rick and I

presented aliases that one can use to disable the shell stack while

WS is running and to reenable it after WS has finished. I will now
describe patches that can be made directly to WordStar itself.

First I will explain what the patches do; later I will discuss how to

install them.

Listing 2 shows a patch I call WSSHLFIX that will fix the bug

just described. The code assumes that you do not already have

any initialization or termination patches installed. If you do, you

will have to add the routines here to the ones you are already

using.

The patch works as follows. When WS starts running, the

initialization routine is called. It extracts the shell stack address

from the ENV descriptor and goes there to see if a shell command
is on the stack. If there is, no further action is required, since WS
already works correctly in this case. If, on the other hand, the

first shell entry is null, then the routine calculates the address of

(Continued on page 42)

The Computer Journal / Issue #33 39

Back Issues Available:

Issue Number 1

:

• RS-232 Interface Part One
• Telecomputing with the Apple II

• Beginner's Column: Getting Started
• Build an "Epram"

Issue Number 2

:

• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler: Part 1

• Review of Floppy Disk Formats
• Sending Morse Code with an Apple II

• Beginner's Column: Basic Concepts
and Formulas

Issue Number 3:

• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an A/D Converter for the Apple
II

• Modems for Micros
• The CP/M Operating System
• Build Hardware Print Spooler: Part 2

Issue Number 4:

• Optronics, Part 1: Detecting,

Generating, and Using Light in Elec-

tronics
• Multi-User: An Introduction
• Making the CP/M User Function More
Useful
• Build Hardware Print Spooler: Part 3

• Beginner's Column: Power Supply
Design

Issue Number 6:

• Build High Resolution S-100 Graphics
Board: Parti
• System Integration, Part 1: Selecting

System Components
• Optronics, Part 3: Fiber Optics
• Controlling DC Motors
• Multi-User: Local Area Networks
• DC Motor Applications

Issue Number 8:

• Build VIC-20EPROM Programmer
• Multi-User: CP/Net
• Build High Resolution S-100 Graphics

Board: Part 3

• System Integration, Part 3: CP/M 3.0

• Linear Optimization with Micros

Issue Number 14:

• Hardware Tricks
• Controlling the Hayes Micromodem II

from Assembly Language, Part 1

• S-100 8 to 16 Bit RAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter-

facing the Sinclair Computers, Part 2

Issue Number 15:

• Interfacing the 6522 to the Apple II

• Interfacing Tips & Troubles: Building

a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II

From Assembly Language, Part 2

• The State of the Industry
• Lowering Power Consumption in 8"

Floppy Disk Drives
• BASE: Part Three

Issue Number 16:

• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the S-100 Bus and the 68008 CPU
• Interfacing Tips & Troubles: Build a
"Jellybean" Logic-to-RS232 Converter

Issue Number 18:

• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• S-100 Graphics Screen Dump
• The LS-100 Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-
trol, Part 1

• The Computer Corner

Issue Number 19:

• Using The Extensibility of Forth
• Extended CBIOS
• A $500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-
trol, Part 2

• Multitasking and Windows with CP/M:
AReviewofMTBASIC
• The Computer Corner

Issue Number 20:

• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a S-100 Floppy Disk Controller:

WD2797 Controller for CP/M 68K
• The Computer Corner

Issue Number 21:

• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:

Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner

Issue Number 22:

• NEW-DOS: Write Your Own Operating
System
• Variability in the BDS C Standard
Library
• The SCSI Interface: Introductory
Column
• Using Turbo Pascal ISAM Files
• The AMPRO Little Board Column
• The Computer Corner

Issue Number 23:

• C Column: Flow Control & Program
Structure
• The Z Column: Getting Started with
Directories & User Areas
• The SCSI Interface: Introduction to

SCSI
• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System

40

• INDEXER: Turbo Pascal Program to

Crest© Index
• The AMPRO Little Board Column

Issue Number 24:

• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for

CP/M
• The C Column : Software Text Filters

• AMPRO 186 Column: Installing MS-
DOS Software
• The Z Column
• NEW-DOS: The CCP Internal Com-
mands
• ZTIME-1: A Realtime Clock for the

AMPRO Z-80 Little Board

Issue Number 25

:

• Repairing & Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
Issue Number 26:

• Bus Systems: Selecting a System Bus
• Using the SB180 Real Time Clock
• The SCSI Interface: Software for the

SCSI Adapter
• Inside AMPRO Computers
• NEW-DOS: The CCP Commands Con-

tinued
• ZSIG Corner
• Affordable C Compilers
• Concurrent Multitasking: A Review of

DoubleDOS
Issue Number 27:

• 68000 TinyGiant: Hawthorne's Low
Cost 16-bit SBC and Operating System
• The Art of Source Code Generation:

Disassembling Z-80 Software
• Feedback Control System Analysis:

Using Root Locus Analysis and Feed-

back Loop Compensation
• The C Column: A Graphics Primitive
Packs2e
• The Hitachi HD64180: New Life for 8-

bit Systems
• ZSIG Corner: Command Line

Generators and Aliases
• A Tutor Program for Forth: Writing a

Forth Tutor in Forth
• Disk Parameters: Modifying The
CP/M Disk Parameter Block for Foreign

Disk Formats
• The Computer Corner

Issue Number 28:

• Starting Your Own BBS: What it takes to

run a BBS.
• Build an A/D Converter for the Ampro
L.B.: A low cost one chip A/D converter.

• The Hitachi HD64180: Part 2, Setting the

wait states & RAM refresh, using the PRT,

and DMA.
• Using SCSI for Real Time Control:

Separating the memory & I/O buses.

The Computer Journal / Issue #33

• An Open Letter to STD-Bus Manufactur-

ers: Getting an industrial control job done.
• Programming Style: User interfacing

and interaction.

• Patching Turbo Pascal: Using disassem-

bled Z80 source code to modify TP.

• Choosing a Language for Machine
Control: The advantages of a compiled
RPN Forth like language.

Issue Number 29:

• Better Software Filter Design: Writing

pipable user friendly programs.
• MDISK: Adding a 1 Meg RAM disk to

Ampro L.B., part one.
• Using the Hitachi HD64180: Embedded
processor design.
• 68000: Why use a nes OS and the 68000?
• Detecting the 8087 Math Chip: Tem-
perature sensitive software.

• Floppy Disk Track Structure: A look at

disk control information & data capacity.

• The ZCPR3 Corner: Announcing ZC-

PR33 plus Z-COM Customization.
• The Computer Corner.

Issue Number 30:

• Double Density Floppy Controller:

An algorithm for an improved CP/M BIOS.
• ZCPR3 IOP for the Ampro LB.:

Implementing ZCPR3 IOP support

featuring NuKey, a keyboard re-definition

IOP.
• 32000 Hacker's Language: How a

working programmer is designing his

own language.
• MDISK: Adding a 1 Meg RAM disk to

Ampro L.B., part two.
• Non-Preemptive Multitasking: How
multitasking works, and why you might

choose non-preemptive instead of

preemenptive multitasking.

• Software Timers for the 68000: Writing

and using software timers for process

control.

• Lilliput Z-Node: A remote access

system forTCJ subscribers.
• The ZCPR3 Corner
•The CP/M Corner
• The Computer Corner

Issue Number 31:

• Using SCSI for Generalized I/O: SCSI

can be used for more than just hard drives.

• Communicating with Floppy Disks: Disk

parameters and their variations.

• XBIOS: A replacement BIOS for the

SB180.

• K-OS ONE and the SAGE: Demystifing

Operating Systems.
• Remote: Designing a remote system

program.
• The ZCPR3 Corner: ARUNZ documen-

tation.

• The Computer Corner

Issue Number 32:

• Language Development: Automatic
generation of parsers for interactive

systems.
• Designing Operating Systems: A ROM
based O.S. for the Z81.
• Advanced CP/M: Boosting Performance.
• Systematic Elimination of MS-DOS
Files: Part 1, Deleting root directories & an
in-depth look at the FCB.
• WordStar 4.0 on Generic MS-DOS
Systems: Patching for ASCII terminal

based systems.
• K-OS ONE and the SAGE: Part 2, System
layout and hardware configuration.
• The ZCPR3 Corner: NZCOM and ZC-
PR34.

TCJ ORDER FORM
Subscriptions U.S. Canada Surface

Foreign
Total

6 issues per year

New Renewal 1 year $16.00

2 years $28.00

$22.00

$42.00

$24.00

Back Issues

Six or more
#'s

$3.50 ea.

