
Copyright © 1978 American Telephone and Telegraph Company
THE BELL SYSTEM TECHNICAL JOURNAL

Vol. 57, No. 6, July-August 1978

Primed in U.S.A.

The UNIX Time-Sharing Systemt

by D. M. RITCHIE and K. THOMPSON
(Manuscript received April 3, 1978)

UNIX* is a general-purpose, multi-user, interactive operating system for

the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32

computers. It offers a number of features seldom found even in larger

operating systems, including

(i) A hierarchical file system incorporating demountable volumes,

(ii) Compatible file, device, and inter-process I/O,

(Hi) The ability to initiate asynchronous processes,

(iv) System command language selectable on a per-user basis,

(v) Over 100 subsystems including a dozen languages,

(vi) High degree of portability.

This paper discusses the nature and implementation of the file system

and of the user command interface.

I. INTRODUCTION

There have been four versions of the UNIX time-sharing system.

The earliest (circa 1969-70) ran on the Digital Equipment Corpora-

tion pdp-7 and -9 computers. The second version ran on the unpro-

t Copyright 1974, Association for Computing Machinery, Inc., reprinted by permis-

sion. This is a revised version of an article that appeared in Communications of the

acm, 17, No. 7 (July 1974), pp. 365-375. That article was a revised version of a pa-

per presented at the Fourth acm Symposium on Operating Systems Principles, ibm

Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17,

1973.
* unix is a trademark of Bell Laboratories.

1905

tected pdp-11/20 computer. The third incorporated multiprogram-

ming and ran on the pdp-11/34, /40, /45, /60, and /70 computers;

it is the one described in the previously published version of this

paper, and is also the most widely used today. This paper describes

only the fourth, current system that runs on the pdp- 11/70 and the

Interdata 8/32 computers. In fact, the differences among the vari-

ous systems is rather small; most of the revisions made to the origi-

nally published version of this paper, aside from those concerned

with style, had to do with details of the implementation of the file

system.

Since PDP-11 UNIX became operational in February, 1971, over

600 installations have been put into service. Most of them are

engaged in applications such as computer science education, the

preparation and formatting of documents and other textual material,

the collection and processing of trouble data from various switching

machines within the Bell System, and recording and checking tele-

phone service orders. Our own installation is used mainly for

research in operating systems, languages, computer networks, and

other topics in computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to demon-

strate that a powerful operating system for interactive use need not

be expensive either in equipment or in human effort: it can run on

hardware costing as little as $40,000, and less than two man-years

were spent on the main system software. We hope, however, that

users find that the most important characteristics of the system are

its simplicity, elegance, and ease of use.

Besides the operating system proper, some major programs avail-

able under UNIX are

C compiler

Text editor based on qed 1

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs2 ' 3

Dozens of languages including Fortran 77, Basic,. Sno-

bol, apl, Algol 68, M6, tmg, Pascal

There is a host of maintenance, utility, recreation and novelty pro-

grams, all written locally. The UNIX user community, which

numbers in the thousands, has contributed many more programs

and languages. It is worth noting that the system is totally self-

supporting. All unix software is maintained on the system; like-

wise, this paper and all other documents in this issue were generated

and formatted by the UNIX editor and text formatting programs.

1 906 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

II. HARDWARE AND SOFTWARE ENVIRONMENT

The pdp-11/70 on which the Research UNIX system is installed is a

16-bit word (8-bit byte) computer with 768K bytes of core memory;

the system kernel occupies 90K bytes about equally divided between

code and data tables. This system, however, includes a very large

number of device drivers and enjoys a generous allotment of space

for I/O buffers and system tables; a minimal system capable of run-

ning the software mentioned above can require as little as 96K bytes

of core altogether. There are even larger installations; see the

description of the pwb/unix systems,4 ' 5 for example. There are also

much smaller, though somewhat restricted, versions of the system. 6

Our own PDP-11 has two 200-Mb moving-head disks for file sys-

tem storage and swapping. There are 20 variable-speed communica-

tions interfaces attached to 300- and 1200-baud data sets, and an

additional 12 communication lines hard-wired to 9600-baud termi-

nals and satellite computers. There are also several 2400- and

4800-baud synchronous communication interfaces used for

machine-to-machine file transfer. Finally, there is a variety of mis-

cellaneous devices including nine-track magnetic tape, a line printer,

a voice synthesizer, a phototypesetter, a digital switching network,

and a chess machine.

The preponderance of UNIX software is written in the above-

mentioned C language. 7 Early versions of the operating system

were written in assembly language, but during the summer of 1973,

it was rewritten in C. The size of the new system was about one-

third greater than that of the old. Since the new system not only

became much easier to understand and to modify but also included

many functional improvements, including multiprogramming and

the ability to share reentrant code among several user programs, we

consider this increase in size quite acceptable.

III. THE FILE SYSTEM

The most important role of the system is to provide a file system.

From the point of view of the user, there are three kinds of files:

ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for

example, symbolic or binary (object) programs. No particular

UNIX TIME-SHARING SYSTEM 1907

structuring is expected by the system. A file of text consists simply

of a string of characters, with lines demarcated by the newline char-

acter. Binary programs are sequences of words as they will appear in

core memory when the program starts executing. A few user pro-

grams manipulate files with more structure; for example, the assem-

bler generates, and the loader expects, an object file in a particular

format. However, the structure of files is controlled by the pro-

grams that use them, not by the system.

