& RedHat

Red Hat OpenShift Service on AWS 4

Builds using BuildConfig

Contains information about builds for Red Hat OpenShift Service on AWS

Last Updated: 2024-06-06

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

Contains information about builds for Red Hat OpenShift Service on AWS

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Builds for Red Hat OpenShift Service on AWS.

Table of Contents

Table of Contents

CHAPTER 1. UNDERSTANDING IMAGE BUILDS ...\ttt itttitttit e eeiteeeneeanneeaneeraneennneenns 5
1.1. BUILDS S
1.1.1. Docker build 5
1.1.2. Source-to-image build 5
CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS ... ittt it iei e enneennneanns 6
2.1. BUILDCONFIGS 6
CHAPTER 3. CREATING BUILD INPUT S ..ttt ittt ettt ite et eeeeeaneennneeaneeraneennneenns 8
3.1.BUILD INPUTS 8
3.2. DOCKERFILE SOURCE 9
3.3. IMAGE SOURCE 9
3.4. GIT SOURCE 11
3.4.1. Using a proxy 12
3.4.2. Source Clone Secrets 12
3.4.2.1. Automatically adding a source clone secret to a build configuration 12
3.4.2.2. Manually adding a source clone secret 14
3.4.2.3. Creating a secret from a .gitconfig file 14
3.4.2.4. Creating a secret from a .gitconfig file for secured Git 15
3.4.2.5. Creating a secret from source code basic authentication 16
3.4.2.6. Creating a secret from source code SSH key authentication 16
3.4.2.7. Creating a secret from source code trusted certificate authorities 17
3.4.2.8. Source secret combinations 18
3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file 18
3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate 18
3.4.2.8.3. Creating a basic authentication secret with a CA certificate 19
3.4.2.8.4. Creating a basic authentication secret with a Git configuration file 19
3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate 19

3.5. BINARY (LOCAL) SOURCE 20
3.6. INPUT SECRETS AND CONFIG MAPS 21
3.6.1. What is a secret? 21
3.6.1.1. Properties of secrets 22
3.6.1.2. Types of Secrets 22
3.6.1.3. Updates to secrets 23

3.6.2. Creating secrets 23
3.6.3. Using secrets 24
3.6.4. Adding input secrets and config maps 26
3.6.5. Source-to-image strategy 28

3.7. EXTERNAL ARTIFACTS 28
3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES 29
3.9. BUILD ENVIRONMENTS 32
3.9.1. Using build fields as environment variables 32
3.9.2. Using secrets as environment variables 32
3.10. SERVICE SERVING CERTIFICATE SECRETS 33
3.11. SECRETS RESTRICTIONS 33
CHAPTER 4. MANAGING BUILD OUT PUT ..ttt et teitetateeneeeaneeeaneennneeannesaneenn 35
4.1.BUILD OUTPUT 35
4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES 35
4.3. OUTPUT IMAGE LABELS 36
CHAPTERS. USING BUILD STRATEGIES ...ttt teite ettt eieeeaeeeaneennneennnennneenn 37

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

5.1. DOCKER BUILD
5.1.1. Replacing the Dockerfile FROM image
5.1.2. Using Dockerfile path
5.1.3. Using docker environment variables
5.1.4. Adding Docker build arguments
5.1.5. Squashing layers with docker builds
5.1.6. Using build volumes
5.2. SOURCE-TO-IMAGE BUILD
5.2.1. Performing source-to-image incremental builds
5.2.2. Overriding source-to-image builder image scripts
5.2.3. Source-to-image environment variables
5.2.3.1. Using source-to-image environment files
5.2.3.2. Using source-to-image build configuration environment
5.2.4. Ignoring source-to-image source files
5.2.5. Creating images from source code with source-to-image
5.2.5.1. Understanding the source-to-image build process
5.2.5.2. How to write source-to-image scripts
5.2.6. Using build volumes
5.3. ADDING SECRETS WITH WEB CONSOLE
5.4. ENABLING PULLING AND PUSHING

CHAPTER 6. PERFORMING AND CONFIGURING BASICBUILDS

6.1. STARTING ABUILD
6.1.1. Re-running a build
6.1.2. Streaming build logs
6.1.3. Setting environment variables when starting a build
6.1.4. Starting a build with source
6.2. CANCELING A BUILD
6.2.1. Canceling multiple builds
6.2.2. Canceling all builds
6.2.3. Canceling all builds in a given state
6.3. EDITING A BUILDCONFIG
6.4. DELETING A BUILDCONFIG
6.5. VIEWING BUILD DETAILS
6.6. ACCESSING BUILD LOGS
6.6.1. Accessing BuildConfig logs
6.6.2. Accessing BuildConfig logs for a given version build
6.6.3. Enabling log verbosity

CHAPTER 7. TRIGGERING AND MODIFYINGBUILDSooiiiiiiiiiiiia,

7.1. BUILD TRIGGERS
7.1.1. Webhook triggers
7.1.1.1. Using GitHub webhooks
7.1.1.2. Using GitLab webhooks
7.1.1.3. Using Bitbucket webhooks
7.1.1.4. Using generic webhooks
7.1.1.5. Displaying webhook URLSs
7.1.2. Using image change triggers
7.1.3. Identifying the image change trigger of a build
7.1.4. Configuration change triggers
7.1.4.1. Setting triggers manually
7.2. BUILD HOOKS
7.2.1. Configuring post commit build hooks

37
37
37
37
38
38
39
40
40
40

41

41

41
42
42
42
42
45
46
46

48
48
48
48
48
48
49
49
50
50
50

51
52
52
52
52
53

54
54
54
55
56
57
58
59
60

61
63
64
64
65

7.2.2. Using the CLI to set post commit build hooks

CHAPTER 8. PERFORMING ADVANCED BUILDS

8.1. SETTING BUILD RESOURCES

8.2. SETTING MAXIMUM DURATION

8.3. ASSIGNING BUILDS TO SPECIFIC NODES
8.4. CHAINED BUILDS

8.5. PRUNING BUILDS

8.6. BUILD RUN POLICY

CHAPTER 9. USING RED HAT SUBSCRIPTIONS INBUILDS coiiiiiiiaa.t,

9.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT UNIVERSAL BASE IMAGE
9.2. RUNNING BUILDS WITH SUBSCRIPTION MANAGER
9.2.1. Docker builds using Subscription Manager
9.3. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS
9.3.1. Adding Red Hat Satellite configurations to builds
9.3.2. Docker builds using Red Hat Satellite subscriptions
9.4. ADDITIONAL RESOURCES

CHAPTER10. TROUBLESHOOTING BUILDS

10.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES
10.2. SERVICE CERTIFICATE GENERATION FAILURE

Table of Contents

66

................ 67

67
67
68
69
69
69

................ 71

71
71
71
72
72
73
74

................ 75

75
75

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

CHAPTER 1. UNDERSTANDING IMAGE BUILDS

CHAPTER 1. UNDERSTANDING IMAGE BUILDS

1.1. BUILDS

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

Red Hat OpenShift Service on AWS uses Kubernetes by creating containers from build images and
pushing them to a container image registry.

Build objects share common characteristics including inputs for a build, the requirement to complete a
build process, logging the build process, publishing resources from successful builds, and publishing the
final status of the build. Builds take advantage of resource restrictions, specifying limitations on
resources such as CPU usage, memory usage, and build or pod execution time.

The resulting object of a build depends on the builder used to create it. For docker and S2I builds, the
resulting objects are runnable images. For custom builds, the resulting objects are whatever the builder
image author has specified.

Additionally, the pipeline build strategy can be used to implement sophisticated workflows:

® Continuous integration

® Continuous deployment

1.1.1. Docker build

Red Hat OpenShift Service on AWS uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

1.1.2. Source-to-image build

Source-to-image (S2l) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah
run command. S2| supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS

The following sections define the concept of a build, build configuration, and outline the primary build
strategies available.

2.1. BUILDCONFIGS

A build configuration describes a single build definition and a set of triggers for when a new build is
created. Build configurations are defined by a BuildConfig, which is a REST object that can be used in a
POST to the APl server to create a new instance.

A build configuration, or BuildConfig, is characterized by a build strategy and one or more sources. The
strategy determines the process, while the sources provide its input.

Depending on how you choose to create your application using Red Hat OpenShift Service on AWS, a
BuildConfig is typically generated automatically for you if you use the web console or CLI, and it can be
edited at any time. Understanding the parts that make up a BuildConfig and their available options can
help if you choose to manually change your configuration later.

The following example BuildConfig results in a new build every time a container image tag or the source
code changes:

BuildConfig object definition

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
name: "ruby-sample-build" 0
spec:
runPolicy: "Serial” g
triggers:
type: "GitHub"
github:
secret: "secret101"
- type: "Generic"
generic:
secret: "secret101"

type: "ImageChange"
source:
git:
uri: "https://github.com/openshift/ruby-hello-world"
strategy: 6
sourceStrategy:
from:
kind: "ImageStreamTag"
name: "ruby-20-centos7:latest"
output:
to:
kind: "ImageStreamTag"
name: "origin-ruby-sample:latest”
postCommit:
script: "bundle exec rake test"

o0 o9

®

o 9

CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS

This specification creates a new BuildConfig named ruby-sample-build.

The runPolicy field controls whether builds created from this build configuration can be run
simultaneously. The default value is Serial, which means new builds run sequentially, not
simultaneously.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The source type determines the primary
source of input, and can be either Git, to point to a code repository location, Dockerfile, to build
from an inline Dockerfile, or Binary, to accept binary payloads. It is possible to have multiple
sources at once. See the documentation for each source type for details.

The strategy section describes the build strategy used to execute the build. You can specify a
Source, Docker, or Custom strategy here. This example uses the ruby-20-centos7 container

image that Source-to-image (S2I) uses for the application build.

After the container image is successfully built, it is pushed into the repository described in the
output section.

The postCommit section defines an optional build hook.

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

CHAPTER 3. CREATING BUILD INPUTS

Use the following sections for an overview of build inputs, instructions on how to use inputs to provide
source content for builds to operate on, and how to use build environments and create secrets.

3.1. BUILD INPUTS

A build input provides source content for builds to operate on. You can use the following build inputs to
provide sources in Red Hat OpenShift Service on AWS, listed in order of precedence:

® |nline Dockerfile definitions

e Content extracted from existing images
® Git repositories

® Binary (Local) inputs

® |nputsecrets

® External artifacts

You can combine multiple inputs in a single build. However, as the inline Dockerfile takes precedence, it
can overwrite any other file named Dockerfile provided by another input. Binary (local) input and Git
repositories are mutually exclusive inputs.

You can use input secrets when you do not want certain resources or credentials used during a build to
be available in the final application image produced by the build, or want to consume a value that is
defined in a secret resource. External artifacts can be used to pull in additional files that are not available
as one of the other build input types.

When you run a build:

1. A working directory is constructed and all input content is placed in the working directory. For
example, the input Git repository is cloned into the working directory, and files specified from
input images are copied into the working directory using the target path.

2. The build process changes directories into the contextDir, if one is defined.
3. The inline Dockerfile, if any, is written to the current directory.

4. The content from the current directory is provided to the build process for reference by the
Dockerfile, custom builder logic, or assemble script. This means any input content that resides
outside the contextDir is ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how
they are combined. For more details on how each input type is defined, see the specific sections for
each input type.

source:
git:
uri: https://github.com/openshift/ruby-hello-world.git ﬂ
ref: "master”
images:
- from:
kind: ImageStreamTag

CHAPTER 3. CREATING BUILD INPUTS

name: myinputimage:latest
namespace: mynamespace
paths:
- destinationDir: app/dir/injected/dir 9
sourcePath: /usr/lib/somefile.jar
contextDir: "app/dir" 6
dockerfile: "FROM centos:7\nRUN yum install -y httpd" ﬂ

ﬂ The repository to be cloned into the working directory for the build.
9 /usr/lib/somefile.jar from myinputimage is stored in <workingdir>/app/dir/injected/dir.
9 The working directory for the build becomes <original_workingdir>/app/dir.

A Dockerfile with this content is created in <original_workingdir>/app/dir, overwriting any existing
file with that name.

3.2. DOCKERFILE SOURCE

When you supply a dockerfile value, the content of this field is written to disk as a file named dockerfile.
This is done after other input sources are processed, so if the input source repository contains a
Dockerfile in the root directory, it is overwritten with this content.

The source definition is part of the spec section in the BuildConfig:

source:
dockerfile: "FROM centos:7\nRUN yum install -y httpd" 0

ﬂ The dockerfile field contains an inline Dockerfile that is built.

Additional resources

® The typical use for this field is to provide a Dockerfile to a docker strategy build.

