
Issue Number 32 $3.00

Language Development
Automatic Generation of Parsers for Interactive Systems

Designing Operating Systems
A ROM Based O.S. for the Z81

Advanced CP/M
Boosting Performance

Systematic Elimination of MS-DOS Files

Part 1 — Deleting Root Directories & an In-Depth look at the FCB

WordStar 4.0 on Generic MS-DOS Systems
Patching for ASCII Terminal Based Systems

K-OS ONE and the SAGE 68000
Part 2— System Layout and Hardware Configuration

ISSN * 0748-9331

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, Montana

59912

406-257-9119

Editor/Publisher

Art Carlson

Art Director

Donna Carlson

Production Assistant

Judle Overbeek

Contributing Editors

Joe Bartel

Bob Blum

Bill Klbler

Rick Lehrbaum

Bridger Mitchell

Jay Sage

The Lillipute Z-Node sysop has

made his BBS systems available to

the TCJ subscribers. Log in on

both systems (312-649-1730 & 312-

664-1730), and leave a message for

SYSOP requesting TCJ access.

Entire contents copyright©

1988 by The Computer Journal.

Subscription rates—$16 one

year (6 issues), or $28 two years (12

issues) in the U.S., $22 one year in

Canada and Mexico, and $24 (sur-

face) for one year in other coun-

tries. All funds must be in US
dollars on a US bank.

Send subscriptions, renewals, or

address changes to: The Computer

Journal, 190 Sullivan Crossroad,

Columbia Falls, Montana, 59912, or

The Computer Journal, PO Box

1697, Kalispell, MT 59903.

Address all editorial and adver-

tising inquiries to: The Computer

Journal, 190 Sullivan Crossroad,

Columbia Falls, MT 59912 phone

(406)257-9119.

The COMPUTER

JOURMAL

Features

Language Development

Parsing is a very important tool for command
processing and parsing the input for a calculator

is an easily understood example,

by Paul Mann

Issue Number 32

Designing Operating Systems

Some of the steps and considerations involved in

designing a ROM based operating system.

by Clark Calkins 18

Advanced CP/M

Boosting system performance with fast disk

resets, and optimizing sieve performance with

tightly coded assembly language,

by Bridger Mitchell 20

Systematic Elimination of MS-DOS Files

An in-depth look at how the FCB works in

conjuction with DOS, plus a program to delete root

directory entries,

by Dr. Edwin Thall 26

WordStar 4.0 on Generic MS-DOS Systems

Version 4.0 can be patched to work with ASCII

terminals for non-compatible systems (such as my
AMPRO LB. '186) or with remote terminals,

by Phil Hess 32

K-OS ONE and the SAGE 68000

Evaluating how the hardware design affects the

BIOS requirements, and establishing the software

flow diagrams,

by Bill Kibler 34

Columns

Editorial 3

Reader's Feedback 5

ZCPR3 Corner byJay Sage 10

Computer Corner byBuiKibier 44

The Computer Journal / Issue #32

Z sets you free!
Who we are

Echelon is a unique company, oriented

exclusively toward your CP/M-compatible
computer. Echelon offers top quality software

at extremely low prices; customers are

overwhelmed at the amount of software they

recieve when buying our products. For

example, the Z-Com product comes with

approximately 92 utility programs; and our

TERM III communications package runs to a

full megabyte of files. This is real value for your

software dollar.

ZCPR 3.3

Echelon is famous for our operating systems

products. ZCPR3, our CP/M enhancement,

was written by a software professional who
wanted to add features normally found in

minicomputer and mainframe operating

systems to his home computer. He succeeded
wonderfully, and ZCPR3 has become the

environment of choice for "power" CP/M-
compatible users. Add the fine-tuning and
enhancements of the now-available ZCPR 3.3

to the original ZCPR 3.0, and the result is truly

flexible modern software technology,

surpassing any disk operating system on the

market today. Get our catalog for more
information - there's four pages of discussion

regarding ZCPR3, explaining the benefits

available to you by using it.

Z-System
Z-System is Echelon's complete disk

operating system, which includes ZCPR3 and
ZRDOS. It is a complete 100% compatible

replacement for CP/M 2.2. ZRDOS adds even

more utility programs, and has the nice feature

of no need to warm boot
(

AC) after changing a

disk. Hard disk users can take advantage of

ZRDOS "archive" status file handling to make
incremental backup fast and easy. Because
ZRDOS is written to take full advantage of the

Z80, it executes faster than ordinary CP/M and

can improve your system's performance by up

to 10%.

Installing ZCPR3/Z-System
Echelon offers ZCPR3/Z-System in many

different forms. For $49 you get the complete

source code to ZCPR3 and the installation files.

However, this takes some experience with

assembly language programming to get

running, as you must perform the installation

yourself.

For users who are not qualified in assembly

language programming, Echelon offers our

"auto-install" products. Z-Com is our 100%
complete Z-System which even a monkey can

install, because it installs itself. We offer a
money-back guarantee if it doesn't install

properly on your system: Z-Com includes many
interesting utility programs, like UNERASE,
MENU, VFILER, and much more.

Echelon also offers "bootable" disks for

some CP/M computers, which require

absolutely no installation, and are capable of

reconfiguration to change ZCPR3's memory
requirements. Bootable disks are available for

Kaypro Z80 and Morrow MD3 computers.

Z80 Turbo Modula-2
We are proud to offer the finest high-level

language programming environment available

for CP/M-compatible machines. Our Turbo
Modula-2 package was created by a famous
language developer, and allows you to create

your own programs using the latest technology

in computer languages - Modula-2. This

package includes full-screen editor, compiler,

linker, menu shell, library manager, installation

program, module library, the 552 page user's

guide, and more. Everything needed to

produce useful programs is included.

"Turbo Modula-2 is fast.. .[Sieve benchmark]
runs almost three times as fast as the same
program compiled by Turbo Pascal. ..Turbo

Modula-2 is well documented...Turbo's librarian

is excellent". - Micro Cornucopia #35

BGii (Backgrounder 2)

BGii adds a new dimension to your Z-System
or CP/M 2.2 computer system by creating a

"non-concurrent multitasking extension" to

your operating system. This means that you
can actually have two programs active in your

machine, one or both "suspended", and one
currently executing. You may then swap back
and forth between tasks as you see fit. For

example, you can suspend your telecommuni-

cations session with a remote computer to

compose a message with your full-screen

editor. Or suspend your spreadsheet to look

up information in your database. This is very

handy in an office environment, where constant

interruption of your work is to be expected. It's

a significant enhancement to Z-System and an
enormous enhancement to CP/M.

BGii adds much more than this swap
capability. There's a background print spooler,

keyboard "macro key" generator, built-in

calculator, screen dump, the capability of

cutting and pasting text between programs,

and a host of other features.

For best results, we recommend BGii be
used only on systems with hard disk or

RAMdisk.

JetFind

A string search utility is indispensible for

people who have built up a large collection of

documents. Think of how difficult it could be to

find the document to "Mr. Smith" in your

collection of 500 files. Unless you have a

string search utility, the only option is to

examine them manually, one by one.

JetFind is a powerful string search utility

which works under any CP/M-compatible

operating system. It can search for strings in

text files of all sorts - straight ASCII, WordStar,

library (.LBR) file members, "squeezed" files,

and "crunched" files, JetFind is very smart and
very fast, faster than any other string searcher

on the market or in the public domain (we know,

we tested them).

Software Update Service
We were suprised when sales of our

Software Update Service (SUS) subscriptions

far exceeded expectations. SUS is intended

for our customers who don't have easy access
to our Z-Node network of remote access
systems. At least nine times per year, we mail

a disk of software collected from Z-Node
Central to you. This covers non-proprietary

programs and files discussed in our Z-NEWS
newsletter. You can subscribe for one year,

six months, or purchase individual SUS disks.

There's More
We couldn't fit all Echelon has to offer on a

single page (you can see how small this

typeface is already!). We haven't begun to talk

about the many additional software packages
and publications we offer. Send in the coupon
below and just check the "Requesting Catalog"

box for more information.

Item Name Price

1 ZCPR3 Core Installation Package $49.00 (3 disks)

2 ZCPR3 Utilities Package $89.00 (10 disks)

5 Z-Com (Auto-Install Complete $119.00 (5 disks)
•

Z-System)

6 Z-Com "Bare Minimum" $69.95 (1 disks)

10 BGii Backgrounder 2 $75.00 (2 disks)

12 PUBLIC ZRDOS Plus (by itself) $59.50 (1 disk)

13 Kaypro Z-System Bootable Disk $69.95 (3 disks)

14 Morrow MD3 Z-System $69.95 (2 disks)

Bootable Disk

16 QUICK-TASK Realtime $249.00 (3 disks)

Executive

1 7 DateStamper file time/date $49.95 (1 disk)

stamping

1 8 Software Update Service $85.00 (1 yr sub)

20 ZAS/ZLINK Macro Assembler $69.00 (1 disk)

and Linker

21 ZDM Debugger for 8080/Z80/ $50.00 (1 disk)

HD641 80 CPU's
22 Translators for Assembler $51.00 (1 disk)

Source code

23 REVAS3/4 Disassembler $90.00 (1 disk)

24 Special Hems 20 through 23 $169.00 (4 disks)

25 DSD-80 Full Screen Debugger $129.95 (1disk)

27 The Libraries.SYSLIB, Z3LIB, $99.00 (8 disks)

and VLIB
28 Graphics and Windows Libraries $49.00 (1disk)

29 Special Kerns 27. 28. and 82 $149.00 (9 disks)

30 Z80 Turbo Modula-2 Language $89.95 (1 disk)

System
40 Input/Output Recorder IOP (l/OR) $39.95 (1 disk)

41 Background Printer IOP (BPrinter) $39.95 (1 disk)

44 NuKey Key Redefiner IOP $39.95 (1dlsk)

45 Special hems 40 through 44 $89.95 (3 disks)

60 OISCAT Disk cataloging system $39.99 (1disk)

61 TERM3 Communications System $99.00 (6 disks)

64 Z-Msg Message Handling System $99.00 (1dtsk)

66 JetFind String Search Utility $49.95 (tdisk)

61 ZCPR3: The Manual bound, 350 pages $19.95

82 ZCPR3: The Libraries 310 pages $29.95

83 Z-NEWS Newsletter, 1 yr subscription $24.00

84 ZCPR3 and lOPs 50 pages $9.95

85 ZRDOS Programmer's Manual 35 pages $8.95

88 Z-System User's Guide 80 page tutorial $14.95

* Includes ZCPR3: The Manual

Echelon. Inc.
P.O. Box 705001-800

South Lake Tahoe, CA 9S705

(916) 577-1105

NAME
ADDRESS

ORDER FORM

Payment to be made by

D Cash
D Check

Money Order

D UPS COD
D Mastercard/Visa:

#

ITEM PRICE

TELEPHONE
REQUESTING CATALOG

DISK FORMAT

Exp. Date

California residents add 7% sales tax.

Add $4.00 shipping/handling in North

America, actual cost elsewhere.

Subtotal

Sales Tax

Shipping/Handling

Total

The Computer Journal / Issue #32

Editor's Page

An Idea Whose Time Has Come?
In a previous editorial (The HELL With

Being Compatible, I Want What I Want!
issue #30 page 4), I offered the outrageous

idea of using a stripped down Operating

System containing only the features

needed by a program, and then rein-

stalling the regular system upon program
completion. In that same issue, Jay sage

discussed NZCOM, which included some
of the same approaches. Now, in this

issue, Jay Sage unveils the greatly expan-

ded NZCOM.
Like so many things whose time has

come, these ideas were developed

simultaneously by several different

people. NZCOM has much wider ap-

plications than what I had planned, and it

will be much more useful to the general

programming community. I encourage
you to acquire and use both NZCOM and
ZCPR.
My implementation (if I ever finish it)

will be specifically tailored for the

program with which it runs. I am curren-

tly planning on using a floppy which will

boot and run the dedicated

program/system, making use of the hard
drive if necessary. I want the operator to

be able to simply insert the disk and hit

the reset, and then be up and running with

out ever seeing the prompt or having to

enter any commands.
The way most people use hard drives is

OK for experts who know their way
around the directories and subdirectories,

or for single use dedicated applications

where the initial boot can place them in

the correct area, configured and ready to
run. It is not so good where non-expert
operators are expected to run several dif-

ferent programs, in different areas, which
require different configuration. Using a
boot floppy can automatically place them
in the desired program, in the correct

area, with the correct configuration. I feel

that non-experts should never see the

system prompt, and I'm not completely
comfortable with shell programs which
require a menu selection to initialize the
operation.

Small Software Companies Are in

Trouble

We contact a lot of computer software

companies in connection with a direct

mail promotion campaign, and about half

of them indicate that they are in financial

trouble.

Some of their comments are, "We're
reevaluating our products," "All of our
sales and marketing will be turned over to

a distributor," "Our budget is zero," or

"We have no plans for any additional ad-

vertising." Sometimes we call back and
find the phones disconnected (even while

ads are still running). Today I found that

two companies which I talked to in the

past 14 days have had their phones
disconnected.

Making it with a small business has
always been a difficult proposition, but it

is especially difficult for a small software
company at this time. There are more
computers being used than ever before,

but most of them are being used by non-
technical people who require (and expect)

the support of a large organization. The
consumers are also impressed by expen-
sive multi-media promotions, and good
products by small companies are being
forced out of the market by large com-
panies with huge advertising budgets. I

like Borland's Turbo Pascal, and I think
that their Turbo C will help introduce a
lot of people to C programming. I'm un-
comfortable with the fact that Turbo C is

forcing some other good C products out

of the market. Just as the IBM PC became
the small computer standard, Turbo C is

becoming the de facto C standard. Regar-
dless of how good a product is, I would
like to see a number of other good
products coexisting in the market with

friendly competition driving all them to

provide improvements in product perfor-

mance and user support.

The only advice that I have to offer

small software developers is to very

carefully define your market, and to look
for unconventional methods of promoting
your product. You have to produce orders

(not just inquires) at an acceptable cost,

and the expensive mass media high hype
campaigns don't work for small

distribution high tech products. I could

provide several articles on this if there is

enough interest — give me some feedback
if you are interested.

Seagate ST-225 Problems
There has been a lot of talk about ST-

225 failures. I had one installed in an
AMPRO Bookshelf® unit, and after 2 to

3 months it started to occasionally fail to

boot or give the dreaded BDOS error. I

found that the ST-225 s run VERY HOT!

!

I moved the system to a TeleVideo 806/20
box with lots of room and a good fan. I

even mounted the ST-225 on standoffs so

that air could circulate on all sides. The
same drive which previoulsy gave trouble

has now operated for 3 months with no
problems. I'm not sure that this is a sure

fix for drives which have been damaged
because of excessive heat problems, but I

certainly would not mount a ST-225 in a

standard PC type box. ST-225s run
HOT! ! If I get any NEW ones at a bargain

price, I'll mount them in a separate box
with lots of space and lots of air (and then

back up frequently).

I'm looking forward to the day when
we can economically install 20 to 30

megabytes of non-volatile RAM and do
away with mechanical drives except for

archive backups.

Data Base Program Source Code
I realize that I sound like a chronic

complainer, but I can't help it that none
of the commercial programs satisfy me.
Many of them do amazing things which I

The Computer Journal / Issue #32

don't need, but fail to do what I want the

way I want it done. I used to wonder why
people still use custom programmers when

there are so many off-the-shelf programs

available — now I understand that it is

beause the canned programs don't satisfy

the business needs.

My current frustration is with setting up

a large data base to handle up to 100,000

names for a mailing list. The requirements

•are simple, as it is a flat file (a simple one-

file base with no relational requirements).

The two DBMS programs I use (Condor

and Clipper (which is a dBase III syntax

compiler)) perform most of the required

data base functions, but there are some
operations which are much easier to ac-

complish with assembly language, C, or

Pascal. For example, I want to use a

binary bit encoded field in each record to

keep track of where that record was used.

Then I can read the record and check the

code field with a bit mask to determine if

it should be used in the current job. If it

isn't used I'll just read the next record;

but if it is used, I'll set a bit to indicate this

use and write the record out to a file (or

send it to the printer). So far I haven't

discovered how to handle Hex code and

binary bit logic from the DBMS program.

I also want a separate data entry

Registered Trademarks

It is easy to get in the habit of using

company trademarks as generic terms, but

these registered trademarks are the

property of the respective companies. It is

important to acknowledge these

trademarks as their property to avoid their

losing the rights and the term becoming

public property. The following frequently

used marks are acknowledged, and we
apologize for any we have overlooked.

Apple II, II + , lie, He, Lisa, Macin-

tosch, DOS 3.3, ProDos; Apple Com-
puter Company. CP/M, DDT, ASM,
STAT, PIP; Digital Research. DateStam-

per, BackGrounder ii, DosDisk; Plu*Per-

fect Systems; Clipper, Nantucket; Nan-

tucket, Inc. dBase, dBase II, dBase III,

dBase III Plus; Ashton-Tate, Inc.

MBASIC, MS-DOS; Microsoft. Wor-
dStar; MicroPro International Corp.

IBM-PC, XT, and AT, PC-DOS; IBM
Corporation. Z80, Z280; Zilog Cor-

poration. Turbo Pascal, Turbo C;

Borland International. HD64180; Hitachi

America, Ltd. SB180 Micromint, Inc.

Where these, and other, terms are used

in The Computer Journal, they are

acknowledged to be the property of the

respective companies even if not

specifically acknowledged in each oc-

currence.

program which I can supply to individuals

for data entry, which means that I have to

be able to provide copies without licensing

restrictions. The data entry program will

have to provide for the data validation

that I want, such as a legitimate two
character state code, and a five digit ZIP
code which is valid for that state. I'll

probably also automatically break the

data into separate disk files based on the

first digit of the ZIP code in order to limit

the disk file size (don't keep all of your

eggs in one basket in case of a crash).

I don't want to write an entire DBMS
program, but I do want to work around

the restrictions I find in the available

programs. The best solution appears to be

to use the DBMS programs where they

work well, and supplement them with

custom programs where needed. I am
looking for more input on this, and will

welcome any thoughts or source code you
have to share. If we receive enough

material we can establish a regular column

and make the code available as user disks.

Language Development

There is a lot of activity in language

development, about which we hear very

little — and there should be even more
work done in this area. I'm not talking

about the large companies such as

Microsoft, Borland, and Digital Resear-

ch, but rather smaller companies which

are developing specialized languages for

their own purposes. The developments

which I hear about seem to be concen-

trated in the area of control and

automation, but I'm sure that there is also

a lot of work being done in other areas —
I just haven't asked the right questions in

the right places.

When someone talks about developing

a language, we automatically think about

the widely known major projects such as

Prolog, Modula, or Turbo C® . These

projects are intended for wide

distribution, and involve millions of

dollars and tens of man years. The little

known languages are more modest, but

still very important, developments which

are intended for a more limited specific

application.

An example of a little known language

is STD BASIC® from Octagon Systems,

6510 W. 91st Avenue, Westminster, CO
80030 phone (303) 426-8540. This was

developed for their line of STD Bus

products, and includes statements and

functions such as: AIN which returns the

result of an A/D conversion at a port ad-

dress, FREQ which returns the frequency

of a periodic port signal, TACH which

returns the equivalent RPM of an I/O
port signal, DEV which returns the Stan-

dard Deviation of an array, MAXPOS
which returns the array position of the

maximum value, and STORE which tran-

sfers a program in RAM to EPROM, plus

many more.

While it is true that any good
programmer could write a program to ac-

complish these tasks, Octagon provides a

modified BASIC which (in conjunction

with their boards) allows nonprogram-
mers to develop control programs. Forth

was developed for machine control, but it

is much easier to get a nonprogrammer
started doing something useful in a

specialized BASIC than it is to get them
started in Forth. Paul Mann (LALR
Research, 1892 Burnt Mill, Tustin, CA)
reports that some of his parser customers

are developing specialized languages.

What should a specialized language

look like? What is the difference between
a language and a program which parses

the user's input and acts on it? I'm very

interested in parsing and language

development, and would like to hear from
anyone doing work in this area.

Magazine for Hardware Hackers

We recently received the premier issue

(January/February) of Circuit Cellar Ink,

and the Editorial Director is the well

known Steve Ciarcia. This issue includes:

The Circuit Cellar Motion Triggered

Video Camera Multiplexer, High Security

on a Budget — Build a Video Handscan-

ner/Identifier, The Home Satellite

Weather Center — Part 1: RGBI to NTSC
Converter; plus several departments.

It is published bimonthly by Circuit

Cellar Inc., 4 Park Street, Suite 12, Ver-

non, CT 06066 (203-875-2751), for $14.95

per year. Write to Steve at this address to

let him know what you'd like to see in

future issues

I had heard that Byte would be drop-

ping Steve's Circuit Cellar — does this

mean that it's true?

The Computer Journal / Issue #32

Reader's Feedback

820 Hacker

I am presently using/hacking a Xerox
820-1. I have been hacking around with

the 820-1 for close to three years now and

I have done quite a few interesting things

with it. If I can get a little extra time I

would like to submit some of the upgrades

and additions that I have added to the

Xerox, some of which are listed below:

• Changing the WS1771 disk controller

to a WD2795.
• Installing the Andratech EPROM

Programmer.
• Monitor ROM enhancements.

• Building a keyboard translator ROM.
• Adding a capital key lock to a parallel

keyboard (some keyboards only have a

shift lock key).

• Increasing the stepping rate from

12mS to 3mS.
• CRC-16 generation.

• 2.5 to 4.0 mHz upgrade.

• Fast disk copy program.
• Centronics printer interface.

• General hardware: Z80, PIO, SIO,

etc.

In addition to all present columns in

TCJ, I would enjoy the following:

• I'd like to see a "LOOK WHAT I

FOUND" column. This column could be

sent in by a user each issue who has come
across an interesting public domain sof-

tware program.
• I'd like to see a "SOMEONE TELL

ME"- column each month that explains

how to do a particular thing that a user

has requester in a previous issue.

• Z80/64180 assembly language

column. How to do this and that . .

.

• Turbo Pascal column.
• C programming column.
• Word Processing column — Wor-

dStar 4.0?

• MicroMintSB-180 column.
• Articles on Disassemblers — Z80DIS

for example.
• Articles on Debuggers — Z8E for

example.
• Articles on basics of CP/M: BDOS

calls, BIOS calls, the I/O byte, etc.

• ZCPR articles (enjoy Jay Sage's ar-

ticles).

• Hardware articles: what's a PIO,

SIO, CTC, etc.

• 68000 topics.

Big Board User

My personal systems are two Big Boar-

ds (much expanded) and two S-100

systems. All have 8" drives and CP/M
2.2. At the office I have a Zenith PC-158

(2 drives + HD) and an Ampro Bookcase
CP/M computer with 2 5 V* (750K drives).

I maintain some 10+ Zeniths and
miscellaeous Macs for the school as well

as all the scientific instruments (X-ray,

electron microscope, mass spec, etc.).

I am interested in hardware, special

projects, do it yourself operating systems,

as well as small special purpose com-
puters, as that is what I do for money. I

can do assembly programming but do not

"work as a programmer" as it is just to

make the stuff I design and build for some
one operate as it should, i.e. when I make
a small special purpose computer I write

the code for it but that is about all now.

CP/M still lives (at home). Keep up the

spirit

J.D.

8 Inch Drive Problems

Can any one tell me where I can obtain

an 8" alignment disk?

Thomas M. Butler

3015 Linwood Avenue
Parkville, MD 21234

(301) 665-3927

Miscellaneous Reader Comments
I use a Zenith Z-248 with Seagate 40

Meg Hard Drive and two 360K floppies. I

am interested in data acquisition systems,

signal processing and graphics. Keep up
the good work in presenting excellent har-

dware and software articles in your

publication.

K.S.

Using and "OLD" (dosen't seem that

old) Heath 89. Mostly like subjects where

I will have a fair understanding of the in-

ner workings, software and hardware.

The Journal, therefore is great!

Running H89 with three drives, one 8"

and two 5!4 80 tracks. Also a SB 180

(MicroMint) using the H89 as the ter-

minal. Using CP/M Magnolia on the

H89, and Z System on the SB 180.

Would like to see an article on using

two computers with ont terminal.

G.S.

Two CP/M machines at home (Kaypro

8 & 10), both using ZCPR2.5. It's a shame
that ZCPR3 is such a pig on TPA.

I use MS-DOS, VMS(VAX) and Macin-
tosh at work, plus a SUN (UNIX).

I like CP/M. Need articles on the Cen-
tronics parallel bus.

W.P.

My current system is a surplus Televideo

860 (Z80 CP/M), but my dream system is

aVMEbus680X0.
I'd like to see 68K projects, 68K BBSs,

VME bus information. Ed Scott was
doing a series on a 68K/VME project for

Computer Smyth. Now that CS is defun-

ct, perhaps TCJ could pick that up? You
need a column on OS/9.

I like your series on SCSI, and the

Hawthorne 68K board.

G.B.

m
Tht Computer Journal

PO Box 1897

Kall»p»ll, MT 59803

G.B. V.V.

The Computer Journal / Issue #32

Ampro L.B. & SCSI

I have to let you know how greatly ap-

preciated you publication is. The value

received greatly outweighs the price paid.

Thanks.

I am using the Ampro L.B. Z80 w/SC-

SI harddrive, NSystems Ramdisk, Ken-

more clock, and the Heritage terminal

card. Am very pleased with it. Recently

had to hunt down a problem with SCSI

bus, not knowing if the problem was with

the controller or SCSI chip/host. The ar-

ticles by Rick Lehrbaum helped me to

debug to the point that showed me the

NCR 5380 wasn't handshaking. Couldn't

have done without it.

I'm interested in more about SCSI (tape

drives?) and 68000 info. Also highly

hopeful in seeing the Z280 come out.

Hope Zedux continues with its develop-

ment.

C.W.

Apple
I use an Apple II system. How about an

Apple II hardware article once in a while?

Do you know where I can get an Apple

Lisa keyboard schematic?

Richard M. Ramsbey
25703 Layton Road
North Liberty, IN 46554

Editor's Note: Can any one out there

help Richard with the Apple Lisa?

Users'

Group
Over 115 volumes of Public

Domain C source code,
including: editors, compilers,

communication packages,
text formatters, UNIX-like

tools, etc., available in

over 100 formats.

NEW!
CUG Directory of

Public Domain C source code

.

200+ pages of file by
file descriptions

and index.

$10

Write or call for more details

The C Users' Group
Box 97 McPherson,KS 67460 (316)241-1065

Turbo Pascal Advanced Applications

TheADVANCED reference for

Turbo Pascal programmers. A must for anyone using

Turbo Pascal. You will really charge up your

programs and become an expert.