3.2 Directories

Directories provide the mapping between the names of files and

the files themselves, and thus induce a structure on the file system

as a whole. Each user has a directory of his own files; he may also

create subdirectories to contain groups of files conveniently treated

together. A directory behaves exactly like an ordinary file except

that it cannot be written on by unprivileged programs, so that the

system controls the contents of directories. However, anyone with

appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of

these is the root directory. All files in the system can be found by

tracing a path through a chain of directories until the desired file is

reached. The starting point for such searches is often the root.

Other system directories contain all the programs provided for gen-

eral use; that is, all the commands. As will be seen, however, it is

by no means necessary that a program reside in one of these direc-

tories for it to be executed.

Files are named by sequences of 14 or fewer characters. When
the name of a file is specified to the system, it may be in the form

of a path name, which is a sequence of directory names separated by

slashes, "/", and ending in a file name. If the sequence begins with

a slash, the search begins in the root directory. The name
/alpha/beta/gamma causes the system to search the root for direc-

tory alpha, then to search alpha for beta, finally to find gamma in

beta, gamma may be an ordinary file, a directory, or a special file.

As a limiting case, the name "/" refers to the root itself.

A path name not starting with "/" causes the system to begin the

search in the user's current directory. Thus, the name alpha/beta

specifies the file named beta in subdirectory alpha of the current

directory. The simplest kind of name, for example, alpha, refers to

a file that itself is found in the current directory. As another limit-

ing case, the null file name refers to the current directory.

1 908 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

The same non-directory file may appear in several directories

under possibly different names. This feature is called linking; a

directory entry for a file is sometimes called a link. The UNIX sys-

tem differs from other systems in which linking is permitted in that

all links to a file have equal status. That is, a file does not exist

within a particular directory; the directory entry for a file consists

merely of its name and a pointer to the information actually describ-

ing the file. Thus a file exists independently of any directory entry,

although in practice a file is made to disappear along with the last

link to it.

Each directory always has at least two entries. The name " .

" in

each directory refers to the directory itself. Thus a program may
read the current directory under the name " .

" without knowing its

complete path name. The name "
.

.

" by convention refers to the

parent of the directory in which it appears, that is, to the directory

in which it was created.

The directory structure is constrained to have the form of a rooted

tree. Except for the special entries " ." and "..", each directory

must appear as an entry in exactly one other directory, which is its

parent. The reason for this is to simplify the writing of programs

that visit subtrees of the directory structure, and more important, to

avoid the separation of portions of the hierarchy. If arbitrary links

to directories were permitted, it would be quite difficult to detect

when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file

system. Each supported I/O device is associated with at least one

such file. Special files are read and written just like ordinary disk

files, but requests to read or write result in activation of the associ-

ated device. An entry for each special file resides in directory /dev,

although a link may be made to one of these files just as it may to

an ordinary file. Thus, for example, to write on a magnetic tape one

may write on the file /dev/mt. Special files exist for each communi-

cation line, each disk, each tape drive, and for physical main

memory. Of course, the active disks and the memory special file are

protected from indiscriminate access.

There is a threefold advantage in treating I/O devices this way:

file and device I/O are as similar as possible; file and device names

have the same syntax and meaning, so that a program expecting a

file name as a parameter can be passed a device name; finally,

UNIX TIME-SHARING SYSTEM 1909

special files are subject to the same protection mechanism as regular

files.

3.4 Removable file systems

Although the root of the file system is always stored on the same
device, it is not necessary that the entire file system hierarchy reside

on this device. There is a mount system request with two argu-

ments: the name of an existing ordinary file, and the name of a spe-

cial file whose associated storage volume (e.g., a disk pack) should

have the structure of an independent file system containing its own
directory hierarchy. The effect of mount is to cause references to

the heretofore ordinary file to refer instead to the root directory of

the file system on the removable volume. In effect, mount replaces

a leaf of the hierarchy tree (the ordinary file) by a whole new sub-

tree (the hierarchy stored on the removable volume). After the

mount, there is virtually no distinction between files on the remov-

able volume and those in the permanent file system. In our installa-

tion, for example, the root directory resides on a small partition of

one of our disk drives, while the other drive, which contains the

user's files, is mounted by the system initialization sequence. A
mountable file system is generated by writing on its corresponding

special file. A utility program is available to create an empty file sys-

tem, or one may simply copy an existing file system.

There is only one exception to the rule of identical treatment of

files on different devices: no link may exist between one file system

hierarchy and another. This restriction is enforced so as to avoid

the elaborate bookkeeping that would otherwise be required to

assure removal of the links whenever the removable volume is

dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some
unusual features. Each user of the system is assigned a unique user

identification number. When a file is created, it is marked with the

user id of its owner. Also given for new files is a set of ten protec-

tion bits. Nine of these specify independently read, write, and exe-

cute permission for the owner of the file, for other members of his

group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user

1910 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

identification (hereafter, user id) of the current user to that of the

creator of the file whenever the file is executed as a program. This

change in user id is effective only during the execution of the pro-

gram that calls for it. The set-user-ID feature provides for privileged

programs that may use files inaccessible to other users. For exam-

ple, a program may keep an accounting file that should neither be

read nor changed except by the program itself. If the set-user-ID bit

is on for the program, it may access the file although this access

might be forbidden to other programs invoked by the given

program's user. Since the actual user id of the invoker of any pro-

gram is always available, set-user-ID programs may take any meas-

ures desired to satisfy themselves as to their invoker's credentials.

