 EXPLANATORY SUPPLEMENT
'TO
THE ASTRONOMICAL EPHEMERIS
AND
THE AMERICAN EPHEMERIS
AND NAUTICAL ALMANAC

PREPARED JOINTLIY BY TIIE NAUTICAI, AIMANAC OFFICES OF THE UNITED KINGDOM ANI) THE UNITED STATES OF AMERICA

Issued by II.M. Nautical Almanac Office by Order of the
Lords Commissioners of the Admiralty

LONDON
HER MAJEST'Y'S STATIONERY OFFICE

Crown Copyright 1961

Published by

Her Majesty's Stationery Office
To be purchased from

York House, Kingsway, London w.c. 2 423 Oxford Street, London w. 13A Castle Street, Edinburgh 2 ro9 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 Edmund Street, Birmingham 3 80 Chichester Street, Belfast
or through any bookseller.
Printed in England
Price f.2. 2s. od. net.
Obtainable in the United States of America from the British Information Services, 45 Rockefeller Plaza, New York 20, N.Y

Price $\$ 7.50$ net.

Wt2251.K24.
Printed in England under the authority of Her Majesty's Stationery Office
by C. Tinling \& Co., Litd., Liverpool, London and Prescot.
deje.tel
in Slixin wow esi

PREFACE

The purpose of this Explanatory Supplement is to provide the users of The Astronomical Ephemeris (prior to 1960 entitled The Nautical Almanac auld Astronomical Ephemeris) and The American Ephemeris and Nautical Almanac with fuller explanations of their content, derivation, and use than can conveniently be included in the publications themselves. A rigorous treatment is given of the fundamental basis of the tabulations; this is supplemented by a detailed derivation, showing how each tabulated quantity is obtained from basic data. 'The usc of the ephemerides is also explained and illustrated, but completeness is not attempted. Auxiliary tables, lists of constants, and miscellancous data are added, partly for convenience of use with the Ephemeris and partly for reference.

By its nature this Supplement must primarily be a reference book. However, it is hoped that certain sections will come to be regarded as full, connected, and authoritative treatments of the subjects with which thcy dcal, and that the tables and other data will prove of general use in astronomical computing. An account of its origins and much information of a general nature about the purpose and scope of the unified Ephemeris is given in section I, "Introduction".

Although published in the United Kingdom, the Explanatory Supplement has been prepared jointly by the Nautical Almanac Office, United States Naval Observatory, under the immediate supervision of its Director, Edgar W. Woolard, and by H.M. Nautical Almanac Office, Royal Greenwich Observatory, under the immediate supervision of its Superintendent, D. H. Sadler. It has been edited by G. A. Wilkins, assisted by Miss A. W. Springett.
B. L. GURNETTE,

Captain, U.S. Navy,
Superintendent, Naval Observatory,
Washington.
R. v. d. R. WOOLILEY,

Astronomer Royal,
Royal Greenwich Observatory, Herstmonceux Castle, Sussex.

EXPLANATORY SUPPLEMENT

times of rising and setting, using the tabulated valucs of right ascension and declination. The Greenwich hour angle at $I^{\text {h }}$ U.'I'. is:

$$
h=\text { apparent sidcreal time at } H^{\mathrm{h}} \text { U.T. }-\alpha \text { at }\left(H^{\mathrm{h}}+\Delta T^{\prime}\right) \mathrm{E} . \mathrm{I}^{\prime} .
$$

 be neglected or applied later. The resulting zenith distances are interpolated to:

$$
\begin{aligned}
z & =90^{\circ} 34^{\prime}-\text { horizontal parallax }+ \text { semi-diameter } \\
& =90^{\circ} 34^{\prime} \cdot \text { oor } 3-0.727554 \pi
\end{aligned}
$$

where π is the horizontal parallax, though a precision of r^{\prime} suffices to give times to I^{m} in many cases. Linear interpolation is sufficient for the low latitudes, but for latitudes above 30° it is necessary to calculate three or more altitudcs and to use second differences to obtain the requircd accuracy.

14. 'THE CALENDAR

A. INTRODUCTION

A calendar is a system of reckoning time over extended intervals by combining days into various periods adapted to purposes of civil lifc, to fixing religious observances, or to mecting scientific needs. 'Ihree of the periods used in calendars, namely days, months, and years, are based on astronomical pcriods that are of importance for the practical activities of daily life. Others, such as the week, are artificial.

The calcndarial reckoning is according to conventional calcndar years and adopted historical cras. In constructing and regulating civil calendars, and fixing ecelesiastical calendars, a number of auxiliary cyeles and periods are used. The principal chronological cras and cycles are listed in A.EL, page a and are followed by the Gregorian calendar for the current year.