Lear*
ho*

to:

• Use the DOS background print spooler.

• Create libraries and use data compression techniques.

• Optimize your code, data structures, and I/O.

• Do command line processing.

• Make the most of available memory and break the

64K data limit.

• Use interrupts from Turbo Pascal.

• Install a DOS command processor for instant access

to any program from within Turbo Pascal.

• Understand bit mapped graphics, and implement the

Core graphics in Turbo Pascal.

• Build a subset Pascal compiler.

Pick the brains of 13 Turbo Pascal

experts, each writing in his area of

special interest.

A good blend of theory, practical

applications, and lots of usable code.

Book includes MS DOS disk.

Price: $32.95 postpaid in USA.

Foreign orders: add $2.00 for surface

shipment. MC and VISA accepted.

ORDER FROM:

Rockland Publishing, Inc.

190 Sullivan, Suite 103

Columbia Falls, MT 59912

(406)257-9119

The Computer Journal / Issue #32

Language Development
Automatic Generation of Parsers for Interactive Systems

by Paul Mann, LALR Research

Parsing, breaking down a command into its separate com-

ponents, is a very essential element of interactive computer

systems. Building a parser seems like a simple task at first,

however, using the wrong approach leads to maintenance

problems, performance problems and reliability problems.

This article demonstrates a good design technique when you

have access to a parser generator such as the one available from

LALR Research which was used for this article. A good parser is

no longer a major expense, and a list of easily affordable parser

generators for personal computers is located at the end of this ar-

ticle.

The principle of parsing is the same for calculators and com-

mand languages. However, a calculator is the better choice for

illustration purposes. If you can specify the input to your system

with a formal description, then your job is halfway done. If you

can't specify the input in a formal manner, then you may not un-

derstand your input specification.

Since a calculator is a well known entity, a formal description

of its input is well understood. A formal grammar for a simple

calculator is shown in Figure 1

.

Goal
Stmt

->
->
->
->
->

Stmt <cr>

Exp
Target Exp
quit

Target -> <l dent if ier>
Exp ->

->
->

Term
Exp + Term
Exp - Term

Term ->
->
->

Factor
Term * Factor
Term / Factor

Factor ->
->

Pr Imary
- Primary

Primary ->
->
->

(Exp)

<number>
<ldentlf ler>

Figure . Expression grammar for a calculator.

A good parser generator can display the complete parsing ac-

tion report which shows the finite states and all related state tran-

sitions. LALR 3.0 generates the listing shown in Figure 2 from the

expression grammar above.

Each state contains the terminal transitions, nonterminal tran-

sitions and reductions required for processing the type of ex-

pressions described by this grammar. There is not enough room in

this article to explain how the parser generator builds these states

and actions, but the bibliography lists several compiler books

which contain information on parsers.

All you need to know is that the parser generator can take the

grammar and produce a parser capable of processing expressions.

State is the start state. "+ = >" means accept the indicated

symbol and goto the next state as indicated. "<=" means

reduce, the indicated production (rule) has been recognized. The

parser generator "plugs" these numbers into the parser skeleton

provided and outputs a working parser in source code form. Then

you compile the parser and link it into the rest of your system.

The parser interacts with the rest of your system at the ap-

propriate times by calling the functions specified in the grammar.

These function names are attached to rules in the grammar. The

complete grammar needed by the parser generator is shown in

Figure 3. It also contains some information that specifies the in-

terface to the scanner.

STATE SLR(I)
*

1 Stmt -> .

* Goal -> . Stmt <eof >

1 6
3 7

2 8
4 9

!
5 10
6 11

8 1

1 <identifier> +=> 2

10

13
3
4

4 <number> +=> 5

1

STATE 1 quit LRCO)
* 4 Stmt -> quit .

4

STATE 2 <identifier> SLR(l)
5 Target -> < identified .

* 16 Primary -> < identified .

7 5

16

Figure 2. First three parser states and actions.

/* Termina symbols coming from scanner. V
<cr> /* Carriage Return. V
<number>
< identifier => LOOKUP
<operator> => LOOKUP
<punctuator> => LOOKUP

/* Product! ons. V
Goal -> Stmt <cr>
Stmt ->

-> Exp => D 1 SPLAY
-> Target = Exp => STORE
-> quit «> QUIT

Target -> <ldentifier> => ADDR
Exp -> Term

-> Exp + Term => ADD
-> Exp - Term => SUB

Term -> Factor
-> Term * Factor > MUL
-> Term / Factor => DIV

Factor -> Primary
-> - Primary > NEG

Primary -> (Exp)

-> <number> => PUSH
-> <ldentlfier> »> RECALL

/* End. */

Figure 3. Complete grammar for Interfacing with a scanner and
the rest of the system.

The Computer Journal / Issue #32

LOOKUP is a function that looks up the incoming symbol in

the table of valid grammar symbols and assigns a terminal symbol

number. DISPLAY sends the result of the expression to the CRT.
STORE stores the result in the symbol table location indicated by

"Target". QUIT terminates the program. ADDR puts the sym-

bols table address for the "Target" on the stack. ADD performs

addition with the first two values on the stack. SUB performs sub-

traction. MUL performs multiplication. DIV performs division.

NEW changes the sign of the first value on the stack. PUSH
pushes the "< number>" on the stack. RECALL recalls the

symbol table location for "< identifier> " and pushes it on the

stack.

For the expression l+2*(3+4) the moves of the parser are

shown in Figure 4. Note that the result of the expression is left on

the stack. The notation CR indicates a carriage return or end of

line.

Some of the semantic actions are shown in Figure 5. You can

see how simple they really are and how easy the actions were to

specify in the grammar.

INPUT PARSE SYNTAX SEMANTIC SEMANTIC
SYMBOL ACTIONS STACK ACTIONS STACK

1 shift t

+ reduce P <= 1 P PUSH 1 1

+ reduce F <K P F 1

+ reduce T < = F T 1

+ reduce E <= T E 1

+ shift E+ 1

2 shift E+2 1

* reduce P <= 2 E+P PUSH 2 1 2
* reduce F < = P E+F 1 2
* reduce T < = F E+T 1 2
* shift

shift
shift

E+T*
E+T*(
E+T* (3

1

1

1

2

2

2

reduce P <= 3 E+T*(P PUSH 3 1 2 3

reduce F <* P E+T*(F 1 2 3
reduce T <* F E+T*(T 1 2 3
reduce E <s T E+T*(E 1 2 3
shift E+T*(E+ 1 2 3
shift E+T*(E+4 1 2 3
reduce P <= 4 E+T*(E+P PUSH 4 1 2 3 4
reduce F <= P E+T* (E+F 1 2 3 4
reduce T <* F E+T* (E+T I 2 3 4

reduce E <= E+T E+T*(E ADD 1 2 7

shift E+T*(E) 1 2 7

CR reduce F <* (E) E+T*F 1 2 7

CR reduce T <» T*F E+T MUL 1 14

CR reduce E <= E+T E ADD 15

Figure 4 Moves of an LR parser for input 1+2* (3+4).

PUSH () /* Push value onto stack. */

* (++StackP) - ATOF (T_beg);

ADO () /• Add top two values on stack and pop . */

* I— StackP) • *StackP + *(StackP+1);

SUB () /* Subtract top two va ues on stack an d pop. */

* (-- StackP) - 'StackP - *(StackP+l);

MUL () /* Multiply top two values on stack and pop. */

* (— StackP) « *StackP * *(StackP+l);

DIV () /* Divide top two values on stack and pop. */

*(— StackP) = *StackP / *(StackP+l);

NEG () /* Negate top value on stack. */

#StackP = - StackP;

Figure 5. Some of the semantic action source code.

The generated parser automatically takes care of the parse

stack. In the function PUSH the variable T beg is a global

variable defined in the parser that points the text containing the

values '1', '2\ '3', etc.

There's not enough room in this type of article to explain

everything. So only a brief exposure can be given. In short, an

LALR parser generator can be used effectively to build a

calculator. By doing so a software engineer can: 1) save time, 2)

produce reliable systems and 3) produce high performance

systems.

Programming is a tedious, painstaking task. If some of that

work can be done by a parser generator, then that leaves more

time for designing and doing more creative work.

Sources for LALR(l) parser generators:

TWS
$6000

MetaWare, Inc.

903 Pacific Ave, Suite 201

Santa Cruz, CA
408-429-6382

QPARSER +
$300

QCAD Systems, Inc.

11 64 Hyde Ave
San Jose, CA 95129

408-727-6884

LALR 3.0

$99

LALR Research

1892 Burnt Mill

Tustin, CA 92680

714-832-LALR

Bison

$25

Austin Code Works
1 1 100 Leafwood Lane

Austin, TX 78750

512-258-0785

YACC
$10

C Users Group
POBox97
McPherson, KS 67460

316-241-1065

Bibliography:

1. "COMPILERS: PRINCIPLES, TECHNIQUES AND
TOOLS," Aho, Sethi & Ullman, 1986, Addison Wesley.

2. "COMPILER CONSTRUCTION: THEORY AND
PRACTICE," Second Edition, Barrett, Bates, Gustafson &
Couch, 1985, Science Research Associates.

3. "INTRODUCTION TO COMPILER CONSTRUCTION
WITH UNIX," Schreiner& Friedman, 1985, Prentice Hall.

4. "COMPILER CONSTRUCTION," Waite & Goos, 1984,

Springer-Verlag.

5. "PRINCIPLES OF COMPILER DESIGN," Aho &
Ullman, 1977, Addison Wesley.

The Computer Journal / Issue #32

C CODE FOR THE PC
source code, of course

Bluestreak Plus Communications (two ports, programmer's interface, terminal emulation) $400
CQL Query System (SQL retrievals plus windows) $325
GraphiC 4.1 (high-resolution, DISSPLA-style scientific plots in color &: hardcopy) $325
Barcode Generator (specify Code 39 (alphanumeric), Interleaved 2 of 5 (numeric), or UPC) . . . $300
Greenleaf Data Windows (windows, menus, data entry, interactive form design) . . $295
Aspen Software PC Curses (System V compatible, extensive documentation) $250
Vitamin C (MacWindows) $200
TurboTgiX (TRIP certified; HP, PS, dot drivers; CM fonts; LaTWC) $170
Essential resident C (TSRify C programs, DOS shared libraries) $165
Essential C Utility Library (400 useful C functions) $160
Essential Communications Library (C functions for RS-232-based communication systems) $160
Greenleaf Communications Library (interrupt mode, modem control, XON-XOFF) $150
Greenleaf Functions (296 useful C functions, all DOS services) $150
OS/88 (U**x-like operating system, many tools, cross-development from MS-DOS) $150
Turbo G Graphics Library (all popular adapters, hidden line removal) $135
American Software Resident-C (TSRify C programs) . $130
PC Curses Package (full System V, menu and data entry examples) . . $120
CBTree (B+tree ISAM driver, multiple variable-length keys) $115
Minix Operating System (U**x-like operating system, includes manual) $105
PC/IP (CMU/MIT TCP/IP implementation for PCs) $100
B-Tree Library & ISAM Driver (file system utilities by Softfocus) $100
The Profiler (program execution profile tool) $100
Entelekon C Function Library (screen, graphics, keyboard, string, printer, etc.) $100
Entelekon Power Windows (menus, overlays, messages, alarms, file handling, etc.) $100
Wendin Operating System Construction Kit or PCNX, PCVMS O/S Shells .$95
C Windows Toolkit (pop-up, pull-down, spreadsheet, CGA/EGA/Hercules) $80
Professional C Windows (windows and keyboard functions) . $80
JATE Async Terminal Emulator (includes file transfer and menu subsystem) $80
MultiDOS Plus (DOS-based multitasking, intertask messaging, semaphores) $80
WKS Library (C program interface to Lotus 1-2-3 program & files) $80
ME (programmer's editor with C-like macro language by Magma Software) $75
Professional C Windows (lean & mean window and keyboard handler) $70
Quincy (interactive C interpreter) . . $60
EZ-ASM (assembly language macros bridging C and MASM) $60
PTree (parse tree management) $60
HELP! (pop-up help system builder) $50
Multi-User BBS (chat, mail, menus, sysop displays; uses Galacticomm modem card) $50
Heap Expander (dynamic memory manager for expanded memory) $50
Make (macros, all languages, built-in rules) $50
Vector-to-Raster Conversion (stroke letters & Tektronix 4010 codes to bitmaps) $50
Coder's Prolog (inference engine for use with C programs) $45
C-Help (pop-up help for C programmers ... add your own notes) $40
Biggerstaff 's System Tools (multi-tasking window manager kit) $40
CLIPS (rule-based expert system generator, Version 4.0) $35
TELE Kernel or TELE Windows (Ken Berry's multi-tasking kernel & window package) $30
Clisp (Lisp interpreter with extensive internals documentation) $30
Translate Rules to C (YACC-like function generator for rule-based systems) $30
6-Pack of Editors (six public domain editors for use, study & hacking) $30
ICON (string and list processing language, Version 6 and update) $25
LEX (lexical analyzer generator) $25
Bison & PREP (YACC workalike parser generator it attribute grammar preprocessor) $25
Autolrace (program tracer and memory trasher catcher) $25
C Compiler Torture Test (checks a C compiler against K& R) $20
Benchmark Package (C compiler, PG hard-ware, and Unix system) $20
TN3270 (remote login to IBM VM/CMS as a 3270 terminal on a 3274 controller) $20
A68 (68000 cross-assembler) $20
List-Pac (C functions for lists, stacks, and queues) $20
XLT Macro Processor (general purpose text translator) $20

Data
WordCruncher (text retrieval & document analysis program) $275
DNA Sequences (GenBank 52.0 including fast similarity search program) $150
Protein Sequences (5,415 sequences, 1,302,966 residuals, with similarity search program) $60
Webster's Second Dictionary (234,932 words) $60
U. S. Cities (names & longitude/latitude of 32,000 U.S. cities and 6,000 state boundary points) . . . $35
The World Digitized (100,000 longitude/latitude of world country boundaries) $30
KST Fonts (13,200 characters in 139 mixed fonts: specify T£JX or bitmap format) $30
USNO Floppy Almanac (high-precision moon, sun, planet ii star positions) $20
NBS Hershey Fonts (1,377 stroke characters in 14 fonts) $15
U. S. Map (15,701 points of state boundaries) $15

The Austin Code Works Voice: (51S) 258-0785

11100 Leafwood Lane aemHnfoSuunet.uu.net BBS: (518) 858-8881

Austin, Texas 78750-8+09 USA FidoNet: 1:882/18

Free shipping on prepaid orders For delivery in Texas add 7% MasterCard/VISA

The ZCPR3 Corner

by Jay Sage

As usual, I find myself with the

deadline for this TCJ column fast ap-

proaching, wondering how two months
have passed so quickly. And, as usual, I

have far more material that I would like to

talk about than I will have time to put

down on paper (or, should I say, disk).

This column is probably going to be shor-

ter than average, just as the previous one

was much longer, and some of the

promised discussions will be deferred still

further. Given the reasons, you will be

understanding I hope: Joe Wright and 1

are in the process of putting the final

touches on the new releases of ZCOM and

ZCPR34! By the time you read this, they

will definitely be available. Even if you

usually find my columns a bit too

technical for your tastes, I hope you will

read on as I describe these two exciting

developments.

I will not describe it here this time, but

Bridger Mitchell has very nearly com-

pleted code similar to NZCOM that will

run on CP/M-Plus systems. At last people

with newer CP/M machines for which

CP/M 2.2 is not available will also be able

to run Z System. And they will be able to

do it while retaining almost all of the good
features of CP/M-Plus!

The New ZCOM

Two issues ago (TCJ #30) I described

the status of the nascent NZCOM. Things

have developed considerably since then,

and I can now provide some specific

details.

First some philosophical comments.

This may sound rather strong, but Joe

and I both firmly believe that NZCOM is

one of the most exciting and remarkable

developments in the history of microcom-

puter operating systems. With all the

computers we have had experience with,

the operating system has been a static en-

tity. You 'boot' up the computer, and

there you have the operating system, fixed

and immutable. Few computers offer

more than one operating system. With

those that do, the only way you can get a

different operating system is to 'reboot',

which generally involves inserting a new
boot diskette and pressing the reset but-

ton. And never do you get to define the

characteristics of that operating system.

You just take what the manufacturer

deigns to let you use.

With NZCOM the operating system

becomes a flexible tool just like an ap-

plication program. You can change

operating systems at any time, even right

in the middle of a multiple command line

sequence. You can do it manually, or alias

scripts can do it automatically, in response

to conditions in the system! And you can

determine which Z System features are

supported.

You can change the whole operating

system or just a part of it. Would you like

a new command processor? No problem.

With a simple command, NZCOM will

load it. No assembly or configuration

required. One file fits all! That new CCP
will continue to run until you load another

one. Want to experiment with a new disk

operating system (we are playing with

several exciting new ones)? Again, no

problem. NZCOM can load them in a jif-

fy. This makes for a whole new world of

flexibility and adaptability, experimen-

tation and education.

Need more memory to run a big ap-

plication program? Fine. Just load a small

operating system while that application is

running. When it is finished, go back to

the big system with bells and whistles like

named directories, lots of resident com-

mands, or special input/output facilities

(such as keyboard redefiners or redirec-

tion of screen or printer output to disk).

Until you try this system, it is hard to

imagine how easy it is to do these things.

Gone are the days of taking source code

(no source code is needed), editing con-

figuration files (you don't need an editor),

assembling (you don't need an assembler),

and patching (you don't have to know
how to use the arcane SYSGEN and

DDT). Simple REL files for a particular

module can be used by anyone on any

system. Of course, if you want to create

custom modules of your own special

design, you can still do it, but this is no

longer required, as it used to be. Hackers

can hack, but users can simply use!

Joe and I are really hoping that NZ-
COM will open the world of Z System to

the general community, to those who have

no interest in learning to assemble their

own operating system or do not have the

tools or skills. If you have been at all in-

trigued by the Z System (how could you
not have been?), now is your chance to

experiment.

Getting NZCOM running is basically a

two-step process, with each step

remarkably easy to perform. First you
define the system or systems you want.

This is done with the program MKNZC
(MaKe NZ-Com). Then you load the Z
System you want using the program NZ-
COM. The details are explained below.

Some comments of interest to the

technically inclined are enclosed in

brackets. Feel free to skip over them.

Defining NZCOM Systems

Here is how a person with a stock

CP/M computer would go about getting

NZCOM going. [First technical aside:

Ironically, those of us who, with great

skill and hard work, created manually in-

stalled Z Systems have a much harder job

ahead of us. To use NZCOM effectively,

we must first strip out all the ZCPR3 code

in our fancy BIOSs and get back to a lean,

Z-less system. I just spent the good part of

an evening doing that for my BigBoard I

computer (though, to be fair to my
programming expertise, I should add that

the hardest part was finding where I had
stashed the BIOS source code).] For the

discussion that follows, we will assume

that the files in the NZCOM package have

been copied onto a working disk in drive

A.

As we said earlier, the first step is to use

MKNZC, an easy menu-driven program,

to specify the characteristics of our Z
Systems. Its output is a descriptor file that

is used later to load the system. What if

you don't know enough yet about the Z
System to make those choices? Again, no
problem. There is a standard (or, in com-
puter language, 'default') system defined

for you already, and we will start by
making it. We do that by entering the

command line:

A> mknzc nzcom

This will bring up a menu screen like the

one shown in Figure 1 . The only differen-

ce on your system will be in the actual ad-

10 The Computer Journal / Issue #32

dresses for the modules, since they vary

from computer to computer. Press the 'S'

key to save the configuration. MKNZC
displays a message to the effect that it is

writing out the file NZCOM .NZC

.

[Technical aside: Files of type NZC are

NZCOM descriptor files. They are simple

text files, as shown in Figure 2. For those

of you who write your own assembly

language programs, you may notice a

strong similarity to the symbol or SYM
file produced by an assembler or linker

(yep, identical). The symbols in this file

define all the necessary parameters of the

system to be created.]

From the values in Figure 1 , you can see

that the default Z System offers every

feature available. When this system is

running later, the TPA (transient program
area, the memory available for the ap-

plication programs that do your real

work) will be 49.0k bytes. This value, of

course, is for my computer; as they say,

"yours may vary." A 'k' or kilobyte is ac-

tually 1024 bytes, so this is really 50,176

bytes or characters. The original CP/M
system, by the way, had a TPA of 54.25k

bytes, so we are paying a cost of 5.25k

bytes for this spare-no-expense Z System.

As luxurious and opulent as this system is,

it still leaves plenty of TPA for most ap-

plication programs.

Sometimes, however, we have an ap-

plication program that is really hungry for

memory. Database managers, spread

sheets, and C compilers often fall into this

category. So does the new WordStar
Release 4® . We will now use MKNZC to

define a minimum Z System for when we
run those applications. To give this ver-

sion the name MINIMUM, enter the

command:

A> mknzc minimum

When the menu comes up, press key '4'.

You will be asked to define the number of

records (128-byte blocks) to allocate to the

input/output package or IOP. Enter '0'

and press return. Similarly reduce to zero

the allocations for the resident command
package (RCP), flow command package
(FCP), and named directories register

(NDR). You will be left with the screen

shown in Figure 3. Press the *S' key to

save the definition of this minimal Z
System in the descriptor file

MINIMUM.NZC [shown in Figure 4 for

the technically inclined].

Notice that the TPA has grown to

53.25k, only Ik less than the original

miserable CP/M system. Even with this

meager Z System, costing only Ik of

TPA, you get the following features (and

more):

•multiple commands on a line

•the alias facility that provides

automatic command sequence generation

1.« Command Processor CCP BD00 16 Records
2.* Disk Operating System DOS C500 28 Records
3.* NZ-COM Bios BIO D300 2 Records

4. In/Output Processor IOP D400 12 Records
5. Resident Command Proc RCP DA00 16 Records
6. Flow Control Processor FCP E200 4 Records
7. Named Directory Reg NDR E400 14 Names

8.* Environment Descriptor ENV E500 2 Records
9.* Shel 1 Stack SHS E600 4 Entries

P. Custom Patch Area PAT
Customer's CBIOS TOP

Effective TPA size 49

0000
E800

• 0k

Records

*
1 terns 1, 2, 3, 8 and 9 are not chan geable i n this version.

Selection: (or <S>ave or <Q>uit)

Figure t. Screen displayed by the MKNZC program wher run under CP/M. This
is the standard or default system definition.

E806 C8I0S 0080 ENVTYP E6F4 EXPATH 0005 EXPATHS DA00 RCP
0010 RCPS 0400 IOP 000C I0PS E200 FCP 0004 FCPS
E400 Z3NDIR 000E Z3NDIRS E700 Z3CL 00CB Z3CLS E500 Z3ENV
0002 Z3ENVS E600 SHSTK 0004 SHSTKS 0020 SHSIZE E680 Z3MSG
E6D0 EXTFCB E7D0 EXTSTK 0000 QUIET E6FF Z3WHL 0004 SPEED
0010 MAXDRV 00 IF MAXUSR 0001 DUOK 0000 CRT 0000 PRT
0050 COLS 0018 ROWS 0016 LINS FFFF DRVEC 0000 SPAR1
0050 PCOL 0042 PROW 003A PL IN 0001 FORM 0066 SPAR2
0042 SPAR3 003A SPAR4 0001 SPAR5 BD00 CCP 0010 CCPS
C500 DOS 001C DOSS D300 BIO 0000 PUBDRV 0000 PUBUSR

Figure 2. For the technically inclined, this is a 1 sting of the contents
of the NZCOM. NZC system descriptor file produced by MKNZC.

1.* Command Processor CCP CE00 1.6 Records
2.* Disk Operating System DOS D600 28 Records
3.* NZ-COM Bios BIO E400 2 Records

4. In/Output Processor IOP 0000 Records
5. Resident Command Proc RCP 0000 Records
6. Flow Control Processor FCP 0000 Records
7. Named Directory Reg NDR 0000 Names

8.* Environment Descriptor ENV E500 2 Records
9.* Shel 1 Stack SHS E600 4 Entries

P. Custom Patch Area PAT
Customer's CBIOS TOP

Effective TPA size 53

0000
E800

.25k

Records

*
1 terns 1, 2, 3, 8 and 9 are not changeab 1

e

n this version.

Selection: (or <S>ave or <Q>uit)

Figure 3. Screen displayed by the MKNZC program after eliminating the IOP,
RCP, FCP, and NDR modules in order to define a minimal Z System •

•automatic, user-defined search path
for COM files

•extended command processing

(ARUNZ, described in TCJ #31, for

example)

•error handling that tells you what's

wrong with a bad command and allows

you to correct it

•shells (menu systems, command
history shell for saving and recalling old

commands, file-maintenance shells, etc.)

•terminal-independent full-screen

operation via Unix-like TCAP (terminal

capabilities descriptor)

These are only two of a wide variety of
possible Z Systems. As you gain experien-

ce with NZCOM, you can fine tune the

definitions to meet all of your needs. For
my BigBoard I computer, I have defined
four systems. Two of them, called FULL
and TINY, have the features shown in the

The Computer Journal /Issue #32 11

two examples here. A third one is called

SMALL. Not quite as diminutive as

TINY, it sacrifices an additional 0.5k of

TPA to retain the flow command package

(FCP), which is so valuable in providing

high levels of command automation. Even

my voracious application programs can

usually get by under this system.

Finally, I have a system called NOR-
MAL, which, as the name implies, is the

one I use most of the time. It is the same

as FULL but without an IOP. The most

common use for an IOP is to run

keyboard redefiners like NuKey. Most

people like this feature, but splendid as

NuKey is, for some reason my style does

not find much use for keyboard macros

(I've become a rather skillful typist and

can generally type faster than I can think

of moving my finger to a special key), so I

generally omit the IOP and gain 1.5k of

TPA.

Loading the NZCOM Systems

Having defined the systems above, we

can now fire them up even more easily.

For the default NZCOM system, just en-

ter the following simple command:

A>nzcom

With no argument after the command
name, NZCOM will load the system

defined with the name NZCOM. As it

does this, you will see a signon message on

the screen, followed by a series of dots,

each one indicating that another module

has been loaded. [Technical aside: If you

want to see more precisely what is going

on, just add the option Vv' to the com-

mand to select verbose mode. You will

then get a screen display something like

that shown in Figure 5. I'll have more to

say about what all this means a little

later.]

After NZCOM starts running, it

executes a program called START.COM.
This is usually an alias command, a

program that simply passes another more

complex command line on to the com-

mand processor. I will not explain the

details of START here, but after it

finishes, Z System will be up and running,

waiting for your commands.