This mechanism is used to allow users to execute the carefully writ-

ten commands that call privileged system entries. For example,

there is a system entry invokable only by the "super-user" (below)

that creates an empty directory. As indicated above, directories are

expected to have entries for "
.
" and "

.

.

". The command which

creates a directory is owned by the super-user and has the set-user-

ID bit set. After it checks its invoker's authorization to create the

specified directory, it creates it and makes the entries for " .

" and
u n

Because anyone may set the set-user-ID bit on one of his own

files, this mechanism is generally available without administrative

intervention. For example, this protection scheme easily solves the

moo accounting problem posed by "Aleph-null." 8

The system recognizes one particular user id (that of the "super-

user") as exempt from the usual constraints on file access; thus (for

example), programs may be written to dump and reload the file sys-

tem without unwanted interference from the protection system.

3.6 I/O calls

The system calls to do I/O are designed to eliminate the

differences between the various devices and styles of access. There

is no distinction between "random" and "sequential" I/O, nor is any

logical record size imposed by the system. The size of an ordinary

file is determined by the number of bytes written on it; no predeter-

mination of the size of a file is necessary or possible.

To illustrate the essentials of I/O, some of the basic calls are sum-

marized below in an anonymous language that will indicate the

required parameters without getting into the underlying complexi-

ties. Each call to the system may potentially result in an error

UNIX TIME-SHARING SYSTEM 191

1

return, which for simplicity is not represented in the calling

sequence.

To read or write a file assumed to exist already, it must be opened

by the following call:

filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name
may be given. The flag argument indicates whether the file is to be

read, written, or "updated," that is, read and written simultaneously.

The returned value filep is called a file descriptor. It is a small

integer used to identify the file in subsequent calls to read, write, or

otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a

create system call that creates the given file if it does not exist, or

truncates it to zero length if it does exist; create also opens the new
file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there

any restriction on the number of users who may have a file open for

reading or writing. Although it is possible for the contents of a file

to become scrambled when two users write on it simultaneously, in

practice difficulties do not arise. We take the view that locks are

neither necessary nor sufficient, in our environment, to prevent

interference between users of the same file. They are unnecessary

because we are not faced with large, single-file data bases maintained

by independent processes. They are insufficient because locks in the

ordinary sense, whereby one user is prevented from writing on a file

that another user is reading, cannot prevent confusion when, for

example, both users are editing a file with an editor that makes a

copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the

logical consistency of the file system when two users engage simul-

taneously in activities such as writing on the same file, creating files

in the same directory, or deleting each other's open files.

Except as indicated below, reading and writing are sequential.

This means that if a particular byte in the file was the last byte writ-

ten (or read), the next I/O call implicitly refers to the immediately

following byte. For each open file there is a pointer, maintained

inside the system, that indicates the next byte to be read or written.

If n bytes are read or written, the pointer advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)

1 91 2 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

n = write (fHep, buffer, count)

Up to count bytes are transmitted between the file specified by filep

and the byte array specified by buffer. The returned value n is the

number of bytes actually transmitted. In the write case, n is the

same as count except under exceptional conditions, such as I/O

errors or end of physical medium on special files; in a read, how-

ever, n may without error be less than count. If the read pointer is

so near the end of the file that reading count characters would cause

reading beyond the end, only sufficient bytes are transmitted to

reach the end of the file; also, typewriter-like terminals never return

more than one line of input. When a read call returns with n equal

to zero, the end of the file has been reached. For disk files this

occurs when the read pointer becomes equal to the current size of

the file. It is possible to generate an end-of-file from a terminal by

use of an escape sequence that depends on the device used.

Bytes written affect only those parts of a file implied by the posi-

tion of the write pointer and the count; no other part of the file is

changed. If the last byte lies beyond the end of the file, the file is

made to grow as needed.

To do random (direct-access) I/O it is only necessary to move the

read or write pointer to the appropriate location in the file.

location = Iseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes

from the beginning of the file, from the current position of the

pointer, or from the end of the file, depending on base, offset may

be negative. For some devices (e.g., paper tape and terminals) seek

calls are ignored. The actual offset from the beginning of the file to

which the pointer was moved is returned in location.

There are several additional system entries having to do with I/O

and with the file system that will not be discussed. For example:

close a file, get the status of a file, change the protection mode or

the owner of a file, create a directory, make a link to an existing file,

delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains

only a name for the associated file and a pointer to the file itself.

This pointer is an integer called the i-number (for index number) of

the file. When the file is accessed, its i-number is used as an index

UNIX TIME-SHARING SYSTEM 1913

into a system table (the Mist) stored in a known part of the device

on which the directory resides. The entry found thereby (the file's

i-node) contains the description of the file:

(/) the user and group-ID of its owner
(//*) its protection bits

(///') the physical disk or tape addresses for the file contents

(/v) its size

(v) time of creation, last use, and last modification

(v/) the number of links to the file, that is, the number of times it

appears in a directory

(v/V) a code indicating whether the file is a directory, an ordinary

file, or a special file.