3.3.IMAGE SOURCE

You can add additional files to the build process with images. Input images are referenced in the same
way the From and To image targets are defined. This means both container images and image stream
tags can be referenced. In conjunction with the image, you must provide one or more path pairs to
indicate the path of the files or directories to copy the image and the destination to place them in the
build context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image is loaded and the indicated files and directories are copied into
the context directory of the build process. This is the same directory into which the source repository
content is cloned. If the source path ends in /. then the content of the directory is copied, but the
directory itself is not created at the destination.

Image inputs are specified in the source definition of the BuildConfig:

source:
git:

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

uri: https://github.com/openshift/ruby-hello-world.git
ref: "master”
images: ﬂ
- from:
kind: ImageStreamTag
name: myinputimage:latest
namespace: mynamespace
paths: 6
- destinationDir: injected/dir ﬂ
sourcePath: /usr/lib/somefile.jar 6
- from:
kind: ImageStreamTag
name: myotherinputimage:latest
namespace: myothernamespace
pullSecret: mysecret
paths:
- destinationDir: injected/dir
sourcePath: /usr/lib/somefile.jar

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

The location of the file to be copied out of the referenced image.

QD000

An optional secret provided if credentials are needed to access the input image.

NOTE

If your cluster uses an ImageDigestMirrorSet, ImageTagMirrorSet, or
ImageContentSourcePolicy object to configure repository mirroring, you can use only
global pull secrets for mirrored registries. You cannot add a pull secret to a project.

Images that require pull secrets

When using an input image that requires a pull secret, you can link the pull secret to the service account
used by the build. By default, builds use the builder service account. The pull secret is automatically
added to the build if the secret contains a credential that matches the repository hosting the input
image. To link a pull secret to the service account used by the build, run:

I $ oc secrets link builder dockerhub

NOTE

This feature is not supported for builds using the custom strategy.

-

Images on mirrored registries that require pull secrets

10

CHAPTER 3. CREATING BUILD INPUTS

When using an input image from a mirrored registry, if you get a build error: failed to pull image
message, you can resolve the error by using either of the following methods:

e Create aninput secret that contains the authentication credentials for the builder image's
repository and all known mirrors. In this case, create a pull secret for credentials to the image
registry and its mirrors.

® Use the input secret as the pull secret on the BuildConfig object.

3.4. GIT SOURCE
When specified, source code is fetched from the supplied location.
If you supply an inline Dockerfile, it overwrites the Dockerfile in the contextDir of the Git repository.

The source definition is part of the spec section in the BuildConfig:

source:
git: ﬂ
uri: "https://github.com/openshift/ruby-hello-world"
ref: "master”
contextDir: "app/dir" g
dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 6

ﬂ The git field contains the Uniform Resource Identifier (URI) to the remote Git repository of the
source code. You must specify the value of the ref field to check out a specific Git reference. A
valid ref can be a SHAT tag or a branch name. The default value of the ref field is master.

9 The contextDir field allows you to override the default location inside the source code repository
where the build looks for the application source code. If your application exists inside a sub-
directory, you can override the default location (the root folder) using this field.

9 If the optional dockerfile field is provided, it should be a string containing a Dockerfile that
overwrites any Dockerfile that may exist in the source repository.

If the ref field denotes a pull request, the system uses a git fetch operation and then checkout
FETCH_HEAD.

When no ref value is provided, Red Hat OpenShift Service on AWS performs a shallow clone (--
depth=1). In this case, only the files associated with the most recent commit on the default branch
(typically master) are downloaded. This results in repositories downloading faster, but without the full
commit history. To perform a full git clone of the default branch of a specified repository, set ref to the
name of the default branch (for example main).

' WARNING
A Git clone operations that go through a proxy that is performing man in the middle

(MITM) TLS hijacking or reencrypting of the proxied connection do not work.

1

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

3.4.1. Using a proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the build configuration. You can configure both an HTTP and HTTPS proxy to use. Both fields
are optional. Domains for which no proxying should be performed can also be specified in the NoProxy
field.

' NOTE
Your source URI must use the HTTP or HTTPS protocol for this to work.

source:
git:
uri: "https://github.com/openshift/ruby-hello-world"
ref: "master”
httpProxy: http://proxy.example.com
httpsProxy: https://proxy.example.com
noProxy: somedomain.com, otherdomain.com

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plugin for Jenkins,
any Git operations through the Git plugin do not leverage the HTTP or HTTPS proxy
defined in the BuildConfig. The Git plugin only uses the proxy configured in the Jenkins

Ul at the Plugin Manager panel. This proxy is then used for all git interactions within
Jenkins, across all jobs.

Additional resources

® You can find instructions on how to configure proxies through the Jenkins Ul at
JenkinsBehindProxy.

3.4.2. Source Clone Secrets

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets
are used to provide the builder pod with access it would not normally have access to, such as private
repositories or repositories with self-signed or untrusted SSL certificates.
The following source clone secret configurations are supported:

e A .gitconfig file

® Basic authentication

® SSH key authentication

® Trusted certificate authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

3.4.2.1. Automatically adding a source clone secret to a build configuration

12

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

CHAPTER 3. CREATING BUILD INPUTS

When a BuildConfig is created, Red Hat OpenShift Service on AWS can automatically populate its
source clone secret reference. This behavior allows the resulting builds to automatically use the
credentials stored in the referenced secret to authenticate to a remote Git repository, without requiring
further configuration.

To use this functionality, a secret containing the Git repository credentials must exist in the namespace
in which the BuildConfig is later created. This secrets must include one or more annotations prefixed
with build.openshift.io/source-secret-match-uri-. The value of each of these annotations is a Uniform
Resource Identifier (URI) pattern, which is defined as follows. When a BuildConfig is created without a
source clone secret reference and its Git source URI matches a URI pattern in a secret annotation, Red
Hat OpenShift Service on AWS automatically inserts a reference to that secret in the BuildConfig.

Prerequisites

A URI pattern must consist of:
® Avalid scheme: *://, git://, http://, https:// or ssh://
® Ahost: ** or avalid hostname or IP address optionally preceded by *.
® A path:/*or /followed by any characters optionally including * characters

In all of the above, a * character is interpreted as a wildcard.

IMPORTANT

URI patterns must match Git source URIs which are conformant to RFC3986. Do not
include a username (or password) component in a URI pattern.

For example, if you use ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git
for a git repository URL, the source secret must be specified as
ssh://bitbucket.atlassian.com:7999/* (and not
ssh://git@bitbucket.atlassian.com:7999/*).

'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

I $ oc annotate secret mysecret \

Procedure

If multiple secrets match the Git URI of a particular BuildConfig, Red Hat OpenShift Service on AWS
selects the secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the
domain mycorp.com accessed by HTTPS, and the second overriding access to servers
mydevi.mycorp.com and mydev2.mycorp.com:

kind: Secret
apiVersion: vi
metadata:
name: matches-all-corporate-servers-https-only
annotations:
build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:

kind: Secret

13

https://www.ietf.org/rfc/rfc3986.txt

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

apiVersion: vi
metadata:
name: override-for-my-dev-servers-https-only
annotations:
build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:

e Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret using:

$ oc annotate secret mysecret \
'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*

3.4.2.2. Manually adding a source clone secret

Source clone secrets can be added manually to a build configuration by adding a sourceSecret field to
the source section inside the BuildConfig and setting it to the name of the secret that you created. In
this example, it is the basicsecret.

apiVersion: "build.openshift.io/v1"
kind: "BuildConfig"
metadata:
name: "sample-build"
spec:
output:
to:
kind: "ImageStreamTag"
name: "sample-image:latest”
source:
git:
uri: "https://github.com/user/app.git"
sourceSecret:
name: "basicsecret”
strategy:
sourceStrategy:
from:
kind: "ImageStreamTag"
name: "python-33-centos7:latest"

Procedure

You can also use the oc set build-secret command to set the source clone secret on an existing build
configuration.

® To set the source clone secret on an existing build configuration, enter the following command:

I $ oc set build-secret --source bc/sample-build basicsecret

3.4.2.3. Creating a secret from a .gitconfig file

If the cloning of your application is dependent on a .gitconfig file, then you can create a secret that
contains it. Add it to the builder service account and then your BuildConfig.

[WSS P

14

CHAPTER 3. CREATING BUILD INPUTS

rFroceaure

® To create a secret from a .gitconfig file:

I $ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

NOTE

SSL verification can be turned off if sslVerify=false is set for the http section in your
.gitconfig file:

' [http]
sslVerify=false

3.4.2.4. Creating a secret from a .gitconfig file for secured Git

If your Git server is secured with two-way SSL and user name with password, you must add the
certificate files to your source build and add references to the certificate files in the .gitconfig file.

Prerequisites

® You must have Git credentials.

Procedure

Add the certificate files to your source build and add references to the certificate files in the .gitconfig
file.

1. Add the client.crt, cacert.crt, and client.key files to the /var/run/secrets/openshift.io/source/
folder in the application source code.

2. Inthe .gitconfig file for the server, add the [http] section shown in the following example:

I # cat .gitconfig
Example output

[user]
name = <name>
email = <email>

[http]
sslVerify = false

sslCert = /var/run/secrets/openshift.io/source/client.crt
sslKey = /var/run/secrets/openshift.io/source/client.key
sslCalnfo = /var/run/secrets/openshift.io/source/cacert.crt

3. Create the secret:

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ﬂ
--from-literal=password=<password> \g
--from-file=.gitconfig=.gitconfig \

15

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

ﬂ The user’s Git user name.

9 The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the source-to-image
(S21) image in your builds. However, if you cannot clone the repository, you must still
specify your user name and password to promote the build.

Additional resources

e /var/run/secrets/openshift.io/source/ folder in the application source code.

3.4.2.5. Creating a secret from source code basic authentication

Basic authentication requires either a combination of --username and --password, or a token to
authenticate against the software configuration management (SCM) server.

Prerequisites

® User name and password to access the private repository.

Procedure

1. Create the secret first before using the --username and --password to access the private
repository:

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \
--from-literal=password=<password> \
--type=kubernetes.io/basic-auth

2. Create a basic authentication secret with a token:

$ oc create secret generic <secret_name> \
--from-literal=password=<token> \
--type=kubernetes.io/basic-auth

3.4.2.6. Creating a secret from source code SSH key authentication

SSH key based authentication requires a private SSH key.

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default.

Procedure

1. Generate SSH key credentials:

16

CHAPTER 3. CREATING BUILD INPUTS
I $ ssh-keygen -t ed25519 -C "your_email@example.com"

NOTE

Creating a passphrase for the SSH key prevents Red Hat OpenShift Service on
AWS from building. When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management
(SCM) system'’s manual on how to upload the public key. The private key is used to access your
private repository.

2. Before using the SSH key to access the private repository, create the secret:

$ oc create secret generic <secret_name> \
--from-file=ssh-privatekey=<path/to/ssh/private/key> \
--from-file=<path/to/known_hosts> \
--type=kubernetes.io/ssh-auth

ﬂ Optional: Adding this field enables strict server host key check.

' WARNING
A Skipping the known_hosts file while creating the secret makes the build

vulnerable to a potential man-in-the-middle (MITM) attack.

NOTE

Ensure that the known_hosts file includes an entry for the host of your source
code.

3.4.2.7. Creating a secret from source code trusted certificate authorities

The set of Transport Layer Security (TLS) certificate authorities (CA) that are trusted during a Git clone
operation are built into the Red Hat OpenShift Service on AWS infrastructure images. If your Git server
uses a self-signed certificate or one signed by an authority not trusted by the image, you can create a
secret that contains the certificate or disable TLS verification.

If you create a secret for the CA certificate, Red Hat OpenShift Service on AWS uses it to access your
Git server during the Git clone operation. Using this method is significantly more secure than disabling
Git SSL verification, which accepts any TLS certificate that is presented.

Procedure

Create a secret with a CA certificate file.

1. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAsin a
ca.crt file. Enter the following command:

17

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

I $ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt
2. Create the secret by entering the following command:
I $ oc create secret generic mycert --from-file=ca.crt=</path/to/file> ﬂ

ﬂ You must use the key name ca.crt.

3.4.2.8. Source secret combinations

You can combine the different methods for creating source clone secrets for your specific needs.

3.4.2.8.1. Creating a SSH-based authentication secret with agitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a SSH-based authentication secret with a .gitconfig file.

Prerequisites

® SSH authentication

e A .gitconfig file

Procedure

® To create a SSH-based authentication secret with a .gitconfig file, enter the following
command:

$ oc create secret generic <secret_name> \
--from-file=ssh-privatekey=<path/to/ssh/private/key> \
--from-file=<path/to/.gitconfig> \
--type=kubernetes.io/ssh-auth

3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a .gitconfig file and certificate authority (CA) certificate.