How NZCOM Works
This section is for the technically in-

clined, so if that's not you, pretend there

are square brackets around this whole sec-

tion and skip ahead to the next section.

Here we are going to explain what some of

those verbose-mode messages mean and

what NZCOM is doing to create the

system on the fly.

First NZCOM loads the descriptor file

into memory. Among other things, this

file has the information about which

system modules to load and to what star-

ting addresses. The first module loaded is

E806 C8I0S 0080 ENVTYP E6F4 EXPATH 0005 EXPATHS 0000 RCP

0000 RCPS 0000 IOP 0000 I0PS 0000 FCP 0000 FCPS

0000 Z3NDIR 0000 Z3NDIRS E700 Z3CL 00CB Z3CLS E500 Z3ENV

0002 Z3ENVS E600 SHSTK 0004 SHSTKS 0020 SHSIZE E680 Z3MSG

E6D0 EXTFCB E7D0 EXTSTK 0000 QUIET E6FF Z3WHL 0004 SPEED

0010 MAXDRV 001 F MAXUSR 0001 DUOK 0000 CRT 0000 PRT

0050 COLS 0018 ROWS 0016 LINS FFFF DRVEC 0000 SPAR1

0050 PCOL 0042 PROW 003A PL IN 0001 FORM 0066 SPAR2

0042 SPAR3 003A SPAR4 0001 SPAR5 CE00 CCP 0010 CCPS

D600 DOS 001 C DOSS E400 BIO 0000 PUBDRV 0000 PUBUSR

Figure 4. For the technically inclined, this is a listing of the file

MINIMUM. NZC, which describes a minimum-size version of an NZCOM system for

the computer in Figures 1 and 2.

A>nzcom /v
NZCOM Ver 2.0 Copyright (C) 1987-88 Alpha Systems Corp. 21 Jan 88

Input buffer start 1C00
Read buffer start 1D00
Write buffer start 3000
Loading A0:NZCOM.NZC
Loading A0:NZCPR.REL for BD00 at 3000

Loading A0:NZD0S.REL for C500 at 4500
Loading A0:NZBI0.REL for D300 at 5300
Loading A0:NZI0P.REL for 0400 at 5400

Loading A0:NZRCP.REL for DA00 at 5A00

Loading A0:NZFCP.REL for E200 at 6200
Loading A0: NZCOM.NDR for E400 at 6400
Loading A0: NZCOM. Z3T for E580 at 6580
Writing A1 5:NZC0M.CCP
Booting NZ-C0M...

Figure 5. This is the screen display produced by NZCOM as it loads the

default system definition NZCOM. NZC with the verbose option.

the command processor. It is loaded from

the file NZCPR.REL, which has the code

for the command processor (ZCPR34) in

so-called relocatable form.

There is some very interesting assem-

bly/linkage razzle-dazzle that goes on

here. With the REL files one usually plays

with, only the run-time execution address

of the code is unknown at assembly time

and must be resolved by the linker. Things

are much trickier here. When the com-

mand processor code was assembled, not

only was its own run-time starting address

unknown, but the addresses of various

other system components, such as the

message buffer and multiple command
line, to which it refers in countless places,

are also unknown. Since there is no fixed

relationship between the addresses of the

CCP and these other modules, there is no

way to define the addresses using equates

in the code.

Put another way, when NZCOM con-

verts NZCPR.REL into actual object

code, it must resolve not only the calls and

jumps and data loads that refer to other

locations in the command processor but

also those that refer to the other system

modules. Fortunately, advanced assem-

blers and linkers — including those from

SLR Systems and a ZAS follow-on under

development by Echelon — already have a

mechanism to handle this problem. It was

Bridger Mitchell who recognized how this

mechanism, called named common, could

accomplish what was needed here.

When code with symbols in named
common is assembled, the corresponding

bytes in the resulting REL file are marked

not only for relocation but for relocation

with respect to a specific common block.

The SLR assemblers support up to 12

named common blocks. NZCOM con-

tains very sophisticated linking code that

resolves the references to data items in the

common blocks, the addresses of which it

gets, naturally, from the NZC descriptor

file.

Figure 6 shows a partial listing of the

file NZCMN.LIB, which is referenced in a

MACLIB statement in each module

assembled for use by NZCOM. Seven

named common blocks are defined:

BIOS, _ENV_, _SSTK_,
MSG, _FCB_, _MCL_, and
XSTK for the CBIOS, environment

descriptor, shell stack, message buffer, ex-

ternal file control block, multiple com-
mand line buffer, and external stack,

respectively. Note that no common blocks

are defined for the RCP, FCP, or NDR.
References to these package must be made
indirectly at run time, using data obtained

from the environment descriptor in

memory.
How does the NZCOM loader figure

out that the file NZCPR.REL is the com-
mand processor? You might think that it

uses the name of the file, but, in fact even

if you had a copy of it called

MYNEWCP.REL, NZCOM would be

able to load it just as well. The answer is

12 The Computer Journal / Issue #32

; Named COMMON declarations start here

; For compatibility, these are the same names used by Bridger Mitchell's

; JetLDR

common / BIOS /

cblos:

common / ENV /

z3env:
z3envs equ 2

rep equ z3env+12
reps equ yes
fcp equ z3env+18
feps equ yes
z3ndir equ z3env+21
z3ndirs equ yes

drvec equ z3env+52

ccp equ z3env+63
ccps equ z3env+65

dos equ z3env+66
doss equ z3env+68

bio equ z3env+69

common / SSTK /

shstk:
shstks equ 4

shsize equ 32

common / MSG /

z3msg:
z3msgs equ 80

common / FCB /

; Customer's bios address

Z3 Environment descriptor
Size (records)

Used as existence test, not size

Used as existence test, not size

Used as existence test, not size

Valid dr i ve vector

CCP entry
Size

DOS entry (+6)
Size

BIO entry

Top of She I I stack
4 entries
32 bytes each

; Message buffer
; 80 bytes long

Externa I file contro I b I ock

; 36 bytes long
extfeb:
extfebs equ 36
expath equ extfeb+extfebs ; External path
expaths equ 5 ; 5 elements
z3whl equ expath+(expaths*2)+1 ; The wheel byte
z3whls equ 1

common / MCL /

; 1 byte

Multiple command line
Maximum command length
Potential User patch area

; Externa I stack

; Size (bytes)

; Select Code Segment

Figure 6. This is a partial listing of the file NZCMN.UB, which defines
the named common blocks used during assembly of modules for use by NZCOM.

z3cl:
z3cls equ
nzpat equ

203
z3cl+256

common
extstk:
extstks equ

/_XSTK_/

48

cseg

; End of NZCMN LIB

B2:DBASE>nzcom minimum /v
NZCOM Ver 2.0 Copyright (C) 1987-88 Alpha Systems Corp. 21 Jan 88
Input buffer start 1C00
Read buffer start 1D00
Write buffer start 3D00
Loading A0:MINIMUM.NZC
Loading A0:NZCPR.REL for CE00 at 3D00
Loading A0:NZD0S.REL for D600 at 4500
Loading A0:NZBI0.REL for E400 at 5300
Loading A0: NZCOM. Z3T for E580 at 5480
Writing A1 5: NZCOM.CCP
Booting NZ-COM...

Figure 7. This is the screen display when NZCOM loads the minimum system
from a running default system.

that the source code contains the directive

NAME ('CCP')

which gives the REL file an internal

module name. It is this name that NZ-
COM uses to determine what kind of

module the code represents.

After the command processor is loaded,

the other modules are loaded in succession

in similar fashion, except for two. The
named directory file NZCOM.NDR is a

file that you can make or change with the

standard utility programs MKDIR or

EDITNDR/SAVENDR. There is nothing

in an NDR file that requires relocation at

all. The same is true for the Z3T terminal

descriptor (TCAP) file. It can be created

using the TCSELECT utility.

When all the loading is done, a copy of

the command processor object code is

written out to a file called NZCOM.CCP.
This file is used for subsequent warm
boots, since we obviously cannot warm
boot from what is on the system tracks of

the disk (the Digital Research command
processor is still there, after all). At this

point we can resume the non-technical

discussion.

Changing NZCOM Systems
Now that you have Z System running,

you can start to work with it and learn

about it. I am not going to discuss Z
System in general here; the subject is

much too extensive. One thing you can do
is to get out your back issues of TCJ and
experiment with the programs described

there. Another is to buy the Z System
User Guide published by Echelon. That
book describes the Z System from a less

technical point of view than Richard

Conn's ZCPR3, The Manual, also

published by Echelon.

What I would like to discuss now is

some of the ways you can use the dynamic
capabilities of NZCOM. First we will

describe how you change the entire

operating system. For these examples we
will assume that you have been doing

work in various directory areas on your

system and that you have set up named
directories. Let's say you are in your
dBase II® area now. Since you know that

dBase II needs a lot of memory to run ef-

ficiently (or should I say 'tolerably,' since

it never runs efficiently!) and since (unlike

WordStar 4, for example) it cannot make
use of any Z System features anyway, you
want to load the minimum system we
created earlier. You can probably guess

what the command is:

B2:DBASE> nzcom minimum

[More technical stuff: Figure 7 shows
the screen display you would get with the

Vv' verbose option on this command.]
For the minimum system NZCOM loads

The Computer Journal / Issue #32 13

only a command processor, disk

operating system, and virtual BIOS. The
other system segments disappear. This in-

cludes the NDR or named directory

register, so the prompt changes to

B2>

The START alias does not run this time.

It runs only when NZCOM is loaded from
a non-NZCOM system (such as CP/M).

In general, when loading a new version

of the operating system from another that

is currently running, NZCOM loads only

the modules that must be loaded, either

(1) because they did not exist before or (2)

because they are now at a different ad-

dress or have a different size. For exam-
ple, when I load my FULL system from
the NORMAL system to add an IOP, only

the CCP, DOS, BIOS, and IOP are

loaded, since the RCP, FCP, and NDR
are in the same place as before and have

the same size. When modules do have to

be loaded, files with the default names
shown in Figure 5 are used. Later we will

discuss how you can load modules with

other names.

There are a number of system modules

that never change in the present version of

NZCOM. (Yes, like the famous Al Jolson

lines, you ain't seen nothin' yet!) These

include the environment descriptor,

message buffer, shell stack, path, wheel

byte, and multiple command line buffer.

With the exception of module addresses in

the environment descriptor, data in these

fixed system modules remain unaffected.

This means that if you had selected an

error handler, for example, or a shell such

as a command history shell, they will still

be in effect after a change of system.

Because the multiple command line

buffer is preserved through the load of a

new system, you can include NZCOM
commands as part of multiple command
sequences, alias scripts, and shell

(MENU, VMENU, or ZFILER) macros.

Thus, for example, you could have en-

tered the command

B2:DBASE>nzcom minimum;dbase

etc.

In this case the operating system would
have changed, and then DBASE would

have started running. I will not go into the

technical details here, but there are ways

to write an alias script, which might be

called DB, that would check to see if the

minimum system was already running

and, if not, automatically load it before

invoking DBASE.
Nothing says the operating system can

change only once in the course of a

multiple command line. You might have

alias scripts that change to a minimum
system, run a specific command, and then

reload the normal system again. There is a

time penalty associated with this (though

very little if you have the NZCOM files on

a RAM disk), but the result is that the ap-

plication program sees a big TPA while it

is running, but you always see a nice, full-

featured Z System.

NZCOM does not even insist that you

stay in Z System. On the contrary. On a

cold load from CP/M it will build (if it

does not exist already) a program called

NZCPM that, when run from Z System,

will restore the original CP/M system.

[Technical aside: Even if you need ab-

solutely every available byte of TPA, you

can still automate the process. You can

use the submit facility to run a batch job

that exits from Z System entirely, runs an

application under plain CP/M, and then

returns to Z System. You do have to ob-

serve some precautions. For example, you

have to make sure that all command lines

in the batch file that will execute while Z
System is not in effect are valid CP/M
commands. Once the batch script has

reloaded Z System using the NZCOM
command, it can resume using ap-

propriate Z System commands, including

multiple commands on a line.

Another factor to bear in mind is that

NZCPM returns you to CP/M in drive A
user no matter where you were when it

executed. Since ZCPR3 (starting with ver-

sion 3.3) writes its submit file to directory

AO rather than the current directory, there

is no problem with continuing operation

of the batch file under CP/M. However,

when you reload NZCOM (it will be a

cold load, including execution of

START), you will not automatically be

back in your original directory. End
aside.]

Changing Parts of the System

The NZCOM command is not limited

to loading whole new operating systems;

with a slightly different syntax it can also

load individual system modules, rather

like the LDR program in a manually in-

stalled Z System. There are two important

differences, however.

The first is that NZCOM loads code

modules (IOP, RCP, and FCP) from REL
files rather than from absolute files such

as SYS.FCP or DEBUG.RCP. Absolute

files can still be loaded using LDR, but

this is undesirable under NZCOM, since

the addresses of the modules may change

as different systems are loaded. NZCOM
has the advantage of using a single REL
file no matter which system it is being

loaded into. In the future, RCPs, FCPs,

and IOPs will be distributed in REL form

instead of (or in addition to) source code

form. The REL file is much smaller and

can be used without knowing how to

assemble the code.

The second difference is that NZCOM
can load command processors and disk

operating systems as well. This makes it

very easy to change versions of the com-
mand processor (with or without security

or named directory or submit support, for

example) or to experiment with alternative

DOSs, such as Z80DOS or P2DOS. This

will be a real boon to the development of

new operating system components, since

one can test new versions so easily and

quickly.

For convenience, NZCOM can also

load named directory files (of type NDR)
and terminal descriptor files (of type

Z3T). This is so that you do not have to

have LDR.COM on your disk. On an

NZCOM system, LDR is a dangerous

command, since it does not have

safeguards against loading absolute

system components to addresses for which

they were not assembled. With an NZ-
COM system, you should remove
LDR.COM from your disk.

Other NZCOM Features

There are many more things that could

be said about NZCOM that I will save for

another time. There is just one more that I

want to mention now, and that is the extra

"Custom Patch Area" that can be

defined with MKNZC (see Figure 1). This

option in MKNZC allows one to establish

an area in protected memory just below

the CBIOS (custom BIOS or real BIOS).

This area can be used by various operating

system extensions that one wants to

preserve from one NZCOM system to

another.

Because of the techniques it uses for

patching the Z System onto CP/M, NZ-
COM will not work when a resident

system extension (RSX) is present. Thus,

for example, you cannot run NZCOM
from inside a ZEX script or if DateStam-

per or BYE is active in low memory (if

they are loaded above the CBIOS, there is

no problem). I am presently using the pat-

ch area for DateStamper. With NZCOM
you can effectively have an above-BIOS
version of DateStamper without having to

move your BIOS down.
I am also planning to experiment with

putting BYE in the custom patch area. I

think this can be made to work, and it

would permit NZCOM to be used on my
Z-Node (and I mean used actively — so

that the NZCOM system can be changed

even from a remote terminal!).

There are special facilities in NZCOM
that I do not have the energy to explain

now whereby information about a curren-

tly running system can be extracted before

the new system has been loaded and used

to initialize the new system just before

NZCOM turns over control to it. This

allows an RSX's hooks into the operating

system to be maintained.

14 The Computer Journal / Issue #32

ZCPR Version 3.4

Now let's turn to the subject of ZCPR
version 3.4, which will be released along

with NZCOM. Z34, as I will refer to it, is

much more an evolutionary step from Z33

than Z33 was from Z30. There are four

new features worth pointing out.

Type-4 Programs
The most important and exciting

enhancement is the introduction of what

is called the type-4 program.

With Z33 I added support for a new

kind of program to run under ZCPR3.
Programs designed to take advantage of

the special features of the Z System have

at the beginning of the code a special

block of data called the Z3ENV header.

This header identifies the program as a

ZCPR3 program and contains the address

of the ZCPR3 environment descriptor,

where all the information necessary to

find out about the Z System facilities is

available. It also contains a type byte.

Conventional Z System programs were of

type 1. (Type-2 programs are similar but

actually have the entire environment

descriptor in the header. Programs of this

type are extremely rare. In some senses

they are a holdover from ZCPR2 and now
obsolete.)

For the new type-3 program I added an

additional datum in the Z3ENV header:

the starting address for which the code

had been assembled or linked. The com-

mand processor automatically loads the

file to that address before transferring

control to it.

Type-3 programs are usually linked to

run in high memory (for example, 8000H
or 32K decimal) where they do not inter-

fere with most data or code in the TPA.
Programs that run as extensions of the

operating system (viz. history shells, ex-

tended command processors, transient IF

processor) or as the equivalents of

resident programs (viz. ERA.COM,
REN.COM, SAVE.COM) are par-

ticularly suitable for implementation as

type-3 programs. One cannot always

foresee when these programs will be in-

voked, and it is nice if the contents of

memory at the bottom of the TPA are not

affected when they do run.

With type-3 programs one must choose

in advance the address at which they will

run. If the address is too high, there may
not be enough room for them to load, and
if too low, they are more likely to interfere

with valuable TPA contents. In most
situations it would clearly be preferable if

the program could be loaded

automatically as high as possible in

memory. I thought of this from the

beginning but compromised on the type-3

construct because it was so easy to code.

Joe Wright was not satisfied with this

SAGE MICROSYSTEMS EAST
Selling & Supporting The Best in 8-Bit Software

• Hu* Perfect Systems

- Backgrounder II: switch between two or three running tasks

under CP/M ($75)

- DateStamper: stamp your CP/M files with creation, modification,

and access times ($49)

• Echelon (Z-Svstem Software)

- ZCPR33: full system $49, user guide $15

- ZCOM: automatically installing full Z-System ($70 basic package, or

$11 9 with all utilities on disk)

- ZRDOS: enhanced disk operating system, automatic disk logging

and backup ($59.50)

- DSD: the incredible Dynamic Screen Debugger lets you really

see programs run ($130)

• SLR Systems (The Ultimate Assembly Language Tools)

- Assemblers: Z80ASM (Z80), SLR180 (HD64180), SLRMAC (8080),

and SLR085 (8085)

- Linker: SLRNK
- Memory-based versions ($50)

- Virtual memory versions ($195)

• NightOwl (Advanced Telecommunications)

- MEX-Plus: automated modem operation ($60)

- Terminal Emulators: VT100, TVI925, DG100 ($30)

Same-day shipping of most products with modem download and support

available. Shipping and handling $4 per order. Specify format.

Check, VISA, or MasterCard.

Sage Microsystems East

1435 Centre St., Newton, MA 02159

Voice: 617-965-3552 (9:00 a.m.- 11:15 p.m.)

Modem: 617-965-7259 (24 hr., 300/1200/2400 bps,

password = DDT, on PC-Pursuit)

compromise. He soon wrote an initial ver-

sion of the type-4 program, which does

relocate automatically to the top of

memory. With a lot of cooperation bet-

ween us, we have honed it to the point

where it functions very nicely and does

not add very much code to the command
processor.

Because type-3 programs run at a fixed

address, albeit not necessarily 100H, they

can be assembled and linked in the usual

fashion, and the program files contain ac-

tual binary object code. Type-4 programs,

on the other hand, must be relocatable by

the command processor at run time. Thus
object code alone is not sufficient.

One possibility would be to use a REL
file directly. This would have been very

convenient, but the code required to load

a REL file is far too complex to include in

a command processor running in a 64K
memory segment. There is a less familiar

relocatable type file known as a PRL
(Page Relocatable) file that, because it

restricts the relocation to page boundaries

(and other reasons), is much easier to

relocate.

. A PRL file consists of three parts. The
middle part is a standard code image for

execution at 100H. After this comes what

is called a bit map, where, for each byte in

the code image, there is a bit of or 1 to

tell whether that byte must be offset for

execution at a different page. The bit map
is one eighth the length of the code image.

Finally, one page (256 bytes) at the begin-

ning of the file serves as a header. This

header contains information about the

size of the program so that the code that

loads it can figure out where the object

code ends and the bit map begins.

In the type-4 program, this header is ex-

tended to include the code necessary (1) to

calculate the highest address in memory at

which the program can be loaded and (2)

to perform the code relocation to that ad-

dress using the bit map. The way this is

accomplished is somewhat intricate.

The command processor loads the first

record of the type-4 file into the tem-

porary buffer at 80H as usual to deter-

mine the program type. If it is type 4, the

CCP then calls the code in the header.

That code calculates the load address and
then (this clever idea was Joe's) calls the

command processor back to load the

program code and bit map into memory at

the proper address. When this call is com-
plete and control returns to the header

code, it then performs the relocation of

the code image at the execution address in

memory. Only then is control returned to

the command processor for initialization

and execution of the program.

The Computer Journal / Issue #32 15

The result of this tricky scheme is that

most of the type-4 support code that

would otherwise have been required in the

command processor is in the header in-

stead (this was my contribution to the

type-4 concept). Since a PRL file has a

two record header anyway (almost all of

which is otherwise empty), you get to add

this code for free.

Joe pointed out to me some dangers

with my type-3 construct. Suppose a type-

3 program designed to run at 8000H is

somehow loaded to 100H instead. Any at-

tempt to execute it is likely to have less

than desirable consequences, to put it

mildly. This was not a serious problem

with a normal (at the time) ZCPR33
system. Since the command processor

would automatically load the type-3

program to the correct address, it took

some deliberate action by the user to

create the dangerous situation described.

Of course, the poor fellow still running

ZCPR30 who decided to try out a type-3

program . .

.

However, now that NZCOM is here,

the user may very well decide to drop back

into CP/M from Z System to perform

some tasks. In this situation, a type-3

program is a live weapon, just waiting to

blow up the system. The type-4 program

poses a similar danger.

We have come up with two defense

strategies. One can be implemented in the

program itself. There is code (TYP3H-
DR1.Z80) that can be placed at the begin-

ning of a type-3 program (based on ideas

conceived independently by Bob Freed

and Joe Wright) that will verify that the

code is running at the proper address.

This part of the code is, as it must be, ad-

dress independent (it uses only relative

jumps). If the load address is found to be

wrong, a warning message is displayed

and control is returned to the command
processor before any damage can be done.

This is the friendlier method, but it makes

the programs longer.

The second defense method does not

impose any overhead on the program

code. It is easier to use than the other

method, and it can generally be patched

into existing type-3 programs in object

form. It can also be applied with type-4

programs, for which the first method

cannot be used (type-4 files begin with a

relocation header and not with program

code, and the system must be prevented

from trying to execute the header when
the program is invoked under CP/M).
With this method, one places a byte of

C7H, the RST instruction opcode, at the

beginning of the file. Execution of this in-

struction causes a call to address 0, which

induces a warm boot. This behavior may
be puzzling to the user, but at least it does

no damage. How, then, will such a

program ever execute? The answer is that

ZCPR34 checks the first byte of a type-3

ENTRY: ; Beginning of program
DB 0C7H ; RST opcode, will become JP

DW START
DB •Z3ENV ; ZCPR3 program ID

DB 3 ; Type 3

ENVADR: DW ; ENV address filled in by Z34

DW ENTRY ; Execution address

START

:

; Beginning of main program

Figure 8. Form of the Z3ENV header code in a protected type-3 program. An

attempt to execute this code un der CP/M Kill result in a warm boot.

program to see if it is a C7H. If it is, the

command processor replaces it with a

C3H, the JP instruction opcode. To take

advantage of this method, the program

code must begin with a "JP START" in-

struction in which the JP is replaced by

RST (note: you cannot use JR START
instead). The proper assembly language

source code is illustrated in Figure 8. Note

that the replacement of the RST by a JP

is not required with a type-4 program sin-

ce the header (which is where this con-

struct appears) is never intended to be

executed as a standard program, even un-

der Z34.

The Extended Environment Descriptor

and the Drive Vector

The definition of the ZCPR3 environ-

ment descriptor has been modified and ex-

tended. I will not go into all the details

here, but I will describe the main changes.

First, to make some space available for

additional important information, the ex-

tended ENV eliminates definitions for all

but one console and one printer. Even-

tually there will be a tool (utility program)

that allows interactive or command-line

redefinition of the characteristics of these

single devices so that you will actually

have more rather than less flexibility.

The extended ENV will now contain the

addresses and sizes in records of the CCP,
DOS, and BIOS (actually, the size of the

BIOS is not included). This information

has been added to deal with problems in

some special operating system versions

where the CCP and/or DOS do not have

their standard sizes of 16 and 28 records

respectively, such as in the Echelon

Hyperspace DOS for the DT-42 com-

puter. Future versions of NZCOM, which

will support variable CCP, DOS, and

BIOS modules, will also need this.

Finally, a long needed feature has at last

been implemented; a drive vector. The

maximum-drive value in the ENV was not

adequate in a system with non-contiguous

drives (A, B, and F, for example). Now
you can tell the system exactly which

drives you have on the system, and the

command processor will do its best to

prevent references to nonexistent drives.

Ever More Sensible Named Directory

Security

With Z33 I made it possible to refer by
drive/user (DU) to directories beyond the

range specified by the maximum drive and
maximum user values in the environment

provided the directory area had a name
with no password. It seemed only

reasonable that if a user could access the

drive by name, he should be allowed to

access it by its equivalent DU as well.

The converse situation, however, was

not handled according to similar logic.

Suppose the maximum user was 7 but

there was a password-protected named
directory for user 6. Under Z33 one had

the anomalous situation that the user

could refer freely to the directory using

the DU form but would be pestered for

the password if he used the named-
directory (DIR) form. This just didn't

seem reasonable, and Z34 has corrected

this.

Extended ECP Interface

With Z34 I have added an additional

option along the lines of BADDUECP.
The BADDUECP option allows direc-

tory-change commands of the form
NAME: or DU: that refer to illegal direc-

tories to be passed on to the extended

command processor (ECP) instead of

directly to the error handler. On my Z-

Node, for example, I use the ARUNZ ex-

tended command processor to permit

references to reasonable facsimiles to the

actual directory names to work via alias

scripts.

With Z33 attempts to execute a com-

mand containing an illegal wildcard

character or with an explicit file type

would be flagged as errors and passed

directly to the error handler. With Z34
one has the option (via the option BAD-
CMDECP) to pass these forms of bad
command to the extended command
processor as well.

Here are a couple of examples of how
this feature can be used with the ARUNZ
extended command processor; First, one

can enter the following script into the alias

definition file ALIAS.CMD:

16 The Computer Journal / Issue #32

? help$*

Now when a user enters the command
"?", he will get the help system instead of

an error message telling him that he en-

tered a bad command.
You can also use this facility to allow

further shorthand commands. With the

script definition

DIM.Z3T ldrdim.z3t (or nzcomdim.z3t)

Now you can load the dim-video TCAP
for your system simply by just entering the

name of the TCAP file. Using wildcard

specifiers in the name of the alias script,

you can make any command with a type

of Z3T load the corresponding TCAP file.