The complexity of calcndars is due mainly to the incommensurability of the astronomical pcriods on which they are based. The supply of light by the Sun and Moon is governed by the solar day and the synodic month, while the return of the seasons depends on the tropical ycar. The length of the synodic month is 29.530589 days, and of the tropical year 365.242199 days, for the epoch 1900; the very small and somewhat uncertain secular variations in the lengths of these periods are unimportant for chronological purposes. The number of lunations in a tropical year is 12.368267 at the epoch 1900 .

References

Bouchet, U. Hémérologie. Paris, 1868.
Ginzel, F. K. Handbuch der mathematischen und technischen Chronologie. Leipzig, 1906-1914. This is the most comprehensive and detailed general treatise on calendars and chronological systems; it is extensively documented, and is a reliable source of information as far as historical knowledge extended at the dute of its publication. (Reprinted, 1958.)

Schram, R. Kalendariographische und chronologische Tafeln. Leipzig, 1908. This contains tables of the principal calendars of ancient and modern times.

Encyclopaedia Britannica. The various articles on calendars and chronology in the oth or n thecdition collectively constitute an additional excellent source of information.
\therefore Fotheringham, J. K. The calendar. This scholitrly article was first printed in The Nautical Almanac for 1938 and wals reprinted (with revision in 1935) cach year until 1938. Some paragraphs of this section of the Supplement have been taken directly from this article.

Anmaire du Bureau des Longitudes (Paris), 1959, pages 107-162. This contains a study of various calendars and many useful tables, some of which have been included in this section.
B. HISTORICAI, CALIENDARS

The many calendars of historical times were lunar in origin, the ycar consisting usually of twelve months of about 30 days, with arbitrary or calculatcd intercalation of months or days to make the length of the year conform to the solar year. The Egyptian calendar was, up to the time of Julius Caesar's reform of the Roman calendar in 46 B.c., the only civil calendar in which the length of cach month and year was fixed by rule, instead of being detcrmined by the discretion of officials or by direct observation of some astronomical event.

1. The Egyptian calendar

The Egyptian year from an extremely remote date consisted of 12 months of 30 days each, followed by 5 additional days at the end of each year. This fixed calendar year of 365 days was not adjusted to the solar ycar by any intercalation; the Egyptian New Year consequently gradually retrograded through a complete circuit of the tropical year in a period of approximately 1460 years known as the Sothic cycle. The calcndar year was divided into three seasons of four months each, called Flood time, Seed time, and Harvest time, corresponding to the annual cycle of the rise and fall of the Nile. The relation of the calendarial seasons to the natural scasons of the solar year was determined by the heliacal rising of Sirius (ivhose Egyptian name was Sothis), that is by the first appearance of the star in the morning sky after conjunction with the Sun; the mean interval between consecutive heliacal risings was $3^{6} 5^{\mathrm{d}} \cdot 2507$ according to Schoch

This calendar originated from one of the variants of the earlier lunar calendar which regulated festivals in relation to the phases of the Moon, and which was eventually systematized to bring it into a fixed relation to the civil calendar.

The advantages of the fixed Egyptian calendar for astronomical calculations were recognized by the Hellenistic astronomers, and it became the standard astronomical system; it was still used by Copernicus in his lunar and planetary
tables. tables.

An attempt by Ptolemy Euergetes in 238 B.c. to introduce a sixth additional day once in four years failed, but a rencwed attempt under Augustus ($26-23$ B.c.) was more successful. An additional day was inserted at the close of the Egyptian year 23-22 B.c. on August 29 of what we call the Julian calendar, and at the close of evcry fourth year afterwards, so that the reformed or Alexandrian year began on August 30 of the Julian calendar in the year preceding a Julian leap year and on August 29 in all other years. The effect of this reform was to keep each Egyptian month fixed to the place in the natural year which it happened to occupy under the old calendar in the years $26-22$ B.c. But the old calendar was not easily suppressed, and we find the two used side by side until A.D. 238 at least. The old calendar was probably the morc popular, and was preferred by astronomers
phenomena, for which the new calendar was obviously more convenient. Theon in the fourth century A.D., though mentioning the old calendar, habitually used the new.

The old Egyptian calendar was adopted by the Persians, perhaps about 500 B.C., in a form that cannot now be accurately restored, and survives in a slightly modificd form in the Armenian calendar, the three first months of the old Egyptian year corresponding exactly with the threc last montlis of the Armenian year. These are followed in the Armenian calendar by the five additional days, so that for the remainder of the year the Armenian months began five days later than those of the old Egyptian calendar. 'I'he Alexandrian calendar is still the calendar of Ethiopia and of the Coptic church, and is used for agricultural purposes in Egypt and other parts of northern Africa.