Prerequisites
e A .gitconfig file

® CA certificate

Procedure

® To create a secret that combines a .gitconfig file and CA certificate, enter the following
command:

$ oc create secret generic <secret_name> \
--from-file=ca.crt=<path/to/certificate> \
--from-file=<path/to/.gitconfig>

18

CHAPTER 3. CREATING BUILD INPUTS

3.4.2.8.3. Creating a basic authentication secret with a CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and certificate authority (CA) certificate.

Prerequisites
® Basic authentication credentials

® CA certificate

Procedure

® To create a basic authentication secret with a CA certificate, enter the following command:

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \
--from-literal=password=<password> \
--from-file=ca-cert=</path/to/file> \
--type=kubernetes.io/basic-auth

3.4.2.8.4. Creating a basic authentication secret with a Git configuration file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and a .gitconfig file.

Prerequisites
® Basic authentication credentials

e A .gitconfig file

Procedure

® To create a basic authentication secret with a .gitconfig file, enter the following command:

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \
--from-literal=password=<password> \
--from-file=</path/to/.gitconfig> \
--type=kubernetes.io/basic-auth

3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate
You can combine the different methods for creating source clone secrets for your specific needs, such

as a secret that combines a basic authentication, .gitconfig file, and certificate authority (CA)
certificate.

Prerequisites
® Basic authentication credentials

e A .gitconfig file

19

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

® CA certificate

Procedure

® To create a basic authentication secret with a .gitconfig file and CA certificate, enter the
following command:

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \
--from-literal=password=<password> \
--from-file=</path/to/.gitconfig> \
--from-file=ca-cert=</path/to/file> \
--type=kubernetes.io/basic-auth

3.5. BINARY (LOCAL) SOURCE

Streaming content from a local file system to the builder is called a Binary type build. The
corresponding value of BuildConfig.spec.source.type is Binary for these builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build, like an image change trigger, is not possible.
This is because the binary files cannot be provided. Similarly, you cannot launch binary
type builds from the web console.

To utilize binary builds, invoke oc start-build with one of these options:

e -from-file: The contents of the file you specify are sent as a binary stream to the builder. You
can also specify a URL to a file. Then, the builder stores the data in a file with the same name at
the top of the build context.

e --from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. Then, the builder extracts the contents of the archive within the build context directory.
With --from-dir, you can also specify a URL to an archive, which is extracted.

e --from-archive: The archive you specify is sent to the builder, where it is extracted within the
build context directory. This option behaves the same as --from-dir; an archive is created on
your host first, whenever the argument to these options is a directory.

In each of the previously listed cases:

e |f your BuildConfig already has a Binary source type defined, it is effectively ignored and
replaced by what the client sends.

e |f your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary and
Git are mutually exclusive, and the data in the binary stream provided to the builder takes
precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to --from-file and --from-

archive. When using --from-file with a URL, the name of the file in the builder image is determined by
the Content-Disposition header sent by the web server, or the last component of the URL path if the

20

CHAPTER 3. CREATING BUILD INPUTS

header is not present. No form of authentication is supported and it is not possible to use custom TLS
certificate or disable certificate validation.

When using oc nhew-build --binary=true, the command ensures that the restrictions associated with
binary builds are enforced. The resulting BuildConfig has a source type of Binary, meaning that the
only valid way to run a build for this BuildConfig is to use oc start-build with one of the --from options
to provide the requisite binary data.

The Dockerfile and contextDir source options have special meaning with binary builds.

Dockerfile can be used with any binary build source. If Dockerfile is used and the binary stream is an
archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If Dockerfile is
used with the --from-file argument, and the file argument is named Dockerfile, the value from Dockerfile
replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the contextDir

field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that
subdirectory before executing the build.

3.6. INPUT SECRETS AND CONFIG MAPS

IMPORTANT

To prevent the contents of input secrets and config maps from appearing in build output
container images, use build volumes in your Docker build and source-to-image build
strategies.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources, but it is undesirable for that information to be placed in source control. You can define input
secrets and input config maps for this purpose.

For example, when building a Java application with Maven, you can set up a private mirror of Maven
Central or JCenter that is accessed by private keys. To download libraries from that private mirror, you
have to supply the following:

1. A settings.xml file configured with the mirror's URL and connection settings.

2. Aprivate key referenced in the settings file, such as ~/.ssh/id_rsa.

For security reasons, you do not want to expose your credentials in the application image.

This example describes a Java application, but you can use the same approach for adding SSL
certificates into the /etc/ssl/certs directory, APl keys or tokens, license files, and more.

3.6.1. What is a secret?

The Secret object type provides a mechanism to hold sensitive information such as passwords, Red Hat
OpenShift Service on AWS client configuration files, dockercfg files, private source repository
credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into
containers using a volume plugin or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

apiVersion: vi
kind: Secret

21

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

metadata:
name: test-secret
namespace: my-namespace
type: Opaque ﬂ

data:

username: <username> 6
password: <password>

stringData:
hostname: myapp.mydomain.com 9

o0 09

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry are then moved to the data

map automatically. This field is write-only. The value is only be returned by the data field.

9 The value associated with keys in the stringData map is made up of plain text strings.

3.6.1.1. Properties of secrets

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

3.6.1.2. Types of Secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

22

kubernetes.io/service-account-token. Uses a service account token.
kubernetes.io/dockercfg. Uses the .dockercfq file for required Docker credentials.

kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker
credentials.

kubernetes.io/basic-auth. Use with basic authentication.
kubernetes.io/ssh-auth. Use with SSH key authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

CHAPTER 3. CREATING BUILD INPUTS

Specify type= Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

e

NOTE
You can specify other arbitrary types, such as example.com/my-secret-type. These

types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

3.6.1.3. Updates to secrets

When you modify the value of a secret, the value used by an already running pod does not dynamically
change. To change a secret, you must delete the original pod and create a new pod, in some cases with
an identical PodSpec.

Updating a secret follows the same workflow as deploying a new container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is

updated at the same time as pods are starting, the version of the secret that is used for the pod is not
defined.

NOTE
Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods report this information, so that a

controller could restart ones using an old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

3.6.2. Creating secrets

You must create a secret before creating the pods that depend on that secret.
When creating secrets:

® Create asecret object with secret data.

e Update the pod service account to allow the reference to the secret.

® Create a pod, which consumes the secret as an environment variable or as a file using a secret
volume.

Procedure

® To create a secret object from a JSON or YAML file, enter the following command:
I $ oc create -f <filename>

For example, you can create a secret from your local .docker/config.json file:

$ oc create secret generic dockerhub \
--from-file=.dockerconfigjson=<path/to/.docker/config.json> \
--type=kubernetes.io/dockerconfigjson

23

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

This command generates a JSON specification of the secret named dockerhub and creates the
object.

YAML Opaque Secret Object Definition

apiVersion: vi

kind: Secret

metadata:
name: mysecret

type: Opaque ﬂ

data:
username: <username>
password: <password>

ﬂ Specifies an opaque secret.

Docker Configuration JSON File Secret Object Definition

apiVersion: vi
kind: Secret
metadata:
name: aregistrykey
namespace: myapps
type: kubernetes.io/dockerconfigjson ﬂ
data:

.dockerconfigjson:bom5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrzXizCg== @)

ﬂ Specifies that the secret is using a docker configuration JSON file.

9 The output of a base64-encoded docker configuration JSON file.

3.6.3. Using secrets

After creating secrets, you can create a pod to reference your secret, get logs, and delete the pod.

Procedure

1. Create the pod to reference your secret by entering the following command:
I $ oc create -f <your_yaml_file>.yaml

2. Get the logs by entering the following command:
I $ oc logs secret-example-pod

3. Delete the pod by entering the following command:

I $ oc delete pod secret-example-pod

24

CHAPTER 3. CREATING BUILD INPUTS

Additional resources

® Example YAML files with secret data:

YAML file of a secret that will create four files

apiVersion: vi
kind: Secret
metadata:
name: test-secret
data:
username: <username> ﬂ
password: <password> g
stringData:
hostname: myapp.mydomain.com 6
secret.properties: |-
property1=valueA
property2=valueB

File contains decoded values.
File contains decoded values.

File contains the provided string.

- -

File contains the provided data.

YAML file of a pod populating files in a volume with secret data

apiVersion: vi
kind: Pod
metadata:
name: secret-example-pod
spec:
containers:
- name: secret-test-container
image: busybox
command: ["/bin/sh", "-c", "cat /etc/secret-volume/™ |
volumeMounts:
name must match the volume name below
- name: secret-volume
mountPath: /etc/secret-volume
readOnly: true
volumes:
- name: secret-volume
secret:
secretName: test-secret
restartPolicy: Never

YAML file of a pod populating environment variables with secret data

apiVersion: vi
kind: Pod
metadata:

25

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

name: secret-example-pod
spec:
containers:
- name: secret-test-container
image: busybox
command: ["/bin/sh", "-c", "export"]
env:
-name: TEST_SECRET_USERNAME_ENV_VAR
valueFrom:
secretKeyRef:
name: test-secret
key: username
restartPolicy: Never

YAML file of a BuildConfig object that populates environment variables with secret
data

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
name: secret-example-bc
spec:
strategy:
sourceStrategy:
env:
-name: TEST_SECRET_USERNAME_ENV_VAR
valueFrom:
secretKeyRef:
name: test-secret
key: username

3.6.4. Adding input secrets and config maps

To provide credentials and other configuration data to a build without placing them in source control,
you can define input secrets and input config maps.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources. To make that information available without placing it in source control, you can define input

secrets and input config maps.

Procedure

To add an input secret, config maps, or both to an existing BuildConfig object:

1. If the ConfigMap object does not exist, create it by entering the following command:

$ oc create configmap settings-mvn \
--from-file=settings.xml=<path/to/settings.xml>

This creates a new config map named settings-mvn, which contains the plain text content of
the settings.xml file.

26

CHAPTER 3. CREATING BUILD INPUTS

TIP

You can alternatively apply the following YAML to create the config map:

apiVersion: core/v1
kind: ConfigMap
metadata:
name: settings-mvn
data:
settings.xml: |
<settings>
... # Insert maven settings here
</settings>

2. If the Secret object does not exist, create it by entering the following command:

$ oc create secret generic secret-mvn \
--from-file=ssh-privatekey=<path/to/.ssh/id_rsa> \
--type=kubernetes.io/ssh-auth

This creates a new secret named secret-mvn, which contains the base64 encoded content of
the id_rsa private key.

TIP

You can alternatively apply the following YAML to create the input secret:

apiVersion: core/v1
kind: Secret
metadata:

name: secret-mvn
type: kubernetes.io/ssh-auth
data:

ssh-privatekey: |

Insert ssh private key, base64 encoded

3. Add the config map and secret to the source section in the existing BuildConfig object:

source:
git:
uri: https://github.com/wildfly/quickstart.git
contextDir: helloworld
configMaps:
- configMap:
name: settings-mvn
secrets:
- secret:
name: secret-mvn

4. Toinclude the secret and config map in a new BuildConfig object, enter the following
command:

I $ oc new-build \

27

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

openshift/wildfly-101-centos7 ~https://github.com/wildfly/quickstart.git \
--context-dir helloworld --build-secret “secret-mvn” \
--build-config-map "settings-mvn"

During the build, the build process copies the settings.xml and id_rsa files into the directory
where the source code is located. In Red Hat OpenShift Service on AWS S2| builder images, this
is the image working directory, which is set using the WORKDIR instruction in the Dockerfile. If
you want to specify another directory, add a destinationDir to the definition:

source:
git:
uri: https://github.com/wildfly/quickstart.git
contextDir: helloworld
configMaps:
- configMap:
name: settings-mvn
destinationDir: ".m2"
secrets:
- secret:
name: secret-mvn
destinationDir: ".ssh"

You can also specify the destination directory when creating a new BuildConfig object by
entering the following command:

$ oc new-build \
openshift/wildfly-101-centos7 ~https://github.com/wildfly/quickstart.git \
--context-dir helloworld --build-secret “secret-mvn:.ssh”\
--build-config-map "settings-mvn:.m2"

In both cases, the settings.xml file is added to the ./.m2 directory of the build environment, and
the id_rsakey is added to the ./.ssh directory.

3.6.5. Source-to-image strategy

When using a Source strategy, all defined input secrets are copied to their respective destinationDir. If
you left destinationDir empty, then the secrets are placed in the working directory of the builder image.

The same rule is used when a destinationDir is a relative path. The secrets are placed in the paths that
are relative to the working directory of the image. The final directory in the destinationDir path is
created if it does not exist in the builder image. All preceding directories in the destinationDir must
exist, or an error will occur.