The purpose of an open or create system call is to turn the path

name given by the user into an i-number by searching the explicitly

or implicitly named directories. Once a file is open, its device, i-

number, and read/write pointer are stored in a system table indexed

by the file descriptor returned by the open or create. Thus, during

a subsequent call to read or write the file, the descriptor may be

easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a

directory entry is made that contains the name of the file and the i-

node number. Making a link to an existing file involves creating a

directory entry with the new name, copying the i-number from the

original file entry, and incrementing the link-count field of the i-

node. Removing (deleting) a file is done by decrementing the link-

count of the i-node specified by its directory entry and erasing the

directory entry. If the link-count drops to 0, any disk blocks in the

file are freed and the i-node is de-allocated.

The space on all disks that contain a file system is divided into a

number of 512-byte blocks logically addressed from up to a limit

that depends on the device. There is space in the i-node of each file

for 13 device addresses. For nonspecial files, the first 10 device

addresses point at the first 10 blocks of the file. If the file is larger

than 10 blocks, the 11 device address points to an indirect block

containing up to 128 addresses of additional blocks in the file. Still

larger files use the twelfth device address of the i-node to point to a

double-indirect block naming 128 indirect blocks, each pointing to

128 blocks of the file. If required, the thirteenth device address is a

triple-indirect block. Thus files may conceptually grow to

l(10+ 128+ 128
2+128 3

)-512)] bytes. Once opened, bytes num-
bered below 5120 can be read with a single disk access; bytes in the

1914 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

range 5120 to 70,656 require two accesses; bytes in the range 70,656

to 8,459,264 require three accesses; bytes from there to the largest

file (1,082,201,088) require four accesses. In practice, a device

cache mechanism (see below) proves effective in eliminating most

of the indirect fetches.

The foregoing discussion applies to ordinary files. When an I/O

request is made to a file whose i-node indicates that it is special, the

last 12 device address words are immaterial, and the first specifies an

internal device name, which is interpreted as a pair of numbers

representing, respectively, a device type and subdevice number.

The device type indicates which system routine will deal with I/O on

that device; the subdevice number selects, for example, a disk drive

attached to a particular controller or one of several similar terminal

interfaces.

In this environment, the implementation of the mount system call

(Section 3.4) is quite straightforward, mount maintains a system

table whose argument is the i-number and device name of the ordi-

nary file specified during the mount, and whose corresponding value

is the device name of the indicated special file. This table is

searched for each i-number/device pair that turns up while a path

name is being scanned during an open or create; if a match is

found, the i-number is replaced by the i-number of the root direc-

tory and the device name is replaced by the table value.

To the user, both reading and writing of files appear to be syn-

chronous and unbuffered. That is, immediately after return from a

read call the data are available; conversely, after a write the user's

workspace may be reused. In fact, the system maintains a rather

complicated buffering mechanism that reduces greatly the number of

I/O operations required to access a file. Suppose a write call is

made specifying transmission of a single byte. The system will

search its buffers to see whether the affected disk block currently

resides in main memory; if not, it will be read in from the device.

Then the affected byte is replaced in the buffer and an entry is made

in a list of blocks to be written. The return from the write call may
then take place, although the actual I/O may not be completed until

a later time. Conversely, if a single byte is read, the system deter-

mines whether the secondary storage block in which the byte is

located is already in one of the system's buffers; if so, the byte can

be returned immediately. If not, the block is read into a buffer and

the byte picked out.

The system recognizes when a program has made accesses to

sequential blocks of a file, and asynchronously pre-reads the next

UNIX TIME-SHARING SYSTEM 1915

block. This significantly reduces the running time of most programs

while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an

advantage over a program that reads or writes a single byte at a

time, but the gain is not immense; it comes mainly from the

avoidance of system overhead. If a program is used rarely or does

no great volume of I/O, it may quite reasonably read and write in

units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice,

this method of organizing the file system has proved quite reliable

and easy to deal with. To the system itself, one of its strengths is

the fact that each file has a short, unambiguous name related in a

simple way to the protection, addressing, and other information

needed to access the file. It also permits a quite simple and rapid

algorithm for checking the consistency of a file system, for example,

verification that the portions of each device containing useful infor-

mation and those free to be allocated are disjoint and together

exhaust the space on the device. This algorithm is independent of

the directory hierarchy, because it need only scan the linearly organ-

ized i-list. At the same time the notion of the i-list induces certain

peculiarities not found in other file system organizations. For exam-
ple, there is the question of who is to be charged for the space a file

occupies, because all directory entries for a file have equal status.

Charging the owner of a file is unfair in general, for one user may
create a file, another may link to it, and the first user may delete the

file. The first user is still the owner of the file, but it should be

charged to the second user. The simplest reasonably fair algorithm

seems to be to spread the charges equally among users who have

links to a file. Many installations avoid the issue by not charging

any fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a

memory image, general register values, status of open files, current

directory and the like. An image is the current state of a pseudo-

computer.

A process is the execution of an image. While the processor is

executing on behalf of a process, the image must reside in main

memory; during the execution of other processes it remains in main
memory unless the appearance of an active, higher-priority process

forces it to be swapped out to the disk.

