

Red Hat OpenShift Service on AWS 4

Builds using BuildConfig

Contains information about builds for Red Hat OpenShift Service on AWS

Last Updated: 2024-06-06

Red Hat OpenShift Service on AWS 4 Builds using BuildConfig

Contains information about builds for Red Hat OpenShift Service on AWS

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux [®] is the registered trademark of Linus Torvalds in the United States and other countries.

Java [®] is a registered trademark of Oracle and/or its affiliates.

XFS [®] is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL [®] is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack [®] Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Builds for Red Hat OpenShift Service on AWS.

Table of Contents

CHAPTER 1. UNDERSTANDING IMAGE BUILDS 1.1. BUILDS	. 5
1.1.1. Docker build 1.1.2. Source-to-image build	5 5
CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS	
2.1. BUILDCONFIGS	6
CHAPTER 3. CREATING BUILD INPUTS	. 8
3.1. BUILD INPUTS	8
3.2. DOCKERFILE SOURCE	9
3.3. IMAGE SOURCE	9
3.4. GIT SOURCE	11
3.4.1. Using a proxy	12
3.4.2. Source Clone Secrets	12
3.4.2.1. Automatically adding a source clone secret to a build configuration	12
3.4.2.2. Manually adding a source clone secret	14
3.4.2.3. Creating a secret from a .gitconfig file	14
3.4.2.4. Creating a secret from a .gitconfig file for secured Git	15
3.4.2.5. Creating a secret from source code basic authentication	16
3.4.2.6. Creating a secret from source code SSH key authentication	16
3.4.2.7. Creating a secret from source code trusted certificate authorities	17
3.4.2.8. Source secret combinations	18
3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file	18
3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate 3.4.2.8.3. Creating a basic authentication secret with a CA certificate	18 19
3.4.2.8.4. Creating a basic authentication secret with a Git configuration file	19
3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate	19
3.5. BINARY (LOCAL) SOURCE	20
3.6. INPUT SECRETS AND CONFIG MAPS	21
3.6.1. What is a secret?	21
3.6.1.1. Properties of secrets	22
3.6.1.2. Types of Secrets	22
3.6.1.3. Updates to secrets	23
3.6.2. Creating secrets	23
3.6.3. Using secrets	24
3.6.4. Adding input secrets and config maps	26
3.6.5. Source-to-image strategy	28
3.7. EXTERNAL ARTIFACTS	28
3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES	29
3.9. BUILD ENVIRONMENTS	32
3.9.1. Using build fields as environment variables	32
3.9.2. Using secrets as environment variables	32
3.10. SERVICE SERVING CERTIFICATE SECRETS	33
3.11. SECRETS RESTRICTIONS	33
CHAPTER 4. MANAGING BUILD OUTPUT	35
4.1. BUILD OUTPUT	35
4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES 4.3. OUTPUT IMAGE LABELS	35 36
CHAPTER 5. USING BUILD STRATEGIES	37

5.1. DOCKER BUILD	37
5.1.1. Replacing the Dockerfile FROM image	37
5.1.2. Using Dockerfile path	37
5.1.3. Using docker environment variables	37
5.1.4. Adding Docker build arguments	38
5.1.5. Squashing layers with docker builds	38
5.1.6. Using build volumes	39
5.2. SOURCE-TO-IMAGE BUILD	40
5.2.1. Performing source-to-image incremental builds	40
5.2.2. Overriding source-to-image builder image scripts	40
5.2.3. Source-to-image environment variables	41
5.2.3.1. Using source-to-image environment files	41
5.2.3.2. Using source-to-image build configuration environment	41
5.2.4. Ignoring source-to-image source files	42
5.2.5. Creating images from source code with source-to-image	42
5.2.5.1. Understanding the source-to-image build process	42
5.2.5.2. How to write source-to-image scripts	42
5.2.6. Using build volumes	45
5.3. ADDING SECRETS WITH WEB CONSOLE	46
5.4. ENABLING PULLING AND PUSHING	46
CHAPTER 6. PERFORMING AND CONFIGURING BASIC BUILDS	48
6.1. STARTING A BUILD	48
6.1.1. Re-running a build	48
6.1.2. Streaming build logs	48
6.1.3. Setting environment variables when starting a build	48
6.1.4. Starting a build with source	48
6.2. CANCELING A BUILD	49
6.2.1. Canceling multiple builds	49
6.2.2. Canceling all builds	50
6.2.3. Canceling all builds in a given state	50
6.3. EDITING A BUILDCONFIG	50
6.4. DELETING A BUILDCONFIG	51
6.5. VIEWING BUILD DETAILS	52
6.6. ACCESSING BUILD LOGS	52
6.6.1. Accessing BuildConfig logs	52
6.6.2. Accessing BuildConfig logs for a given version build	52
6.6.3. Enabling log verbosity	53
CHAPTER 7. TRIGGERING AND MODIFYING BUILDS	54
7.1. BUILD TRIGGERS	54
7.1.1. Webhook triggers	54
7.1.1.1. Using GitHub webhooks	55
7.1.1.2. Using GitLab webhooks	56
7.1.1.3. Using Bitbucket webhooks	57
7.1.1.4. Using generic webhooks	58
7.1.1.5. Displaying webhook URLs	59
7.1.2. Using image change triggers	60
7.1.3. Identifying the image change trigger of a build	61
7.1.4. Configuration change triggers	63
7.1.4.1. Setting triggers manually	64
7.2. BUILD HOOKS	64
7.2.1. Configuring post commit build hooks	65

	7.2.2. Using the CLI to set post commit build hooks	66
С	HAPTER 8. PERFORMING ADVANCED BUILDS	67
	8.1. SETTING BUILD RESOURCES	67
	8.2. SETTING MAXIMUM DURATION	67
	8.3. ASSIGNING BUILDS TO SPECIFIC NODES	68
	8.4. CHAINED BUILDS	69
	8.5. PRUNING BUILDS	69
	8.6. BUILD RUN POLICY	69
C	HAPTER 9. USING RED HAT SUBSCRIPTIONS IN BUILDS	71
	9.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT UNIVERSAL BASE IMAGE	71
	9.2. RUNNING BUILDS WITH SUBSCRIPTION MANAGER	71
	9.2.1. Docker builds using Subscription Manager	71
	9.3. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS	72
	9.3.1. Adding Red Hat Satellite configurations to builds	72
	9.3.2. Docker builds using Red Hat Satellite subscriptions	73
	9.4. ADDITIONAL RESOURCES	74
С	HAPTER 10. TROUBLESHOOTING BUILDS	75
	10.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES	75
	10.2 SERVICE CERTIFICATE CENERATION FAILURE	75

CHAPTER 1. UNDERSTANDING IMAGE BUILDS

1.1. BUILDS

A build is the process of transforming input parameters into a resulting object. Most often, the process is used to transform input parameters or source code into a runnable image. A **BuildConfig** object is the definition of the entire build process.

Red Hat OpenShift Service on AWS uses Kubernetes by creating containers from build images and pushing them to a container image registry.

Build objects share common characteristics including inputs for a build, the requirement to complete a build process, logging the build process, publishing resources from successful builds, and publishing the final status of the build. Builds take advantage of resource restrictions, specifying limitations on resources such as CPU usage, memory usage, and build or pod execution time.

The resulting object of a build depends on the builder used to create it. For docker and S2I builds, the resulting objects are runnable images. For custom builds, the resulting objects are whatever the builder image author has specified.

Additionally, the pipeline build strategy can be used to implement sophisticated workflows:

- Continuous integration
- Continuous deployment

1.1.1. Docker build

Red Hat OpenShift Service on AWS uses Buildah to build a container image from a Dockerfile. For more information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the **buildArgs** array, see Understand how ARG and FROM interact in the Dockerfile reference documentation.

1.1.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run images by injecting application source into a container image and assembling a new image. The new image incorporates the base image, the builder, and built source and is ready to use with the **buildah run** command. S2I supports incremental builds, which re-use previously downloaded dependencies, previously built artifacts, and so on.

CHAPTER 2. UNDERSTANDING BUILD CONFIGURATIONS

The following sections define the concept of a build, build configuration, and outline the primary build strategies available.

2.1. BUILDCONFIGS

A build configuration describes a single build definition and a set of triggers for when a new build is created. Build configurations are defined by a **BuildConfig**, which is a REST object that can be used in a POST to the API server to create a new instance.

A build configuration, or **BuildConfig**, is characterized by a build strategy and one or more sources. The strategy determines the process, while the sources provide its input.

Depending on how you choose to create your application using Red Hat OpenShift Service on AWS, a **BuildConfig** is typically generated automatically for you if you use the web console or CLI, and it can be edited at any time. Understanding the parts that make up a **BuildConfig** and their available options can help if you choose to manually change your configuration later.

The following example **BuildConfig** results in a new build every time a container image tag or the source code changes:

BuildConfig object definition

```
kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: "ruby-sample-build" 1
 runPolicy: "Serial" 2
 triggers: 3
   type: "GitHub"
   github:
    secret: "secret101"
  - type: "Generic"
   generic:
     secret: "secret101"
   type: "ImageChange"
 source: 4
  ait:
   uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
  sourceStrategy:
   from:
     kind: "ImageStreamTag"
     name: "ruby-20-centos7:latest"
 output: 6
   kind: "ImageStreamTag"
   name: "origin-ruby-sample:latest"
 postCommit: 7
   script: "bundle exec rake test"
```

- This specification creates a new **BuildConfig** named **ruby-sample-build**.
- The **runPolicy** field controls whether builds created from this build configuration can be run simultaneously. The default value is **Serial**, which means new builds run sequentially, not simultaneously.
- 3 You can specify a list of triggers, which cause a new build to be created.
- The **source** section defines the source of the build. The source type determines the primary source of input, and can be either **Git**, to point to a code repository location, **Dockerfile**, to build from an inline Dockerfile, or **Binary**, to accept binary payloads. It is possible to have multiple sources at once. See the documentation for each source type for details.
- The **strategy** section describes the build strategy used to execute the build. You can specify a **Source**, **Docker**, or **Custom** strategy here. This example uses the **ruby-20-centos7** container image that Source-to-image (S2I) uses for the application build.
- After the container image is successfully built, it is pushed into the repository described in the **output** section.
- 7 The **postCommit** section defines an optional build hook.

CHAPTER 3. CREATING BUILD INPUTS

Use the following sections for an overview of build inputs, instructions on how to use inputs to provide source content for builds to operate on, and how to use build environments and create secrets.

3.1. BUILD INPUTS

A build input provides source content for builds to operate on. You can use the following build inputs to provide sources in Red Hat OpenShift Service on AWS, listed in order of precedence:

- Inline Dockerfile definitions
- Content extracted from existing images
- Git repositories
- Binary (Local) inputs
- Input secrets
- External artifacts

You can combine multiple inputs in a single build. However, as the inline Dockerfile takes precedence, it can overwrite any other file named Dockerfile provided by another input. Binary (local) input and Git repositories are mutually exclusive inputs.

You can use input secrets when you do not want certain resources or credentials used during a build to be available in the final application image produced by the build, or want to consume a value that is defined in a secret resource. External artifacts can be used to pull in additional files that are not available as one of the other build input types.

When you run a build:

- 1. A working directory is constructed and all input content is placed in the working directory. For example, the input Git repository is cloned into the working directory, and files specified from input images are copied into the working directory using the target path.
- 2. The build process changes directories into the **contextDir**, if one is defined.
- 3. The inline Dockerfile, if any, is written to the current directory.
- 4. The content from the current directory is provided to the build process for reference by the Dockerfile, custom builder logic, or **assemble** script. This means any input content that resides outside the **contextDir** is ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how they are combined. For more details on how each input type is defined, see the specific sections for each input type.

```
source:
git:
uri: https://github.com/openshift/ruby-hello-world.git 1
ref: "master"
images:
- from:
kind: ImageStreamTag
```

name: myinputimage:latest namespace: mynamespace

paths:

destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar

contextDir: "app/dir" 3

dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

- The repository to be cloned into the working directory for the build.
- /usr/lib/somefile.jar from myinputimage is stored in <workingdir>/app/dir/injected/dir.
- 3 The working directory for the build becomes **<original_workingdir>/app/dir**.
- A Dockerfile with this content is created in **<original_workingdir>/app/dir**, overwriting any existing file with that name.

3.2. DOCKERFILE SOURCE

When you supply a **dockerfile** value, the content of this field is written to disk as a file named **dockerfile**. This is done after other input sources are processed, so if the input source repository contains a Dockerfile in the root directory, it is overwritten with this content.