NOTE
Input secrets are added as world-writable, have 0666 permissions, and are truncated to
size zero after executing the assemble script. This means that the secret files exist in the

resulting image, but they are empty for security reasons.

Input config maps are not truncated after the assemble script completes.

3.7. EXTERNAL ARTIFACTS

28

CHAPTER 3. CREATING BUILD INPUTS

It is not recommended to store binary files in a source repository. Therefore, you must define a build
which pulls additional files, such as Java .jar dependencies, during the build process. How this is done
depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

.s2i/bin/assemble File

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

.s2i/bin/run File

#!/bin/sh
exec java -jar app.jar

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the RUN
instruction:

Excerpt of Dockerfile

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

In practice, you may want to use an environment variable for the file location so that the specific file to
be downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the Dockerfile or assemble script.
You can choose between different methods of defining environment variables:

e Using the .s2i/environment file (only for a Source build strategy)

® Setting the variables in the BuildConfig object

® Providing the variables explicitly using the oc start-build --env command (only for builds that
are triggered manually)

3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES

You can supply builds with a .docker/config.json file with valid credentials for private container
registries. This allows you to push the output image into a private container image registry or pull a
builder image from the private container image registry that requires authentication.

You can supply credentials for multiple repositories within the same registry, each with credentials
specific to that registry path.

29

https://docs.docker.com/engine/reference/builder/#run

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

NOTE

For the Red Hat OpenShift Service on AWS container image registry, this is not required
because secrets are generated automatically for you by Red Hat OpenShift Service on
AWS.

The .docker/config.json file is found in your home directory by default and has the following format:

auths:
index.docker.io/v1/: ﬂ
auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 9
email: "user@example.com” e
docker.io/my-namespace/my-user/my-image: ﬂ
auth: "GzhYWRGUG6R2fbclabnRgbkSp=""
email: "user@example.com"”
docker.io/my-namespace:
auth: "GzhYWRGU6R2deesfrRgbkSp=""
email: "user@example.com”

URL of the registry.
Encrypted password.

Email address for the login.

0009

URL and credentials for a specific image in a namespace.

g URL and credentials for a registry namespace.

You can define multiple container image registries or define multiple repositories in the same registry.
Alternatively, you can also add authentication entries to this file by running the docker login command.
The file will be created if it does not exist.

Kubernetes provides Secret objects, which can be used to store configuration and passwords.

Prerequisites

® You must have a .docker/config.json file.
Procedure
1. Create the secret from your local .docker/config.json file by entering the following command:

$ oc create secret generic dockerhub \
--from-file=.dockerconfigjson=<path/to/.docker/config.json> \
--type=kubernetes.io/dockerconfigjson

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Add a pushSecret field into the output section of the BuildConfig and set it to the name of
the secret that you created, which in the previous example is dockerhub:

spec:
output:

30

CHAPTER 3. CREATING BUILD INPUTS

to:

kind: "Dockerlmage"

name: "private.registry.com/org/private-image:latest"
pushSecret:

name: "dockerhub"

You can use the oc set build-secret command to set the push secret on the build
configuration:

I $ oc set build-secret --push bc/sample-build dockerhub

You can also link the push secret to the service account used by the build instead of specifying
the pushSecret field. By default, builds use the builder service account. The push secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s output image.

I $ oc secrets link builder dockerhub

. Pull the builder container image from a private container image registry by specifying the
pullSecret field, which is part of the build strategy definition:

strategy:
sourceStrategy:
from:
kind: "Dockerlmage"
name: "docker.io/user/private_repository"
pullSecret:
name: "dockerhub"

You can use the oc set build-secret command to set the pull secret on the build configuration:

I $ oc set build-secret --pull bc/sample-build dockerhub

NOTE

This example uses pullSecret in a Source build, but it is also applicable in Docker
and Custom builds.

You can also link the pull secret to the service account used by the build instead of specifying
the pullSecret field. By default, builds use the builder service account. The pull secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build's input image. To link the pull secret to the service account used by the build
instead of specifying the pullSecret field, enter the following command:

I $ oc secrets link builder dockerhub

NOTE

You must specify a from image in the BuildConfig spec to take advantage of
this feature. Docker strategy builds generated by oc new-build or oc new-app
may not do this in some situations.

31

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

3.9. BUILD ENVIRONMENTS

As with pod environment variables, build environment variables can be defined in terms of references to
other resources or variables using the Downward API. There are some exceptions, which are noted.

You can also manage environment variables defined in the BuildConfig with the oc set env command.

NOTE

Referencing container resources using valueFrom in build environment variables is not
supported as the references are resolved before the container is created.
3.9.1. Using build fields as environment variables

You can inject information about the build object by setting the fieldPath environment variable source
to the JsonPath of the field from which you are interested in obtaining the value.

NOTE

Jenkins Pipeline strategy does not support valueFrom syntax for environment variables.

Procedure

e Set the fieldPath environment variable source to the JsonPath of the field from which you are
interested in obtaining the value:

env:
- name: FIELDREF_ENV
valueFrom:
fieldRef:
fieldPath: metadata.name

3.9.2. Using secrets as environment variables

You can make key values from secrets available as environment variables using the valueFrom syntax.

IMPORTANT

This method shows the secrets as plain text in the output of the build pod console. To
avoid this, use input secrets and config maps instead.

Procedure

® To use asecret as an environment variable, set the valueFrom syntax:

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:

name: secret-example-bc
spec:

strategy:

sourceStrategy:
env:

32

CHAPTER 3. CREATING BUILD INPUTS

- name: MYVAL
valueFrom:
secretKeyRef:
key: myval
name: mysecret

Additional resources

® |nput secrets and config maps

3.10. SERVICE SERVING CERTIFICATE SECRETS

Service serving certificate secrets are intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Procedure

To secure communication to your service, have the cluster generate a signed serving certificate/key pair
into a secret in your namespace.

® Set the service.beta.openshift.io/serving-cert-secret-name annotation on your service with
the value set to the name you want to use for your secret.
Then, your PodSpec can mount that secret. When it is available, your pod runs. The certificate
is good for the internal service DNS name, <service.name>.<service.namespace>.SvC.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively. The
certificate/key pair is automatically replaced when it gets close to expiration. View the expiration

date in the service.beta.openshift.io/expiry annotation on the secret, which is in RFC3339
format.

NOTE
In most cases, the service DNS name <service.names.<service.namespaces.Svc is not

externally routable. The primary use of <service.names.<service.namespace>.svc is
for intracluster or intraservice communication, and with re-encrypt routes.

Other pods can trust cluster-created certificates, which are only signed for internal DNS names, by using
the certificate authority (CA) bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt file that is automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

3.11. SECRETS RESTRICTIONS

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:
® To populate environment variables for containers.
® Asfilesin a volume mounted on one or more of its containers.

® By kubelet when pulling images for the pod.

33

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all podsin a
namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that
depend on it. The most effective way to ensure this is to have it get injected automatically through the
use of a service account.

Secret AP objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to IMB in size. This is to discourage the creation of large secrets that would

exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

34

CHAPTER 4. MANAGING BUILD OUTPUT

CHAPTER 4. MANAGING BUILD OUTPUT

Use the following sections for an overview of and instructions for managing build output.

4.1. BUILD OUTPUT

Builds that use the source-to-image (S2I) strategy result in the creation of a new container image. The
image is then pushed to the container image registry specified in the output section of the Build
specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift
image registry and tagged in the specified imagestream. If the output is of type Dockerlmage, then the
name of the output reference will be used as a docker push specification. The specification may contain
a registry or will default to DockerHub if no registry is specified. If the output section of the build
specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

spec:
output:
to:
kind: "ImageStreamTag"
name: "sample-image:latest”

Output to a docker Push Specification

spec:
output:
to:
kind: "Dockerlmage"
name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES

source-to-image (S2l) strategy builds set the following environment variables on output images:

Variable Description

OPENSHIFT_BUILD_NAME Name of the build
OPENSHIFT_BUILD_NAMESPACE Namespace of the build
OPENSHIFT_BUILD_SOURCE The source URL of the build
OPENSHIFT_BUILD_REFERENCE The Git reference used in the build
OPENSHIFT_BUILD_COMMIT Source commit used in the build

Additionally, any user-defined environment variable, for example those configured with S2I strategy
options, will also be part of the output image environment variable list.

35

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

4.3. OUTPUT IMAGE LABELS

source-to-image (S2l) builds set the following labels on output images:

Label Description

io.openshift.build.commit.author Author of the source commit used in the build
io.openshift.build.commit.date Date of the source commit used in the build
io.openshift.build.commit.id Hash of the source commit used in the build
io.openshift.build.commit.message Message of the source commit used in the build
io.openshift.build.commit.ref Branch or reference specified in the source
io.openshift.build.source-location Source URL for the build

You can also use the BuildConfig.spec.output.imageLabels field to specify a list of custom labels that
will be applied to each image built from the build configuration.

Custom labels for built images

spec:
output:
to:
kind: "ImageStreamTag"
name: "my-image:latest”
imagelLabels:
- name: "vendor"
value: "MyCompany"
- name: "authoritative-source-url"
value: "registry.mycompany.com"”

36

CHAPTER 5. USING BUILD STRATEGIES

CHAPTER 5. USING BUILD STRATEGIES

The following sections define the primary supported build strategies, and how to use them.

5.1. DOCKER BUILD

Red Hat OpenShift Service on AWS uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

5.1.1. Replacing the Dockerfile FROM image

You can replace the FROM instruction of the Dockerfile with the from parameters of the BuildConfig
object. If the Dockerfile uses multi-stage builds, the image in the last FROM instruction will be replaced.

Procedure

® To replace the FROM instruction of the Dockerfile with the from parameters of the
BuildConfig object, add the following settings to the BuildConfig object:

strategy:
dockerStrategy:
from:
kind: "ImageStreamTag"
name: "debian:latest"

5.1.2. Using Dockerfile path

By default, docker builds use a Dockerfile located at the root of the context specified in the
BuildConfig.spec.source.contextDir field.

The dockerfilePath field allows the build to use a different path to locate your Dockerfile, relative to the
BuildConfig.spec.source.contextDir field. It can be a different file name than the default Dockerfile,
such as MyDockerfile, or a path to a Dockerfile in a subdirectory, such as dockerfiles/app1/Dockerfile.

Procedure

e Set the dockerfilePath field for the build to use a different path to locate your Dockerfile:

strategy:
dockerStrategy:
dockerfilePath: dockerfiles/app1/Dockerfile

5.1.3. Using docker environment variables

To make environment variables available to the docker build process and resulting image, you can add
environment variables to the dockerStrategy definition of the build configuration.

37

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

The environment variables defined there are inserted as a single ENV Dockerfile instruction right after
the FROM instruction, so that it can be referenced later on within the Dockerfile.

The variables are defined during build and stay in the output image, therefore they will be presentin any
container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

dockerStrategy:
env:
- name: "HTTP_PROXY"
value: "http://myproxy.net:5187/"

You can also manage environment variables defined in the build configuration with the oc set env
command.

5.1.4. Adding Docker build arguments

You can set Docker build arguments using the buildArgs array. The build arguments are passed to
Docker when a build is started.

TIP

See Understand how ARG and FROM interact in the Dockerfile reference documentation.

Procedure

® To set Docker build arguments, add entries to the buildArgs array, which is located in the
dockerStrategy definition of the BuildConfig object. For example:

dockerStrategy:

buildArgs:
- name: "version"
value: "latest"

NOTE
Only the name and value fields are supported. Any settings on the valueFrom
field are ignored.

5.1.5. Squashing layers with docker builds

Docker builds normally create a layer representing each instruction in a Dockerfile. Setting the
imageOptimizationPolicy to SkipLayers merges all instructions into a single layer on top of the base
image.

Procedure

® Set the imageOptimizationPolicy to SkipLayers:

38

https://docs.docker.com/engine/reference/builder/#arg
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

CHAPTER 5. USING BUILD STRATEGIES

strategy:
dockerStrategy:
imageOptimizationPolicy: SkipLayers

5.1.6. Using build volumes

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

Prerequisites

® You have added an input secret, config map, or both to a BuildConfig object.

Procedure

® |n the dockerStrategy definition of the BuildConfig object, add any build volumes to the
volumes array. For example:

spec:
dockerStrategy:
volumes:
- name: secret-mvn ﬂ
mounts:
- destinationPath: /opt/app-root/src/.ssh 9
source:
type: Secret 6
secret:
secretName: my-secret ﬂ
- name: settings-mvn
mounts:
- destinationPath: /opt/app-root/src/.m2 G
source:
type: ConfigMap a
configMap:
name: my-config

wRequired. A unique name.

equired. The absolute path of the mount point. It must not contain .. or : and doesn't
collide with the destination path generated by the builder. The /opt/app-root/src is the
default home directory for many Red Hat S2I-enabled images.
wequired. The type of source, ConfigMap, Secret, or CSI.

wRequired. The name of the source.

