
Red Hat OpenShift Service on AWS 4

Building applications

Configuring Red Hat OpenShift Service on AWS for your applications

Last Updated: 2024-06-06

Red Hat OpenShift Service on AWS 4 Building applications

Configuring Red Hat OpenShift Service on AWS for your applications

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about configuring Red Hat OpenShift Service on AWS (ROSA)
for your application deployments. This includes setting up custom wildcard domains.

. .

. .

. .

Table of Contents

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW
1.1. WORKING ON A PROJECT
1.2. WORKING ON AN APPLICATION

1.2.1. Creating an application
1.2.2. Maintaining an application
1.2.3. Connecting an application to services
1.2.4. Deploying an application

1.3. USING THE RED HAT MARKETPLACE

CHAPTER 2. PROJECTS
2.1. WORKING WITH PROJECTS

2.1.1. Creating a project
2.1.1.1. Creating a project by using the web console
2.1.1.2. Creating a project by using the CLI

2.1.2. Viewing a project
2.1.2.1. Viewing a project by using the web console
2.1.2.2. Viewing a project using the CLI

2.1.3. Providing access permissions to your project using the Developer perspective
2.1.4. Customizing the available cluster roles using the web console
2.1.5. Adding to a project
2.1.6. Checking the project status

2.1.6.1. Checking project status by using the web console
2.1.6.2. Checking project status by using the CLI

2.1.7. Deleting a project
2.1.7.1. Deleting a project by using the web console
2.1.7.2. Deleting a project by using the CLI

2.2. CONFIGURING PROJECT CREATION
2.2.1. About project creation
2.2.2. Modifying the template for new projects
2.2.3. Disabling project self-provisioning
2.2.4. Customizing the project request message

CHAPTER 3. CREATING APPLICATIONS
3.1. CREATING APPLICATIONS BY USING THE DEVELOPER PERSPECTIVE

3.1.1. Prerequisites
3.1.2. Creating sample applications
3.1.3. Creating applications by using Quick Starts
3.1.4. Importing a codebase from Git to create an application
3.1.5. Creating applications by deploying container image
3.1.6. Deploying a Java application by uploading a JAR file
3.1.7. Using the Devfile registry to access devfiles
3.1.8. Using the Developer Catalog to add services or components to your application
3.1.9. Additional resources

3.2. CREATING APPLICATIONS FROM INSTALLED OPERATORS
3.2.1. Creating an etcd cluster using an Operator

3.3. CREATING APPLICATIONS BY USING THE CLI
3.3.1. Creating an application from source code

3.3.1.1. Local
3.3.1.2. Remote
3.3.1.3. Build strategy detection
3.3.1.4. Language detection

9
9
9
9
9
9
9

10

11
11
11
11

13
13
13
14
14
15
16
17
17
17
18
18
19
19
19

20
21
22

25
25
26
26
27
27
31
32
33
33
34
34
34
35
36
36
36
37
37

Table of Contents

1

. .

. .

3.3.2. Creating an application from an image
3.3.2.1. Docker Hub MySQL image
3.3.2.2. Image in a private registry
3.3.2.3. Existing image stream and optional image stream tag

3.3.3. Creating an application from a template
3.3.3.1. Template parameters

3.3.4. Modifying application creation
3.3.4.1. Specifying environment variables
3.3.4.2. Specifying build environment variables
3.3.4.3. Specifying labels
3.3.4.4. Viewing the output without creation
3.3.4.5. Creating objects with different names
3.3.4.6. Creating objects in a different project
3.3.4.7. Creating multiple objects
3.3.4.8. Grouping images and source in a single pod
3.3.4.9. Searching for images, templates, and other inputs
3.3.4.10. Setting the import mode

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW
4.1. PREREQUISITES
4.2. VIEWING THE TOPOLOGY OF YOUR APPLICATION
4.3. INTERACTING WITH APPLICATIONS AND COMPONENTS
4.4. SCALING APPLICATION PODS AND CHECKING BUILDS AND ROUTES
4.5. ADDING COMPONENTS TO AN EXISTING PROJECT
4.6. GROUPING MULTIPLE COMPONENTS WITHIN AN APPLICATION
4.7. ADDING SERVICES TO YOUR APPLICATION
4.8. REMOVING SERVICES FROM YOUR APPLICATION
4.9. LABELS AND ANNOTATIONS USED FOR THE TOPOLOGY VIEW
4.10. ADDITIONAL RESOURCES

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES
5.1. RELEASE NOTES FOR SERVICE BINDING OPERATOR

5.1.1. Support matrix
5.1.2. Making open source more inclusive
5.1.3. Release notes for Service Binding Operator 1.3.3

5.1.3.1. Fixed issues
5.1.4. Release notes for Service Binding Operator 1.3.1

5.1.4.1. Fixed issues
5.1.5. Release notes for Service Binding Operator 1.3

5.1.5.1. Removed functionality
5.1.6. Release notes for Service Binding Operator 1.2

5.1.6.1. New features
5.1.6.2. Known issues

5.1.7. Release notes for Service Binding Operator 1.1.1
5.1.7.1. Fixed issues
5.1.7.2. Known issues

5.1.8. Release notes for Service Binding Operator 1.1
5.1.8.1. New features
5.1.8.2. Fixed issues
5.1.8.3. Known issues

5.1.9. Release notes for Service Binding Operator 1.0.1
5.1.9.1. Support matrix
5.1.9.2. Fixed issues

38
39
39
39
39
39
40
41
41

42
42
42
42
42
43
43
43

44
44
44
45
46
47
48
49
50
51
52

53
53
53
54
54
54
54
54
54
54
55
55
55
56
56
57
58
58
58
58
59
59
60

Red Hat OpenShift Service on AWS 4 Building applications

2

5.1.9.3. Known issues
5.1.10. Release notes for Service Binding Operator 1.0

5.1.10.1. Support matrix
5.1.10.2. New features

5.1.11. Additional resources
5.2. UNDERSTANDING SERVICE BINDING OPERATOR

5.2.1. Service Binding terminology
5.2.2. About Service Binding Operator

5.2.2.1. Making an Operator-managed backing service bindable
5.2.2.2. Binding a workload together with a backing service

5.2.3. Key features
5.2.4. API differences
5.2.5. Additional resources

5.3. INSTALLING SERVICE BINDING OPERATOR
Prerequisites
5.3.1. Installing the Service Binding Operator using the web console
5.3.2. Additional Resources

5.4. GETTING STARTED WITH SERVICE BINDING
Prerequisites
5.4.1. Creating a PostgreSQL database instance
5.4.2. Deploying the Spring PetClinic sample application
5.4.3. Connecting the Spring PetClinic sample application to the PostgreSQL database service
5.4.4. Additional Resources

5.5. EXPOSING BINDING DATA FROM A SERVICE
5.5.1. Methods of exposing binding data

5.5.1.1. Provisioned service
5.5.1.2. Direct secret reference
5.5.1.3. Declaring binding data through CRD or CR annotations
5.5.1.4. Detection of binding data through owned resources

5.5.2. Data model
5.5.3. Setting annotations mapping to be optional
5.5.4. RBAC requirements
5.5.5. Categories of exposable binding data

5.5.5.1. Exposing a string from a resource
5.5.5.2. Exposing a constant value as the binding item
5.5.5.3. Exposing an entire config map or secret that is referenced from a resource
5.5.5.4. Exposing a specific entry from a config map or secret that is referenced from a resource
5.5.5.5. Exposing a resource definition value
5.5.5.6. Exposing entries of a collection with the key and value from each entry
5.5.5.7. Exposing items of a collection with one key per item
5.5.5.8. Exposing values of collection entries with one key per entry value

5.5.6. Additional resources
5.6. PROJECTING BINDING DATA

5.6.1. Consumption of binding data
5.6.2. Configuration of the directory path to project the binding data inside workload container

5.6.2.1. Computation of the final path for projecting the binding data as files
5.6.3. Projecting the binding data
5.6.4. Additional resources

5.7. BINDING WORKLOADS USING SERVICE BINDING OPERATOR
5.7.1. Naming strategies
5.7.2. Advanced binding options

5.7.2.1. Changing the binding names before projecting them into the workload
5.7.2.2. Composing custom binding data

60
61
61

62
63
63
63
63
64
64
64
65
67
68
68
68
69
69
69
69
70
72
74
74
74
75
76
77
78
78
80
81

82
82
82
83
83
84
84
85
86
86
86
86
87
88
89
89
89
90
91
91

93

Table of Contents

3

. .

. .

5.7.2.3. Binding workloads using a label selector
5.7.3. Binding secondary workloads that are not compliant with PodSpec

5.7.3.1. Configuring the custom location of the container path
5.7.3.2. Configuring the custom location of the secret path
5.7.3.3. Workload resource mapping

5.7.4. Unbinding workloads from a backing service
5.7.5. Additional resources

5.8. CONNECTING AN APPLICATION TO A SERVICE USING THE DEVELOPER PERSPECTIVE
5.8.1. Discovering and identifying Operator-backed bindable services
5.8.2. Creating a visual connection between components
5.8.3. Creating a binding connection between components
5.8.4. Verifying the status of your service binding from the Topology view
5.8.5. Visualizing the binding connections to resources
5.8.6. Additional resources

CHAPTER 6. WORKING WITH HELM CHARTS
6.1. UNDERSTANDING HELM

6.1.1. Key features
6.1.2. Red Hat Certification of Helm charts for OpenShift
6.1.3. Additional resources

6.2. INSTALLING HELM
6.2.1. On Linux
6.2.2. On Windows 7/8
6.2.3. On Windows 10
6.2.4. On MacOS

6.3. CONFIGURING CUSTOM HELM CHART REPOSITORIES
6.3.1. Creating Helm releases using the Developer perspective
6.3.2. Using Helm in the web terminal
6.3.3. Creating a custom Helm chart on Red Hat OpenShift Service on AWS
6.3.4. Filtering Helm Charts by their certification level

6.4. WORKING WITH HELM RELEASES
6.4.1. Prerequisites
6.4.2. Upgrading a Helm release
6.4.3. Rolling back a Helm release
6.4.4. Deleting a Helm release

CHAPTER 7. DEPLOYMENTS
7.1. CUSTOM DOMAINS FOR APPLICATIONS

7.1.1. Configuring custom domains for applications
7.1.2. Renewing a certificate for custom domains

7.2. UNDERSTANDING DEPLOYMENTS
7.2.1. Building blocks of a deployment

7.2.1.1. Replica sets
7.2.1.2. Replication controllers

7.2.2. Deployments
7.2.3. DeploymentConfig objects
7.2.4. Comparing Deployment and DeploymentConfig objects

7.2.4.1. Design
7.2.4.2. Deployment-specific features

Rollover
Proportional scaling
Pausing mid-rollout

7.2.4.3. DeploymentConfig object-specific features

94
95
95
97
98

100
101
101
101
102
104
107
107
109

110
110
110
110
110
110
111
111
111

112
112
112
114
114
115
115
115
116
116
116

118
118
118

120
121
121
121
122
124
124
126
126
126
126
127
127
127

Red Hat OpenShift Service on AWS 4 Building applications

4

. .

Automatic rollbacks
Triggers
Lifecycle hooks
Custom strategies

7.3. MANAGING DEPLOYMENT PROCESSES
7.3.1. Managing DeploymentConfig objects

7.3.1.1. Starting a deployment
7.3.1.2. Viewing a deployment
7.3.1.3. Retrying a deployment
7.3.1.4. Rolling back a deployment
7.3.1.5. Executing commands inside a container
7.3.1.6. Viewing deployment logs
7.3.1.7. Deployment triggers

Config change deployment triggers
Image change deployment triggers
7.3.1.7.1. Setting deployment triggers

7.3.1.8. Setting deployment resources
7.3.1.9. Scaling manually
7.3.1.10. Accessing private repositories from DeploymentConfig objects
7.3.1.11. Running a pod with a different service account

7.4. USING DEPLOYMENT STRATEGIES
7.4.1. Choosing a deployment strategy
7.4.2. Rolling strategy

7.4.2.1. Canary deployments
7.4.2.2. Creating a rolling deployment
7.4.2.3. Editing a deployment by using the Developer perspective
7.4.2.4. Starting a rolling deployment using the Developer perspective

7.4.3. Recreate strategy
7.4.3.1. Editing a deployment by using the Developer perspective
7.4.3.2. Starting a recreate deployment using the Developer perspective

7.4.4. Custom strategy
7.4.4.1. Editing a deployment by using the Developer perspective

7.4.5. Lifecycle hooks
Pod-based lifecycle hook
7.4.5.1. Setting lifecycle hooks

7.5. USING ROUTE-BASED DEPLOYMENT STRATEGIES
7.5.1. Proxy shards and traffic splitting
7.5.2. N-1 compatibility
7.5.3. Graceful termination
7.5.4. Blue-green deployments

7.5.4.1. Setting up a blue-green deployment
7.5.5. A/B deployments

7.5.5.1. Load balancing for A/B testing
7.5.5.1.1. Managing weights of an existing route using the web console
7.5.5.1.2. Managing weights of an new route using the web console
7.5.5.1.3. Managing weights using the CLI
7.5.5.1.4. One service, multiple Deployment objects

CHAPTER 8. QUOTAS
8.1. RESOURCE QUOTAS PER PROJECT

8.1.1. Resources managed by quotas
8.1.2. Quota scopes
8.1.3. Quota enforcement

127
127
127
127
127
127
128
128
128
129
129
130
131
131
131
132
132
133
134
134
135
135
135
137
137
138
139
140
141

142
143
145
146
146
147
147
148
148
148
149
149
150
150
152
152
152
154

156
156
156
158
158

Table of Contents

5

. .

. .

. .

. .

. .

. .

8.1.4. Requests versus limits
8.1.5. Sample resource quota definitions
8.1.6. Creating a quota

8.1.6.1. Creating object count quotas
8.1.6.2. Setting resource quota for extended resources

8.1.7. Viewing a quota
8.1.8. Configuring explicit resource quotas

8.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS
8.2.1. Selecting multiple projects during quota creation
8.2.2. Viewing applicable cluster resource quotas
8.2.3. Selection granularity

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS
9.1. UNDERSTANDING CONFIG MAPS

Config map restrictions
9.2. USE CASES: CONSUMING CONFIG MAPS IN PODS

9.2.1. Populating environment variables in containers by using config maps
9.2.2. Setting command-line arguments for container commands with config maps
9.2.3. Injecting content into a volume by using config maps

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

10.1. PREREQUISITES
10.2. MONITORING YOUR PROJECT METRICS
10.3. MONITORING YOUR APPLICATION METRICS
10.4. IMAGE VULNERABILITIES BREAKDOWN
10.5. MONITORING YOUR APPLICATION AND IMAGE VULNERABILITIES METRICS
10.6. ADDITIONAL RESOURCES

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS
11.1. UNDERSTANDING HEALTH CHECKS

Example probes
11.2. CONFIGURING HEALTH CHECKS USING THE CLI
11.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER PERSPECTIVE
11.4. ADDING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
11.5. EDITING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
11.6. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER PERSPECTIVE

CHAPTER 12. EDITING APPLICATIONS
12.1. PREREQUISITES
12.2. EDITING THE SOURCE CODE OF AN APPLICATION USING THE DEVELOPER PERSPECTIVE
12.3. EDITING THE APPLICATION CONFIGURATION USING THE DEVELOPER PERSPECTIVE

CHAPTER 13. WORKING WITH QUOTAS
13.1. VIEWING A QUOTA
13.2. RESOURCES MANAGED BY QUOTAS
13.3. QUOTA SCOPES
13.4. QUOTA ENFORCEMENT
13.5. REQUESTS VERSUS LIMITS

CHAPTER 14. PRUNING OBJECTS TO RECLAIM RESOURCES
14.1. BASIC PRUNING OPERATIONS
14.2. PRUNING GROUPS
14.3. PRUNING DEPLOYMENT RESOURCES
14.4. PRUNING BUILDS

159
159
162
163
164
166
167
169
170
171
172

173
173
174
174
174
176
177

180
180
180
183
184
185
186

187
187
188
191

194
194
195
196

198
198
198
198

201
201

202
204
204
205

206
206
206
207
207

Red Hat OpenShift Service on AWS 4 Building applications

6

. .

. .

. .

14.5. AUTOMATICALLY PRUNING IMAGES
14.6. PRUNING CRON JOBS

CHAPTER 15. IDLING APPLICATIONS
15.1. IDLING APPLICATIONS

15.1.1. Idling a single service
15.1.2. Idling multiple services

15.2. UNIDLING APPLICATIONS

CHAPTER 16. DELETING APPLICATIONS
16.1. DELETING APPLICATIONS USING THE DEVELOPER PERSPECTIVE

CHAPTER 17. USING THE RED HAT MARKETPLACE
17.1. RED HAT MARKETPLACE FEATURES

17.1.1. Connect Red Hat OpenShift Service on AWS clusters to the Marketplace
17.1.2. Install applications
17.1.3. Deploy applications from different perspectives

The Developer perspective
The Administrator perspective

208
210

211
211
211
211
211

213
213

214
214
214
214
214
214
214

Table of Contents

7

Red Hat OpenShift Service on AWS 4 Building applications

8

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW
Using Red Hat OpenShift Service on AWS, you can create, edit, delete, and manage applications using
the web console or command line interface (CLI).

1.1. WORKING ON A PROJECT

Using projects, you can organize and manage applications in isolation. You can manage the entire
project lifecycle, including creating, viewing, and deleting a project in Red Hat OpenShift Service on
AWS.

After you create the project, you can grant or revoke access to a project and manage cluster roles for
the users using the Developer perspective. You can also edit the project configuration resource while
creating a project template that is used for automatic provisioning of new projects.

As a user with dedicated administrator permissions, you can choose to prevent an authenticated user
group from self-provisioning new projects.

1.2. WORKING ON AN APPLICATION

1.2.1. Creating an application

To create applications, you must have created a project or have access to a project with the appropriate
roles and permissions. You can create an application by using either the Developer perspective in the
web console, installed Operators, or the OpenShift CLI (oc). You can source the applications to be
added to the project from Git, JAR files, devfiles, or the developer catalog.

You can also use components that include source or binary code, images, and templates to create an
application by using the OpenShift CLI (oc). With the Red Hat OpenShift Service on AWS web console,
you can create an application from an Operator installed by a cluster administrator.

1.2.2. Maintaining an application

After you create the application, you can use the web console to monitor your project or application
metrics. You can also edit or delete the application using the web console.

When the application is running, not all applications resources are used. As a cluster administrator, you
can choose to idle these scalable resources to reduce resource consumption.

1.2.3. Connecting an application to services

An application uses backing services to build and connect workloads, which vary according to the service
provider. Using the Service Binding Operator, as a developer, you can bind workloads together with
Operator-managed backing services, without any manual procedures to configure the binding
connection.

1.2.4. Deploying an application

You can deploy your application using Deployment or DeploymentConfig objects and manage them
from the web console. You can create deployment strategies that help reduce downtime during a
change or an upgrade to the application.

You can also use Helm, a software package manager that simplifies deployment of applications and

CHAPTER 1. BUILDING APPLICATIONS OVERVIEW

9

You can also use Helm, a software package manager that simplifies deployment of applications and
services to Red Hat OpenShift Service on AWS clusters.

1.3. USING THE RED HAT MARKETPLACE

The Red Hat Marketplace is an open cloud marketplace where you can discover and access certified
software for container-based environments that run on public clouds and on-premises.

Red Hat OpenShift Service on AWS 4 Building applications

10

CHAPTER 2. PROJECTS

2.1. WORKING WITH PROJECTS

A project allows a community of users to organize and manage their content in isolation from other
communities.

NOTE

Projects starting with openshift- and kube- are default projects. These projects host
cluster components that run as pods and other infrastructure components. As such, Red
Hat OpenShift Service on AWS does not allow you to create projects starting with
openshift- or kube- using the oc new-project command. Cluster administrators can
create these projects using the oc adm new-project command.

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

2.1.1. Creating a project

You can use the Red Hat OpenShift Service on AWS web console or the OpenShift CLI (oc) to create a
project in your cluster.

2.1.1.1. Creating a project by using the web console

You can use the Red Hat OpenShift Service on AWS web console to create a project in your cluster.

NOTE

Projects starting with openshift- and kube- are considered critical by Red Hat OpenShift
Service on AWS. As such, Red Hat OpenShift Service on AWS does not allow you to
create projects starting with openshift- using the web console.

Prerequisites

Ensure that you have the appropriate roles and permissions to create projects, applications, and
other workloads in Red Hat OpenShift Service on AWS.

Procedure

If you are using the Administrator perspective:

a. Navigate to Home → Projects.

CHAPTER 2. PROJECTS

11

b. Click Create Project:

i. In the Create Project dialog box, enter a unique name, such as myproject, in the Name
field.

ii. Optional: Add the Display name and Description details for the project.

iii. Click Create.
The dashboard for your project is displayed.

c. Optional: Select the Details tab to view the project details.

d. Optional: If you have adequate permissions for a project, you can use the Project Access
tab to provide or revoke admin, edit, and view privileges for the project.

If you are using the Developer perspective:

a. Click the Project menu and select Create Project:

Figure 2.1. Create project

i. In the Create Project dialog box, enter a unique name, such as myproject, in the Name
field.

ii. Optional: Add the Display name and Description details for the project.

iii. Click Create.

b. Optional: Use the left navigation panel to navigate to the Project view and see the
dashboard for your project.

c. Optional: In the project dashboard, select the Details tab to view the project details.

d. Optional: If you have adequate permissions for a project, you can use the Project Access
tab of the project dashboard to provide or revoke admin, edit, and view privileges for the
project.

Additional resources

Customizing the available cluster roles using the web console

Red Hat OpenShift Service on AWS 4 Building applications

12

2.1.1.2. Creating a project by using the CLI

If allowed by your cluster administrator, you can create a new project.

NOTE

Projects starting with openshift- and kube- are considered critical by Red Hat OpenShift
Service on AWS. As such, Red Hat OpenShift Service on AWS does not allow you to
create Projects starting with openshift- or kube- using the oc new-project command.
Cluster administrators can create these projects using the oc adm new-project
command.

Procedure

Run:

For example:

NOTE

The number of projects you are allowed to create might be limited by the system
administrator. After your limit is reached, you might have to delete an existing project in
order to create a new one.

2.1.2. Viewing a project

You can use the Red Hat OpenShift Service on AWS web console or the OpenShift CLI (oc) to view a
project in your cluster.

2.1.2.1. Viewing a project by using the web console

You can view the projects that you have access to by using the Red Hat OpenShift Service on AWS web
console.

Procedure

If you are using the Administrator perspective:

a. Navigate to Home → Projects in the navigation menu.

b. Select a project to view. The Overview tab includes a dashboard for your project.

c. Select the Details tab to view the project details.

d. Select the YAML tab to view and update the YAML configuration for the project resource.

e. Select the Workloads tab to see workloads in the project.

$ oc new-project <project_name> \
 --description="<description>" --display-name="<display_name>"

$ oc new-project hello-openshift \
 --description="This is an example project" \
 --display-name="Hello OpenShift"

CHAPTER 2. PROJECTS

13

f. Select the RoleBindings tab to view and create role bindings for your project.

If you are using the Developer perspective:

a. Navigate to the Project page in the navigation menu.

b. Select All Projects from the Project drop-down menu at the top of the screen to list all of
the projects in your cluster.

c. Select a project to view. The Overview tab includes a dashboard for your project.

d. Select the Details tab to view the project details.

e. If you have adequate permissions for a project, select the Project access tab view and
update the privileges for the project.

2.1.2.2. Viewing a project using the CLI

When viewing projects, you are restricted to seeing only the projects you have access to view based on
the authorization policy.

Procedure

1. To view a list of projects, run:

2. You can change from the current project to a different project for CLI operations. The specified
project is then used in all subsequent operations that manipulate project-scoped content:

2.1.3. Providing access permissions to your project using the Developer perspective

You can use the Project view in the Developer perspective to grant or revoke access permissions to
your project.

Prerequisites

You have created a project.

Procedure

To add users to your project and provide Admin, Edit, or View access to them:

1. In the Developer perspective, navigate to the Project page.

2. Select your project from the Project menu.

3. Select the Project Access tab.

4. Click Add access to add a new row of permissions to the default ones.

Figure 2.2. Project permissions

$ oc get projects

$ oc project <project_name>

Red Hat OpenShift Service on AWS 4 Building applications

14

Figure 2.2. Project permissions

5. Enter the user name, click the Select a role drop-down list, and select an appropriate role.

6. Click Save to add the new permissions.

You can also use:

The Select a role drop-down list, to modify the access permissions of an existing user.

The Remove Access icon, to completely remove the access permissions of an existing user to
the project.

NOTE

Advanced role-based access control is managed in the Roles and Roles Binding views in
the Administrator perspective.

2.1.4. Customizing the available cluster roles using the web console

In the Developer perspective of the web console, the Project → Project access page enables a project
administrator to grant roles to users in a project. By default, the available cluster roles that can be
granted to users in a project are admin, edit, and view.

As a cluster administrator, you can define which cluster roles are available in the Project access page for
all projects cluster-wide. You can specify the available roles by customizing the
spec.customization.projectAccess.availableClusterRoles object in the Console configuration
resource.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

CHAPTER 2. PROJECTS

15

Procedure

1. In the Administrator perspective, navigate to Administration → Cluster settings.

2. Click the Configuration tab.

3. From the Configuration resource list, select Console operator.openshift.io.

4. Navigate to the YAML tab to view and edit the YAML code.

5. In the YAML code under spec, customize the list of available cluster roles for project access.
The following example specifies the default admin, edit, and view roles:

6. Click Save to save the changes to the Console configuration resource.

Verification

1. In the Developer perspective, navigate to the Project page.

2. Select a project from the Project menu.

3. Select the Project access tab.

4. Click the menu in the Role column and verify that the available roles match the configuration
that you applied to the Console resource configuration.

2.1.5. Adding to a project

You can add items to your project by using the +Add page in the Developer perspective.

Prerequisites

You have created a project.

Procedure

1. In the Developer perspective, navigate to the +Add page.

2. Select your project from the Project menu.

3. Click on an item on the +Add page and then follow the workflow.

NOTE

apiVersion: operator.openshift.io/v1
kind: Console
metadata:
 name: cluster
...
spec:
 customization:
 projectAccess:
 availableClusterRoles:
 - admin
 - edit
 - view

Red Hat OpenShift Service on AWS 4 Building applications

16

1

NOTE

You can also use the search feature in the Add* page to find additional items to add to
your project. Click * under Add at the top of the page and type the name of a
component in the search field.

2.1.6. Checking the project status

You can use the Red Hat OpenShift Service on AWS web console or the OpenShift CLI (oc) to view the
status of your project.

2.1.6.1. Checking project status by using the web console

You can review the status of your project by using the web console.

Prerequisites

You have created a project.

Procedure

If you are using the Administrator perspective:

a. Navigate to Home → Projects.

b. Select a project from the list.

c. Review the project status in the Overview page.

If you are using the Developer perspective:

a. Navigate to the Project page.

b. Select a project from the Project menu.

c. Review the project status in the Overview page.

2.1.6.2. Checking project status by using the CLI

You can review the status of your project by using the OpenShift CLI (oc).

Prerequisites

You have installed the OpenShift CLI (oc).

You have created a project.

Procedure

1. Switch to your project:

Replace <project_name> with the name of your project.

$ oc project <project_name> 1

CHAPTER 2. PROJECTS

17

2. Obtain a high-level overview of the project:

2.1.7. Deleting a project

You can use the Red Hat OpenShift Service on AWS web console or the OpenShift CLI (oc) to delete a
project.

When you delete a project, the server updates the project status to Terminating from Active. Then, the
server clears all content from a project that is in the Terminating state before finally removing the
project. While a project is in Terminating status, you cannot add new content to the project. Projects
can be deleted from the CLI or the web console.

2.1.7.1. Deleting a project by using the web console

You can delete a project by using the web console.

Prerequisites

You have created a project.

You have the required permissions to delete the project.

Procedure

If you are using the Administrator perspective:

a. Navigate to Home → Projects.

b. Select a project from the list.

c. Click the Actions drop-down menu for the project and select Delete Project.

NOTE

The Delete Project option is not available if you do not have the required
permissions to delete the project.

1. In the Delete Project? pane, confirm the deletion by entering the name of your project.

2. Click Delete.

If you are using the Developer perspective:

a. Navigate to the Project page.

b. Select the project that you want to delete from the Project menu.

c. Click the Actions drop-down menu for the project and select Delete Project.

NOTE

$ oc status

Red Hat OpenShift Service on AWS 4 Building applications

18

1

NOTE

If you do not have the required permissions to delete the project, the Delete
Project option is not available.