Similarly, entering the name of a library

(for example, LBRNAME.LBR) on the

command line could automatically invoke

VLU on that library. The same concept

would allow one to enter the name of a

source-code file (for exampie,

THISPROG.Z80 or THATPROG.MAC)
to automatically invoke the appropriate

assembler (Z80ASM/ZAS or SLR-

MAC/M80 for these two examples).

This feature opens another whole

dimension for experimentation, and I am
sure that users will come up with all kinds

of new ways to use it. PLEASE NOTE: if

this feature is implemented, you cannot

use the old version of ARUNZ that I so

painstakingly documented in my last

column (alas, barely born and already ob-

solete). Previous versions of ARUNZ
used '?' and '.' for special purposes.

Those characters were carefully chosen

because they could never appear in com-
mand names passed to ARUNZ, but now
they can! Therefore, in version 0.9H of

ARUNZ I have changed these characters

to ' ' (underscore) instead of '?' and ','

(comma) instead of '.'.

That's it for this issue, I'm afraid. I still

didn't get to a discussion of defects in the

shell coding for WordStar 4 (I hope these

will be corrected in version 5, which is ap-

parently really in the works at this time).

My discussion of the ZEX in-memory
batch processor and the improvements I

have been making to it will also have to

wait still longer.

Language and
Compiler Design News
LALR, anLALR(l) parser

generator, runs on MS-DOS com-
puters and generates automata-
based parsing engines for computer

languages, command languages,

and macro languages.

LALR reads a BNF grammar
specification and outputs source

code in Microsoft C, Turbo C,
and UNIX C. It has successfully

handled a COBOL grammar of

1561 productions, generating a

parser with 2187 states in about

60 seconds.

LALR generated parsers are

capable of processing the target

rg LALR
L^B Research 1892

language at a rate of approxi-

mately 14,000 lines per minute
on an IBM PC/AT. Time includes

scanning and parsing.

LALR provides an easy way
to interface with a lexical scanner

and the rest of your system. An
advanced enor recovery technique

provides good repairs for syntax

errors.

LALR comes with grammars
for Ada, BASIC, C, and Pascal,

source code for a lexical scanner,

parser skeleton, test program, and

calculator. It has a 60-day money-
back guarantee. Price is $99.

714-832-LALR
Burnt Mill / Tustin CA 92680

A high

performance
2-80 compatible

single board
computer

The 01 1 80 and
SBlSOFXui

tt'alurcd in fliYc

Nov. jj At 1 986

TheSB180FX
Small, fast, memory-packed
single board computer
add the Micromint GT180
for high resolution graphics

SB 1 80 FX features:
• Measures only 5.75" x 8"
• 64 180 CPU running at 6. 9 or 12 Mhz
• Up lo 5 12K bytes RAM and 32K bytes ROM
• Two 38.4 baud serial ports
• A parallel printer port
• Peripheral expansion bus
• Three bi-directional parallel pons
• Industry standard 765A - compatible disb
controller

• NCR 53C80-SCSI bus controller for hard disk or
network communications

GT180 features:
• Measures only 5.75" X 8"
• Designed to piggy-

back on (op of the

SB 180 or SB 180 FX
• High resolution of

640x480x16
colors from a
palette 4096

• Advanced
HD63484 CRT
controller

• 38 commands
including 23 graphic
drawing commands

• fully software supported
by Borland's GT 180
Graphix Toolbox and
Modula-2

• 2 million pixels per second

SBiso FX as low as $409.00
GTiso as low as $395.00

Turbo Modula-2 $69.oo
Turbo Modula-2 w/GTl80
Graphix Toolbox $89.00

To order call

1-800-635-3355
TELEX: 643331

For technical information call

1-(203)-871-6170

MICROMINT, INC.

4 Park St., Vernon, CT 06066

The Computer Journal / Issue #32

^̂
17

Designing Operating Systems
A ROM Based O.S. for the Z81

by Clark Calkins, C.C. Software

Reading the article "Double Density Floppy Disk Controller"

in TCJ #30 brought back fond memories of my CP/M days. The

operating system was designed as a minimal system allowing the

user to make the most out of his hardware. As the article pointed

out, system performance was really tied to the design of the

BIOS. A good design resulted in a fast system and a poor (or con-

servative) design yielded a slow system. While most users did not

want to rewrite their BIOS code, it was certainly within the reach

of the average assembly programmer.

One project I started a number of years ago (and haven't

finished yet) was to build a small and portable computer that I

could use to monitor real world functions. A data collector and

with data reduction capabilities if you will. I wanted a system that

could monitor outside signals, record them, do minimal

processing and possibly display some results. I had visions of an

automotive diagnostic system that could do all kinds of wonder-

ful things. Have you ever tried to find a squeak in a car? It only

happens when you are driving and then you can't seem to pin

point the location of the noise. It would be nice if I could position

a few microphones around the inside of the car and record the

sounds as I drove over a bumpy road. With the data I could later

isolate the offending signals and locate the source by

triangulation. A bit involved, but it COULD work. Or how about

recording and analyzing the spark plug voltage. You can really

find out about the condition of the engine by looking at the

voltage transients. There may be some applications around the

house that this could be used for. For any of these projects,

suitable analog to digital converter interfaces would be required.

There are some inexpensive A/D chips (8-bit) that run pretty fast

(10k to 100k samples per second). It wouldn't be too difficult to

build a board with four or eight channels. I would get to these

details when the time comes (famous last words).

Now at the time I was thinking of all this I was involved with

Exatron (a small Silicon Valley Company) as a Saturday after-

noon "handyman" programmer. This company, among other

things, was producing a very small digital tape drive (called the

Stringy Floppy) that was interfaced to various systems as an inex-

pensive storage device to replace cassette recorders. First it was

for S-100 computers, then Radio Shack TRS80s and Apples, and

finally the Timex/Sinclair ZXs. The tapes used were small (3" x

1.25" X 0.125") endless loop cartridges that could hold 10k to

100k bytes depending on the length of tape (5 to 50 foot tapes

were available). I had a prototype of the Timex interface to play

with and this was really neat except that all you could do was read

and write BASIC source files. What I wanted was a minimal

operating system that used the tape as a "slow disk drive." After

all, the Timex had 16k of RAM, a Z-80 processor and it would

easily. run off of a twelve volt car battery (less monitor), so why

not?. Just about this time Timex was getting out of computer

business and the systems were being sold at drug stores (even

Safeway) for almost nothing. I was really intrigued by this and I

set out to write an operating system for the little machine.

For those who don't know or cannot recall, the ZX-81 had a

BASIC in ROM addressed 0-8k and a 16k RAM package ad-

dressed from 16-32k. Third party vendors were selling 32k RAM
packs for the remaining address space. The hardware design

prevents execution of Z-80 instructions beyond the 32k address

but data could be stored there. To make matters worse, the video

screen was memory mapped in RAM and the system used its own
character set (not ASCII). Anyway, my plan was to write an

operating system that looked like CP/M with a BIOS that

managed the screen and tape I/O. This would be burned into an

EPROM and sit in the 8-16k address space. I would use the basic

for data reduction (it was too slow for data collection) so it had to

be able to read and write data files from the tape.

I chose to emulate the CP/M operating system because it was

small, simple, and I had the source code for it (via my Source

Code Generators, see reference 1). I had written many different

BIOS's in the past so I knew I could do one more. For anyone

that has had to type on the ZX-81 's membrane keyboard, you

know what a pain this was. I wanted to simplify typing as much as

possible. So I would use "function keys" (using the numeric keys)

to run all of the built in commands. I realized that I would have to

write any programs that I wanted to run but I thought these

would be short assembly data collection programs. I didn't plan

to run WordStar or anything like that.

I used another computer system (my trusty Digital Group) to

do the software development and then I would down-load the

ZX-81 via the cassette interface. A slow way to send data, but it

was simple to implement and it worked. This way I could take ad-

vantage of the video editors and assemblers I had until I got the

ZX-81 running. A small assembly routine running on the ZX-81

(using POKE'S from BASIC) would read the test program into

RAM and jump to it.

Now CP/M was written for an Intel 8080 cpu to be compatible

with the early home computer systems. Because I was really

limited in memory space, I wanted to convert it to Z-80 code.

Changing to relative jump instructions alone would save Vik. In

doing this, I cleaned up the code a lot, rearranged the routines

(trying to shorten it by eliminating jump instructions), and

removed all of the needless code. I managed to squeeze about

1.5k from its normal length but the program was still basically

CP/M. Now the fun came. Make CP/M talk to the tape drives in

a reasonably efficient manner. CP/M normally thinks it's talking

to a rotating disk drive and a fairly fast one at that. Now I had

slow tape drives to deal with. The standard routine to allocate free

disk blocks tried to pick new blocks from the empty pool that

were as close together as possible without regard to the direction

of rotation. Not too bad for a floppy disk, but for a tape drive

this was ridiculous. I had to first look in the forward direction

(remember the tapes are an endless loop) for empty blocks and as

a last resort look backwards. In fact even a floppy or hard disk

drive could benefit from this logic. Other changes were made to

the BDOS, like automatic disk re-logging (reference 2) and file

searching over multiple volumes. I wanted to see how well I could

make the system perform. Now CP/M accesses the directory a

lot. To make the access time reasonable, I decided to keep the

directory in a separate buffer that only had to be read once, and

18 The Computer Journal / Issue #32

write out only the changed sections. Control-C (and warm boot)

processing was modified. Since the operating system will be in

EPROM, only the disk parameters have to be reset. To help in the

writing of other programs (assemblers editors), extra BDOS entry

points were included for file opening, character read and write,

and direct block reads and writes.

While I was at it, I might as well change the command
processor interface (CCP). I wanted as many built in commands
as I could fit into the limited memory set aside for the operating

system. I replaced PIP with a COPY command (with query on

wild card names) and inserted a limited STAT command. I in-

cluded a DDT like debugger but it does lack the disassembler por-

tion. Additionally, a SUBMIT facility was included that

automatically recognized a command file with the SUB extension

rather than COM. When a command would be entered without

an extension, a search would be made for "filename.COM" and

"filename.SUB". If only one of these was found, it would be

executed. Otherwise an error results.

The poor keyboard (mentioned previously) guided me into this

"revelation." If the first character typed in a command line was a

digit, then I would substitute one of the built in commands.

Similar to function keys on other machines. Thus when "2" is

typed, "DIR" pops up ready for a drive or filename. An added

benefit is that transient commands are any commands not begin-

ning with a digit. I no longer had to search a built in command
table. This feature worked so well, I immediately incorporated it

into my other CP/M computers.

When the project had progressed to this point, I was ready to

test the software on the ZX-8 1 . I would load the operating system

into RAM for testing until I found a way to burn an EPROM.
The first time I loaded the program and ran it. . . CRASH! In fact

for the first few days, every time the program was run it crashed

and the ZX-81 wasn't being helpful in telling me why. After much
bug hunting I got the software to run a few seconds before

crashing! At least the video translations were working (ZX-81

to/from ASCII). I could see the sign-on message but it would

crash shortly there after. I decided to test the tape routines

separately just to see what portion of the program could not fun-

ction. I incorporated the tape I/O routines into a rudimentary

format program (I needed one of these anyway of course). This

lacked any screen output. It just waited for an key (any key) and

formatted the tape. If successful, it waited a few seconds and tried

to read it back. There were surprisingly few bugs here considering

that the tape was COMPLETELY sof-

tware driven. Now back to CP/M. Using

the built it DDT and setting break points

all over the place, I traced the problems to

the initializing routines. The code seemed

simple, but executing it would crash the

system. When the ZX-81 comes up in

BASIC, the screen memory is in the

lowest portion of the 16k of RAM. I wan-

ted to move this to the upper portion,

store the CP/M parameters next, and
place the stack just below this. Then all

RAM from 16k to the bottom of the stack

would be available for a program to run.

The screen driver is interrupt driven and
hardwired into the BASIC and it is VERY
touchy. After a few weeks of frustration,

I found out that the stack had to be above

the screen. Just a quirk of the interrupt

routines. With this straightened out, the

system came up and I was in business!

There was the usual debugging the new
code for the commands but this was

straight forward and I didn't mind; it was

expected.

Now I finally had a system running that could save memory to

tape, get directories, load programs (if there were any to load),

etc. I felt like I had really accomplished something! But before I

could USE the system, I had to have some facilities to write

programs. To do this I wrote an assembler (8080 code at first, Z-
80 would come later) and a simple line editor. Using this I fixed up
the format program as a test case. I added messages and error

recovery etc. Typing on the ZX-81 is very cumbersome, but at

least I could develop programs in a CP/M environment. Who else

could say that? Things certainly weren't done yet, but at least the

system was working.

Now I can sit back and relax for a while. This has been a very

long project (about six months from when I started) and other

things where getting my interest. After all I have bills to pay and
this certainly wasn't going to help.

My original intent was to come up with a portable data collec-

tion computer that I could use for various other projects. There is

still work to be done before I will be able to do this. I have to burn

an EPROM (presently I am limited to 8k of RAM for program
storage as the operating system takes up the other 8k). An analog

to digital converter interface needs to be built. I will probably wire

wrap an ADC8004 (8-bit A/D) as a first step. Some amplifiers will

certainly be needed for this as the signal levels will need to be
boosted to the 0-5 volt range.

I hope to get back to this shortly. After all I have 6000-8000

lines of code and many months invested in a $29.95 computer.

But it has been fun and that's what counts.

Clark A. Calkins

C.C. Software

1907 Alvarado Ave.

Walnut Creek, CA 94596

References

1) SCG22, A Source Code Generator for CP/M 2.2, C.C. Sof-

tware, 1907 Alvarado Ave, Walnut Creek, CA 94596.

2) Automatic Disk Re-Logging With CP/M 2.2, Clark A.
Calkins, Micro Cornucopia, April-May 1985 (issue #23).

r IS NOTHING SACRED?
Now Che FULL source code for TOKBO Pascal Is available for the IBM-PCI
WHAT, you are atlll trying to debug without source code? But why? Source
Code Generators (SCG'a) provide compl e tel y commented and labeled ASCII
source files which can be edited and assembled and UNUERSTOODI

SCCs are available for the following products:

TURBO Pascal (IBM-PC)* $ 67.50
TURBO Pascal (Z-80)* $ 45.00
CP/M 2.2 $ 45.00
CP/M 3 $ 75.00
* A fast assembler Is Included freel

The following are general purpose disassemblers:

Masterful Disassembler (Z-80) .. $ 45.00
UNREL (relocatable files) (8080) $ 45.00

"The darndest thing I

ever did see..."
Pournelle, BYTE

"I have seen the
original source and
youra Is much better!"

Anonymous ,,-SJ3G VI

VISA/MC/check
card0

Shipping/Handling $

Tax $_
Total $~

1.50

expires /

All products are fully guaranteed. Disk format

I CP/Mmm
G£. SOFTWARE, 1907 ALVARADO ATE., HALRUT CREEK, CA. 94596. (415) 939-8153

and TURBO Pascal are trademarka of Digital Research & Borland Int.

The Computer Journal / Issue #32 19

Advanced CP/M
Boosting Performance

by Bridger Mitchell

' CP/M — an anachronism for many,

a cuss word nearly forgotten, and a bewit-

ching mistress who dwells in mystery near

the heart of our hobby. This new column

will court her fancy, defer to her eccen-

tricities, and, yes, expose her

vulnerabilities. I'm writing it to share a

few tricks and concepts I've learned,

recycling to the CP/M community a little

of what I've received from them.

CP/M® — the letters abbreviate Gary

Kildall's original name Computer
Program/Monitor — has evolved into a

number of important strains and

variations. Digital Research's mainstream

release, which probably remains the most

widely used version of CP/M today, is

CP/M 2.2. DRI's CP/M 3.1 (aka CP/M
Plus) is also actively used. More recently,

Z80 "clones" of the operating system

have gained increasing favor, including

ZRDOS from Echelon, QP/M from

MicroCODE,, and recently P2DOS and

its descendants PZDOS and Z80DOS.
Then there are the networking variants —
MPM® from DRI and TurboDOS® .

What is CP/M, today? For our pur-

poses, it's some version of this venerable

operating system, the granddaddy of por-

table OSs for microcomputers. Equally

important, it's a diverse group of users

who share a sense of community, swap

ideas and advance each other's in-

novations. Many of us who still belong to

that community continue to use CP/M ac-

tively, not least because we find this view

of computing constructive and personally

rewarding. Bulletin boards, joint projects,

user groups and publications like TCJ
keep us in touch.

Advanced CP/M will dip into various

CP/M and Z80 topics, emphasizing ad-

vanced programming techniques. Our
watchwords will be: portability, com-

patibility, performance, and operating

system principles. I'll try to serve up a

mixed diet — OS concepts, hints and

tricks, occasional advice, and a healthy

dose of usable code extracts. Topics I

hope to cover in the next columns include:

what makes it tick (or, Why did the input

character disappear until I exited the

program?), and how to teach the old DOS
new functions.

This first column's subject is perfor-

mance — ways to boost the CP/M octane

rating. We investigate two quite different

areas — logging in new disks quickly, and

the gains from hand-optimizing Z80 code.

Fast Disk Resets

A fundamental operating system ac-

tivity is to manage storage. The CP/M
BDOS keeps a free list of available data

blocks for each disk. Writing a file

allocates one or more blocks; deleting a

file releases its blocks. CP/M keeps the

list as a bitmap, with a bit set for each

block that has been allocated. In another

column we'll delve into the fine points of

CP/M's management of the free list. Our
concern now is to ensure that the list is

Bridger Mitchell is a co-founder of

Plu*Perfect Systems. He's the author of

the widely used DateStamper (an

automatic, portable file time stamping

system for CP/M 2.2); Backgrounder (for

Kaypros); BackGrounder ii, a windowing
task-switching system for Z80 CP/M 2.2

systems; JetFind, a high-speed string-

search utility; and most recently DosDisk,

an MS-DOS disk emulator that iets CP/M
systems use PC disks without file copying.

Bridger can be reached at Plu*Perfect

Systems, 410 23rd St., Santa Monica CA
90402, and via Z-Node #2, (213)-670-

9465.

correctly up to date.

ne: FRESET —
LISTING 1

; Rout fast drive reset and login
Author: Bridger Mi tchell (Plu*Perfect Systems)
CPU: Z80-compat ible
Date January 2, t988
Version: 1.0

xbdos equ 5

Fast-reset drive (A)

A - ..15 for A: ... P:

CSEG
freset.

Id (reqdrv),a ; save requested dr i ve
push af

Id c,24 ; get vector of logged- in drives
cal 1 xbdos
pop af (recover requested drive)
push hi save logged- in vector
cal ! fshftr shift requested drive's bit to bit
bit 0,1 is requested drive logged in?
pop hi (recover (unshifted) logged vector)
Jr z , f 1 og i t ..z - no, just log it in

Id e,0 initialize drive index/count
jf frese2

fresel

:

Id a,l ; shift vector right 1 bit
cal 1 fshftr

frese2: bit 0,1 if dr i ve Is not 1 ogged in

jr z, frese3 ..check next drive
Id a, (reqdrv) or if it Is the requested drive
cp e
j<~ 2,frese3 ..check next drive

founc a second logged- in drive, so switch to it

cal 1 fslctit ; select e'th drive
cal 1 f logout ; log out requested drive
jr f logit ; then log into it and exit.

frese3: inc e ; increment drive count
Id a,e
cp 16
jr c, fresel ; .. and continue for 16 drives

no second dr 1 ve found.

call f logout log out requested drive
Id c,13 do general reset, then (re) log requested
cal 1 xbdos

20 The Computer Journal / Issue #32

The free list must be constructed, from

allocated block numbers stored in direc-

tory entries, the first time a disk is used.

And to preserve the integrity of the file

structure, the list must be reconstructed

when a (floppy) disk is removed and

another inserted in the same drive. It must

also be reconstructed whenever any disk is

modified by writing to it without using the

BDOS.
CP/M provides two functions that will

(eventually) cause a new free list to be

constructed — Reset All Drives (function

13) and Logoff Drive(s) (function 37). h

you've ever used the original CP/M 2.2

BDOS you've almost certainly experien-

ced that sinking feeling that comes after

changing floppy disks without resetting

the drive and abruptly seeing the dreaded

"BDOS Error on x: Read Only" message,

followed by immediate termination of the

program and loss of all your work.

To prevent this disaster, most programs

use function 13 whenever prompting for a

disk change. This works, but it's a

monkey wrench that requires CP/M to

rebuild the free list for every drive, not

simply the one with the new disk.

; log into requested drive

flogit: Id

Id

a, (reqdrv)
e,a

fslctit:ld
jxbdos: jp

c,14
xbdos

; select bdos drive

; log out the requested drive

f logout: Id

Id

cal 1

ex
Id

jr

a, (reqdrv)
hl,l

fshftl
de.hl
c,37
jxbdos

; set up bit to log

; log out drive in

; shift hi r ght (a) bits

fshftr:
i nc

shftrl : dec
ret

a

a

z

srl h

rr
jr

1

shftrl

shift hi le ft (a) bits

fshftl

:

inc
shftll : dec

ret
add
jr

a

a

z

hi, hi

shftll

DSEG
reqdrv: ds 1

LISTING 2

<* Sieve of Erasthones Benchmark (Jan. '83 BYTE) *)

(* Turbo Modula-2 »)

(* Compile with test, overflow switches off and native code on. *)

MODULE prime;

CONST
size = 8190;

flags : ARRAY [.. size 1 OF BOOLEAN;
i, prime, k, count, iter ; CAROINAL;
ch : CHAR;

BEGIN
WRITELNC'Type Return"); READLN(ch); (* WRITELNC'10 iterations"); *)

FOR iter := 1 TO 10 DO
count := 0;
FOR i := TO size DO flags! il : = TRUE END;

FOR i := TO size DO
IF f lagslll THEN
prime := i t I + 3;

k := i t prime;
WHILE k <= size DO

flagslk) : = FALSE;
k := k + prime;

END;
count := -count + 1

;

END;
END;

END;
WRITELNl count, " primes");

END prime.

CP/M provides function 37 for rapid,

pinpoint disk resets, but it has acquired a

fearsome reputation and is almost never

used, because Digital Research coded this

section of CP/M 2.2 with a fatal bug. The
precise conditions are complex, but if you
use Function 37 to reset the current drive

and then write to that drive before logging

in any other drive, CP/M 2.2 will write

the file to the wrong data groups, very
likely destroying some existing files.

Nevertheless, function 37 can indeed
provide safe, fast resets. The trick, which
was described by a CP/M veteran years

ago (whose name I have now lost), is to

log into a different drive before calling the

function. The general-purpose FRESET
routine (Listing 1) does just that. Think of
it as a precision socket wrench; a tool

designed expressly for logging in a new
disk. You call it with the drive to be reset

in register A; it resets the drive and then
logs it in.

This is how it works: Because a

program will not normally know what
drives are available on the host system, the

routine uses Function 24 to get the 16-bit

vector of currently logged-in drives. (A
logged-in drive is one for which CP/M has

already constructed a free list). If the

requested drive is not already logged in,

all that needs to be done is to have CP/M
log it in; CP/M will build its free list as

part of the login operation.

More commonly, the requested drive

will be active; that's the one the program
wants to use for a new disk. So FRESET
next checks for a second logged-in drive.

If there is one, it logs it in, and then it

resets the requested drive.

At this point, if a second drive has been
logged in, CP/M 2.2 will be happy and we
can proceed to login the requested drive

and exit. But, if there was no second
drive, the requested drive is still, in some
sense, the active drive, even though it was
"logged off." Therefore, FRESET must
use the general reset Function 13 to reset

"all" drives, even though only the one
drive is logged in.

In pseudo-code, the FRESET algorithm
is:

if requested__dr i ve is logged in

if a second drive is logged in

log into the second drive
logoff requested drive (fn.37)

If no second drive was logged in

do general reset (fn. 13)

log into requested drive

FRESET is the natural routine to use in

a file-copy program. For example, I used

it in DATSWEEP (the DateStamper file

maintenance utility) to re-log the

destination disk before each single or

group copy, allowing the user to change
disks between each copy operation

without further commands.
FRESET is also the right routine to use

after running any program that directly

The Computer Journal / Issue #32 21

modifies a disk directory, such as

UNERASE or DU. That type of utility

modifies the file structure "behind the

back" of the BDOS. When that happens

it is essential that the BDOS completely

rebuild the disk's free list to reflect the

changes. Under CP/M 2.2 it would be

safe, but slow, to use Function 13 for this.

However, recent version of ZRDOS and
• PZDOS handle the free list differently for

non-removable (hard and ram) drives.

They do this to speed up warm-boots and

general resets by skipping the reconstruc-

tion of the free list for those drives.

Therefore, with these DOSs the program

tnust use Function 37 to get the free list

rebuilt.

It's highly desirable for fundamental

routines to be compatible with as wide a

range of systems as possible. If they are,

they can be dropped into application

programs and trusted to work without

special checking. FRESET passes the por-

tability requirement; it should serve any

flavor of CP/M that is running on a Z80-

compatible processor.

A Very Hot Sieve

Most TCJ readers have probably en-

countered comparative timings from the

Sieve of Eratosthenes routine, introduced

in the January, 1983 Byte. The sieve coun-

ts the first N prime numbers, and it has

been widely used as a (too) simple bench-

mark for different compilers and

languages.

Just before Echelon released Turbo

Modula-2, I received a copy of this new

compiler from Frank Gaude' and the test

file in Listing 2. Frank's comparisons in-

dicated that TM2 was a hot compiler, bet-

tering the performance of Turbo Pascal

on both Z80 and 8088 machines, and a

variety of other Pascal, Modula-2, and C
compilers. Those figures set me to won-

dering — as a code generator, how close

does TM2 come to the theoretical

maximum performance? Over the lunch

hour I used a napkin to sketch out the first

version of a Z80 assembly language sieve.

That evening's testing showed it was com-

petitive, and so I decided to see if I could

push the Z80 to its limit. JETPRIME was

the result. Listing 3 contains the code,

with the number of tstates required for

each instruction as calculated by the

SLR + ® assembler for the HD64180®
cpu.

Optimization requires mental iteration.

My first sketch was to mimic what a com-

piler might do — translate each line of

high-level language code as it stood and

use memory locations for all variables. I

knew that pedestrian approach would

run, but of course it would really only be

walking.

My first improvement cycle focused on

using the cpu's registers efficiently, sub-

stituting register moves for load/store

Listing 3

addr.