39

https://kubernetes.io/docs/concepts/storage/volumes/

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

Additional resources
® Build inputs

® |nput secrets and config maps

5.2. SOURCE-TO-IMAGE BUILD

Source-to-image (S2l) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah
run command. S2| supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

5.2.1. Performing source-to-image incremental builds

Source-to-image (S2l) can perform incremental builds, which means it reuses artifacts from previously-
built images.

Procedure

® To create an incremental build, create a with the following modification to the strategy
definition:

strategy:
sourceStrategy:
from:
kind: "ImageStreamTag"
name: "incremental-image:latest" 0
incremental: true

ﬂ Specify an image that supports incremental builds. Consult the documentation of the
builder image to determine if it supports this behavior.

9 This flag controls whether an incremental build is attempted. If the builder image does not
support incremental builds, the build will still succeed, but you will get a log message
stating the incremental build was not successful because of a missing save-artifacts script.

Additional resources

® See S2I Requirements for information on how to create a builder image supporting incremental
builds.

5.2.2. Overriding source-to-image builder image scripts

You can override the assemble, run, and save-artifacts source-to-image (S2I) scripts provided by the
builder image.

Procedure

® To override the assemble, run, and save-artifacts S2| scripts provided by the builder image,
complete one of the following actions:

40

CHAPTER 5. USING BUILD STRATEGIES

o Provide an assemble, run, or save-artifacts script in the .s2i/bin directory of your
application source repository.

o Provide a URL of a directory containing the scripts as part of the strategy definition in the
BuildConfig object. For example:

strategy:
sourceStrategy:
from:
kind: "ImageStreamTag"
name: "builder-image:latest"
scripts: "http://somehost.com/scripts_directory" 0

ﬂ The build process appends run, assemble, and save-artifacts to the path. If any or all
scripts with these names exist, the build process uses these scripts in place of scripts
with the same name that are provided in the image.

NOTE

Files located at the scripts URL take precedence over files located in
.s2i/bin of the source repository.

5.2.3. Source-to-image environment variables

There are two ways to make environment variables available to the source build process and resulting
image: environment files and BuildConfig environment values. The variables that you provide using
either method will be present during the build process and in the output image.

5.2.3.1. Using source-to-image environment files

Source build enables you to set environment values, one per line, inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the output image.

If you provide a .s2i/environment file in your source repository, source-to-image (S2I) reads this file

during the build. This allows customization of the build behavior as the assemble script may use these
variables.

Procedure

For example, to disable assets compilation for your Rails application during the build:
e Add DISABLE_ASSET_COMPILATION=true in the .s2i/environment file.

In addition to builds, the specified environment variables are also available in the running application
itself. For example, to cause the Rails application to start in development mode instead of production:

e Add RAILS_ENV=development to the .s2i/environment file.

The complete list of supported environment variables is available in the using images section for each
image.

5.2.3.2. Using source-to-image build configuration environment

41

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

You can add environment variables to the sourceStrategy definition of the build configuration. The
environment variables defined there are visible during the assemble script execution and will be defined
in the output image, making them also available to the run script and application code.

Procedure
® Forexample, to disable assets compilation for your Rails application:
sourceStrategy:
env:
- name: "DISABLE_ASSET_COMPILATION"
value: "true"

Additional resources

® The build environment section provides more advanced instructions.

® You can also manage environment variables defined in the build configuration with the oc set
env command.

5.2.4. Ignoring source-to-image source files
Source-to-image (S2I) supports a .s2iignore file, which contains a list of file patterns that should be

ignored. Files in the build working directory, as provided by the various input sources, that match a
pattern found in the .s2iignore file will not be made available to the assemble script.

5.2.5. Creating images from source code with source-to-image

Source-to-image (S2I) is a framework that makes it easy to write images that take application source
code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for

developers. As a builder image author, you must understand two basic concepts in order for your images
to provide the best S2I performance, the build process and S2I scripts.

5.2.5.1. Understanding the source-to-image build process

The build process consists of the following three fundamental elements, which are combined into a final
container image:

® Sources
® Source-to-image (S2I) scripts
® Builderimage

S2l generates a Dockerfile with the builder image as the first FROM instruction. The Dockerfile
generated by S2l is then passed to Buildah.

5.2.5.2. How to write source-to-image scripts

42

CHAPTER 5. USING BUILD STRATEGIES

You can write source-to-image (S2I) scripts in any programming language, as long as the scripts are
executable inside the builder image. S2I supports multiple options providing assemble/run/save-
artifacts scripts. All of these locations are checked on each build in the following order:

1. A script specified in the build configuration.
2. Ascript found in the application source .s2i/bin directory.
3. Ascript found at the default image URL with the io.openshift.s2i.scripts-url label.

Both the io.openshift.s2i.scripts-url label specified in the image and the script specified in a build
configuration can take one of the following forms:

® image:///path_to_scripts_dir: absolute path inside the image to a directory where the S2I
scripts are located.

o file:///path_to_scripts_dir: relative or absolute path to a directory on the host where the S2I
scripts are located.

e http(s):/path_to_scripts_dir: URL to a directory where the S2I scripts are located.

Table 5.1. S2I scripts

Script Description

assemble The assemble script builds the application artifacts from a source and places
them into appropriate directories inside the image. This script is required. The
workflow for this script is:

1. Optional: Restore build artifacts. If you want to support incremental
builds, make sure to define save-artifacts as well.

2. Place the application source in the desired location.
3. Build the application artifacts.

4. Install the artifacts into locations appropriate for them to run.

run The run script executes your application. This script is required.

save-artifacts The save-artifacts script gathers all dependencies that can speed up the
build processes that follow. This script is optional. For example:

e For Ruby, gems installed by Bundler.
® For Java, .m2 contents.

These dependencies are gathered into a tar file and streamed to the standard
output.

usage The usage script allows you to inform the user how to properly use your image.
This script is optional.

43

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

Script Description

test/run The test/run script allows you to create a process to check if the image is
working correctly. This script is optional. The proposed flow of that process is:

1. Build the image.
2. Run the image to verify the usage script.
3. Run s2i build to verify the assemble script.

4. Optional: Run s2i build again to verify the save-artifacts and
assemble scripts save and restore artifacts functionality.

5. Run the image to verify the test application is working.

NOTE

The suggested location to put the test application built by your
test/run script is the test/test-app directory in your image
repository.

Example S2I scripts

The following example S2I scripts are written in Bash. Each example assumes its tar contents are
unpacked into the /tmp/s2i directory.

assemble script:

#!/bin/bash

restore build artifacts

if ["$(Is /tmp/s2i/artifacts/ 2>/dev/null)"]; then
mv /tmp/s2i/artifacts/* SHOME/.

fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}
make all

install the artifacts
make install
popd

run script:

#!/bin/bash

run the application
/opt/application/run.sh

44

save-artifacts script:

#!/bin/bash

pushd ${HOME}

if [-d deps]; then
all deps contents to tar stream
tar cf - deps

fi

popd

usage script:

#!/bin/bash

inform the user how to use the image

cat <<EOF

This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image

EOF

Additional resources

® S2|Image Creation Tutorial

5.2.6. Using build volumes

Prerequisites

CHAPTER 5. USING BUILD STRATEGIES

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

® You have added an input secret, config map, or both to a BuildConfig object.

Procedure

® |n the sourceStrategy definition of the BuildConfig object, add any build volumes to the

volumes array. For example:

spec:
sourceStrategy:
volumes:
- name: secret-mvn ﬂ
mounts:

- destinationPath: /opt/app-root/src/.ssh g

source:

45

https://blog.openshift.com/create-s2i-builder-image/
https://kubernetes.io/docs/concepts/storage/volumes/

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

type: Secret 6
secret:

secretName: my-secret ﬂ
- name: settings-mvn
mounts:
- destinationPath: /opt/app-root/src/.m2 G
source:

type: ConfigMap ﬂ
configMap:
name: my-config

wRequired. A unique name.

equired. The absolute path of the mount point. It must not contain .. or : and doesn't
collide with the destination path generated by the builder. The /opt/app-root/src is the
default home directory for many Red Hat S2I-enabled images.
Wequired. The type of source, ConfigMap, Secret, or CSI.

wRequired. The name of the source.

Additional resources
® Build inputs

® |nput secrets and config maps

5.3. ADDING SECRETS WITH WEB CONSOLE

You can add a secret to your build configuration so that it can access a private repository.

Procedure

To add a secret to your build configuration so that it can access a private repository from the Red Hat
OpenShift Service on AWS web console:

1. Create a new Red Hat OpenShift Service on AWS project.
2. Create a secret that contains credentials for accessing a private source code repository.
3. Create a build configuration.

4. On the build configuration editor page or in the create app from builder image page of the
web console, set the Source Secret

5. Click Save.

5.4. ENABLING PULLING AND PUSHING

You can enable pulling to a private registry by setting the pull secret and pushing by setting the push
secret in the build configuration.

Procedure

46

To enable pulling to a private registry:
® Set the pull secret in the build configuration.
To enable pushing:

® Set the push secret in the build configuration.

CHAPTER 5. USING BUILD STRATEGIES

47

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

CHAPTER 6. PERFORMING AND CONFIGURING BASIC
BUILDS

The following sections provide instructions for basic build operations, including starting and canceling
builds, editing BuildConfigs, deleting BuildConfigs, viewing build details, and accessing build logs.

6.1. STARTING A BUILD

You can manually start a new build from an existing build configuration in your current project.
Procedure
® To start a build manually, enter the following command:

I $ oc start-build <buildconfig_name>

6.1.1. Re-running a build

You can manually re-run a build using the --from-build flag.
Procedure
® To manually re-run a build, enter the following command:

I $ oc start-build --from-build=<build_name>

6.1.2. Streaming build logs

You can specify the --follow flag to stream the build’s logsin stdout.

Procedure

® To manually stream a build’s logs in stdout, enter the following command:

I $ oc start-build <buildconfig_name> --follow

6.1.3. Setting environment variables when starting a build

You can specify the --env flag to set any desired environment variable for the build.

Procedure

® To specify a desired environment variable, enter the following command:

I $ oc start-build <buildconfig_name> --env=<key>=<value>

6.1.4. Starting a build with source

Rather than relying on a Git source pull for a build, you can also start a build by directly pushing your
source, which could be the contents of a Git or SVN working directory, a set of pre-built binary artifacts

48

CHAPTER 6. PERFORMING AND CONFIGURING BASIC BUILDS

you want to deploy, or a single file. This can be done by specifying one of the following options for the
start-build command:

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.
--from-file=<file> Specifies a single file that will be the only file in the build source. The file

is placed in the root of an empty directory with the same file name as the
original file provided.

--from-repo= Specifies a path to a local repository to use as the binary input for a
<local_source_repo> build. Add the --commit option to control which branch, tag, or commit
is used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

Procedure

® To start a build from a source code repository and send the contents of a local Git repository as
an archive from the tag v2, enter the following command:

I $ oc start-build hello-world --from-repo=../hello-world --commit=v2

6.2. CANCELING A BUILD

You can cancel a build using the web console, or with the following CLI command.

Procedure

® To manually cancel a build, enter the following command:

I $ oc cancel-build <build_name>

6.2.1. Canceling multiple builds

You can cancel multiple builds with the following CLI command.

Procedure

® To manually cancel multiple builds, enter the following command:

I $ oc cancel-build <build1_name> <build2_name> <build3_name>

49

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

6.2.2. Canceling all builds

You can cancel all builds from the build configuration with the following CLI command.

Procedure

® To cancel all builds, enter the following command:

I $ oc cancel-build bc/<buildconfig_name>

6.2.3. Canceling all builds in a given state

You can cancel all builds in a given state, such as new or pending, while ignoring the builds in other
states.

Procedure

® To cancel allin a given state, enter the following command:

I $ oc cancel-build bc/<buildconfig_name>

6.3. EDITING A BUILDCONFIG

To edit your build configurations, you use the Edit BuildConfig option in the Builds view of the
Developer perspective.

You can use either of the following views to edit a BuildConfig:

® The Form view enables you to edit your BuildConfig using the standard form fields and
checkboxes.

® The YAML view enables you to edit your BuildConfig with full control over the operations.

You can switch between the Form view and YAML view without losing any data. The data in the Form
view is transferred to the YAML view and vice versa.

Procedure

1. In the Builds view of the Developer perspective, click the menu to see the Edit
BuildConfig option.

2. Click Edit BuildConfig to see the Form view option.

3. In the Git section, enter the Git repository URL for the codebase you want to use to create an
application. The URL is then validated.