$3.00 ea.

$3.50 ea.

$3.00 ea

$4.75 ea.

$4.25 ea.

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank.

Check enclosed VISA MasterCard Card#

Expiration date Signature

Name.

Address.

City. _State_ _ZIP

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

The Computer Journal / Issue #33 41

Data Base

(Continued from page 16)

in the form of a spreadsheet with rows and columns, where the

fields are the columns, the rows are the records, and the whole

sheet is the file. Data for the file STKBASE might look like this:

Company

IBM

IBM

ALLTEL

ALLTEL

COMPAQ

COMPAQ

Date

5/13/88

5/20/88

5/13/88

5/20/88

5/13/88

5/20/88

Close?

110.375

109.50

32.125

32.50

52.0

49.675

Change?

-0.125

-0.875

+0.50

+0.375

-0.875

-2.375

The first row, showing that IBM closed at 110.375 on the 13th

with a loss of 0.125 is a record.

Once the data is entered for the stocks of interest, you can

retreive the information in many different ways. You could get

the information for a given company between certain dates. You
could get the information for all the companies for a given date.

You could search for a company with the most positive (or the

least negative) percentage change during the period. By working

in conjunction with a second file which contains the date, the

Dow Jones Average, and the change, you could search for the

companies with the best performance during a market decline. I

am not a stock analyst, so don't base your investment strategy on

this simplified example!

Don't Reinvent the Wheel!

Being able to write your own program is very important when
none of the commercial offerings suite your client's needs. But, at

the same time, don't let your ego prevent you from using an

existing product if it fills the need. I have found one program

which I believe will replace a list management program that I was

going to write. More details after I evaluate it.

Next Time
This has been a very brief introduction to the subject of

databases and information processing. It may have gone over the

heads of some of you, and been a rehash of well known facts for

others. But, I had to start somewhere.

I intend on continuing with more technical information, in-

cluding details on database types, tools, utilities, and reference

material. I'll try to keep it general, rather than emphasizing one

specific product, but there will be specific code examples when we

compare different methods. There will also be companion articles

which are more application specific.

Your input is needed! Your articles, letters, notes, comments,

suggestions, and questions are welcome.

Data Programming Resources

This section will be greatly expanded, and more extensive

reviews provided. This is a 'first look' at useful products. The

products mentioned here are the ones I am currently using or have

examined. I do not intend to publish unsupported press releases,

but recommendationsfrom readers will be included.

Reference Material

Programming in Clipper by Stephen J. Straley, Addison-

Wesley (Disk Available). A very thorough book about a very

useful tool. A must if you intend to use Clipper.

dBASE III PLUS Power User's Guide by Edward Jones,

Osborne McGraw-Hill (Disk Available). A very useful book, with

important information on how to do things with dBASE. Not just

a repeat of the commands from the manual. Definitely recom-

mended, a complete review will follow.

dBASE III Tips & Traps, by Andersen, Cooper, and Demsey,
Osborne McGraw-Hill. After you are familiar with dBASE, this

book will help you avoid the pitfalls or find out what went wrong.
It supplements, but does not replace the user's manual.

dBASE III PLUS The Complete Reference, by Joseph-David

Carrabis, Osborne McGraw-Hill (Disk Available). This large (745

page) book is where you go to find the complete details on com-

mands and functions.

Simpson's dBASE Tips and Tricks, by Alan Simpson, Sybex

(Disk Available). This book is organized by activities, with useful

code examples. A very helpful book, definitely recommended.

Tools

Clipper dBASE compiler, by Nantucket. Compile dBASE code

for faster operation, and to protect your source code—generate

standalone programs without a royalty—include C or ASM sec-

tions—extensions and expanded capabilities. Recommended.

db_VISTA III, db_QUERY, db_REVISE, by Raima. A C
programmer's delight! DBMS routines to incorporate into your C
programs. Based on the network database model and B-tree in-

dexing method. Expect to hear more about this.

Registered Trademarks

The following trademarks are acknowledged, and we apologize

for any we have overlooked.

dBASE; Ashton-Tate, Inc.

Clipper; Nantucket Corp.

db_VISTA III, db_QUERY, db_REVISE; Raima.