1 91 6 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

The user-memory part of an image is divided into three logical

segments. The program text segment begins at location in the vir-

tual address space. During execution, this segment is write-

protected and a single copy of it is shared among all processes exe-

cuting the same program. At the first hardware protection byte

boundary above the program text segment in the virtual address

space begins a non-shared, writable data segment, the size of which

may be extended by a system call. Starting at the highest address in

the virtual address space is a stack segment, which automatically

grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a

new process can come into existence only by use of the fork system

call:

processid = fork (

)

When fork is executed, the process splits into two independently

executing processes. The two processes have independent copies of

the original memory image, and share all open files. The new

processes differ only in that one is considered the parent process: in

the parent, the returned processid actually identifies the child pro-

cess and is never 0, while in the child, the returned value is always

0.

Because the values returned by fork in the parent and child pro-

cess are distinguishable, each process may determine whether it is

the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same

system read and write calls that are used for file-system I/O. The

call:

filep = pipe (

)

returns a file descriptor filep and creates an inter-process channel

called a pipe. This channel, like other open files, is passed from

parent to child process in the image by the fork call. A read using a

pipe file descriptor waits until another process writes using the file

descriptor for the same pipe. At this point, data are passed between

UNIX TIME-SHARING SYSTEM 1917

the images of the two processes. Neither process need know that a

pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valu-

able tool (see Section 6.2), it is not a completely general mechan-
ism, because the pipe must be set up by a common ancestor of the

processes involved.

5.3 Execution of programs

Another major system primitive is invoked by

execute (file, argv arg
2

ar9 n)

which requests the system to read in and execute the program

named by file, passing it string arguments arg
1

, arg
2 , ... , arg

n
.

All the code and data in the process invoking execute is replaced

from the file, but open files, current directory, and inter-process

relationships are unaltered. Only if the call fails, for example
because file could not be found or because its execute-permission

bit was not set, does a return take place from the execute primitive;

it resembles a "jump" machine instruction rather than a subroutine

call.

5.4 Process synchronization

Another process control system call:

processid = wait (status)

causes its caller to suspend execution until one of its children has

completed execution. Then wait returns the processid of the ter-

minated process. An error return is taken if the calling process has

no descendants. Certain status from the child process is also avail-

able.

5.5 Termination

Lastly:

exit (status)

terminates a process, destroys its image, closes its open files, and
generally obliterates it. The parent is notified through the wait

primitive, and status is made available to it. Processes may also

1918 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

terminate as a result of various illegal actions or user-generated sig-

nals (Section VII below).

VI. THE SHELL

For most users, communication with the system is carried on with

the aid of a program called the shell. The shell is a command-line

interpreter: it reads lines typed by the user and interprets them as

requests to execute other programs. (The shell is described fully

elsewhere,9 so this section will discuss only the theory of its opera-

tion.) In simplest form, a command line consists of the command
name followed by arguments to the command, all separated by

spaces:

command arg
1

arg
2

... arg
n

The shell splits up the command name and the arguments into

separate strings. Then a file with name command is sought; com-
mand may be a path name including the "/" character to specify

any file in the system. If command is found, it is brought into

memory and executed. The arguments collected by the shell are

accessible to the command. When the command is finished, the

shell resumes its own execution, and indicates its readiness to accept

another command by typing a prompt character.

If file command cannot be found, the shell generally prefixes a

string such as /bin/ to command and attempts again to find the

file. Directory /bin contains commands intended to be generally

used. (The sequence of directories to be searched may be changed

by user request.)

6.1 Standard I/O

The discussion of I/O in Section III above seems to imply that

every file used by a program must be opened or created by the pro-

gram in order to get a file descriptor for the file. Programs executed

by the shell, however, start off with three open files with file

descriptors 0, 1, and 2. As such a program begins execution, file 1

is open for writing, and is best understood as the standard output

file. Except under circumstances indicated below, this file is the

user's terminal. Thus programs that wish to write informative infor-

mation ordinarily use file descriptor 1. Conversely, file starts off

open for reading, and programs that wish to read messages typed by

the user read this file.

UNIX TIME-SHARING SYSTEM 1919

The shell is able to change the standard assignments of these file

descriptors from the user's terminal printer and keyboard. If one of

the arguments to a command is prefixed by ">", file descriptor 1

will, for the duration of the command, refer to the file named after

the ">". For example:

Is

ordinarily lists, on the typewriter, the names of the files in the

current directory. The command:

Is >there

creates a file called there and places the listing there. Thus the

argument >there means "place output on there." On the other

hand:

ed

ordinarily enters the editor, which takes requests from the user via

his keyboard. The command

ed < script

interprets script as a file of editor commands; thus < script means
"take input from script."

Although the file name following "<" or ">" appears to be an

argument to the command, in fact it is interpreted completely by the

shell and is not passed to the command at all. Thus no special cod-

ing to handle I/O redirection is needed within each command; the

command need merely use the standard file descriptors and 1

where appropriate.

File descriptor 2 is, like file 1, ordinarily associated with the termi-

nal output stream. When an output-diversion request with ">" is

specified, file 2 remains attached to the terminal, so that commands
may produce diagnostic messages that do not silently end up in the

output file.