The source definition is part of the **spec** section in the **BuildConfig**:

source:

dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

The **dockerfile** field contains an inline Dockerfile that is built.

Additional resources

• The typical use for this field is to provide a Dockerfile to a docker strategy build.

3.3. IMAGE SOURCE

You can add additional files to the build process with images. Input images are referenced in the same way the **From** and **To** image targets are defined. This means both container images and image stream tags can be referenced. In conjunction with the image, you must provide one or more path pairs to indicate the path of the files or directories to copy the image and the destination to place them in the build context.

The source path can be any absolute path within the image specified. The destination must be a relative directory path. At build time, the image is loaded and the indicated files and directories are copied into the context directory of the build process. This is the same directory into which the source repository content is cloned. If the source path ends in /. then the content of the directory is copied, but the directory itself is not created at the destination.

Image inputs are specified in the **source** definition of the **BuildConfig**:

source:

git:

uri: https://github.com/openshift/ruby-hello-world.git ref: "master"

images: 1

- from: 2 kind: ImageStreamTag

name: myinputimage:latest namespace: mynamespace

paths: 3

- destinationDir: injected/dir 4 sourcePath: /usr/lib/somefile.jar 5

- from:

kind: ImageStreamTag

name: myotherinputimage:latest namespace: myothernamespace

pullSecret: mysecret 6

paths:

 destinationDir: injected/dir sourcePath: /usr/lib/somefile.jar

- An array of one or more input images and files.
- A reference to the image containing the files to be copied.
- An array of source/destination paths.
- The directory relative to the build root where the build process can access the file.
- The location of the file to be copied out of the referenced image.
- 6 An optional secret provided if credentials are needed to access the input image.

NOTE

If your cluster uses an **ImageDigestMirrorSet**, **ImageTagMirrorSet**, or **ImageContentSourcePolicy** object to configure repository mirroring, you can use only global pull secrets for mirrored registries. You cannot add a pull secret to a project.

Images that require pull secrets

When using an input image that requires a pull secret, you can link the pull secret to the service account used by the build. By default, builds use the **builder** service account. The pull secret is automatically added to the build if the secret contains a credential that matches the repository hosting the input image. To link a pull secret to the service account used by the build, run:

\$ oc secrets link builder dockerhub

NOTE

This feature is not supported for builds using the custom strategy.

Images on mirrored registries that require pull secrets

When using an input image from a mirrored registry, if you get a **build error: failed to pull image** message, you can resolve the error by using either of the following methods:

- Create an input secret that contains the authentication credentials for the builder image's
 repository and all known mirrors. In this case, create a pull secret for credentials to the image
 registry and its mirrors.
- Use the input secret as the pull secret on the **BuildConfig** object.

3.4. GIT SOURCE

When specified, source code is fetched from the supplied location.

If you supply an inline Dockerfile, it overwrites the Dockerfile in the **contextDir** of the Git repository.

The source definition is part of the **spec** section in the **BuildConfig**:

source:

git: 1

uri: "https://github.com/openshift/ruby-hello-world"

ref: "master"

contextDir: "app/dir" 2

dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3

- The **git** field contains the Uniform Resource Identifier (URI) to the remote Git repository of the source code. You must specify the value of the **ref** field to check out a specific Git reference. A valid **ref** can be a SHA1 tag or a branch name. The default value of the **ref** field is **master**.
- The **contextDir** field allows you to override the default location inside the source code repository where the build looks for the application source code. If your application exists inside a subdirectory, you can override the default location (the root folder) using this field.
- If the optional **dockerfile** field is provided, it should be a string containing a Dockerfile that overwrites any Dockerfile that may exist in the source repository.

If the **ref** field denotes a pull request, the system uses a **git fetch** operation and then checkout **FETCH_HEAD**.

When no **ref** value is provided, Red Hat OpenShift Service on AWS performs a shallow clone (**-- depth=1**). In this case, only the files associated with the most recent commit on the default branch (typically **master**) are downloaded. This results in repositories downloading faster, but without the full commit history. To perform a full **git clone** of the default branch of a specified repository, set **ref** to the name of the default branch (for example **main**).

WARNING

Git clone operations that go through a proxy that is performing man in the middle (MITM) TLS hijacking or reencrypting of the proxied connection do not work.

3.4.1. Using a proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the **source** section of the build configuration. You can configure both an HTTP and HTTPS proxy to use. Both fields are optional. Domains for which no proxying should be performed can also be specified in the **NoProxy** field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

source:

git:

uri: "https://github.com/openshift/ruby-hello-world"

ref: "master"

httpProxy: http://proxy.example.com httpsProxy: https://proxy.example.com

noProxy: somedomain.com, otherdomain.com

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plugin for Jenkins, any Git operations through the Git plugin do not leverage the HTTP or HTTPS proxy defined in the **BuildConfig**. The Git plugin only uses the proxy configured in the Jenkins UI at the Plugin Manager panel. This proxy is then used for all git interactions within Jenkins, across all jobs.

Additional resources

• You can find instructions on how to configure proxies through the Jenkins UI at JenkinsBehindProxy.

3.4.2. Source Clone Secrets

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets are used to provide the builder pod with access it would not normally have access to, such as private repositories or repositories with self-signed or untrusted SSL certificates.

The following source clone secret configurations are supported:

- A .gitconfig file
- Basic authentication
- SSH key authentication
- Trusted certificate authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

3.4.2.1. Automatically adding a source clone secret to a build configuration

When a **BuildConfig** is created, Red Hat OpenShift Service on AWS can automatically populate its source clone secret reference. This behavior allows the resulting builds to automatically use the credentials stored in the referenced secret to authenticate to a remote Git repository, without requiring further configuration.

To use this functionality, a secret containing the Git repository credentials must exist in the namespace in which the **BuildConfig** is later created. This secrets must include one or more annotations prefixed with **build.openshift.io/source-secret-match-uri-**. The value of each of these annotations is a Uniform Resource Identifier (URI) pattern, which is defined as follows. When a **BuildConfig** is created without a source clone secret reference and its Git source URI matches a URI pattern in a secret annotation, Red Hat OpenShift Service on AWS automatically inserts a reference to that secret in the **BuildConfig**.

Prerequisites

A URI pattern must consist of:

- A valid scheme: *://, git://, http://, https:// or ssh://
- A host: *` or a valid hostname or IP address optionally preceded by *.
- A path: /* or / followed by any characters optionally including * characters

In all of the above, a * character is interpreted as a wildcard.

IMPORTANT

URI patterns must match Git source URIs which are conformant to RFC3986. Do not include a username (or password) component in a URI pattern.

For example, if you use **ssh:**//**git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git** for a git repository URL, the source secret must be specified as **ssh:**//**bitbucket.atlassian.com:7999**/* (and not **ssh:**//**git@bitbucket.atlassian.com:7999**/*).

\$ oc annotate secret mysecret \
'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

Procedure

If multiple secrets match the Git URI of a particular **BuildConfig**, Red Hat OpenShift Service on AWS selects the secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the domain **mycorp.com** accessed by HTTPS, and the second overriding access to servers **mydev1.mycorp.com** and **mydev2.mycorp.com**:

kind: Secret
apiVersion: v1
metadata:
name: matches-all-corporate-servers-https-only
annotations:
build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*data:
...
kind: Secret

```
apiVersion: v1
metadata:
name: override-for-my-dev-servers-https-only
annotations:
build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
...
```

Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret using:

```
$ oc annotate secret mysecret \
   'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'
```

3.4.2.2. Manually adding a source clone secret

Source clone secrets can be added manually to a build configuration by adding a **sourceSecret** field to the **source** section inside the **BuildConfig** and setting it to the name of the secret that you created. In this example, it is the **basicsecret**.

```
apiVersion: "build.openshift.io/v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
  to:
   kind: "ImageStreamTag"
   name: "sample-image:latest"
 source:
  git:
   uri: "https://github.com/user/app.git"
  sourceSecret:
   name: "basicsecret"
 strategy:
  sourceStrategy:
   from:
     kind: "ImageStreamTag"
     name: "python-33-centos7:latest"
```

Procedure

You can also use the **oc set build-secret** command to set the source clone secret on an existing build configuration.

• To set the source clone secret on an existing build configuration, enter the following command:

\$ oc set build-secret --source bc/sample-build basicsecret

3.4.2.3. Creating a secret from a .gitconfig file

If the cloning of your application is dependent on a **.gitconfig** file, then you can create a secret that contains it. Add it to the builder service account and then your **BuildConfig**.

```
D.....
```

Proceaure

• To create a secret from a .gitconfig file:

\$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

NOTE

SSL verification can be turned off if **sslVerify=false** is set for the **http** section in your **.gitconfig** file:

```
[http]
sslVerify=false
```

3.4.2.4. Creating a secret from a .gitconfig file for secured Git

If your Git server is secured with two-way SSL and user name with password, you must add the certificate files to your source build and add references to the certificate files in the **.gitconfig** file.

Prerequisites

You must have Git credentials.

Procedure

Add the certificate files to your source build and add references to the certificate files in the **.gitconfig** file.

- 1. Add the **client.crt**, **cacert.crt**, and **client.key** files to the /**var/run/secrets/openshift.io/source/** folder in the application source code.
- 2. In the **.gitconfig** file for the server, add the **[http]** section shown in the following example:

```
# cat .gitconfig
```

Example output

```
[user]
    name = <name>
    email = <email>
[http]
    sslVerify = false
    sslCert = /var/run/secrets/openshift.io/source/client.crt
    sslKey = /var/run/secrets/openshift.io/source/client.key
    sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt
```

3. Create the secret:

```
$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \1
--from-literal=password=<password> \2
--from-file=.gitconfig=.gitconfig \
```

- --from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
- --from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
- --from-file=client.key=/var/run/secrets/openshift.io/source/client.key
- The user's Git user name.
- 2 The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the source-to-image (S2I) image in your builds. However, if you cannot clone the repository, you must still specify your user name and password to promote the build.

Additional resources

• /var/run/secrets/openshift.io/source/ folder in the application source code.

3.4.2.5. Creating a secret from source code basic authentication

Basic authentication requires either a combination of **--username** and **--password**, or a token to authenticate against the software configuration management (SCM) server.

Prerequisites

• User name and password to access the private repository.

Procedure

- Create the secret first before using the --username and --password to access the private repository:
 - \$ oc create secret generic <secret_name> \
 - --from-literal=username=<user_name> \
 - --from-literal=password=<password> \
 - --type=kubernetes.io/basic-auth
- 2. Create a basic authentication secret with a token:
 - \$ oc create secret generic < secret name> \
 - --from-literal=password=<token> \
 - --type=kubernetes.io/basic-auth

3.4.2.6. Creating a secret from source code SSH key authentication

SSH key based authentication requires a private SSH key.

The repository keys are usually located in the **\$HOME**/.ssh/ directory, and are named **id_dsa.pub**, **id_ecdsa.pub**, **id_ed25519.pub**, or **id_rsa.pub** by default.

Procedure

1. Generate SSH key credentials:

\$ ssh-keygen -t ed25519 -C "your email@example.com"

NOTE

Creating a passphrase for the SSH key prevents Red Hat OpenShift Service on AWS from building. When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of **id_dsa**, **id_ecdsa**, **id_ed25519**, or **id_rsa**). With both of these in place, consult your source control management (SCM) system's manual on how to upload the public key. The private key is used to access your private repository.

2. Before using the SSH key to access the private repository, create the secret:

\$ oc create secret generic <secret_name> \

- --from-file=ssh-privatekey=<path/to/ssh/private/key> \
- --from-file=<path/to/known_hosts> \1
- --type=kubernetes.io/ssh-auth
- Optional: Adding this field enables strict server host key check.

WARNING

Skipping the **known_hosts** file while creating the secret makes the build vulnerable to a potential man-in-the-middle (MITM) attack.

NOTE

Ensure that the **known_hosts** file includes an entry for the host of your source code.

3.4.2.7. Creating a secret from source code trusted certificate authorities

The set of Transport Layer Security (TLS) certificate authorities (CA) that are trusted during a Git clone operation are built into the Red Hat OpenShift Service on AWS infrastructure images. If your Git server uses a self-signed certificate or one signed by an authority not trusted by the image, you can create a secret that contains the certificate or disable TLS verification.

If you create a secret for the CA certificate, Red Hat OpenShift Service on AWS uses it to access your Git server during the Git clone operation. Using this method is significantly more secure than disabling Git SSL verification, which accepts any TLS certificate that is presented.

Procedure

Create a secret with a CA certificate file.

1. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAs in a **ca.crt** file. Enter the following command:

\$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

2. Create the secret by entering the following command:

\$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

1 You must use the key name ca.crt.

3.4.2.8. Source secret combinations

You can combine the different methods for creating source clone secrets for your specific needs.

3.4.2.8.1. Creating a SSH-based authentication secret with agitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such as a SSH-based authentication secret with a **.gitconfig** file.

Prerequisites

- SSH authentication
- A .gitconfig file

Procedure

 To create a SSH-based authentication secret with a .gitconfig file, enter the following command:

\$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such as a secret that combines a **.gitconfig** file and certificate authority (CA) certificate.

Prerequisites

- A .gitconfig file
- CA certificate

Procedure

 To create a secret that combines a .gitconfig file and CA certificate, enter the following command:

\$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

3.4.2.8.3. Creating a basic authentication secret with a CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such as a secret that combines a basic authentication and certificate authority (CA) certificate.

Prerequisites

- Basic authentication credentials
- CA certificate

Procedure

• To create a basic authentication secret with a CA certificate, enter the following command:

```
$ oc create secret generic <secret_name> \
    --from-literal=username=<user_name> \
    --from-literal=password=<password> \
    --from-file=ca-cert=</path/to/file> \
    --type=kubernetes.io/basic-auth
```

3.4.2.8.4. Creating a basic authentication secret with a Git configuration file

You can combine the different methods for creating source clone secrets for your specific needs, such as a secret that combines a basic authentication and a **.gitconfig** file.

Prerequisites

- Basic authentication credentials
- A .gitconfig file

Procedure

• To create a basic authentication secret with a **.gitconfig** file, enter the following command:

```
$ oc create secret generic <secret_name> \
    --from-literal=username=<user_name> \
    --from-literal=password=<password> \
    --from-file=</path/to/.gitconfig> \
    --type=kubernetes.io/basic-auth
```

3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such as a secret that combines a basic authentication, **.gitconfig** file, and certificate authority (CA) certificate.

Prerequisites

- Basic authentication credentials
- A .gitconfig file

CA certificate

Procedure

 To create a basic authentication secret with a .gitconfig file and CA certificate, enter the following command:

\$ oc create secret generic <secret_name> \

- --from-literal=username=<user name> \
- --from-literal=password=<password> \
- --from-file=</path/to/.gitconfig> \
- --from-file=ca-cert=</path/to/file> \
- --type=kubernetes.io/basic-auth

3.5. BINARY (LOCAL) SOURCE

Streaming content from a local file system to the builder is called a **Binary** type build. The corresponding value of **BuildConfig.spec.source.type** is **Binary** for these builds.

This source type is unique in that it is leveraged solely based on your use of the **oc start-build**.

NOTE

Binary type builds require content to be streamed from the local file system, so automatically triggering a binary type build, like an image change trigger, is not possible. This is because the binary files cannot be provided. Similarly, you cannot launch binary type builds from the web console.

To utilize binary builds, invoke **oc start-build** with one of these options:

- **--from-file**: The contents of the file you specify are sent as a binary stream to the builder. You can also specify a URL to a file. Then, the builder stores the data in a file with the same name at the top of the build context.
- **--from-dir** and **--from-repo**: The contents are archived and sent as a binary stream to the builder. Then, the builder extracts the contents of the archive within the build context directory. With **--from-dir**, you can also specify a URL to an archive, which is extracted.
- **--from-archive**: The archive you specify is sent to the builder, where it is extracted within the build context directory. This option behaves the same as **--from-dir**; an archive is created on your host first, whenever the argument to these options is a directory.

In each of the previously listed cases:

- If your **BuildConfig** already has a **Binary** source type defined, it is effectively ignored and replaced by what the client sends.
- If your **BuildConfig** has a **Git** source type defined, it is dynamically disabled, since **Binary** and **Git** are mutually exclusive, and the data in the binary stream provided to the builder takes precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to **--from-file** and **--from-archive**. When using **--from-file** with a URL, the name of the file in the builder image is determined by the **Content-Disposition** header sent by the web server, or the last component of the URL path if the

header is not present. No form of authentication is supported and it is not possible to use custom TLS certificate or disable certificate validation.

When using **oc new-build --binary=true**, the command ensures that the restrictions associated with binary builds are enforced. The resulting **BuildConfig** has a source type of **Binary**, meaning that the only valid way to run a build for this **BuildConfig** is to use **oc start-build** with one of the **--from** options to provide the requisite binary data.

The Dockerfile and contextDir source options have special meaning with binary builds.

Dockerfile can be used with any binary build source. If Dockerfile is used and the binary stream is an archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If Dockerfile is used with the **--from-file** argument, and the file argument is named Dockerfile, the value from Dockerfile replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the **contextDir** field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that subdirectory before executing the build.

3.6. INPUT SECRETS AND CONFIG MAPS

IMPORTANT

To prevent the contents of input secrets and config maps from appearing in build output container images, use build volumes in your Docker build and source-to-image build strategies.

In some scenarios, build operations require credentials or other configuration data to access dependent resources, but it is undesirable for that information to be placed in source control. You can define input secrets and input config maps for this purpose.

For example, when building a Java application with Maven, you can set up a private mirror of Maven Central or JCenter that is accessed by private keys. To download libraries from that private mirror, you have to supply the following:

- 1. A **settings.xml** file configured with the mirror's URL and connection settings.
- 2. A private key referenced in the settings file, such as ~/.ssh/id_rsa.

For security reasons, you do not want to expose your credentials in the application image.

This example describes a Java application, but you can use the same approach for adding SSL certificates into the /etc/ssl/certs directory, API keys or tokens, license files, and more.

3.6.1. What is a secret?

The **Secret** object type provides a mechanism to hold sensitive information such as passwords, Red Hat OpenShift Service on AWS client configuration files, **dockercfg** files, private source repository credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into containers using a volume plugin or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

apiVersion: v1 kind: Secret

metadata:

name: test-secret

namespace: my-namespace

type: Opaque 1

data: 2

username: <username> 3 password: <password>

stringData: 4

hostname: myapp.mydomain.com 5

- Indicates the structure of the secret's key names and values.
- The allowable format for the keys in the **data** field must meet the guidelines in the **DNS_SUBDOMAIN** value in the Kubernetes identifiers glossary.
- The value associated with keys in the **data** map must be base64 encoded.
- 4 Entries in the **stringData** map are converted to base64 and the entry are then moved to the **data** map automatically. This field is write-only. The value is only be returned by the **data** field.
- The value associated with keys in the **stringData** map is made up of plain text strings.

3.6.1.1. Properties of secrets

Key properties include:

- Secret data can be referenced independently from its definition.
- Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to rest on a node.
- Secret data can be shared within a namespace.

3.6.1.2. Types of Secrets

The value in the **type** field indicates the structure of the secret's key names and values. The type can be used to enforce the presence of user names and keys in the secret object. If you do not want validation, use the **opaque** type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of specific key names in the secret data:

- **kubernetes.io/service-account-token**. Uses a service account token.
- **kubernetes.io/dockercfg**. Uses the **.dockercfg** file for required Docker credentials.
- kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker credentials.
- **kubernetes.io/basic-auth**. Use with basic authentication.
- **kubernetes.io/ssh-auth**. Use with SSH key authentication.
- kubernetes.io/tls. Use with TLS certificate authorities.

Specify **type= Opaque** if you do not want validation, which means the secret does not claim to conform to any convention for key names or values. An **opaque** secret, allows for unstructured **key:value** pairs that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as **example.com/my-secret-type**. These types are not enforced server-side, but indicate that the creator of the secret intended to conform to the key/value requirements of that type.

3.6.1.3. Updates to secrets

When you modify the value of a secret, the value used by an already running pod does not dynamically change. To change a secret, you must delete the original pod and create a new pod, in some cases with an identical **PodSpec**.

Updating a secret follows the same workflow as deploying a new container image. You can use the **kubectl rolling-update** command.

The **resourceVersion** value in a secret is not specified when it is referenced. Therefore, if a secret is updated at the same time as pods are starting, the version of the secret that is used for the pod is not defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used when a pod was created. It is planned that pods report this information, so that a controller could restart ones using an old **resourceVersion**. In the interim, do not update the data of existing secrets, but create new ones with distinct names.

3.6.2. Creating secrets

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

- Create a secret object with secret data.
- Update the pod service account to allow the reference to the secret.
- Create a pod, which consumes the secret as an environment variable or as a file using a secret volume.

Procedure

• To create a secret object from a JSON or YAML file, enter the following command:

\$ oc create -f <filename>

For example, you can create a secret from your local .docker/config.json file:

\$ oc create secret generic dockerhub \

- --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
- --type=kubernetes.io/dockerconfigjson

This command generates a JSON specification of the secret named **dockerhub** and creates the object.

YAML Opaque Secret Object Definition

apiVersion: v1 kind: Secret metadata:

name: mysecret type: Opaque 1

data:

username: <username> password: <password>

Specifies an *opaque* secret.

Docker Configuration JSON File Secret Object Definition

apiVersion: v1 kind: Secret metadata:

name: aregistrykey namespace: myapps

type: kubernetes.io/dockerconfigjson 1

data:

- 1 Specifies that the secret is using a docker configuration JSON file.
- The output of a base64-encoded docker configuration JSON file.

3.6.3. Using secrets

After creating secrets, you can create a pod to reference your secret, get logs, and delete the pod.

Procedure

1. Create the pod to reference your secret by entering the following command:

\$ oc create -f <your_yaml_file>.yaml

2. Get the logs by entering the following command:

\$ oc logs secret-example-pod

3. Delete the pod by entering the following command:

\$ oc delete pod secret-example-pod

Additional resources

• Example YAML files with secret data:

YAML file of a secret that will create four files

apiVersion: v1
kind: Secret
metadata:
name: test-secret
data:
username: <username> 1
password: <password> 2
stringData:
hostname: myapp.mydomain.com 3
secret.properties: |- 4
property1=valueA
property2=valueB

- File contains decoded values.
- File contains decoded values.
- File contains the provided string.
- 4 File contains the provided data.

YAML file of a pod populating files in a volume with secret data

```
apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
  - name: secret-test-container
   image: busybox
   command: [ "/bin/sh", "-c", "cat /etc/secret-volume/*" ]
   volumeMounts:
      # name must match the volume name below
     - name: secret-volume
       mountPath: /etc/secret-volume
       readOnly: true
 volumes:
  - name: secret-volume
   secret:
    secretName: test-secret
 restartPolicy: Never
```

YAML file of a pod populating environment variables with secret data

apiVersion: v1 kind: Pod metadata:

```
name: secret-example-pod
spec:
containers:
- name: secret-test-container
image: busybox
command: [ "/bin/sh", "-c", "export" ]
env:
- name: TEST_SECRET_USERNAME_ENV_VAR
valueFrom:
secretKeyRef:
name: test-secret
key: username
restartPolicy: Never
```

YAML file of a **BuildConfig** object that populates environment variables with secret data

```
apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
name: secret-example-bc
spec:
strategy:
sourceStrategy:
env:
- name: TEST_SECRET_USERNAME_ENV_VAR
valueFrom:
secretKeyRef:
name: test-secret
key: username
```

3.6.4. Adding input secrets and config maps

To provide credentials and other configuration data to a build without placing them in source control, you can define input secrets and input config maps.

In some scenarios, build operations require credentials or other configuration data to access dependent resources. To make that information available without placing it in source control, you can define input secrets and input config maps.

Procedure

To add an input secret, config maps, or both to an existing **BuildConfig** object:

1. If the **ConfigMap** object does not exist, create it by entering the following command:

```
$ oc create configmap settings-mvn \
--from-file=settings.xml=<path/to/settings.xml>
```

This creates a new config map named **settings-mvn**, which contains the plain text content of the **settings.xml** file.

TIP

You can alternatively apply the following YAML to create the config map:

```
apiVersion: core/v1
kind: ConfigMap
metadata:
   name: settings-mvn
data:
   settings.xml: |
   <settings>
   ... # Insert maven settings here
   </settings>
```

2. If the **Secret** object does not exist, create it by entering the following command:

```
$ oc create secret generic secret-mvn \
--from-file=ssh-privatekey=<path/to/.ssh/id_rsa> \
--type=kubernetes.io/ssh-auth
```

This creates a new secret named **secret-mvn**, which contains the base64 encoded content of the **id rsa** private key.