1. In the Delete Project? pane, confirm the deletion by entering the name of your project.

2. Click Delete.

2.1.7.2. Deleting a project by using the CLI

You can delete a project by using the OpenShift CLI (oc).

Prerequisites

You have installed the OpenShift CLI (oc).

You have created a project.

You have the required permissions to delete the project.

Procedure

1. Delete your project:

Replace <project_name> with the name of the project that you want to delete.

2.2. CONFIGURING PROJECT CREATION

In Red Hat OpenShift Service on AWS, projects are used to group and isolate related objects. When a
request is made to create a new project using the web console or oc new-project command, an
endpoint in Red Hat OpenShift Service on AWS is used to provision the project according to a template,
which can be customized.

As a cluster administrator, you can allow and configure how developers and service accounts can create,
or self-provision, their own projects.

2.2.1. About project creation

The Red Hat OpenShift Service on AWS API server automatically provisions new projects based on the
project template that is identified by the projectRequestTemplate parameter in the cluster’s project
configuration resource. If the parameter is not defined, the API server creates a default template that
creates a project with the requested name, and assigns the requesting user to the admin role for that
project.

When a project request is submitted, the API substitutes the following parameters into the template:

Table 2.1. Default project template parameters

$ oc delete project <project_name> 1

CHAPTER 2. PROJECTS

19

Parameter Description

PROJECT_NAME The name of the project. Required.

PROJECT_DISPLAYNAME The display name of the project. May be empty.

PROJECT_DESCRIPTION The description of the project. May be empty.

PROJECT_ADMIN_USER The user name of the administrating user.

PROJECT_REQUESTING_U
SER

The user name of the requesting user.

Access to the API is granted to developers with the self-provisioner role and the self-provisioners
cluster role binding. This role is available to all authenticated developers by default.

2.2.2. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Prerequisites

You have access to an Red Hat OpenShift Service on AWS cluster using an account with
dedicated-admin permissions.

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

Red Hat OpenShift Service on AWS 4 Building applications

20

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

2.2.3. Disabling project self-provisioning

You can prevent an authenticated user group from self-provisioning new projects.

Procedure

1. Log in as a user with cluster-admin privileges.

2. View the self-provisioners cluster role binding usage by running the following command:

Example output

Review the subjects in the self-provisioners section.

3. Remove the self-provisioner cluster role from the group system:authenticated:oauth.

If the self-provisioners cluster role binding binds only the self-provisioner role to the

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestTemplate:
 name: <template_name>
...

$ oc describe clusterrolebinding.rbac self-provisioners

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
 Kind: ClusterRole
 Name: self-provisioner
Subjects:
 Kind Name Namespace
 ---- ---- ---------
 Group system:authenticated:oauth

CHAPTER 2. PROJECTS

21

If the self-provisioners cluster role binding binds only the self-provisioner role to the
system:authenticated:oauth group, run the following command:

If the self-provisioners cluster role binding binds the self-provisioner role to more users,
groups, or service accounts than the system:authenticated:oauth group, run the following
command:

4. Edit the self-provisioners cluster role binding to prevent automatic updates to the role.
Automatic updates reset the cluster roles to the default state.

To update the role binding using the CLI:

i. Run the following command:

ii. In the displayed role binding, set the rbac.authorization.kubernetes.io/autoupdate
parameter value to false, as shown in the following example:

To update the role binding by using a single command:

5. Log in as an authenticated user and verify that it can no longer self-provision a project:

Example output

Consider customizing this project request message to provide more helpful instructions specific
to your organization.

2.2.4. Customizing the project request message

When a developer or a service account that is unable to self-provision projects makes a project creation
request using the web console or CLI, the following error message is returned by default:

$ oc patch clusterrolebinding.rbac self-provisioners -p '{"subjects": null}'

$ oc adm policy \
 remove-cluster-role-from-group self-provisioner \
 system:authenticated:oauth

$ oc edit clusterrolebinding.rbac self-provisioners

apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "false"
...

$ oc patch clusterrolebinding.rbac self-provisioners -p '{ "metadata": { "annotations": {
"rbac.authorization.kubernetes.io/autoupdate": "false" } } }'

$ oc new-project test

Error from server (Forbidden): You may not request a new project via this API.

Red Hat OpenShift Service on AWS 4 Building applications

22

Cluster administrators can customize this message. Consider updating it to provide further instructions
on how to request a new project specific to your organization. For example:

To request a project, contact your system administrator at projectname@example.com.

To request a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request.

To customize the project request message:

Procedure

1. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Log in as a user with cluster-admin privileges.

ii. Edit the project.config.openshift.io/cluster resource:

2. Update the spec section to include the projectRequestMessage parameter and set the value
to your custom message:

Project configuration resource with custom project request message

For example:

3. After you save your changes, attempt to create a new project as a developer or service account

You may not request a new project via this API.

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestMessage: <message_string>
...

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestMessage: To request a project, contact your system administrator at
projectname@example.com.
...

CHAPTER 2. PROJECTS

23

3. After you save your changes, attempt to create a new project as a developer or service account
that is unable to self-provision projects to verify that your changes were successfully applied.

Red Hat OpenShift Service on AWS 4 Building applications

24

CHAPTER 3. CREATING APPLICATIONS

3.1. CREATING APPLICATIONS BY USING THE DEVELOPER
PERSPECTIVE

The Developer perspective in the web console provides you the following options from the +Add view
to create applications and associated services and deploy them on Red Hat OpenShift Service on AWS:

Getting started resources: Use these resources to help you get started with Developer

Console. You can choose to hide the header using the Options menu .

Creating applications using samples: Use existing code samples to get started with
creating applications on the Red Hat OpenShift Service on AWS.

Build with guided documentation: Follow the guided documentation to build applications
and familiarize yourself with key concepts and terminologies.

Explore new developer features: Explore the new features and resources within the
Developer perspective.

Developer catalog: Explore the Developer Catalog to select the required applications, services,
or source to image builders, and then add it to your project.

All Services: Browse the catalog to discover services across Red Hat OpenShift Service on
AWS.

Database: Select the required database service and add it to your application.

Operator Backed: Select and deploy the required Operator-managed service.

Helm chart: Select the required Helm chart to simplify deployment of applications and
services.

Devfile: Select a devfile from the Devfile registry to declaratively define a development
environment.

Event Source: Select an event source to register interest in a class of events from a
particular system.

NOTE

The Managed services option is also available if the RHOAS Operator is
installed.

Git repository: Import an existing codebase, Devfile, or Dockerfile from your Git repository
using the From Git, From Devfile, or From Dockerfile options respectively, to build and deploy
an application on Red Hat OpenShift Service on AWS.

Container images: Use existing images from an image stream or registry to deploy it on to the
Red Hat OpenShift Service on AWS.

Pipelines: Use Tekton pipeline to create CI/CD pipelines for your software delivery process on
the Red Hat OpenShift Service on AWS.

CHAPTER 3. CREATING APPLICATIONS

25

Serverless: Explore the Serverless options to create, build, and deploy stateless and serverless
applications on the Red Hat OpenShift Service on AWS.

Channel: Create a Knative channel to create an event forwarding and persistence layer with
in-memory and reliable implementations.

Samples: Explore the available sample applications to create, build, and deploy an application
quickly.

Quick Starts: Explore the quick start options to create, import, and run applications with step-
by-step instructions and tasks.

From Local Machine: Explore the From Local Machine tile to import or upload files on your
local machine for building and deploying applications easily.

Import YAML: Upload a YAML file to create and define resources for building and
deploying applications.

Upload JAR file: Upload a JAR file to build and deploy Java applications.

Share my Project: Use this option to add or remove users to a project and provide accessibility
options to them.

Helm Chart repositories: Use this option to add Helm Chart repositories in a namespace.

Re-ordering of resources: Use these resources to re-order pinned resources added to your
navigation pane. The drag-and-drop icon is displayed on the left side of the pinned resource
when you hover over it in the navigation pane. The dragged resource can be dropped only in the
section where it resides.

Note that the Pipelines option is displayed only when the OpenShift Pipelines Operator is installed.

3.1.1. Prerequisites

To create applications using the Developer perspective ensure that:

You have logged in to the web console.

3.1.2. Creating sample applications

You can use the sample applications in the +Add flow of the Developer perspective to create, build, and
deploy applications quickly.

Prerequisites

You have logged in to the Red Hat OpenShift Service on AWS web console and are in the
Developer perspective.

Procedure

1. In the +Add view, click the Samples tile to see the Samples page.

2. On the Samples page, select one of the available sample applications to see the Create
Sample Application form.

3. In the Create Sample Application Form:

Red Hat OpenShift Service on AWS 4 Building applications

26

In the Name field, the deployment name is displayed by default. You can modify this name
as required.

In the Builder Image Version, a builder image is selected by default. You can modify this
image version by using the Builder Image Version drop-down list.

A sample Git repository URL is added by default.

4. Click Create to create the sample application. The build status of the sample application is
displayed on the Topology view. After the sample application is created, you can see the
deployment added to the application.

3.1.3. Creating applications by using Quick Starts

The Quick Starts page shows you how to create, import, and run applications on Red Hat OpenShift
Service on AWS, with step-by-step instructions and tasks.

Prerequisites

You have logged in to the Red Hat OpenShift Service on AWS web console and are in the
Developer perspective.

Procedure

1. In the +Add view, click the Getting Started resources → Build with guided documentation →
View all quick starts link to view the Quick Starts page.

2. In the Quick Starts page, click the tile for the quick start that you want to use.

3. Click Start to begin the quick start.

4. Perform the steps that are displayed.

3.1.4. Importing a codebase from Git to create an application

You can use the Developer perspective to create, build, and deploy an application on Red Hat
OpenShift Service on AWS using an existing codebase in GitHub.

The following procedure walks you through the From Git option in the Developer perspective to create
an application.

Procedure

1. In the +Add view, click From Git in the Git Repository tile to see the Import from git form.

2. In the Git section, enter the Git repository URL for the codebase you want to use to create an
application. For example, enter the URL of this sample Node.js application
https://github.com/sclorg/nodejs-ex. The URL is then validated.

3. Optional: You can click Show Advanced Git Options to add details such as:

Git Reference to point to code in a specific branch, tag, or commit to be used to build the
application.

Context Dir to specify the subdirectory for the application source code you want to use to
build the application.
Source Secret to create a Secret Name with credentials for pulling your source code from

CHAPTER 3. CREATING APPLICATIONS

27

Source Secret to create a Secret Name with credentials for pulling your source code from
a private repository.

4. Optional: You can import a Devfile, a Dockerfile, Builder Image, or a Serverless Function
through your Git repository to further customize your deployment.

If your Git repository contains a Devfile, a Dockerfile, a Builder Image, or a func.yaml, it is
automatically detected and populated on the respective path fields.

If a Devfile, a Dockerfile, or a Builder Image are detected in the same repository, the
Devfile is selected by default.

If func.yaml is detected in the Git repository, the Import Strategy changes to Serverless
Function.

Alternatively, you can create a serverless function by clicking Create Serverless function in
the +Add view using the Git repository URL.

To edit the file import type and select a different strategy, click Edit import strategy
option.

If multiple Devfiles, a Dockerfiles, or a Builder Images are detected, to import a specific
instance, specify the respective paths relative to the context directory.

5. After the Git URL is validated, the recommended builder image is selected and marked with a
star. If the builder image is not auto-detected, select a builder image. For the
https://github.com/sclorg/nodejs-ex Git URL, by default the Node.js builder image is selected.

a. Optional: Use the Builder Image Version drop-down to specify a version.

b. Optional: Use the Edit import strategy to select a different strategy.

c. Optional: For the Node.js builder image, use the Run command field to override the
command to run the application.

6. In the General section:

a. In the Application field, enter a unique name for the application grouping, for example,
myapp. Ensure that the application name is unique in a namespace.

b. The Name field to identify the resources created for this application is automatically
populated based on the Git repository URL if there are no existing applications. If there are
existing applications, you can choose to deploy the component within an existing
application, create a new application, or keep the component unassigned.

NOTE

The resource name must be unique in a namespace. Modify the resource
name if you get an error.

7. In the Resources section, select:

Deployment, to create an application in plain Kubernetes style.

Deployment Config, to create an Red Hat OpenShift Service on AWS style application.

8. In the Pipelines section, select Add Pipeline, and then click Show Pipeline Visualization to see

Red Hat OpenShift Service on AWS 4 Building applications

28

https://github.com/sclorg/nodejs-ex

8. In the Pipelines section, select Add Pipeline, and then click Show Pipeline Visualization to see
the pipeline for the application. A default pipeline is selected, but you can choose the pipeline
you want from the list of available pipelines for the application.

NOTE

The Add pipeline checkbox is checked and Configure PAC is selected by default
if the following criterias are fulfilled:

Pipeline operator is installed

pipelines-as-code is enabled

.tekton directory is detected in the Git repository

9. Add a webhook to your repository. If Configure PAC is checked and the GitHub App is set up,
you can see the Use GitHub App and Setup a webhook options. If GitHub App is not set up,
you can only see the Setup a webhook option:

a. Go to Settings → Webhooks and click Add webhook.

b. Set the Payload URL to the Pipelines as Code controller public URL.

c. Select the content type as application/json.

d. Add a webhook secret and note it in an alternate location. With openssl installed on your
local machine, generate a random secret.

e. Click Let me select individual events and select these events: Commit comments, Issue
comments, Pull request, and Pushes.

f. Click Add webhook.

10. Optional: In the Advanced Options section, the Target port and the Create a route to the
application is selected by default so that you can access your application using a publicly
available URL.
If your application does not expose its data on the default public port, 80, clear the check box,
and set the target port number you want to expose.

11. Optional: You can use the following advanced options to further customize your application:

Routing

By clicking the Routing link, you can perform the following actions:

Customize the hostname for the route.

Specify the path the router watches.

Select the target port for the traffic from the drop-down list.

Secure your route by selecting the Secure Route check box. Select the required TLS
termination type and set a policy for insecure traffic from the respective drop-down
lists.

NOTE

CHAPTER 3. CREATING APPLICATIONS

29

NOTE

For serverless applications, the Knative service manages all the routing
options above. However, you can customize the target port for traffic, if
required. If the target port is not specified, the default port of 8080 is
used.

Health Checks

Click the Health Checks link to add Readiness, Liveness, and Startup probes to your
application. All the probes have prepopulated default data; you can add the probes with the
default data or customize it as required.
To customize the health probes:

Click Add Readiness Probe, if required, modify the parameters to check if the container
is ready to handle requests, and select the check mark to add the probe.

Click Add Liveness Probe, if required, modify the parameters to check if a container is
still running, and select the check mark to add the probe.

Click Add Startup Probe, if required, modify the parameters to check if the application
within the container has started, and select the check mark to add the probe.
For each of the probes, you can specify the request type - HTTP GET, Container
Command, or TCP Socket, from the drop-down list. The form changes as per the
selected request type. You can then modify the default values for the other parameters,
such as the success and failure thresholds for the probe, number of seconds before
performing the first probe after the container starts, frequency of the probe, and the
timeout value.

Build Configuration and Deployment

Click the Build Configuration and Deployment links to see the respective configuration
options. Some options are selected by default; you can customize them further by adding the
necessary triggers and environment variables.
For serverless applications, the Deployment option is not displayed as the Knative
configuration resource maintains the desired state for your deployment instead of a
DeploymentConfig resource.

Scaling

Click the Scaling link to define the number of pods or instances of the application you want
to deploy initially.
If you are creating a serverless deployment, you can also configure the following settings:

Min Pods determines the lower limit for the number of pods that must be running at any
given time for a Knative service. This is also known as the minScale setting.

Max Pods determines the upper limit for the number of pods that can be running at any
given time for a Knative service. This is also known as the maxScale setting.

Concurrency target determines the number of concurrent requests desired for each
instance of the application at a given time.

Concurrency limit determines the limit for the number of concurrent requests allowed
for each instance of the application at a given time.

Concurrency utilization determines the percentage of the concurrent requests limit

Red Hat OpenShift Service on AWS 4 Building applications

30

Concurrency utilization determines the percentage of the concurrent requests limit
that must be met before Knative scales up additional pods to handle additional traffic.

Autoscale window defines the time window over which metrics are averaged to provide
input for scaling decisions when the autoscaler is not in panic mode. A service is scaled-
to-zero if no requests are received during this window. The default duration for the
autoscale window is 60s. This is also known as the stable window.

Resource Limit

Click the Resource Limit link to set the amount of CPU and Memory resources a container
is guaranteed or allowed to use when running.

Labels

Click the Labels link to add custom labels to your application.

12. Click Create to create the application and a success notification is displayed. You can see the
build status of the application in the Topology view.

3.1.5. Creating applications by deploying container image

You can use an external image registry or an image stream tag from an internal registry to deploy an
application on your cluster.

Prerequisites

You have logged in to the Red Hat OpenShift Service on AWS web console and are in the
Developer perspective.

Procedure

1. In the +Add view, click Container images to view the Deploy Images page.

2. In the Image section:

a. Select Image name from external registry to deploy an image from a public or a private
registry, or select Image stream tag from internal registry to deploy an image from an
internal registry.

b. Select an icon for your image in the Runtime icon tab.

3. In the General section:

a. In the Application name field, enter a unique name for the application grouping.

b. In the Name field, enter a unique name to identify the resources created for this
component.

4. In the Resource type section, select the resource type to generate:

a. Select Deployment to enable declarative updates for Pod and ReplicaSet objects.

b. Select DeploymentConfig to define the template for a Pod object, and manage deploying
new images and configuration sources.

5. Click Create. You can view the build status of the application in the Topology view.

CHAPTER 3. CREATING APPLICATIONS

31

3.1.6. Deploying a Java application by uploading a JAR file

You can use the web console Developer perspective to upload a JAR file by using the following options:

Navigate to the +Add view of the Developer perspective, and click Upload JAR file in the From
Local Machine tile. Browse and select your JAR file, or drag a JAR file to deploy your
application.

Navigate to the Topology view and use the Upload JAR file option, or drag a JAR file to deploy
your application.

Use the in-context menu in the Topology view, and then use the Upload JAR file option to
upload your JAR file to deploy your application.

Prerequisites

The Cluster Samples Operator must be installed by a user with the dedicated-admin role.

You have access to the Red Hat OpenShift Service on AWS web console and are in the
Developer perspective.

Procedure

1. In the Topology view, right-click anywhere to view the Add to Project menu.

2. Hover over the Add to Project menu to see the menu options, and then select the Upload JAR
file option to see the Upload JAR file form. Alternatively, you can drag the JAR file into the
Topology view.

3. In the JAR file field, browse for the required JAR file on your local machine and upload it.
Alternatively, you can drag the JAR file on to the field. A toast alert is displayed at the top right
if an incompatible file type is dragged into the Topology view. A field error is displayed if an
incompatible file type is dropped on the field in the upload form.

4. The runtime icon and builder image are selected by default. If a builder image is not auto-
detected, select a builder image. If required, you can change the version using the Builder
Image Version drop-down list.

5. Optional: In the Application Name field, enter a unique name for your application to use for
resource labelling.

6. In the Name field, enter a unique component name for the associated resources.

7. Optional: Use the Resource type drop-down list to change the resource type.

8. In the Advanced options menu, click Create a Route to the Application to configure a public
URL for your deployed application.

9. Click Create to deploy the application. A toast notification is shown to notify you that the JAR
file is being uploaded. The toast notification also includes a link to view the build logs.

NOTE

If you attempt to close the browser tab while the build is running, a web alert is displayed.

After the JAR file is uploaded and the application is deployed, you can view the application in the

Red Hat OpenShift Service on AWS 4 Building applications

32

After the JAR file is uploaded and the application is deployed, you can view the application in the
Topology view.

3.1.7. Using the Devfile registry to access devfiles

You can use the devfiles in the +Add flow of the Developer perspective to create an application. The
+Add flow provides a complete integration with the devfile community registry. A devfile is a portable
YAML file that describes your development environment without needing to configure it from scratch.
Using the Devfile registry, you can use a preconfigured devfile to create an application.

Procedure

1. Navigate to Developer Perspective → +Add → Developer Catalog → All Services. A list of all
the available services in the Developer Catalog is displayed.

2. Under Type, click Devfiles to browse for devfiles that support a particular language or
framework. Alternatively, you can use the keyword filter to search for a particular devfile using
their name, tag, or description.

3. Click the devfile you want to use to create an application. The devfile tile displays the details of
the devfile, including the name, description, provider, and the documentation of the devfile.

4. Click Create to create an application and view the application in the Topology view.

3.1.8. Using the Developer Catalog to add services or components to your
application

You use the Developer Catalog to deploy applications and services based on Operator backed services
such as Databases, Builder Images, and Helm Charts. The Developer Catalog contains a collection of
application components, services, event sources, or source-to-image builders that you can add to your
project. Cluster administrators can customize the content made available in the catalog.

Procedure

1. In the Developer perspective, navigate to the +Add view and from the Developer Catalog tile,
click All Services to view all the available services in the Developer Catalog.

2. Under All Services, select the kind of service or the component you need to add to your project.
For this example, select Databases to list all the database services and then click MariaDB to
see the details for the service.

3. Click Instantiate Template to see an automatically populated template with details for the
MariaDB service, and then click Create to create and view the MariaDB service in the Topology
view.

Figure 3.1. MariaDB in Topology

CHAPTER 3. CREATING APPLICATIONS

33

https://registry.devfile.io/viewer

Figure 3.1. MariaDB in Topology

3.1.9. Additional resources

For more information about Knative routing settings for OpenShift Serverless, see Routing.

For more information about domain mapping settings for OpenShift Serverless, see Configuring
a custom domain for a Knative service.

For more information about Knative autoscaling settings for OpenShift Serverless, see
Autoscaling.

For more information about adding a new user to a project, see Working with projects.

For more information about creating a Helm Chart repository, see Creating Helm Chart
repositories.

3.2. CREATING APPLICATIONS FROM INSTALLED OPERATORS

Operators are a method of packaging, deploying, and managing a Kubernetes application. You can
create applications on Red Hat OpenShift Service on AWS using Operators that have been installed by a
cluster administrator.

This guide walks developers through an example of creating applications from an installed Operator
using the Red Hat OpenShift Service on AWS web console.

3.2.1. Creating an etcd cluster using an Operator

This procedure walks through creating a new etcd cluster using the etcd Operator, managed by
Operator Lifecycle Manager (OLM).

Prerequisites

Red Hat OpenShift Service on AWS 4 Building applications

34

https://docs.openshift.com/serverless/1.28/knative-serving/external-ingress-routing/routing-overview.html#routing-overview
https://docs.openshift.com/serverless/1.28/knative-serving/config-custom-domains/serverless-custom-domains.html#serverless-custom-domains
https://docs.openshift.com/serverless/1.28/knative-serving/autoscaling/serverless-autoscaling-developer.html#serverless-autoscaling-developer

Access to an Red Hat OpenShift Service on AWS cluster.

The etcd Operator already installed cluster-wide by an administrator.

Procedure

1. Create a new project in the Red Hat OpenShift Service on AWS web console for this procedure.
This example uses a project called my-etcd.

2. Navigate to the Operators → Installed Operators page. The Operators that have been installed
to the cluster by the dedicated-admin and are available for use are shown here as a list of
cluster service versions (CSVs). CSVs are used to launch and manage the software provided by
the Operator.

TIP

You can get this list from the CLI using:

3. On the Installed Operators page, click the etcd Operator to view more details and available
actions.
As shown under Provided APIs, this Operator makes available three new resource types,
including one for an etcd Cluster (the EtcdCluster resource). These objects work similar to the
built-in native Kubernetes ones, such as Deployment or ReplicaSet, but contain logic specific
to managing etcd.

4. Create a new etcd cluster:

a. In the etcd Cluster API box, click Create instance.

b. The next page allows you to make any modifications to the minimal starting template of an
EtcdCluster object, such as the size of the cluster. For now, click Create to finalize. This
triggers the Operator to start up the pods, services, and other components of the new etcd
cluster.

5. Click the example etcd cluster, then click the Resources tab to see that your project now
contains a number of resources created and configured automatically by the Operator.
Verify that a Kubernetes service has been created that allows you to access the database from
other pods in your project.

6. All users with the edit role in a given project can create, manage, and delete application
instances (an etcd cluster, in this example) managed by Operators that have already been
created in the project, in a self-service manner, just like a cloud service. If you want to enable
additional users with this ability, project administrators can add the role using the following
command:

You now have an etcd cluster that will react to failures and rebalance data as pods become unhealthy or
are migrated between nodes in the cluster. Most importantly, dedicated-admins or developers with
proper access can now easily use the database with their applications.

3.3. CREATING APPLICATIONS BY USING THE CLI

$ oc get csv

$ oc policy add-role-to-user edit <user> -n <target_project>

CHAPTER 3. CREATING APPLICATIONS

35

You can create an Red Hat OpenShift Service on AWS application from components that include source
or binary code, images, and templates by using the Red Hat OpenShift Service on AWS CLI.

The set of objects created by new-app depends on the artifacts passed as input: source repositories,
images, or templates.

3.3.1. Creating an application from source code

With the new-app command you can create applications from source code in a local or remote Git
repository.

The new-app command creates a build configuration, which itself creates a new application image from
your source code. The new-app command typically also creates a Deployment object to deploy the
new image, and a service to provide load-balanced access to the deployment running your image.

Red Hat OpenShift Service on AWS automatically detects whether the pipeline, source, or docker build
strategy should be used, and in the case of source build, detects an appropriate language builder image.

3.3.1.1. Local

To create an application from a Git repository in a local directory:

NOTE

If you use a local Git repository, the repository must have a remote named origin that
points to a URL that is accessible by the Red Hat OpenShift Service on AWS cluster. If
there is no recognized remote, running the new-app command will create a binary build.

3.3.1.2. Remote

To create an application from a remote Git repository:

To create an application from a private remote Git repository:

NOTE

If you use a private remote Git repository, you can use the --source-secret flag to
specify an existing source clone secret that will get injected into your build config to
access the repository.

You can use a subdirectory of your source code repository by specifying a --context-dir flag. To create
an application from a remote Git repository and a context subdirectory:

Also, when specifying a remote URL, you can specify a Git branch to use by appending #

$ oc new-app /<path to source code>

$ oc new-app https://github.com/sclorg/cakephp-ex

$ oc new-app https://github.com/youruser/yourprivaterepo --source-secret=yoursecret

$ oc new-app https://github.com/sclorg/s2i-ruby-container.git \
 --context-dir=2.0/test/puma-test-app

Red Hat OpenShift Service on AWS 4 Building applications

36

Also, when specifying a remote URL, you can specify a Git branch to use by appending #
<branch_name> to the end of the URL:

3.3.1.3. Build strategy detection

Red Hat OpenShift Service on AWS automatically determines which build strategy to use by detecting
certain files:

If a Jenkins file exists in the root or specified context directory of the source repository when
creating a new application, Red Hat OpenShift Service on AWS generates a pipeline build
strategy.

NOTE

The pipeline build strategy is deprecated; consider using Red Hat OpenShift
Pipelines instead.

If a Dockerfile exists in the root or specified context directory of the source repository when
creating a new application, Red Hat OpenShift Service on AWS generates a docker build
strategy.

If neither a Jenkins file nor a Dockerfile is detected, Red Hat OpenShift Service on AWS
generates a source build strategy.

Override the automatically detected build strategy by setting the --strategy flag to docker, pipeline, or
source.

NOTE

The oc command requires that files containing build sources are available in a remote Git
repository. For all source builds, you must use git remote -v.

3.3.1.4. Language detection

If you use the source build strategy, new-app attempts to determine the language builder to use by the
presence of certain files in the root or specified context directory of the repository:

Table 3.1. Languages detected by new-app

Language Files

jee pom.xml

nodejs app.json, package.json

perl cpanfile, index.pl

$ oc new-app https://github.com/openshift/ruby-hello-world.git#beta4

$ oc new-app /home/user/code/myapp --strategy=docker

CHAPTER 3. CREATING APPLICATIONS

37

php composer.json, index.php

python requirements.txt, setup.py

ruby Gemfile, Rakefile, config.ru

scala build.sbt

golang Godeps, main.go

Language Files

After a language is detected, new-app searches the Red Hat OpenShift Service on AWS server for
image stream tags that have a supports annotation matching the detected language, or an image
stream that matches the name of the detected language. If a match is not found, new-app searches the
Docker Hub registry for an image that matches the detected language based on name.

You can override the image the builder uses for a particular source repository by specifying the image,
either an image stream or container specification, and the repository with a ~ as a separator. Note that if
this is done, build strategy detection and language detection are not carried out.