® Optional: Click Show Advanced Git Optionsto add details such as:

o Git Reference to specify a branch, tag, or commit that contains code you want to use
to build the application.

o Context Dirto specify the subdirectory that contains code you want to use to build the
application.

50

CHAPTER 6. PERFORMING AND CONFIGURING BASIC BUILDS

o Source Secretto create a Secret Name with credentials for pulling your source code
from a private repository.

4. In the Build from section, select the option that you would like to build from. You can use the
following options:

® |mage Stream tagreferences an image for a given image stream and tag. Enter the project,
image stream, and tag of the location you would like to build from and push to.

® |mage Stream image references an image for a given image stream and image name. Enter
the image stream image you would like to build from. Also enter the project, image stream,
and tag to push to.

® Dockerimage: The Docker image is referenced through a Docker image repository. You will
also need to enter the project, image stream, and tag to refer to where you would like to
push to.

5. Optional: In the Environment Variables section, add the environment variables associated with
the project by using the Name and Value fields. To add more environment variables, use Add
Value, or Add from ConfigMapand Secret.

6. Optional: To further customize your application, use the following advanced options:

Trigger

Triggers a new image build when the builder image changes. Add more triggers by clicking
Add Trigger and selecting the Type and Secret.

Secrets

Adds secrets for your application. Add more secrets by clicking Add secretand selecting the
Secret and Mount point.

Policy

Click Run policy to select the build run policy. The selected policy determines the order in
which builds created from the build configuration must run.

Hooks

Select Run build hooks after image is builtto run commands at the end of the build and
verify the image. Add Hook type, Command, and Arguments to append to the command.

7. Click Save to save the BuildConfig.

6.4. DELETING A BUILDCONFIG

You can delete a BuildConfig using the following command.

Procedure

® To delete a BuildConfig, enter the following command:
I $ oc delete bc <BuildConfigName>

This also deletes all builds that were instantiated from this BuildConfig.

® To delete a BuildConfig and keep the builds instatiated from the BuildConfig, specify the --
cascade=false flag when you enter the following command:

51

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

I $ oc delete --cascade=false bc <BuildConfigName>

6.5. VIEWING BUILD DETAILS
You can view build details with the web console or by using the oc describe CLI command.
This displays information including:

® The build source.

® The build strategy.

® The output destination.

® Digest of the image in the destination registry.

® How the build was created.

If the build uses the Source strategy, the oc describe output also includes information about the
source revision used for the build, including the commit ID, author, committer, and message.

Procedure

® To view build details, enter the following command:

I $ oc describe build <build_name>

6.6. ACCESSING BUILD LOGS

You can access build logs using the web console or the CLI.

Procedure

® To stream the logs using the build directly, enter the following command:

I $ oc describe build <build_name>

6.6.1. Accessing BuildConfig logs

You can access BuildConfig logs using the web console or the CLI.

Procedure

® To stream the logs of the latest build for a BuildConfig, enter the following command:

I $ oc logs -f be/<buildconfig_name>

6.6.2. Accessing BuildConfig logs for a given version build

You can access logs for a given version build for a BuildConfig using the web console or the CLI.

Procedure

52

CHAPTER 6. PERFORMING AND CONFIGURING BASIC BUILDS

® To stream the logs for a given version build for a BuildConfig, enter the following command:

I $ oc logs --version=<number> bc/<buildconfig_name>

6.6.3. Enabling log verbosity

You can enable a more verbose output by passing the BUILD_LOGLEVEL environment variable as part
of the sourceStrategy in a BuildConfig.

NOTE

An administrator can set the default build verbosity for the entire Red Hat OpenShift
Service on AWS instance by configuring env/BUILD_LOGLEVEL. This default can be
overridden by specifying BUILD_LOGLEVEL in a given BuildConfig. You can specify a
higher priority override on the command line for non-binary builds by passing --build-
loglevel to oc start-build.

Available log levels for source builds are as follows:

Level O

Level 1

Level 2

Level 3

Level 4

Level 5

Procedure

Produces output from containers running the assemble script and all encountered errors.
This is the default.

Produces basic information about the executed process.

Produces very detailed information about the executed process.

Produces very detailed information about the executed process, and a listing of the archive
contents.

Currently produces the same information as level 3.

Produces everything mentioned on previous levels and additionally provides docker push
messages.

® To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of
the sourceStrategy or dockerStrategy in a BuildConfig:

sourceStrategy:

env:
- name: "BUILD_LOGLEVEL"

value: "2" ﬂ

ﬂ Adjust this value to the desired log level.

53

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

The following sections outline how to trigger builds and modify builds using build hooks.

7.1. BUILD TRIGGERS

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

® Webhook
® |mage change

e Configuration change

7.1.1. Webhook triggers

Webhook triggers allow you to trigger a new build by sending a request to the Red Hat OpenShift
Service on AWS API endpoint. You can define these triggers using GitHub, GitLab, Bitbucket, or
Generic webhooks.

Currently, Red Hat OpenShift Service on AWS webhooks only support the analogous versions of the
push event for each of the Git-based Source Code Management (SCM) systems. All other event types
are ignored.

When the push events are processed, the Red Hat OpenShift Service on AWS control plane host
confirms if the branch reference inside the event matches the branch reference in the corresponding
BuildConfig. If so, it then checks out the exact commit reference noted in the webhook event on the
Red Hat OpenShift Service on AWS build. If they do not match, no build is triggered.

NOTE

oc new-app and oc new-build create GitHub and Generic webhook triggers
automatically, but any other needed webhook triggers must be added manually. You can
manually add triggers by setting triggers.

For all webhooks, you must define a secret with a key named WebHookSecretKey and the value being
the value to be supplied when invoking the webhook. The webhook definition must then reference the
secret. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
value of the key is compared to the secret provided during the webhook invocation.

For example here is a GitHub webhook with a reference to a secret named mysecret:

type: "GitHub"
github:
secretReference:
name: "mysecret”

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required
for any data field of a Secret object.

- kind: Secret

apiVersion: vi
metadata:

54

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

name: mysecret
creationTimestamp:
data:
WebHookSecretKey: c2VicmV0dmFsdWUx

7.1.1.1. Using GitHub webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the
trigger, you must specify a secret, which is part of the URL you supply to GitHub when configuring the
webhook.

Example GitHub webhook definition:

type: "GitHub"
github:
secretReference:
name: "mysecret”

NOTE

The secret used in the webhook trigger configuration is not the same as the secret field
you encounter when configuring webhook in GitHub Ul. The secret in the webhook trigger
configuration makes the webhook URL unique and hard to predict. The secret configured
in the GitHub Ul is an optional string field that is used to create an HMAC hex digest of
the body, which is sent as an X-Hub-Signature header.

The payload URL is returned as the GitHub Webhook URL by the oc describe command (see Displaying
Webhook URLs), and is structured as follows:

Example output

https://<openshift_api_host:port>/apis/build.openshift.io/vi/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

Prerequisites

® Create a BuildConfig from a GitHub repository.

Procedure
1. Configure a GitHub Webhook.

a. After creating a BuildConfig object from a GitHub repository, run the following command:
I $ oc describe bc/<name_of_your_BuildConfig>
This command generates a webhook GitHub URL.

Example output

https://api.starter-us-east-
1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

55

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

b. Cut and paste this URL into GitHub, from the GitHub web console.
c. Inyour GitHub repository, select Add Webhook from Settings - Webhooks.
d. Paste the URL output into the Payload URL field.

e. Change the Content Type from GitHub's default application/x-www-form-urlencoded to
application/json.

f. Click Add webhook.

You should see a message from GitHub stating that your webhook was successfully
configured.

Now, when you push a change to your GitHub repository, a new build automatically starts,
and upon a successful build a new deployment starts.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if
you are using a Gogs server, you can define a GitHub webhook trigger on
your BuildConfig and trigger it by your Gogs server as well.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with the following curl command:

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-

binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcon
gs/<name>/webhooks/<secret>/github

The -k argument is only necessary if your APl server does not have a properly signed certificate.

NOTE

The build will only be triggered if the ref value from GitHub webhook event matches the
ref value specified in the source.git field of the BuildConfig resource.

Additional resources

® Gogs

7.1.1.2. Using GitLab webhooks

GitLab webhooks handle the call made by GitLab when a repository is updated. As with the GitHub
triggers, you must specify a secret. The following example is a trigger definition YAML within the
BuildConfig:

type: "GitLab"
gitlab:
secretReference:
name: "mysecret”

56

https://gogs.io
https://gogs.io

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

The payload URL is returned as the GitLab Webhook URL by the oc describe command, and is
structured as follows:

Example output

https://<openshift_api_host:port>/apis/build.openshift.io/vi/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/gitlab

Procedure
1. Configure a GitLab Webhook.

a. Getthe webhook URL by entering the following command:

I $ oc describe bc <name>

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the GitLab setup instructions to paste the webhook URL into your GitLab repository
settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with the following curl command:

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --
data-binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcon
gs/<name>/webhooks/<secret>/gitlab

The -k argument is only necessary if your APl server does not have a properly signed certificate.

7.1.1.3. Using Bitbucket webhooks

Bitbucket webhooks handle the call made by Bitbucket when a repository is updated. Similar to GitHub
and GitLab triggers, you must specify a secret. The following example is a trigger definition YAML within
the BuildConfig:

type: "Bitbucket"
bitbucket:
secretReference:
name: "mysecret"

The payload URL is returned as the Bitbucket Webhook URL by the oc describe command, and is
structured as follows:

Example output

https://<openshift_api_host:port>/apis/build.openshift.io/vi/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/bitbucket

Procedure

1. Configure a Bitbucket Webhook.

57

https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

a. Get the webhook URL by entering the following command:
I $ oc describe bc <name>

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the Bitbucket setup instructions to paste the webhook URL into your Bitbucket
repository settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook by entering the following curl command:

$ curl -H "X-Event-Key: repo:push” -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcon
gs/<name>/webhooks/<secret>/bitbucket

The -k argument is only necessary if your APl server does not have a properly signed certificate.

7.1.1.4. Using generic webhooks

Generic webhooks are called from any system capable of making a web request. As with the other
webhooks, you must specify a secret, which is part of the URL that the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

type: "Generic"
generic:
secretReference:
name: "mysecret”
allowEnv: true

ﬂ Set to true to allow a generic webhook to pass in environment variables.

Procedure

1. To set up the caller, supply the calling system with the URL of the generic webhook endpoint for
your build.

Example generic webhook endpoint URL

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcon
gs/<name>/webhooks/<secret>/generic

The caller must call the webhook as a POST operation.
2. To call the webhook manually, enter the following curl command:
$ curl -X POST -k

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcon
gs/<name>/webhooks/<secret>/generic

58

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate
validation. This second flag is not necessary if your cluster has properly signed certificates.

The endpoint can accept an optional payload with the following format:

git:
uri: "<url to git repository>"
ref: "<optional git reference>"
commit: "<commit hash identifying a specific git commit>"
author:
name: "<author name>"
email: "<author e-mail>"
committer:
name: "<committer name>"
email: "<committer e-mail>"
message: "<commit message>"
env: ﬂ
- name: "<variable name>"
value: "<variable value>"

ﬂ Similar to the BuildConfig environment variables, the environment variables defined here
are made available to your build. If these variables collide with the BuildConfig
environment variables, these variables take precedence. By default, environment variables
passed by webhook are ignored. Set the allowEnv field to true on the webhook definition
to enable this behavior.

3. To pass this payload using curl, define it in a file named payload_file.yaml and run the following
command:

$ curl -H "Content-Type: application/yaml|" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcon
gs/<name>/webhooks/<secret>/generic

The arguments are the same as the previous example with the addition of a header and a
payload. The -H argument sets the Content-Type header to application/yaml or
application/json depending on your payload format. The --data-binary argument is used to
send a binary payload with newlines intact with the POST request.

NOTE

Red Hat OpenShift Service on AWS permits builds to be triggered by the generic
webhook even if an invalid request payload is presented, for example, invalid content
type, unparsable or invalid content, and so on. This behavior is maintained for backwards
compatibility. If an invalid request payload is presented, Red Hat OpenShift Service on
AWS returns a warning in JSON format as part of its HTTP 200 OK response.

7.1.1.5. Displaying webhook URLs

You can use the oc describe command to display webhook URLs associated with a build configuration.
If the command does not display any webhook URLs, then no webhook trigger is currently defined for
that build configuration.

Procedure

59

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

® To display any webhook URLs associated with a BuildConfig, run the following command:

I $ oc describe bc <name>

7.1.2. Using image change triggers

As a developer, you can configure your build to run automatically every time a base image changes.

You can use image change triggers to automatically invoke your build when a new version of an
upstream image is available. For example, if a build is based on a RHEL image, you can trigger that build
to run any time the RHEL image changes. As a result, the application image is always running on the
latest RHEL base image.