01 10

01 1 1

0112
0115

0116
0119

01IC
01 IE

0121
0122
0123
0124
0125

0126
0127
0128
0129
01 2A
01 2B
01 2C

012D
01 2E
0130
0132
0133

0136
0137

0138
0139
01 3A
01 38
01 3E

JetPrime.ASM

Z80 Sieve of Eratosthenes Benchmark.
Brldger Mitchell, Plu*Perfect Systems 2/29/88

See Jan. '83 BYTE

0001
1FFE

076B

0005
000D
000A

0001

2200

0022

0201

0100

ABSOLUTE equ 1

SIZE equ
ANSWER equ

BDOS equ
CR equ
LF equ

NITER equ

F ABSOLUTE

8190
1899

5

Odh
Oah

; set to for relocatable routine
; largest integer to be checked
;number of primes in [0...SIZEI

jnumber of iterations, for timing.

last memory address used is:

top equ free + (SIZE + (100H

agend equ

flags equ

org
END IF

(00FFH AND SIZE))

)

(top shr 8) and 00FFH ;page following flaglSIZEl

top - (SIZE +1)

lOOh

; array of boolean flags
;total of 0...SIZE = SIZE+1

op code HD64180
tstates

0100 C3 013F 9

0103

0103

0106
0109
010C
01 0E

0104
21 0201
0107

1 1 0202
01 1FFE

36 01

ED B0

9

9

9

14*8C-

50

58
0113

21 0201
D9

01 17

01 0201
D9

01 IB

3E 21

CB 46 9
CA 0138 06/09

D5

D9
El

54
5D

29
23
23
23
EB
19

09

BC 4

38 06 06/08
CB 86 13

19 7

C3 0I2D 9

D9 3

03 4

23 4

13 4

BC 4

02 01 1C 06/09
C9 9

iset a I I flags TRUE

The JETPRIME SIEVE ROUTINE

pr imes:
fl equ $+1

Id hi, flags
flplusl equ $tl

Id de,flags+l
Id be, SIZE
Id <hl),01h
Idir

Initialize the registers. They will be used as:

A : termination condition
BC : count of primes found
DE : i =

i ndex
HL : pointer to ftagsiii element
BC: base of flags array
DE', HL': working registers for inner loop

Id

Id

f2 equ J+l

Id

exx
f3 equ $+1

Id

exx
pi equ $+1

Id

loop: bit

JP

inner lp:push
exx
pop
Id

Id

add
inc

inc

add
add

cp
jr
res
add

JP

exx

do next

next nc
Inc

cp

JP
ret

d,b
e,b

hi, flags

be, flags

a,pagend-l

0,(11 1)

z.next

i

hi

d,h
e,l

hi, hi

hi

hi

hi

de,hl
hl.de
hi, be

c, wh i Ix

0,(hl)
hl.de
whi I

hi

de
h

nc, loop

;bc = count = already
;de =

i
=0

;4f lagslOl
;bc' = IflagslOi

;load a = last page of flags!

1

; if f lag! i 1
== TRUE

;..set registers for inner loop
;..and count this prime
;hl* =

i

;de' =
i

t3

de' = prime = i + t 3, hi' =

hi ' = k = prime +

hi' - Iflagik]

;whi le k <= SIZE

;..flaglk) = FALSE
; . .h I ' = k = hi' + prime

;count the prime
;count++

if lagsl 1++

i++

wh i le i < size
. . loop
done, be = count of primes

22 The Computer Journal / Issue #32

; The re-execu table JETPRIME DRIVER CODE. Uses the CCP stack.

OOF test:
01 3F CD 01E0 16+ cal in i t :cal

1

init ;do any initialization
0142 1 1 0183 9 Id de, signon ; banner & prompt
0145 OE 09 6 Id c,9
0147 CO 0005 16+ cal r bdos
014A CO 0172 16+ cal 1 waiter ;wait for CR to start up

014D 3E OA 6
'

Id a, NITER ;set # of iterations
01 4F F5 11 more: push af ;repeat the prime
0150 CD 0103 16+ cal 1 primes ; calculation
0153 Fl 9 pop af several times
0154 3D 4 dec a , to improve t imi ng
0155 C2 0I4F 06/09 JP nz.more resolut ion

.

0158 21 076B 9
'

Id hi , answer veri f y answer
01 5B ED 42 10 sbc hl.be (cy is clear)
0150 1 1 01C9 9 Id de,donemsg if Z,
0160 28 03 06/08 JF 2, sayend ..say it's correct
0162 11 01D7 9 Id de, badmsg else say it's bad
0165 OE 09 6 sayend Id c,9
0167 CD 0005 16+ call bdos

01 6A 11 01B9 9 exit: Id de, retmsg ask for CR again
01 6D OE 09 6 Id c,9 ..and exit to CCP
016F CD 0005 16+ cal 1 bdos

0172 OE 06 6 waiter Id c,6 wait for a CR
0174 IE FF 6 Id e,0ffh
0176 CO 0005 16+ call bdos
0179 FE OD 6 cp CR
01 7B 20 F5 06/08 jr nz, waiter
0170 5F 4 Id e,a echo a CR
OWE OE 02 6 Id c,2
0180 C3 0005 9 JP bdos

0183 00 OA 4A 65 signon db cr, 1 f
,

' JetPr ime Z80 '

0192 2D 2D 20 42 db '— BYTE Sieve Benchmark - 10 iterations'

01B9 OD OA 48 69 retmsg db cr.lf ,'Hit <RETURN>.S'
01C9
01C9 00 OA 31 38 donemsc :db cr, If, M899 Primes*' ; the correct answer
01D7
01D7 00 OA 57 72 badmsg db cr, 1 f

, 'Wrong I $

'

01E0

0001 IF ABSOLUTE

01E0 C9 9 init: ret dummy routine in absolute version

01E1 001F ds MOOh - 1$ AND OOffhll ;f i 1 ler
END IF

0200 0000 free: ds data area, page-aligned
0200

;

0000 IF ABSOLUTE eq

'; INITIALIZATION CODE for RELOCATABLE VERSION

init:

xor
Id

Id

inc

Id

inc
Id

Id

Id

add
Id

or
jr
Id

inc

a

h
1
,cal init

(hi),

a

hi

(hi),

a

hi

(hl),a

hi .free
de,SIZE+l
hl.de
a,l

a
z, ini tl

1,0
h

prevent re-entry
of this code

by storing 3 nop's
at cal 1 location

calc flagslO! address

hi = min. addr. for flags! SIZE+1

1

i f not on page boundary

.. adjust to next page

Inltl: Id

dec
Id

sbc '

Id

Id

Id

Inc
Id

ret

a,h
a

(pi),

a

hl.de ;

(fl).hl
(f2),hl
(f3),hl
hi

(flplusl).hl
;

install pagend address
deduct sizeof flags! 1

install flags addresses

install flags+1 address

f 1 ags equ lOOh ; dummy values
pagend equ In ; " "

maxtop equ
END IF

free + (SIZE+1) + Offh ;worst-case size of routine

from memory, and using the stack when
there were no idle registers (push + pop is

20 tstates, store + load is 32-40). A smart
compiler, using register variable

declarations, might be able to do almost
as well, and the Borland implementation
of Modula-2 does provide for four 16-bit

register variables.

The Z80 has a fair number of registers,

so the trick is balancing off how to use
them to best advantage. It usually takes

several tries of various combinations, to

get things really tight. I gained further ef-

ficiency by pre-loading key constants into

registers outside the inner loops (lines 112
and 116).

With most of the code now streamlined,

the condition-testing at the end of both
loops stood out as both slow and cumber-
some. Suddenly I recognized that if I

could cause the address of the end of the
array to fall at the beginning of a 256-byte
memory page, the test for completing the

loop could be done by comparing the high
byte of the array pointer with a limit

value. By arranging storage this way I

could preload the accumulator with the
final page value (line 11 A) and use it for

both loop-termination tests (lines 12D and
13A). Actually, it's rather unusual to have
a double loop in which the accumulator
never changes!

The final JETPRIME is a screamer,
some 140 percent faster than the TM2
code (4.1 seconds vs. 10, 4Mhz Ampro
Little Board)! Is it the ultimate Z80 sieve?

Possibly, but I imagine some TCJ reader
will squeeze out a few more tstates in his

lunch hour musings. (Send your race hor-
ses in; we'll publish the new winner!)
What's the point of a faster sieve? Well,

I wrote JETPRIME primarily because the
performance mountain was there to be
climbed. But there's also a practical side.

Some applications have very high-

frequency tight loops, and 100 percent or
better improvements are well worth
achieving by hand-coding, provided the

assembled code can be smoothly in-

tegrated with the high-level language.
JETPRIME stands as a small example of
what might be accomplished

Listing 3 was assembled with the AB-
SOLUTE flag set, to set up the page-
aligned addresses. However, some simple
initialization code (line 200) will convert it

into a fully relocatable routine; the code is

generated when ABSOLUTE is 0.

The one-time initialization code
modifies instructions in its own code
segment, first to change the instruction

that calls it (at 13F) into 3 nop's, so that it

won't be re-executed, and then to
calculate page-aligned addresses and set

the address pointers in the code. (The
primes routine might get re-executed by a
GO command to ZCPR, or if imbedded in

a larger program). I've caused the

initialization code to share memory with

The Computer Journal / Issue #32 23

the buffer area, a useful design that can be

used to reduce memory requirements

when you have one-time startup code.

This is pointless for a stand-alone sieve on

a 64K machine, of course, but is worth

keeping in mind for any routine integrated

into a larger program.

"Self-modifying" code is pejorative in

some programmers' lexicons. My personal

dictionary includes the advisory: know its

limitations, and use it to advantage. Self-

modifying routines are harder to debug

and require special attention to re-execute

correctly without side effects. And they

may not run properly on processors with

pipeline architectures, separate code and

data segments, or associative (cache)

memories. In particular, JETPRIME
might require revision to run successfully

on the current-mask version of the Z280.

Of course, for that chip further op-

timization may be possible also. (If you

are able to test this one, drop us a line!).

A note on timings. The real-time per-

formance of JETPRIME, or any

program, will vary with cpu clock speed,

memory access speed (wait states), and in-

terrupt processing. A cleaner test would
disable interrupts to avoid some timing

differences between systems with the same
clock speeds. (In an actual application it

may be necessary to leave interrupts run-

ning, or perhaps to mask only low priority

interrupts.) Timing comparisons should

omit all but minimal input/output, to

avoid spurious differences due to

variations in message routines and limited

I/O channel bandwidth; the TM2 code in-

curs some overhead in formatting the

value of 'count'.

Although JETPRIME is of interest in

its own right, its real mission is to remind

us that hand-optimized code can, at key

points, significantly boost the performan-

ce of CP/M systems.

Next Time
I hope many of you readers of Advan-

ced CP/M will talk back, suggest topics of

interest, contribute better mousetraps,

and pounce on your columnist's mistakes.

So send postcards!

In the next column: extending CP/M
while avoiding fratricide in the brave new
RSX world.

M O V
NG

Make certain that TCJ follows you

to your new address. Send both old and

new address along with your

expiration number that appears on

your mailing label to:

THE COMPUTER JOURNAL
190 Sullivan Crossroad

Columbia Falls, MT 59912

If you move and don't notify us, TCJ
is not responsible for copies you miss.

Please allow six weeks notice. Thanks.

r* Z Best Sellers
Z80 Turbo Modula-2 (1 disk) $89.95
The best high-level language development system tor your Z80-

compatible computer. Created by a famous language developer. High

performance, with many advanced features; includes editor, compiler,

linker, 552 page manual, and more.

Z-COM (5 disks) $119.00
Easy auto-installation complete Z-System for virtually any Z80
computer presently running CP/M 2.2. In minutes you can be running

ZCPR3 and ZRDOS on your machine, enjoying the vast benefits

Includes 80+ utility programs and ZCPR3: The Manual.

Z-Tools (4 disks) $169.00
A bundle of software tools individually priced at $260 total. Includes

the ZAS Macro Assembler, ZDM debuggers, REVAS4 disassembler,

and ITOZ/ZTOI source code converters. HD64180 support.

PUBLIC ZRDOS (1 disk) $59.50
If you have acquired ZCPR3 for your Z80-compatible system and want

to upgrade to full Z-System, all you need is ZRDOS ZRDOS features

elimination of control-C after disk change, public directories, faster

execution than CP/M, archive status for easy backup, and more!

DSD (1 disk) $129.95
The premier debugger for your 8080, Z80, or HD64180 systems Full

screen, with windows for RAM, code listing, registers, and stack. We
feature ZCPR3 versions of this professional debugger.

Quick Task (3 disks) $249.00
Z80/HD64180 multitasking realtime executive for embedded com-

puter applications. Full source code, no run time fees, site license for

development. Comparable to systems from $2000 to $40,000!

Request our free Q-T Demonstration Program.

V.

Echelon, Inc.
P.O. Box 705001-800

South Lake Tahoe, CA 95705

Z-System OEM inquiries invited.

Visa/Mastercard accepted Add $4 00

shipping/handling in North America, actual

cost elsewhere Specify disk format

(916)577-1105

im
CALENDARjCLOCK

KIT

Still Only

$69 &
• Works with any Z-80 based computer.
• Currently being used in Ampro, Kaypro

2, 4 & 10, Morrow, Northstar, Osborne,
Xerox, Zorba and many other computers.

• Piggybacks in Z80 socket.
• Uses National MM58167 clock chip.

• Battery backup keeps time with CPU
power off!

• Optional software is available for file

date stamping, screen time displays,

etc.

• Specify computer type when ordering.

• Packages available:

Fully assembled and tested $99.

Complete kit $69.

Bare board and software $29.

UPS ground shipping $ 3.

MASTERCARD, VISA, PERSONAL CHECKS,
MONEY ORDERS 6 C.O.D.'s ACCEPTED.

N.Y. STATE RESIDENTS ADD 7% SALES TAX

KENMORE
COMPUTER
TECHNOLOGIES

30 Suncrest Drive, Rochester, N.Y. 14609 (716) 654-7356

24 The Computer Journal / Issue #32

DosDisk™

An MS-DOS Disk Emulator for CP/M

DosDisk is system software for CP/M 2.2 and CP/M 3

(CP/M Plus) Z80 computers. Unlike any other program,

DosDisk allows CP/M programs to use files stored on an

MS-DOS (PC-DOS) floppy disk directly - without

intervening translation or copying.

With DosDisk, you can log into the pc disk, including

subdirectories. Regular CP/M programs can read, write,

rename, create, delete, and change the attributes of MS-

DOS files, just as if they were stored on a CP/M disk. The

disk, with any modified files, can immediately be used on a

pc.

On DateStamper, QP/M and CP/M 3 systems DosDisk

automatically stamps MS-DOS files with the current date

and time when they are created or modified.

DosDisk supports the most popular MS-DOS format:

double-sided double-density 9-sector 40 track disks. It

cannot format disks or run MS-DOS programs.

Preconflgured Versions

DosDisk is available for:

all Kaypros with a TurboRom
all Kaypros with a KayPLUS rom and QP/M
Xerox 820-1 with a Plus 2 rom and QP/M
Ampro Little Board

SB180 and SB180FX with XBIOS
Morrow MD3

Morrow MD11
Oneac ON!
Commodore C128 with CP/M 3 and 1571 drive

The resident system extension (RSX) version uses about

4.75K of main memory (plus 2K for the command
processor). For the SB180 and SB180FX, a banked

system extension (BSX) version is also available; it needs

about 5K of the XBIOS system memory and uses no main

memory.

Kit Version

To use the kit version of DosDisk, you need advanced

assembly-language experience in Z80 programming and

technical knowledge of your computer's BIOS.

If your computer's BIOS adheres precisely to the CP/M 2.2

or CP/M 3 standards and already has the capability of

using a general-purpose externally-set format, DosDisk

can be customized to work with it. You will need to write a

special DosDisk overlay.

The BIOS must be able to be configured to use the

physical parameters of an MS-DOS disk and to use the

logical disk parameter header (dph) and disk parameter

block (dpb) values supplied by DosDisk. The driver code

itself (the code that programs the disk controller, reads and

writes sectors, etc.) must reside in the BIOS.

DosDisk is available directly from the author of Check Product:

DateStamper and BackGrounderii: ,,««,, . ^ « OAK
[] DosDisk preconfigured version $30

Plu*Perfect Systems I I
DosDisk kit version $ 45

410 23rd St t] DosDisk manual only $5

Santa Monica, CA 90402 I I
DosDisk BSX and RSX,

for SB180/SB180FX with XBIOS $35
(in California, 6.5% sales tax)

Name: shipping/handling $ 3

Address: . total enclosed $

Computer:

Operating system:

DosDisk © Copyright 1987 by Bridger Mitchell

The Computer Journal / Issue #32
25

Systematic Elimination of MS-DOS Files

Part 1 — Deleting Root Directories

& an In-Depth Look at the FCB

by Edwin Thall

Dr. Edwin Thall, Professor of Chemistry at The Wayne
General and Technical College of The University of Akron,
teaches chemistry and computerprogramming.

MS-DOS manages programs without requiring you to know the

details of the input/output routines. DOS provides a powerful
and valuable service, but some of its operations can be fine-tuned.

DATACIDE, a utility to help manage MS-DOS files, is presented

in this article. The program displays root directory entries and, if

requested, calls the DOS function to delete the file. The File Con-
trol Block (FCB) plays an important role in the DATACIDE
utility and a substantial part of this paper explains how the FCB
works in conjunction with DOS. The FCB and DATACIDE do
not support subdirectories and Part II will address this topic.

You can readily eliminate an unwanted directory file by means
of the DELETE command. To erase TEST.EXT, type:

A> DELETE TEST.EXT

But what if you wish to rid the directory of 20 files? DOS requires

you to type DELETE followed by each file name/ extension 20

times. For file names with common characters, DOS allows the

wild card (*). For example, you can eliminate all .BAK extension

files with the command:

A> DELETE *.BAK

This command has two disadvantages: first, you do not have the

option of retaining any file with the .BAK extension, and second,

you must type DELETE followed by the file name/ extension to

erase files without the .BAK extension.

DATACIDE displays the directory file names one at a time and
offers you the option to delete, not to delete, or quit the program.
DATACIDE can be used on 160K/180K/320K/36OK/12OOK
floppys or the 20M fixed-disk format.

The Program Segment Prefix

DOS recognizes DELETE as the command to remove a file

from the directory. But how is the file name passed along to DOS
and eventually to the program? The file name needs to be stored

in a place in memory agreed upon by both the program and the

operating system. As you'll see, this location is the FCB.
Two types of files can be executed directly from DOS: .COM

files and .EXE files. .COM files are faster loading and require less

memory space, whereas .EXE files can make full use of all the

memory segments. In an .EXE file, you can put the program in

one 64K segment, the data in a second, the stack in a third, and
additional data in a fourth. An .EXE file can utilize up to 256K of

memory for a single program, whereas a .COM file is limited to

64K size.

Before DOS passes control to a .COM or .EXE program, it sets

up a 256-byte block of code and data. This area, the Program
Segment Prefix (PSP), holds vital information such as how to get

back to DOS, the addresses of the code that will take control

when you press Ctrl-Break, the amount of memory allocated for

the program, the file name characters, and the disk drive to be ac-

cessed. The PSP occupies the first 256 bytes of a .COM file or the

first 256 bytes of the DS segment for an .EXE file. Let's use the

Debug utility to peek at the PSP:

A> DEBUG
-D O.FF

You should be looking at 256 bytes of an unopened PSP (Figure

1). Table 1 provides an explanation of the PSP locations.

You can find everything you need to know about a DOS file in

the part of the PSP referred to as the FCB. This is one place in

memory for passing information about disk files between the

operating system and the program. The FCB starts at offset 5CH
and extends through 80H. All FCB locations and their functions

are listed in Table 2. You can enter file names directly by means of

the Debug N command. Type NCAPS.COM and then display the

FCB:

-NCAPS.COM
-0 5C.7F
DS:005C 00 43 41 50
0S:0060 53 20 20 20 20 43 4F 4D-00 00 00 00 00 20 20 20
DS:0070 20 20 20 20 20 20 20 20-00 00 00 00 00 00 00 00

.CAP
S COM.

Offset

00-0 1H

Function

EXE program exit address
02-03H Count of paragraphs of all system RAM
04H Reserved
05-09H DOS function dispatches
OA-ODH Terminate address
0E-11H Ctrl -Break exit address
12-15H Critical error exit address
1 6-5BH Used by DOS
5C-80H FCB
80-FFH Disk Transfer Area (DTA)

Tab 1 e 1

.

The Program Segment Prefix

Offset

5CH

Function

Disk drive (0=default, 1=drive A,2=drive B,etc.)

5D-64H File name (from 1-8 characters)
65-67H File name extension (from 1-3 characters)
68-69H Current block number
6A-6BH Record size (default value 80H)
6C-6FH Fi le size
70-71

H

Date
72-7BH Reserved by DOS
7CH Current record number
7D-80H Random record number

Table 2. The File Control Block

26 The Computer Journal / Issue #32

DS:0000
DS:0010
DS:0020
DS:0030
OS: 0040
DS:0050
OS:0060
OS:0070
OS: 0080
OS: 0090
DS:OOA0
DS:OOBO
DS:OOCO
OS: 0000
DS:OOE0
DS:OOFO

CO 20
CE 18
FF FF
CF 18

00 00
CD 2)

20 20
20 20
00 OD
00 00
00 00
00 00
00 00
00 00
00 00
00 00

00 40 00 9A EE FE-1D FO 42 02 CE 18 70 02 M .«..n .pB.N.p

E2 04 42 05 42 05-01 01 01 00 02 FF FF FF N.b.B.B

FF FF FF FF FF FF-FF FF FF FF C8 18 CA 2A K.J

00 00 00 00 00 00-00 00 00 00 00 00 00 00 N

00 00 00 00 00 00-00 00 00 00 00 00 00 00

CB 00 00 00 00 00-00 00 00 00 00 20 20 20 M!K

20 20 20 20 20 20-00 00 00 00 00 20 20 20

20 20 20 20 20 20-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

00 00 00 00 00 00-00 00 00 00 00 00 00 00

Figure 1. The PSP of an unopened file

FILE: : block : block 1 : block 2 : :
block n :

+ + + + + +

+ + + + +

BLOCK: : record : record 1 : record 2 : :
record 127

+ + + + +

+ + + + + +

RECORD: : byte : byte 1 : byte 2 : : last byte :

+ + + + + +

Figure 2. Organization of files by block, record, and byte

-A 80
DS:0080
DS:0081
DS:0084
OS: 0086
OS: 0089
DS-.008B

DS:0080
DS:008F
OS: 0090

PUSH
MOV
MOV
MOV
MOV
OR
MOV •

POP
INT

DS
AX,0
DS.AX
BX.0417
AL,IBX)
AL,40
IBX1.AL
DS
20

SAVE DS
SET AX=0
SET 0S=0
OFFSET OF CONTROL IN BX

CONTENTS OF CONTROL IN AL

SET CAPS LOCK ON
STORE MODIFIED CONTROL
RESTORE DS
RETURN TO DOS

Figure 3. Assembler code for CAPS.COM

Create a Disk File

All disk input/output operations by file name require the DX
register to point to the first location in the FCB (offset 5CH) and
the AH register to hold the special DOS function (see Table 3). A
file (CAPS.COM) will be created, opened, written to, closed,

renamed, and finally deleted. You can invoke the DOS function

to Create File with the following assembly language routine (omit

comments):

-A 100
DS:0100 MOV DX.5C ;FC8 ADDRESS
0S:0103 MOV AH, 16 ;CREATE FILE

DS:0105 INT 21 ;CALL DOS
DS:0107 INT 20 ; RETURN TO DOS
<RETURN> 2X

Run the program and then display the FCB:

-G
-D 5C,7F
DS:005C
0S:0060
DS:0070

01 43 41 50
53 20 20 20 20 43 4F 4D-00 00 80 00 00 00 00 00

17 OD 7B OA 40 00 00 00-00 00 00 00 00 00 00 00

.CAP
S COM.

Note the changes made to the FCB. Drive A is designated 01 (of-

fset 5CH) and the record size assumes the default value (80H).

DOS fills in the date (offsets 70-7 1H), the time (offsets 72-73H),

and the File Allocation Table (FAT) entry point (offsets 74-75H).

Actually, an entry point into the FAT has not yet been assigned

and the value shown is meaningless. Quit Debug and check the

directory listing:

-Q
A>DIR

CAPS.COM should appear in the directory with a file size of

zero.

The file name and extension (CAPS.COM) have been stored in

the FCB at offsets 5D-67H. The file name always appears in

capitals and is adjusted to the left with trailing blanks (20H). The

file name extension (offsets 65-67H) follows for further iden-

tification. For an unopened file, the disk default value (00) is

placed in offset 5CH.
A file is a collection of blocks, with each block containing 128

records. A record may hold from 1 to 32,767 bytes. The relation-

ship of blocks, records, and bytes is illustrated in Figure 2. For

files that are accessed from the first record to the last (sequential

files), it makes sense to set the record size at one byte. This way,

the number of records corresponds exactly to the number of bytes

read or written. Operations to read or write a file use the current

block number (offsets 68-69H) and current record number (offset

7CH) to locate a particular record. The first block is designated

00, the second is 01, and so on. The Open File operation sets this

entry to 00. The default value for the record size (offsets 6A-6BH)

is 128 bytes, and if not altered, records of 128 bytes must be read

from or written to a file.

The Disk Transfer Area (DTA) is the place in memory where a

record is stored on its way to or from a disk file. The DTA has a

default size of 128 bytes and is located at offsets 80-FFH. You

may have noticedthat the FCB goes up to 80H, whereas the DTA
starts at 80H. The reason for the overlap is rooted in the

development of CP/M. When CP/M changed from using only

sequential files to both sequential and random access, there was

not enough room for the random record number. The 4-byte field

was assigned offsets 7D-80H and, consequently, overlaps one

byte of the DTA. For sequential access, this poses no problem

because random record numbers are not used. For random access

files, however, the DTA has to be moved to a different location to

avoid conflict.

Write to File

The short program in Figure 3 will be written to the

CAPS.COM file. When executed, this program sets the Caps-

Lock key by turning on bit 6 in RAM address 00417H. Get back

to Debug and open the CAPS.COM file.

A>DEBUG
-NCAPS.COM
-A 100
DS:0100 MOV DX.5C
DS-.0I03 MOV AH, OF ;0PEN FILE

DS:0105 INT 21

0S:01O7 INT 20
<RETURN> 2X
-G

The DOS function to open the file searches the directory for the

file name appearing in the FCB. If a match is found, DOS moves

the file's information from the directory to the FCB, and the file

is ready to be updated. To write one record of 128 bytes to

CAPS.COM, enter the program (Figure 3) directly into the DTA
(offset 80H) with the Debug A command.