Refercnces

Parker, R. A. The calendars of ancient Eggpt. Oriental Institute of the University of Chicago, Studies in Ancient Oriental Civilization, no. 26, University of Chicago Press, 1950. van der Waerden, B. L. Tables for the Egyptian and Alexandrian calendar. Isis, 47, 387-390, $\mathbf{x} 956$. For conversions to the Julian calendar.

Schoch, K. Die Länge der Sothisperiode betrügt 1456 Jahre. Berlin-Steglitz (by the author), 1928.

2. The Babylonian calendar

The Babylonian ycar consisted of 12 lunar months, each fixed by actual observation of the first appearance of the lunar crescent in the evening sky, with the intercalation of an additional month when necessary to keep the calendar year in a definite relation to the seasons. The year began in the spring with the month Nisannu.

Up to about 480 B.C., the intercalations show no regularity whatever; but attempts appear to have been made to formulate fixcd rules, and at some tine very close to 380 B.C. a regular cyclc of 7 intercalations at fixed intervals during each 19 years came to be used. The 19 -year cycle had been introduced by Meton at Athens about 50 years earlier, but whether thc Babylonians obtained it from the Greeks or discovered it independently is not known. This cycle equates 19 years to 235 lunations; it still survivcs in the modern Jewish calendar, with the same value for the length of the mean synodic month as in the Babylonian calendar.

The conversion of dates in the Babylonian calendar to their exact equivalents in the Julian proleptic calendar is in general very difficult, and often uncertain or impossible. The ancient calendars that were rcgulated either arbitrarily or Wy observation of the lunar crescent cannot be completely restored with certainty and correlated with othcr calendars unless historical records are extant that give a sufficiently complete continuous record of the length of evcry month and attest to all the intercalary months.

References

Parker, R. A., and Dubberstein, W. 11. Babylomian chronology 626 n.c.-a.d. 75. Brown University Studics, 19, 1956. This is on the restoration and correlation of the Civilization calendar; it is a revision of the carlier article in Studies in Aucient Oriental Civilization, no. 24, University of Chicago Press.

3. Greek calendars

Early Greek calendarial reckoning was rather chaotic. Each community had a scparate calendar. All Greek calendars were lunar until thc Roman period, and kept roughly in a fixed relation to the seasons by the intercalation of a thirtcenth month when required; but the intercalations were determincd by local public authorities, and were different in different calendars in addition to bcing irrcgular. There was also great varicty in the scason when the ycar began in different calendars.

From the sixtl eentury b.c. niwards, a mumber of cycles were suceessively devised by the Greck astronomers as a basis for regulating the lunar calendar by fixed rules instead of by arbitrary intercalation. Among these, the Metonic and Callippic cycles camc to be used by astronomers for dating observations, and appear to have been used ovcr a period of scvcral centurics extending into the Middle Ages to establish the dates of new moon for purposes of religious calendars. In the Metonie cyele, 19 ycars were cquated to 235 months and to 6940 days in the Cullippie eyelc, 76 years were equated to 940 lunations and to 27759 days, ane day less than four Mctonic cycles.

4. The Julian calendar

The Julian calendar was establishcd in the Roman Empire by Julius Caesar in 46 в.c., by revising the aneient local calendar of the city of Rome, with the advice of the Alexandrian astronomer Sosigenes. Reaching its final form about A.D. 8, it was widely spread by the growth of the Empire; it remained in general use in the West during later centurics, until in $I_{5} 82$ it was further modified into the Gregorian calendar which has now eome into almost worldwide use far civil purposes.

The Roman calendar was originally a lunar calendar, with arbitrary intercalation of months by the pontifical authorities. Under the pontificate of Julius Caesar, intercalation was neglected with such frequeney that the calendar became about two months out of step with the solar year. To reetify the discrepaney, Caesar inserted intercalations into the year 46 B.c. that increased its length to 445 days, and instituted his reformed calendar beginning with 45 в.c.

In the Julian calendar, a mean length of 365.25 days for the year is adopted. The calendar year is adjusted to this mean value by inserting an intercalary day every fourth year; the intercalary year has 366 days, and each of the other three years has 365 days..

The year 45 в.c. was a Julian intercalary or leap year; but bccause of misunderstanding and, confusion during the period following the adoption of the

14B. THE CALENDAR
411
revised calcodar, the intercalations were incorrectly made until the error was rectified in 8 s.c. by Augustus, who onitted further intercalations until A.1). 8 . 'Ihe adjustments actually made before the Augustan reform cemonot be determined with certainty, and are ignored in the following sub-sections, but after a.D. 8 the Julian calendar was used without further change until the Gregorian reform in 1582 .