NOTE

Image streams that point to container images in vl container registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in vl container registries.

Procedure

60

1. Define an ImageStream that points to the upstream image you want to use as a trigger:

kind: "ImageStream"
apiVersion: "v1"
metadata:

name: "ruby-20-centos7"

This defines the image stream that is tied to a container image repository located at <system-
registry>/<namespaces/ruby-20-centos7. The <system-registry> is defined as a service with
the name docker-registry running in Red Hat OpenShift Service on AWS.

. If animage stream is the base image for the build, set the from field in the build strategy to

point to the ImageStream:

strategy:
sourceStrategy:
from:
kind: "ImageStreamTag"
name: "ruby-20-centos7:latest"

In this case, the sourceStrategy definition is consuming the latest tag of the image stream
named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to ImageStreams:

type: "ImageChange" 0
imageChange: {}
type: "ImageChange"
imageChange:
from:
kind: "ImageStreamTag"
name: "custom-image:latest”

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

ﬂ An image change trigger that monitors the ImageStream and Tag as defined by the build
strategy’s from field. The imageChange object here must be empty.

9 An image change trigger that monitors an arbitrary image stream. The imageChange part,
in this case, must include a from field that references the ImageStreamTag to monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied with
an immutable docker tag that points to the latest image corresponding to that tag. This new image
reference is used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build is started,
but the build strategy is not updated with a unique image reference.

Since this example has an image change trigger for the strategy, the resulting build is:

strategy:
sourceStrategy:
from:
kind: "Dockerlmage"
name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

This ensures that the triggered build uses the new image that was just pushed to the repository, and the
build can be re-run any time with the same inputs.

You can pause an image change trigger to allow multiple changes on the referenced image stream
before a build is started. You can also set the paused attribute to true when initially adding an
ImageChangeTrigger to a BuildConfig to prevent a build from being immediately triggered.

type: "ImageChange"
imageChange:
from:
kind: "ImageStreamTag"
name: "custom-image:latest”
paused: true

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
<immutableid> resolved from the ImageStream referenced by the Strategy. This ensures that builds
are performed using consistent image tags for ease of reproduction.

Additional resources

® VI container registries

7.1.3. Identifying the image change trigger of a build

As a developer, if you have image change triggers, you can identify which image change initiated the last
build. This can be useful for debugging or troubleshooting builds.

Example BuildConfig

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:

name: bc-ict-example

61

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

namespace: bc-ict-example-namespace
spec:

#...

triggers:
- imageChange:
from:
kind: ImageStreamTag
name: input:latest
namespace: bc-ict-example-namespace
- imageChange:
from:
kind: ImageStreamTag
name: input2:latest
namespace: bc-ict-example-namespace
type: ImageChange
status:
imageChangeTriggers:
- from:
name: input:latest
namespace: bc-ict-example-namespace
lastTriggerTime: "2021-06-30T13:47:53Z"
lastTriggeredimagelD: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input@sha256:0f88ffbeb9d25525720bfa3524cb1bf0908b7f791057cf1acfae917b11266a69

- from:
name: input2:latest
namespace: bc-ict-example-namespace
lastTriggeredlmagelD: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input2@sha256:0f88ffbeb9d25525720bfa3524cb2ce0908b7f791057cf1acfae917b11266a6
9

lastVersion: 1

NOTE

- This example omits elements that are not related to image change triggers.

Prerequisites

® You have configured multiple image change triggers. These triggers have triggered one or more
builds.

Procedure

1. In the BuildConfig CR, in status.imageChangeTriggers, identify the lastTriggerTime that has
the latest timestamp.
This ImageChangeTriggerStatus

Then you use the "'name™ and "namespace” from that build to find the corresponding image
change trigger in “buildConfig.spec.triggers'.

2. Under imageChangeTriggers, compare timestamps to identify the latest

62

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

Image change triggers

In your build configuration, buildConfig.spec.triggers is an array of build trigger policies,
BuildTriggerPolicy.

Each BuildTriggerPolicy has a type field and set of pointers fields. Each pointer field corresponds to
one of the allowed values for the type field. As such, you can only set BuildTriggerPolicy to only one
pointer field.

Forimage change triggers, the value of type is ImageChange. Then, the imageChange field is the
pointer to an ImageChangeTrigger object, which has the following fields:

e lastTriggeredimagelD: This field, which is not shown in the example, is deprecated in Red Hat
OpenShift Service on AWS 4.8 and will be ignored in a future release. It contains the resolved

image reference for the ImageStreamTag when the last build was triggered from this
BuildConfig.

e paused: You can use this field, which is not shown in the example, to temporarily disable this
particular image change trigger.

e from: Use this field to reference the ImageStreamTag that drives this image change trigger. Its
type is the core Kubernetes type, OwnerReference.

The from field has the following fields of note:
e kind: For image change triggers, the only supported value is ImageStreamTag.
® namespace: Use this field to specify the namespace of the ImageStreamTag.
® name: Use this field to specify the ImageStreamTag.

Image change trigger status

In your build configuration, buildConfig.status.imageChangeTriggers is an array of
ImageChangeTriggerStatus elements. Each ImageChangeTriggerStatus element includes the from,
lastTriggeredimagelD, and lastTriggerTime elements shown in the preceding example.

The ImageChangeTriggerStatus that has the most recent lastTriggerTime triggered the most recent
build. You use its name and namespace to identify the image change trigger in
buildConfig.spec.triggers that triggered the build.

The lastTriggerTime with the most recent timestamp signifies the ImageChangeTriggerStatus of the
last build. This ImageChangeTriggerStatus has the same name and hamespace as the image change
trigger in buildConfig.spec.triggers that triggered the build.

Additional resources

® vl container registries

7.1.4. Configuration change triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new BuildConfig
is created.

The following is an example trigger definition YAML within the BuildConfig:

I type: "ConfigChange"

63

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

4 NOTE
Configuration change triggers currently only work when creating a new BuildConfig. In a

future release, configuration change triggers will also be able to launch a build whenever a
BuildConfig is updated.

7.1.4.1. Setting triggers manually

Triggers can be added to and removed from build configurations with oc set triggers.

Procedure

® To seta GitHub webhook trigger on a build configuration, enter the following command:

I $ oc set triggers bc <name> --from-github

® To set animage change trigger, enter the following command:

I $ oc set triggers bc <name> --from-image="'<image>"'

® Toremove a trigger, enter the following command:

I $ oc set triggers bc <name> --from-bitbucket --remove

NOTE

When a webhook trigger already exists, adding it again regenerates the webhook secret.

For more information, consult the help documentation by entering the following command:

I $ oc set triggers --help

7.2. BUILD HOOKS

Build hooks allow behavior to be injected into the build process.

The postCommit field of a BuildConfig object runs commands inside a temporary container that is
running the build output image. The hook is run immediately after the last layer of the image has been
committed and before the image is pushed to a registry.

The current working directory is set to the image’s WORKDIR, which is the default working directory of
the container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary
container fails. When the hook fails it marks the build as failed and the image is not pushed to a registry.
The reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and
the image is made available in a registry. If all tests pass and the test runner returns with exit code 0, the
build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the build
log contains the output of the test runner, which can be used to identify failed tests.

The postCommit hook is not only limited to running tests, but can be used for other commands as well.

64

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

Since it runs in a temporary container, changes made by the hook do not persist, meaning that running
the hook cannot affect the final image. This behavior allows for, among other uses, the installation and
usage of test dependencies that are automatically discarded and are not present in the final image.

7.2.1. Configuring post commit build hooks

There are different ways to configure the post-build hook. All forms in the following examples are
equivalent and run bundle exec rake test --verbose.

Procedure

® Use one of the following options to configure post-build hooks:

Option Description

Shell script

postCommit:
script: "bundle exec rake test --verbose"

The script value is a shell script to be run with
/bin/sh -ic. Use this option when a shell script is
appropriate to execute the build hook. For
example, for running unit tests as above. To
control the image entry point or if the image
does not have /bin/sh, use command, orargs,
or both.

NOTE

The additional -i flag was
introduced to improve the
experience working with
CentOS and RHEL images, and
may be removed in a future
release.

Command as the image entry point
postCommit:
command: ["/bin/bash", "-c", "bundle
exec rake test --verbose"]

In this form, command is the command to run,
which overrides the image entry point in the exec
form, as documented in the Dockerfile
reference. This is needed if the image does not
have /bin/sh, or if you do not want to use a shell.
In all other cases, using script might be more
convenient.

65

https://docs.docker.com/engine/reference/builder/#entrypoint

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

Option Description

Command with arguments

postCommit:

command: ["bundle", "exec", "rake",
"test"]

args: ["--verbose"]

This form is equivalent to appending the
arguments to command.

NOTE

Providing both script and command simultaneously creates an invalid build hook.

7.2.2. Using the CLI to set post commit build hooks

The oc set build-hook command can be used to set the build hook for a build configuration.

Procedure
1. Complete one of the following actions:

® Tosetacommand as the post-commit build hook, enter the following command:

$ oc set build-hook bc/mybc \
--post-commit \
--command \
-- bundle exec rake test --verbose

® To set ascript as the post-commit build hook, enter the following command:

I $ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

66

CHAPTER 8. PERFORMING ADVANCED BUILDS

CHAPTER 8. PERFORMING ADVANCED BUILDS

You can set build resources and maximum duration, assign builds to nodes, chain builds, prune builds,
and configure build run policies.

8.1. SETTING BUILD RESOURCES

By default, builds are completed by pods using unbound resources, such as memory and CPU. These
resources can be limited.

Procedure

You can limit resource use in two ways:
® |imit resource use by specifying resource limits in the default container limits of a project.

® Limit resource use by specifying resource limits as part of the build configuration.

o In the following example, each of the resources, cpu, and memory parameters are
optional:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
name: "sample-build"
spec:
resources:
limits:
cpu: "100m"
memory: "256Mi" g

ﬂ cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

9 memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 * 20).

However, if a quota has been defined for your project, one of the following two items is
required:

B Aresources section set with an explicit requests:

resources.

requests: ﬂ

cpu: "100m"
memory: "256Mi"

The requests object contains the list of resources that correspond to the list of
resources in the quota.

® Alimit range defined in your project, where the defaults from the LimitRange object
apply to pods created during the build process.
Otherwise, build pod creation will fail, citing a failure to satisfy quota.

8.2. SETTING MAXIMUM DURATION

67

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

When defining a BuildConfig object, you can define its maximum duration by setting the
completionDeadlineSeconds field. It is specified in seconds and is not set by default. When not set,
there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and
defines how long it can be active, including the time needed to pull the builder image. After reaching the
specified timeout, the build is terminated by Red Hat OpenShift Service on AWS.

Procedure

® To set maximum duration, specify completionDeadlineSeconds in your BuildConfig. The
following example shows the part of a BuildConfig specifying completionDeadlineSeconds
field for 30 minutes:

spec:
completionDeadlineSeconds: 1800

NOTE

This setting is not supported with the Pipeline Strategy option.

8.3. ASSIGNING BUILDS TO SPECIFIC NODES

Builds can be targeted to run on specific nodes by specifying labels in the nodeSelector field of a build
configuration. The nodeSelector value is a set of key-value pairs that are matched to Node labels when
scheduling the build pod.

The nodeSelector value can also be controlled by cluster-wide default and override values. Defaults will
only be applied if the build configuration does not define any key-value pairs for the nodeSelector and
also does not define an explicitly empty map value of nodeSelector:{}. Override values will replace
values in the build configuration on a key by key basis.

NOTE

If the specified NodeSelector cannot be matched to a node with those labels, the build
still stay in the Pending state indefinitely.

Procedure

® Assign builds to run on specific nodes by assigning labels in the nodeSelector field of the
BuildConfig, for example:

apiVersion: "v1"
kind: "BuildConfig"
metadata:
name: "sample-build"
spec:
nodeSeIector:ﬂ
key1: valuet
key2: value2

Builds associated with this build configuration will run only on nodes with the key1=value2
and key2=value2 labels.

68

CHAPTER 8. PERFORMING ADVANCED BUILDS

8.4. CHAINED BUILDS

For compiled languages such as Go, C, C++, and Java, including the dependencies necessary for
compilation in the application image might increase the size of the image or introduce vulnerabilities
that can be exploited.

To avoid these problems, two builds can be chained together. One build that produces the compiled
artifact, and a second build that places that artifact in a separate image that runs the artifact.

8.5. PRUNING BUILDS

By default, builds that have completed their lifecycle are persisted indefinitely. You can limit the number
of previous builds that are retained.