AH register Function

0FH Open File
10H Close File
11H Search First Match
12H Search Next Match
13H De 1 ete File
14H Read Sequential File
15H Write Sequential File
16H Create File
17H Rename File
21H Read Random File
22H Write Random File
23H File Size
24H Set Random Field
27H Read Block
28H Write Block

Table 3. DOS functions requiring file name in FCB

The Computer Journal / Issue #32 27

Compact, Low Power, Cost Effective

Single Board Computers
for Embedded Applications

World's smallest PC — and CMOS too!

A Motherboard and 4 Expansion Cards in the

Space of a Half-Height 5-1/4" Disk Drive!

4 WATTS!

5 VOLT ONLY OPERATION

SCSI BUS OPTION
(HARD DISK, ETC)

Little

from yJd#
Qty1

Board "/PC

POWERFUL
V40 CPU (8088 equiv.)

FLOPPY DISK CONTROLLER '
(3.575.25",

360 K/720 K, 1 .2 MB, 1 .4 MB) /<-»
j

UP TO 256 K /
EPROM/RAM/NOVRAM /
BATTERY BACKED RT CLOCK

PC COMPATIBLE
ROM-BIOS

MOUNTS ON A
5.25" DRIVE

(5.75"x8"x1")

2 RS232C
SERIAL PORTS

SPEAKER PORT

KEYBOARD PORT

PARALLEL
PRINTER PORT

PC BUS

4 MODE VIDEO
CONTROLLER
OPTION
FITS ENTIRELY

WITHIN BOARD
DIMENSIONS

The CMOS Little Board/PC represents a significant break-

through in microcomputer technology, providing system de-

signers with a highly compact, self-contained, low power,

"PC-compatible" system module in the space of a half height

5-1/4-inch disk drive. Everything but the keyboard, monitor,

disk drive, and power supply is included!

The CMOS Little Board/PC is ideally suited for embedded

microcomputer applications where IBM PC software and bus

compatibility are required and where low power consump-

tion, small size, and high reliability are critical. Its low power

requirements, compactness, and solid state disk drive sup-

port make the Little Board/PC especially useful in rugged or

harsh operating environments.

Typical applications for the Little Board/PC include:

• Data acquisition and control • Diskless workstations

• Remote data logging• Portable instruments

• Protocol conversion

• Telecommunications

• Security systems

• Intelligent terminals

• Point-of-sale terminals

• Network servers

• Distributed processing

• SCSI device control

Development Chassis/PC™

The Little Board/PC Development Chassis offers a

low cost, "known good" development environment for

projects and products based on the Little Board/PC
single board computer.

The Little Board/PC Development Chassis includes a

two slot PC Expansion Bus, a 360K byte (DSDD)
floppy disk drive, a power supply, and all I/O and
power cables required for immediate operation with

the Little Board/PC.

All I/O connections are conve-

niently available. Included on

the Development Chassis rear

panel are standard con-

nectorsfor keyboard, par-

allel printer, both serial

ports, optional video

monitor interface,

and the AC power

outlet and power

switch.

Distributors • Australia: Current Solutions (613) 720-3298 • Canada: Tri-M (604) 438-0028 • Denmark: Danbit (03) 66 20 20 • Italy: Microcom (6) 81 1-9406 • Finland: Symmetric OY
358-0-585-322 • France: Egal Plus (1) 4502-1800 • Germany, West: IST-Elektronik Vertribes GmbH 089-61 1-6151 • Israel: Alpha Terminals, Ltd. (03) 49-16-95 • Sweden: AB Akta

855 0065 • Switzerland: Thau Computer AG 41 1 740-41-05 • UK: Ambar Systems, Ltd. 0296 435511 • USA: Contact Ampro Computers Inc.

COMPUTERS, INCORPORATED

1130 Mountain View/Alviso Road
Sunnyvale, California 94089
(408) 734-2800

TLX 4940302 FAX (408) 734-2939

-A 80

Before running, remember to change the specification in the AH
register from Open File (OFH) to Write File (15H):

-E 104
DS:0104
-G
-D 5C.7F
OS:005C
OS:0060
OS: 0070

01 43 41 50
53 20 20 20 20 43 4F 4D-00 00 80 00 80 00 00 00

17 OD 26 OF 00 3F 00 00-00 3F 00 00 01 00 00 00

.CAP

S COM...

One record (128 bytes) was written to the CAPS.COM file and

the FCB was updated to reflect the change. Note the file size is

now 80H; the time the file was written to has been recorded; the

entry point into the FAT filled in at two different locations (of-

fsets 73-74H and 78-79H); and the current record points to the

second record (01) in the block. The file must be closed to finalize

these changes to the directory. Change the specification in the AH
register from Write File (15H) to Close File (10H) and run:

-E 104
0S:0104 15.10
-G
-0

A>0IR

CAPS.COM is complete and appears in the directory with a file

size of 128 bytes. To test the program, make sure the Caps-Lock

key is not set and type:

A> caps

Rename the File

The renaming of a file necessitates that DOS and the FCB
communicate two file names. DOS requires the new file name be

stored in offsets 6D-77H. To rename CAPS.COM as CAP-
SLOCK.COM, use the Debug A command to enter the new file

name in the appropriate FCB locations.

Value

00H

Description

Normal read®write file
01 Read-on I y file
02 Hidden
04 System file
08 Vo I ume I abe I

10 Subdirectory
20 Archive bit

Table 4. The attribute bits for fi le directory entries

A directory search will verify the removal of CAPSLOCK.COM.
-Q
A>DIR

Extended File Contorl Block

A variation of the FCB, called an extended FCB, can be used to

create or access special files. An extended FCB has a 7-byte

header (offsets 55-5BH) preceding the 37-byte normal FCB. The
first byte of the header must contain OFFH; the next five locations

(offsets 56-5AH) are reserved and not utilized in current MS-DOS
versions. The seventh byte (offset 5BH) holds the attribute of the

file.

The file attribute byte is needed to identify the type of file (see

Table 4). For example, normal files are 00H (if backed-up) or 20H
(not backed-up), read only files are designated 01H, and subdirec-

tories are represented by 10H. To demonstrate how to use an ex-

tended FCB, the subdirectory EXTENDED.SUB will be created.

Modify the empty 7-byte header with the Debug E command and
then store the file's name by means of the N command:

-E55
DS:0055 00. FF
-E5B
DS:005B 00.10
-NA: EXTENDED. SUB

.CAP
S COM. .

.

SLOCKCOM.?.

-NCAPS.COM
-A 60
DS:006C DB "CAPSLOCKCOM"
<RETURN> 2X
-D 5C.7F
DS:005C 01 43 41 50
DS:0060 53 20 20 20 20 43 4F 4D-00 00 80 00 00 43 41 50
DS:0070 53 4C 4F 43 4B 43 4F 4D-00 3F 00 00 01 00 00 00

Call the DOS function to Rename File and then check the direc-

tory:
-A 100
0S:0100 MOV DX.5C
DS:0103 MOV AH, 17 ;RENAME FILE

DS:0105 INT 21

DS:0107 INT 20
<RETURN> 2X
-G
-0
A>DIR

Delete the File

When a file is erased, the first character of the file name ap-

pearing in the directory is changed to E5H and the file's sectors

are rendered free in the FAT. It is not necessary to write the

program to perform these operations; one already exists and you

can call it with the DOS function. The opening of an existing file

is not a prerequisite to deleting a file, but the file name and drive

must be placed in the FCB. To erase CAPSLOCK.COM, specify

the file name/ drive and call the DOS function to Delete File:

Execute the following short program to create the subdirectory:

A>DEBUG
-NA:CAPSL0CK
-A 100
DS:0100
DS:0103
DS:0105
DS:0107
<RETURN>
-G

MOV
MOV
INT
INT
2X

.COM

DX.5C
AH, 13

21

20

; DELETE FILE

-A100
DS:0100 MOV DX.55 ; POINT TO EXTENDED FCB
DS:0103 MOV AH, OF ; CREATE FILE
DS:0105 INT 21

DS-.0107 INT 20
<RETURN> 2X
-G
-Q
A>DIR

Position

0-7

Information stored

File name
8-10 File name extension

11 Attribute
12-21 Reserved
22-25 Time and date
26-27 Entry in FAT
28-31 FI le size

Table 5. The 32-byte directory field

Format Sectors Entries LSN

160K 4 64 3-6

180K 4 64 5-8

320K 7 112 5-11

360K 7 112 5-11

1200K 14 224 15-28

20M 32 512 17-48

Table 6. The organization of directory sectors

The Computer Journal / Issue #32 29

EXTENDED.SUB <DIR> should appear in the directory

listing. This file is readily removed with the DOS command:

A>RD\EXTENDED.SUB

The Datacide Utility

Directory sectors are 512 bytes long and hold 16 file entries.

Each file is assigned the 32-byte field listed in Table 5. As you can

see, similar information is stored in the directory and FCB. The

.opening of a file moves data from the directory to the FCB.
Modifications are made only to the FCB when a file is updated,

however, DOS records changes to the directory when the file is

closed.

DATACIDE reads every directory entry and transfers active

file names to offsets 5D-67H in the FCB. In order for

DATACIDE to know the number of directory sectors to read and

where they are located, the disk format must be determined. A
special code to identify the disk format is written to the first byte

of the FAT during the format operation. These codes are:

F8 fixed disk
F9 1200K
FC 180K
FD 360K
FE 160K
FF 320K

Logical Sector Numbering (LSN) organizes the disk into con-

secutive sectors beginning with LSN 0. The boot record is always

LSN 0, the FAT begins with LSN 1 , and directory sectors follow

the FAT. Table 6 provides the location of directory sectors by

LSN. DATACIDE reads LSN 1 into memory and compares the

first byte with F8, F9, FC, FD, FE, and FF. A branch takes place

to the appropriate routine when a match is found. If no match is

made, the message "DATACIDE CANNOT READ DIREC-
TORY" is sent to the screen and the program is terminated.

The DATACIDE utility, in assembly code, is listed in Figure 4.

The program is organized to:

1

.

Set the Caps-Lock key so that drive selection and responses

of Y, N, and Q are in uppercase.

2. Wait for you to type the directory drive as A, B, or C.

3. Read LSN 1 into memory and identify the disk format.

4. Read the appropriate directory sectors.

5. Set the entry count and move active file names to the FCB.
File names are also displayed on the screen.

6. Offer the option to:

< Y > delete file and read the next entry

< N > read the next entry

< Q > quit the program

DATACIDE may on occasion display a few nonsense names at

the end of the directory. If this happens, press < Q> to terminate

the program. DATACIDE is a handy utility but, with the advent

of tree-like file structures, its worth is diminished. The second

part of this article will offer a more versatile utility that permits

the systematic elimination of all disk files. Part II will also detail

the file handle method and demonstrate how to access

"secretive" subdirectory files.

1

Figure 4. Assembler code for DATACIDE.EXE

MOV
MOV

DS.AX
BX.0417H;DATACIDE UTILITY ;

;PERF0RMS SYSTEMATIC FILE DELETION ;
MOV AL.IBXI

;WHEN FILE NAME DISPLAYED. TYPE: ;
OR AL.40H

; <v> TO DELETE :
MOV IBXI.AL

; <N> FOR NEXT FILE ;
POP DS

; <Q> TO QUIT PROGRAM ;
RET

CAPS ENDP
iiiiii»*###**»»»#******»**»**##**** ******************************

5SEG SEGMENT STACK •SELECT DRIVE 4 DETERMINE DISK FORMAT

DB 20 DUP (• STACK '

)

DISK PROC NEAR

SSEG ENDS DMESS: ;MUST SELECT DRIVE A,B,or C
.#***»»###*###****»##**»»******##**##******##*#*************»***»* MOV DX, OFFSET MESS1 ;MESSAGE TO SELECT DRIVE

OSEG SEGMENT MOV AH,

9

; PR I NT STRING FUNCTION

DRIVE DB ? ;DISK DRIVE INT 21H

ASCI IZ DB ' :\\0 MOV AH.l ;KEYBD INPUT FUNCTION

BAIL DB ;WILL QUIT IF OBBH STORED HERE INT 21H

MESS1 DB 0DH,0AH,0AH, 'SELECT DRIVE <A> or <C> : $' MOV ASCIIZ.AL ;SAVE DRIVE LETTER

MESS2 DB 0DH.0AH, 'DELETE FILE? YES<Y> N0<N> QUIT<Q> $' CMP AL.41H ; CHECK FOR DRIVE A

MESS3 DB ODH.OAH.'FILE DELETED FROM DIRECTORY $' JZ DRIVEA

MESS4 DB ODH.OAH.'FILE WAS NOT DELETED $' CMP AL.42H ; CHECK FOR DRIVE B

MESS5 DB 0DH,0AH,0AH,' DATACIDE CANNOT READ DIRECTORY $' JZ OR 1 VEB

ENTRIES DW ? ; NUMBER OF DIR ENTRIES CMP AL.43H ; CHECK FOR DRIVE C

FAT DB 512 DUPC'F") ;FIRST FAT SECTOR JZ DRIVEC

DIR DB 16384 DUPC'S") ;32 DIR SECTORS JMP DMESS ; REPEAT DRIVE SELECTION
OSEG ENDS DRIVEA: MOV DRIVE.O ;SAVE DRIVE NUMBER.#*##*#*#*»»»»»#*##**»****#*»»»##***********»*********************
t JMP SETDIR
CSEG
MAIN

SEGMENT
PROC FAR
ASSUME CS:CSEG.DS:DSEG.ES:DSEG.SS:SSEG

DRIVEB: MOV
JMP

DRIVE.1
SETDIR

;SAVE DRIVE NUMBER 1

DRIVEC: MOV DRIVE,

2

;SAVE DRIVE NUMBER 2

START:
;SET RET AND OS REGISTER SETDIR: SET CURRENT DIR TO ROOT DIR

PUSH DS MOV AH.3BH FUNCTION TO SET CURRENT DIR
SUB AX, AX MOV DX, OFFSET ASCI IZ ASCIIZ PATH SPECIFICATION
PUSH AX INT 21H
MOV
MOV

AX.DSEG
DS.AX

;READ FIRST FAT SECTOR TO GET DISK FORMAT
MOV AL, DRIVE GET DRIVE

CALL CAPS ;SET CAPS-LOCK KEY MOV DX,1 FIRST FAT SECTOR
CALL DISK DETERMINE DRIVE 4 FORMAT MOV CX,1 ONE SECTOR
CALL RDIR READ DIR SECTORS MOV BX, OFFSET FAT SAVE FIRST FAT SECTOR
CMP BAIL, OBBH QUIT PROGRAM? INT 25H READ DISK
JZ DONE POPF RESTORE FLAGS
CALL MOVDIS ;MOVE FILE NAME TO FCB 4 DISPLAY

RET
ENDP1

1

X)NE:

IAIN
RET
ENDP

DISK

SET CAPS-LOCK KEY ;READ DIR SECTORS

CAPS PROC NEAR RDIR PROC NEAR
PUSH DS MOV AL.FAT ;GET DISK FORMAT
MOV AX,0 CMP AL.OFEh ;160K FORMAT?

30 The Computer Journal / Issue #32

JZ K160 READ SEC 3-6 JZ SKIP ;DI SPLAY EXT
CMP AL.OFCH 180K FORMAT? MOV AH, 2 ;DI SPLAY CHARAC.
JZ K180 READ SEC 5-8 INT 21H
CMP AL.OFFH 320K FORMAT? INC BX ;NEXT CHARAC.
JZ K320 READ SEC 5-11 LOOP FNAME ;DO UP TO 8 TIMES
CMP AL.OFDH 360K FORMAT?
JZ K320 READ SEC 5-11 SKIP: MOV BX,65H ;POINT TO EXT IN FCB
CMP AL.0F9H 1200K FORMAT? MOV DL,(BX1
JZ K1200 READ SEC 15-28 CMP DL," "

; IS EXT BLANK?
CMP AL,0F8H HARD DISK? JZ POPDS ; NO EXT
JZ HARD READ SEC 17-48 MOV DL,"." ; DISPLAY PERIOD
MOV BAIL.OBBH CANNOT READ DIR SECTORS MOV AH,

2

MOV DX, OFFSET MESS5 ERROR MESSAGE INT 21H
MOV AH,

9

MOV CX,3
INT 21

H

EXT: MOV DL.tBXI
RET MOV AH, 2 ;D I SPLAY EXT CHARAC.

INT 21H
K320: MOV ENTRIES, 112 SAVE ENTRY COUNT INC BX ;NEXT EXT CHARAC.

MOV CX,7 READ 7 SECTORS LOOP EXT
MOV DX,5 START WITH SEC 5 POPDS: POP DS
JMP RSEC READ DIR SECTORS OPTION: DISPLAY OPTION MESSAGE

K160: MOV ENTRIES, 64 SAVE ENTRY COUNT MOV DX,OFFSET MESS2 , YES/NO/QUIT OPTION
MOV CX,4 READ 4 SECTORS MOV AH,

9

PRINT STRING
MOV DX,3 START WITH SEC 3 INT 21H
JMP RSEC READ DIR SECTORS ;YES/NO/QUIT OPTIONS (MUST SELECT Y, N, or Q)

K180: MOV ENTRIES, 64 SAVE ENTRY COUNT MOV AH,1 ;KEYBD INPUT
MOV CX,4 READ 4 SECTORS INT 21

H

MOV DX,5 START WITH SEC 5 CMP AL,"Y" INPUT "Y" ?

JMP RSEC READ DIR SECTORS JZ YES DELETE FILE
K1200: MOV ENTRIES, 224 SAVE ENTRY COUNT CMP AL,"N" INPUT "N" ?

MOV CX.14 READ 14 SECTORS JZ NO NEXT DIR ENTRY
MOV DX,15 START WITH SEC 15 CMP AL,"0" .INPUT "Q" ?

JMP RSEC READ DIR SECTORS JZ QUIT QUIT PROGRAM
HARD: MOV ENTRIES, 51

2

SAVE ENTRY COUNT JMP OPT I ON .SELECT AGAIN
MOV CX,32 READ 32 SECTORS
MOV DX, 1

7

START WITH SEC 17 YES: ; DELETE FILE NAME IN FCB
RSEC: MOV AL, DRIVE GET DRIVE PUSH DS

MOV BX, OFFSET DIR BUFFER AREA PUSH ES
INT 25H READ DISK POP DS ;ORIGINAL DS
POPF .RESTORE FLAGS MOV DX,5CH ; POINT TO FCB
RET MOV AH.13H ; DELETE FILE

RDIR ENDP INT 21H
> POP DS
;MOVE FILE NAME TO FCB i DISPLAY ON SCREEN CMP AL.OFFH ; ERROR CODE
MOVDIS PROC NEAR JZ ERROR

MOV AL.DRIVE ;GET DRIVE MOV DX, OFFSET MESS3 ;CONFIRM FILE DELETED
INC AL , 1 NCREASE BY 1 FOR FCB MOV AH, 9 ;PRINT STRING
PUSH DS ;SAVE DS
PUSH ES ;ORtGINAL DS ASSIGNED INT 21H

JMP NO
MOV DX, OFF SET MESS4 ; OPERATION FAILEDPOP DS ; POINTS DS TO FCB

ERROR:
MOV BX.5CH DRIVE SPECIFICATION MOV AH,

9

MOV tBX),AL ;SET DRIVE IN FCB INT 21

H

POP DS RESTORE DS
;MOVE FILE NAME FROM DIR TO FCB NO: ;DI SPLAY NEXT ENTRY

CALL CRLF CALL CRLF

CALL CRLF
CALL CRLF
ADD SI, 21 ;POINT TO NEXT DIR ENTRY

MOV SI, OFFSET DIR POINT TO FIRST DIR ENTRY JMP MOVE
MOVE: CMP ENTRIES, LAST ENTRY?

JNZ CONTIN IF ZERO QUIT PROGRAM QUIT: RET ;END PROGRAM

CONTIN:
RET MOVDIS ENDP

DEC ENTRIES Ntw emrw uuumi
MOV AL.ISI1 FIRST FILE NAME CHARAC. ; CARRIAGE RETURN AND LINE FEED

CMP AL,"A" BELOW "A" ?
CRLF PROC NEAR

JB NEXT YES—GET NEXT FILE NAME MOV DL.ODH
MOV AH, 2

INT 21

H

CMP AL,"Z" ABOVE "Z" ?

JA NEXT YES—GET NEXT FILE NAME MOV DL.OAH
MOV D

1
, 5DH POINT TO FILE NAME IN FCB INT 21H

CLD SET DIRECTIONAL FLAG RET

MOV CX.11 ;MOVE 11 CHARACTERS CRLF ENDP

REP MOVSB NAME FROM TO FCB »-

JMP SCREEN CSEG ENDS
•it***

NEXT: ADD SI, 32 ;POINT TO NEXT DIR ENTRY
JMP MOVE

END START

;DI SPLAY FILE NAME WITH EXTENSION
SCREEN MOV CX,8

PUSH DS
PUSH ES
POP DS
MOV BX.5DH

; UP TO 8 CHARAC.
;SAVE DS
;ORIGINAL DS
; POINTS DS TO FCB
;FILE NAME IN FCB

FNAME: MOV DL.IBX1
CMP DL," "

;FILE NAME IN FCB
; CHECK FOR BLANK

The Computer Journal / Issue #32 31

WordStar 4.0 on Generic MS-DOS Systems
Patching for ASCII Terminal Based Systems

by Phil Hess

As with most software nowadays for MS-DOS systems,

MicroPro's WordStar 4.0® assumes IBM compatibility right out

of the box. This means that it makes certain assumptions about

the system's video adapter memory, hardware ports, and BIOS.

MS-DOS® alone is not enough to run WordStar 4.0 as

distributed.

However, since WordStar 4.0 is a well-designed program, you

can install it for different levels of IBM compatibility by making

changes to the user patch area with the WSCHANGE installation

program or the MS-DOS DEBUG utility. All patch points are

documented in a file named PATCH.LST included on the Wor-

dStar distribution disks. This file contains about 40 pages of

technical documentation and serves as an excellent guide to the

inner workings of WordStar. Anyone who is even remotely in-

terested in learning more about how WordStar works should im-

mediately print out this entire file and spend some time studying

it.

One of the first patch points you'll notice in the user patch area

listing is the IBMFLG byte. The bits of this flag determine what

assumptions WordStar makes about your system, as follows:

Bit - If set, assumes IBM-compatible BIOS.

Bit 1 - If set, assumes IBM-compatible timer/counters.

Bit 2 - If set, assumes IBM-compatible video RAM.
Bit 3 - If set, assumes IBM-compatible timer tick.

As distributed, all four bits are set. However, if your system

isn't completely compatible in one of these areas, you can set the

corresponding bit to 0. For example, if writing directly to video

RAM causes "snow" on your monitor, you can turn bit 2 off and

force WordStar to use BIOS routines for console output.

Similarly, if your system lacks the counter/timer which controls

the speaker (for sounding a beep) or the timer which generates a

user-programmable interrupt every l/18th second (for printing

and editing simultaneously), you can turn those bits off too.

If your system is not even IBM BIOS compatible and runs only

generic MS-DOS software, you can turn all the IBMFLG bits off.

This forces WordStar to use ordinary operating system functions

for console I/O. At this level, all systems which run MS-DOS are

compatible.

If the operating system functions are used, you will also need to

install WordStar for your terminal. Refer to the PATCH.LST
listing and your terminal manual for help with installing the

necessary escape codes for cursor addressing, clearing the screen,

and so on.

Once installed for generic operation and your particular ter-

minal, WordStar will operate properly, with one exception. Un-

fortunately, this exception is a rather serious one, and is the

primary motivation for this article. Although WordStar will now

edit and print files properly, as soon as you try to save an edited

file with A K A D, WordStar dumps you back to DOS. This is in-

deed perplexing, but has nothing to do with your system. Even

when run on an IBM PC and installed for the PC-DOS ANSI
console device driver, WordStar does the same thing.

For some reason, WordStar 4.0 has been deliberately crippled

to prevent full operation when installed with the IBMFLG BIOS
bit set to 0. The reason why MicroPro did this is anyone's guess.

Perhaps this was their clumsy way of limiting the range of har-

dware they would have to support. In any case, there is a simple

two-byte patch which forces WordStar to operate correctly, even

when installed for a generic MS-DOS system.

This patch is made to the main WordStar program file

(WS.EXE) using the MS-DOS DEBUG utility. Since this file is an

EXE file, it's necessary to rename it using a different extension

to force DEBUG to treat the file as a normal file of bytes. Refer

to your MS-DOS documentation for help with DEBUG.
Once DEBUG has been loaded, search for the code which is

preventing WordStar from saving a file (your responses are un-

derlined):

REN WS.EXE WS

-S 100 FFFF F6 06 94 01 01 74 IE

8AA6:BC77

With my version of WordStar, this code is at location BC77 in

the file. With other versions, the location of this code may differ.

The pertinent code we're looking for, however, is revealed by

disassembling the bytes at this location:

-U BC77
8AA6:BC77 F606940101 TEST
8AA6:BC7C 741E JZ

BYTE PTR 101941,0)
BC9C

As you can see, this code checks bit (the BIOS bit) of the byte

stored at the indicated address (this is where IBMFLG is stored by

WordStar at startup). If the bit is 0, WordStar jumps to its exit

code, thereby dumping you to DOS. Disabling this jump is all

that's needed to make WordStar behave.

Unfortunately, simply substituting NOP's (90 hex) for the two

bytes of the JZ instruction isn't enough. While this corrects the
A K A D problem, it creates another problem. Apparently Wor-
dStar does a checksum of this portion of the code when it reads in

the printer overlay code and acts as though the printer overlay file

doesn't exist if the checksum isn't correct. However, there's a way
of disabling the bit check without affecting the checksum, as

follows (still in DEBUG):

-E BC7B 01 \F_

-E BC7D IE 00

The effect of this patch is again revealed by disassembling:

-U BC77
8AA6:BC77 F60694011F TEST
8AA6:BC7C 7400 JZ

8AA6:BC7E etc.

BYTE PTR 10194), 1F

BC7E

Now, regardless of the result of the bit test, the JZ will either

fall through to the next instruction or jump to it. To offset the

change of the JZ relative jump address from IE to 00, IE was ad-

ded to the 01 operand in the previous TEST instruction. This

keeps the code's checksum intact.

Once saved to disk and renamed to an EXE file, WordStar

32 The Computer Journal / Issue #32

will now operate correctly:

-w.

-9.