TIP

You can alternatively apply the following YAML to create the input secret:

```
apiVersion: core/v1
kind: Secret
metadata:
name: secret-mvn
type: kubernetes.io/ssh-auth
data:
ssh-privatekey: |
# Insert ssh private key, base64 encoded
```

3. Add the config map and secret to the **source** section in the existing **BuildConfig** object:

```
source:
git:
uri: https://github.com/wildfly/quickstart.git
contextDir: helloworld
configMaps:
- configMap:
    name: settings-mvn
secrets:
- secret:
    name: secret-mvn
```

4. To include the secret and config map in a new **BuildConfig** object, enter the following command:

```
$ oc new-build \
```

openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \

- --context-dir helloworld --build-secret "secret-mvn" \
- --build-config-map "settings-mvn"

During the build, the build process copies the **settings.xml** and **id_rsa** files into the directory where the source code is located. In Red Hat OpenShift Service on AWS S2I builder images, this is the image working directory, which is set using the **WORKDIR** instruction in the **Dockerfile**. If you want to specify another directory, add a **destinationDir** to the definition:

source:
git:
uri: https://github.com/wildfly/quickstart.git
contextDir: helloworld
configMaps:
- configMap:
name: settings-mvn
destinationDir: ".m2"
secrets:
- secret:
name: secret-mvn
destinationDir: ".ssh"

You can also specify the destination directory when creating a new **BuildConfig** object by entering the following command:

\$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret "secret-mvn:.ssh" \
 --build-config-map "settings-mvn:.m2"

In both cases, the **settings.xml** file is added to the ./.**m2** directory of the build environment, and the **id_rsa** key is added to the ./.**ssh** directory.

3.6.5. Source-to-image strategy

When using a **Source** strategy, all defined input secrets are copied to their respective **destinationDir**. If you left **destinationDir** empty, then the secrets are placed in the working directory of the builder image.

The same rule is used when a **destinationDir** is a relative path. The secrets are placed in the paths that are relative to the working directory of the image. The final directory in the **destinationDir** path is created if it does not exist in the builder image. All preceding directories in the **destinationDir** must exist, or an error will occur.

NOTE

Input secrets are added as world-writable, have **0666** permissions, and are truncated to size zero after executing the **assemble** script. This means that the secret files exist in the resulting image, but they are empty for security reasons.

Input config maps are not truncated after the **assemble** script completes.

3.7. FXTFRNAL ARTIFACTS

It is not recommended to store binary files in a source repository. Therefore, you must define a build which pulls additional files, such as Java .jar dependencies, during the build process. How this is done depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the **assemble** script:

.s2i/bin/assemble File

```
#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar
```

.s2i/bin/run File

```
#!/bin/sh
exec java -jar app.jar
```

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the **RUN** instruction:

Excerpt of Dockerfile

```
FROM jboss/base-jdk:8

ENV APP_VERSION 1.0

RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080

CMD [ "java", "-jar", "app.jar" ]
```

In practice, you may want to use an environment variable for the file location so that the specific file to be downloaded can be customized using an environment variable defined on the **BuildConfig**, rather than updating the Dockerfile or **assemble** script.

You can choose between different methods of defining environment variables:

- Using the .s2i/environment file (only for a Source build strategy)
- Setting the variables in the **BuildConfig** object
- Providing the variables explicitly using the oc start-build --env command (only for builds that
 are triggered manually)

3.8. USING DOCKER CREDENTIALS FOR PRIVATE REGISTRIES

You can supply builds with a .docker/config.json file with valid credentials for private container registries. This allows you to push the output image into a private container image registry or pull a builder image from the private container image registry that requires authentication.

You can supply credentials for multiple repositories within the same registry, each with credentials specific to that registry path.

NOTE

For the Red Hat OpenShift Service on AWS container image registry, this is not required because secrets are generated automatically for you by Red Hat OpenShift Service on AWS.

The .docker/config.json file is found in your home directory by default and has the following format:

auths:
index.docker.io/v1/: 1
auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
email: "user@example.com" 3
docker.io/my-namespace/my-user/my-image: 4
auth: "GzhYWRGU6R2fbclabnRgbkSp=""
email: "user@example.com"
docker.io/my-namespace: 5
auth: "GzhYWRGU6R2deesfrRgbkSp=""
email: "user@example.com"

- URL of the registry.
- 2 Encrypted password.
- Email address for the login.
- URL and credentials for a specific image in a namespace.
- URL and credentials for a registry namespace.

You can define multiple container image registries or define multiple repositories in the same registry. Alternatively, you can also add authentication entries to this file by running the **docker login** command. The file will be created if it does not exist.

Kubernetes provides **Secret** objects, which can be used to store configuration and passwords.

Prerequisites

You must have a .docker/config.json file.

Procedure

1. Create the secret from your local .docker/config.json file by entering the following command:

 $\$ oc create secret generic dockerhub $\$

- --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
- --type=kubernetes.io/dockerconfigjson

This generates a JSON specification of the secret named **dockerhub** and creates the object.

2. Add a **pushSecret** field into the **output** section of the **BuildConfig** and set it to the name of the **secret** that you created, which in the previous example is **dockerhub**:

spec: output: to:

kind: "DockerImage"

name: "private.registry.com/org/private-image:latest"

pushSecret:

name: "dockerhub"

You can use the **oc set build-secret** command to set the push secret on the build configuration:

\$ oc set build-secret --push bc/sample-build dockerhub

You can also link the push secret to the service account used by the build instead of specifying the **pushSecret** field. By default, builds use the **builder** service account. The push secret is automatically added to the build if the secret contains a credential that matches the repository hosting the build's output image.

\$ oc secrets link builder dockerhub

3. Pull the builder container image from a private container image registry by specifying the **pullSecret** field, which is part of the build strategy definition:

```
strategy:
sourceStrategy:
from:
kind: "DockerImage"
name: "docker.io/user/private_repository"
pullSecret:
name: "dockerhub"
```

You can use the **oc set build-secret** command to set the pull secret on the build configuration:

\$ oc set build-secret --pull bc/sample-build dockerhub

NOTE

This example uses **pullSecret** in a Source build, but it is also applicable in Docker and Custom builds.

You can also link the pull secret to the service account used by the build instead of specifying the **pullSecret** field. By default, builds use the **builder** service account. The pull secret is automatically added to the build if the secret contains a credential that matches the repository hosting the build's input image. To link the pull secret to the service account used by the build instead of specifying the **pullSecret** field, enter the following command:

\$ oc secrets link builder dockerhub

NOTE

You must specify a **from** image in the **BuildConfig** spec to take advantage of this feature. Docker strategy builds generated by **oc new-build** or **oc new-app** may not do this in some situations.

3.9. BUILD ENVIRONMENTS

As with pod environment variables, build environment variables can be defined in terms of references to other resources or variables using the Downward API. There are some exceptions, which are noted.

You can also manage environment variables defined in the **BuildConfig** with the **oc set env** command.

NOTE

Referencing container resources using **valueFrom** in build environment variables is not supported as the references are resolved before the container is created.

3.9.1. Using build fields as environment variables

You can inject information about the build object by setting the **fieldPath** environment variable source to the **JsonPath** of the field from which you are interested in obtaining the value.

NOTE

Jenkins Pipeline strategy does not support **valueFrom** syntax for environment variables.

Procedure

• Set the **fieldPath** environment variable source to the **JsonPath** of the field from which you are interested in obtaining the value:

```
env:
- name: FIELDREF_ENV
valueFrom:
fieldRef:
fieldPath: metadata.name
```

3.9.2. Using secrets as environment variables

You can make key values from secrets available as environment variables using the **valueFrom** syntax.

IMPORTANT

This method shows the secrets as plain text in the output of the build pod console. To avoid this, use input secrets and config maps instead.

Procedure

• To use a secret as an environment variable, set the **valueFrom** syntax:

```
apiVersion: build.openshift.io/v1 kind: BuildConfig metadata: name: secret-example-bc spec: strategy: sourceStrategy: env:
```

name: MYVAL
 valueFrom:
 secretKeyRef:
 key: myval
 name: mysecret

Additional resources

Input secrets and config maps

3.10. SERVICE SERVING CERTIFICATE SECRETS

Service serving certificate secrets are intended to support complex middleware applications that need out-of-the-box certificates. It has the same settings as the server certificates generated by the administrator tooling for nodes and masters.

Procedure

To secure communication to your service, have the cluster generate a signed serving certificate/key pair into a secret in your namespace.

• Set the **service.beta.openshift.io/serving-cert-secret-name** annotation on your service with the value set to the name you want to use for your secret.

Then, your **PodSpec** can mount that secret. When it is available, your pod runs. The certificate is good for the internal service DNS name, **<service.name>.<service.namespace>.svc**.

The certificate and key are in PEM format, stored in **tls.crt** and **tls.key** respectively. The certificate/key pair is automatically replaced when it gets close to expiration. View the expiration date in the **service.beta.openshift.io/expiry** annotation on the secret, which is in RFC3339 format.

NOTE

In most cases, the service DNS name **<service.name>.<service.namespace>.svc** is not externally routable. The primary use of **<service.name>.<service.namespace>.svc** is for intracluster or intraservice communication, and with re-encrypt routes.

Other pods can trust cluster-created certificates, which are only signed for internal DNS names, by using the certificate authority (CA) bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is automatically mounted in their pod.

The signature algorithm for this feature is **x509.SHA256WithRSA**. To manually rotate, delete the generated secret. A new certificate is created.

3.11. SECRETS RESTRICTIONS

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

- To populate environment variables for containers.
- As files in a volume mounted on one or more of its containers.
- By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism. **imagePullSecrets** use service accounts for the automatic injection of the secret into all pods in a namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is to ensure that the secret volume sources are validated and that the specified object reference actually points to an object of type **Secret**. Therefore, a secret needs to be created before any pods that depend on it. The most effective way to ensure this is to have it get injected automatically through the use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that would exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also exhaust memory.

CHAPTER 4. MANAGING BUILD OUTPUT

Use the following sections for an overview of and instructions for managing build output.

4.1. BUILD OUTPUT

Builds that use the source-to-image (S2I) strategy result in the creation of a new container image. The image is then pushed to the container image registry specified in the **output** section of the **Build** specification.

If the output kind is **ImageStreamTag**, then the image will be pushed to the integrated OpenShift image registry and tagged in the specified imagestream. If the output is of type **DockerImage**, then the name of the output reference will be used as a docker push specification. The specification may contain a registry or will default to DockerHub if no registry is specified. If the output section of the build specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

```
spec:
  output:
  to:
    kind: "ImageStreamTag"
    name: "sample-image:latest"
```

Output to a docker Push Specification

```
spec:
output:
to:
kind: "DockerImage"
name: "my-registry.mycompany.com:5000/myimages/myimage:tag"
```

4.2. OUTPUT IMAGE ENVIRONMENT VARIABLES

source-to-image (S2I) strategy builds set the following environment variables on output images:

Variable	Description
OPENSHIFT_BUILD_NAME	Name of the build
OPENSHIFT_BUILD_NAMESPACE	Namespace of the build
OPENSHIFT_BUILD_SOURCE	The source URL of the build
OPENSHIFT_BUILD_REFERENCE	The Git reference used in the build
OPENSHIFT_BUILD_COMMIT	Source commit used in the build

Additionally, any user-defined environment variable, for example those configured with S2I strategy options, will also be part of the output image environment variable list.

4.3. OUTPUT IMAGE LABELS

source-to-image (S2I) builds set the following labels on output images:

Label	Description
io.openshift.build.commit.author	Author of the source commit used in the build
io.openshift.build.commit.date	Date of the source commit used in the build
io.openshift.build.commit.id	Hash of the source commit used in the build
io.openshift.build.commit.message	Message of the source commit used in the build
io.openshift.build.commit.ref	Branch or reference specified in the source
io.openshift.build.source-location	Source URL for the build

You can also use the **BuildConfig.spec.output.imageLabels** field to specify a list of custom labels that will be applied to each image built from the build configuration.

Custom labels for built images

spec: output:

to:

kind: "ImageStreamTag" name: "my-image:latest"

imageLabels:

- name: "vendor"

value: "MyCompany"

- name: "authoritative-source-url" value: "registry.mycompany.com"

CHAPTER 5. USING BUILD STRATEGIES

The following sections define the primary supported build strategies, and how to use them.

5.1. DOCKER BUILD

Red Hat OpenShift Service on AWS uses Buildah to build a container image from a Dockerfile. For more information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the **buildArgs** array, see Understand how ARG and FROM interact in the Dockerfile reference documentation.

5.1.1. Replacing the Dockerfile FROM image

You can replace the **FROM** instruction of the Dockerfile with the **from** parameters of the **BuildConfig** object. If the Dockerfile uses multi-stage builds, the image in the last **FROM** instruction will be replaced.