Procedure

1. Limit the number of previous builds that are retained by supplying a positive integer value for
successfulBuildsHistoryLimit or failedBuildsHistoryLimit in your BuildConfig, for example:

apiVersion: "v1"

kind: "BuildConfig"

metadata:
name: "sample-build"

spec:
successfulBuildsHistoryLimit: 2 ﬂ
failedBuildsHistoryLimit: 2 @)

Q successfulBuildsHistoryLimit will retain up to two builds with a status of completed.
failedBuildsHistoryLimit will retain up to two builds with a status of failed, canceled, or

error.

2. Trigger build pruning by one of the following actions:

e Updating a build configuration.
® Waiting for a build to complete its lifecycle.

Builds are sorted by their creation timestamp with the oldest builds being pruned first.

8.6. BUILD RUN POLICY

The build run policy describes the order in which the builds created from the build configuration should
run. This can be done by changing the value of the runPolicy field in the spec section of the Build
specification.

Itis also possible to change the runPolicy value for existing build configurations, by:
e Changing Parallel to Serial or SerialLatestOnly and triggering a new build from this

configuration causes the new build to wait until all parallel builds complete as the serial build can
only run alone.

69

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

e Changing Serial to SerialLatestOnly and triggering a new build causes cancellation of all
existing builds in queue, except the currently running build and the most recently created build.
The newest build runs next.

70

CHAPTER 9. USING RED HAT SUBSCRIPTIONS IN BUILDS

CHAPTER 9. USING RED HAT SUBSCRIPTIONS IN BUILDS

Use the following sections to install Red Hat subscription content within Red Hat OpenShift Service on
AWS builds.

9.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT UNIVERSAL
BASE IMAGE

To install Red Hat Enterprise Linux (RHEL) packages within a build, you can create an image stream tag
to reference the Red Hat Universal Base Image (UBI).

To make the UBI available in every projectin the cluster, add the image stream tag to the openshift
namespace. Otherwise, to make it available in a specific project add the image stream tag to that
project.

Image stream tags grant access to the UBI by using the registry.redhat.io credentials that are present
in the install pull secret, without exposing the pull secret to other users. This method is more convenient
than requiring each developer to install pull secrets with registry.redhat.io credentials in each project.

Procedure

® To create an ImageStreamTag resource in a single project, enter the following command:

I $ oc tag --source=docker registry.redhat.io/ubi9/ubi:latest ubi:latest

TIP

You can alternatively apply the following YAML to create an ImageStreamTag resource in a
single project:

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
name: ubi9
spec:
tags:
- from:
kind: Dockerlmage
name: registry.redhat.io/ubi9/ubi:latest
name: latest
referencePolicy:
type: Source

9.2. RUNNING BUILDS WITH SUBSCRIPTION MANAGER

9.2.1. Docker builds using Subscription Manager

Docker strategy builds can use yum or dnf to install additional Red Hat Enterprise Linux (RHEL)
packages.

Prerequisites

71

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

® The entitlement keys must be added as build strategy volumes.

Procedure

e Use the following as an example Dockerfile to install content with the Subscription Manager:

FROM registry.redhat.io/ubi9/ubi:latest

RUN rm -rf /etc/rhsm-host ﬂ

RUN yum --enablerepo=codeready-builder-for-rhel-9-x86_64-rpms install \ 9
nss_wrapper \
uid_wrapper -y && \
yum clean all -y

RUN In -s /run/secrets/rhsm /etc/rhsm-host 6

ﬂ You must include the command to remove the /etc/rhsm-host directory and all its
contents in your Dockerfile before executing any yum or dnf commands.

9 Use the Red Hat Package Browser to find the correct repositories for your installed
packages.

9 You must restore the /etc/rhsm-host symbolic link to keep your image compatible with
other Red Hat container images.

9.3. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS

9.3.1. Adding Red Hat Satellite configurations to builds

Builds that use Red Hat Satellite to install content must provide appropriate configurations to obtain
content from Satellite repositories.

Prerequisites

® You must provide or create a yum-compatible repository configuration file that downloads
content from your Satellite instance.

Sample repository configuration

[test-<name>]

name=test-<number>

baseurl = https://satellite.../content/dist/rhel/server/7/7Server/x86_64/0s
enabled=1

gpgcheck=0

sslverify=0

ssiclientkey = /etc/pki/entitlement/...-key.pem

ssliclientcert = /etc/pki/entitlement/....pem

Procedure

1. Create a ConfigMap object containing the Satellite repository configuration file by entering the
following command:

I $ oc create configmap yum-repos-d --from-file /path/to/satellite.repo

72

https://access.redhat.com/downloads/content/package-browser

CHAPTER 9. USING RED HAT SUBSCRIPTIONS IN BUILDS

2. Add the Satellite repository configuration and entitlement key as a build volumes:

strategy:
dockerStrategy:
from:
kind: ImageStreamTag
name: ubi9:latest
volumes:
- hame: yum-repos-d
mounts:
- destinationPath: /etc/yum.repos.d
source:
type: ConfigMap
configMap:
name: yum-repos-d
- name: etc-pki-entitlement
mounts:
- destinationPath: /etc/pki/entitlement
source:
type: Secret
secret:
secretName: etc-pki-entitlement

9.3.2. Docker builds using Red Hat Satellite subscriptions

Docker strategy builds can use Red Hat Satellite repositories to install subscription content.

Prerequisites

® You have added the entitlement keys and Satellite repository configurations as build volumes.

Procedure

e Use the following example to create a Dockerfile for installing content with Satellite:

FROM registry.redhat.io/ubi9/ubi:latest

RUN rm -rf /etc/rhsm-host ﬂ

RUN yum --enablerepo=codeready-builder-for-rhel-9-x86_64-rpms install \ g
nss_wrapper \
uid_wrapper -y && \
yum clean all -y

RUN In -s /run/secrets/rhsm /etc/rhsm-host 6

You must include the command to remove the /etc/rhsm-host directory and all its
contents in your Dockerfile before executing any yum or dnf commands.

® o

Contact your Satellite system administrator to find the correct repositories for the build’s
installed packages.

o

You must restore the /etc/rhsm-host symbolic link to keep your image compatible with
other Red Hat container images.

Additional resources

73

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

® How to use builds with Red Hat Satellite subscriptions and which certificate to use

9.4. ADDITIONAL RESOURCES

® Managing image streams

® Build strategies

74

https://access.redhat.com/solutions/5847331
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/images/#image-streams-managing

CHAPTER 10. TROUBLESHOOTING BUILDS

CHAPTER 10. TROUBLESHOOTING BUILDS

Use the following to troubleshoot build issues.

10.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES
If your request for access to resources is denied:

Issue
A build fails with:

I requested access to the resource is denied

Resolution

You have exceeded one of the image quotas set on your project. Check your current quota and
verify the limits applied and storage in use:

I $ oc describe quota

10.2. SERVICE CERTIFICATE GENERATION FAILURE
If your request for access to resources is denied:

Issue

If a service certificate generation fails with (service's service.beta.openshift.io/serving-cert-
generation-error annotation contains):

Example output

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

Resolution

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on
the service: service.beta.openshift.io/serving-cert-generation-error and
service.beta.openshift.io/serving-cert-generation-error-num. To clear the annotations, enter the
following commands:

I $ oc delete secret <secret_name>

I $ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-

I $ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-
num-

NOTE

The command removing an annotation has a - after the annotation name to be
removed.

75

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

76

	Table of Contents
	CHAPTER 1. UNDERSTANDING IMAGE BUILDS
	1.1. BUILDS
	1.1.1. Docker build
	1.1.2. Source-to-image build

	CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS
	2.1. BUILDCONFIGS

	CHAPTER 3. CREATING BUILD INPUTS
	3.1. BUILD INPUTS
	3.2. DOCKERFILE SOURCE
	3.3. IMAGE SOURCE
	3.4. GIT SOURCE
	3.4.1. Using a proxy
	3.4.2. Source Clone Secrets
	3.4.2.1. Automatically adding a source clone secret to a build configuration
	3.4.2.2. Manually adding a source clone secret
	3.4.2.3. Creating a secret from a .gitconfig file
	3.4.2.4. Creating a secret from a .gitconfig file for secured Git
	3.4.2.5. Creating a secret from source code basic authentication
	3.4.2.6. Creating a secret from source code SSH key authentication
	3.4.2.7. Creating a secret from source code trusted certificate authorities
	3.4.2.8. Source secret combinations

	3.5. BINARY (LOCAL) SOURCE
	3.6. INPUT SECRETS AND CONFIG MAPS
	3.6.1. What is a secret?
	3.6.1.1. Properties of secrets
	3.6.1.2. Types of Secrets
	3.6.1.3. Updates to secrets

	3.6.2. Creating secrets
	3.6.3. Using secrets
	3.6.4. Adding input secrets and config maps
	3.6.5. Source-to-image strategy

	3.7. EXTERNAL ARTIFACTS
	3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES
	3.9. BUILD ENVIRONMENTS
	3.9.1. Using build fields as environment variables
	3.9.2. Using secrets as environment variables

	3.10. SERVICE SERVING CERTIFICATE SECRETS
	3.11. SECRETS RESTRICTIONS

	CHAPTER 4. MANAGING BUILD OUTPUT
	4.1. BUILD OUTPUT
	4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES
	4.3. OUTPUT IMAGE LABELS

	CHAPTER 5. USING BUILD STRATEGIES
	5.1. DOCKER BUILD
	5.1.1. Replacing the Dockerfile FROM image
	5.1.2. Using Dockerfile path
	5.1.3. Using docker environment variables
	5.1.4. Adding Docker build arguments
	5.1.5. Squashing layers with docker builds
	5.1.6. Using build volumes

	5.2. SOURCE-TO-IMAGE BUILD
	5.2.1. Performing source-to-image incremental builds
	5.2.2. Overriding source-to-image builder image scripts
	5.2.3. Source-to-image environment variables
	5.2.3.1. Using source-to-image environment files
	5.2.3.2. Using source-to-image build configuration environment

	5.2.4. Ignoring source-to-image source files
	5.2.5. Creating images from source code with source-to-image
	5.2.5.1. Understanding the source-to-image build process
	5.2.5.2. How to write source-to-image scripts

	5.2.6. Using build volumes

	5.3. ADDING SECRETS WITH WEB CONSOLE
	5.4. ENABLING PULLING AND PUSHING

	CHAPTER 6. PERFORMING AND CONFIGURING BASIC BUILDS
	6.1. STARTING A BUILD
	6.1.1. Re-running a build
	6.1.2. Streaming build logs
	6.1.3. Setting environment variables when starting a build
	6.1.4. Starting a build with source

	6.2. CANCELING A BUILD
	6.2.1. Canceling multiple builds
	6.2.2. Canceling all builds
	6.2.3. Canceling all builds in a given state

	6.3. EDITING A BUILDCONFIG
	6.4. DELETING A BUILDCONFIG
	6.5. VIEWING BUILD DETAILS
	6.6. ACCESSING BUILD LOGS
	6.6.1. Accessing BuildConfig logs
	6.6.2. Accessing BuildConfig logs for a given version build
	6.6.3. Enabling log verbosity

	CHAPTER 7. TRIGGERING AND MODIFYING BUILDS
	7.1. BUILD TRIGGERS
	7.1.1. Webhook triggers
	7.1.1.1. Using GitHub webhooks
	7.1.1.2. Using GitLab webhooks
	7.1.1.3. Using Bitbucket webhooks
	7.1.1.4. Using generic webhooks
	7.1.1.5. Displaying webhook URLs

	7.1.2. Using image change triggers
	7.1.3. Identifying the image change trigger of a build
	7.1.4. Configuration change triggers
	7.1.4.1. Setting triggers manually

	7.2. BUILD HOOKS
	7.2.1. Configuring post commit build hooks
	7.2.2. Using the CLI to set post commit build hooks

	CHAPTER 8. PERFORMING ADVANCED BUILDS
	8.1. SETTING BUILD RESOURCES
	8.2. SETTING MAXIMUM DURATION
	8.3. ASSIGNING BUILDS TO SPECIFIC NODES
	8.4. CHAINED BUILDS
	8.5. PRUNING BUILDS
	8.6. BUILD RUN POLICY

	CHAPTER 9. USING RED HAT SUBSCRIPTIONS IN BUILDS
	9.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT UNIVERSAL BASE IMAGE
	9.2. RUNNING BUILDS WITH SUBSCRIPTION MANAGER
	9.2.1. Docker builds using Subscription Manager

	9.3. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS
	9.3.1. Adding Red Hat Satellite configurations to builds
	9.3.2. Docker builds using Red Hat Satellite subscriptions

	9.4. ADDITIONAL RESOURCES

	CHAPTER 10. TROUBLESHOOTING BUILDS
	10.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES
	10.2. SERVICE CERTIFICATE GENERATION FAILURE