For example, to use the myproject/my-ruby imagestream with the source in a remote repository:

To use the openshift/ruby-20-centos7:latest container image stream with the source in a local
repository:

NOTE

Language detection requires the Git client to be locally installed so that your repository
can be cloned and inspected. If Git is not available, you can avoid the language detection
step by specifying the builder image to use with your repository with the <image>~
<repository> syntax.

The -i <image> <repository> invocation requires that new-app attempt to clone
repository to determine what type of artifact it is, so this will fail if Git is not available.

The -i <image> --code <repository> invocation requires new-app clone repository to
determine whether image should be used as a builder for the source code, or deployed
separately, as in the case of a database image.

3.3.2. Creating an application from an image

You can deploy an application from an existing image. Images can come from image streams in the Red
Hat OpenShift Service on AWS server, images in a specific registry, or images in the local Docker server.

The new-app command attempts to determine the type of image specified in the arguments passed to

$ oc new-app myproject/my-ruby~https://github.com/openshift/ruby-hello-world.git

$ oc new-app openshift/ruby-20-centos7:latest~/home/user/code/my-ruby-app

Red Hat OpenShift Service on AWS 4 Building applications

38

https://registry.hub.docker.com

The new-app command attempts to determine the type of image specified in the arguments passed to
it. However, you can explicitly tell new-app whether the image is a container image using the --docker-
image argument or an image stream using the -i|--image-stream argument.

NOTE

If you specify an image from your local Docker repository, you must ensure that the same
image is available to the Red Hat OpenShift Service on AWS cluster nodes.

3.3.2.1. Docker Hub MySQL image

Create an application from the Docker Hub MySQL image, for example:

3.3.2.2. Image in a private registry

Create an application using an image in a private registry, specify the full container image specification:

3.3.2.3. Existing image stream and optional image stream tag

Create an application from an existing image stream and optional image stream tag:

3.3.3. Creating an application from a template

You can create an application from a previously stored template or from a template file, by specifying
the name of the template as an argument. For example, you can store a sample application template and
use it to create an application.

Upload an application template to your current project’s template library. The following example uploads
an application template from a file called examples/sample-app/application-template-stibuild.json:

Then create a new application by referencing the application template. In this example, the template
name is ruby-helloworld-sample:

To create a new application by referencing a template file in your local file system, without first storing it
in Red Hat OpenShift Service on AWS, use the -f|--file argument. For example:

3.3.3.1. Template parameters

When creating an application based on a template, use the -p|--param argument to set parameter values

$ oc new-app mysql

$ oc new-app myregistry:5000/example/myimage

$ oc new-app my-stream:v1

$ oc create -f examples/sample-app/application-template-stibuild.json

$ oc new-app ruby-helloworld-sample

$ oc new-app -f examples/sample-app/application-template-stibuild.json

CHAPTER 3. CREATING APPLICATIONS

39

When creating an application based on a template, use the -p|--param argument to set parameter values
that are defined by the template:

You can store your parameters in a file, then use that file with --param-file when instantiating a
template. If you want to read the parameters from standard input, use --param-file=-. The following is an
example file called helloworld.params:

Reference the parameters in the file when instantiating a template:

3.3.4. Modifying application creation

The new-app command generates Red Hat OpenShift Service on AWS objects that build, deploy, and
run the application that is created. Normally, these objects are created in the current project and
assigned names that are derived from the input source repositories or the input images. However, with
new-app you can modify this behavior.

Table 3.2. new-app output objects

Object Description

BuildConfig A BuildConfig object is created for each source repository that is specified in the
command line. The BuildConfig object specifies the strategy to use, the source
location, and the build output location.

ImageStreams For the BuildConfig object, two image streams are usually created. One represents
the input image. With source builds, this is the builder image. With Docker builds, this is
the FROM image. The second one represents the output image. If a container image
was specified as input to new-app, then an image stream is created for that image as
well.

DeploymentCon
fig

A DeploymentConfig object is created either to deploy the output of a build, or a
specified image. The new-app command creates emptyDir volumes for all Docker
volumes that are specified in containers included in the resulting DeploymentConfig
object .

Service The new-app command attempts to detect exposed ports in input images. It uses the
lowest numeric exposed port to generate a service that exposes that port. To expose a
different port, after new-app has completed, simply use the oc expose command to
generate additional services.

Other Other objects can be generated when instantiating templates, according to the
template.

$ oc new-app ruby-helloworld-sample \
 -p ADMIN_USERNAME=admin -p ADMIN_PASSWORD=mypassword

ADMIN_USERNAME=admin
ADMIN_PASSWORD=mypassword

$ oc new-app ruby-helloworld-sample --param-file=helloworld.params

Red Hat OpenShift Service on AWS 4 Building applications

40

3.3.4.1. Specifying environment variables

When generating applications from a template, source, or an image, you can use the -e|--env argument
to pass environment variables to the application container at run time:

The variables can also be read from file using the --env-file argument. The following is an example file
called postgresql.env:

Read the variables from the file:

Additionally, environment variables can be given on standard input by using --env-file=-:

NOTE

Any BuildConfig objects created as part of new-app processing are not updated with
environment variables passed with the -e|--env or --env-file argument.

3.3.4.2. Specifying build environment variables

When generating applications from a template, source, or an image, you can use the --build-env
argument to pass environment variables to the build container at run time:

The variables can also be read from a file using the --build-env-file argument. The following is an
example file called ruby.env:

Read the variables from the file:

Additionally, environment variables can be given on standard input by using --build-env-file=-:

$ oc new-app openshift/postgresql-92-centos7 \
 -e POSTGRESQL_USER=user \
 -e POSTGRESQL_DATABASE=db \
 -e POSTGRESQL_PASSWORD=password

POSTGRESQL_USER=user
POSTGRESQL_DATABASE=db
POSTGRESQL_PASSWORD=password

$ oc new-app openshift/postgresql-92-centos7 --env-file=postgresql.env

$ cat postgresql.env | oc new-app openshift/postgresql-92-centos7 --env-file=-

$ oc new-app openshift/ruby-23-centos7 \
 --build-env HTTP_PROXY=http://myproxy.net:1337/ \
 --build-env GEM_HOME=~/.gem

HTTP_PROXY=http://myproxy.net:1337/
GEM_HOME=~/.gem

$ oc new-app openshift/ruby-23-centos7 --build-env-file=ruby.env

$ cat ruby.env | oc new-app openshift/ruby-23-centos7 --build-env-file=-

CHAPTER 3. CREATING APPLICATIONS

41

3.3.4.3. Specifying labels

When generating applications from source, images, or templates, you can use the -l|--label argument to
add labels to the created objects. Labels make it easy to collectively select, configure, and delete
objects associated with the application.

3.3.4.4. Viewing the output without creation

To see a dry-run of running the new-app command, you can use the -o|--output argument with a yaml
or json value. You can then use the output to preview the objects that are created or redirect it to a file
that you can edit. After you are satisfied, you can use oc create to create the Red Hat OpenShift Service
on AWS objects.

To output new-app artifacts to a file, run the following:

Edit the file:

Create a new application by referencing the file:

3.3.4.5. Creating objects with different names

Objects created by new-app are normally named after the source repository, or the image used to
generate them. You can set the name of the objects produced by adding a --name flag to the
command:

3.3.4.6. Creating objects in a different project

Normally, new-app creates objects in the current project. However, you can create objects in a different
project by using the -n|--namespace argument:

3.3.4.7. Creating multiple objects

The new-app command allows creating multiple applications specifying multiple parameters to new-
app. Labels specified in the command line apply to all objects created by the single command.
Environment variables apply to all components created from source or images.

To create an application from a source repository and a Docker Hub image:

$ oc new-app https://github.com/openshift/ruby-hello-world -l name=hello-world

$ oc new-app https://github.com/openshift/ruby-hello-world \
 -o yaml > myapp.yaml

$ vi myapp.yaml

$ oc create -f myapp.yaml

$ oc new-app https://github.com/openshift/ruby-hello-world --name=myapp

$ oc new-app https://github.com/openshift/ruby-hello-world -n myproject

$ oc new-app https://github.com/openshift/ruby-hello-world mysql

Red Hat OpenShift Service on AWS 4 Building applications

42

NOTE

If a source code repository and a builder image are specified as separate arguments,
new-app uses the builder image as the builder for the source code repository. If this is
not the intent, specify the required builder image for the source using the ~ separator.

3.3.4.8. Grouping images and source in a single pod

The new-app command allows deploying multiple images together in a single pod. To specify which
images to group together, use the + separator. The --group command line argument can also be used to
specify the images that should be grouped together. To group the image built from a source repository
with other images, specify its builder image in the group:

To deploy an image built from source and an external image together:

3.3.4.9. Searching for images, templates, and other inputs

To search for images, templates, and other inputs for the oc new-app command, add the --search and
--list flags. For example, to find all of the images or templates that include PHP:

3.3.4.10. Setting the import mode

To set the import mode when using oc new-app, add the --import-mode flag. This flag can be
appended with Legacy or PreserveOriginal, which provides users the option to create image streams
using a single sub-manifest, or all manifests, respectively.

$ oc new-app ruby+mysql

$ oc new-app \
 ruby~https://github.com/openshift/ruby-hello-world \
 mysql \
 --group=ruby+mysql

$ oc new-app --search php

$ oc new-app --image=registry.redhat.io/ubi8/httpd-24:latest --import-mode=Legacy --name=test

$ oc new-app --image=registry.redhat.io/ubi8/httpd-24:latest --import-mode=PreserveOriginal --
name=test

CHAPTER 3. CREATING APPLICATIONS

43

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY
USING THE TOPOLOGY VIEW

The Topology view in the Developer perspective of the web console provides a visual representation of
all the applications within a project, their build status, and the components and services associated with
them.

4.1. PREREQUISITES

To view your applications in the Topology view and interact with them, ensure that:

You have logged in to the web console.

You are in the Developer perspective.

4.2. VIEWING THE TOPOLOGY OF YOUR APPLICATION

You can navigate to the Topology view using the left navigation panel in the Developer perspective.
After you deploy an application, you are directed automatically to the Graph view where you can see the
status of the application pods, quickly access the application on a public URL, access the source code to
modify it, and see the status of your last build. You can zoom in and out to see more details for a
particular application.

The Topology view provides you the option to monitor your applications using the List view. Use the

List view icon () to see a list of all your applications and use the Graph view icon () to
switch back to the graph view.

You can customize the views as required using the following:

Use the Find by name field to find the required components. Search results may appear outside
of the visible area; click Fit to Screen from the lower-left toolbar to resize the Topology view to
show all components.

Use the Display Options drop-down list to configure the Topology view of the various
application groupings. The options are available depending on the types of components
deployed in the project:

Expand group

Virtual Machines: Toggle to show or hide the virtual machines.

Application Groupings: Clear to condense the application groups into cards with an
overview of an application group and alerts associated with it.

Helm Releases: Clear to condense the components deployed as Helm Release into
cards with an overview of a given release.

Operator Groupings: Clear to condense the components deployed with an Operator
into cards with an overview of the given group.

Show elements based on Pod Count or Labels

Pod Count: Select to show the number of pods of a component in the component icon.

Red Hat OpenShift Service on AWS 4 Building applications

44

Labels: Toggle to show or hide the component labels.

4.3. INTERACTING WITH APPLICATIONS AND COMPONENTS

In the Topology view in the Developer perspective of the web console, the Graph view provides the
following options to interact with applications and components:

Click Open URL () to see your application exposed by the route on a public URL.

Click Edit Source code to access your source code and modify it.

NOTE

This feature is available only when you create applications using the From Git,
From Catalog, and the From Dockerfile options.

Hover your cursor over the lower left icon on the pod to see the name of the latest build and its
status. The status of the application build is indicated as New (), Pending (), Running (

), Completed (), Failed (), and Canceled ().

The status or phase of the pod is indicated by different colors and tooltips as:

Running (): The pod is bound to a node and all of the containers are created. At least
one container is still running or is in the process of starting or restarting.

Not Ready (): The pods which are running multiple containers, not all containers are
ready.

Warning(): Containers in pods are being terminated, however termination did not
succeed. Some containers may be other states.

Failed(): All containers in the pod terminated but least one container has terminated in
failure. That is, the container either exited with non-zero status or was terminated by the
system.

Pending(): The pod is accepted by the Kubernetes cluster, but one or more of the
containers has not been set up and made ready to run. This includes time a pod spends
waiting to be scheduled as well as the time spent downloading container images over the
network.

Succeeded(): All containers in the pod terminated successfully and will not be restarted.

Terminating(): When a pod is being deleted, it is shown as Terminating by some
kubectl commands. Terminating status is not one of the pod phases. A pod is granted a
graceful termination period, which defaults to 30 seconds.

Unknown(): The state of the pod could not be obtained. This phase typically occurs due
to an error in communicating with the node where the pod should be running.

After you create an application and an image is deployed, the status is shown as Pending. After
the application is built, it is displayed as Running.

Figure 4.1. Application topology

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

45

Figure 4.1. Application topology

The application resource name is appended with indicators for the different types of resource
objects as follows:

CJ: CronJob

D: Deployment

DC: DeploymentConfig

DS: DaemonSet

J: Job

P: Pod

SS: StatefulSet

 (Knative): A serverless application

NOTE

Serverless applications take some time to load and display on the Graph
view. When you deploy a serverless application, it first creates a service
resource and then a revision. After that, it is deployed and displayed on the
Graph view. If it is the only workload, you might be redirected to the Add
page. After the revision is deployed, the serverless application is displayed on
the Graph view.

4.4. SCALING APPLICATION PODS AND CHECKING BUILDS AND
ROUTES

The Topology view provides the details of the deployed components in the Overview panel. You can
use the Overview and Details tabs to scale the application pods, check build status, services, and routes
as follows:

Red Hat OpenShift Service on AWS 4 Building applications

46

Click on the component node to see the Overview panel to the right. Use the Details tab to:

Scale your pods using the up and down arrows to increase or decrease the number of
instances of the application manually. For serverless applications, the pods are
automatically scaled down to zero when idle and scaled up depending on the channel traffic.

Check the Labels, Annotations, and Status of the application.

Click the Resources tab to:

See the list of all the pods, view their status, access logs, and click on the pod to see the pod
details.

See the builds, their status, access logs, and start a new build if needed.

See the services and routes used by the component.

For serverless applications, the Resources tab provides information on the revision, routes, and
the configurations used for that component.

4.5. ADDING COMPONENTS TO AN EXISTING PROJECT

You can add components to a project.

Procedure

1. Navigate to the +Add view.

2. Click Add to Project () next to left navigation pane or press Ctrl+Space

3. Search for the component and click the Start/Create/Install button or click Enter to add the
component to the project and see it in the topology Graph view.

Figure 4.2. Adding component via quick search

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

47

Alternatively, you can also use the available options in the context menu, such as Import from Git,
Container Image, Database, From Catalog, Operator Backed, Helm Charts, Samples, or Upload JAR
file, by right-clicking in the topology Graph view to add a component to your project.

Figure 4.3. Context menu to add services

4.6. GROUPING MULTIPLE COMPONENTS WITHIN AN APPLICATION

You can use the +Add view to add multiple components or services to your project and use the
topology Graph view to group applications and resources within an application group.

Prerequisites

You have created and deployed minimum two or more components on Red Hat OpenShift
Service on AWS using the Developer perspective.

Procedure

To add a service to the existing application group, press Shift+ drag it to the existing application
group. Dragging a component and adding it to an application group adds the required labels to
the component.

Figure 4.4. Application grouping

Red Hat OpenShift Service on AWS 4 Building applications

48

Figure 4.4. Application grouping

Alternatively, you can also add the component to an application as follows:

1. Click the service pod to see the Overview panel to the right.

2. Click the Actions drop-down menu and select Edit Application Grouping.

3. In the Edit Application Grouping dialog box, click the Application drop-down list, and select an
appropriate application group.

4. Click Save to add the service to the application group.

You can remove a component from an application group by selecting the component and using Shift+
drag to drag it out of the application group.

4.7. ADDING SERVICES TO YOUR APPLICATION

To add a service to your application use the +Add actions using the context menu in the topology Graph
view.

NOTE

In addition to the context menu, you can add services by using the sidebar or hovering
and dragging the dangling arrow from the application group.

Procedure

1. Right-click an application group in the topology Graph view to display the context menu.

Figure 4.5. Add resource context menu

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

49

Figure 4.5. Add resource context menu

2. Use Add to Application to select a method for adding a service to the application group, such
as From Git, Container Image, From Dockerfile, From Devfile, Upload JAR file, Event
Source, Channel, or Broker.

3. Complete the form for the method you choose and click Create. For example, to add a service
based on the source code in your Git repository, choose the From Git method, fill in the Import
from Git form, and click Create.

4.8. REMOVING SERVICES FROM YOUR APPLICATION

In the topology Graph view remove a service from your application using the context menu.

Procedure

1. Right-click on a service in an application group in the topology Graph view to display the
context menu.

2. Select Delete Deployment to delete the service.

Figure 4.6. Deleting deployment option

Red Hat OpenShift Service on AWS 4 Building applications

50

Figure 4.6. Deleting deployment option

4.9. LABELS AND ANNOTATIONS USED FOR THE TOPOLOGY VIEW

The Topology view uses the following labels and annotations:

Icon displayed in the node

Icons in the node are defined by looking for matching icons using the app.openshift.io/runtime label,
followed by the app.kubernetes.io/name label. This matching is done using a predefined set of
icons.

Link to the source code editor or the source

CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW

51

The app.openshift.io/vcs-uri annotation is used to create links to the source code editor.

Node Connector

The app.openshift.io/connects-to annotation is used to connect the nodes.

App grouping

The app.kubernetes.io/part-of=<appname> label is used to group the applications, services, and
components.

For detailed information on the labels and annotations Red Hat OpenShift Service on AWS applications
must use, see Guidelines for labels and annotations for OpenShift applications .

4.10. ADDITIONAL RESOURCES

See Importing a codebase from Git to create an application for more information on creating an
application from Git.

See Connecting an application to a service using the Developer perspective .

Red Hat OpenShift Service on AWS 4 Building applications

52

https://github.com/redhat-developer/app-labels/blob/master/labels-annotation-for-openshift.adoc

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

5.1. RELEASE NOTES FOR SERVICE BINDING OPERATOR

The Service Binding Operator consists of a controller and an accompanying custom resource definition
(CRD) for service binding. It manages the data plane for workloads and backing services. The Service
Binding Controller reads the data made available by the control plane of backing services. Then, it
projects this data to workloads according to the rules specified through the ServiceBinding resource.

With Service Binding Operator, you can:

Bind your workloads together with Operator-managed backing services.

Automate configuration of binding data.

Provide service operators a low-touch administrative experience to provision and manage
access to services.

Enrich development lifecycle with a consistent and declarative service binding method that
eliminates discrepancies in cluster environments.

The custom resource definition (CRD) of the Service Binding Operator supports the following APIs:

Service Binding with the binding.operators.coreos.com API group.

Service Binding (Spec API) with the servicebinding.io API group.

5.1.1. Support matrix

Some features in the following table are in Technology Preview. These experimental features are not
intended for production use.

In the table, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 5.1. Support matrix

Service Binding
Operator

API Group and Support Status OpenShift Versions

Version binding.operators.co
reos.com

servicebinding.io

1.3.3 GA GA 4.9-4.12

1.3.1 GA GA 4.9-4.11

1.3 GA GA 4.9-4.11

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

53

https://access.redhat.com/support/offerings/techpreview

1.2 GA GA 4.7-4.11

1.1.1 GA TP 4.7-4.10

1.1 GA TP 4.7-4.10

1.0.1 GA TP 4.7-4.9

1.0 GA TP 4.7-4.9

Service Binding
Operator

API Group and Support Status OpenShift Versions

5.1.2. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see Red Hat CTO Chris Wright’s message .

5.1.3. Release notes for Service Binding Operator 1.3.3

Service Binding Operator 1.3.3 is now available on Red Hat OpenShift Service on AWS 4.9, 4.10, 4.11 and
4.12.

5.1.3.1. Fixed issues

Before this update, a security vulnerability CVE-2022-41717 was noted for Service Binding
Operator. This update fixes the CVE-2022-41717 error and updates the golang.org/x/net
package from v0.0.0-20220906165146-f3363e06e74c to v0.4.0. APPSVC-1256

Before this update, Provisioned Services were only detected if the respective resource had the
"servicebinding.io/provisioned-service: true" annotation set while other Provisioned Services
were missed. With this update, the detection mechanism identifies all Provisioned Services
correctly based on the "status.binding.name" attribute. APPSVC-1204

5.1.4. Release notes for Service Binding Operator 1.3.1

Service Binding Operator 1.3.1 is now available on Red Hat OpenShift Service on AWS 4.9, 4.10, and 4.11.

5.1.4.1. Fixed issues

Before this update, a security vulnerability CVE-2022-32149 was noted for Service Binding
Operator. This update fixes the CVE-2022-32149 error and updates
the golang.org/x/text package from v0.3.7 to v0.3.8. APPSVC-1220

5.1.5. Release notes for Service Binding Operator 1.3

Service Binding Operator 1.3 is now available on Red Hat OpenShift Service on AWS 4.9, 4.10, and 4.11.

5.1.5.1. Removed functionality

Red Hat OpenShift Service on AWS 4 Building applications

54

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language
https://issues.redhat.com/browse/APPSVC-1256
https://issues.redhat.com/browse/APPSVC-1204
https://issues.redhat.com/browse/APPSVC-1220

In Service Binding Operator 1.3, the Operator Lifecycle Manager (OLM) descriptor feature has
been removed to improve resource utilization. As an alternative to OLM descriptors, you can
use CRD annotations to declare binding data.

5.1.6. Release notes for Service Binding Operator 1.2

Service Binding Operator 1.2 is now available on Red Hat OpenShift Service on AWS 4.7, 4.8, 4.9, 4.10,
and 4.11.

5.1.6.1. New features

This section highlights what is new in Service Binding Operator 1.2:

Enable Service Binding Operator to consider optional fields in the annotations by setting the
optional flag value to true.

Support for servicebinding.io/v1beta1 resources.

Improvements to the discoverability of bindable services by exposing the relevant binding
secret without requiring a workload to be present.

5.1.6.2. Known issues

Currently, when you install Service Binding Operator on Red Hat OpenShift Service on AWS 4.11,
the memory footprint of Service Binding Operator increases beyond expected limits. With low
usage, however, the memory footprint stays within the expected ranges of your environment or
scenarios. In comparison with Red Hat OpenShift Service on AWS 4.10, under stress, both the
average and maximum memory footprint increase considerably. This issue is evident in the
previous versions of Service Binding Operator as well. There is currently no workaround for this
issue. APPSVC-1200

By default, the projected files get their permissions set to 0644. Service Binding Operator
cannot set specific permissions due to a bug in Kubernetes that causes issues if the service
expects specific permissions such as, 0600. As a workaround, you can modify the code of the
program or the application that is running inside a workload resource to copy the file to the /tmp
directory and set the appropriate permissions. APPSVC-1127

There is currently a known issue with installing Service Binding Operator in a single namespace
installation mode. The absence of an appropriate namespace-scoped role-based access control
(RBAC) rule prevents the successful binding of an application to a few known Operator-backed
services that the Service Binding Operator can automatically detect and bind to. When this
happens, it generates an error message similar to the following example:

Example error message

Workaround 1: Install the Service Binding Operator in the all namespaces installation mode. As
a result, the appropriate cluster-scoped RBAC rule now exists and the binding succeeds.

Workaround 2: If you cannot install the Service Binding Operator in the all namespaces

`postgresclusters.postgres-operator.crunchydata.com "hippo" is forbidden:
 User "system:serviceaccount:my-petclinic:service-binding-operator" cannot
 get resource "postgresclusters" in API group "postgres-operator.crunchydata.com"
 in the namespace "my-petclinic"`

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

55

https://issues.redhat.com/browse/APPSVC-1200
https://issues.redhat.com/browse/APPSVC-1127

Workaround 2: If you cannot install the Service Binding Operator in the all namespaces
installation mode, install the following role binding into the namespace where the Service
Binding Operator is installed:

Example: Role binding for Crunchy Postgres Operator

APPSVC-1062

According to the specification, when you change the ClusterWorkloadResourceMapping
resources, Service Binding Operator must use the previous version of the
ClusterWorkloadResourceMapping resource to remove the binding data that was being
projected until now. Currently, when you change the ClusterWorkloadResourceMapping
resources, the Service Binding Operator uses the latest version of the
ClusterWorkloadResourceMapping resource to remove the binding data. As a result, {the
servicebinding-title} might remove the binding data incorrectly. As a workaround, perform the
following steps:

1. Delete any ServiceBinding resources that use the corresponding
ClusterWorkloadResourceMapping resource.

2. Modify the ClusterWorkloadResourceMapping resource.

3. Re-apply the ServiceBinding resources that you previously removed in step 1.

APPSVC-1102

5.1.7. Release notes for Service Binding Operator 1.1.1

Service Binding Operator 1.1.1 is now available on Red Hat OpenShift Service on AWS 4.7, 4.8, 4.9, and
4.10.

5.1.7.1. Fixed issues

Before this update, a security vulnerability CVE-2021-38561 was noted for Service Binding
Operator Helm chart. This update fixes the CVE-2021-38561 error and updates the
golang.org/x/text package from v0.3.6 to v0.3.7. APPSVC-1124

Before this update, users of the Developer Sandbox did not have sufficient permissions to read
ClusterWorkloadResourceMapping resources. As a result, Service Binding Operator
prevented all service bindings from being successful. With this update, the Service Binding
Operator now includes the appropriate role-based access control (RBAC) rules for any
authenticated subject including the Developer Sandbox users. These RBAC rules allow the

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: service-binding-crunchy-postgres-viewer
subjects:
 - kind: ServiceAccount
 name: service-binding-operator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: service-binding-crunchy-postgres-viewer-role

Red Hat OpenShift Service on AWS 4 Building applications

56

https://issues.redhat.com/browse/APPSVC-1062
https://issues.redhat.com/browse/APPSVC-1102
https://issues.redhat.com/browse/APPSVC-1124

Service Binding Operator to get, list, and watch the ClusterWorkloadResourceMapping
resources for the Developer Sandbox users and to process service bindings successfully.
APPSVC-1135

5.1.7.2. Known issues

There is currently a known issue with installing Service Binding Operator in a single namespace
installation mode. The absence of an appropriate namespace-scoped role-based access control
(RBAC) rule prevents the successful binding of an application to a few known Operator-backed
services that the Service Binding Operator can automatically detect and bind to. When this
happens, it generates an error message similar to the following example:

Example error message

Workaround 1: Install the Service Binding Operator in the all namespaces installation mode. As
a result, the appropriate cluster-scoped RBAC rule now exists and the binding succeeds.

Workaround 2: If you cannot install the Service Binding Operator in the all namespaces
installation mode, install the following role binding into the namespace where the Service
Binding Operator is installed:

Example: Role binding for Crunchy Postgres Operator

APPSVC-1062

Currently, when you modify the ClusterWorkloadResourceMapping resources, the Service
Binding Operator does not implement correct behavior. As a workaround, perform the following
steps:

1. Delete any ServiceBinding resources that use the corresponding
ClusterWorkloadResourceMapping resource.

2. Modify the ClusterWorkloadResourceMapping resource.

3. Re-apply the ServiceBinding resources that you previously removed in step 1.

APPSVC-1102

`postgresclusters.postgres-operator.crunchydata.com "hippo" is forbidden:
 User "system:serviceaccount:my-petclinic:service-binding-operator" cannot
 get resource "postgresclusters" in API group "postgres-operator.crunchydata.com"
 in the namespace "my-petclinic"`

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: service-binding-crunchy-postgres-viewer
subjects:
 - kind: ServiceAccount
 name: service-binding-operator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: service-binding-crunchy-postgres-viewer-role

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

57

https://issues.redhat.com/browse/APPSVC-1135
https://issues.redhat.com/browse/APPSVC-1062
https://issues.redhat.com/browse/APPSVC-1102

5.1.8. Release notes for Service Binding Operator 1.1

Service Binding Operator is now available on Red Hat OpenShift Service on AWS 4.7, 4.8, 4.9, and 4.10.

5.1.8.1. New features

This section highlights what is new in Service Binding Operator 1.1:

Service Binding Options

Workload resource mapping: Define exactly where binding data needs to be projected for
the secondary workloads.

Bind new workloads using a label selector.

5.1.8.2. Fixed issues

Before this update, service bindings that used label selectors to pick up workloads did not
project service binding data into the new workloads that matched the given label selectors. As a
result, the Service Binding Operator could not periodically bind such new workloads. With this
update, service bindings now project service binding data into the new workloads that match
the given label selector. The Service Binding Operator now periodically attempts to find and
bind such new workloads. APPSVC-1083

5.1.8.3. Known issues

There is currently a known issue with installing Service Binding Operator in a single namespace
installation mode. The absence of an appropriate namespace-scoped role-based access control
(RBAC) rule prevents the successful binding of an application to a few known Operator-backed
services that the Service Binding Operator can automatically detect and bind to. When this
happens, it generates an error message similar to the following example:

Example error message

Workaround 1: Install the Service Binding Operator in the all namespaces installation mode. As
a result, the appropriate cluster-scoped RBAC rule now exists and the binding succeeds.