ZCPR3 Corner

(Continued from page 39)

the beginning of the second shell entry and places a zero byte

there. When this stack entry is popped later, it will be inactive.

Listing 3 shows a patch I call WSSHLOFF that will completely

disable the shell feature of ZCPR3 while WS is running. It works

as follows. When WS starts running, the initialization routine is

called. It gets the number of shell stacks defined for the user's

system in the ENV descriptor and saves it away in the termination

code for later restoration. Then it sets the value to 0. WordStar

later checks this value to see if the shell feature is enabled in

ZCPR3. Since WordStar thinks that there is no shell facility, it

operates the 'R' command as it would under CP/M. Later, on

exit from WS, the termination routine restores the shell-stack-

number so that normal shell operation will continue upon exit

fromWS.
The easiest way to install these patches is to assemble them to

HEX files and use the following MLOAD command (MLOAD is

a very useful program available from remote access systems such

as Z Nodes):

MLOAD WS=WS.C0M,WSSHLxxx

Substitute the name you use for your version of WordStar and the

name of the patch you want to install. That's it; you're all done.

If you do not have MLOAD, you can install the patches using

the patching feature in WSCHANGE. From the main menu select

item C (Computer), and from that menu select item F

(Computer Patches). From that menu, work through items C
(initialization subroutine), D (un-initialization subroutine),

and E (general patch area), installing the appropriate bytes listed

in Table 1

.

Summary
We have covered a lot of material this time. The issue of shells

is a very tricky one, and I hope to hear from readers with their

comments. I would also enjoy learning about interesting ARUNZ
aliases that you have created. |

42 The Computer Journal / Issue #33

Computer Corner

(Continued from page 44)

talk to a keyboard, disk drives, and

monitor. Rick VanNorman has put

together the system using this design, plus

some changes of his own, and is selling

them as a complete system. They use a 3 Vi

inch drive, a PC compatible keyboard and

monitor. I saw one running at the FOR-
TH INTEREST GROUP convention in

San Jose last year. I got Rick to send me a

copy of his ROM and boot disk with in-

struction for a small fee.

Unfortunately, it set for several months

before I got enough money to buy the new
RAMS ($15-$20 each—needed four) and

other chips. The problem was time to

make the changes. I finally made time,

and spent several days building the

system. The system didn't work com-

pletely and I wasn't sure at first if it was

the AUGATS or my hurried time schedule

causing the problem.

The Fixes

I tried a number of things and found

about the timing of the system. In Charles

Moores book he says that 125 NS RAMs
will work at 5 MHZ. The problem was he

also said that was assuming a 60/40 (60%
low to 40% high) clock cycle. The new

design starts with 10 MHZ clock and

divides to 5 MHZ producing a 50/50 clock

(equal low to high time). I made some

changes and was able to get a 60/40 clock

cycle which made the system almost work.

You see I decided to save 5 dollars a chip

and buy 125 NS RAMs, not the 100 NS
that would normally be installed by Rick.

Like I said it almost worked, but no

matter how I shifted the clock operation I

was getting nowhere. I called Charles and

talked to him about the problem. He in-

dicated a number of troubles he had seen

lately. One important problem was the

quality of NOVIX chips has been going

down and the need for faster return stack

RAM has been occurring. The return

stack gets accessed sometimes on the high

clock cycle and for a 60/40 clock cycle

you would need 80 NS RAMs. He also in-

dicated that he had been using TI

74HC139 for address decoding as they

were faster. It seems the TIs were actually

meeting the minimum speed specification

while other brands had just made the

higher end of specifications (longer

propagation time).

Well, the points about quality control

going down hill didn't help me, other than

making me feel I made a mistake in

buying 125 NS RAMs. Charles gave me
Rick VanNormans new phone number
(Rick had to move unexpectedly) and so I

called him. When I talked to Rick he poin-

ted out several possibles and gave me
some tips about testing the system. I

didn't know how much of the system was

in ROM and how much was on disk. The
basic FORTH kernel is in ROM so that if

it is reading the keyboard you can per-

form a number of tests. He had me try

and fill memory that becomes the charac-

ter generator. That didn't produce the

desired results and we decided the best

move was to take it to him if I couldn't

find any 100NS RAMs locally.