Procedure

 To replace the FROM instruction of the Dockerfile with the from parameters of the BuildConfig object, add the following settings to the BuildConfig object:

```
strategy:
dockerStrategy:
from:
kind: "ImageStreamTag"
name: "debian:latest"
```

5.1.2. Using Dockerfile path

By default, docker builds use a Dockerfile located at the root of the context specified in the **BuildConfig.spec.source.contextDir** field.

The **dockerfilePath** field allows the build to use a different path to locate your Dockerfile, relative to the **BuildConfig.spec.source.contextDir** field. It can be a different file name than the default Dockerfile, such as **MyDockerfile**, or a path to a Dockerfile in a subdirectory, such as **dockerfiles/app1/Dockerfile**.

Procedure

Set the dockerfilePath field for the build to use a different path to locate your Dockerfile:

```
strategy:
dockerStrategy:
dockerfilePath: dockerfiles/app1/Dockerfile
```

5.1.3. Using docker environment variables

To make environment variables available to the docker build process and resulting image, you can add environment variables to the **dockerStrategy** definition of the build configuration.

The environment variables defined there are inserted as a single **ENV** Dockerfile instruction right after the **FROM** instruction, so that it can be referenced later on within the Dockerfile.

The variables are defined during build and stay in the output image, therefore they will be present in any container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

```
dockerStrategy:
...
env:
- name: "HTTP_PROXY"
value: "http://myproxy.net:5187/"
```

You can also manage environment variables defined in the build configuration with the **oc set env** command.

5.1.4. Adding Docker build arguments

You can set Docker build arguments using the **buildArgs** array. The build arguments are passed to Docker when a build is started.

TIP

See Understand how ARG and FROM interact in the Dockerfile reference documentation.

Procedure

 To set Docker build arguments, add entries to the buildArgs array, which is located in the dockerStrategy definition of the BuildConfig object. For example:

```
dockerStrategy:
...
buildArgs:
- name: "version"
value: "latest"
```


NOTE

Only the **name** and **value** fields are supported. Any settings on the **valueFrom** field are ignored.

5.1.5. Squashing layers with docker builds

Docker builds normally create a layer representing each instruction in a Dockerfile. Setting the **imageOptimizationPolicy** to **SkipLayers** merges all instructions into a single layer on top of the base image.

Procedure

• Set the imageOptimizationPolicy to SkipLayers:

```
strategy:
dockerStrategy:
imageOptimizationPolicy: SkipLayers
```

5.1.6. Using build volumes

You can mount build volumes to give running builds access to information that you don't want to persist in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment or configuration only needs at build time. Build volumes are different from build inputs, whose data can persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to pod volume mounts.

Prerequisites

• You have added an input secret, config map, or both to a BuildConfig object.

Procedure

• In the **dockerStrategy** definition of the **BuildConfig** object, add any build volumes to the **volumes** array. For example:

```
spec:
 dockerStrategy:
  volumes:
   - name: secret-mvn 1
    mounts:
    destinationPath: /opt/app-root/src/.ssh
    source:
     type: Secret 3
     secret:
      secretName: my-secret 4
   - name: settings-mvn 5
    mounts:
    - destinationPath: /opt/app-root/src/.m2 6
    source:
     type: ConfigMap 7
     configMap:
      name: my-config 8
```

- 1 5 Required. A unique name.
- Required. The absolute path of the mount point. It must not contain .. or : and doesn't collide with the destination path generated by the builder. The /opt/app-root/src is the default home directory for many Red Hat S2I-enabled images.
- Required. The type of source, ConfigMap, Secret, or CSI.
- 48 Required. The name of the source.

Additional resources

- Build inputs
- Input secrets and config maps

5.2. SOURCE-TO-IMAGE BUILD

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run images by injecting application source into a container image and assembling a new image. The new image incorporates the base image, the builder, and built source and is ready to use with the **buildah run** command. S2I supports incremental builds, which re-use previously downloaded dependencies, previously built artifacts, and so on.

5.2.1. Performing source-to-image incremental builds

Source-to-image (S2I) can perform incremental builds, which means it reuses artifacts from previously-built images.

Procedure

• To create an incremental build, create a with the following modification to the strategy definition:

```
strategy:
sourceStrategy:
from:
kind: "ImageStreamTag"
name: "incremental-image:latest" 1
incremental: true 2
```

- Specify an image that supports incremental builds. Consult the documentation of the builder image to determine if it supports this behavior.
- This flag controls whether an incremental build is attempted. If the builder image does not support incremental builds, the build will still succeed, but you will get a log message stating the incremental build was not successful because of a missing **save-artifacts** script.

Additional resources

• See S2I Requirements for information on how to create a builder image supporting incremental builds.

5.2.2. Overriding source-to-image builder image scripts

You can override the **assemble**, **run**, and **save-artifacts** source-to-image (S2I) scripts provided by the builder image.

Procedure

• To override the **assemble**, **run**, and **save-artifacts** S2I scripts provided by the builder image, complete one of the following actions:

- Provide an assemble, run, or save-artifacts script in the .s2i/bin directory of your application source repository.
- Provide a URL of a directory containing the scripts as part of the strategy definition in the **BuildConfig** object. For example:

strategy:
sourceStrategy:
from:
kind: "ImageStreamTag"
name: "builder-image:latest"
scripts: "http://somehost.com/scripts_directory" 1

The build process appends **run**, **assemble**, and **save-artifacts** to the path. If any or all scripts with these names exist, the build process uses these scripts in place of scripts with the same name that are provided in the image.

NOTE

Files located at the **scripts** URL take precedence over files located in **.s2i/bin** of the source repository.

5.2.3. Source-to-image environment variables

There are two ways to make environment variables available to the source build process and resulting image: environment files and **BuildConfig** environment values. The variables that you provide using either method will be present during the build process and in the output image.

5.2.3.1. Using source-to-image environment files

Source build enables you to set environment values, one per line, inside your application, by specifying them in a **.s2i/environment** file in the source repository. The environment variables specified in this file are present during the build process and in the output image.

If you provide a **.s2i/environment** file in your source repository, source-to-image (S2I) reads this file during the build. This allows customization of the build behavior as the **assemble** script may use these variables.

Procedure

For example, to disable assets compilation for your Rails application during the build:

• Add **DISABLE_ASSET_COMPILATION=true** in the **.s2i/environment** file.

In addition to builds, the specified environment variables are also available in the running application itself. For example, to cause the Rails application to start in **development** mode instead of **production**:

Add RAILS ENV=development to the .s2i/environment file.

The complete list of supported environment variables is available in the using images section for each image.

5.2.3.2. Using source-to-image build configuration environment

You can add environment variables to the **sourceStrategy** definition of the build configuration. The environment variables defined there are visible during the **assemble** script execution and will be defined in the output image, making them also available to the **run** script and application code.

Procedure

• For example, to disable assets compilation for your Rails application:

```
sourceStrategy:
...
env:
- name: "DISABLE_ASSET_COMPILATION"
value: "true"
```

Additional resources

- The build environment section provides more advanced instructions.
- You can also manage environment variables defined in the build configuration with the oc set env command.

5.2.4. Ignoring source-to-image source files

Source-to-image (S2I) supports a **.s2iignore** file, which contains a list of file patterns that should be ignored. Files in the build working directory, as provided by the various input sources, that match a pattern found in the **.s2iignore** file will not be made available to the **assemble** script.

5.2.5. Creating images from source code with source-to-image

Source-to-image (S2I) is a framework that makes it easy to write images that take application source code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for developers. As a builder image author, you must understand two basic concepts in order for your images to provide the best S2I performance, the build process and S2I scripts.

5.2.5.1. Understanding the source-to-image build process

The build process consists of the following three fundamental elements, which are combined into a final container image:

- Sources
- Source-to-image (S2I) scripts
- Builder image

S2I generates a Dockerfile with the builder image as the first **FROM** instruction. The Dockerfile generated by S2I is then passed to Buildah.

5.2.5.2. How to write source-to-image scripts

You can write source-to-image (S2I) scripts in any programming language, as long as the scripts are executable inside the builder image. S2I supports multiple options providing **assemble/run/save-artifacts** scripts. All of these locations are checked on each build in the following order:

- 1. A script specified in the build configuration.
- 2. A script found in the application source .s2i/bin directory.
- 3. A script found at the default image URL with the **io.openshift.s2i.scripts-url** label.

Both the **io.openshift.s2i.scripts-url** label specified in the image and the script specified in a build configuration can take one of the following forms:

- **image:**///**path_to_scripts_dir**: absolute path inside the image to a directory where the S2I scripts are located.
- **file:**///**path_to_scripts_dir**: relative or absolute path to a directory on the host where the S2I scripts are located.
- http(s)://path_to_scripts_dir: URL to a directory where the S2I scripts are located.

Table 5.1. S2I scripts

Script	Description
assemble	The assemble script builds the application artifacts from a source and places them into appropriate directories inside the image. This script is required. The workflow for this script is: 1. Optional: Restore build artifacts. If you want to support incremental builds, make sure to define save-artifacts as well. 2. Place the application source in the desired location. 3. Build the application artifacts.
	4. Install the artifacts into locations appropriate for them to run.
run	The run script executes your application. This script is required.
save-artifacts	The save-artifacts script gathers all dependencies that can speed up the build processes that follow. This script is optional. For example: • For Ruby, gems installed by Bundler. • For Java, .m2 contents. These dependencies are gathered into a tar file and streamed to the standard output.
usage	The usage script allows you to inform the user how to properly use your image. This script is optional.

Script	Description
test/run	The test/run script allows you to create a process to check if the image is working correctly. This script is optional. The proposed flow of that process is:
	1. Build the image.
	2. Run the image to verify the usage script.
	3. Run s2i build to verify the assemble script.
	 Optional: Run s2i build again to verify the save-artifacts and assemble scripts save and restore artifacts functionality.
	5. Run the image to verify the test application is working.
	NOTE
	The suggested location to put the test application built by your test/run script is the test/test-app directory in your image repository.

Example S2I scripts

The following example S2I scripts are written in Bash. Each example assumes its **tar** contents are unpacked into the /**tmp**/s2i directory.

assemble script:

```
#!/bin/bash

# restore build artifacts

if [ "$(ls /tmp/s2i/artifacts/ 2>/dev/null)" ]; then
    mv /tmp/s2i/artifacts/* $HOME/.

fi

# move the application source
mv /tmp/s2i/src $HOME/src

# build application artifacts
pushd ${HOME}
make all

# install the artifacts
make install
popd
```

run script:

#!/bin/bash

run the application
/opt/application/run.sh

save-artifacts script:

```
#!/bin/bash

pushd ${HOME}

if [ -d deps ]; then

# all deps contents to tar stream

tar cf - deps

fi

popd
```

usage script:

```
#!/bin/bash

# inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF
```

Additional resources

S2I Image Creation Tutorial

5.2.6. Using build volumes

You can mount build volumes to give running builds access to information that you don't want to persist in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment or configuration only needs at build time. Build volumes are different from build inputs, whose data can persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to pod volume mounts.

Prerequisites

• You have added an input secret, config map, or both to a BuildConfig object.

Procedure

 In the sourceStrategy definition of the BuildConfig object, add any build volumes to the volumes array. For example:

```
spec:
sourceStrategy:
volumes:
- name: secret-mvn 1
mounts:
- destinationPath: /opt/app-root/src/.ssh 2
source:
```

type: Secret 3
secret:
secretName: my-secret 4
- name: settings-mvn 5
mounts:
- destinationPath: /opt/app-root/src/.m2 6
source:
type: ConfigMap 7
configMap:
name: my-config 8

- Required. A unique name.
- Required. The absolute path of the mount point. It must not contain .. or : and doesn't collide with the destination path generated by the builder. The /opt/app-root/src is the default home directory for many Red Hat S2I-enabled images.
- Required. The type of source, ConfigMap, Secret, or CSI.
- 4 8 Required. The name of the source.

Additional resources

- Build inputs
- Input secrets and config maps

5.3. ADDING SECRETS WITH WEB CONSOLE

You can add a secret to your build configuration so that it can access a private repository.

Procedure

To add a secret to your build configuration so that it can access a private repository from the Red Hat OpenShift Service on AWS web console:

- 1. Create a new Red Hat OpenShift Service on AWS project.
- 2. Create a secret that contains credentials for accessing a private source code repository.
- 3. Create a build configuration.
- 4. On the build configuration editor page or in the **create app from builder image** page of the web console, set the **Source Secret**
- 5. Click Save.