The Christian era for the chronological reckoning of the years was first uscd by the Roman abbot Dionysius Exiguus, to designatc the years in a table for detcrmining the date of Easter that he prepared as a continuation of a previons table in which the ycars had been designated according to the era of Dioclctian. In extending the table, he adopted 248 Diocletian era $=$ a.D. 532. The year in which he prepared the table was six ycars beforc this, or A.D. 525; but how he determincd the correspondenec is unknown. His method for designating the years was adopted by others, and through increasing use during the next few centuries it became established in western Europe as a chronologieal cra.

In this system, the Christian cral legins with year A.n. i; the immediately preceding ycar is designated a b.c. There is no year o in the chronological reckoning. For astronomical purposes, the year immediately preccding A.D. I is designated o; the other years B.c. are denoted by negative numbers, each numerically one less than the dcsignation in the historical reckoning. In the astronomical systcm the year preceding 0 is -1 , and corresponds to 2 b.c. The year o was a leap year.

The first eentury of the Christian era conded with December 3r of A.n. 100, when the first one hundred ycars A.II. I to A.D. roo, inclusive, had been completed. Likewise, the nineteenth century cnded with 1900 December 31; the twentieth century began with 1901 January 1, and the first half of the century ended with 1950 December 31. Considerable public controversy always attends these occasions.

The Christian cra was adopted at different times in different countries with a variety of dates for the beginning of the year. The most common initial dates werc Dccember 25, January 1, March 1, and March 25. These different reckonings of the year were known as styles. 'Traditionally in the ancient Roman calcndar, March had been the first month of the year, as reflected in the numerical names which still survive for the months September to December and in the position of the intercalary day at the end of February; but in 153 b.c., with a change in the date of entry into office of the consuls and other magistrates to January I , this became the first day of the official year and came to be widely adopted during later centuries in western Europe as the calendar Ncw Ycar. In Italy, however, down to the eighteenth century the years of the Christian era began in the Vonetian style on March 1, in the Pisan style on the preceding March 25, and in the Florentine style on the following March 25, whilc at Rome different stylcs werc used for differcnt purposes. In England the Nativity stylc beginning on Dccember 25 was superseded in the fourteenth century by the Annunciation style begiuning on March 25, but the Circumcision style beginning on January 1 was substituted in 1752 by the Act that introduced the Gregorian calendar. In Scotland the year
had begun officially on January i since 1600 . The names old style and new style were, however, used to distinguish not the different dates for the beginming of the year, but the Julian and Gregorian calendars, cach of which has been used with different initial dates.

The intercalary day was always inserted in evcry February which, if the years began with January I, would fall in a year with a numerical designation divisible by 4. Consequently, when the actual beginning of the ycar was in March, the years divisible by 4 were not the leap ycars.

Preceding the Christian era, the rule that when the New Year is January I the ycars divisible by 4 are leap years is valid only if the astronomical designations of the ycars by negative numbers arc used.

References

Barton, S. G. It's a date. Scientific Alonthly, 65, 408-414, $19+7$.
Barton, S. G. The Quaker callendar. Proc, Amer. Phil. Soc., 93, 32-39, 19+4.

C. The gregorian calendar

The Grcgorian calendar was instituted in 1582 by Pope Gregory XIII, primarily as a basis for regulating Easter and the ceclesiastical calendar. It is a solar calcndar, distinguished principally by the system of intercalation adopted for keeping the calendar year in adjustment with the tropical year, and constructed by modifying the Julian calendar. The mean Julian calendar ycar of 365.25 days exceeds the length of the tropical year by about $I^{\mathrm{mm}} I^{\mathrm{s}}$. The continual accumulation of this excess amounts to about 3 days every 400 years, and causes a gradual progressive change in the calendar datcs of the seasons. This defect in the Julian calendar had produced a very noticeable effect on the date of Easter. Since Easter was the Christian continuation of the Jewish Passover, the date was fixed by rules that wiere intended to keep it near the vernal equinox, because the Passover was observed on 14 Nisan, and in the ancient Jewish calendar the beginning of this month was determined by observation of the lunar crescent nearest the vernal equinox. In practice, the date of Easter was determined from tables in which the lunar months were based on the Metonic cycle and March 21 was adopted as a fixed date for the equinox. Consequently, as the actual vernal equinox gradually occurred earlier in the calendar, the date of Easter became progressively later relative to the scasons; by the sixteenth century, the equinox had fallen back to about March II, and Easter was tending nearer and nearer toward the summer.