Workaround 2: If you cannot install the Service Binding Operator in the all namespaces
installation mode, install the following role binding into the namespace where the Service
Binding Operator is installed:

Example: Role binding for Crunchy Postgres Operator

`postgresclusters.postgres-operator.crunchydata.com "hippo" is forbidden:
 User "system:serviceaccount:my-petclinic:service-binding-operator" cannot
 get resource "postgresclusters" in API group "postgres-operator.crunchydata.com"
 in the namespace "my-petclinic"`

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: service-binding-crunchy-postgres-viewer
subjects:
 - kind: ServiceAccount
 name: service-binding-operator

Red Hat OpenShift Service on AWS 4 Building applications

58

https://issues.redhat.com/browse/APPSVC-1083

APPSVC-1062

Currently, when you modify the ClusterWorkloadResourceMapping resources, the Service
Binding Operator does not implement correct behavior. As a workaround, perform the following
steps:

1. Delete any ServiceBinding resources that use the corresponding
ClusterWorkloadResourceMapping resource.

2. Modify the ClusterWorkloadResourceMapping resource.

3. Re-apply the ServiceBinding resources that you previously removed in step 1.

APPSVC-1102

5.1.9. Release notes for Service Binding Operator 1.0.1

Service Binding Operator is now available on Red Hat OpenShift Service on AWS 4.7, 4.8 and 4.9.

Service Binding Operator 1.0.1 supports OpenShift Container Platform 4.9 and later running on:

IBM Power Systems

IBM Z and LinuxONE

The custom resource definition (CRD) of the Service Binding Operator 1.0.1 supports the following APIs:

Service Binding with the binding.operators.coreos.com API group.

Service Binding (Spec API Tech Preview) with the servicebinding.io API group.

IMPORTANT

Service Binding (Spec API Tech Preview) with the servicebinding.io API group
is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the
development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

5.1.9.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: service-binding-crunchy-postgres-viewer-role

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

59

https://issues.redhat.com/browse/APPSVC-1062
https://issues.redhat.com/browse/APPSVC-1102
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 5.2. Support matrix

Feature Service Binding Operator 1.0.1

binding.operators.coreos.com API group GA

servicebinding.io API group TP

5.1.9.2. Fixed issues

Before this update, binding the data values from a Cluster custom resource (CR) of the
postgresql.k8s.enterpriesedb.io/v1 API collected the host binding value from the
.metadata.name field of the CR. The collected binding value is an incorrect hostname and the
correct hostname is available at the .status.writeService field. With this update, the
annotations that the Service Binding Operator uses to expose the binding data values from the
backing service CR are now modified to collect the host binding value from the
.status.writeService field. The Service Binding Operator uses these modified annotations to
project the correct hostname in the host and provider bindings. APPSVC-1040

Before this update, when you would bind a PostgresCluster CR of the postgres-
operator.crunchydata.com/v1beta1 API, the binding data values did not include the values for
the database certificates. As a result, the application failed to connect to the database. With this
update, modifications to the annotations that the Service Binding Operator uses to expose the
binding data from the backing service CR now include the database certificates. The Service
Binding Operator uses these modified annotations to project the correct ca.crt, tls.crt, and
tls.key certificate files. APPSVC-1045

Before this update, when you would bind a PerconaXtraDBCluster custom resource (CR) of
the pxc.percona.com API, the binding data values did not include the port and database
values. These binding values along with the others already projected are necessary for an
application to successfully connect to the database service. With this update, the annotations
that the Service Binding Operator uses to expose the binding data values from the backing
service CR are now modified to project the additional port and database binding values. The
Service Binding Operator uses these modified annotations to project the complete set of
binding values that the application can use to successfully connect to the database service.
APPSVC-1073

5.1.9.3. Known issues

Currently, when you install the Service Binding Operator in the single namespace installation
mode, the absence of an appropriate namespace-scoped role-based access control (RBAC)
rule prevents the successful binding of an application to a few known Operator-backed services
that the Service Binding Operator can automatically detect and bind to. In addition, the
following error message is generated:

Example error message

Red Hat OpenShift Service on AWS 4 Building applications

60

https://issues.redhat.com/browse/APPSVC-1040
https://issues.redhat.com/browse/APPSVC-1045
https://issues.redhat.com/browse/APPSVC-1073

`postgresclusters.postgres-operator.crunchydata.com "hippo" is forbidden:
 User "system:serviceaccount:my-petclinic:service-binding-operator" cannot
 get resource "postgresclusters" in API group "postgres-operator.crunchydata.com"
 in the namespace "my-petclinic"`

Workaround 1: Install the Service Binding Operator in the all namespaces installation mode. As
a result, the appropriate cluster-scoped RBAC rule now exists and the binding succeeds.

Workaround 2: If you cannot install the Service Binding Operator in the all namespaces
installation mode, install the following role binding into the namespace where the Service
Binding Operator is installed:

Example: Role binding for Crunchy Postgres Operator

APPSVC-1062

5.1.10. Release notes for Service Binding Operator 1.0

Service Binding Operator is now available on Red Hat OpenShift Service on AWS 4.7, 4.8 and 4.9.

The custom resource definition (CRD) of the Service Binding Operator 1.0 supports the following APIs:

Service Binding with the binding.operators.coreos.com API group.

Service Binding (Spec API Tech Preview) with the servicebinding.io API group.

IMPORTANT

Service Binding (Spec API Tech Preview) with the servicebinding.io API group
is a Technology Preview feature only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs) and might
not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the
development process.

For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

5.1.10.1. Support matrix

Some features in this release are currently in Technology Preview. These experimental features are not

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: service-binding-crunchy-postgres-viewer
subjects:
 - kind: ServiceAccount
 name: service-binding-operator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: service-binding-crunchy-postgres-viewer-role

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

61

https://issues.redhat.com/browse/APPSVC-1062
https://access.redhat.com/support/offerings/techpreview/

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

Technology Preview Features Support Scope

In the table below, features are marked with the following statuses:

TP: Technology Preview

GA: General Availability

Note the following scope of support on the Red Hat Customer Portal for these features:

Table 5.3. Support matrix

Feature Service Binding Operator 1.0

binding.operators.coreos.com API group GA

servicebinding.io API group TP

5.1.10.2. New features

Service Binding Operator 1.0 supports OpenShift Container Platform 4.9 and later running on:

IBM Power Systems

IBM Z and LinuxONE

This section highlights what is new in Service Binding Operator 1.0:

Exposal of binding data from services

Based on annotations present in CRD, custom resources (CRs), or resources.

Based on descriptors present in Operator Lifecycle Manager (OLM) descriptors.

Support for provisioned services

Workload projection

Projection of binding data as files, with volume mounts.

Projection of binding data as environment variables.

Service Binding Options

Bind backing services in a namespace that is different from the workload namespace.

Project binding data into the specific container workloads.

Auto-detection of the binding data from resources owned by the backing service CR.

Compose custom binding data from the exposed binding data.

Support for non-PodSpec compliant workload resources.

Red Hat OpenShift Service on AWS 4 Building applications

62

https://access.redhat.com/support/offerings/techpreview

Security

Support for role-based access control (RBAC).

5.1.11. Additional resources

Understanding Service Binding Operator.

5.2. UNDERSTANDING SERVICE BINDING OPERATOR

Application developers need access to backing services to build and connect workloads. Connecting
workloads to backing services is always a challenge because each service provider suggests a different
way to access their secrets and consume them in a workload. In addition, manual configuration and
maintenance of this binding together of workloads and backing services make the process tedious,
inefficient, and error-prone.

The Service Binding Operator enables application developers to easily bind workloads together with
Operator-managed backing services, without any manual procedures to configure the binding
connection.

5.2.1. Service Binding terminology

This section summarizes the basic terms used in Service Binding.

Service
binding

The representation of the action of providing information about a service to a workload.
Examples include establishing the exchange of credentials between a Java application and a
database that it requires.

Backing
service

Any service or software that the application consumes over the network as part of its normal
operation. Examples include a database, a message broker, an application with REST
endpoints, an event stream, an Application Performance Monitor (APM), or a Hardware
Security Module (HSM).

Workload
(application)

Any process running within a container. Examples include a Spring Boot application, a
NodeJS Express application, or a Ruby on Rails application.

Binding data Information about a service that you use to configure the behavior of other resources within
the cluster. Examples include credentials, connection details, volume mounts, or secrets.

Binding
connection

Any connection that establishes an interaction between the connected components, such as
a bindable backing service and an application requiring that backing service.

5.2.2. About Service Binding Operator

The Service Binding Operator consists of a controller and an accompanying custom resource definition
(CRD) for service binding. It manages the data plane for workloads and backing services. The Service
Binding Controller reads the data made available by the control plane of backing services. Then, it
projects this data to workloads according to the rules specified through the ServiceBinding resource.

As a result, the Service Binding Operator enables workloads to use backing services or external services
by automatically collecting and sharing binding data with the workloads. The process involves making
the backing service bindable and binding the workload and the service together.

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

63

5.2.2.1. Making an Operator-managed backing service bindable

To make a service bindable, as an Operator provider, you need to expose the binding data required by
workloads to bind with the services provided by the Operator. You can provide the binding data either as
annotations or as descriptors in the CRD of the Operator that manages the backing service.

5.2.2.2. Binding a workload together with a backing service

By using the Service Binding Operator, as an application developer, you need to declare the intent of
establishing a binding connection. You must create a ServiceBinding CR that references the backing
service. This action triggers the Service Binding Operator to project the exposed binding data into the
workload. The Service Binding Operator receives the declared intent and binds the workload together
with the backing service.

The CRD of the Service Binding Operator supports the following APIs:

Service Binding with the binding.operators.coreos.com API group.

Service Binding (Spec API) with the servicebinding.io API group.

With Service Binding Operator, you can:

Bind your workloads to Operator-managed backing services.

Automate configuration of binding data.

Provide service operators with a low-touch administrative experience to provision and manage
access to services.

Enrich the development lifecycle with a consistent and declarative service binding method that
eliminates discrepancies in cluster environments.

5.2.3. Key features

Exposal of binding data from services

Based on annotations present in CRD, custom resources (CRs), or resources.

Workload projection

Projection of binding data as files, with volume mounts.

Projection of binding data as environment variables.

Service Binding Options

Bind backing services in a namespace that is different from the workload namespace.

Project binding data into the specific container workloads.

Auto-detection of the binding data from resources owned by the backing service CR.

Compose custom binding data from the exposed binding data.

Support for non-PodSpec compliant workload resources.

Security

Support for role-based access control (RBAC).

Red Hat OpenShift Service on AWS 4 Building applications

64

Support for role-based access control (RBAC).

5.2.4. API differences

The CRD of the Service Binding Operator supports the following APIs:

Service Binding with the binding.operators.coreos.com API group.

Service Binding (Spec API) with the servicebinding.io API group.

Both of these API groups have similar features, but they are not completely identical. Here is the
complete list of differences between these API groups:

Feature Supported by the
binding.operators.co
reos.com API group

Supported by the
servicebinding.io API
group

Notes

Binding to provisioned
services

Yes Yes Not applicable (N/A)

Direct secret projection Yes Yes Not applicable (N/A)

Bind as files Yes Yes
Default
behavior for
the service
bindings of the
servicebindi
ng.io API
group

Opt-in
functionality
for the service
bindings of the
binding.oper
ators.coreos.
com API group

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

65

Bind as environment
variables

Yes Yes
Default
behavior for
the service
bindings of the
binding.oper
ators.coreos.
com API
group.

Opt-in
functionality
for the service
bindings of the
servicebindi
ng.io API
group:
Environment
variables are
created
alongside files.

Selecting workload with
a label selector

Yes Yes Not applicable (N/A)

Detecting binding
resources
(.spec.detectBinding
Resources)

Yes No The servicebinding.io
API group has no
equivalent feature.

Naming strategies Yes No There is no current
mechanism within the
servicebinding.io API
group to interpret the
templates that naming
strategies use.

Feature Supported by the
binding.operators.co
reos.com API group

Supported by the
servicebinding.io API
group

Notes

Red Hat OpenShift Service on AWS 4 Building applications

66

Container path Yes Partial Because a service
binding of the
binding.operators.co
reos.com API group
can specify mapping
behavior within the
ServiceBinding
resource, the
servicebinding.io API
group cannot fully
support an equivalent
behavior without more
information about the
workload.

Container name filtering No Yes The
binding.operators.co
reos.com API group
has no equivalent
feature.

Secret path Yes No The servicebinding.io
API group has no
equivalent feature.

Alternative binding
sources (for example,
binding data from
annotations)

Yes Allowed by Service
Binding Operator

The specification
requires support for
getting binding data
from provisioned
services and secrets.
However, a strict
reading of the
specification suggests
that support for other
binding data sources is
allowed. Using this fact,
Service Binding
Operator can pull the
binding data from
various sources (for
example, pulling binding
data from annotations).
Service Binding
Operator supports these
sources on both the API
groups.

Feature Supported by the
binding.operators.co
reos.com API group

Supported by the
servicebinding.io API
group

Notes

5.2.5. Additional resources

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

67

Getting started with service binding

5.3. INSTALLING SERVICE BINDING OPERATOR

This guide walks cluster administrators through the process of installing the Service Binding Operator to
an Red Hat OpenShift Service on AWS cluster.

You can install Service Binding Operator on Red Hat OpenShift Service on AWS 4.7 and later.

Prerequisites

You have access to an Red Hat OpenShift Service on AWS cluster using an account with
cluster-admin permissions.

5.3.1. Installing the Service Binding Operator using the web console

You can install Service Binding Operator using the Red Hat OpenShift Service on AWS OperatorHub.
When you install the Service Binding Operator, the custom resources (CRs) required for the service
binding configuration are automatically installed along with the Operator.

Procedure

1. In the Administrator perspective of the web console, navigate to Operators → OperatorHub.

2. Use the Filter by keyword box to search for Service Binding Operator in the catalog. Click the
Service Binding Operator tile.

3. Read the brief description about the Operator on the Service Binding Operator page. Click
Install.

4. On the Install Operator page:

a. Select All namespaces on the cluster (default) for the Installation Mode. This mode
installs the Operator in the default openshift-operators namespace, which enables the
Operator to watch and be made available to all namespaces in the cluster.

b. Select Automatic for the Approval Strategy. This ensures that the future upgrades to the
Operator are handled automatically by the Operator Lifecycle Manager (OLM). If you select
the Manual approval strategy, OLM creates an update request. As a cluster administrator,
you must then manually approve the OLM update request to update the Operator to the
new version.

c. Select an Update Channel.

By default, the stable channel enables installation of the latest stable and supported
release of the Service Binding Operator.

5. Click Install.

NOTE

The Operator is installed automatically into the openshift-operators namespace.

6. On the Installed Operator — ready for use pane, click View Operator. You will see the
Operator listed on the Installed Operators page.

7. Verify that the Status is set to Succeeded to confirm successful installation of Service Binding

Red Hat OpenShift Service on AWS 4 Building applications

68

7. Verify that the Status is set to Succeeded to confirm successful installation of Service Binding
Operator.

5.3.2. Additional Resources

Getting started with service binding.

5.4. GETTING STARTED WITH SERVICE BINDING

The Service Binding Operator manages the data plane for workloads and backing services. This guide
provides instructions with examples to help you create a database instance, deploy an application, and
use the Service Binding Operator to create a binding connection between the application and the
database service.

Prerequisites

You have access to an Red Hat OpenShift Service on AWS cluster using an account with
dedicated-admin permissions.

You have installed the oc CLI.

You have installed Service Binding Operator from OperatorHub.

5.4.1. Creating a PostgreSQL database instance

To create a PostgreSQL database instance, you must create a PostgresCluster custom resource (CR)
and configure the database.

Procedure

1. Create the PostgresCluster CR in the my-petclinic namespace by running the following
command in shell:

$ oc apply -n my-petclinic -f - << EOD

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
spec:
 image: registry.developers.crunchydata.com/crunchydata/crunchy-postgres:ubi8-14.4-0
 postgresVersion: 14
 instances:
 - name: instance1
 dataVolumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
 backups:
 pgbackrest:
 image: registry.developers.crunchydata.com/crunchydata/crunchy-pgbackrest:ubi8-2.38-0
 repos:
 - name: repo1

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

69

The annotations added in this PostgresCluster CR enable the service binding connection and
trigger the Operator reconciliation.

The output verifies that the database instance is created:

Example output

2. After you have created the database instance, ensure that all the pods in the my-petclinic
namespace are running:

The output, which takes a few minutes to display, verifies that the database is created and
configured:

Example output

After the database is configured, you can deploy the sample application and connect it to the
database service.

5.4.2. Deploying the Spring PetClinic sample application

To deploy the Spring PetClinic sample application on an Red Hat OpenShift Service on AWS cluster, you
must use a deployment configuration and configure your local environment to be able to test the
application.

Procedure

1. Deploy the spring-petclinic application with the PostgresCluster custom resource (CR) by
running the following command in shell:

 volume:
 volumeClaimSpec:
 accessModes:
 - "ReadWriteOnce"
 resources:
 requests:
 storage: 1Gi
EOD

postgrescluster.postgres-operator.crunchydata.com/hippo created

$ oc get pods -n my-petclinic

NAME READY STATUS RESTARTS AGE
hippo-backup-9rxm-88rzq 0/1 Completed 0 2m2s
hippo-instance1-6psd-0 4/4 Running 0 3m28s
hippo-repo-host-0 2/2 Running 0 3m28s

$ oc apply -n my-petclinic -f - << EOD

apiVersion: apps/v1
kind: Deployment
metadata:
 name: spring-petclinic
 labels:

Red Hat OpenShift Service on AWS 4 Building applications

70

The output verifies that the Spring PetClinic sample application is created and deployed:

Example output

NOTE

If you are deploying the application using Container images in the Developer
perspective of the web console, you must enter the following environment
variables under the Deployment section of the Advanced options:

Name: SPRING_PROFILES_ACTIVE

Value: postgres

2. Verify that the application is not yet connected to the database service by running the following

 app: spring-petclinic
spec:
 replicas: 1
 selector:
 matchLabels:
 app: spring-petclinic
 template:
 metadata:
 labels:
 app: spring-petclinic
 spec:
 containers:
 - name: app
 image: quay.io/service-binding/spring-petclinic:latest
 imagePullPolicy: Always
 env:
 - name: SPRING_PROFILES_ACTIVE
 value: postgres
 ports:
 - name: http
 containerPort: 8080

apiVersion: v1
kind: Service
metadata:
 labels:
 app: spring-petclinic
 name: spring-petclinic
spec:
 type: NodePort
 ports:
 - port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 app: spring-petclinic
EOD

deployment.apps/spring-petclinic created
service/spring-petclinic created

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

71

2. Verify that the application is not yet connected to the database service by running the following
command:

The output takes a few minutes to display the CrashLoopBackOff status:

Example output

At this stage, the pod fails to start. If you try to interact with the application, it returns errors.

3. Expose the service to create a route for your application:

The output verifies that the spring-petclinic service is exposed and a route for the Spring
PetClinic sample application is created:

Example output

You can now use the Service Binding Operator to connect the application to the database service.

5.4.3. Connecting the Spring PetClinic sample application to the PostgreSQL
database service

To connect the sample application to the database service, you must create a ServiceBinding custom
resource (CR) that triggers the Service Binding Operator to project the binding data into the
application.

Procedure

1. Create a ServiceBinding CR to project the binding data:

$ oc get pods -n my-petclinic

NAME READY STATUS RESTARTS AGE
spring-petclinic-5b4c7999d4-wzdtz 0/1 CrashLoopBackOff 4 (13s ago) 2m25s

$ oc expose service spring-petclinic -n my-petclinic

route.route.openshift.io/spring-petclinic exposed

$ oc apply -n my-petclinic -f - << EOD

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
spec:
 services: 1
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster 2
 name: hippo
 application: 3
 name: spring-petclinic
 group: apps

Red Hat OpenShift Service on AWS 4 Building applications

72

1

2

3

Specifies a list of service resources.

The CR of the database.

The sample application that points to a Deployment or any other similar resource with an
embedded PodSpec.

The output verifies that the ServiceBinding CR is created to project the binding data into the
sample application.

Example output

2. Verify that the request for service binding is successful:

Example output

By default, the values from the binding data of the database service are projected as files into
the workload container that runs the sample application. For example, all the values from the
Secret resource are projected into the bindings/spring-petclinic-pgcluster directory.

NOTE

Optionally, you can also verify that the files in the application contain the
projected binding data, by printing out the directory contents:

Example output: With all the values from the secret resource

3. Set up the port forwarding from the application port to access the sample application from your
local environment:

 version: v1
 resource: deployments
EOD

servicebinding.binding.operators.coreos.com/spring-petclinic created

$ oc get servicebindings -n my-petclinic

NAME READY REASON AGE
spring-petclinic-pgcluster True ApplicationsBound 7s

$ for i in username password host port type; do oc exec -it deploy/spring-
petclinic -n my-petclinic -- /bin/bash -c 'cd /tmp; find /bindings/*/'$i' -exec echo
-n {}:" " \; -exec cat {} \;'; echo; done

/bindings/spring-petclinic-pgcluster/username: <username>
/bindings/spring-petclinic-pgcluster/password: <password>
/bindings/spring-petclinic-pgcluster/host: hippo-primary.my-petclinic.svc
/bindings/spring-petclinic-pgcluster/port: 5432
/bindings/spring-petclinic-pgcluster/type: postgresql

$ oc port-forward --address 0.0.0.0 svc/spring-petclinic 8080:80 -n my-petclinic

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

73

Example output

4. Access http://localhost:8080/petclinic.
You can now remotely access the Spring PetClinic sample application at localhost:8080 and
see that the application is now connected to the database service.

5.4.4. Additional Resources

Installing Service Binding Operator.

Creating applications using the Developer perspective .

Managing resources from custom resource definitions .

Known bindable Operators.

5.5. EXPOSING BINDING DATA FROM A SERVICE

Application developers need access to backing services to build and connect workloads. Connecting
workloads to backing services is always a challenge because each service provider requires a different
way to access their secrets and consume them in a workload.

The Service Binding Operator enables application developers to easily bind workloads together with
operator-managed backing services, without any manual procedures to configure the binding
connection. For the Service Binding Operator to provide the binding data, as an Operator provider or
user who creates backing services, you must expose the binding data to be automatically detected by
the Service Binding Operator. Then, the Service Binding Operator automatically collects the binding
data from the backing service and shares it with a workload to provide a consistent and predictable
experience.

5.5.1. Methods of exposing binding data

This section describes the methods you can use to expose the binding data.

Ensure that you know and understand your workload requirements and environment, and how it works
with the provided services.

Binding data is exposed under the following circumstances:

Backing service is available as a provisioned service resource.
The service you intend to connect to is compliant with the Service Binding specification. You
must create a Secret resource with all the required binding data values and reference it in the
backing service custom resource (CR). The detection of all the binding data values is automatic.

Backing service is not available as a provisioned service resource.
You must expose the binding data from the backing service. Depending on your workload
requirements and environment, you can choose any of the following methods to expose the
binding data:

Direct secret reference

Forwarding from 0.0.0.0:8080 -> 8080
Handling connection for 8080

Red Hat OpenShift Service on AWS 4 Building applications

74

http://localhost:8080/petclinic
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/operators/#managing-resources-from-crds
https://github.com/redhat-developer/service-binding-operator#known-bindable-operators

Declaring binding data through custom resource definition (CRD) or CR annotations

Detection of binding data through owned resources

5.5.1.1. Provisioned service

Provisioned service represents a backing service CR with a reference to a Secret resource placed in the
.status.binding.name field of the backing service CR.

As an Operator provider or the user who creates backing services, you can use this method to be
compliant with the Service Binding specification, by creating a Secret resource and referencing it in the
.status.binding.name section of the backing service CR. This Secret resource must provide all the
binding data values required for a workload to connect to the backing service.

The following examples show an AccountService CR that represents a backing service and a Secret
resource referenced from the CR.

Example: AccountService CR

Example: Referenced Secret resource

When creating a service binding resource, you can directly give the details of the AccountService
resource in the ServiceBinding specification as follows:

Example: ServiceBinding resource

apiVersion: example.com/v1alpha1
kind: AccountService
name: prod-account-service
spec:
...
status:
 binding:
 name: hippo-pguser-hippo

apiVersion: v1
kind: Secret
metadata:
 name: hippo-pguser-hippo
data:
 password: "<password>"
 user: "<username>"
...

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: account-service
spec:
...
 services:
 - group: "example.com"
 version: v1alpha1
 kind: AccountService

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

75

Example: ServiceBinding resource in Specification API

This method exposes all the keys in the hippo-pguser-hippo referenced Secret resource as binding
data that is to be projected into the workload.

5.5.1.2. Direct secret reference

You can use this method, if all the required binding data values are available in a Secret resource that
you can reference in your Service Binding definition. In this method, a ServiceBinding resource directly
references a Secret resource to connect to a service. All the keys in the Secret resource are exposed as
binding data.

Example: Specification with the binding.operators.coreos.com API

Example: Specification that is compliant with the servicebinding.io API

 name: prod-account-service
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

apiVersion: servicebinding.io/v1beta1
kind: ServiceBinding
metadata:
 name: account-service
spec:
...
 service:
 apiVersion: example.com/v1alpha1
 kind: AccountService
 name: prod-account-service
 workload:
 apiVersion: apps/v1
 kind: Deployment
 name: spring-petclinic

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: account-service
spec:
...
 services:
 - group: ""
 version: v1
 kind: Secret
 name: hippo-pguser-hippo

apiVersion: servicebinding.io/v1beta1
kind: ServiceBinding
metadata:
 name: account-service

Red Hat OpenShift Service on AWS 4 Building applications

76

5.5.1.3. Declaring binding data through CRD or CR annotations

You can use this method to annotate the resources of the backing service to expose the binding data
with specific annotations. Adding annotations under the metadata section alters the CRs and CRDs of
the backing services. Service Binding Operator detects the annotations added to the CRs and CRDs
and then creates a Secret resource with the values extracted based on the annotations.

The following examples show the annotations that are added under the metadata section and a
referenced ConfigMap object from a resource:

Example: Exposing binding data from a Secret object defined in the CR annotations

The previous example places the name of the secret name in the {.metadata.name}-pguser-
{.metadata.name} template that resolves to hippo-pguser-hippo. The template can contain multiple
JSONPath expressions.

Example: Referenced Secret object from a resource

Example: Exposing binding data from a ConfigMap object defined in the CR annotations

The previous example places the name of the config map in the {.metadata.name}-config template

spec:
...
 service:
 apiVersion: v1
 kind: Secret
 name: hippo-pguser-hippo

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-pguser-{.metadata.name},objectType=Secret'
...

apiVersion: v1
kind: Secret
metadata:
 name: hippo-pguser-hippo
data:
 password: "<password>"
 user: "<username>"

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-config,objectType=ConfigMap'
...

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

77

The previous example places the name of the config map in the {.metadata.name}-config template
that resolves to hippo-config. The template can contain multiple JSONPath expressions.

Example: Referenced ConfigMap object from a resource

5.5.1.4. Detection of binding data through owned resources

You can use this method if your backing service owns one or more Kubernetes resources such as route,
service, config map, or secret that you can use to detect the binding data. In this method, the Service
Binding Operator detects the binding data from resources owned by the backing service CR.

The following examples show the detectBindingResources API option set to true in the
ServiceBinding CR:

Example

In the previous example, PostgresCluster custom service resource owns one or more Kubernetes
resources such as route, service, config map, or secret.

The Service Binding Operator automatically detects the binding data exposed on each of the owned
resources.

5.5.2. Data model

The data model used in the annotations follows specific conventions.

Service binding annotations must use the following convention:

apiVersion: v1
kind: ConfigMap
metadata:
 name: hippo-config
data:
 db_timeout: "10s"
 user: "hippo"

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-detect-all
 namespace: my-petclinic
spec:
 detectBindingResources: true
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

Red Hat OpenShift Service on AWS 4 Building applications

78

where:

<NAME> Specifies the name under which the binding value is to be exposed. You can exclude it only
when the objectType parameter is set to Secret or ConfigMap.

<VALUE> Specifies the constant value exposed when no path is set.

The data model provides the details on the allowed values and semantic for the path, elementType,
objectType, sourceKey, and sourceValue parameters.