5.4. ENABLING PULLING AND PUSHING

You can enable pulling to a private registry by setting the pull secret and pushing by setting the push secret in the build configuration.

Procedure

To enable pulling to a private registry:

• Set the pull secret in the build configuration.

To enable pushing:

• Set the push secret in the build configuration.

CHAPTER 6. PERFORMING AND CONFIGURING BASIC BUILDS

The following sections provide instructions for basic build operations, including starting and canceling builds, editing **BuildConfigs**, deleting **BuildConfigs**, viewing build details, and accessing build logs.

6.1. STARTING A BUILD

You can manually start a new build from an existing build configuration in your current project.

Procedure

- To start a build manually, enter the following command:
 - \$ oc start-build <buildconfig_name>

6.1.1. Re-running a build

You can manually re-run a build using the **--from-build** flag.

Procedure

- To manually re-run a build, enter the following command:
 - \$ oc start-build --from-build=<build_name>

6.1.2. Streaming build logs

You can specify the **--follow** flag to stream the build's logs in **stdout**.

Procedure

- To manually stream a build's logs in **stdout**, enter the following command:
 - \$ oc start-build <buildconfig_name> --follow

6.1.3. Setting environment variables when starting a build

You can specify the **--env** flag to set any desired environment variable for the build.

Procedure

- To specify a desired environment variable, enter the following command:
 - \$ oc start-build <buildconfig_name> --env=<key>=<value>

6.1.4. Starting a build with source

Rather than relying on a Git source pull for a build, you can also start a build by directly pushing your source, which could be the contents of a Git or SVN working directory, a set of pre-built binary artifacts

you want to deploy, or a single file. This can be done by specifying one of the following options for the **start-build** command:

Option	Description
from-dir= <directory></directory>	Specifies a directory that will be archived and used as a binary input for the build.
from-file= <file></file>	Specifies a single file that will be the only file in the build source. The file is placed in the root of an empty directory with the same file name as the original file provided.
from-repo= <local_source_repo></local_source_repo>	Specifies a path to a local repository to use as the binary input for a build. Add the commit option to control which branch, tag, or commit is used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds triggered by base image changes will use the source specified in the build configuration.

Procedure

• To start a build from a source code repository and send the contents of a local Git repository as an archive from the tag **v2**, enter the following command:

\$ oc start-build hello-world --from-repo=../hello-world --commit=v2

6.2. CANCELING A BUILD

You can cancel a build using the web console, or with the following CLI command.

Procedure

To manually cancel a build, enter the following command:

\$ oc cancel-build <build_name>

6.2.1. Canceling multiple builds

You can cancel multiple builds with the following CLI command.

Procedure

• To manually cancel multiple builds, enter the following command:

\$ oc cancel-build <build1_name> <build2_name> <build3_name>

6.2.2. Canceling all builds

You can cancel all builds from the build configuration with the following CLI command.

Procedure

- To cancel all builds, enter the following command:
 - \$ oc cancel-build bc/<buildconfig_name>

6.2.3. Canceling all builds in a given state

You can cancel all builds in a given state, such as **new** or **pending**, while ignoring the builds in other states

Procedure

- To cancel all in a given state, enter the following command:
 - \$ oc cancel-build bc/<buildconfig_name>

6.3. EDITING A BUILDCONFIG

To edit your build configurations, you use the **Edit BuildConfig** option in the **Builds** view of the **Developer** perspective.

You can use either of the following views to edit a **BuildConfig**:

- The **Form view** enables you to edit your **BuildConfig** using the standard form fields and checkboxes.
- The YAML view enables you to edit your **BuildConfig** with full control over the operations.

You can switch between the **Form view** and **YAML view** without losing any data. The data in the **Form view** is transferred to the **YAML view** and vice versa.

Procedure

- In the Builds view of the Developer perspective, click the menu BuildConfig option.

 to see the Edit
- 2. Click **Edit BuildConfig** to see the **Form view** option.
- 3. In the **Git** section, enter the Git repository URL for the codebase you want to use to create an application. The URL is then validated.
 - Optional: Click **Show Advanced Git Options** to add details such as:
 - **Git Reference** to specify a branch, tag, or commit that contains code you want to use to build the application.
 - **Context Dir** to specify the subdirectory that contains code you want to use to build the application.

- **Source Secret** to create a **Secret Name** with credentials for pulling your source code from a private repository.
- 4. In the **Build from** section, select the option that you would like to build from. You can use the following options:
 - **Image Stream tag** references an image for a given image stream and tag. Enter the project, image stream, and tag of the location you would like to build from and push to.
 - Image Stream image references an image for a given image stream and image name. Enter the image stream image you would like to build from. Also enter the project, image stream, and tag to push to.
 - Docker image: The Docker image is referenced through a Docker image repository. You will
 also need to enter the project, image stream, and tag to refer to where you would like to
 push to.
- 5. Optional: In the **Environment Variables** section, add the environment variables associated with the project by using the **Name** and **Value** fields. To add more environment variables, use **Add Value**, or **Add from ConfigMap** and **Secret**.
- 6. Optional: To further customize your application, use the following advanced options:

Trigger

Triggers a new image build when the builder image changes. Add more triggers by clicking **Add Trigger** and selecting the **Type** and **Secret**.

Secrets

Adds secrets for your application. Add more secrets by clicking **Add secret** and selecting the **Secret** and **Mount point**.

Policy

Click **Run policy** to select the build run policy. The selected policy determines the order in which builds created from the build configuration must run.

Hooks

Select **Run build hooks after image is built**to run commands at the end of the build and verify the image. Add **Hook type**, **Command**, and **Arguments** to append to the command.

7. Click Save to save the BuildConfig.

6.4. DELETING A BUILDCONFIG

You can delete a **BuildConfig** using the following command.

Procedure

- To delete a BuildConfig, enter the following command:
 - \$ oc delete bc <BuildConfigName>

This also deletes all builds that were instantiated from this **BuildConfig**.

 To delete a BuildConfig and keep the builds instatiated from the BuildConfig, specify the -cascade=false flag when you enter the following command: \$ oc delete --cascade=false bc <BuildConfigName>

6.5. VIEWING BUILD DETAILS

You can view build details with the web console or by using the oc describe CLI command.

This displays information including:

- The build source.
- The build strategy.
- The output destination.
- Digest of the image in the destination registry.
- How the build was created.

If the build uses the **Source** strategy, the **oc describe** output also includes information about the source revision used for the build, including the commit ID, author, committer, and message.

Procedure

- To view build details, enter the following command:
 - \$ oc describe build <build_name>

6.6. ACCESSING BUILD LOGS

You can access build logs using the web console or the CLI.

Procedure

- To stream the logs using the build directly, enter the following command:
 - \$ oc describe build <build_name>

6.6.1. Accessing BuildConfig logs

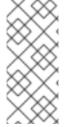
You can access **BuildConfig** logs using the web console or the CLI.

Procedure

- To stream the logs of the latest build for a **BuildConfig**, enter the following command:
 - \$ oc logs -f bc/<buildconfig_name>

6.6.2. Accessing BuildConfig logs for a given version build

You can access logs for a given version build for a **BuildConfig** using the web console or the CLI.


Procedure

• To stream the logs for a given version build for a **BuildConfig**, enter the following command:

\$ oc logs --version=<number> bc/<buildconfig_name>

6.6.3. Enabling log verbosity

You can enable a more verbose output by passing the **BUILD_LOGLEVEL** environment variable as part of the **sourceStrategy** in a **BuildConfig**.

NOTE

An administrator can set the default build verbosity for the entire Red Hat OpenShift Service on AWS instance by configuring **env/BUILD_LOGLEVEL**. This default can be overridden by specifying **BUILD_LOGLEVEL** in a given **BuildConfig**. You can specify a higher priority override on the command line for non-binary builds by passing **--build-loglevel** to **oc start-build**.

Available log levels for source builds are as follows:

Level 0	Produces output from containers running the assemble script and all encountered errors. This is the default.
Level 1	Produces basic information about the executed process.
Level 2	Produces very detailed information about the executed process.
Level 3	Produces very detailed information about the executed process, and a listing of the archive contents.
Level 4	Currently produces the same information as level 3.
Level 5	Produces everything mentioned on previous levels and additionally provides docker push messages.

Procedure

• To enable more verbose output, pass the **BUILD_LOGLEVEL** environment variable as part of the **sourceStrategy** or **dockerStrategy** in a **BuildConfig**:

```
sourceStrategy:
...
env:
- name: "BUILD_LOGLEVEL"
value: "2"
```

Adjust this value to the desired log level.

CHAPTER 7. TRIGGERING AND MODIFYING BUILDS

The following sections outline how to trigger builds and modify builds using build hooks.

7.1. BUILD TRIGGERS

When defining a **BuildConfig**, you can define triggers to control the circumstances in which the **BuildConfig** should be run. The following build triggers are available:

- Webhook
- Image change
- Configuration change

7.1.1. Webhook triggers

Webhook triggers allow you to trigger a new build by sending a request to the Red Hat OpenShift Service on AWS API endpoint. You can define these triggers using GitHub, GitLab, Bitbucket, or Generic webhooks.

Currently, Red Hat OpenShift Service on AWS webhooks only support the analogous versions of the push event for each of the Git-based Source Code Management (SCM) systems. All other event types are ignored.

When the push events are processed, the Red Hat OpenShift Service on AWS control plane host confirms if the branch reference inside the event matches the branch reference in the corresponding **BuildConfig**. If so, it then checks out the exact commit reference noted in the webhook event on the Red Hat OpenShift Service on AWS build. If they do not match, no build is triggered.

NOTE

oc new-app and **oc new-build** create GitHub and Generic webhook triggers automatically, but any other needed webhook triggers must be added manually. You can manually add triggers by setting triggers.

For all webhooks, you must define a secret with a key named **WebHookSecretKey** and the value being the value to be supplied when invoking the webhook. The webhook definition must then reference the secret. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The value of the key is compared to the secret provided during the webhook invocation.

For example here is a GitHub webhook with a reference to a secret named mysecret:

type: "GitHub" github:

secretReference: name: "mysecret"

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required for any **data** field of a **Secret** object.

 kind: Secret apiVersion: v1 metadata: name: mysecret creationTimestamp:

data:

WebHookSecretKey: c2VjcmV0dmFsdWUx

7.1.1.1 Using GitHub webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the trigger, you must specify a secret, which is part of the URL you supply to GitHub when configuring the webhook.

Example GitHub webhook definition:

type: "GitHub" github:

secretReference: name: "mysecret"

NOTE

The secret used in the webhook trigger configuration is not the same as the **secret** field you encounter when configuring webhook in GitHub UI. The secret in the webhook trigger configuration makes the webhook URL unique and hard to predict. The secret configured in the GitHub UI is an optional string field that is used to create an HMAC hex digest of the body, which is sent as an **X-Hub-Signature** header.

The payload URL is returned as the GitHub Webhook URL by the **oc describe** command (see Displaying Webhook URLs), and is structured as follows:

Example output

 $https://copenshift_api_host:port>/apis/build.openshift.io/v1/namespaces/cnamespace>/buildconfigs/cname>/webhooks/csecret>/github$

Prerequisites

• Create a **BuildConfig** from a GitHub repository.

Procedure

- 1. Configure a GitHub Webhook.
 - a. After creating a **BuildConfig** object from a GitHub repository, run the following command:

\$ oc describe bc/<name_of_your_BuildConfig>

This command generates a webhook GitHub URL.

Example output

https://api.starter-us-east-

1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/github

_

- b. Cut and paste this URL into GitHub, from the GitHub web console.
- c. In your GitHub repository, select Add Webhook from Settings → Webhooks.
- d. Paste the URL output into the Payload URL field.
- e. Change the **Content Type** from GitHub's default **application/x-www-form-urlencoded** to **application/json**.
- f. Click Add webhook.

You should see a message from GitHub stating that your webhook was successfully configured.

Now, when you push a change to your GitHub repository, a new build automatically starts, and upon a successful build a new deployment starts.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if you are using a Gogs server, you can define a GitHub webhook trigger on your **BuildConfig** and trigger it by your Gogs server as well.

2. Given a file containing a valid JSON payload, such as **payload.json**, you can manually trigger the webhook with the following **curl** command:

\$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-binary @payload.json

 $https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcongs/<name>/webhooks/<secret>/github$

The **-k** argument is only necessary if your API server does not have a properly signed certificate.

NOTE

The build will only be triggered if the **ref** value from GitHub webhook event matches the **ref** value specified in the **source.git** field of the **BuildConfig** resource.