I didn't find any RAM, so last weekend

I went to his place and we changed out the

RAMs. The unit then worked almost.

Filling the memory worked somewhat but

not properly. Rick then remembered that

some of the NOVIX chips have the

locating pin connected to the data bus. It

really is a mistake to be connected but

normally doesn't cause any problems. We
cut my locating pin off and zippo a near

working system. It responded properly

now, except it still wouldn't boot the disk

system. We tried a write operation and

read the disk with his system and

discovered an address problem. We even-

tually found that (a solder bridge under a

socket and of my own doing) and now the

system works.

What Next?

Now that I am running the system, it is

easy to see how powerful the device is. I

can look at all the FORTH code, which

isn't a lot of code.and see how to do all

the operations. You need to keep in mind
that the NOVIX is updating the screen on
every trace, doing the vertical and

horizontal traces, reading and writing the

disk drive, and reading the keyboard, as

well as outputting to a printer when
needed. There is only the NOVIX, RAM,
ROM, clock circuit, and 3 glue chips.

There is not a video controller or disk con-

troller—none of those are needed.

Now there are a few things I don't like,

one being that the screen goes away
during disk accessing. The disk format is

not compatible with anything. The item

that bothers me the most is the cost of the

devices. The NOVIX now costs about

$200. The RAMs (100NS) are running

typically $20. I have about $800 dollars

(probably more) in the system. Rick is

selling a complete system for around a

$1000 (tested and running). In com-
parison, I can buy the incredibly slower

PC clones, which can't do half what the

NOVIX does, for less and have some
good features like compatibility and

commercial programs.

Conclusion

Where does this leave me, well I have a

6 MIPS computer that will be housed in a

Plexiglas box (10 by 10 inches square) so

people can see how few components are

used. The pleasure of being on the leading

edge of technology. A chance to become
really good at FORTH and the NOVIX.

So you ask what are my next projects?

Well, I do plan on changing the ways the

system uses inputs and outputs (a small

keyboard and maybe a LCD screen), ad-

ding a serial line for modem work, and
then I will get onto the next major project.

That next big job is a better tutor program
that will run on the PC. Yup, after all this

work I am going where the money is,

programs for the masses (clones).

I think the NOVIX is going to be fun

playing with, but sometime the bills have

to be paid, which is why I haven't been

working on my major projects. Hopefully

before the next issue is due I will get those

projects started again. Till then keep

hacking.

Charles Moore
COMPUTER COWBOYS

410 Star Hill Road
Woodside, CA 94062

(415)851-4362

Rick VanNorman
Personal Forth Environment

35972 Brandywine Street

Newark, CA
(415)795-0532

For books on the NOVIX:
OFFETE ENTERPRISES, INC.

1306 South B Street

San Mateo, CA 94402

(415) 574-8250

For manufacturing information:

NOVIX
19925 Stevens Creek Blvd.

Cupertino, CA 95014

(408) 996-9363

For a NOVIX on a PC compatible board:

Software Composers
210 California Avenue, Suite 1

Palo Alto, CA 94306

(415)322-8763

FORTH, Inc.

Ill N.Sepulveda Blvd.

Manhattan Beach, CA 90266

(800) 55-FORTH (outside California)

(213)372-8493

The Computer Journal / Issue #33 43

THE COMPUTER CORMER

by Bill Klbler

• I hope that most of our readers are not

as busy as I have been. So far it has been a

very busy year, and it seems like it has just

started. I have had to make several unex-

pected trips, and have not had any time to

work on my major projects.

A project which I have worked on this

last month is completing my NOVIX
system. As most of you remember I am a

FORTH user and have even bought the

NOVIX computer as sold by Charles

Moore (the inventor of FORTH). The
NOVIX runs FORTH directly which

makes it one of the faster computers
available. I have made some discoveries

about its speed and operation which I

think will prove interesting for all of us.

The NOVIX
The NOVIX is not your ordinary CPU.

The unit is a gate array laid out in such a

way that it will perform operations that

are directly related to FORTH instruc-

tions. There are about 4,000 devices (tran-

sistors) in the NOVIX, where as the newer

68030 or 80386 are pushing 7 to 800,000

devices. With fewer devices the NOVIX is

not slow or short on power.