Table 5.4. Parameters and their descriptions

Parameter Description Default value

path JSONPath template that consists JSONPath
expressions enclosed by curly braces {}.

N/A

elementType Specifies whether the value of the element
referenced in the path parameter complies with
any one of the following types:

string

sliceOfStrings

sliceOfMaps

string

objectType Specifies whether the value of the element
indicated in the path parameter refers to a
ConfigMap, Secret, or plain string in the
current namespace.

Secret, if elementType is
non-string.

service.binding(/<NAME>)?:
 "<VALUE>|(path=<JSONPATH_TEMPLATE>(,objectType=<OBJECT_TYPE>)?(,elementType=
<ELEMENT_TYPE>)?(,sourceKey=<SOURCE_KEY>)?(,sourceValue=<SOURCE_VALUE>)?)"

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

79

sourceKey Specifies the key in the ConfigMap or Secret
resource to be added to the binding secret when
collecting the binding data.

Note:

When used in conjunction with
elementType=sliceOfMaps, the
sourceKey parameter specifies the
key in the slice of maps whose value is
used as a key in the binding secret.

Use this optional parameter to expose a
specific entry in the referenced Secret
or ConfigMap resource as binding
data.

When not specified, all keys and values
from the Secret or ConfigMap
resource are exposed and are added to
the binding secret.

N/A

sourceValue Specifies the key in the slice of maps.

Note:

The value of this key is used as the base
to generate the value of the entry for
the key-value pair to be added to the
binding secret.

In addition, the value of the
sourceKey is used as the key of the
entry for the key-value pair to be added
to the binding secret.

It is mandatory only if
elementType=sliceOfMaps.

N/A

Parameter Description Default value

NOTE

The sourceKey and sourceValue parameters are applicable only if the element
indicated in the path parameter refers to a ConfigMap or Secret resource.

5.5.3. Setting annotations mapping to be optional

You can have optional fields in the annotations. For example, a path to the credentials might not be
present if the service endpoint does not require authentication. In such cases, a field might not exist in
the target path of the annotations. As a result, Service Binding Operator generates an error, by default.

As a service provider, to indicate whether you require annotations mapping, you can set a value for the
optional flag in your annotations when enabling services. Service Binding Operator provides
annotations mapping only if the target path is available. When the target path is not available, the

Red Hat OpenShift Service on AWS 4 Building applications

80

Service Binding Operator skips the optional mapping and continues with the projection of the existing
mappings without throwing any errors.

Procedure

To make a field in the annotations optional, set the optional flag value to true:

Example

NOTE

If you set the optional flag value to false and the Service Binding Operator is
unable to find the target path, the Operator fails the annotations mapping.

If the optional flag has no value set, the Service Binding Operator considers the
value as false by default and fails the annotations mapping.

5.5.4. RBAC requirements

To expose the backing service binding data using the Service Binding Operator, you require certain
Role-based access control (RBAC) permissions. Specify certain verbs under the rules field of the
ClusterRole resource to grant the RBAC permissions for the backing service resources. When you
define these rules, you allow the Service Binding Operator to read the binding data of the backing
service resources throughout the cluster. If the users do not have permissions to read binding data or
modify application resource, the Service Binding Operator prevents such users to bind services to
application. Adhering to the RBAC requirements avoids unnecessary permission elevation for the user
and prevents access to unauthorized services or applications.

The Service Binding Operator performs requests against the Kubernetes API using a dedicated service
account. By default, this account has permissions to bind services to workloads, both represented by the
following standard Kubernetes or OpenShift objects:

Deployments

DaemonSets

ReplicaSets

StatefulSets

DeploymentConfigs

The Operator service account is bound to an aggregated cluster role, allowing Operator providers or
cluster administrators to enable binding custom service resources to workloads. To grant the required
permissions within a ClusterRole, label it with the servicebinding.io/controller flag and set the flag

apiVersion: apps.example.org/v1beta1
kind: Database
metadata:
 name: my-db
 namespace: my-petclinic
 annotations:
 service.binding/username: path={.spec.name},optional=true
...

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

81

value to true. The following example shows how to allow the Service Binding Operator to get, watch,
and list the custom resources (CRs) of Crunchy PostgreSQL Operator:

Example: Enable binding to PostgreSQL database instances provisioned by Crunchy
PostgreSQL Operator

This cluster role can be deployed during the installation of the backing service Operator.

5.5.5. Categories of exposable binding data

The Service Binding Operator enables you to expose the binding data values from the backing service
resources and custom resource definitions (CRDs).

This section provides examples to show how you can use the various categories of exposable binding
data. You must modify these examples to suit your work environment and requirements.

5.5.5.1. Exposing a string from a resource

The following example shows how to expose the string from the metadata.name field of the
PostgresCluster custom resource (CR) as a username:

Example

5.5.5.2. Exposing a constant value as the binding item

The following examples show how to expose a constant value from the PostgresCluster custom
resource (CR):

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: postgrescluster-reader
 labels:
 servicebinding.io/controller: "true"
rules:
- apiGroups:
 - postgres-operator.crunchydata.com
 resources:
 - postgresclusters
 verbs:
 - get
 - watch
 - list
 ...

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding/username: path={.metadata.name}
...

Red Hat OpenShift Service on AWS 4 Building applications

82

1

Example: Exposing a constant value

Binding type to be exposed with the postgresql value.

5.5.5.3. Exposing an entire config map or secret that is referenced from a resource

The following examples show how to expose an entire secret through annotations:

Example: Exposing an entire secret through annotations

Example: The referenced secret from the backing service resource

5.5.5.4. Exposing a specific entry from a config map or secret that is referenced from a
resource

The following examples show how to expose a specific entry from a config map through annotations:

Example: Exposing an entry from a config map through annotations

Example: The referenced config map from the backing service resource

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/type": "postgresql" 1

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-pguser-{.metadata.name},objectType=Secret'

apiVersion: v1
kind: Secret
metadata:
 name: hippo-pguser-hippo
data:
 password: "<password>"
 user: "<username>"

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding: 'path={.metadata.name}-config,objectType=ConfigMap,sourceKey=user'

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

83

The binding data should have a key with name as db_timeout and value as 10s:

5.5.5.5. Exposing a resource definition value

The following example shows how to expose a resource definition value through annotations:

Example: Exposing a resource definition value through annotations

5.5.5.6. Exposing entries of a collection with the key and value from each entry

The following example shows how to expose the entries of a collection with the key and value from each
entry through annotations:

Example: Exposing the entries of a collection through annotations

The following example shows how the previous entries of a collection in annotations are projected into
the bound application.

apiVersion: v1
kind: ConfigMap
metadata:
 name: hippo-config
data:
 db_timeout: "10s"
 user: "hippo"

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 service.binding/username: path={.metadata.name}
 ...

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/uri": "path=
{.status.connections},elementType=sliceOfMaps,sourceKey=type,sourceValue=url"
spec:
...
status:
 connections:
 - type: primary
 url: primary.example.com
 - type: secondary
 url: secondary.example.com
 - type: '404'
 url: black-hole.example.com

Red Hat OpenShift Service on AWS 4 Building applications

84

Example: Binding data files

Example: Configuration from a backing service resource

The previous example helps you to project all those values with keys such as primary, secondary, and so
on.

5.5.5.7. Exposing items of a collection with one key per item

The following example shows how to expose the items of a collection with one key per item through
annotations:

Example: Exposing the items of a collection through annotations

The following example shows how the previous items of a collection in annotations are projected into
the bound application.

Example: Binding data files

Example: Configuration from a backing service resource

/bindings/<binding-name>/uri_primary => primary.example.com
/bindings/<binding-name>/uri_secondary => secondary.example.com
/bindings/<binding-name>/uri_404 => black-hole.example.com

status:
 connections:
 - type: primary
 url: primary.example.com
 - type: secondary
 url: secondary.example.com
 - type: '404'
 url: black-hole.example.com

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/tags": "path={.spec.tags},elementType=sliceOfStrings"
spec:
 tags:
 - knowledge
 - is
 - power

/bindings/<binding-name>/tags_0 => knowledge
/bindings/<binding-name>/tags_1 => is
/bindings/<binding-name>/tags_2 => power

spec:
 tags:

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

85

5.5.5.8. Exposing values of collection entries with one key per entry value

The following example shows how to expose the values of collection entries with one key per entry value
through annotations:

Example: Exposing the values of collection entries through annotations

The following example shows how the previous values of a collection in annotations are projected into
the bound application.

Example: Binding data files

5.5.6. Additional resources

Projecting binding data.

5.6. PROJECTING BINDING DATA

This section provides information on how you can consume the binding data.

5.6.1. Consumption of binding data

After the backing service exposes the binding data, for a workload to access and consume this data, you
must project it into the workload from a backing service. Service Binding Operator automatically
projects this set of data into the workload in the following methods:

1. By default, as files.

2. As environment variables, after you configure the .spec.bindAsFiles parameter from the

 - knowledge
 - is
 - power

apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
metadata:
 name: hippo
 namespace: my-petclinic
 annotations:
 "service.binding/url": "path={.spec.connections},elementType=sliceOfStrings,sourceValue=url"
spec:
 connections:
 - type: primary
 url: primary.example.com
 - type: secondary
 url: secondary.example.com
 - type: '404'
 url: black-hole.example.com

/bindings/<binding-name>/url_0 => primary.example.com
/bindings/<binding-name>/url_1 => secondary.example.com
/bindings/<binding-name>/url_2 => black-hole.example.com

Red Hat OpenShift Service on AWS 4 Building applications

86

1

2 5

3

4

2. As environment variables, after you configure the .spec.bindAsFiles parameter from the
ServiceBinding resource.

5.6.2. Configuration of the directory path to project the binding data inside
workload container

By default, Service Binding Operator mounts the binding data as files at a specific directory in your
workload resource. You can configure the directory path using the SERVICE_BINDING_ROOT
environment variable setup in the container where your workload runs.

Example: Binding data mounted as files

$SERVICE_BINDING_ROOT 1
├── account-database 2
│ ├── type 3
│ ├── provider 4
│ ├── uri
│ ├── username
│ └── password
└── transaction-event-stream 5
 ├── type
 ├── connection-count
 ├── uri
 ├── certificates
 └── private-key

Root directory.

Directory that stores the binding data.

Mandatory identifier that identifies the type of the binding data projected into the corresponding
directory.

Optional: Identifier to identify the provider so that the application can identify the type of backing
service it can connect to.

To consume the binding data as environment variables, use the built-in language feature of your
programming language of choice that can read environment variables.

Example: Python client usage

import os
username = os.getenv("USERNAME")
password = os.getenv("PASSWORD")

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

87

WARNING

For using the binding data directory name to look up the binding data

Service Binding Operator uses the ServiceBinding resource name
(.metadata.name) as the binding data directory name. The spec also provides a way
to override that name through the .spec.name field. As a result, there is a chance
for binding data name collision if there are multiple ServiceBinding resources in
the namespace. However, due to the nature of the volume mount in Kubernetes,
the binding data directory will contain values from only one of the Secret resources.

5.6.2.1. Computation of the final path for projecting the binding data as files

The following table summarizes the configuration of how the final path for the binding data projection is
computed when files are mounted at a specific directory:

Table 5.5. Summary of the final path computation

SERVICE_BINDING_ROOT Final path

Not available /bindings/<ServiceBinding_ResourceName>

dir/path/root dir/path/root/<ServiceBinding_ResourceNam
e>

In the previous table, the <ServiceBinding_ResourceName> entry specifies the name of the
ServiceBinding resource that you configure in the .metadata.name section of the custom resource
(CR).

NOTE

By default, the projected files get their permissions set to 0644. Service Binding
Operator cannot set specific permissions due to a bug in Kubernetes that causes issues if
the service expects specific permissions such as 0600. As a workaround, you can modify
the code of the program or the application that is running inside a workload resource to
copy the file to the /tmp directory and set the appropriate permissions.

To access and consume the binding data within the existing SERVICE_BINDING_ROOT environment
variable, use the built-in language feature of your programming language of choice that can read
environment variables.

Example: Python client usage

from pyservicebinding import binding
try:
 sb = binding.ServiceBinding()
except binding.ServiceBindingRootMissingError as msg:
 # log the error message and retry/exit

Red Hat OpenShift Service on AWS 4 Building applications

88

 print("SERVICE_BINDING_ROOT env var not set")
sb = binding.ServiceBinding()
bindings_list = sb.bindings("postgresql")

In the previous example, the bindings_list variable contains the binding data for the postgresql
database service type.

5.6.3. Projecting the binding data

Depending on your workload requirements and environment, you can choose to project the binding data
either as files or environment variables.

Prerequisites

You understand the following concepts:

Environment and requirements of your workload, and how it works with the provided
services.

Consumption of the binding data in your workload resource.

Configuration of how the final path for data projection is computed for the default method.

The binding data is exposed from the backing service.

Procedure

1. To project the binding data as files, determine the destination folder by ensuring that the
existing SERVICE_BINDING_ROOT environment variable is present in the container where
your workload runs.

2. To project the binding data as environment variables, set the value for the .spec.bindAsFiles
parameter to false from the ServiceBinding resource in the custom resource (CR).

5.6.4. Additional resources

Exposing binding data from a service .

Using the projected binding data in the source code of the application .

5.7. BINDING WORKLOADS USING SERVICE BINDING OPERATOR

Application developers must bind a workload to one or more backing services by using a binding secret.
This secret is generated for the purpose of storing information to be consumed by the workload.

As an example, consider that the service you want to connect to is already exposing the binding data. In
this case, you would also need a workload to be used along with the ServiceBinding custom resource
(CR). By using this ServiceBinding CR, the workload sends a binding request with the details of the
services to bind with.

Example of ServiceBinding CR

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

89

https://redhat-developer.github.io/service-binding-operator/userguide/using-projected-bindings/using-projected-bindings.html

1

2

Specifies a list of service resources.

The sample application that points to a Deployment or any other similar resource with an
embedded PodSpec.

As shown in the previous example, you can also directly use a ConfigMap or a Secret itself as a service
resource to be used as a source of binding data.

5.7.1. Naming strategies

Naming strategies are available only for the binding.operators.coreos.com API group.

Naming strategies use Go templates to help you define custom binding names through the service
binding request. Naming strategies apply for all attributes including the mappings in the
ServiceBinding custom resource (CR).

A backing service projects the binding names as files or environment variables into the workload. If a
workload expects the projected binding names in a particular format, but the binding names to be
projected from the backing service are not available in that format, then you can change the binding
names using naming strategies.

Predefined post-processing functions

While using naming strategies, depending on the expectations or requirements of your workload, you
can use the following predefined post-processing functions in any combination to convert the character
strings:

upper: Converts the character strings into capital or uppercase letters.

lower: Converts the character strings into lowercase letters.

title: Converts the character strings where the first letter of each word is capitalized except for
certain minor words.

Predefined naming strategies

Binding names declared through annotations are processed for their name change before their
projection into the workload according to the following predefined naming strategies:

none: When applied, there are no changes in the binding names.

metadata:
 name: spring-petclinic-pgcluster
 namespace: my-petclinic
spec:
 services: 1
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 application: 2
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

Red Hat OpenShift Service on AWS 4 Building applications

90

Example

After the template compilation, the binding names take the {{ .name }} form.

upper: Applied when no namingStrategy is defined. When applied, converts all the character
strings of the binding name key into capital or uppercase letters.

Example

After the template compilation, the binding names take the {{ .service.kind | upper}}_{{ .name
| upper }} form.

If your workload requires a different format, you can define a custom naming strategy and
change the binding name using a prefix and a separator, for example, PORT_DATABASE.

NOTE

When the binding names are projected as files, by default the predefined none
naming strategy is applied, and the binding names do not change.

When the binding names are projected as environment variables and no
namingStrategy is defined, by default the predefined uppercase naming
strategy is applied.

You can override the predefined naming strategies by defining custom naming
strategies using different combinations of custom binding names and predefined
post-processing functions.

5.7.2. Advanced binding options

You can define the ServiceBinding custom resource (CR) to use the following advanced binding
options:

Changing binding names: This option is available only for the binding.operators.coreos.com
API group.

Composing custom binding data: This option is available only for the
binding.operators.coreos.com API group.

Binding workloads using label selectors: This option is available for both the
binding.operators.coreos.com and servicebinding.io API groups.

5.7.2.1. Changing the binding names before projecting them into the workload

You can specify the rules to change the binding names in the .spec.namingStrategy attribute of the
ServiceBinding CR. For example, consider a Spring PetClinic sample application that connects to the
PostgreSQL database. In this case, the PostgreSQL database service exposes the host and port fields
of the database to use for binding. The Spring PetClinic sample application can access this exposed
binding data through the binding names.

host: hippo-pgbouncer
port: 5432

DATABASE_HOST: hippo-pgbouncer
DATABASE_PORT: 5432

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

91

Example: Spring PetClinic sample application in the ServiceBinding CR

Example: PostgreSQL database service in the ServiceBinding CR

If namingStrategy is not defined and the binding names are projected as environment variables, then
the host: hippo-pgbouncer value in the backing service and the projected environment variable would
appear as shown in the following example:

Example

where:

DATABAS
E

Specifies the kind backend service.

HOST Specifies the binding name.

After applying the POSTGRESQL_{{ .service.kind | upper }}_{{ .name | upper }}_ENV naming
strategy, the list of custom binding names prepared by the service binding request appears as shown in
the following example:

Example

The following items describe the expressions defined in the POSTGRESQL_{{ .service.kind | upper
}}_{{ .name | upper }}_ENV naming strategy:

.name: Refers to the binding name exposed by the backing service. In the previous example, the
binding names are HOST and PORT.

.service.kind: Refers to the kind of service resource whose binding names are changed with the
naming strategy.

upper: String function used to post-process the character string while compiling the Go

...
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
...

...
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
...

DATABASE_HOST: hippo-pgbouncer

POSTGRESQL_DATABASE_HOST_ENV: hippo-pgbouncer
POSTGRESQL_DATABASE_PORT_ENV: 5432

Red Hat OpenShift Service on AWS 4 Building applications

92

upper: String function used to post-process the character string while compiling the Go
template string.

POSTGRESQL: Prefix of the custom binding name.

ENV: Suffix of the custom binding name.

Similar to the previous example, you can define the string templates in namingStrategy to define how
each key of the binding names should be prepared by the service binding request.

5.7.2.2. Composing custom binding data

As an application developer, you can compose custom binding data under the following circumstances:

The backing service does not expose binding data.

The values exposed are not available in the required format as expected by the workload.

For example, consider a case where the backing service CR exposes the host, port, and database user as
binding data, but the workload requires that the binding data be consumed as a connection string. You
can compose custom binding data using attributes in the Kubernetes resource representing the backing
service.

Example

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
 namespace: my-petclinic
spec:
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo 1
 id: postgresDB 2
 - group: ""
 version: v1
 kind: Secret
 name: hippo-pguser-hippo
 id: postgresSecret
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
 mappings:
 ## From the database service
 - name: JDBC_URL
 value: 'jdbc:postgresql://{{ .postgresDB.metadata.annotations.proxy }}:{{ .postgresDB.spec.port
}}/{{ .postgresDB.metadata.name }}'
 ## From both the services!
 - name: CREDENTIALS
 value: '{{ .postgresDB.metadata.name }}{{ translationService.postgresSecret.data.password }}'

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

93

1

2

3

4

1

Name of the backing service resource.

Optional identifier.

The JSON name that the Service Binding Operator generates. The Service Binding Operator
projects this JSON name as the name of a file or environment variable.

The JSON value that the Service Binding Operator generates. The Service Binding Operator
projects this JSON value as a file or environment variable. The JSON value contains the attributes
from your specified field of the backing service custom resource.

5.7.2.3. Binding workloads using a label selector

You can use a label selector to specify the workload to bind. If you declare a service binding using the
label selectors to pick up workloads, the Service Binding Operator periodically attempts to find and bind
new workloads that match the given label selector.

For example, as a cluster administrator, you can bind a service to every Deployment in a namespace
with the environment: production label by setting an appropriate labelSelector field in the
ServiceBinding CR. This enables the Service Binding Operator to bind each of these workloads with
one ServiceBinding CR.

Example ServiceBinding CR in the binding.operators.coreos.com/v1alpha1 API

Specifies the workload that is being bound.

Example ServiceBinding CR in the servicebinding.io API

 ## Generate JSON
 - name: DB_JSON 3
 value: {{ json .postgresDB.status }} 4

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: multi-application-binding
 namespace: service-binding-demo
spec:
 application:
 labelSelector: 1
 matchLabels:
 environment: production
 group: apps
 version: v1
 resource: deployments
 services:
 group: ""
 version: v1
 kind: Secret
 name: super-secret-data

apiVersion: servicebindings.io/v1beta1
kind: ServiceBinding

Red Hat OpenShift Service on AWS 4 Building applications

94

1 Specifies the workload that is being bound.

IMPORTANT

If you define the following pairs of fields, Service Binding Operator refuses the binding
operation and generates an error:

The name and labelSelector fields in the
binding.operators.coreos.com/v1alpha1 API.

The name and selector fields in the servicebinding.io API (Spec API).

Understanding the rebinding behavior

Consider a case where, after a successful binding, you use the name field to identify a workload. If you
delete and recreate that workload, the ServiceBinding reconciler does not rebind the workload, and the
Operator cannot project the binding data to the workload. However, if you use the labelSelector field to
identify a workload, the ServiceBinding reconciler rebinds the workload, and the Operator projects the
binding data.

5.7.3. Binding secondary workloads that are not compliant with PodSpec

A typical scenario in service binding involves configuring the backing service, the workload
(Deployment), and Service Binding Operator. Consider a scenario that involves a secondary workload
(which can also be an application Operator) that is not compliant with PodSpec and is between the
primary workload (Deployment) and Service Binding Operator.

For such secondary workload resources, the location of the container path is arbitrary. For service
binding, if the secondary workload in a CR is not compliant with the PodSpec, you must specify the
location of the container path. Doing so projects the binding data into the container path specified in
the secondary workload of the ServiceBinding custom resource (CR), for example, when you do not
want the binding data inside a pod.

In Service Binding Operator, you can configure the path of where containers or secrets reside within a
workload and bind these paths at a custom location.

5.7.3.1. Configuring the custom location of the container path

This custom location is available for the binding.operators.coreos.com API group when Service

metadata:
 name: multi-application-binding
 namespace: service-binding-demo
spec:
 workload:
 selector: 1
 matchLabels:
 environment: production
 apiVersion: app/v1
 kind: Deployment
 service:
 apiVersion: v1
 kind: Secret
 name: super-secret-data

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

95

This custom location is available for the binding.operators.coreos.com API group when Service
Binding Operator projects the binding data as environment variables.

Consider a secondary workload CR, which is not compliant with the PodSpec and has containers located
at the spec.containers path:

Example: Secondary workload CR

Procedure

Configure the spec.containers path by specifying a value in the ServiceBinding CR and bind
this path to a spec.application.bindingPath.containersPath custom location:

Example: ServiceBinding CR with the spec.containers path in a custom location

apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:
 name: secondary-workload
spec:
 containers:
 - name: hello-world
 image: quay.io/baijum/secondary-workload:latest
 ports:
 - containerPort: 8080

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
spec:
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 id: postgresDB
 - group: ""
 version: v1
 kind: Secret
 name: hippo-pguser-hippo
 id: postgresSecret
 application: 1
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments
 application: 2
 name: secondary-workload
 group: operator.sbo.com
 version: v1
 resource: secondaryworkloads
 bindingPath:
 containersPath: spec.containers 3

Red Hat OpenShift Service on AWS 4 Building applications

96

1

2

3

1

2

The sample application that points to a Deployment or any other similar resource with an
embedded PodSpec.

The secondary workload, which is not compliant with the PodSpec.

The custom location of the container path.

After you specify the location of the container path, Service Binding Operator generates the binding
data, which becomes available in the container path specified in the secondary workload of the
ServiceBinding CR.

The following example shows the spec.containers path with the envFrom and secretRef fields:

Example: Secondary workload CR with the envFrom and secretRef fields

Unique array of containers with values generated by the Service Binding Operator. These values
are based on the backing service CR.

Name of the Secret resource generated by the Service Binding Operator.

5.7.3.2. Configuring the custom location of the secret path

This custom location is available for the binding.operators.coreos.com API group when Service
Binding Operator projects the binding data as environment variables.

Consider a secondary workload CR, which is not compliant with the PodSpec, with only the secret at the
spec.secret path:

Example: Secondary workload CR

apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:
 name: secondary-workload
spec:
 containers:
 - env: 1
 - name: ServiceBindingOperatorChangeTriggerEnvVar
 value: "31793"
 envFrom:
 - secretRef:
 name: secret-resource-name 2
 image: quay.io/baijum/secondary-workload:latest
 name: hello-world
 ports:
 - containerPort: 8080
 resources: {}

apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

97

1

2

1

Procedure

Configure the spec.secret path by specifying a value in the ServiceBinding CR and bind this
path at a spec.application.bindingPath.secretPath custom location:

Example: ServiceBinding CR with the spec.secret path in a custom location

The secondary workload, which is not compliant with the PodSpec.

The custom location of the secret path that contains the name of the Secret resource.

After you specify the location of the secret path, Service Binding Operator generates the binding data,
which becomes available in the secret path specified in the secondary workload of the ServiceBinding
CR.

The following example shows the spec.secret path with the binding-request value:

Example: Secondary workload CR with the binding-request value

The unique name of the Secret resource that Service Binding Operator generates.

5.7.3.3. Workload resource mapping

NOTE

 name: secondary-workload
spec:
 secret: ""

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
spec:
...
 application: 1
 name: secondary-workload
 group: operator.sbo.com
 version: v1
 resource: secondaryworkloads
 bindingPath:
 secretPath: spec.secret 2
...

...
apiVersion: "operator.sbo.com/v1"
kind: SecondaryWorkload
metadata:
 name: secondary-workload
spec:
 secret: binding-request-72ddc0c540ab3a290e138726940591debf14c581 1
...

Red Hat OpenShift Service on AWS 4 Building applications

98

1

2

3

4

5

NOTE

Workload resource mapping is available for the secondary workloads of the
ServiceBinding custom resource (CR) for both the API groups:
binding.operators.coreos.com and servicebinding.io.

You must define ClusterWorkloadResourceMapping resources only under the
servicebinding.io API group. However, the
ClusterWorkloadResourceMapping resources interact with ServiceBinding
resources under both the binding.operators.coreos.com and
servicebinding.io API groups.

If you cannot configure custom path locations by using the configuration method for container path, you
can define exactly where binding data needs to be projected. Specify where to project the binding data
for a given workload kind by defining the ClusterWorkloadResourceMapping resources in the
servicebinding.io API group.

The following example shows how to define a mapping for the CronJob.batch/v1 resources.

Example: Mapping for CronJob.batch/v1 resources

Name of the ClusterWorkloadResourceMapping resource, which must be qualified as the
plural.group of the mapped workload resource.

Version of the resource that is being mapped. Any version that is not specified can be matched
with the "*" wildcard.

Optional: Identifier of the .annotations field in a pod, specified with a fixed JSONPath. The default
value is .spec.template.spec.annotations.

Identifier of the .containers and .initContainers fields in a pod, specified with a JSONPath. If no
entries under the containers field are defined, the Service Binding Operator defaults to two paths:
.spec.template.spec.containers[*] and .spec.template.spec.initContainers[*], with all other
fields set as their default. However, if you specify an entry, then you must define the .path field.

Optional: Identifier of the .name field in a container, specified with a fixed JSONPath. The default
value is .name.

apiVersion: servicebinding.io/v1beta1
kind: ClusterWorkloadResourceMapping
metadata:
 name: cronjobs.batch 1
spec:
 versions:
 - version: "v1" 2
 annotations: .spec.jobTemplate.spec.template.metadata.annotations 3
 containers:
 - path: .spec.jobTemplate.spec.template.spec.containers[*] 4
 - path: .spec.jobTemplate.spec.template.spec.initContainers[*]
 name: .name 5
 env: .env 6
 volumeMounts: .volumeMounts 7
 volumes: .spec.jobTemplate.spec.template.spec.volumes 8

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

99

6

7

8

Optional: Identifier of the .env field in a container, specified with a fixed JSONPath. The default
value is .env.

Optional: Identifier of the .volumeMounts field in a container, specified with a fixed JSONPath.
The default value is .volumeMounts.

Optional: Identifier of the .volumes field in a pod, specified with a fixed JSONPath. The default
value is .spec.template.spec.volumes.

IMPORTANT

In this context, a fixed JSONPath is a subset of the JSONPath grammar that
accepts only the following operations:

Field lookup: .spec.template

Array indexing: .spec['template']

All other operations are not accepted.

Most of these fields are optional. When they are not specified, the Service
Binding Operator assumes defaults compatible with PodSpec resources.