The Gregorian reform of the Julian calendar consisted of:
(i) omitting 10 days from the calendar reckoning, the day next after ${ }_{1582}$ October 4 being designated 1582 October 15 , for the purpose of restoring the date of the actual vernal equinox to March 21;
(ii) adopting a different rule for leap year, by omitting the intercalary day in
centurial ycars that are not divisible hy 400, such as 1700 , 1800 , 1900, and 2100, in order to correct the crror of the Julian calcular where ant intercalary day is inserted cvery four ycars;
(iii) fixing rules for detcrmining the date of Easter in the revised calendar.

The week was not modificd in any way; special provision was made that the sequence of the days of the week was not broken.

The mean length of the Gregorian calendar year is $365 \cdot 2425$ days. At the completion of a 400 -year calendar cycle, the cumulative discrepancy with the tropical year is only a few hours.

The authoritative treatise on the principles of this calendar and the associatcd ecclesiastical calendar is the book by Christoph Clavius, Explicatio Romani Calendarii a Gregorio XIII P.M. restituti (Rome, 1603), which is also included in Volume V of the collected works of Clavius published in 1612.
'rhe Gregorian calendar was at once officially adopted for civil and religious purposes in Roman Catholic countrics. During the following centurics, it came into almost universal use throughout the Wcst, although with some diversity between civil and ccclesiastical practice; and it is widely used for some civil purposes in countries which have official native calendars.

The dates of the official adoption of the Gregorian calendar differed from country to country. In some regions, this calendar came into usc gradually without official action. 'Ilac introduction by legal action was in many cases not completely accepted among the people for a long period, and quitc often did not affect ecclesiastical customs; for details, especially of the diverse church calendars, the references given at the end of this sub-section may be consulted, particularly Lange (7). In the Gregorian calendar, Easter has not in all cases been fixed strictly according to the Gregorian rules; in particular, it has occasionally been determined astronomically, e.g., by the German Protestants from 1700 to 1776, in Sweden from 1740 to 1844, and by the Eastern Orthodox Churches since 1923.

At a meeting of a Congress of the Orthodox Oriental Churches held in Constantinople in May, 1923, the Julian calendar was replaced by a modified Gregorian calendar in which century years are leap years only when division of the century number by 9 leaves a remainder of either 2 or 6, and Easter is determined by the astronomical Moon for the meridian of Jerusalcm; sec Milankovitch (8). The change was such that 1923 October 1, Julian calendar, became 1923 October 14 in the new calendar.

In the following list the dates of the official adoption of the Gregorian calendar are indicated in the form of double datcs that give the corresponding Juliad/Gregorian dates for the first day on which the Gregorian calendar was uscd. The authoritics that were consulted are referred to by the numbers, in bold type, assigned to them in the list of references at the end of this sub-section. References 4 and 7 are considered to be the most reliable, whilc 6 and $\mathbf{I 2}$ should be reliable for the native countries of their authors; 10 is not documented.

List of dates of adoption of the Gregorian ealendar

1867 October 18, when Alaska was transferred to the United States under treaty of purchase from Russia, where the Julim calendar was still in use.

The Julian calendar dates had been in accordance with the reckoning to the west o the international date line. A further change was therefore made to conform to th reckoning east of the date line, and consequently the date was advanced by only in day instcad of the iz days by which the Gregorian calendar was then in advance of the Julian
calendar. Albania

1912 December, for civil purposes (Lange, 7).
American Colonies
1752 September 3/44, at the same time as in Great Britain
Austria. See German States.
Belgium
Different sources disagree :
41582 December 22/1583 January I in Flanders, Brabant, Hainaut, and other southern provinces; 1583 Felbruary $11 / 2 \mathrm{I}$ in Liege Bishopric.
101582 December $15 / 25$ in lilanders, I Ianant, Laxembourg, and other southern
provinecs. provinces.
$3 \quad 1583$ in Flanders.
Bulgaria ${ }^{3}$
Different sources disagree:
$3 \quad 1915$
71916 April 1, for civil purposes. Double dating had already been in use for Chinese Republic

Different statements are given in different sources:
111912 January I , by Sün Yat Sen.
6 1912; but during 1912-1928, both the Gregorian date and the Chinese calenda date were carried on official documents.

$$
121929 \text { January } 1 .
$$

Czechoslovakia. See German States.
Denmark
1700 February 19/March I (Ginzel, 4). Norway was then under Danish rule. Egypt

1875, by ordinance of Ismail Pasha, for civil purposes (Lange, 7).
Esthonia
1918 January (Lange, 7).
Finland. See Sweden.
France. See also German States
1582 December 10/20 in France and Lorraine, by edict of Henry III (Ginzel, 4). German States, listed according to the countries within which they now lie:
Austria Austria

Brixen

Carinthia
Salzburg
Styria
Tyrol
Tyrol
Czechoslovakia
Bohemia
Moravia
France
Alsace
Strassburg (city of)
Strassburg (bishopric of
" "" "