The Novix gets it speed from simplistic

design. For those who don't know FOR-
TH, it is a stack oriented Reverse Polish

Notation (RPN) language. It works on the

principle of two stacks, one the data

stack, and the other the return stack. Data

is placed on the stack and arithmetic

operations are then performed, leaving

the results back on the stack. In the

NOVIX the stacks are off the device

allowing them to be any amount of 16 bit

RAM you choose.

One point I need to make is that the

NOVIX is a 16 bit system. It requires two

separate 16 bit wide stack RAM arrays, as

well as 64K of 16 bit memory. A number
of parallel data lines are provided so that

paging is possible for more memory
usage. The secret of the device is how it

uses the clock.

Normal CPUs will trigger off of the

rising edge of the clock. That means that

on every rising edge, internal devices are

stepped and perform the next operation.

An example of this would be moving data

to a register. The first edge would load the

44

instruction into the CPU. Then it would
be decoded into the necessary sections of
the CPU so that the next clock shift would
output the address of the data. Then the

next clock would load the data into the

appropriate register. All totaled, 6 or 8

clock changes are needed to complete the

instruction.

The NOVIX however is a gate array

and as such does not work on the standard
CPU principles. It uses the clock highs

and lows separately. By that I mean the

low portion of the clock pulse is for get-

ting the data from memory, while the high
portion is for doing the instruction.

Almost all instructions can be performed
in one clock cycle. It goes something like

this. The clock goes low and all address

lines have the address output for the static

RAMS. During the low, the RAMS are

fetching the data to the data bus. The
clock goes high and uses the data on the

data bus as the next instruction.

In the case of fetching data to the stack,

the address of the data is placed on the

address bus after the instruction decode
time (high cycle). The low portion of the

clock this time fetches the actual data and
it is placed on the stack during the high

portion of the clock. The operation con-

tinues like this throughout the program,
using one complete clock cycle for most
operations. The long fetches take 2 cycles

total, which is four times less than our
standard CPU.
The speed doesn't stop there, as the

NOVIX is also a parallel processor. The
insides of the NOVIX have several dif-

ferent paths that data can travel and be
processed by. This works out that a quar-

ter of the instructions can be combined in-

to one single instruction. This is done in

the compiler part of the operation and
results in a 4MHZ device processing data

at 5MIPS. Now lots of people are going to

say that is impossible, but remember the

clock performs two operations each cycle

(fetch from memory on low, shift data in-

ternally on high).

Speed for What?
With all this speed what can the

NOVIX do then, how about everything.

What my time has been spent on is doing

everything with my setup. The Charles
Moore FK3 board is a simple two sided 3

inch by 5 inch board that has chips placed
on both sides. This is possible by using
AUGATS insert socket pins. These inserts

come on a roll and are inserted into the
holes of the board. The chips then go into

the insert which nicks the side of the hole
and makes contact.

I have mixed emotions about this idea
and have replaced some of the inserts with
sockets. This has caused some minor
problems when upgrading as you can no
longer get to the traces that need to be cut.

The whole idea behind the design was to
allow for easy and numerous changes to

the design. To achieve this you need ac-

cess to all traces and feed thrus. I per-

sonally plan on changing to solder in type
sockets, something in the order of socket

buses. These buses are just round sockets
in strips and can be cut to any length and
soldered in. They are connected together
by plastic, which gives them the strength

needed for removal and insertion of the

chips.

The reason I don't like the inserts is not
knowing if they made good contact or
not. I have had a couple push through the
board, as well as having trouble with them
when removing chips. I am currently
having problems with my system and am
not really sure if the pins are all contacting
properly. If the traces were just from
point to point there wouldn't be any
problem, but for data buses it is im-
possible to tell if one chip of several is not
making contact. The reason I am getting

in to this problem is trying to upgrade to a
full computer system.

The board as designed and shipped will

work as a serial auxiliary processor. That
means that all contact with the system is

over a serial line with another computer or
terminal. The books that come with it do
provide some sample FORTH programs
to load and save blocks of data on the F83
system (pubLic domain FORTH). The
ability to test and see the speed of the

NOVIX is somewhat lost over the serial

line.

Charles Moore has provided traces and
design information to enable the system to

(Continued on page 43)