The Service Binding Operator requires that each of these fields is structurally
equivalent to the corresponding field in a pod deployment. For example, the
contents of the .env field in a workload resource must be able to accept the
same structure of data that the .env field in a Pod resource would. Otherwise,
projecting binding data into such a workload might result in unexpected behavior
from the Service Binding Operator.

Behavior specific to the binding.operators.coreos.com API group

You can expect the following behaviors when ClusterWorkloadResourceMapping resources interact
with ServiceBinding resources under the binding.operators.coreos.com API group:

If a ServiceBinding resource with the bindAsFiles: false flag value is created together with
one of these mappings, then environment variables are projected into the .envFrom field
underneath each path field specified in the corresponding
ClusterWorkloadResourceMapping resource.

As a cluster administrator, you can specify both a ClusterWorkloadResourceMapping
resource and the .spec.application.bindingPath.containersPath field in a
ServiceBinding.bindings.coreos.com resource for binding purposes.
The Service Binding Operator attempts to project binding data into the locations specified in
both a ClusterWorkloadResourceMapping resource and the
.spec.application.bindingPath.containersPath field. This behavior is equivalent to adding a
container entry to the corresponding ClusterWorkloadResourceMapping resource with the
path: $containersPath attribute, with all other values taking their default value.

5.7.4. Unbinding workloads from a backing service

You can unbind a workload from a backing service by using the oc tool.

To unbind a workload from a backing service, delete the ServiceBinding custom resource (CR)
linked to it:

Red Hat OpenShift Service on AWS 4 Building applications

100

Example

where:

spring-
petclinic-
pgcluster

Specifies the name of the ServiceBinding CR.

5.7.5. Additional resources

Binding a workload together with a backing service .

Connecting the Spring PetClinic sample application to the PostgreSQL database service .

Creating custom resources from a file

Example schema of the ClusterWorkloadResourceMapping resource.

5.8. CONNECTING AN APPLICATION TO A SERVICE USING THE
DEVELOPER PERSPECTIVE

Use the Topology view for the following purposes:

Grouping multiple components within an application.

Connecting components with each other.

Connecting multiple resources to services with labels.

You can either use a binding or a visual connector to connect components.

A binding connection between the components can be established only if the target node is an
Operator-backed service. This is indicated by the Create a binding connector tool-tip which appears
when you drag an arrow to such a target node. When an application is connected to a service by using a
binding connector a ServiceBinding resource is created. Then, the Service Binding Operator controller
projects the necessary binding data into the application deployment. After the request is successful, the
application is redeployed establishing an interaction between the connected components.

A visual connector establishes only a visual connection between the components, depicting an intent to
connect. No interaction between the components is established. If the target node is not an Operator-
backed service the Create a visual connector tool-tip is displayed when you drag an arrow to a target
node.

5.8.1. Discovering and identifying Operator-backed bindable services

As a user, if you want to create a bindable service, you must know which services are bindable. Bindable
services are services that the applications can consume easily because they expose their binding data
such as credentials, connection details, volume mounts, secrets, and other binding data in a standard
way. The Developer perspective helps you discover and identify such bindable services.

$ oc delete ServiceBinding <.metadata.name>

$ oc delete ServiceBinding spring-petclinic-pgcluster

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

101

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/operators/#crd-creating-custom-resources-from-file_crd-managing-resources-from-crds
https://redhat-developer.github.io/service-binding-operator/userguide/binding-workloads-using-sbo/custom-path-injection.html#_workload_resource_mapping

Procedure

To discover and identify Operator-backed bindable services, consider the following alternative
approaches:

Click +Add → Developer Catalog → Operator Backed to see the Operator-backed tiles.
Operator-backed services that support service binding features have a Bindable badge on
the tiles.

On the left pane of the Operator Backed page, select Bindable.

TIP

Click the help icon next to Service binding to see more information about bindable
services.

Click +Add → Add and search for Operator-backed services. When you click the bindable
service, you can view the Bindable badge in the side panel.

5.8.2. Creating a visual connection between components

You can depict an intent to connect application components by using the visual connector.

This procedure walks you through an example of creating a visual connection between a PostgreSQL
Database service and a Spring PetClinic sample application.

Prerequisites

You have created and deployed a Spring PetClinic sample application by using the Developer
perspective.

You have created and deployed a Crunchy PostgreSQL database instance by using the
Developer perspective. This instance has the following components: hippo-backup, hippo-
instance, hippo-repo-host, and hippo-pgbouncer.

Procedure

1. In the Developer perspective, switch to the relevant project, for example, my-petclinic.

2. Hover over the Spring PetClinic sample application to see a dangling arrow on the node.

Figure 5.1. Visual connector

Red Hat OpenShift Service on AWS 4 Building applications

102

Figure 5.1. Visual connector

3. Click and drag the arrow towards the hippo-pgbouncer deployment to connect the Spring
PetClinic sample application with it.

4. Click the spring-petclinic deployment to see the Overview panel. Under the Details tab, click
the edit icon in the Annotations section to see the Key = app.openshift.io/connects-to and
Value = [{"apiVersion":"apps/v1","kind":"Deployment","name":"hippo-pgbouncer"}]
annotation added to the deployment.

5. Optional: You can repeat these steps to establish visual connections between other applications
and components you create.

Figure 5.2. Connecting multiple applications

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

103

Figure 5.2. Connecting multiple applications

5.8.3. Creating a binding connection between components

You can create a binding connection with Operator-backed components, as demonstrated in the
following example, which uses a PostgreSQL Database service and a Spring PetClinic sample
application. To create a binding connection with a service that the PostgreSQL Database Operator
backs, you must first add the Red Hat-provided PostgreSQL Database Operator to the OperatorHub,
and then install the Operator. The PostreSQL Database Operator then creates and manages the
Database resource, which exposes the binding data in secrets, config maps, status, and spec attributes.

Prerequisites

You created and deployed a Spring PetClinic sample application in the Developer perspective.

You installed Service Binding Operator from the OperatorHub.

You installed the Crunchy Postgres for Kubernetes Operator from the OperatorHub in the v5
Update channel.

You created a PostgresCluster resource in the Developer perspective, which resulted in a
Crunchy PostgreSQL database instance with the following components: hippo-backup, hippo-
instance, hippo-repo-host, and hippo-pgbouncer.

Procedure

1. In the Developer perspective, switch to the relevant project, for example, my-petclinic.

2. In the Topology view, hover over the Spring PetClinic sample application to see a dangling
arrow on the node.

3. Drag and drop the arrow onto the hippo database icon in the Postgres Cluster to make a
binding connection with the Spring PetClinic sample application.

4. In the Create Service Binding dialog, keep the default name or add a different name for the

Red Hat OpenShift Service on AWS 4 Building applications

104

4. In the Create Service Binding dialog, keep the default name or add a different name for the
service binding, and then click Create.

Figure 5.3. Service Binding dialog

5. Optional: If there is difficulty in making a binding connection using the Topology view, go to
+Add → YAML → Import YAML.

6. Optional: In the YAML editor, add the ServiceBinding resource:

A service binding request is created and a binding connection is created through a
ServiceBinding resource. When the database service connection request succeeds, the
application is redeployed and the connection is established.

Figure 5.4. Binding connector

apiVersion: binding.operators.coreos.com/v1alpha1
kind: ServiceBinding
metadata:
 name: spring-petclinic-pgcluster
 namespace: my-petclinic
spec:
 services:
 - group: postgres-operator.crunchydata.com
 version: v1beta1
 kind: PostgresCluster
 name: hippo
 application:
 name: spring-petclinic
 group: apps
 version: v1
 resource: deployments

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

105

Figure 5.4. Binding connector

TIP

You can also use the context menu by dragging the dangling arrow to add and create a binding
connection to an operator-backed service.

Figure 5.5. Context menu to create binding connection

7. In the navigation menu, click Topology. The spring-petclinic deployment in the Topology view
includes an Open URL link to view its web page.

8. Click the Open URL link.

Red Hat OpenShift Service on AWS 4 Building applications

106

You can now view the Spring PetClinic sample application remotely to confirm that the application is
now connected to the database service and that the data has been successfully projected to the
application from the Crunchy PostgreSQL database service.

The Service Binding Operator has successfully created a working connection between the application
and the database service.

5.8.4. Verifying the status of your service binding from the Topology view

The Developer perspective helps you verify the status of your service binding through the Topology
view.

Procedure

1. If a service binding was successful, click the binding connector. A side panel appears displaying
the Connected status under the Details tab.
Optionally, you can view the Connected status on the following pages from the Developer
perspective:

The ServiceBindings page.

The ServiceBinding details page. In addition, the page title displays a Connected badge.

2. If a service binding was unsuccessful, the binding connector shows a red arrowhead and a red
cross in the middle of the connection. Click this connector to view the Error status in the side
panel under the Details tab. Optionally, click the Error status to view specific information about
the underlying problem.
You can also view the Error status and a tooltip on the following pages from the Developer
perspective:

The ServiceBindings page.

The ServiceBinding details page. In addition, the page title displays an Error badge.

TIP

In the ServiceBindings page, use the Filter dropdown to list the service bindings based on their status.

5.8.5. Visualizing the binding connections to resources

As a user, use Label Selector in the Topology view to visualize a service binding and simplify the
process of binding applications to backing services. When creating ServiceBinding resources, specify
labels by using Label Selector to find and connect applications instead of using the name of the
application. The Service Binding Operator then consumes these ServiceBinding resources and
specified labels to find the applications to create a service binding with.

TIP

To navigate to a list of all connected resources, click the label selector associated with the
ServiceBinding resource.

To view the Label Selector, consider the following approaches:

After you import a ServiceBinding resource, view the Label Selector associated with the

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

107

After you import a ServiceBinding resource, view the Label Selector associated with the
service binding on the ServiceBinding details page.

Figure 5.6. ServiceBinding details page

NOTE

To use Label Selector and to create one or more connections at once, you must import
the YAML file of the ServiceBinding resource.

After the connection is established and when you click the binding connector, the service
binding connector Details side panel appears. You can view the Label Selector associated with
the service binding on this panel.

Figure 5.7. Topology label selector side panel

NOTE

Red Hat OpenShift Service on AWS 4 Building applications

108

NOTE

When you delete a binding connector (a single connection within Topology along
with a service binding), the action removes all connections that are tied to the
deleted service binding. While deleting a binding connector, a confirmation dialog
appears, which informs that all connectors will be deleted.

Figure 5.8. Delete ServiceBinding confirmation dialog

5.8.6. Additional resources

Getting started with service binding

Known bindable Operators

CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES

109

https://github.com/redhat-developer/service-binding-operator#known-bindable-operators

CHAPTER 6. WORKING WITH HELM CHARTS

6.1. UNDERSTANDING HELM

Helm is a software package manager that simplifies deployment of applications and services to Red Hat
OpenShift Service on AWS clusters.

Helm uses a packaging format called charts. A Helm chart is a collection of files that describes the Red
Hat OpenShift Service on AWS resources.

Creating a chart in a cluster creates a running instance of the chart known as a release.

Each time a chart is created, or a release is upgraded or rolled back, an incremental revision is created.

6.1.1. Key features

Helm provides the ability to:

Search through a large collection of charts stored in the chart repository.

Modify existing charts.

Create your own charts with Red Hat OpenShift Service on AWS or Kubernetes resources.

Package and share your applications as charts.

6.1.2. Red Hat Certification of Helm charts for OpenShift

You can choose to verify and certify your Helm charts by Red Hat for all the components you will be
deploying on the Red Hat Red Hat OpenShift Service on AWS. Charts go through an automated Red
Hat OpenShift certification workflow that guarantees security compliance as well as best integration and
experience with the platform. Certification assures the integrity of the chart and ensures that the Helm
chart works seamlessly on Red Hat OpenShift clusters.

6.1.3. Additional resources

For more information on how to certify your Helm charts as a Red Hat partner, see Red Hat
Certification of Helm charts for OpenShift.

For more information on OpenShift and Container certification guides for Red Hat partners, see
Partner Guide for OpenShift and Container Certification .

For a list of the charts, see the Red Hat Helm index file.

You can view the available charts at the Red Hat Marketplace . For more information, see Using
the Red Hat Marketplace.

6.2. INSTALLING HELM

The following section describes how to install Helm on different platforms using the CLI.

You can also find the URL to the latest binaries from the Red Hat OpenShift Service on AWS web
console by clicking the ? icon in the upper-right corner and selecting Command Line Tools.

Prerequisites

Red Hat OpenShift Service on AWS 4 Building applications

110

https://redhat-connect.gitbook.io/partner-guide-for-red-hat-openshift-and-container/helm-chart-certification/overview
https://access.redhat.com/documentation/en-us/red_hat_software_certification/8.51/html-single/red_hat_software_certification_workflow_guide/index#con_container-certification_openshift-sw-cert-workflow-introduction-to-redhat-openshift-operator-certification
https://charts.openshift.io/index.yaml
https://marketplace.redhat.com/en-us/documentation/access-red-hat-marketplace

Prerequisites

You have installed Go, version 1.13 or higher.

6.2.1. On Linux

1. Download the Linux x86_64 or Linux amd64 Helm binary and add it to your path:

2. Make the binary file executable:

3. Check the installed version:

Example output

6.2.2. On Windows 7/8

1. Download the latest .exe file and put in a directory of your preference.

2. Right click Start and click Control Panel.

3. Select System and Security and then click System.

4. From the menu on the left, select Advanced systems settings and click Environment
Variables at the bottom.

5. Select Path from the Variable section and click Edit.

6. Click New and type the path to the folder with the .exe file into the field or click Browse and
select the directory, and click OK.

6.2.3. On Windows 10

1. Download the latest .exe file and put in a directory of your preference.

2. Click Search and type env or environment.

3. Select Edit environment variables for your account.

4. Select Path from the Variable section and click Edit.

5. Click New and type the path to the directory with the exe file into the field or click Browse and
select the directory, and click OK.

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-linux-amd64 -
o /usr/local/bin/helm

chmod +x /usr/local/bin/helm

$ helm version

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
GoVersion:"go1.13.4"}

CHAPTER 6. WORKING WITH HELM CHARTS

111

https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe
https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-windows-amd64.exe

6.2.4. On MacOS

1. Download the Helm binary and add it to your path:

2. Make the binary file executable:

3. Check the installed version:

Example output

6.3. CONFIGURING CUSTOM HELM CHART REPOSITORIES

The Developer Catalog, in the Developer perspective of the web console, displays the Helm charts
available in the cluster. By default, it lists the Helm charts from the Red Hat OpenShift Helm chart
repository. For a list of the charts, see the Red Hat Helm index file.

As a cluster administrator, you can add multiple cluster-scoped and namespace-scoped Helm chart
repositories, separate from the default cluster-scoped Helm repository, and display the Helm charts
from these repositories in the Developer Catalog.

As a regular user or project member with the appropriate role-based access control (RBAC)
permissions, you can add multiple namespace-scoped Helm chart repositories, apart from the default
cluster-scoped Helm repository, and display the Helm charts from these repositories in the Developer
Catalog.

In the Developer perspective of the web console, you can use the Helm page to:

Create Helm Releases and Repositories using the Create button.

Create, update, or delete a cluster-scoped or namespace-scoped Helm chart repository.

View the list of the existing Helm chart repositories in the Repositories tab, which can also be
easily distinguished as either cluster scoped or namespace scoped.

6.3.1. Creating Helm releases using the Developer perspective

You can use either the Developer perspective in the web console or the CLI to select and create a
release from the Helm charts listed in the Developer Catalog. You can create Helm releases by installing
Helm charts and see them in the Developer perspective of the web console.

Prerequisites

curl -L https://mirror.openshift.com/pub/openshift-v4/clients/helm/latest/helm-darwin-amd64
-o /usr/local/bin/helm

chmod +x /usr/local/bin/helm

$ helm version

version.BuildInfo{Version:"v3.0",
GitCommit:"b31719aab7963acf4887a1c1e6d5e53378e34d93", GitTreeState:"clean",
GoVersion:"go1.13.4"}

Red Hat OpenShift Service on AWS 4 Building applications

112

https://charts.openshift.io/index.yaml

You have logged in to the web console and have switched to the Developer perspective.

Procedure

To create Helm releases from the Helm charts provided in the Developer Catalog:

1. In the Developer perspective, navigate to the +Add view and select a project. Then click Helm
Chart option to see all the Helm Charts in the Developer Catalog.

2. Select a chart and read the description, README, and other details about the chart.

3. Click Create.

Figure 6.1. Helm charts in developer catalog

4. In the Create Helm Release page:

a. Enter a unique name for the release in the Release Name field.

b. Select the required chart version from the Chart Version drop-down list.

c. Configure your Helm chart by using the Form View or the YAML View.

NOTE

Where available, you can switch between the YAML View and Form View.
The data is persisted when switching between the views.

d. Click Create to create a Helm release. The web console displays the new release in the
Topology view.
If a Helm chart has release notes, the web console displays them.

If a Helm chart creates workloads, the web console displays them on the Topology or Helm
release details page. The workloads are DaemonSet, CronJob, Pod, Deployment, and
DeploymentConfig.

e. View the newly created Helm release in the Helm Releases page.

You can upgrade, rollback, or delete a Helm release by using the Actions button on the side panel or by

CHAPTER 6. WORKING WITH HELM CHARTS

113

1

2

3

4

5

You can upgrade, rollback, or delete a Helm release by using the Actions button on the side panel or by
right-clicking a Helm release.

6.3.2. Using Helm in the web terminal

You can use Helm by Accessing the web terminal in the Developer perspective of the web console.

6.3.3. Creating a custom Helm chart on Red Hat OpenShift Service on AWS

Procedure

1. Create a new project:

2. Download an example Node.js chart that contains Red Hat OpenShift Service on AWS objects:

3. Go to the directory with the sample chart:

4. Edit the Chart.yaml file and add a description of your chart:

The chart API version. It should be v2 for Helm charts that require at least Helm 3.

The name of your chart.

The description of your chart.

The URL to an image to be used as an icon.

The Version of your chart as per the Semantic Versioning (SemVer) 2.0.0 Specification.

5. Verify that the chart is formatted properly:

Example output

$ oc new-project nodejs-ex-k

$ git clone https://github.com/redhat-developer/redhat-helm-charts

$ cd redhat-helm-charts/alpha/nodejs-ex-k/

apiVersion: v2 1
name: nodejs-ex-k 2
description: A Helm chart for OpenShift 3
icon: https://static.redhat.com/libs/redhat/brand-assets/latest/corp/logo.svg 4
version: 0.2.1 5

$ helm lint

[INFO] Chart.yaml: icon is recommended

1 chart(s) linted, 0 chart(s) failed

Red Hat OpenShift Service on AWS 4 Building applications

114

6. Navigate to the previous directory level:

7. Install the chart:

8. Verify that the chart has installed successfully:

Example output

6.3.4. Filtering Helm Charts by their certification level

You can filter Helm charts based on their certification level in the Developer Catalog.

Procedure

1. In the Developer perspective, navigate to the +Add view and select a project.

2. From the Developer Catalog tile, select the Helm Chart option to see all the Helm charts in the
Developer Catalog.

3. Use the filters to the left of the list of Helm charts to filter the required charts:

Use the Chart Repositories filter to filter charts provided by Red Hat Certification Charts
or OpenShift Helm Charts.

Use the Source filter to filter charts sourced from Partners, Community, or Red Hat.

Certified charts are indicated with the () icon.

NOTE

The Source filter will not be visible when there is only one provider type.

You can now select the required chart and install it.

6.4. WORKING WITH HELM RELEASES

You can use the Developer perspective in the web console to update, rollback, or delete a Helm release.

6.4.1. Prerequisites

You have logged in to the web console and have switched to the Developer perspective.

$ cd ..

$ helm install nodejs-chart nodejs-ex-k

$ helm list

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
nodejs-chart nodejs-ex-k 1 2019-12-05 15:06:51.379134163 -0500 EST deployed nodejs-
0.1.0 1.16.0

CHAPTER 6. WORKING WITH HELM CHARTS

115

6.4.2. Upgrading a Helm release

You can upgrade a Helm release to upgrade to a new chart version or update your release configuration.

Procedure

1. In the Topology view, select the Helm release to see the side panel.

2. Click Actions → Upgrade Helm Release.

3. In the Upgrade Helm Release page, select the Chart Version you want to upgrade to, and then
click Upgrade to create another Helm release. The Helm Releases page displays the two
revisions.

6.4.3. Rolling back a Helm release

If a release fails, you can rollback the Helm release to a previous version.

Procedure

To rollback a release using the Helm view:

1. In the Developer perspective, navigate to the Helm view to see the Helm Releases in the
namespace.

2. Click the Options menu adjoining the listed release, and select Rollback.

3. In the Rollback Helm Release page, select the Revision you want to rollback to and click
Rollback.

4. In the Helm Releases page, click on the chart to see the details and resources for that release.

5. Go to the Revision History tab to see all the revisions for the chart.

Figure 6.2. Helm revision history

6. If required, you can further use the Options menu adjoining a particular revision and
select the revision to rollback to.

6.4.4. Deleting a Helm release

Procedure

Red Hat OpenShift Service on AWS 4 Building applications

116

1. In the Topology view, right-click the Helm release and select Delete Helm Release.

2. In the confirmation prompt, enter the name of the chart and click Delete.

CHAPTER 6. WORKING WITH HELM CHARTS

117

CHAPTER 7. DEPLOYMENTS

7.1. CUSTOM DOMAINS FOR APPLICATIONS

WARNING

Starting with Red Hat OpenShift Service on AWS 4.14, the Custom Domain
Operator is deprecated. To manage Ingress in Red Hat OpenShift Service on AWS
4.14, use the Ingress Operator. The functionality is unchanged for Red Hat
OpenShift Service on AWS 4.13 and earlier versions.

You can configure a custom domain for your applications. Custom domains are specific wildcard
domains that can be used with Red Hat OpenShift Service on AWS applications.

7.1.1. Configuring custom domains for applications

The top-level domains (TLDs) are owned by the customer that is operating the Red Hat OpenShift
Service on AWS cluster. The Custom Domains Operator sets up a new ingress controller with a custom
certificate as a second day operation. The public DNS record for this ingress controller can then be used
by an external DNS to create a wildcard CNAME record for use with a custom domain.

NOTE

Custom API domains are not supported because Red Hat controls the API domain.
However, customers can change their application domains. For private custom domains
with a private IngressController, set .spec.scope to Internal in the CustomDomain CR.

Prerequisites

A user account with dedicated-admin privileges

A unique domain or wildcard domain, such as *.apps.<company_name>.io

A custom certificate or wildcard custom certificate, such as CN=*.apps.<company_name>.io

Access to a cluster with the latest version of the oc CLI installed

IMPORTANT

Do not use the reserved names default or apps*, such as apps or apps2, in the
metadata/name: section of the CustomDomain CR.

Procedure

1. Create a new TLS secret from a private key and a public certificate, where fullchain.pem and
privkey.pem are your public or private wildcard certificates.

Example

Red Hat OpenShift Service on AWS 4 Building applications

118

1

2

3

4

5

2. Create a new CustomDomain custom resource (CR):

Example <company_name>-custom-domain.yaml

The custom domain.

The type of load balancer for your custom domain. This type can be the default classic or
NLB if you use a network load balancer.

The secret created in the previous step.

Optional: Filters the set of routes serviced by the CustomDomain ingress. If no value is
provided, the default is no filtering.

Optional: Filters the set of namespaces serviced by the CustomDomain ingress. If no value
is provided, the default is no filtering.

3. Apply the CR:

Example

4. Get the status of your newly created CR:

Example output

$ oc create secret tls <name>-tls --cert=fullchain.pem --key=privkey.pem -n <my_project>

apiVersion: managed.openshift.io/v1alpha1
kind: CustomDomain
metadata:
 name: <company_name>
spec:
 domain: apps.<company_name>.io 1
 scope: External
 loadBalancerType: Classic 2
 certificate:
 name: <name>-tls 3
 namespace: <my_project>
 routeSelector: 4
 matchLabels:
 route: acme
 namespaceSelector: 5
 matchLabels:
 type: sharded

$ oc apply -f <company_name>-custom-domain.yaml

$ oc get customdomains

NAME ENDPOINT DOMAIN STATUS
<company_name> xxrywp.<company_name>.cluster-01.opln.s1.openshiftapps.com
*.apps.<company_name>.io Ready

CHAPTER 7. DEPLOYMENTS

119

5. Using the endpoint value, add a new wildcard CNAME recordset to your managed DNS provider,
such as Route53.

Example

6. Create a new application and expose it:

Example

Troubleshooting

Error creating TLS secret

Troubleshooting: CustomDomain in NotReady state

7.1.2. Renewing a certificate for custom domains

You can renew certificates with the Custom Domains Operator (CDO) by using the oc CLI tool.

Prerequisites

You have the latest version oc CLI tool installed.

Procedure

1. Create new secret

2. Patch CustomDomain CR

3. Delete old secret

Troubleshooting

*.apps.<company_name>.io -> xxrywp.<company_name>.cluster-
01.opln.s1.openshiftapps.com

$ oc new-app --docker-image=docker.io/openshift/hello-openshift -n my-project

$ oc create route <route_name> --service=hello-openshift hello-openshift-tls --hostname
hello-openshift-tls-my-project.apps.<company_name>.io -n my-project

$ oc get route -n my-project

$ curl https://hello-openshift-tls-my-project.apps.<company_name>.io
Hello OpenShift!

$ oc create secret tls <secret-new> --cert=fullchain.pem --key=privkey.pem -n <my_project>

$ oc patch customdomain <company_name> --type='merge' -p '{"spec":{"certificate":
{"name":"<secret-new>"}}}'

$ oc delete secret <secret-old> -n <my_project>

Red Hat OpenShift Service on AWS 4 Building applications

120

https://access.redhat.com/solutions/5419501
https://access.redhat.com/solutions/6546011

Troubleshooting

Error creating TLS secret

7.2. UNDERSTANDING DEPLOYMENTS

The Deployment and DeploymentConfig API objects in Red Hat OpenShift Service on AWS provide
two similar but different methods for fine-grained management over common user applications. They
are composed of the following separate API objects:

A Deployment or DeploymentConfig object, either of which describes the desired state of a
particular component of the application as a pod template.

Deployment objects involve one or more replica sets, which contain a point-in-time record of
the state of a deployment as a pod template. Similarly, DeploymentConfig objects involve one
or more replication controllers, which preceded replica sets.

One or more pods, which represent an instance of a particular version of an application.

Use Deployment objects unless you need a specific feature or behavior provided by
DeploymentConfig objects.

IMPORTANT

As of Red Hat OpenShift Service on AWS 4.14, DeploymentConfig objects are
deprecated. DeploymentConfig objects are still supported, but are not recommended
for new installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

7.2.1. Building blocks of a deployment

Deployments and deployment configs are enabled by the use of native Kubernetes API objects
ReplicaSet and ReplicationController, respectively, as their building blocks.

Users do not have to manipulate replica sets, replication controllers, or pods owned by Deployment or
DeploymentConfig objects. The deployment systems ensure changes are propagated appropriately.

TIP

If the existing deployment strategies are not suited for your use case and you must run manual steps
during the lifecycle of your deployment, then you should consider creating a custom deployment
strategy.

The following sections provide further details on these objects.

7.2.1.1. Replica sets

A ReplicaSet is a native Kubernetes API object that ensures a specified number of pod replicas are
running at any given time.

NOTE

CHAPTER 7. DEPLOYMENTS

121

https://access.redhat.com/solutions/5419501

1

2

3

NOTE

Only use replica sets if you require custom update orchestration or do not require updates
at all. Otherwise, use deployments. Replica sets can be used independently, but are used
by deployments to orchestrate pod creation, deletion, and updates. Deployments
manage their replica sets automatically, provide declarative updates to pods, and do not
have to manually manage the replica sets that they create.

The following is an example ReplicaSet definition:

A label query over a set of resources. The result of matchLabels and matchExpressions are
logically conjoined.

Equality-based selector to specify resources with labels that match the selector.

Set-based selector to filter keys. This selects all resources with key equal to tier and value equal to
frontend.

7.2.1.2. Replication controllers

Similar to a replica set, a replication controller ensures that a specified number of replicas of a pod are
running at all times. If pods exit or are deleted, the replication controller instantiates more up to the
defined number. Likewise, if there are more running than desired, it deletes as many as necessary to
match the defined amount. The difference between a replica set and a replication controller is that a
replica set supports set-based selector requirements whereas a replication controller only supports
equality-based selector requirements.