Additional resources

Gogs

7.1.1.2. Using GitLab webhooks

GitLab webhooks handle the call made by GitLab when a repository is updated. As with the GitHub triggers, you must specify a secret. The following example is a trigger definition YAML within the **BuildConfig**:

type: "GitLab" gitlab:

secretReference: name: "mysecret" The payload URL is returned as the GitLab Webhook URL by the **oc describe** command, and is structured as follows:

Example output

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/gitlab

Procedure

- 1. Configure a GitLab Webhook.
 - a. Get the webhook URL by entering the following command:
 - \$ oc describe bc <name>
 - b. Copy the webhook URL, replacing **<secret>** with your secret value.
 - c. Follow the GitLab setup instructions to paste the webhook URL into your GitLab repository settings.
- 2. Given a file containing a valid JSON payload, such as **payload.json**, you can manually trigger the webhook with the following **curl** command:

\$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST -- data-binary @payload.json https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcongs/<name>/webhooks/<secret>/gitlab

The **-k** argument is only necessary if your API server does not have a properly signed certificate.

7.1.1.3. Using Bitbucket webhooks

Bitbucket webhooks handle the call made by Bitbucket when a repository is updated. Similar to GitHub and GitLab triggers, you must specify a secret. The following example is a trigger definition YAML within the **BuildConfig**:

type: "Bitbucket" bitbucket:

secretReference: name: "mysecret"

The payload URL is returned as the Bitbucket Webhook URL by the **oc describe** command, and is structured as follows:

Example output

 $https://copenshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/bitbucket$

Procedure

1. Configure a Bitbucket Webhook.

a. Get the webhook URL by entering the following command:

\$ oc describe bc <name>

- b. Copy the webhook URL, replacing **<secret>** with your secret value.
- c. Follow the Bitbucket setup instructions to paste the webhook URL into your Bitbucket repository settings.
- 2. Given a file containing a valid JSON payload, such as **payload.json**, you can manually trigger the webhook by entering the following **curl** command:

\$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-binary @payload.json

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcongs/<name>/webhooks/<secret>/bitbucket

The **-k** argument is only necessary if your API server does not have a properly signed certificate.

7.1.1.4. Using generic webhooks

Generic webhooks are called from any system capable of making a web request. As with the other webhooks, you must specify a secret, which is part of the URL that the caller must use to trigger the build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The following is an example trigger definition YAML within the **BuildConfig**:

type: "Generic" generic:

secretReference: name: "mysecret" allowEnv: true

Set to **true** to allow a generic webhook to pass in environment variables.

Procedure

1. To set up the caller, supply the calling system with the URL of the generic webhook endpoint for your build.

Example generic webhook endpoint URL

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcongs/<name>/webhooks/<secret>/generic

The caller must call the webhook as a **POST** operation.

2. To call the webhook manually, enter the following **curl** command:

\$ curl -X POST -k

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcongs/<name>/webhooks/<secret>/generic

The HTTP verb must be set to **POST**. The insecure **-k** flag is specified to ignore certificate validation. This second flag is not necessary if your cluster has properly signed certificates.

The endpoint can accept an optional payload with the following format:

```
git:
uri: "<url to git repository>"
ref: "<optional git reference>"
commit: "<commit hash identifying a specific git commit>"
author:
name: "<author name>"
email: "<author e-mail>"
committer:
name: "<committer name>"
email: "<committer e-mail>"
message: "<commit message>"
env: 1
- name: "<variable name>"
value: "<variable value>"
```

- Similar to the **BuildConfig** environment variables, the environment variables defined here are made available to your build. If these variables collide with the **BuildConfig** environment variables, these variables take precedence. By default, environment variables passed by webhook are ignored. Set the **allowEnv** field to **true** on the webhook definition to enable this behavior.
- 3. To pass this payload using **curl**, define it in a file named **payload_file.yaml** and run the following command:

\$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildcongs/<name>/webhooks/<secret>/generic

The arguments are the same as the previous example with the addition of a header and a payload. The **-H** argument sets the **Content-Type** header to **application/yaml** or **application/json** depending on your payload format. The **--data-binary** argument is used to send a binary payload with newlines intact with the **POST** request.

NOTE

Red Hat OpenShift Service on AWS permits builds to be triggered by the generic webhook even if an invalid request payload is presented, for example, invalid content type, unparsable or invalid content, and so on. This behavior is maintained for backwards compatibility. If an invalid request payload is presented, Red Hat OpenShift Service on AWS returns a warning in JSON format as part of its **HTTP 200 OK** response.

7.1.1.5. Displaying webhook URLs

You can use the **oc describe** command to display webhook URLs associated with a build configuration. If the command does not display any webhook URLs, then no webhook trigger is currently defined for that build configuration.

Procedure

To display any webhook URLs associated with a **BuildConfig**, run the following command:

\$ oc describe bc <name>

7.1.2. Using image change triggers

As a developer, you can configure your build to run automatically every time a base image changes.

You can use image change triggers to automatically invoke your build when a new version of an upstream image is available. For example, if a build is based on a RHEL image, you can trigger that build to run any time the RHEL image changes. As a result, the application image is always running on the latest RHEL base image.

NOTE

Image streams that point to container images in v1 container registries only trigger a build once when the image stream tag becomes available and not on subsequent image updates. This is due to the lack of uniquely identifiable images in v1 container registries.

Procedure

1. Define an **ImageStream** that points to the upstream image you want to use as a trigger:

kind: "ImageStream" apiVersion: "v1" metadata: name: "ruby-20-centos7"

This defines the image stream that is tied to a container image repository located at <systemregistry>/<namespace>/ruby-20-centos7. The <system-registry> is defined as a service with the name docker-registry running in Red Hat OpenShift Service on AWS.

2. If an image stream is the base image for the build, set the **from** field in the build strategy to point to the ImageStream:

```
strategy:
 sourceStrategy:
  from:
   kind: "ImageStreamTag"
   name: "ruby-20-centos7:latest"
```

In this case, the sourceStrategy definition is consuming the latest tag of the image stream named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to **ImageStreams**:

type: "ImageChange" 1 imageChange: {} type: "ImageChange" (2) imageChange: from: kind: "ImageStreamTag" name: "custom-image:latest"

- An image change trigger that monitors the **ImageStream** and **Tag** as defined by the build strategy's **from** field. The **imageChange** object here must be empty.
- An image change trigger that monitors an arbitrary image stream. The **imageChange** part, in this case, must include a **from** field that references the **ImageStreamTag** to monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied with an immutable docker tag that points to the latest image corresponding to that tag. This new image reference is used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build is started, but the build strategy is not updated with a unique image reference.

Since this example has an image change trigger for the strategy, the resulting build is:

```
strategy:
sourceStrategy:
from:
kind: "DockerImage"
name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"
```

This ensures that the triggered build uses the new image that was just pushed to the repository, and the build can be re-run any time with the same inputs.

You can pause an image change trigger to allow multiple changes on the referenced image stream before a build is started. You can also set the **paused** attribute to true when initially adding an **ImageChangeTrigger** to a **BuildConfig** to prevent a build from being immediately triggered.

```
type: "ImageChange"
imageChange:
from:
kind: "ImageStreamTag"
name: "custom-image:latest"
paused: true
```

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the **<immutableid>** resolved from the **ImageStream** referenced by the **Strategy**. This ensures that builds are performed using consistent image tags for ease of reproduction.

Additional resources

v1 container registries

7.1.3. Identifying the image change trigger of a build

As a developer, if you have image change triggers, you can identify which image change initiated the last build. This can be useful for debugging or troubleshooting builds.

Example BuildConfig

apiVersion: build.openshift.io/v1 kind: BuildConfig metadata:

name: bc-ict-example

namespace: bc-ict-example-namespace spec:

...

triggers:

- imageChange:

from:

kind: ImageStreamTag name: input:latest

namespace: bc-ict-example-namespace

- imageChange:

from:

kind: ImageStreamTag name: input2:latest

namespace: bc-ict-example-namespace

type: ImageChange

status:

imageChangeTriggers:

- from:

name: input:latest

namespace: bc-ict-example-namespace lastTriggerTime: "2021-06-30T13:47:53Z"

lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-namespace/input@sha256:0f88ffbeb9d25525720bfa3524cb1bf0908b7f791057cf1acfae917b11266a69

- from:

name: input2:latest

namespace: bc-ict-example-namespace

lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-namespace/input2@sha256:0f88ffbeb9d25525720bfa3524cb2ce0908b7f791057cf1acfae917b11266a6

lastVersion: 1

NOTE

This example omits elements that are not related to image change triggers.

Prerequisites

• You have configured multiple image change triggers. These triggers have triggered one or more builds.

Procedure

1. In the **BuildConfig** CR, in **status.imageChangeTriggers**, identify the **lastTriggerTime** that has the latest timestamp.

This ImageChangeTriggerStatus

Then you use the `name` and `namespace` from that build to find the corresponding image change trigger in `buildConfig.spec.triggers`.

2. Under **imageChangeTriggers**, compare timestamps to identify the latest

Image change triggers

In your build configuration, **buildConfig.spec.triggers** is an array of build trigger policies, **BuildTriggerPolicy**.

Each **BuildTriggerPolicy** has a **type** field and set of pointers fields. Each pointer field corresponds to one of the allowed values for the **type** field. As such, you can only set **BuildTriggerPolicy** to only one pointer field.

For image change triggers, the value of **type** is **ImageChange**. Then, the **imageChange** field is the pointer to an **ImageChangeTrigger** object, which has the following fields:

- lastTriggeredImageID: This field, which is not shown in the example, is deprecated in Red Hat
 OpenShift Service on AWS 4.8 and will be ignored in a future release. It contains the resolved
 image reference for the ImageStreamTag when the last build was triggered from this
 BuildConfig.
- **paused**: You can use this field, which is not shown in the example, to temporarily disable this particular image change trigger.
- **from**: Use this field to reference the **ImageStreamTag** that drives this image change trigger. Its type is the core Kubernetes type, **OwnerReference**.

The **from** field has the following fields of note:

- **kind**: For image change triggers, the only supported value is **ImageStreamTag**.
- namespace: Use this field to specify the namespace of the ImageStreamTag.
- name: Use this field to specify the ImageStreamTag.

Image change trigger status

In your build configuration, **buildConfig.status.imageChangeTriggers** is an array of **ImageChangeTriggerStatus** elements. Each **ImageChangeTriggerStatus** element includes the **from**, **lastTriggeredImageID**, and **lastTriggerTime** elements shown in the preceding example.

The **ImageChangeTriggerStatus** that has the most recent **IastTriggerTime** triggered the most recent build. You use its **name** and **namespace** to identify the image change trigger in **buildConfig.spec.triggers** that triggered the build.

The **lastTriggerTime** with the most recent timestamp signifies the **lmageChangeTriggerStatus** of the last build. This **lmageChangeTriggerStatus** has the same **name** and **namespace** as the image change trigger in **buildConfig.spec.triggers** that triggered the build.

Additional resources

v1 container registries

7.1.4. Configuration change triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new **BuildConfig** is created.

The following is an example trigger definition YAML within the **BuildConfig**:

type: "ConfigChange"

NOTE

Configuration change triggers currently only work when creating a new **BuildConfig**. In a future release, configuration change triggers will also be able to launch a build whenever a **BuildConfig** is updated.

7.1.4.1. Setting triggers manually

Triggers can be added to and removed from build configurations with oc set triggers.

Procedure

- To set a GitHub webhook trigger on a build configuration, enter the following command:
 - \$ oc set triggers bc <name> --from-github
- To set an image change trigger, enter the following command:
 - \$ oc set triggers bc <name> --from-image='<image>'
- To remove a trigger, enter the following command:
 - \$ oc set triggers bc <name> --from-bitbucket --remove

NOTE

When a webhook trigger already exists, adding it again regenerates the webhook secret.

For more information, consult the help documentation by entering the following command:

\$ oc set triggers --help

7.2. BUILD HOOKS

Build hooks allow behavior to be injected into the build process.

The **postCommit** field of a **BuildConfig** object runs commands inside a temporary container that is running the build output image. The hook is run immediately after the last layer of the image has been committed and before the image is pushed to a registry.

The current working directory is set to the image's **WORKDIR**, which is the default working directory of the container image. For most images, this is where the source code is located.

The hook fails if the script or command returns a non-zero exit code or if starting the temporary container fails. When the hook fails it marks the build as failed and the image is not pushed to a registry. The reason for failing can be inspected by looking at the build logs.