Source
10
4
fter Peace of Munster (r648)
1682 February 6/16
1583 November 1z/23
1583 November 17/27

Germany

Aachen

Augsburg
Augsburg (bishopric of)
Baden (marquisate of)
Bavaria
Bavarian bishoprics
Cologne (city of)
Eichstadt
Freising
Hildesheim (bishopric of)
Julich
Lausitz
Mainz (archbishopric of)
Munster (city and county of)
Ncuburg Palatinate
Osnabruck (city of)
P'alerborn (bislatopric of)
Prussia (duchy of)
Regensburg
Silcsia
Trier (archbishopric of)
Westphalia (duchy of)
Wurzburg (bishopric of)
Kaiser and Parliament
Protestant Germany in 1775 under the name of "improved calendar"

Appenzell (Protestant half)

Basel, Bern, and Biel
Fribourg
Geneva
Graubunden
Lucerne
Mulhausen
Neuchatel
Prattigau (" Ten Districts ")
Sargans
Schaffhausen
Schwyz
Solothurn
Thurgau
Uri
Valais
Zug
Zurich
Federal congress

1700 February 19/March 1
1583 November 4/4.
$5^{8} 3$ lichruary $14 / 24$
$5_{5} 8_{3}$ lebruary $14 / z 4$
583 November $17 / z$
1583 October 6/16
1583 October 6/16
1583 November $4 / 14$
${ }^{1583}$ Octoler 6/16
${ }^{1583}$ October 6/16
1631 March 16/26
1583 November $3 / 13$
1584 January $7 / 17$
1583 November $12 / 22$
1583 Novamber 12/22
1583 Novamber $17 / 27$
1615 Deecmber $14 / 2$
1624.
$15{ }^{8} 5$ Junc 17/27
1610 August $23 /$ Scptember 2
1583 October 6/16
$5_{5} 8$ January $13 / z_{3}$
1583 October 5/15
$15^{8} 4$ July $z / 12$
1583 November $5 / 15$
${ }^{5} 584$ Jamary $7 / 17$
i700 February 19/March I
see below
1701 January 1/12*
7oi January 1/12*
584 January 12/22

see below

1584 January 12/22
1701 January $1 / 1 z^{*}$
170I January $1 / 12$
1812
1701 January $1 / 12$
1701 January 1/12*
584 January $12 / 22$
1584 January $12 / 22$
701 January $1 / 12$
1584 January 12/z2
see below
1584 January $12 / 22$
1701 January 1/12*
1583 November 10

Appenzell (Protestant half): separated from the Roman Catholic half in 1597 and remained on Julian calendar.
Graubunden: Gregorian calendar adopted at first only by Roman Catholic districts in upper Rhine valley. The others retained Julian calendar until into 18 th century.
Valais: 1622, except Sitten, Siders, Leuk, Ruron, Visp, Brieg and Goms which changed in 1656

* Improved Wcigel calendar.

Great Britain and Dominions
1752 Septemher 3/14, by Act of Parliament passed 7751 March 18 ; at the same time, the beginning of the year was changed from March 25 to January 1 , commencing with the year 1752.
Greece
See Milankovitch (8); a slightly modified form of the Gregorian calendar was introduced 1924 March 1o/23. Hungary

1587 October 22/November 1. (Schram, ro).
Italy
${ }_{1582}$ Octaber $5 / 15$ (Ginzel, 4).
Japan
1873 January I (van Wijk, r2).
Jugoslavia
1919 (Fotheringham, 3, but see also Milankovitch, 8).
Latvia
The Gregorian calendar gradually camc into use for civil purposes during the German occupation 1915-1918. (Lange, 7).
Lithuania
1915, by the Catholic Church, which represented three quarters of the population (Lange, 7).

1582 December $15 / 25$ (Schram, 10)
Netherlands
In the Catholic States, $\mathrm{x}_{5} 82-1583$; in the Protestant States, 1700-1701; but different sources disagree on the exact dates. For minute details, see vin Wijk, 12.
Norvay. Sce Denmark.
Poland
1582 October $5 /{ }_{5} 5$ (Schram, 10). In the Russian part of Poland, the Gregorian calendar was introduced by the German occupation troops 1915 March 21 (Lange, 7). Portugal

1582 October $5 / 15$ (Ginzel, 4)
Rounania
1919 April 1/14 (L'Astronomie: Bull. Soc. Astr. de France, 33, 529, 1919).
Spain
1582 October $5 / 15$ (Ginzel, 4).
Sweden
1753 February 18/March I (Schram, 10; Lange, 7). Finland was then a part of Sweden.
Svitzerland. See German States.
Turkey
1927 January 1 (Astr. Jaltresber., 29, 48, 1927).
U.S.S.R.