A replication controller configuration consists of:

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: frontend-1
 labels:
 tier: frontend
spec:
 replicas: 3
 selector: 1
 matchLabels: 2
 tier: frontend
 matchExpressions: 3
 - {key: tier, operator: In, values: [frontend]}
 template:
 metadata:
 labels:
 tier: frontend
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

Red Hat OpenShift Service on AWS 4 Building applications

122

1

2

3

4

5

The number of replicas desired, which can be adjusted at run time.

A Pod definition to use when creating a replicated pod.

A selector for identifying managed pods.

A selector is a set of labels assigned to the pods that are managed by the replication controller. These
labels are included in the Pod definition that the replication controller instantiates. The replication
controller uses the selector to determine how many instances of the pod are already running in order to
adjust as needed.

The replication controller does not perform auto-scaling based on load or traffic, as it does not track
either. Rather, this requires its replica count to be adjusted by an external auto-scaler.

NOTE

Use a DeploymentConfig to create a replication controller instead of creating replication
controllers directly.

If you require custom orchestration or do not require updates, use replica sets instead of
replication controllers.

The following is an example definition of a replication controller:

The number of copies of the pod to run.

The label selector of the pod to run.

A template for the pod the controller creates.

Labels on the pod should include those from the label selector.

The maximum name length after expanding any parameters is 63 characters.

apiVersion: v1
kind: ReplicationController
metadata:
 name: frontend-1
spec:
 replicas: 1 1
 selector: 2
 name: frontend
 template: 3
 metadata:
 labels: 4
 name: frontend 5
 spec:
 containers:
 - image: openshift/hello-openshift
 name: helloworld
 ports:
 - containerPort: 8080
 protocol: TCP
 restartPolicy: Always

CHAPTER 7. DEPLOYMENTS

123

7.2.2. Deployments

Kubernetes provides a first-class, native API object type in Red Hat OpenShift Service on AWS called
Deployment. Deployment objects describe the desired state of a particular component of an
application as a pod template. Deployments create replica sets, which orchestrate pod lifecycles.

For example, the following deployment definition creates a replica set to bring up one hello-openshift
pod:

Deployment definition

7.2.3. DeploymentConfig objects

IMPORTANT

As of Red Hat OpenShift Service on AWS 4.14, DeploymentConfig objects are
deprecated. DeploymentConfig objects are still supported, but are not recommended
for new installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

Building on replication controllers, Red Hat OpenShift Service on AWS adds expanded support for the
software development and deployment lifecycle with the concept of DeploymentConfig objects. In the
simplest case, a DeploymentConfig object creates a new replication controller and lets it start up pods.

However, Red Hat OpenShift Service on AWS deployments from DeploymentConfig objects also
provide the ability to transition from an existing deployment of an image to a new one and also define
hooks to be run before or after creating the replication controller.

The DeploymentConfig deployment system provides the following capabilities:

A DeploymentConfig object, which is a template for running applications.

Triggers that drive automated deployments in response to events.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: hello-openshift
spec:
 replicas: 1
 selector:
 matchLabels:
 app: hello-openshift
 template:
 metadata:
 labels:
 app: hello-openshift
 spec:
 containers:
 - name: hello-openshift
 image: openshift/hello-openshift:latest
 ports:
 - containerPort: 80

Red Hat OpenShift Service on AWS 4 Building applications

124

User-customizable deployment strategies to transition from the previous version to the new
version. A strategy runs inside a pod commonly referred as the deployment process.

A set of hooks (lifecycle hooks) for executing custom behavior in different points during the
lifecycle of a deployment.

Versioning of your application to support rollbacks either manually or automatically in case of
deployment failure.

Manual replication scaling and autoscaling.

When you create a DeploymentConfig object, a replication controller is created representing the
DeploymentConfig object’s pod template. If the deployment changes, a new replication controller is
created with the latest pod template, and a deployment process runs to scale down the old replication
controller and scale up the new one.

Instances of your application are automatically added and removed from both service load balancers
and routers as they are created. As long as your application supports graceful shutdown when it receives
the TERM signal, you can ensure that running user connections are given a chance to complete
normally.

The Red Hat OpenShift Service on AWS DeploymentConfig object defines the following details:

1. The elements of a ReplicationController definition.

2. Triggers for creating a new deployment automatically.

3. The strategy for transitioning between deployments.

4. Lifecycle hooks.

Each time a deployment is triggered, whether manually or automatically, a deployer pod manages the
deployment (including scaling down the old replication controller, scaling up the new one, and running
hooks). The deployment pod remains for an indefinite amount of time after it completes the
deployment to retain its logs of the deployment. When a deployment is superseded by another, the
previous replication controller is retained to enable easy rollback if needed.

Example DeploymentConfig definition

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 name: frontend
spec:
 replicas: 5
 selector:
 name: frontend
 template: { ... }
 triggers:
 - type: ConfigChange 1
 - imageChangeParams:
 automatic: true
 containerNames:
 - helloworld
 from:
 kind: ImageStreamTag

CHAPTER 7. DEPLOYMENTS

125

1

2

3

A configuration change trigger results in a new replication controller whenever changes are
detected in the pod template of the deployment configuration.

An image change trigger causes a new deployment to be created each time a new version of the
backing image is available in the named image stream.

The default Rolling strategy makes a downtime-free transition between deployments.

7.2.4. Comparing Deployment and DeploymentConfig objects

Both Kubernetes Deployment objects and Red Hat OpenShift Service on AWS-provided
DeploymentConfig objects are supported in Red Hat OpenShift Service on AWS; however, it is
recommended to use Deployment objects unless you need a specific feature or behavior provided by
DeploymentConfig objects.

The following sections go into more detail on the differences between the two object types to further
help you decide which type to use.

IMPORTANT

As of Red Hat OpenShift Service on AWS 4.14, DeploymentConfig objects are
deprecated. DeploymentConfig objects are still supported, but are not recommended
for new installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

7.2.4.1. Design

One important difference between Deployment and DeploymentConfig objects is the properties of
the CAP theorem that each design has chosen for the rollout process. DeploymentConfig objects
prefer consistency, whereas Deployments objects take availability over consistency.

For DeploymentConfig objects, if a node running a deployer pod goes down, it will not get replaced.
The process waits until the node comes back online or is manually deleted. Manually deleting the node
also deletes the corresponding pod. This means that you can not delete the pod to unstick the rollout,
as the kubelet is responsible for deleting the associated pod.

However, deployment rollouts are driven from a controller manager. The controller manager runs in high
availability mode on masters and uses leader election algorithms to value availability over consistency.
During a failure it is possible for other masters to act on the same deployment at the same time, but this
issue will be reconciled shortly after the failure occurs.

7.2.4.2. Deployment-specific features

Rollover
The deployment process for Deployment objects is driven by a controller loop, in contrast to
DeploymentConfig objects that use deployer pods for every new rollout. This means that the
Deployment object can have as many active replica sets as possible, and eventually the deployment

 name: hello-openshift:latest
 type: ImageChange 2
 strategy:
 type: Rolling 3

Red Hat OpenShift Service on AWS 4 Building applications

126

https://en.wikipedia.org/wiki/CAP_theorem

controller will scale down all old replica sets and scale up the newest one.

DeploymentConfig objects can have at most one deployer pod running, otherwise multiple deployers
might conflict when trying to scale up what they think should be the newest replication controller.
Because of this, only two replication controllers can be active at any point in time. Ultimately, this results
in faster rapid rollouts for Deployment objects.

Proportional scaling
Because the deployment controller is the sole source of truth for the sizes of new and old replica sets
owned by a Deployment object, it can scale ongoing rollouts. Additional replicas are distributed
proportionally based on the size of each replica set.

DeploymentConfig objects cannot be scaled when a rollout is ongoing because the controller will have
issues with the deployer process about the size of the new replication controller.

Pausing mid-rollout
Deployments can be paused at any point in time, meaning you can also pause ongoing rollouts.
However, you currently cannot pause deployer pods; if you try to pause a deployment in the middle of a
rollout, the deployer process is not affected and continues until it finishes.

7.2.4.3. DeploymentConfig object-specific features

Automatic rollbacks
Currently, deployments do not support automatically rolling back to the last successfully deployed
replica set in case of a failure.

Triggers
Deployments have an implicit config change trigger in that every change in the pod template of a
deployment automatically triggers a new rollout. If you do not want new rollouts on pod template
changes, pause the deployment:

Lifecycle hooks
Deployments do not yet support any lifecycle hooks.

Custom strategies
Deployments do not support user-specified custom deployment strategies.

7.3. MANAGING DEPLOYMENT PROCESSES

7.3.1. Managing DeploymentConfig objects

IMPORTANT

As of Red Hat OpenShift Service on AWS 4.14, DeploymentConfig objects are
deprecated. DeploymentConfig objects are still supported, but are not recommended
for new installations. Only security-related and critical issues will be fixed.

Instead, use Deployment objects or another alternative to provide declarative updates
for pods.

DeploymentConfig objects can be managed from the Red Hat OpenShift Service on AWS web

$ oc rollout pause deployments/<name>

CHAPTER 7. DEPLOYMENTS

127

DeploymentConfig objects can be managed from the Red Hat OpenShift Service on AWS web
console’s Workloads page or using the oc CLI. The following procedures show CLI usage unless
otherwise stated.

7.3.1.1. Starting a deployment

You can start a rollout to begin the deployment process of your application.

Procedure

1. To start a new deployment process from an existing DeploymentConfig object, run the
following command:

NOTE

If a deployment process is already in progress, the command displays a message
and a new replication controller will not be deployed.

7.3.1.2. Viewing a deployment

You can view a deployment to get basic information about all the available revisions of your application.

Procedure

1. To show details about all recently created replication controllers for the provided
DeploymentConfig object, including any currently running deployment process, run the
following command:

2. To view details specific to a revision, add the --revision flag:

3. For more detailed information about a DeploymentConfig object and its latest revision, use the
oc describe command:

7.3.1.3. Retrying a deployment

If the current revision of your DeploymentConfig object failed to deploy, you can restart the
deployment process.

Procedure

1. To restart a failed deployment process:

$ oc rollout latest dc/<name>

$ oc rollout history dc/<name>

$ oc rollout history dc/<name> --revision=1

$ oc describe dc <name>

$ oc rollout retry dc/<name>

Red Hat OpenShift Service on AWS 4 Building applications

128

If the latest revision of it was deployed successfully, the command displays a message and the
deployment process is not retried.

NOTE

Retrying a deployment restarts the deployment process and does not create a
new deployment revision. The restarted replication controller has the same
configuration it had when it failed.

7.3.1.4. Rolling back a deployment

Rollbacks revert an application back to a previous revision and can be performed using the REST API, the
CLI, or the web console.

Procedure

1. To rollback to the last successful deployed revision of your configuration:

The DeploymentConfig object’s template is reverted to match the deployment revision
specified in the undo command, and a new replication controller is started. If no revision is
specified with --to-revision, then the last successfully deployed revision is used.

2. Image change triggers on the DeploymentConfig object are disabled as part of the rollback to
prevent accidentally starting a new deployment process soon after the rollback is complete.
To re-enable the image change triggers:

NOTE

Deployment configs also support automatically rolling back to the last successful revision
of the configuration in case the latest deployment process fails. In that case, the latest
template that failed to deploy stays intact by the system and it is up to users to fix their
configurations.

7.3.1.5. Executing commands inside a container

You can add a command to a container, which modifies the container’s startup behavior by overruling
the image’s ENTRYPOINT. This is different from a lifecycle hook, which instead can be run once per
deployment at a specified time.

Procedure

1. Add the command parameters to the spec field of the DeploymentConfig object. You can
also add an args field, which modifies the command (or the ENTRYPOINT if command does
not exist).

$ oc rollout undo dc/<name>

$ oc set triggers dc/<name> --auto

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc

CHAPTER 7. DEPLOYMENTS

129

For example, to execute the java command with the -jar and /opt/app-
root/springboots2idemo.jar arguments:

7.3.1.6. Viewing deployment logs

Procedure

1. To stream the logs of the latest revision for a given DeploymentConfig object:

If the latest revision is running or failed, the command returns the logs of the process that is
responsible for deploying your pods. If it is successful, it returns the logs from a pod of your
application.

2. You can also view logs from older failed deployment processes, if and only if these processes
(old replication controllers and their deployer pods) exist and have not been pruned or deleted
manually:

...
spec:
 template:
...
 spec:
 containers:
 - name: <container_name>
 image: 'image'
 command:
 - '<command>'
 args:
 - '<argument_1>'
 - '<argument_2>'
 - '<argument_3>'

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
 template:
...
 spec:
 containers:
 - name: example-spring-boot
 image: 'image'
 command:
 - java
 args:
 - '-jar'
 - /opt/app-root/springboots2idemo.jar
...

$ oc logs -f dc/<name>

$ oc logs --version=1 dc/<name>

Red Hat OpenShift Service on AWS 4 Building applications

130

7.3.1.7. Deployment triggers

A DeploymentConfig object can contain triggers, which drive the creation of new deployment
processes in response to events inside the cluster.

WARNING

If no triggers are defined on a DeploymentConfig object, a config change trigger is
added by default. If triggers are defined as an empty field, deployments must be
started manually.

Config change deployment triggers
The config change trigger results in a new replication controller whenever configuration changes are
detected in the pod template of the DeploymentConfig object.

NOTE

If a config change trigger is defined on a DeploymentConfig object, the first replication
controller is automatically created soon after the DeploymentConfig object itself is
created and it is not paused.

Config change deployment trigger

Image change deployment triggers
The image change trigger results in a new replication controller whenever the content of an image
stream tag changes (when a new version of the image is pushed).

Image change deployment trigger

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 triggers:
 - type: "ConfigChange"

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 triggers:
 - type: "ImageChange"
 imageChangeParams:

CHAPTER 7. DEPLOYMENTS

131

1 If the imageChangeParams.automatic field is set to false, the trigger is disabled.

With the above example, when the latest tag value of the origin-ruby-sample image stream changes
and the new image value differs from the current image specified in the DeploymentConfig object’s
helloworld container, a new replication controller is created using the new image for the helloworld
container.

NOTE

If an image change trigger is defined on a DeploymentConfig object (with a config
change trigger and automatic=false, or with automatic=true) and the image stream tag
pointed by the image change trigger does not exist yet, the initial deployment process
will automatically start as soon as an image is imported or pushed by a build to the image
stream tag.

7.3.1.7.1. Setting deployment triggers

Procedure

1. You can set deployment triggers for a DeploymentConfig object using the oc set triggers
command. For example, to set a image change trigger, use the following command:

7.3.1.8. Setting deployment resources

A deployment is completed by a pod that consumes resources (memory, CPU, and ephemeral storage)
on a node. By default, pods consume unbounded node resources. However, if a project specifies default
container limits, then pods consume resources up to those limits.

NOTE

The minimum memory limit for a deployment is 12 MB. If a container fails to start due to a
Cannot allocate memory pod event, the memory limit is too low. Either increase or
remove the memory limit. Removing the limit allows pods to consume unbounded node
resources.

You can also limit resource use by specifying resource limits as part of the deployment strategy.
Deployment resources can be used with the recreate, rolling, or custom deployment strategies.

Procedure

1. In the following example, each of resources, cpu, memory, and ephemeral-storage is optional:

 automatic: true 1
 from:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 namespace: "myproject"
 containerNames:
 - "helloworld"

$ oc set triggers dc/<dc_name> \
 --from-image=<project>/<image>:<tag> -c <container_name>

Red Hat OpenShift Service on AWS 4 Building applications

132

1

2

3

1

cpu is in CPU units: 100m represents 0.1 CPU units (100 * 1e-3).

memory is in bytes: 256Mi represents 268435456 bytes (256 * 2 ^ 20).

ephemeral-storage is in bytes: 1Gi represents 1073741824 bytes (2 ^ 30).

However, if a quota has been defined for your project, one of the following two items is required:

A resources section set with an explicit requests:

The requests object contains the list of resources that correspond to the list of
resources in the quota.

A limit range defined in your project, where the defaults from the LimitRange object apply
to pods created during the deployment process.

To set deployment resources, choose one of the above options. Otherwise, deploy pod creation
fails, citing a failure to satisfy quota.

7.3.1.9. Scaling manually

In addition to rollbacks, you can exercise fine-grained control over the number of replicas by manually
scaling them.

NOTE

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hello-openshift
...
spec:
...
 type: "Recreate"
 resources:
 limits:
 cpu: "100m" 1
 memory: "256Mi" 2
 ephemeral-storage: "1Gi" 3

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hello-openshift
...
spec:
...
 type: "Recreate"
 resources:
 requests: 1
 cpu: "100m"
 memory: "256Mi"
 ephemeral-storage: "1Gi"

CHAPTER 7. DEPLOYMENTS

133

NOTE

Pods can also be auto-scaled using the oc autoscale command.

Procedure

1. To manually scale a DeploymentConfig object, use the oc scale command. For example, the
following command sets the replicas in the frontend DeploymentConfig object to 3.

The number of replicas eventually propagates to the desired and current state of the
deployment configured by the DeploymentConfig object frontend.

7.3.1.10. Accessing private repositories from DeploymentConfig objects

You can add a secret to your DeploymentConfig object so that it can access images from a private
repository. This procedure shows the Red Hat OpenShift Service on AWS web console method.

Procedure

1. Create a new project.

2. Navigate to Workloads → Secrets.

3. Create a secret that contains credentials for accessing a private image repository.

4. Navigate to Workloads → DeploymentConfigs.

5. Create a DeploymentConfig object.

6. On the DeploymentConfig object editor page, set the Pull Secret and save your changes.

7.3.1.11. Running a pod with a different service account

You can run a pod with a service account other than the default.

Procedure

1. Edit the DeploymentConfig object:

2. Add the serviceAccount and serviceAccountName parameters to the spec field, and specify
the service account you want to use:

$ oc scale dc frontend --replicas=3

$ oc edit dc/<deployment_config>

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
metadata:
 name: example-dc
...
spec:
...

Red Hat OpenShift Service on AWS 4 Building applications

134

7.4. USING DEPLOYMENT STRATEGIES

Deployment strategies are used to change or upgrade applications without downtime so that users
barely notice a change.

Because users generally access applications through a route handled by a router, deployment strategies
can focus on DeploymentConfig object features or routing features. Strategies that focus on
DeploymentConfig object features impact all routes that use the application. Strategies that use router
features target individual routes.

Most deployment strategies are supported through the DeploymentConfig object, and some additional
strategies are supported through router features.

7.4.1. Choosing a deployment strategy

Consider the following when choosing a deployment strategy:

Long-running connections must be handled gracefully.

Database conversions can be complex and must be done and rolled back along with the
application.

If the application is a hybrid of microservices and traditional components, downtime might be
required to complete the transition.

You must have the infrastructure to do this.

If you have a non-isolated test environment, you can break both new and old versions.

A deployment strategy uses readiness checks to determine if a new pod is ready for use. If a readiness
check fails, the DeploymentConfig object retries to run the pod until it times out. The default timeout
is 10m, a value set in TimeoutSeconds in dc.spec.strategy.*params.

7.4.2. Rolling strategy

A rolling deployment slowly replaces instances of the previous version of an application with instances of
the new version of the application. The rolling strategy is the default deployment strategy used if no
strategy is specified on a DeploymentConfig object.

A rolling deployment typically waits for new pods to become ready via a readiness check before scaling
down the old components. If a significant issue occurs, the rolling deployment can be aborted.

When to use a rolling deployment:

When you want to take no downtime during an application update.

When your application supports having old code and new code running at the same time.

A rolling deployment means you have both old and new versions of your code running at the same time.
This typically requires that your application handle N-1 compatibility.

 securityContext: {}
 serviceAccount: <service_account>
 serviceAccountName: <service_account>

CHAPTER 7. DEPLOYMENTS

135

1

2

3

4

5

6

Example rolling strategy definition

The time to wait between individual pod updates. If unspecified, this value defaults to 1.

The time to wait between polling the deployment status after update. If unspecified, this value
defaults to 1.

The time to wait for a scaling event before giving up. Optional; the default is 600. Here, giving up
means automatically rolling back to the previous complete deployment.

maxSurge is optional and defaults to 25% if not specified. See the information below the following
procedure.

maxUnavailable is optional and defaults to 25% if not specified. See the information below the
following procedure.

pre and post are both lifecycle hooks.

The rolling strategy:

1. Executes any pre lifecycle hook.

2. Scales up the new replication controller based on the surge count.

3. Scales down the old replication controller based on the max unavailable count.

4. Repeats this scaling until the new replication controller has reached the desired replica count
and the old replication controller has been scaled to zero.

5. Executes any post lifecycle hook.

IMPORTANT

When scaling down, the rolling strategy waits for pods to become ready so it can decide
whether further scaling would affect availability. If scaled up pods never become ready,
the deployment process will eventually time out and result in a deployment failure.

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 strategy:
 type: Rolling
 rollingParams:
 updatePeriodSeconds: 1 1
 intervalSeconds: 1 2
 timeoutSeconds: 120 3
 maxSurge: "20%" 4
 maxUnavailable: "10%" 5
 pre: {} 6
 post: {}

Red Hat OpenShift Service on AWS 4 Building applications

136

The maxUnavailable parameter is the maximum number of pods that can be unavailable during the
update. The maxSurge parameter is the maximum number of pods that can be scheduled above the
original number of pods. Both parameters can be set to either a percentage (e.g., 10%) or an absolute
value (e.g., 2). The default value for both is 25%.

These parameters allow the deployment to be tuned for availability and speed. For example:

maxUnavailable*=0 and maxSurge*=20% ensures full capacity is maintained during the
update and rapid scale up.

maxUnavailable*=10% and maxSurge*=0 performs an update using no extra capacity (an in-
place update).

maxUnavailable*=10% and maxSurge*=10% scales up and down quickly with some potential
for capacity loss.

Generally, if you want fast rollouts, use maxSurge. If you have to take into account resource quota and
can accept partial unavailability, use maxUnavailable.

WARNING

The default setting for maxUnavailable is 1 for all the machine config pools in Red
Hat OpenShift Service on AWS. It is recommended to not change this value and
update one control plane node at a time. Do not change this value to 3 for the
control plane pool.

7.4.2.1. Canary deployments

All rolling deployments in Red Hat OpenShift Service on AWS are canary deployments ; a new version
(the canary) is tested before all of the old instances are replaced. If the readiness check never succeeds,
the canary instance is removed and the DeploymentConfig object will be automatically rolled back.

The readiness check is part of the application code and can be as sophisticated as necessary to ensure
the new instance is ready to be used. If you must implement more complex checks of the application
(such as sending real user workloads to the new instance), consider implementing a custom deployment
or using a blue-green deployment strategy.

7.4.2.2. Creating a rolling deployment

Rolling deployments are the default type in Red Hat OpenShift Service on AWS. You can create a rolling
deployment using the CLI.

Procedure

1. Create an application based on the example deployment images found in Quay.io:

NOTE

$ oc new-app quay.io/openshifttest/deployment-example:latest

CHAPTER 7. DEPLOYMENTS

137

https://quay.io/repository/openshifttest/deployment-example

NOTE

This image does not expose any ports. If you want to expose your applications
over an external LoadBalancer service or enable access to the application over
the public internet, create a service by using the oc expose dc/deployment-
example --port=<port> command after completing this procedure.

2. If you have the router installed, make the application available via a route or use the service IP
directly.

3. Browse to the application at deployment-example.<project>.<router_domain> to verify you
see the v1 image.

4. Scale the DeploymentConfig object up to three replicas:

5. Trigger a new deployment automatically by tagging a new version of the example as the latest
tag:

6. In your browser, refresh the page until you see the v2 image.

7. When using the CLI, the following command shows how many pods are on version 1 and how
many are on version 2. In the web console, the pods are progressively added to v2 and removed
from v1:

During the deployment process, the new replication controller is incrementally scaled up. After the new
pods are marked as ready (by passing their readiness check), the deployment process continues.

If the pods do not become ready, the process aborts, and the deployment rolls back to its previous
version.

7.4.2.3. Editing a deployment by using the Developer perspective

You can edit the deployment strategy, image settings, environment variables, and advanced options for
your deployment by using the Developer perspective.

Prerequisites

You are in the Developer perspective of the web console.

You have created an application.

Procedure

1. Navigate to the Topology view.

2. Click your application to see the Details panel.

$ oc expose svc/deployment-example

$ oc scale dc/deployment-example --replicas=3

$ oc tag deployment-example:v2 deployment-example:latest

$ oc describe dc deployment-example

Red Hat OpenShift Service on AWS 4 Building applications

138

3. In the Actions drop-down menu, select Edit Deployment to view the Edit Deployment page.

4. You can edit the following Advanced options for your deployment:

a. Optional: You can pause rollouts by clicking Pause rollouts, and then selecting the Pause
rollouts for this deployment checkbox.
By pausing rollouts, you can make changes to your application without triggering a rollout.
You can resume rollouts at any time.

b. Optional: Click Scaling to change the number of instances of your image by modifying the
number of Replicas.

5. Click Save.

7.4.2.4. Starting a rolling deployment using the Developer perspective

You can upgrade an application by starting a rolling deployment.

Prerequisites

You are in the Developer perspective of the web console.

You have created an application.

Procedure

1. In the Topology view, click the application node to see the Overview tab in the side panel. Note
that the Update Strategy is set to the default Rolling strategy.

2. In the Actions drop-down menu, select Start Rollout to start a rolling update. The rolling
deployment spins up the new version of the application and then terminates the old one.

Figure 7.1. Rolling update

CHAPTER 7. DEPLOYMENTS

139

Figure 7.1. Rolling update

Additional resources

Creating and deploying applications on Red Hat OpenShift Service on AWS using the
Developer perspective

Viewing the applications in your project, verifying their deployment status, and interacting with
them in the Topology view

7.4.3. Recreate strategy

The recreate strategy has basic rollout behavior and supports lifecycle hooks for injecting code into the
deployment process.

Example recreate strategy definition

kind: Deployment
apiVersion: apps/v1
metadata:
 name: hello-openshift
...
spec:
...
 strategy:
 type: Recreate
 recreateParams: 1

Red Hat OpenShift Service on AWS 4 Building applications

140

1

2

recreateParams are optional.

pre, mid, and post are lifecycle hooks.

The recreate strategy:

1. Executes any pre lifecycle hook.

2. Scales down the previous deployment to zero.

3. Executes any mid lifecycle hook.

4. Scales up the new deployment.

5. Executes any post lifecycle hook.

IMPORTANT

During scale up, if the replica count of the deployment is greater than one, the first
replica of the deployment will be validated for readiness before fully scaling up the
deployment. If the validation of the first replica fails, the deployment will be considered a
failure.

When to use a recreate deployment:

When you must run migrations or other data transformations before your new code starts.

When you do not support having new and old versions of your application code running at the
same time.

When you want to use a RWO volume, which is not supported being shared between multiple
replicas.

A recreate deployment incurs downtime because, for a brief period, no instances of your application are
running. However, your old code and new code do not run at the same time.

7.4.3.1. Editing a deployment by using the Developer perspective

You can edit the deployment strategy, image settings, environment variables, and advanced options for
your deployment by using the Developer perspective.

Prerequisites

You are in the Developer perspective of the web console.

You have created an application.

Procedure

1. Navigate to the Topology view.

 pre: {} 2
 mid: {}
 post: {}

CHAPTER 7. DEPLOYMENTS

141

2. Click your application to see the Details panel.

3. In the Actions drop-down menu, select Edit Deployment to view the Edit Deployment page.

4. You can edit the following Advanced options for your deployment:

a. Optional: You can pause rollouts by clicking Pause rollouts, and then selecting the Pause
rollouts for this deployment checkbox.
By pausing rollouts, you can make changes to your application without triggering a rollout.
You can resume rollouts at any time.

b. Optional: Click Scaling to change the number of instances of your image by modifying the
number of Replicas.

5. Click Save.

7.4.3.2. Starting a recreate deployment using the Developer perspective

You can switch the deployment strategy from the default rolling update to a recreate update using the
Developer perspective in the web console.

Prerequisites

Ensure that you are in the Developer perspective of the web console.

Ensure that you have created an application using the Add view and see it deployed in the
Topology view.

Procedure

To switch to a recreate update strategy and to upgrade an application:

1. Click your application to see the Details panel.

2. In the Actions drop-down menu, select Edit Deployment Config to see the deployment
configuration details of the application.

3. In the YAML editor, change the spec.strategy.type to Recreate and click Save.

4. In the Topology view, select the node to see the Overview tab in the side panel. The Update
Strategy is now set to Recreate.

5. Use the Actions drop-down menu to select Start Rollout to start an update using the recreate
strategy. The recreate strategy first terminates pods for the older version of the application and
then spins up pods for the new version.

Figure 7.2. Recreate update

Red Hat OpenShift Service on AWS 4 Building applications

142

Figure 7.2. Recreate update

Additional resources

Creating and deploying applications on Red Hat OpenShift Service on AWS using the
Developer perspective

Viewing the applications in your project, verifying their deployment status, and interacting with
them in the Topology view

7.4.4. Custom strategy

The custom strategy allows you to provide your own deployment behavior.