6.2 Filters

An extension of the standard I/O notion is used to direct output

from one command to the input of another. A sequence of com-
mands separated by vertical bars causes the shell to execute all the

commands simultaneously and to arrange that the standard output of

each command be delivered to the standard input of the next com-
mand in the sequence. Thus in the command line:

1 920 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

Is
I
pr -2

I
opr

Is lists the names of the files in the current directory; its output is

passed to pr, which paginates its input with dated headings. (The

argument "-2" requests double-column output.) Likewise, the out-

put from pr is input to opr; this command spools its input onto a

file for off-line printing.

This procedure could have been carried out more clumsily by:

Is >temp1

pr —2 <temp1 >temp2
opr <temp2

followed by removal of the temporary files. In the absence of the

ability to redirect output and input, a still clumsier method would

have been to require the Is command to accept user requests to

paginate its output, to print in multi-column format, and to arrange

that its output be delivered off-line. Actually it would be surprising,

and in fact unwise for efficiency reasons, to expect authors of com-

mands such as Is to provide such a wide variety of output options.

A program such as pr which copies its standard input to its stan-

dard output (with processing) is called a filter. Some filters that we

have found useful perform character transliteration, selection of

lines according to a pattern, sorting of the input, and encryption and

decryption.

6.3 Command separators; multitasking

Another feature provided by the shell is relatively straightforward.

Commands need not be on different lines; instead they may be

separated by semicolons:

Is; ed

will first list the contents of the current directory, then enter the

editor.

A related feature is more interesting. If a command is followed

by "&," the shell will not wait for the command to finish before

prompting again; instead, it is ready immediately to accept a new

command. For example:

as source >output &

causes source to be assembled, with diagnostic output going to out-

put; no matter how long the assembly takes, the shell returns

UNIX TIME-SHARING SYSTEM 1921

immediately. When the shell does not wait for the completion of a

command, the identification number of the process running that

command is printed. This identification may be used to wait for the

completion of the command or to terminate it. The "&" may be

used several times in a line:

as source >output & Is Miles &

does both the assembly and the listing in the background. In these

examples, an output file other than the terminal was provided; if

this had not been done, the outputs of the various commands would

have been intermingled.

The shell also allows parentheses in the above operations. For

example:

(date; Is) >x &

writes the current date and time followed by a list of the current

directory onto the file x. The shell also returns immediately for

another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively.

Suppose file tryout contains the lines:

as source

mv a.out testprog

testprog

The mv command causes the file a.out to be renamed testprog.

a.out is the (binary) output of the assembler, ready to be executed.

Thus if the three lines above were typed on the keyboard, source
would be assembled, the resulting program renamed testprog, and

testprog executed. When the lines are in tryout, the command:

sh <tryout

would cause the shell sh to execute the commands sequentially.

The shell has further capabilities, including the ability to substi-

tute parameters and to construct argument lists from a specified sub-

set of the file names in a directory. It also provides general condi-

tional and looping constructions.

6.5 Implementation of the shell

The outline of the operation of the shell can now be understood.

1922 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

Most of the time, the shell is waiting for the user to type a com-

mand. When the newline character ending the line is typed, the

shell's read call returns. The shell analyzes the command line, put-

ting the arguments in a form appropriate for execute. Then fork is

called. The child process, whose code of course is still that of the

shell, attempts to perform an execute with the appropriate argu-

ments. If successful, this will bring in and start execution of the

program whose name was given. Meanwhile, the other process

resulting from the fork, which is the parent process, waits for the

child process to die. When this happens, the shell knows the com-
mand is finished, so it types its prompt and reads the keyboard to

obtain another command.
Given this framework, the implementation of background

processes is trivial; whenever a command line contains "&," the

shell merely refrains from waiting for the process that it created to

execute the command.
Happily, all of this mechanism meshes very nicely with the notion

of standard input and output files. When a process is created by the

fork primitive, it inherits not only the memory image of its parent

but also all the files currently open in its parent, including those

with file descriptors 0, 1, and 2. The shell, of course, uses these

files to read command lines and to write its prompts and diagnostics,

and in the ordinary case its children— the command programs-
inherit them automatically. When an argument with "<" or ">" is

given, however, the offspring process, just before it performs exe-

cute, makes the standard I/O file descriptor (0 or 1, respectively)

refer to the named file. This is easy because, by agreement, the

smallest unused file descriptor is assigned when a new file is opened
(or created); it is only necessary to close file (or 1) and open the

named file. Because the process in which the command program

runs simply terminates when it is through, the association between a

file specified after "<" or ">" and file descriptor or 1 is ended

automatically when the process dies. Therefore the shell need not

know the actual names of the files that are its own standard input

and output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection

with pipes used instead of files.

In ordinary circumstances, the main loop of the shell never ter-

minates. (The main loop includes the branch of the return from

fork belonging to the parent process; that is, the branch that does a

wait, then reads another command line.) The one thing that causes

the shell to terminate is discovering an end-of-file condition on its

UNIX TIME-SHARING SYSTEM 1923

input file. Thus, when the shell is executed as a command with a

given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile

is reached; then the instance of the shell invoked by sh will ter-

minate. Because this shell process is the child of another instance of

the shell, the wait executed in the latter will return, and another

command may then be processed.