1918 February $1 / 14$ for civil purposes (Lange, 7; Observatory, 4I, 146, 1918).
Equivalent dates in the Julian and the Gregorian calendars are frequently required: Both calendars were widely used for a long period after the Gregorian calendar was first introduced; for special purposes the Julian calendar is still of service, and occasionally the Gregorian proleptic calendar is used for dates before 1582. The 10 days diffcrence betwcen the two calendars at the time of the Gregorian reform inereases by onc at the bissextile, or intcrcalary, day in each centurial year after 15^{82} that is not divisille by 400 ; the difference is subtraeted from a Gregorian datc, added to a Julian date. Before 1582 , the difference decreases. The year o is a leap year in the Gregorian proleptic calendar.

IN THE JULIAN AND GREGORIAN CALENDARS

Year (astronomical)	Ditc Julim	$\begin{aligned} & \text { Dilf. } \\ & \text { (days) } \end{aligned}$	1)itt: Gregorian	Year (nstronomical)	Dite Julian	ITiII. (days)	Date Gregorian
Astronomical years -500 to +300							
-500	March	5	February 28	- 100	March	2	February 28
-500	March	6	March Fcbruary	-100 +100	March February	3	$\begin{array}{lr} \text { March } \quad 1 \\ \text { February } 27 \end{array}$
300	March	3	Fcbruary 27 February 28	+100 +100	March		February 28
-300	March	5	March	+100	March	2 I	March 1
-200	March	24	February 27	+200	Fcbruary		February 27
-200	March	3	February 28	+200	February	9	February 28
-200			March	+200	March	1.	March I
-100	March	13	February 27	+300	February		February 28

A.D. 300 March 1 to 1582 October $4 / 14$

300	February 29		March	1	1000	February 29		March	6
300	March	I	March	2	1000	March I	6	March	7
500	liebruary 28	1	March	1	1100	February 28			
500	February 29		March	2	1100	February 29		March	7
500	March 1	2	March	3	1100		7	March March	8
600	Fechruary 28		Marc	2	1300	Febnuary 28			7
600	Ficbruary 29		March	3	1300	February 29		March	8
600	March		Marc	4	1300	March	8	March March	9
700	February 28	3	Marc	3	1400				8
700	February 29		March	4	1400	Fcbruary 29		March	9
700	March 1	4	Marc	5	1400	March	9	March March	10
900	February 28	4	March	4	1500				9
900	February 29		March	5	1500	February 29		March	10
900	March		March	6	1500	Mar	10	Ma	II
1000	February 28	5	March	5	15^{82}	October		October	1

1582 October $5 / 15$ onwards								
${ }_{1582}$	October	10	October 15	1800	February 29		March	12
1582	October 6		October 16	1800	March	12	March	13
1700	February 18	10	February 28	1900	February 16	12	February	28
	February 19		March I		February 17	12	March	1
	February 28	10	March Io		February 28	12	March	12
1700	February 29		March II	1900	February 29		March	13
1700	March		March 12	1900	March		March	14
1800	February 17		February 28	210	February 15	13	February	28
	February 18	II	March I		February 16		March	I
1800	February 28		March II	2100	February 28		March	13

The differences are constant between each pair of dates given in the table. The sign of the difference can be olstained by inspection.

Except in the centurial ycars that are given above, the leap years (astronomical year divisible by 4) are common to both calendars.

Equivalent dates in the Julian and Gregorian calendars, extending backwards to the year $-500(=501 \mathrm{Be}$.) are listed in talhe 14.1 ; it is clear that for the years befure a.b, 200 the diflerence must be added to the Gregarian date, or subtracted from the Julian date. Care should be taken to assign to February the proper number of days in each calendar; the change points (especially after r582) are, however, clearly indicated.