REN WS WS.EXE

Installing WordStar Using DEBUG
WSCHANGE, WordStar's installation program, itself assumes

that your system has an IBM-compatible BIOS. If your system

can only run generic MS-DOS software, you will need to install

WordStar for your terminal on a different system or else use

DEBUG instead of WSCHANGE to install WordStar. However,

first try running WSCHANGE on your system. Many MS-DOS
systems have some IBM compatibility built into the BIOS, usually

enough to run programs that use the BIOS for keyboard input

and simple types of console output. Where they usually fall down
is in emulating IBM BIOS interrupt 10, functions 6 and 7. These

functions perform window scrolling on an IBM video adapter and

are difficult to emulate with a serial terminal. WSCHANGE does

not use these functions and so should run correctly even with only

limited BIOS compatibility.

To use DEBUG to install WordStar, rename WS.EXE as

shown above and add 0700 to the patch area address to obtain the

DEBUG location. For example, to patch the IBMFLG byte,

which is at address 023B in the patch area, use 093B as follows:

-E.093B IF 00

Custom Console Status Routine (UCNSTA)
Because MS-DOS does not provide appropriate functions for

checking keyboard status, most programs use the BIOS to check

if a key has been pressed. You will probably want your patched

WordStar to do likewise by writing a custom console status

routine which uses your system's BIOS. This routine can be in-

stalled at patch point EXTRA (0FB8) in the user patch area. If

your system's BIOS has an IBM-compatible interrupt 16

(keyboard input), the following console status routine will work:

054B 80F900 VIDATT: CMP CL.00
054E 740D JZ DIM
0550 B21B MOV DL.1B
0552 B406 MOV AH, 06

0554 CD21 INT 21

0556 B228 MOV DL.28
0558 B406 MOV AH, 06
05 5A CD21 INT 21

055C C3 RET
05 5D B21B DIM: MOV DL.1B
055F B406 MOV AH, 06
0561 CD21 INT 21

0563 B229 MOV DL.29
0565 B406 MOV AH, 06
0567 C021 INT 21

0569 C3 RET

Any attribute bits set?
Jump if not
Load ESC
DOS func 6 (console output)
Call DOS to output char
Load (

DOS function 6
Ca I I DOS to output char

Load ESC
DOS func 6 (console output)
Cal I DOS to output char
Load)

DOS function 6
Call DOS to output char

Naturally, if your terminal can also display text underlined and
in reverse video, you can write a more sophisticated VIDATT
routine for on-screen display of those attributes as well.

Extended Characters

If your terminal is not capable of displaying the IBM extended

set of foreign and line-drawing characters (ASCII 128-255), you
can make additional patches to substitute normal ASCII charac-

ters wherever WordStar uses these extended characters. For

example, WordStar uses line-drawing characters to draw a box
around its menus. If your terminal can't display these characters,

you can substitute hyphens or blanks at patch point BOXCHR
(0632) in the user patch area.

Similarly, WordStar uses the IBM dot character for displaying

soft spaces. You can substitute a normal space or a plus sign for

this extended character at patch point SOFTSP (04BC) in the user

patch area.

One place where WordStar uses extended characters that are

not located in the patch area is in its display of the symbol which
represents the Enter key on IBM keyboards. WordStar uses

several extended characters to display something which looks like

this:

0FB8 84 01 EXTRA: MOV AH,1
0FBA CD 16 INT 16
OFBC 74 03 JZ N0TRDY
0FBE B0 FF MOV AL.FF
0FC0 C3 ' RET
0FC1 B0 00 N0TRDY: MOV AL.00
0FC3 C3 RET

;Function 1 (kbd status)
; Interrupt 16

;Jump if no char ready
; Return FF if char ready

;Return 00 i f not ready

This string of three extended characters can easily be found in

the WSMSGS.OVR file and replaced by normal ASCII charac-

ters. To locate these characters, use DEBUG to search for them:

Be sure to install a jump to this routine at patch point UC-
NSTA (0654) in the patch area as per instructions in the patch

listing:

0654 E9 61 09 UCNSTA: JMP EXTRA

In addition, if your system or terminal does not have a type-

ahead buffer, set bit 5 of MPMFLG (023D in the user area) to 0.

WordStar will then perform more frequent checks of the

keyboard's status, providing an adequate type-ahead facility.

Custom Video Attribute (VIDATT) Routine

Another patch you can make is to write a custom video at-

tribute routine for your terminal. This routine is installed at patch

point VIDATT (054B) and is fully documented in the user area

listing. To summarize, WordStar passes the current video at-

tributes (highlighted, inverse, etc.) to the routine in the CL
register and it is up to the VIDATT routine to turn on these at-

tributes.

A simple routine is given below which highlights all marked text

(bold, italics, error messages, etc.) and displays normal text in

dim. This routine should work on any terminal which uses ESC
(and ESC) to display bright and dim text.

DEBUG WSMSGS.OVR
-S 100 FFFF 11 C4 D9
8AA6:4251
-E 4251 11 3C
-E 4252 C4 2D
-E 4253 D9 27
-W

S.

(Substitute
(Substitute
(Substitute

<)
-)
')

Before making any of these changes, try running WordStar to

see if your terminal can display the IBM extended character set.

Many modern terminals such as those from Wyse can display the

entire IBM set.

Conclusion

Although MicroPro made it difficult to run WordStar 4.0 on
generic MS-DOS systems, with the right patches it's possible to

force WordStar to operate correctly. At the same time, it should

be pointed out that WordStar is one of the few major software

packages that comes with enough information about its inner

operation to make these changes possible.

Note: This article was composed with the IBM version of Wor-
dStar 4.0 (patched as described above) running on a Morrow
MD3 equipped with a Co-Power Plus 8088 co-processor board
and Wyse WY-99GT serial terminal.

The Computer Journal / Issue #32 33

K-OS ONE and the SAGE 68000
Part 2— System Layout and Hardware Configuration

by Bill Kibler

This is the second of many parts

dealing with bringing up the KOS-ONE
operating system on a 68000 computer.

The first installment covered some general

operating system information and specific

steps in bringing up the SAGE/KOS-ONE
boot loader. In this installment we will

cover more on the overall system layout

and get into the SAGE hardware con-

figuration.

Making a BIOS for a computer system

is a major programming task, and as such

requires some planning and organization.

In part one we quickly covered some of

the considerations, mainly the disk for-

mats. Programming the BIOS requires an

understanding of the hardware han-

dshaking. A number of design con-

siderations will be needed by you, as not

all of the options will be implemented.

Two programming steps must be done fir-

st: hardware specification tables; and sof-

tware flow diagrams.

Hardware Specifications

To understand the project we must first

outline the system as built or designed. In

this case we are using a SAGE computer

and must look at the number and type of

devices used. In setting up the BOOT
LOADER we just copied code from the

SAGE's utilities and made all the calls to

the PROM. Our direction now is to make
an operating system that will do exactly

what we wish it to do, and hopefully

somewhat faster than using the PROM.
Although using the PROM calls did work
and will allow the system to work, the

system ran far too slow, taking 2 minutes

to boot. One of the reasons I like to make
my own systems, is to have a fast boot

operation, hecause as a systems

programmer, my systems at first, crash

often.

One learns by making mistakes, but not

having enough information about your

system will most likely keep you from
learning at all. When we talked about the

disk formats, it was necessary because

those were hardware design limits.

Ignoring those limits would mean never

getting started. The same is true for the

BIOS design. Should you decide to put all

the code where there is no memory, the

system will not work. The hardware sets

the limits, and defines the options.

In the SAGE we have 512K of 8 bit

memory with parity. The disk controller is

a NEC 765. There are two 8255s each

providing three 8 bit parallel ports. In-

terrupts are handled by both the 68000

and an interrupt controller 8259. Two
8253s provide clock and baud rates. Two
8251s provide the terminal and remote

serial interfaces.

The Hawthorne TINY GIANT uses a

68681 DUART which provides all of the

serial and parallel interfaces. The disk

controller is a 1770 by Western Digital.

The system has 256 or 512K of 8 bit

memory. Three interrupts are used direc-

tly with the 68000 as well as TRAP1. The
overall design and programming problems

are a little easier due to a more straight

forward design.

The SAGE's design has multiple layers

of interrupts and more items that must be

checked and initialized properly. I have

included some of the tables and charts

that must be created in order to sort this

information out. The hardware layout

which describes the general overall design

is shown in Figure 1. The first item that

should catch our eye is the interrupt struc-

ture. We see several items that could be

ignored, and in my case the optional win-

Chester interface is not present. I doubt

that I will use the IEEE-488 interface or

all the clock driven interrupts. The items

of interest to me are the floppy controller,

the terminal serial device, and the real

time clock. This does not mean I will not

use the extra serial port, just that I will use

it in a interrupt mode. In the case of the

Centronics port, polling and strobing the

device will most likely be more than

adequate. It will always be possible at a

later date to add these features into the in-

terrupt system.

Shown in Figure 2 is what I call a device

map. This map lists the devices, their ad-

dresses, in the sample! the bits and their

meanings. When we check over the in-

dividual bits, we see that several are used

to turn other functions on and off. The C
port of U22 turns several of the floppy

disk operations on and off. The NEC 765

is capable of selecting drives but SAGE
chose to do this through the C port.

Motors are also turned on by this port.

We can reset the controller from here as

well. I have also indicated how we want

the device to be setup and which bits

should be set at the beginning.

Software Flowchart

Now that we have an understanding of

the hardware layout, the next step is to

determine the design of our software in-

terface. The flow chart of the

initialization process shown in Figure 3 is

done in a block manner with one section

expanded to show the type of detail

ultimately needed. This detail will look

somewhat like Pascal or any structured

language. I once worked with a person

who did her design in pseudo-Pascal first,

then changed all the ideas into assembly

code. The design behind Pascal was exac-

tly that — a method to lay out and design

a program. Once properly laid out, any
form of language can be substituted for

the ideas expressed.

It is at this stage that we determine what

and how we will handle various tasks. If

we compare the sample BIOS supplied by
Hawthorne we can see that it is set up for

a 1770 disk controller. This controller uses

a separately addressed register for each

part of the operation. The 765 has a

serialized command structure. That

means a series of commands, one after the

other, is submitted to the data port. At the

end of the command string the chip will

then perform the operation. I personally

think the 1770 is a better chip, but then I

have more experience with that line of

devices. The NEC 765 is the device used in

IBM PC computers, most likely due to the

cost rather than the design abilities.

The difference is less in the serial

devices, where it is possible to substitute

serial port address for ports in the

DUART program. However the 765

requires different handling of the entire

command operation. We see this most
clearly when comparing the disk read

operation steps listed. I have compared a

section of pseudo code to show the dif-

ference. In the 1770 code we can handle

each operation separately. The 765 does

however require making up of a table,

changing values in it, and then writing it

to the command register. I know that

most of you will not see much difference,

34 The Computer Journal / Issue #32

1 J
^ (fl 3

z ^

aD^ £) p u.1

1
"•? t - t

1 w
n 111M

^7

1 (0

5*

P £

55

Z«

0- H

1

a.

ft

i\

*k h
<c

'5

I-

Q) -

& <

If

9

1

p

)

3 3
T T^

<

^*- >
p 3

< 7-

1'

fc
ot p <

:£
-4- r-

1 tf

.*

1
1

9 -4
<* P P c

p. * J
v

1

) -*
11
m

1- y -J

-* :

r -«

ft)
Hi

x 2

J<5&
^5

* d r- ^

r ^

<n
_

> i \

cvi

*

^ 1 £"A
<f' V /

—

s
<r

1

5

1

^

<
i

•6
k;

S

<

s

J

<x

! g

L

if*

J-3
c*

fa

a

t*
r
p «

isV
8S

2»£
A <t

i*

I 1

Z *
g S

<«

3
o

— «

60 g

cd

X

The Computer Journal / Issue #32 35

o
UJ

Si

go"
CL UJ

_ll

£z £
Z — Qon z
oco <
O "UJ

zSgo o ce
ce ii h-h < co
z
UJ II II

o _w* CD CDo o
«- o

r» o o«ooOO —oo-
u. o o
u. — o

in
in
CM
00

Q 1- vo— a.
Ul *-* ce <3 H- o cco 0_ — i—
_l 13 cc in
_J ce CL II CL< ce

UJ
< •-

t- \- CC CL
0_ CO h- CO CL H <O 1- z ui => cc
_l 0. — x cc ii i— a
u. ^ CD CC UJ
CL or a — UJ >- II 3

ce UJ X H- Q O
_l Ul a Z < h- 1- CC _J
U- t- o cc — ui a. a. uj _i

CL z o o or i— => => _i <
1- O ^» — CC Q CL CC CC _l

CM 1 O >- CO ccuitursccceoi—
!3 U. ^. _J o UJ UIH- >CCUJUJCea_~ I- cc o. h- i- z z CO < Ul CC I— 1- (- =>

cczt >- ce — => — o ~ 3 >-0 — UJZZZCC
UJ O Q LIJOI- z 1- O 1 o cc
_l >- < H- U. CL — uj co in * -^uz ouJIOQUJ>-Z 103 1— I- ~3 CO CC CO cc — cc cc \-o in < ce o — i in ce cc •* vO < — UJ Ul 1— z
CC CM UJ < ^ cm ce o ce co cc *-» CL O _l CO H- H- 0- —
I— oocexuioocoui u. 3 — < CO CO CO z>
Z H- OT O < 1- CO cc >->-Z-<tUJuJCCOo ^ o \ y: zooiijjxoog- H- 1— CO CO UJ cc a. — x x cc z

ce CC Ul 1- Q on: Ul OO UJ
O CC < H- Z — O o O OT — o SOCCUIZZI->

h- _l Z — Z _l UJ CL Lam o uj_iuiuj zm
clos: — moon: a z sru-i— 33 — +
=> ui s: uj cc < _i _l< iC ul
CC LU Q DC Q rh UJ ? o O COksououzzh or CC O < f-l

,_ Ul — SH-STOUJ — U. H- i- z 2:
*3- 1- t- O O 1- O z z o
O z + + + s: to o O II II H- *
O — _i + _i o o CC
u_ ^ < CM — CM 1 — < + ^^ m -mm 00 — MDlTlflON — o
u. UJXXX-ZU-CCCI-HSOCtlO

o o oo o
t/> «— o KN O O
CO 5 II II II II II II II II "* o * O O CO
UJ o o 9-~ oo- »3- CO
or OO— NM"»lfnD^ OO o o — 1

—

1- — o — o~-o — o
o u.ceororcececeorce u. o u. o o CO — — — OO — — OO
Q<

u. o u. o o _l CD — — .- — oooo
in

l

CCO
ON vO 1— OCO-3-OOCOCOO
in m Or-r~r~r~vOvOvOvo
CM 1 UJOOOOOOOO
CD => >

*

UJo
oo

Ul CO
Q CO

111_ re— a
UJ S
CD< <
CO in

?»
in
CM

a
CM
CM
I

CO
UJ
CO
CO
Ul
ccQo<

UJo

Ula
cc
uiX o o

cc \
a. —

< < r-
co

ce cc o
ui ui o
co co u.

u.
i— *i —

r~- r- coO O oooo
u. u. u.
u. u. u.

I— < in o co
ui — cm o 3inOcooNcei— inin — OCC
I— OQQLUcom — Oinco<incMZSuj
<=)=3Z>UJCLCMSSCM2:OCMCOCCCC2:ce<<<ui — couiuicoooco — lulu —
CQCQC0C0 — QU.CCCCCLU.U.OCOI— I- I-

co
CL

CM
+

on o\m m
CM CM
co co
CL CL

oro
0-

<z
E
or
UJ

U-o
Z H-o or

i=£o
UJ _l
_J <
Ul z
CO —

s.
«-. uj or< t- ui< \~
x oro u.
i- o o— 33 < >-
to CO I-
a_ —— ii ora <
•^ CM CL

— II

>-
CCo

CD

>-
CO o
ui or
=> i-

ui — CO
o or uj— Q o
ui — i-Q CL =>

I- OO X
Z<OI-— ON —
I- 3
8£

ccoo<
z
Ul

zO

-OH
CO Q

CO O
II * CD

m ii ii

*r ko t~-(NOnoOhl-l-hh
U. CO CD CO CD CO

CD Ul
UlX Ul

O —
I-— II3
CO •*
CL «— K>
Q -w CM

cm O
8h
u. —
U. CO

Ul
_l

UJ CD
_l <
co co
< —
CO o— \ co
a ui co\ _i ui
Ul CO cc
_l < o
CO z o< UJ <z
UJ Z CM

UJ
iC I- or
_l coo< —
I- _l —
II II II

m \o r~

I— I— V—

CO CO CO

<
or
ui
cl >-

°8:
< o
s: -ia u.

>- o z
0. I- UJ O r-
0-

3<I ^ Ul Ul
: co > >
O

ui —
l- co
<z >-— os<
CC UJ
ui or
i-

+
+ >-
O Q
i- or

ii ii

o —
K H
C0 CO

O CC CCa a
o. h- i-
o. o oo UJ ui
_i -J -J
U. Ul UJ

co co
+
UJ I I— O —
Q -I -I
U. CO CO

II II II

CM l*\ •*

— t —
CO CO CD

<z
CD

CO
u.
U. H-O UJ

CL CO
\ZliJ
o or

5 <->o ui ^c
or co

or a. —o o
I- Ulo _j >-
2 CO CL< aZ Z O
CC Ul _l
r> u.
t- i

CL I

I S CO

t CC UlOO ce
sa.li.

ii ii ii

in \o r-

O<
t-3 z
CL O
(- z
z>
o or~ ii
—

or o uj
ui xh ,

-h-
co i-— ^ O
CD CL I-
LU Z
or — co

ii i-
Ixl co —
I- CO

or i- _i3 => _i
Q- <

_i z
O — I-
ce n ui
h- < m
zO II II

o— CO COO O— o
r- O o
CM O —
85 =
u. o —

I

Oo
u.
u.

CO
CO
Ul
orQa<

<
ON

CO
o

o
or

o
i

co

I- u.
or oo
a. r-

< o
i- »-
<o o
CO COOH
Z CD

I.z <
Ul Qo— II

— I

VO O
8h

o
Ul

I- o
=3 UJO t-O
H- ce
CL CL

ce ui
a: h-
ui —
h- ceZ 3

CO
>- —
CL
CL UJO >
_l —
U- cco
+— +Q 0-
U. 3
II II

O —

CM

Ul zQ —son.
ujs:a coo o ->

s: ui
i- >-

O O CO
Ul Ul =>
H- I- COO UJ
ui o or
I- UJ
ui or h-o ui z
CD or orz or cl— <
or o i

>-
I I CO
CDor)
or o co

ii ii n

CM CO
CMz— zm a. —

CM CL
CO

Z -> CO— —7
CL CO

=> h-
00 h- _l->< =>

t- <
t- CO u.

o H- oro UJ
ce ui h-
ui _i z
a. ui —nE

i

I h- I

or o i-
ui ui _i
cl _i =>< ui <
a. co u.

ii ii ii

in vo r~

vO
CM

Z CL— O
CL _l

CL U.
CO O CL

Ul
CO
Ul

i or

SrcS

CO
>-
H- 00— 00
or *< ui
a. ui

UJ
i
—

CO
uj +
it CO

II II

I O —

< —
CL CL

h- CO

I- CC Ul
fuLvg
ce zee
cco\-
ui CO
i- az ui cc— _J ui

i-
Ul CO z
ce 3 —

u. co iO ui
CO + CO
ceo

+ a cc— ui \~
CO _J CO

II II II

CM l»"\ •<*

JQ.ll.< —
Z _J I-
cd u. a.— 12
co i- ce

cl ce
ui r3 uis ce h-— ccz
gg-
cc — Ul
UJ o
zi°— o
or < i-
o. ui
O co
I- ui

i or
uj ccS < I— ui —
ce _i z
a. o ce

II H II

m vo I'-

ll, co u.cocococococacoco

CO
CL

3
CO
CL

3
CO
a.

m
CM
oo
u.

CM
+

in m
CT\ m in
1^1 CM CM

1 00 CO
Z> o O

m
voOo
u_
U.CDCOCDC0CQC0COC0

+m
CM
00o

36 The Computer Journal / Issue #32

CO <
ce
lu co
\~ ce
CO LU— h-
CD z

LU LU —
I- OC O< Q-
I- Q
CO Z >

< CO

LU CO O
I- *: <

O >- < co
(-COf-
O CO 2
LLl O LLl

:» h- ce h-
UJ CO— ce co >- •

LLl rs CO co
o, co cc< => _J UJ LLl

ce _j eg i—

ce lu co o
U- > LU LU

jz < ce ce
^- LLl co
to CD

°1
co x
co o
UJ
ceoo<•

LU
UJ
ceo
CO

o •

I- CDz
IZ _!— O
ce z
Q. <XQz ce<o

ce
ce ce
UJ UJ
co
s or3 o

ce ceo o
I- h-

co o —
ce ixi zo>g
O UJ
UJ I- OXI-o
UJ Q 2X Z =>

CD<

z QZ
CQ <
UJ CO
h- ce
< LU
ce l-
LU z
CL —
O o

LUZo
I

COo

LU

LU
IM

O
C5

z
LU

CO
ce
LU

co
LU
ce

oz<
CO

o<

:

oo
-Jo
LU

<
LU

i ce

oz

CO
ceo
i-o
LU

CL
LUOX
LU

_l
_l<

CO
o

ce
LU
CO

' LU LU
CO CO

oo
_lo

_J LU
• CO

,

t-
LU I

CO
X
LU

1— LU ce
o CD LU

• z O t- •

,—

*

ce z ce
O • , 1- — LU
LU LL. co ce i- •

CO U- LL z '

—

• ID o Q — Q
« LU 1 z CO or LU

UJ =1 1- X < O LL • CO
ZD o o \ — lu ie Z3

o
h-

z zo
1-
ce

zo _l<
>• CO

1-

z ^} 1 o ce • — ce q o
o

LU
_l< X CL i-z LUz ce

LU •
a z

_J _J o z ce LU — CO ^ • s ^< < • ce LU o _l CO ^ o s: o
z z > _l E LU i— o — CO ce LU

UJ < ce h- z ce z H- Q — S ° CO

2 s O z LU z o o Q o U. o
a:
LU

ce
UJ _l s

i-
a:

ce
CL

u.
1—

co
o 5 O h- ce LL.

1— i— < ce
LU

u.o CL o ce
oz z ce

u.
1-

>-
o o<

—

5 o
1—

ce
UJ

i-
CO §

y- o
0. ce

o
ce ce

ceo
CO LUQ > CO

ce
ce z- CO LL. ce ce ce • LU h- o i— CO UJ — LU

u_
_l

o LU
l-

Li- LU LU
v- o

_i
LU

i-z z
LU O o

LU CO
— ce
U_ Q u.

U.
ce ce < CO LU ce o — _l — O LU CO — — ^
LU LU z =3 s LU < > -J ce CO O UJ CD
i— i— Y~ < i- or lu < LL 5 z v: lu ce
o o E < ce o < Q ce z LU CO CL O ^
^ < ce h- < < X < ce ce UJ > — CO h- CO

ce ce LU co 0- ce o ce LL o LL. > — Q CO —
< < 1— < LU u. — _J CD S LU Q
X X Z LU X i- i- LL LU _l CD • _J Lu _J g^o o h- ce _i cd o 13 Z r> 6 _l CD •

—

UJ • — • _l X
JUJ_I3 • z 0- — _l _i • z ^— Q UJ 1- •— r— U- •• • CO

1

—

I

—

• CO • t-z<_ii— _ii-ce • I— • UJ z < Q < 1- — 1— LU _l ce lu «

—

13
• UJ dzuzuoi • LU • =3 LL Z LU Z X £ X < LU — ce < lu ce lu — X _l
zcDzo-oceoceoozcDzo ce CO

E o oujcecexi-coi-CL CO u.

o o o o _l ce ce LL _l ce 3 CO Z _l
o o — h- ce Q_ 3- h- l- ce ^ *: *: o u.
h- 1- < i— i- — < h- CO CO CO ^. V
UJ r3 z t- z UJ :d Z l- Z — — — CO CO

CD CL co o CD LL CO O Q Q a Q o

rr<T LUo Nl LU
1- — a:t ce _i<o < < 3

1 i- — Q
u. co i- ce— <
(O Z Xo —

CO

> LU

LLO

co ce
ce o
ot-
ce —
ce z

zO i

3
00

E

CO
ce
LU
_iQZ<

ce
ce
LU

t- ce
ce luo H-
0- z
ZO— 0.

_l LU
I- < =)
CL Z LU
Z2 — =>
ce so
ce or
LU LU LU
I— I— I—z <

irv >- ce =3Q U.
ce < ao lu ce z
i- ce lu <o t-
LU UJ O LU
>• >• < 3
o uj ce lu
I < Z3DOIO< UJ O

ce oa t--1< z
j: < O —
"* z _J
r~ —
os:

ce
CO LU
co t-
LU
ceaa<

The Computer Journal / Issue #32 37

but to me it is a lot of extra programming

steps to achieve the same operation.

From a strictly hardware point the 765

has some other features that have caused

many problems. The device as designed

polls the drives at all times. This means it

is checking to see if the drive status has

changed (did the drive door open?), and

that the drive hardware must be ready at

all times. In the case of 8 inch drives this

can produce considerable amounts of heat

that must be removed. While working at

one computer company, their systems

used the 765 as designed and many users

had heat problems as well as hardware

problem from this chip. SAGE has gotten

around this problem by using an external

ready signal (not the disk drives) and

selecting drives with the parallel port. This

again takes extra programming operations

to handle the non-standard hardware

utilization.

Putting it Together

The next step, which to me is not as ex-

citing, is writing the code. I enjoy working

out the problem in great detail and prefer

to turn it over to some one else for the

tedious code writing. In this project I get

to do both for a change. To help out with

the task we can still use the sample BIOS
provided, but by using our charts and

tables we make only those changes

needed. Out of a hundred lines of

initialization code, I only changed a third

of it. Most of the structure remains the

same, just the actual device specific items

are different. When I left you last time, I

had tried to indicate a number of pitfalls

to consider. By using the sample BIOS

and being careful of which code gets

changed we should keep those problems

to a minimum.
The problems of which I speak are

register utilization. The HTPL operating

system is a stack oriented program. As

such it depends on several registers for the

locations of those stacks. Status is also

passed on those stacks. If one messes with

the wrong address register, loss of the

stack might occur (system crashes). My
first time through the book on KOS-ONE
left me with too vague a feeling for

register usage. It was not until I had ex-

perienced some crashes and solved them

by protecting the pointer registers that it

all made sense. The manual explains some

of this in the assembly language section.