6.6 Initialization

The instances of the shell to which users type commands are

themselves children of another process. The last step in the initiali-

zation of the system is the creation of a single process and the invo-

cation (via execute) of a program called init. The role of init is to

create one process for each terminal channel. The various subin-

stances of init open the appropriate terminals for input and output

on files 0, 1, and 2, waiting, if necessary, for carrier to be esta-

blished on dial-up lines. Then a message is typed out requesting

that the user log in. When the user types a name or other

identification, the appropriate instance of init wakes up, receives the

log-in line, and reads a password file. If the user's name is found,

and if he is able to supply the correct password, init changes to the

user's default current directory, sets the process's user ID to that of

the person logging in, and performs an execute of the shell. At

this point, the shell is ready to receive commands and the logging-in

protocol is complete.

Meanwhile, the mainstream path of init (the parent of all the

subinstances of itself that will later become shells) does a wait. If

one of the child processes terminates, either because a shell found

an end of file or because a user typed an incorrect name or pass-

word, this path of init simply recreates the defunct process, which in

turn reopens the appropriate input and output files and types

another log-in message. Thus a user may log out simply by typing

the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as described above is designed to allow users full access

to the facilities of the system, because it will invoke the execution

of any program with appropriate protection mode. Sometimes,

1924 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

however, a different interface to the system is desirable, and this

feature is easily arranged for.

Recall that after a user has successfully logged in by supplying a

name and password, in it ordinarily invokes the shell to interpret

command lines. The user's entry in the password file may contain

the name of a program to be invoked after log-in instead of the

shell. This program is free to interpret the user's messages in any

way it wishes.

For example, the password file entries for users of a secretarial

editing system might specify that the editor ed is to be used instead

of the shell. Thus when users of the editing system log in, they are

inside the editor and can begin work immediately; also, they can be

prevented from invoking programs not intended for their use. In

practice, it has proved desirable to allow a temporary escape from

the editor to execute the formatting program and other utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) avail-

able on the system illustrate a much more severely restricted

environment. For each of these, an entry exists in the password file

specifying that the appropriate game-playing program is to be

invoked instead of the shell. People who log in as a player of one of

these games find themselves limited to the game and unable to

investigate the (presumably more interesting) offerings of the UNIX

system as a whole.

VII. TRAPS

The PDP-11 hardware detects a number of program faults, such as

references to non-existent memory, unimplemented instructions,

and odd addresses used where an even address is required. Such

faults cause the processor to trap to a system routine. Unless other

arrangements have been made, an illegal action causes the system to

terminate the process and to write its image on file core in the

current directory. A debugger can be used to determine the state of

the program at the time of the fault.

Programs that are looping, that produce unwanted output, or

about which the user has second thoughts may be halted by the use

of the interrupt signal, which is generated by typing the "delete"

character. Unless special action has been taken, this signal simply

causes the program to cease execution without producing a core file.

There is also a quit signal used to force an image file to be pro-

duced. Thus programs that loop unexpectedly may be halted and

the remains inspected without prearrangement.

UNIX TIME-SHARING SYSTEM 1925

The hardware-generated faults and the interrupt ai.J quit signals

can, by request, be either ignored or caught by a process. For

example, the shell ignores quits to prevent a quit from logging the

user out. The editor catches interrupts and returns to its command
level. This is useful for stopping long printouts without losing work
in progress (the editor manipulates a copy of the file it is editing).

In systems without floating-point hardware, unimplemented instruc-

tions are caught and floating-point instructions are interpreted.

VIII. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely

due to the fact that it was not designed to meet any predefined

objectives. The first version was written when one of us (Thomp-
son), dissatisfied with the available computer facilities, discovered a

little-used pdp-7 and set out to create a more hospitable environ-

ment. This (essentially personal) effort was sufficiently successful to

gain the interest of the other author and several colleagues, and

later to justify the acquisition of the PDP- 11/20, specifically to sup-

port a text editing and formatting system. When in turn the 11/20

was outgrown, the system had proved useful enough to persuade

management to invest in the PDP- 11/45, and later in the pdp- 11/70

and Interdata 8/32 machines, upon which it developed to its present

form. Our goals throughout the effort, when articulated at all, have

always been to build a comfortable relationship with the machine

and to explore ideas and inventions in operating systems and other

software. We have not been faced with the need to satisfy someone
else's requirements, and for this freedom we are grateful.

Three considerations that influenced the design of UNIX are visible

in retrospect.

First: because we are programmers, we naturally designed the sys-

tem to make it easy to write, test, and run programs. The most
important expression of our desire for programming convenience

was that the system was arranged for interactive use, even though

the original version only supported one user. We believe that a

properly designed interactive system is much more productive and
satisfying to use than a "batch" system. Moreover, such a system is

rather easily adaptable to noninteractive use, while the converse is

not true.

Second: there have always been fairly severe size constraints on
the system and its software. Given the partially antagonistic desires

for reasonable efficiency and expressive power, the size constraint

1926 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

has encouraged not only economy, but also a certain elegance of

design. This may be a thinly disguised version of the "salvation

through suffering" philosophy, but in our case it worked.