References

1. Barton, Samuel G. It's a date. Scieutific Monthly, 65, 408-414, 1947.
2. Bates, Ralph S. Give us back our fortnight. Sky and Telescope, 1x, 267-268, 1952. 3. Fotheringham, J. IK. The calendar. In The Nautical Almanac and Astronomical Ephenheris, 1931-1934, revised 1935-1938, abridged 1939-1941.
3. Ginzel, F. K. Handbuch der uathematischen und technischen Chronologie, vol. III, pages 266-279. Leipzig, 1914
4. H. S. H. The bicentennial of the adoption of the Gregorian ealendar in England. Jour. Roy. Astr. Soc. Canadh, 46, 212, 1952.
5. Kao Kiun. Conversion des dates chinoises en jours de la période julienne. Academia Sinica, National Research Institute of Astronomy, Monograph No. 1. 1932. (In Chinese, with French introduction).
6. Lange, Ludwig. "Paradoxe" Osterdaten im Gregorianischen Kalender und ihre Bedeutung für die moderne Kalenderreform. Sitz. d. Bayerischen Akad. d. Wiss., 1928. München.
7. Milankovitch, M. Das Ende des julimischen Kalenders und der neue Kalender der orientalischen Kirchen. Ast. Nach., 220, 379-384, 1924.
Ruhl, Franz. Chronologie des Mittelalters aud der Neazeit. Merlin, 1897.
8. Schram, Rohert. Kalculariographische aut chrouvogische Tafolu, page 65. Iceipzig, 1908.
rr. Vaeca, G. Notizie sulla crouologia e sul caleudario ciuese. Calendario del R. Oss. di Roma, 1930.
9. van Wijk, Walter Emile. De Gregoriaausche Kalender. The Hague, 1932.

D. THE WEEK

The week was not originally an integral part of any calendar; in its present form, it gradually became established in the Roman calendar during the one or two centuries preceding the Christian era. The Mosaic Law enjoining an abstinence from work on every seventh day had established the 7 -day period as a Jewish measure of time, and this Jewish week later passed into the Christian Church. Meanwhile, shortly before the Christian era, an astrological practice had arisen of attaching the names of the seven "planets", the term at that time including the Sun and Moon, in cyclic succession to successive days, in the order in which the planets were supposed to rule the days. The planetary designations for the days rapidly acquired a widespread popularity, and becamc the predominant usage throughout the Raman limpire. 'The coincidence in the number of days in this astrological eyele with the number of days in the entirely independent Jewish week led to the gradual establishment of the planetary week without official recognition, either civil or ecclesiastical.

14D THE CALENDAR
Since first becoming established, the cyclic succession of the days of the week has not been altered, and no bradks in the sequence laive ocecomed. In the 'lemonic tanguages, the names of the Roman deities Mars, Merciry, Jupiter, and Venns have been replaced by their counterparts 'lin, Woden, 'thor, and lireya.

The week, therefore, is a non-astronomical element of the calendar. The reckoning of time by weekly cycles in continuous succession is independent of the essentially astronomical reckoning by days, months, and ycars which is the principal basis of the calendar. The consequent complexity of the relation betwecn the two reckonings causcs difficulty in determining readily the day of the week that corresponds to any given calendar date. However, a table of dominical letters (see sub-section E) is essentially a calendar for the entire period covered by the table, and is easily used cxplicitly for this purpose with the aid of a simple auxiliary table (such as table 14.2). Nomograms have also bcen constructed; see, e.g., d’Ocagnc, Traité de Nomographie, Paris, 1899; A. Saldaña, Urania, 38, 20, 1953.

References

Gandz, S. The origin of the planetary week. Proc. Amer. Acad. for Jerishh Research, 18, 2 13-254, 1949.

223-254, 1949.
Colson, F. H. The week. Cambridge University Press, $1926 . ~$

Tahle 14.2. Perpetual calendar

This calendar gives the days of the weck eorresponding to the days of any month in the Julian or Gregorian ealendars once the clominical letter for the year is known. [The dominical letter may be taken from talle 14.5 (Julian) or table 14.9 (Gregorian); in leap years the first letter is to be used for January and February, the second for the remainder of the year.]

The column in which the dominical letter for the year is in the same line as the month for which the ealendar is required gives the days of the week that correspond to the days of the month given at the left.

Month					Dominieal Letter						
January, October					A	B	C	D	E	F	G
February, March, November					D	E	F	G	A	B	C
April, July					G	A	B	C	D	E	F
May					B	C	D	E	F	G	A
June					E	F	G	A	B	C	D
August					C	D	E	F	G	A	B
September, December					F	G	A	13	C	D	E
Day of Month					Day of Week						
1	8	15	22	29	Sun.	Sat.	Fri.	Thur.	Wed.	Tues.	Mon.
2	. 9	16	23	30	Mon.	Sun.	Sat.	İri.	Thur.	Wed.	Tues.
3	10	17	24	31	'Iucs.	Mon.	Sun.	Sat.	l'ri.	${ }^{\prime} \mathrm{l}$ 'hur.	Wed.
4	11	18	25		Wed.	'Iucs.	Mon.	Sun.	Sat.	Fri.	'Ihur.
5	12	19	26		'I'hur.	Wed.	'Iucs.	Mod.	Sun.	Sat.	Iri.
6	13	20	27		Fri.	'Ihur.	Wed.	'Tues.	Mon.	Sun.	Sat.
7	14	21	28		Sat.	Fri.	'Thur.	Wed.	Tues.	Mon.	Sun.