Build hooks can be used to run unit tests to verify the image before the build is marked complete and the image is made available in a registry. If all tests pass and the test runner returns with exit code **0**, the build is marked successful. In case of any test failure, the build is marked as failed. In all cases, the build log contains the output of the test runner, which can be used to identify failed tests.

The **postCommit** hook is not only limited to running tests, but can be used for other commands as well.

Since it runs in a temporary container, changes made by the hook do not persist, meaning that running the hook cannot affect the final image. This behavior allows for, among other uses, the installation and usage of test dependencies that are automatically discarded and are not present in the final image.

7.2.1. Configuring post commit build hooks

There are different ways to configure the post-build hook. All forms in the following examples are equivalent and run **bundle exec rake test --verbose**.

Procedure

• Use one of the following options to configure post-build hooks:

Option	Description
Shell script	postCommit: script: "bundle exec rake testverbose" The script value is a shell script to be run with /bin/sh -ic. Use this option when a shell script is appropriate to execute the build hook. For example, for running unit tests as above. To control the image entry point or if the image does not have /bin/sh, use command, or args, or both. NOTE The additional -i flag was introduced to improve the experience working with CentOS and RHEL images, and may be removed in a future release.
Command as the image entry point	postCommit: command: ["/bin/bash", "-c", "bundle exec rake testverbose"] In this form, command is the command to run, which overrides the image entry point in the exec form, as documented in the Dockerfile reference. This is needed if the image does not have /bin/sh, or if you do not want to use a shell. In all other cases, using script might be more convenient.

Option	Description
Command with arguments	postCommit: command: ["bundle", "exec", "rake", "test"] args: ["verbose"]
	This form is equivalent to appending the arguments to command .

NOTE

Providing both **script** and **command** simultaneously creates an invalid build hook.

7.2.2. Using the CLI to set post commit build hooks

The **oc set build-hook** command can be used to set the build hook for a build configuration.

Procedure

- 1. Complete one of the following actions:
 - To set a command as the post-commit build hook, enter the following command:

\$ oc set build-hook bc/mybc \

- --post-commit \
- --command \
- -- bundle exec rake test --verbose
- To set a script as the post-commit build hook, enter the following command:

\$ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

CHAPTER 8. PERFORMING ADVANCED BUILDS

You can set build resources and maximum duration, assign builds to nodes, chain builds, prune builds, and configure build run policies.

8.1. SETTING BUILD RESOURCES

By default, builds are completed by pods using unbound resources, such as memory and CPU. These resources can be limited.

Procedure

You can limit resource use in two ways:

- Limit resource use by specifying resource limits in the default container limits of a project.
- Limit resource use by specifying resource limits as part of the build configuration.
 - In the following example, each of the **resources**, **cpu**, and **memory** parameters are optional:

```
apiVersion: "v1"
kind: "BuildConfig"
metadata:
name: "sample-build"
spec:
resources:
limits:
cpu: "100m" 1
memory: "256Mi" 2
```

- cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).
- memory is in bytes: **256Mi** represents 268435456 bytes (256 * 2 ^ 20).

However, if a quota has been defined for your project, one of the following two items is required:

■ A **resources** section set with an explicit **requests**:

```
resources:
requests: 1
cpu: "100m"
memory: "256Mi"
```

- The **requests** object contains the list of resources that correspond to the list of resources in the quota.
- A limit range defined in your project, where the defaults from the LimitRange object apply to pods created during the build process.
 Otherwise, build pod creation will fail, citing a failure to satisfy quota.

8.2. SETTING MAXIMUM DURATION

When defining a **BuildConfig** object, you can define its maximum duration by setting the **completionDeadlineSeconds** field. It is specified in seconds and is not set by default. When not set, there is no maximum duration enforced.

The maximum duration is counted from the time when a build pod gets scheduled in the system, and defines how long it can be active, including the time needed to pull the builder image. After reaching the specified timeout, the build is terminated by Red Hat OpenShift Service on AWS.

Procedure

• To set maximum duration, specify **completionDeadlineSeconds** in your **BuildConfig**. The following example shows the part of a **BuildConfig** specifying **completionDeadlineSeconds** field for 30 minutes:

spec:

completionDeadlineSeconds: 1800

NOTE

This setting is not supported with the Pipeline Strategy option.

8.3. ASSIGNING BUILDS TO SPECIFIC NODES

Builds can be targeted to run on specific nodes by specifying labels in the **nodeSelector** field of a build configuration. The **nodeSelector** value is a set of key-value pairs that are matched to **Node** labels when scheduling the build pod.

The **nodeSelector** value can also be controlled by cluster-wide default and override values. Defaults will only be applied if the build configuration does not define any key-value pairs for the **nodeSelector** and also does not define an explicitly empty map value of **nodeSelector**:{}. Override values will replace values in the build configuration on a key by key basis.

NOTE

If the specified **NodeSelector** cannot be matched to a node with those labels, the build still stay in the **Pending** state indefinitely.

Procedure

 Assign builds to run on specific nodes by assigning labels in the nodeSelector field of the BuildConfig, for example:

apiVersion: "v1" kind: "BuildConfig"

metadata:

name: "sample-build"

spec:

nodeSelector: 1 key1: value1 key2: value2

Builds associated with this build configuration will run only on nodes with the **key1=value2** and **key2=value2** labels.

8.4. CHAINED BUILDS

For compiled languages such as Go, C, C++, and Java, including the dependencies necessary for compilation in the application image might increase the size of the image or introduce vulnerabilities that can be exploited.

To avoid these problems, two builds can be chained together. One build that produces the compiled artifact, and a second build that places that artifact in a separate image that runs the artifact.

8.5. PRUNING BUILDS

By default, builds that have completed their lifecycle are persisted indefinitely. You can limit the number of previous builds that are retained.

Procedure

1. Limit the number of previous builds that are retained by supplying a positive integer value for **successfulBuildsHistoryLimit** or **failedBuildsHistoryLimit** in your **BuildConfig**, for example:

apiVersion: "v1" kind: "BuildConfig" metadata: name: "sample-build"

spec:

successfulBuildsHistoryLimit: 2 1 failedBuildsHistoryLimit: 2 2

- successfulBuildsHistoryLimit will retain up to two builds with a status of completed.
- failedBuildsHistoryLimit will retain up to two builds with a status of failed, canceled, or error.
- 2. Trigger build pruning by one of the following actions:
 - Updating a build configuration.
 - Waiting for a build to complete its lifecycle.

Builds are sorted by their creation timestamp with the oldest builds being pruned first.

8.6. BUILD RUN POLICY

The build run policy describes the order in which the builds created from the build configuration should run. This can be done by changing the value of the **runPolicy** field in the **spec** section of the **Build** specification.

It is also possible to change the **runPolicy** value for existing build configurations, by:

• Changing **Parallel** to **Serial** or **SerialLatestOnly** and triggering a new build from this configuration causes the new build to wait until all parallel builds complete as the serial build can only run alone.

• Changing **Serial** to **SerialLatestOnly** and triggering a new build causes cancellation of all existing builds in queue, except the currently running build and the most recently created build. The newest build runs next.

CHAPTER 9. USING RED HAT SUBSCRIPTIONS IN BUILDS

Use the following sections to install Red Hat subscription content within Red Hat OpenShift Service on AWS builds.

9.1. CREATING AN IMAGE STREAM TAG FOR THE RED HAT UNIVERSAL BASE IMAGE

To install Red Hat Enterprise Linux (RHEL) packages within a build, you can create an image stream tag to reference the Red Hat Universal Base Image (UBI).

To make the UBI available **in every project** in the cluster, add the image stream tag to the **openshift** namespace. Otherwise, to make it available **in a specific project**, add the image stream tag to that project.

Image stream tags grant access to the UBI by using the **registry.redhat.io** credentials that are present in the install pull secret, without exposing the pull secret to other users. This method is more convenient than requiring each developer to install pull secrets with **registry.redhat.io** credentials in each project.

Procedure

• To create an ImageStreamTag resource in a single project, enter the following command:

\$ oc tag --source=docker registry.redhat.io/ubi9/ubi:latest ubi:latest

TIP

You can alternatively apply the following YAML to create an **ImageStreamTag** resource in a single project:

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
name: ubi9
spec:
tags:
- from:
kind: DockerImage
name: registry.redhat.io/ubi9/ubi:latest

name: latest

referencePolicy: type: Source

9.2. RUNNING BUILDS WITH SUBSCRIPTION MANAGER

9.2.1. Docker builds using Subscription Manager

Docker strategy builds can use **yum** or **dnf** to install additional Red Hat Enterprise Linux (RHEL) packages.

Prerequisites

• The entitlement keys must be added as build strategy volumes.

Procedure

• Use the following as an example Dockerfile to install content with the Subscription Manager:

- You must include the command to remove the /etc/rhsm-host directory and all its contents in your Dockerfile before executing any yum or dnf commands.
- 2 Use the Red Hat Package Browser to find the correct repositories for your installed packages.
- You must restore the /etc/rhsm-host symbolic link to keep your image compatible with other Red Hat container images.

9.3. RUNNING BUILDS WITH RED HAT SATELLITE SUBSCRIPTIONS

9.3.1. Adding Red Hat Satellite configurations to builds

Builds that use Red Hat Satellite to install content must provide appropriate configurations to obtain content from Satellite repositories.

Prerequisites

• You must provide or create a **yum**-compatible repository configuration file that downloads content from your Satellite instance.

Sample repository configuration

```
[test-<name>]
name=test-<number>
baseurl = https://satellite.../content/dist/rhel/server/7/7Server/x86_64/os
enabled=1
gpgcheck=0
sslverify=0
sslclientkey = /etc/pki/entitlement/...-key.pem
sslclientcert = /etc/pki/entitlement/....pem
```

Procedure

1. Create a **ConfigMap** object containing the Satellite repository configuration file by entering the following command:

\$ oc create configmap yum-repos-d --from-file /path/to/satellite.repo

2. Add the Satellite repository configuration and entitlement key as a build volumes:

```
strategy:
dockerStrategy:
  from:
   kind: ImageStreamTag
   name: ubi9:latest
  volumes:
  - name: yum-repos-d
   mounts:
   - destinationPath: /etc/yum.repos.d
   source:
    type: ConfigMap
    configMap:
     name: yum-repos-d
  - name: etc-pki-entitlement
   mounts:
   - destinationPath: /etc/pki/entitlement
   source:
    type: Secret
    secret:
     secretName: etc-pki-entitlement
```

9.3.2. Docker builds using Red Hat Satellite subscriptions

Docker strategy builds can use Red Hat Satellite repositories to install subscription content.

Prerequisites

• You have added the entitlement keys and Satellite repository configurations as build volumes.

Procedure

• Use the following example to create a **Dockerfile** for installing content with Satellite:

```
FROM registry.redhat.io/ubi9/ubi:latest
RUN rm -rf /etc/rhsm-host

RUN yum --enablerepo=codeready-builder-for-rhel-9-x86_64-rpms install \ 2
    nss_wrapper \
    uid_wrapper -y && \
    yum clean all -y

RUN ln -s /run/secrets/rhsm /etc/rhsm-host 3
```

- You must include the command to remove the /etc/rhsm-host directory and all its contents in your Dockerfile before executing any yum or dnf commands.
- Contact your Satellite system administrator to find the correct repositories for the build's installed packages.
- You must restore the /etc/rhsm-host symbolic link to keep your image compatible with other Red Hat container images.

Additional resources

• How to use builds with Red Hat Satellite subscriptions and which certificate to use

9.4. ADDITIONAL RESOURCES

- Managing image streams
- Build strategies

CHAPTER 10. TROUBLESHOOTING BUILDS

Use the following to troubleshoot build issues.

10.1. RESOLVING DENIAL FOR ACCESS TO RESOURCES

If your request for access to resources is denied:

Issue

A build fails with:

requested access to the resource is denied

Resolution

You have exceeded one of the image quotas set on your project. Check your current quota and verify the limits applied and storage in use:

\$ oc describe quota

10.2. SERVICE CERTIFICATE GENERATION FAILURE

If your request for access to resources is denied:

Issue

If a service certificate generation fails with (service's **service.beta.openshift.io/serving-cert-generation-error** annotation contains):

Example output

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

Resolution

The service that generated the certificate no longer exists, or has a different **serviceUID**. You must force certificates regeneration by removing the old secret, and clearing the following annotations on the service: **service.beta.openshift.io/serving-cert-generation-error** and **service.beta.openshift.io/serving-cert-generation-error-num**. To clear the annotations, enter the following commands:

\$ oc delete secret <secret name>

\$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-

\$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-

NOTE

The command removing an annotation has a - after the annotation name to be removed.