Third: nearly from the start, the system was able to, and did,

maintain itself. This fact is more important than it might seem. If

designers of a system are forced to use that system, they quickly

become aware of its functional and superficial deficiencies and are

strongly motivated to correct them before it is too late. Because all

source programs were always available and easily modified on-line,

we were willing to revise and rewrite the system and its software

when new ideas were invented, discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearly at least

the first two of these design considerations. The interface to the file

system, for example, is extremely convenient from a programming

standpoint. The lowest possible interface level is designed to elim-

inate distinctions between the various devices and files and between

direct and sequential access. No large "access method" routines are

required to insulate the programmer from the system calls; in fact,

all user programs either call the system directly or use a small library

program, less than a page long, that buffers a number of characters

and reads or writes them all at once.

Another important aspect of programming convenience is that

there are no "control blocks" with a complicated structure partially

maintained by and depended on by the file system or other system

calls. Generally speaking, the contents of a program's address space

are the property of the program, and we have tried to avoid placing

restrictions on the data structures within that address space.

Given the requirement that all programs should be usable with

any file or device as input or output, it is also desirable to push

device-dependent considerations into the operating system itself.

The only alternatives seem to be to load, with all programs, routines

for dealing with each device, which is expensive in space, or to

depend on some means of dynamically linking to the routine

appropriate to each device when it is actually needed, which is

expensive either in overhead or in hardware.

Likewise, the process-control scheme and the command interface

have proved both convenient and efficient. Because the shell

operates as an ordinary, swappable user program, it consumes no

"wired-down" space in the system proper, and it may be made as

powerful as desired at little cost. In particular, given the framework

in which the shell executes as a process that spawns other processes

to perform commands, the notions of I/O redirection, background

UNIX TIME-SHARING SYSTEM 1927

processes, command files, and user-selectable system interfaces all

become essentially trivial to implement.

Influences

The success of UNIX lies not so much in new inventions but rather

in the full exploitation of a carefully selected set of fertile ideas, and

especially in showing that they can be keys to the implementation of

a small yet powerful operating system.

The fork operation, essentially as we implemented it, was present

in the genie time-sharing system. 10 On a number of points we were

influenced by Multics, which suggested the particular form of the

I/O system calls 11 and both the name of the shell and its general

functions. The notion that the shell should create a process for each

command was also suggested to us by the early design of Multics,

although in that system it was later dropped for efficiency reasons.

A similar scheme is used by tenex. 12

IX. STATISTICS

The following numbers are presented to suggest the scale of the

Research UNIX operation. Those of our users not involved in docu-

ment preparation tend to use the system for program development,

especially language work. There are few important "applications"

programs.

Overall, we have today:

125 user population

33 maximum simultaneous users

1,630 directories

28,300 files

301,700 512-byte secondary storage blocks used

There is a "background" process that runs at the lowest possible

priority; it is used to soak up any idle CPU time. It has been used to

produce a million-digit approximation to the constant e, and other

semi-infinite problems. Not counting this background work, we
average daily:

13,500 commands
9.6 CPU hours

230 connect hours

1 928 THE BELL SYSTEM TECHNICAL JOURNAL, JULY-AUGUST 1 978

62 different users

240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially

apposite phrase, too numerous to mention. Certainly, collective

salutes are due to our colleagues in the Computing Science Research

Center. R. H. Canaday contributed much to the basic design of the

file system. We are particularly appreciative of the inventiveness,

thoughtful criticism, and constant support of R. Morris, M. D. Mcll-

roy, and J. F. Ossanna.

REFERENCES
1. L. P. Deutch and B. W. Lampson, "An online editor," Commun. Assn. Comp.

Mach., 10 (December 1967), pp. 793-799, 803.

2. B. W. Kernighan and L. L. Cherry, "A System for Typesetting Mathematics,"
Commun. Assn. Comp. Mach., 18 (March 1975), pp. 151-157.

3. B. W. Kernighan, M. E. Lesk, and J. F. Ossanna, "unix Time-Sharing System:
Document Preparation," B.S.T.J., this issue, pp. 2115-2135.

4. T. A. Dolotta and J. R. Mashey, "An Introduction to the Programmer's Work-
bench," Proc. 2nd Int. Conf. on Software Engineering (October 13-15, 1976),

pp. 164-168.

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, "unix Time-Sharing System: The
Programmer's Workbench," B.S.T.J. , this issue, pp. 2177-2200.

6. H. Lycklama, "unix Time-Sharing System: unix on a Microprocessor," B.S.T.J.

,

this issue, pp. 2087-2101.

7. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Englewood
Cliffs, N.J.: Prentice-Hall, 1978.

8. Aleph-null, "Computer Recreations," Software Practice and Experience, 1 (April-

June 1971), pp. 201-204.

9. S. R. Bourne, "unix Time-Sharing System: The unix Shell," B.S.T.J., this issue,

pp. 1971-1990.

10. L. P. Deutch and B. W. Lampson, Doc. 30.10.10, Project genie,. April 1965.

11. R. J. Feiertag and E. I. Organick, "The Multics input-output system," Proc. Third
Symposium on Operating Systems Principles (October 18-20, 1971), pp. 35-41.

12. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S. Tomlinson, "tenex, a

Paged Time Sharing System for the pdp-10," Commun. Assn. Comp. Mach.,
15 (March 1972), pp. 135-143.

UNIX TIME-SHARING SYSTEM 1929