One method I used for clarifying the

operation, was a table for each type of en-

try. This indicates which register contains

what, and whether it was pushed as a

word or long. We must keep in mind that

words and longs are handled somewhat

differently. If data is pushed as a long, it

must be popped as a long. Not doing so

will result in dire consequences. You will

also need to know how much is expected

back on each stack when you return from

REPEAT ABOVE FIVE DISK FUNCTIONS FOR
DRIVES 2,3, AND 4.

GETAUX.L
GET CHARACTER FROM MODEM PORT

PUTAUX.L
SEND CHARACTER TO MODEM PORT.

INITAUX.L
SET BAUD RATE FOR MODEM PORT.

STATAUX.L
CHECK FOR DTR, RING, READY.

CNTRLAUX.L
CHANGE OTHER PARAMETERS OF MODEM.

MONITOR.L
JUMP INTO MONITOR.

DETAILS OF DISKREAD OPERATION FOR 765 CONTROLLER

(i n pseudo code)

process: DISKREAD ((A4.L)REC#, (A4.DBUFADR -> (A4.DERRFLG)

GET drive number, set/store DRIVECA2)
POP Read Buffer Address, store BUFPN(A2)
POP logical record number, store REC0RD(A2)

BSR TRANSFORM (change record number to sector, side, track)

Convert record to sector number (rec mod sec + 1)

Get track number (recAtotside * totsect))
Get sid,e number (rec mod ((tots ide * totsect) /totsect)

)

I f track >= tottrack then error
insert data into command string
end transform

TST.B for error
if error do READERRORS and EXIT

BSR SEEK (move head to requested drive, track, and side)

BSR SURFACE (select drive and track)

Compare drive # to Current drive # (DR I VE (A2) =CURRDRV (A2)

)

If = then seek track (TRACK (A2))
else select/unselect drive & side

end surface
BSR CYLINDER

check controller for activity, wait if yes

fetch track number
prepare command string for seek
execute seek command
check status of seek

if error set flags
end cy I inder

i f errors
restore drives

issue restore comand string
reseek and test for proper track

if restore ok jump cylinder
else restore again
else error out

store current track and drive information

else store data and end SEEK

TST.B for errors
if errors do READERRORS and EXIT

BSR READSEC (now do actual reading of sector data)

check for busy control ler

if busy wait loop

load AO with address of data

load sector number to read into command string

enable interrupts for floppy action

do READCOMMAND
check for status of read

if not complete continue loop

if not ok read do RETRYS
end READSEC

TST.B for errors
if errors do READERRORS and EXIT

SET successful read flags and EXIT

READERRORS
SET unsucessful read flags and EXIT

38 The Computer Journal / Issue #32

EXIT
RESTORE stacks and registers

execute RTS (return to BDOS)

END DISKREAD

the operation. Not having the right num-

ber of items on a stack is certain disaster.

Till Next Time
While dealing with the KOS-ONE

program I have noticed a few concerns.

Joe has not had enough time to fully

document every thing and some items

remain a mystery. A few bugs are present

in the system, although they are minor

and are being fixed. I have had con-

siderable trouble with the drive selection,

until Joe reminded me to use the CHD1R
command to read the other drive.

In any case next time I will fill in any

unanswered questions and hopefully get

into the HTPL code.

SuperBASIC 68K
by Custom Computer Products

A BASIC FOR THE K-OS ONE OPERATING SYSTEM

* LOAD and RUN most standard HS BASIC programs without change.

* Integer, single precision floating point and 64 bit double

precision floating point for arlthmatic and called functions.

* Variable names can be any length up to 255 characters, all

of them significant.

* A full set of string functions is included. Strings can

be any length up to 255 chars.

SuperBASIC 68K is the newest software package available for the

K-OS ONE operating system. It is a small (approx 32K), full

featured BASIC that can utilize all available memory.

For a full specification, contact Hawthorne Technology.

K-OS ONE OPERATING SYSTEM

Get the K-OS ONE operating system for your 68000 hardware.

With it you can read and write HS-DOS format diskettes on

your 68000 system. Included in the package are:

K-OS ONE w/source code. Editor, Assembler, HTPL Compiler

Sample BIOS Code.

68000 SOFTWARE

* K-OS ONE operating system

uses HS-DOS disks
w/source code S50

* K-OS ONE manual ... $10
* HT68K SBC w/K-OS ONE $395

* Screen Editor Toolkit $50
* HT-FORTH $100
* BASIC $149

Free Newsletter & Spec Sheet

HAWTHORNE TECHNOLOGY
1411 SE31st, Portland, OR 97214

(503) 232-7332

Call For Papers

TCJ is establishing a forum on the

following areas, and we welcome your

submissions and proposals.

Candidates for membership in the

peer review and advisory groups,

including group coordinators, will

also be considered.

• Education in the Next Decade —
Our contacts with both the educators

who are preparing the curriculums

and the people in industry who need
to employ workers with the necessary

skills, indicate that the requirements

are changing. Industry sources say

that current graduates do not have

the knowledge to fill available real

world positions, and the educators

say that they do not have the course
material and specific requirements

needed to implement the courses.

TCJ invites papers from both

Academia and Industry to discuss the

problem and propose solutions.

• Language Development — There

is a great need for language
development in the areas of

command parsers, user interfacing,

custom languages, ROM based
embedded controller systems, etc.

We need papers covering both the

theoretical and practical aspects
from the viewpoints of both the

developers and the users.

• Database Development — The
commercial programs are very

powerful, and there are good texts

which explain the commands and
functions. What is missing is

tutorials on the concepts of the

practical aspects of designing and
developing a database — the nitty-

gritty details on implementing a

database rather than an explanation

of the tools.

There is also a need for papers on
using high level languages to replace

or supplement DBMS programs
where it is easier or more efficient to

perform some of the operations

outside of the DBMS.

Other suggested topics are

welcome. Query regarding book or

monograph manuscripts.

The Computer Journal
190 Sullivan

Columbia Falls, MT 59912
(406)257-9119

The Computer Journal / Issue #32 39

Issue Number 1:

• RS-232 Interface Part One
• Telecomputing with the Apple II

• Beginner's Column: Getting Started
• Build an "Epram"

Issue Number 2:

• File Transfer Programs for CP/M
• RS-232 Interface Part Two
• Build Hardware Print Spooler : Part 1

• Review of Floppy Disk Formats
• Sending Morse Code with an Apple II

• Beginner's Column: Basic Concepts
and Formulas

Issue Number 3:

• Add an 8087 Math Chip to Your Dual
Processor Board
• Build an A/D Converter for the Apple
II

• Modems for Micros
• The CP/M Operating System
• BuUd Hardware Print Spooler: Part 2

Issue Number 4:

• Optronics, Part 1: Detecting,

Generating, and Using Light in Elec-

tronics
• Multi-User: An Introduction
• Making the CP/M User Function More
Useful
• Build Hardware Print Spooler: Part 3

• Beginner's Column: Power Supply

Design

Issue Number 8

:

• Build VIC-20EPROM Programmer
• Multi-User: CP/Net
• Build High Resolution S-100 Graphics

Board: Part 3
• System Integration, Part 3: CP/M 3.0

• Linear Optimization with Micros

Issue Number 14:

• Hardware Tricks
• Controlling the Hayes Micromodem II

from Assembly Language, Part 1

• S-100 8 to 16 BitRAM Conversion
• Time-Frequency Domain Analysis
• BASE: Part Two
• Interfacing Tips and Troubles: Inter-

facing the Sinclair Computers, Part 2

Issue Number IS:

• Interfacing the 6522 to the Apple II

• Interfacing Tips & Troubles: Building

a Poor-Man's Logic Analyzer
• Controlling the Hayes Micromodem II

From Assembly Language, Part 2

• The State of the Industry
• Lowering Power Consumption in 8"

Floppy Disk Drives
• BASE: Part Three

Issue Number 16:

• Debugging 8087 Code
• Using the Apple Game Port
• BASE: Part Four
• Using the S-100 Bus and the 68008 CPU
• Interfacing Tips & Troubles: Build a
"Jellybean" Logic-to-RS232 Converter

Issue Number 17:

• Poor Man's Distributed Processing
• BASE: Part Five
• FAX-64: Facsimile Pictures on a

Micro
• The Computer Corner
Interfacing Tips & Troubles: Memory
Mapped I/O on the ZX81

Issue Number 18:

• Parallel Interface for Apple II Game
Port
• The Hacker's MAC: A Letter from Lee
Felsenstein
• S-100 Graphics Screen Dump
• The LS-100 Disk Simulator Kit
• BASE: Part Six
• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-

trol, Part 1

• The Computer Corner

Issue Number 19:

• Using The Extensibility of Forth
• Extended CBIOS
• A $500 Superbrain Computer
• BASE: Part Seven
• Interfacing Tips & Troubles: Com-
municating with Telephone Tone Con-

trol, Part 2
• Multitasking and Windows with CP/M:
A Review ofMTBASIC
• The Computer Corner

Issue Number 20:

• Designing an 8035 SBC
• Using Apple Graphics from CP/M:
Turbo Pascal Controls Apple Graphics
• Soldering and Other Strange Tales
• Build a S-100 Floppy Disk Controller:

WD2797 Controller for CP/M 68K
• The Computer Corner

Issue Number 21:

• Extending Turbo Pascal: Customize
with Procedures and Functions
• Unsoldering: The Arcane Art
• Analog Data Acquisition and Control:

Connecting Your Computer to the Real
World
• Programming the 8035 SBC
• The Computer Corner

Issue Number 22:

• NEW-DOS: Write Your Own Operating

System
• Variability in the BDS C Standard
Library
• The SCSI Interface: Introductory

Column
• Using Turbo Pascal ISAM Files
• TheAMPRO Little Board Column
• The Computer Corner

Issue Number 23:

• C Column: Flow Control & Program
Structure
• The Z Column: Getting Started with

Directories & User Areas
• The SCSI Interface: Introduction to

SCSI

• NEW-DOS: The Console Command
Processor
• Editing The CP/M Operating System
• INDEXER: Turbo Pascal Program to

Create Index
• The AMPRO Little Board Column
• The Computer Corner

Issue Number 24:

• Selecting and Building a System
• The SCSI Interface: SCSI Command
Protocol
• Introduction to Assembly Code for

CP/M
• The C Column: Software Text Filters

• AMPRO 186 Column: Installing MS-
DOS Software
• The Z Column
• NEW-DOS: The CCP Internal Com-
mands
• ZTIME-1: A Realtime Clock for the

AMPRO Z-80 Little Board
• The Computer Corner

Issue Number 25

:

• Repairing & Modifying Printed Circuits
• Z-Com vs Hacker Version of Z-System
• Exploring Single Linked Lists in C
• Adding Serial Port to Ampro Little Board
• Building a SCSI Adapter
• New-DOS: CCP Internal Commands
• Ampro '186: Networking with SuperDUO
• ZSIG Column
• The Computer Corner

Issue Number 26:

• Bus Systems: Selecting a System Bus
• Using the SB180 Real Time Clock
• The SCSI Interface: Software for the

SCSI Adapter
• InsideAMPRO Computers
• NEW-DOS: The CCP Commands Con-
tinued
• ZSIG Corner
• Affordable C Compilers
• Concurrent Multitasking: A Review of

DoubleDOS
• The Computer Corner

Issue Number 27:

• 68000 TinyGiant: Hawthorne's Low
Cost 16-bit SBC and Operating System
• The Art of Source Code Generation:
Disassembling Z-80 Software
• Feedback Control System Analysis:

Using Root Locus Analysis and Feed-
back Loop Compensation
• The C Column: A Graphics Primitive
Package
• The Hitachi HD64180: New Life for 8-

bit Systems
• ZSIG Corner: Command Line
Generators and Aliases
• A Tutor Program for Forth: Writing a
Forth Tutor in Forth
• Disk Parameters: Modifying The
CP/M Disk Parameter Block for Foreign
Disk Formats
• The Computer Corner

The Computer Journal

Issue Number 28:

• Starting Your Own BBS: What it takes to

run a BBS.
• Build an A/D Converter for the Ampro
LB.: A low cost one chip A/D converter.

• The Hitachi HD64180: Part 2, Setting the

wait states & RAM refresh, using the PRT,

and DMA.
• Using SCSI for Real Time Control:

Separating the memory & I/O buses.
• An Open Letter to STD-Bus Manufactur-

ers: Getting an industrial control job done.
• Programming Style: User interfacing

and interaction.

• Patching Turbo Pascal: Using disassem-
bled Z80 source code to modify TP.
• Choosing a Language for Machine
Control: The advantages of a compiled
RPN Forth like language.

Issue Number 29:

Better Software Filter Design: Writing

pipable user friendly programs.
MDISK: Adding a 1 Meg RAM disk to

Ampro L.B., part one.

Using the Hitachi HD64180: Embedded
processor design.

68000: Why use a nes OS and the 68000?

• Detecting the 8087 Math Chip: Tem-
perature sensitive software.
• Floppy Disk Track Structure: A look at

disk control information & data capacity.

• The ZCPR3 Corner: Announcing ZC-

PR33 plusZ-COM Customization.
• The Computer Corner.

Issue Number 30:

• Double Density Floppy Controller:

An algorithm for an improved CP/M BIOS.
• ZCPR3 IOP for the Ampro L.B.:

Implementing ZCPR3 IOP support

featuring NuKey, a keyboard re-definition

IOP.
• 32000 Hacker's Language: How a

working programmer is designing his

own language.
• MDISK: Adding a 1 Meg RAM disk to

Ampro L.B., part two.
• Non-Preemptive Multitasking: How
multitasking works, and why you might

choose non-preemptive instead of

preemenptive multitasking.
• Software Timers for the 68000: Writing

and using software timers for process

control.

• Lilliput Z-Node: A remote access
system forTCJ subscribers.
• The ZCPR3 Corner
•The CP/M Corner
• The Computer Corner

Issue Number 31:

• Using SCSI for Generalized I/O: SCSI
can be used for more than just hard drives.
• Communicating with Floppy Disks: Disk
parameters and their variations.

• XBIOS: A replacement BIOS for the
SB180.
• K-OS ONE and the SAGE: Demystifing
Operating Systems.
• Remote: Designing a remote system
program.
• The ZCPR3 Corner: ARUNZ documen-
tation.

TCJ ORDER FORM
Subscriptions U.S. Canada Surface

Foreign
Total

6 issues per year
New Renewal lyear

2 years

$16.00

$28.00

$22.00

$42.00

$24.00

Back Issues—
Six or more—

_£s

$3.50 ea.

$3.00 ea.

$3.50 ea.

$3.00 ea
$4.75 ea.

$4.25 ea.

Total Enclosed

All funds must be in U.S. dollars on a U.S. bank.

Check enclosed VISA MasterCard Card*.

Expiration date Signature

Name

Address.

City _State_ _ZIP

The Computer Journal
190 Sullivan Crossroad, Columbia Falls, MT 59912 Phone (406) 257-9119

The Computer Journal / Issue #32 41

Computer Corner

(Continued from page 44)

ternally was used for such a need, but

mine didn't have any of the interface. The
schematics I have, show a network inter-

face and I simply modified that design for

the Centronics driver.

I have included both the code and the

schematic for a simple Superbrain Cen-
tronics port. It was also great fun to stop

doing 68K assembly and go back to the

Z80 code. I certainly like 68K assembly

for its straight forward mnemonics, but

there still is nothing as enjoyable as Z80
programming. I still feel that it is the most
optimized code out. The right number of
register, not too many or too little, with

just the right number of special indirect

and I/O options.

As you look at the schematic you will

see that there is very little to it, and in fact

that is one of the reason for including it. I

feel that some people think there is a lot to

making a Centronics port and may not try

it. It however is probably the simplest and
easiest of projects for a beginner to under-
take. As can be seen, this is a simple
project that will build up your skills and
confidence.

Another 68000 System
I have added a new 68000 based system,

the Tandy Model 16. This is an older ver-

sion that I picked up for $200 including
their Xenix® operating system. It is a 8
inch drive system but the Xenix will not
work very good without a hard disk. I got
it for use with the KOS-ONE operating

+ 5/

<T4 Xp > 3>yS

t>l_ JL

Z£0
Bos

a&fc_jn_
i8 » an lb

Z(\ h :pS

Z"(y. 3>fc 17

?-0 fr
3)7 J&

.-u-

24L. i<*
~3U

LffrcvA

Cl*t PC

-V 3

CcrUTTZoMlCS

<*L-

<k-

n

-7
-8
-9

£>3

PC*

VT

u

IT

+5'
1 14

"51 t?£5e i

3o*- V&

68.

VK
D <¥

>ct-Kt

30« 3?<3

30 > <S y »» -lAfl

X

ill

STROBE

Bosy

3<t*>

38

^3_
T

A4

-*- +5V
IG,

Aij_

A(o A.

3&>-

3-9,37 &l°"&

A U^

c

&ZLA

GO-

TO

v

's 80„ DftTA UoAT}

ifL££n •SVRo'Se CLocvc

3 9j&». READ STATUS

ii_sa

ii_A0

16_A8

Z_e>&

_^i9-5o GtO'O

system. What I have discovered is how
they designed it — basically a Z80 model 3

with a master 68K CPU card. The system
comes up as a Model 3 and then can load

the 68K operating system that uses all the

Z80 I/O. That was a very commen ap-
proach when this was designed, but they
are never as fast as ones designed with the

68K from scratch. The Xenix operating
system turned out to be not worth the

trouble of learning, which was the other
reason for getting this system.

Xenix is Microsoft's version of Unix®
for smaller systems. Unix is quite popular
with some industry and education people
because of the utilities it provides. The
system is designed primarily for multiple

users and is far too complex for single

users. From what I can tell, all the fun-
ctions are programs that reside on the
main boot disk, and you need fast access

to a hard disk for operation of the system.
It must also be a large disk because the
system is constantly writing to the disk. It

is a clock based system that stores just

about everything that is happening, in-

cluding every one of your keystrokes. I

think that might be fine if you want to
make use of that information, but for

single users, forget it.

That is one of the reasons that I like and
am still working on the single user system
of KOS-ONE. Most of the operating
systems for the 68K are all based on the

Unix idea of multiusers and as such have
too much overhead for a single user. Now
KOS-ONE is not the only operating

system for the 68K, in fact I just received
my copy of SKDOS68K. I have not had a
chance to bring it up yet, but the manuals
are probably the best I have seen in a long
time. The cost of SKDOS is higher than
KOS-ONE but then the quality of the

manuals is worth the extra money.
I must say that I am working with Joe

on improving the manuals for the KOS-
ONE, and there are other variables in the

two systems. The KOS-ONE is intended
to be brought up from an PC system.

SKDOS is intended to be brought up from
a FLEX system. I have been provided PC
compatible disk for SKDOS and will be
writing on how to bring it up from that

system. The main thing to remember is

that both of these operating systems can
be purchased with hardware. That means
you can have a 68K running for less than
$500.

If you are interested in learning Unix,
there are two other ways you can do that,

both are C based Unix look alikes. There
are several programs in public domain
that will do some Unix like functions, but
two products are available for around a
$100 each. The first product out was
XINU or Unix spelled backwards. This
product came out some time ago as a
book on Unix with their own system in C
code provided (written by Douglas

42 The Computer Journal / Issue #32

Comer: Operating System Design, The

XINU Approach). It has not been too

popular as it still requires a large hard

disk. The code is suppose to be somewhat

close to the real thing and as such has the

same design parameters.

The other product was developed for

students to use in understanding operating

system. It was written by Andrew Tanen-

baum and is called MINIX (the book is

Operating Systems:Design and Implemen-
tation by Prentice-Hall). This product is a

lot like Unix but has been written to take

advantage of the PC system. The code

and operating system will work on a PC
and may be possible to port over to 68K
systems. I understand that this will not be

a trivial task as the C code makes con-

siderable use of the library calls. I believe

the library source code is not included so

changing those routines would be a major

problem. If I have not seen other articles

on these systems by the end of the year, I

will get a copy of MINIX and play around
with it myself.

Forth National Convention

In November I attended the Saturday

portion of the Forth National Convention

in San Jose. The convention covered both

Friday and Saturday seminars, but most

people could only show up on Saturday.

Some of those who were there last year

said this was a very small showing. The
speakers were very good and had lots to

say about how Forth was the only

language they found to do what they were

doing. A typical example was the college

teachers who use it for robotics classes.

They take engineering students and teach

them Forth while building robotics

systems. With time a premium, Forth is

the only language they can learn fast

enough to be able to also produce the final

operating product.

While there I picked up some ROMs
and schematics to make my NOVIX 4000

into a full blown computer. The NOVIX
chip is so fast it can read floppy disk, take

keyboard data, and drive a PC monitor

with a total chip count of 17 devices. Most

of the work is done in the NOVIX with

the other devices being mostly the 16 bit

wide memory and clock circuits. I don't

have mine running yet, but as soon as I

can get to it, I will put it in a Plexiglass

box, to show people just how little it takes

to make a complete system.

The next year should be exciting for

Forth in robotics, as several companies

are making Forth engines. These engines

are like the NOVIX in that they run Forth

directly. All that is needed now is for the

computer industry to open up some and

look at the alternatives that Forth engines

provide. The speed of bringing up systems

and changing designs far exceed any other

products currently available. What is

needed however is more people who know
Forth and understand it, which I feel is

not happening. I feel personally that so

much pressure is being put on the 'C
language that other ways of solving

problems are being overlooked.

Ending Comments
Things have been rather busy and I am

trying to put more time into these articles

but I must keep my sights clearly in front

of me. The KOS-ONE and SKDOS68K
are my main efforts right now. I feel I am
getting a handle on KOS and I plan on

checking out SKDOS. I feel good about

both of these product as they will help

bring more attention to the 68K. What I

like the most is the idea of making

operating systems that fit your special

needs and ways of doing things. I have

gotten pretty tired of other programmers

thinking they know how I think and work.

It is about time that I can create systems

that work for me and not against me.

Advertiser's Index

AMPRO Computers 28

Austin Code Works 9

C User's Group 6

C.C. Software 19

Computer Journal 40, 41

Echelon, Inc 2, 24

Hawthorne Technology 39

Kenmore Computer Tech 24

LALR Research 17

Micromint 17

Plu*Perfect Systems 25

Rockland Publishing 6

Sage Microsystems East 15

TCJ is User Supported

If You Don't Contribute Anything.

.Then Don't Expect Anything

The Computer Journal / Issue #32 43

THE COMPUTER CORMER
A Column by Bill Kibler

I am on the road again with my por-

table, this time in Salt Lake City for the

holidays. I brought my tools and fixed a

minor problem as well. Hopefully 1 can

cover all the things that have happened

since the last article, as it has been a very

busy time.

A couple of years ago I sold my in-laws

a computer complete with printer. Last

year they had troubles with the Cen-

tronics® interface and I moved it to the

serial port. This trip I came prepared to

fix it. After investigating the problem, I

discovered it was a broken strobe line in

the cable. What was important was the

problems that occurred while using the

serial port.

It seems some of the kids where playing

on the system and turned a few of the

printer switches. The cables got moved

around and the printer ended up not

working. They also had contacted several

computer places in town and were unable

to get any help, even for a fee. This made

me remember is how important it is to

have clear and concise, instructions and

diagrams of installations. My relatives

have so little knowledge of computers,

that they are unable, even with the

original manuals, to figure out how to

connect things and what switches to turn

on.

Now this installation is not complicated

and the switches are not complex, but

their ability to understand the nomen-

clature is limited. Take the line spacing on

the printer. When I tried it, it would do a

line feed after each carriage return. A
printer switch is marked "CR CR/LF"
and labeled as "SLEW." The explanation

in the book is of little help, and after swit-

ching it to CR to eliminate the linefeed, it

was still skipping several lines. The next

switch over has "3 4 6 8 " and marked as

"LINES." The book says this is line

spacing but if you don't know you want to

have 66 lines to the page you will not

know that 6 is the magic number for a

PICA 12 print wheel.

What I am getting at here is the need for

users to have everything marked clearly

without ten pages of explanation to un-

derstand it. My solution for the relatives

was to mark the proper switch positions

with permanent marker, so it is clear what

the switch position is. I have also got them

spare cables and marked the ends of each.

Hopefully that will take care of the

problem, but with so many variables, one
can never be sure.

Disk Drives and PC's
For a long time I have commented on

the way the IBM PC system has their drive

cables flipped. I hadn't paid much atten-

tion to it till the other day when I wanted

to use a set of drives that were connected

to a Xerox 820® computer. Not wanting

to open the case and change the jumpers

every time I move the drives around, I

studied the schematics of the PC drive

controller and figured out what they did.

The object of the twist is simply to allow

the drive motors to operate separately.

The disk drive standard calls for a single

line that turns all motors on or off. Four
drives are also supported with the cable

arrangement, but with the twist, now only

two. The drive select lines 2 and 3 become
the motor on and drive select B. All that is

needed to make the cable back to a stan-

dard arrangement is to jumper the B drive

motor on signal to the A drive motor on
signal line. These are most often open
collector drivers and so they can be tied

together without any problems. You will

still have only two drives possible, but I

suspect if you want to rewrite or use

special drivers, the other lines could be

used for more drive selects.

Superbrain Centronics Port

With a new printer in the house, I

needed to make a Centronics port for the

Superbrain® system my wife uses. The
Superbrain is a great Z80 based word
processor, without a Centronics port. I

have used it for some time with a serial

printer, but I now have a letter quality

Centronics instead. An expansion port in-

SUPERBRAIN — CENTRONICS
PORT CODE

SYSGEN MEMORY CHANGE TO

AT: 1F80 DEOF C3, 00, E3

AT: 2480 E300 DB 90 IN 90 TEST FOR
E6 01 ANI 01 BUSY STATUS
C2 00 E3 JNZ E3 00

AT: 2487 E3 07 79 MOV A,C GET CHARACTER
D3 80 OUT 80 OUT TO LATCH
E3 XTHL WAIT
E3 XTHL SOME
3E FF MVI A,FF SET STROBE
03 88 OUT 88 ON

AT: 2490 E310 E3
E3
E3
E3

XTHL
XTHL
XTHL
XTHL

WAIT
MORE
—LONGER
THAN NEEDED

3E 00 MVI A, 00 TURN OFF
D3 88 OUT 88 STROBE
E3 XTHL WAIT
E3 XTHL THEN

AT: 249A E31A C9 RET RETURN

Timing is not critical. One pair of XTHLs is

all that is really needed — the extras are

here only to make up for slow devices and
printers.

The Busy circuit could be extended to
include test for out of paper, off line, etc.
Initial testing and proper messages would need

to be added.

(Continued on page 42)

44 The Computer Journal / Issue #32