Example custom strategy definition

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...

CHAPTER 7. DEPLOYMENTS

143

In the above example, the organization/strategy container image provides the deployment behavior.
The optional command array overrides any CMD directive specified in the image’s Dockerfile. The
optional environment variables provided are added to the execution environment of the strategy
process.

Additionally, Red Hat OpenShift Service on AWS provides the following environment variables to the
deployment process:

Environment variable Description

OPENSHIFT_DEPLOYMENT_
NAME

The name of the new deployment, a replication controller.

OPENSHIFT_DEPLOYMENT_
NAMESPACE

The name space of the new deployment.

The replica count of the new deployment will initially be zero. The responsibility of the strategy is to
make the new deployment active using the logic that best serves the needs of the user.

Alternatively, use the customParams object to inject the custom deployment logic into the existing
deployment strategies. Provide a custom shell script logic and call the openshift-deploy binary. Users
do not have to supply their custom deployer container image; in this case, the default Red Hat
OpenShift Service on AWS deployer image is used instead:

spec:
...
 strategy:
 type: Custom
 customParams:
 image: organization/strategy
 command: ["command", "arg1"]
 environment:
 - name: ENV_1
 value: VALUE_1

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: example-dc
...
spec:
...
 strategy:
 type: Rolling
 customParams:
 command:
 - /bin/sh
 - -c
 - |
 set -e
 openshift-deploy --until=50%

Red Hat OpenShift Service on AWS 4 Building applications

144

This results in following deployment:

If the custom deployment strategy process requires access to the Red Hat OpenShift Service on AWS
API or the Kubernetes API the container that executes the strategy can use the service account token
available inside the container for authentication.

7.4.4.1. Editing a deployment by using the Developer perspective

You can edit the deployment strategy, image settings, environment variables, and advanced options for
your deployment by using the Developer perspective.

Prerequisites

You are in the Developer perspective of the web console.

You have created an application.

Procedure

1. Navigate to the Topology view.

2. Click your application to see the Details panel.

3. In the Actions drop-down menu, select Edit Deployment to view the Edit Deployment page.

4. You can edit the following Advanced options for your deployment:

a. Optional: You can pause rollouts by clicking Pause rollouts, and then selecting the Pause
rollouts for this deployment checkbox.
By pausing rollouts, you can make changes to your application without triggering a rollout.
You can resume rollouts at any time.

b. Optional: Click Scaling to change the number of instances of your image by modifying the
number of Replicas.

5. Click Save.

 echo Halfway there
 openshift-deploy
 echo Complete

Started deployment #2
--> Scaling up custom-deployment-2 from 0 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-2 up to 1
--> Reached 50% (currently 50%)
Halfway there
--> Scaling up custom-deployment-2 from 1 to 2, scaling down custom-deployment-1 from 2 to 0
(keep 2 pods available, don't exceed 3 pods)
 Scaling custom-deployment-1 down to 1
 Scaling custom-deployment-2 up to 2
 Scaling custom-deployment-1 down to 0
--> Success
Complete

CHAPTER 7. DEPLOYMENTS

145

1

7.4.5. Lifecycle hooks

The rolling and recreate strategies support lifecycle hooks, or deployment hooks, which allow behavior to
be injected into the deployment process at predefined points within the strategy:

Example pre lifecycle hook

execNewPod is a pod-based lifecycle hook.

Every hook has a failure policy, which defines the action the strategy should take when a hook failure is
encountered:

Abort The deployment process will be considered a failure if the hook fails.

Retry The hook execution should be retried until it succeeds.

Ignore Any hook failure should be ignored and the deployment should proceed.

Hooks have a type-specific field that describes how to execute the hook. Currently, pod-based hooks
are the only supported hook type, specified by the execNewPod field.

Pod-based lifecycle hook
Pod-based lifecycle hooks execute hook code in a new pod derived from the template in a
DeploymentConfig object.

The following simplified example deployment uses the rolling strategy. Triggers and some other minor
details are omitted for brevity:

pre:
 failurePolicy: Abort
 execNewPod: {} 1

kind: DeploymentConfig
apiVersion: apps.openshift.io/v1
metadata:
 name: frontend
spec:
 template:
 metadata:
 labels:
 name: frontend
 spec:
 containers:
 - name: helloworld
 image: openshift/origin-ruby-sample
 replicas: 5
 selector:
 name: frontend
 strategy:
 type: Rolling
 rollingParams:
 pre:

Red Hat OpenShift Service on AWS 4 Building applications

146

1

2

3

4

The helloworld name refers to spec.template.spec.containers[0].name.

This command overrides any ENTRYPOINT defined by the openshift/origin-ruby-sample image.

env is an optional set of environment variables for the hook container.

volumes is an optional set of volume references for the hook container.

In this example, the pre hook will be executed in a new pod using the openshift/origin-ruby-sample
image from the helloworld container. The hook pod has the following properties:

The hook command is /usr/bin/command arg1 arg2.

The hook container has the CUSTOM_VAR1=custom_value1 environment variable.

The hook failure policy is Abort, meaning the deployment process fails if the hook fails.

The hook pod inherits the data volume from the DeploymentConfig object pod.

7.4.5.1. Setting lifecycle hooks

You can set lifecycle hooks, or deployment hooks, for a deployment using the CLI.

Procedure

1. Use the oc set deployment-hook command to set the type of hook you want: --pre, --mid, or --
post. For example, to set a pre-deployment hook:

7.5. USING ROUTE-BASED DEPLOYMENT STRATEGIES

Deployment strategies provide a way for the application to evolve. Some strategies use Deployment
objects to make changes that are seen by users of all routes that resolve to the application. Other
advanced strategies, such as the ones described in this section, use router features in conjunction with
Deployment objects to impact specific routes.

The most common route-based strategy is to use a blue-green deployment . The new version (the green
version) is brought up for testing and evaluation, while the users still use the stable version (the blue
version). When ready, the users are switched to the green version. If a problem arises, you can switch
back to the blue version.

 failurePolicy: Abort
 execNewPod:
 containerName: helloworld 1
 command: ["/usr/bin/command", "arg1", "arg2"] 2
 env: 3
 - name: CUSTOM_VAR1
 value: custom_value1
 volumes:
 - data 4

$ oc set deployment-hook dc/frontend \
 --pre -c helloworld -e CUSTOM_VAR1=custom_value1 \
 --volumes data --failure-policy=abort -- /usr/bin/command arg1 arg2

CHAPTER 7. DEPLOYMENTS

147

Alternatively, you can use an A/B versions strategy in which both versions are active at the same time.
With this strategy, some users can use version A , and other users can use version B. You can use this
strategy to experiment with user interface changes or other features in order to get user feedback. You
can also use it to verify proper operation in a production context where problems impact a limited
number of users.

A canary deployment tests the new version but when a problem is detected it quickly falls back to the
previous version. This can be done with both of the above strategies.

The route-based deployment strategies do not scale the number of pods in the services. To maintain
desired performance characteristics the deployment configurations might have to be scaled.

7.5.1. Proxy shards and traffic splitting

In production environments, you can precisely control the distribution of traffic that lands on a particular
shard. When dealing with large numbers of instances, you can use the relative scale of individual shards
to implement percentage based traffic. That combines well with a proxy shard , which forwards or splits
the traffic it receives to a separate service or application running elsewhere.

In the simplest configuration, the proxy forwards requests unchanged. In more complex setups, you can
duplicate the incoming requests and send to both a separate cluster as well as to a local instance of the
application, and compare the result. Other patterns include keeping the caches of a DR installation
warm, or sampling incoming traffic for analysis purposes.

Any TCP (or UDP) proxy could be run under the desired shard. Use the oc scale command to alter the
relative number of instances serving requests under the proxy shard. For more complex traffic
management, consider customizing the Red Hat OpenShift Service on AWS router with proportional
balancing capabilities.

7.5.2. N-1 compatibility

Applications that have new code and old code running at the same time must be careful to ensure that
data written by the new code can be read and handled (or gracefully ignored) by the old version of the
code. This is sometimes called schema evolution and is a complex problem.

This can take many forms: data stored on disk, in a database, in a temporary cache, or that is part of a
user’s browser session. While most web applications can support rolling deployments, it is important to
test and design your application to handle it.

For some applications, the period of time that old code and new code is running side by side is short, so
bugs or some failed user transactions are acceptable. For others, the failure pattern may result in the
entire application becoming non-functional.

One way to validate N-1 compatibility is to use an A/B deployment: run the old code and new code at the
same time in a controlled way in a test environment, and verify that traffic that flows to the new
deployment does not cause failures in the old deployment.

7.5.3. Graceful termination

Red Hat OpenShift Service on AWS and Kubernetes give application instances time to shut down
before removing them from load balancing rotations. However, applications must ensure they cleanly
terminate user connections as well before they exit.

On shutdown, Red Hat OpenShift Service on AWS sends a TERM signal to the processes in the
container. Application code, on receiving SIGTERM, stop accepting new connections. This ensures that
load balancers route traffic to other active instances. The application code then waits until all open

Red Hat OpenShift Service on AWS 4 Building applications

148

connections are closed, or gracefully terminate individual connections at the next opportunity, before
exiting.

After the graceful termination period expires, a process that has not exited is sent the KILL signal, which
immediately ends the process. The terminationGracePeriodSeconds attribute of a pod or pod
template controls the graceful termination period (default 30 seconds) and can be customized per
application as necessary.

7.5.4. Blue-green deployments

Blue-green deployments involve running two versions of an application at the same time and moving
traffic from the in-production version (the blue version) to the newer version (the green version). You
can use a rolling strategy or switch services in a route.

Because many applications depend on persistent data, you must have an application that supports N-1
compatibility, which means it shares data and implements live migration between the database, store, or
disk by creating two copies of the data layer.

Consider the data used in testing the new version. If it is the production data, a bug in the new version
can break the production version.

7.5.4.1. Setting up a blue-green deployment

Blue-green deployments use two Deployment objects. Both are running, and the one in production
depends on the service the route specifies, with each Deployment object exposed to a different service.

NOTE

Routes are intended for web (HTTP and HTTPS) traffic, so this technique is best suited
for web applications.

You can create a new route to the new version and test it. When ready, change the service in the
production route to point to the new service and the new (green) version is live.

If necessary, you can roll back to the older (blue) version by switching the service back to the previous
version.

Procedure

1. Create two independent application components.

a. Create a copy of the example application running the v1 image under the example-blue
service:

b. Create a second copy that uses the v2 image under the example-green service:

2. Create a route that points to the old service:

3. Browse to the application at bluegreen-example-<project>.<router_domain> to verify you

$ oc new-app openshift/deployment-example:v1 --name=example-blue

$ oc new-app openshift/deployment-example:v2 --name=example-green

$ oc expose svc/example-blue --name=bluegreen-example

CHAPTER 7. DEPLOYMENTS

149

3. Browse to the application at bluegreen-example-<project>.<router_domain> to verify you
see the v1 image.

4. Edit the route and change the service name to example-green:

5. To verify that the route has changed, refresh the browser until you see the v2 image.

7.5.5. A/B deployments

The A/B deployment strategy lets you try a new version of the application in a limited way in the
production environment. You can specify that the production version gets most of the user requests
while a limited fraction of requests go to the new version.

Because you control the portion of requests to each version, as testing progresses you can increase the
fraction of requests to the new version and ultimately stop using the previous version. As you adjust the
request load on each version, the number of pods in each service might have to be scaled as well to
provide the expected performance.

In addition to upgrading software, you can use this feature to experiment with versions of the user
interface. Since some users get the old version and some the new, you can evaluate the user’s reaction
to the different versions to inform design decisions.

For this to be effective, both the old and new versions must be similar enough that both can run at the
same time. This is common with bug fix releases and when new features do not interfere with the old.
The versions require N-1 compatibility to properly work together.

Red Hat OpenShift Service on AWS supports N-1 compatibility through the web console as well as the
CLI.

7.5.5.1. Load balancing for A/B testing

The user sets up a route with multiple services. Each service handles a version of the application.

Each service is assigned a weight and the portion of requests to each service is the service_weight
divided by the sum_of_weights. The weight for each service is distributed to the service’s endpoints so
that the sum of the endpoint weights is the service weight.

The route can have up to four services. The weight for the service can be between 0 and 256. When the
weight is 0, the service does not participate in load balancing but continues to serve existing persistent
connections. When the service weight is not 0, each endpoint has a minimum weight of 1. Because of
this, a service with a lot of endpoints can end up with higher weight than intended. In this case, reduce
the number of pods to get the expected load balance weight.

Procedure

To set up the A/B environment:

1. Create the two applications and give them different names. Each creates a Deployment object.
The applications are versions of the same program; one is usually the current production version
and the other the proposed new version.

a. Create the first application. The following example creates an application called ab-
example-a:

$ oc patch route/bluegreen-example -p '{"spec":{"to":{"name":"example-green"}}}'

Red Hat OpenShift Service on AWS 4 Building applications

150

b. Create the second application:

Both applications are deployed and services are created.

2. Make the application available externally via a route. At this point, you can expose either. It can
be convenient to expose the current production version first and later modify the route to add
the new version.

Browse to the application at ab-example-a.<project>.<router_domain> to verify that you see
the expected version.

3. When you deploy the route, the router balances the traffic according to the weights specified
for the services. At this point, there is a single service with default weight=1 so all requests go to
it. Adding the other service as an alternateBackends and adjusting the weights brings the A/B
setup to life. This can be done by the oc set route-backends command or by editing the route.

NOTE

When using alternateBackends, also use the roundrobin load balancing
strategy to ensure requests are distributed as expected to the services based on
weight. roundrobin can be set for a route by using a route annotation.

Setting the oc set route-backend to 0 means the service does not participate in load
balancing, but continues to serve existing persistent connections.

NOTE

Changes to the route just change the portion of traffic to the various services.
You might have to scale the deployment to adjust the number of pods to handle
the anticipated loads.

To edit the route, run:

Example output

$ oc new-app openshift/deployment-example --name=ab-example-a

$ oc new-app openshift/deployment-example:v2 --name=ab-example-b

$ oc expose svc/ab-example-a

$ oc edit route <route_name>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
metadata:
 name: route-alternate-service
 annotations:
 haproxy.router.openshift.io/balance: roundrobin
...
spec:
 host: ab-example.my-project.my-domain

CHAPTER 7. DEPLOYMENTS

151

https://docs.openshift.com/container-platform/4.13/networking/routes/route-configuration.html#nw-route-specific-annotations_route-configuration

7.5.5.1.1. Managing weights of an existing route using the web console

Procedure

1. Navigate to the Networking → Routes page.

2. Click the Actions menu next to the route you want to edit and select Edit Route.

3. Edit the YAML file. Update the weight to be an integer between 0 and 256 that specifies the
relative weight of the target against other target reference objects. The value 0 suppresses
requests to this back end. The default is 100. Run oc explain routes.spec.alternateBackends
for more information about the options.

4. Click Save.

7.5.5.1.2. Managing weights of an new route using the web console

1. Navigate to the Networking → Routes page.

2. Click Create Route.

3. Enter the route Name.

4. Select the Service.

5. Click Add Alternate Service.

6. Enter a value for Weight and Alternate Service Weight. Enter a number between 0 and 255
that depicts relative weight compared with other targets. The default is 100.

7. Select the Target Port.

8. Click Create.

7.5.5.1.3. Managing weights using the CLI

Procedure

1. To manage the services and corresponding weights load balanced by the route, use the oc set
route-backends command:

For example, the following sets ab-example-a as the primary service with weight=198 and ab-

 to:
 kind: Service
 name: ab-example-a
 weight: 10
 alternateBackends:
 - kind: Service
 name: ab-example-b
 weight: 15
...

$ oc set route-backends ROUTENAME \
 [--zero|--equal] [--adjust] SERVICE=WEIGHT[%] [...] [options]

Red Hat OpenShift Service on AWS 4 Building applications

152

For example, the following sets ab-example-a as the primary service with weight=198 and ab-
example-b as the first alternate service with a weight=2:

This means 99% of traffic is sent to service ab-example-a and 1% to service ab-example-b.

This command does not scale the deployment. You might be required to do so to have enough
pods to handle the request load.

2. Run the command with no flags to verify the current configuration:

Example output

3. To override the default values for the load balancing algorithm, adjust the annotation on the
route by setting the algorithm to roundrobin. For a route on Red Hat OpenShift Service on
AWS, the default load balancing algorithm is set to random or source values.
To set the algorithm to roundrobin, run the command:

For Transport Layer Security (TLS) passthrough routes, the default value is source. For all
other routes, the default is random.

4. To alter the weight of an individual service relative to itself or to the primary service, use the --
adjust flag. Specifying a percentage adjusts the service relative to either the primary or the first
alternate (if you specify the primary). If there are other backends, their weights are kept
proportional to the changed.
The following example alters the weight of ab-example-a and ab-example-b services:

Alternatively, alter the weight of a service by specifying a percentage:

By specifying + before the percentage declaration, you can adjust a weighting relative to the
current setting. For example:

The --equal flag sets the weight of all services to 100:

The --zero flag sets the weight of all services to 0. All requests then return with a 503 error.

NOTE

$ oc set route-backends ab-example ab-example-a=198 ab-example-b=2

$ oc set route-backends ab-example

NAME KIND TO WEIGHT
routes/ab-example Service ab-example-a 198 (99%)
routes/ab-example Service ab-example-b 2 (1%)

$ oc annotate routes/<route-name> haproxy.router.openshift.io/balance=roundrobin

$ oc set route-backends ab-example --adjust ab-example-a=200 ab-example-b=10

$ oc set route-backends ab-example --adjust ab-example-b=5%

$ oc set route-backends ab-example --adjust ab-example-b=+15%

$ oc set route-backends ab-example --equal

CHAPTER 7. DEPLOYMENTS

153

NOTE

Not all routers may support multiple or weighted backends.

7.5.5.1.4. One service, multiple Deployment objects

Procedure

1. Create a new application, adding a label ab-example=true that will be common to all shards:

The application is deployed and a service is created. This is the first shard.

2. Make the application available via a route, or use the service IP directly:

3. Browse to the application at ab-example-<project_name>.<router_domain> to verify you see
the v1 image.

4. Create a second shard based on the same source image and label as the first shard, but with a
different tagged version and unique environment variables:

5. At this point, both sets of pods are being served under the route. However, because both
browsers (by leaving a connection open) and the router (by default, through a cookie) attempt
to preserve your connection to a back-end server, you might not see both shards being
returned to you.
To force your browser to one or the other shard:

a. Use the oc scale command to reduce replicas of ab-example-a to 0.

Refresh your browser to show v2 and shard B (in red).

b. Scale ab-example-a to 1 replica and ab-example-b to 0:

Refresh your browser to show v1 and shard A (in blue).

$ oc new-app openshift/deployment-example --name=ab-example-a --as-deployment-
config=true --labels=ab-example=true --env=SUBTITLE\=shardA

$ oc delete svc/ab-example-a

$ oc expose deployment ab-example-a --name=ab-example --selector=ab-example\=true

$ oc expose service ab-example

$ oc new-app openshift/deployment-example:v2 \
 --name=ab-example-b --labels=ab-example=true \
 SUBTITLE="shard B" COLOR="red" --as-deployment-config=true

$ oc delete svc/ab-example-b

$ oc scale dc/ab-example-a --replicas=0

$ oc scale dc/ab-example-a --replicas=1; oc scale dc/ab-example-b --replicas=0

Red Hat OpenShift Service on AWS 4 Building applications

154

6. If you trigger a deployment on either shard, only the pods in that shard are affected. You can
trigger a deployment by changing the SUBTITLE environment variable in either Deployment
object:

or

$ oc edit dc/ab-example-a

$ oc edit dc/ab-example-b

CHAPTER 7. DEPLOYMENTS

155

CHAPTER 8. QUOTAS

8.1. RESOURCE QUOTAS PER PROJECT

A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources and storage that might be consumed by
resources in that project.

This guide describes how resource quotas work, how cluster administrators can set and manage
resource quotas on a per project basis, and how developers and cluster administrators can view them.

8.1.1. Resources managed by quotas

The following describes the set of compute resources and object types that can be managed by a
quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 8.1. Compute resources managed by quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot exceed
this value.

Table 8.2. Storage resources managed by quota

Red Hat OpenShift Service on AWS 4 Building applications

156

Resource Name Description

requests.storage The sum of storage requests across all persistent volume claims in any state
cannot exceed this value.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

The sum of storage requests across all persistent volume claims in any state
that have a matching storage class, cannot exceed this value.

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

The total number of persistent volume claims with a matching storage class
that can exist in the project.

ephemeral-storage The sum of local ephemeral storage requests across all pods in a non-terminal
state cannot exceed this value. ephemeral-storage and
requests.ephemeral-storage are the same value and can be used
interchangeably.

requests.ephemeral-
storage

The sum of ephemeral storage requests across all pods in a non-terminal state
cannot exceed this value. ephemeral-storage and requests.ephemeral-
storage are the same value and can be used interchangeably.

limits.ephemeral-
storage

The sum of ephemeral storage limits across all pods in a non-terminal state
cannot exceed this value.

Table 8.3. Object counts managed by quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrollers The total number of ReplicationControllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

services.loadbalancers The total number of services of type LoadBalancer that can exist in the
project.

services.nodeports The total number of services of type NodePort that can exist in the project.

secrets The total number of secrets that can exist in the project.

CHAPTER 8. QUOTAS

157

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

openshift.io/imagestre
ams

The total number of imagestreams that can exist in the project.

Resource Name Description

8.1.2. Quota scopes

Each quota can have an associated set of scopes. A quota only measures usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

BestEffort Match pods that have best effort quality of service
for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of
service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

A NotBestEffort scope restricts a quota to tracking the following resources:

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

8.1.3. Quota enforcement

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new

Red Hat OpenShift Service on AWS 4 Building applications

158

1

2

3

4

5

6

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. A configurable amount of time determines how long it takes to reduce quota
usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate
error message is returned to the user explaining the quota constraint violated, and what their currently
observed usage statistics are in the system.

8.1.4. Requests versus limits

When allocating compute resources, each container might specify a request and a limit value each for
CPU, memory, and ephemeral storage. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit for
those resources.

8.1.5. Sample resource quota definitions

core-object-counts.yaml

The total number of ConfigMap objects that can exist in the project.

The total number of persistent volume claims (PVCs) that can exist in the project.

The total number of replication controllers that can exist in the project.

The total number of secrets that can exist in the project.

The total number of services that can exist in the project.

The total number of services of type LoadBalancer that can exist in the project.

openshift-object-counts.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: core-object-counts
spec:
 hard:
 configmaps: "10" 1
 persistentvolumeclaims: "4" 2
 replicationcontrollers: "20" 3
 secrets: "10" 4
 services: "10" 5
 services.loadbalancers: "2" 6

CHAPTER 8. QUOTAS

159

1

1

2

3

4

5

1

2

The total number of image streams that can exist in the project.

compute-resources.yaml

The total number of pods in a non-terminal state that can exist in the project.

Across all pods in a non-terminal state, the sum of CPU requests cannot exceed 1 core.

Across all pods in a non-terminal state, the sum of memory requests cannot exceed 1Gi.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed 2 cores.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed 2Gi.

besteffort.yaml

The total number of pods in a non-terminal state with BestEffort quality of service that can exist in
the project.

Restricts the quota to only matching pods that have BestEffort quality of service for either
memory or CPU.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: openshift-object-counts
spec:
 hard:
 openshift.io/imagestreams: "10" 1

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 pods: "4" 1
 requests.cpu: "1" 2
 requests.memory: 1Gi 3
 limits.cpu: "2" 4
 limits.memory: 2Gi 5

apiVersion: v1
kind: ResourceQuota
metadata:
 name: besteffort
spec:
 hard:
 pods: "1" 1
 scopes:
 - BestEffort 2

Red Hat OpenShift Service on AWS 4 Building applications

160

1

2

3

4

1

2

3

4

compute-resources-long-running.yaml

The total number of pods in a non-terminal state.

Across all pods in a non-terminal state, the sum of CPU limits cannot exceed this value.

Across all pods in a non-terminal state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds is set to nil. Build
pods fall under NotTerminating unless the RestartNever policy is applied.

compute-resources-time-bound.yaml

The total number of pods in a terminating state.

Across all pods in a terminating state, the sum of CPU limits cannot exceed this value.

Across all pods in a terminating state, the sum of memory limits cannot exceed this value.

Restricts the quota to only matching pods where spec.activeDeadlineSeconds >=0. For example,
this quota charges for build or deployer pods, but not long running pods like a web server or
database.

storage-consumption.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-long-running
spec:
 hard:
 pods: "4" 1
 limits.cpu: "4" 2
 limits.memory: "2Gi" 3
 scopes:
 - NotTerminating 4

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources-time-bound
spec:
 hard:
 pods: "2" 1
 limits.cpu: "1" 2
 limits.memory: "1Gi" 3
 scopes:
 - Terminating 4

apiVersion: v1
kind: ResourceQuota
metadata:

CHAPTER 8. QUOTAS

161

1

2

3

4

5

6

7

8

9

The total number of persistent volume claims in a project

Across all persistent volume claims in a project, the sum of storage requested cannot exceed this
value.

Across all persistent volume claims in a project, the sum of storage requested in the gold storage
class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the silver storage
class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the silver storage class
cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot request
storage.

Across all persistent volume claims in a project, the sum of storage requested in the bronze storage
class cannot exceed this value. When this is set to 0, it means bronze storage class cannot create
claims.

Across all pods in a non-terminal state, the sum of ephemeral storage requests cannot exceed 2Gi.

Across all pods in a non-terminal state, the sum of ephemeral storage limits cannot exceed 4Gi.

8.1.6. Creating a quota

You can create a quota to constrain resource usage in a given project.

Procedure

1. Define the quota in a file.

2. Use the file to create the quota and apply it to a project:

For example:

 name: storage-consumption
spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7
 requests.ephemeral-storage: 2Gi 8
 limits.ephemeral-storage: 4Gi 9

$ oc create -f <file> [-n <project_name>]

Red Hat OpenShift Service on AWS 4 Building applications

162

1

8.1.6.1. Creating object count quotas

You can create an object count quota for all standard namespaced resource types on Red Hat
OpenShift Service on AWS, such as BuildConfig and DeploymentConfig objects. An object quota
count places a defined quota on all standard namespaced resource types.

When using a resource quota, an object is charged against the quota upon creation. These types of
quotas are useful to protect against exhaustion of resources. The quota can only be created if there are
enough spare resources within the project.

Procedure

To configure an object count quota for a resource:

1. Run the following command:

The <resource> variable is the name of the resource, and <group> is the API group, if
applicable. Use the oc api-resources command for a list of resources and their associated
API groups.

For example:

Example output

This example limits the listed resources to the hard limit in each project in the cluster.

2. Verify that the quota was created:

Example output

$ oc create -f core-object-counts.yaml -n demoproject

$ oc create quota <name> \
 --hard=count/<resource>.<group>=<quota>,count/<resource>.<group>=<quota> 1

$ oc create quota test \
 --
hard=count/deployments.extensions=2,count/replicasets.extensions=4,count/pods=3,count/secr
ets=4

resourcequota "test" created

$ oc describe quota test

Name: test
Namespace: quota
Resource Used Hard
-------- ---- ----
count/deployments.extensions 0 2
count/pods 0 3
count/replicasets.extensions 0 4
count/secrets 0 4

CHAPTER 8. QUOTAS

163

8.1.6.2. Setting resource quota for extended resources

Overcommitment of resources is not allowed for extended resources, so you must specify requests and
limits for the same extended resource in a quota. Currently, only quota items with the prefix requests.
is allowed for extended resources. The following is an example scenario of how to set resource quota for
the GPU resource nvidia.com/gpu.

Procedure

1. Determine how many GPUs are available on a node in your cluster. For example:

Example output

In this example, 2 GPUs are available.

2. Create a ResourceQuota object to set a quota in the namespace nvidia. In this example, the
quota is 1:

Example output

3. Create the quota:

Example output

4. Verify that the namespace has the correct quota set:

Example output

oc describe node ip-172-31-27-209.us-west-2.compute.internal | egrep
'Capacity|Allocatable|gpu'

 openshift.com/gpu-accelerator=true
Capacity:
 nvidia.com/gpu: 2
Allocatable:
 nvidia.com/gpu: 2
 nvidia.com/gpu 0 0

apiVersion: v1
kind: ResourceQuota
metadata:
 name: gpu-quota
 namespace: nvidia
spec:
 hard:
 requests.nvidia.com/gpu: 1

oc create -f gpu-quota.yaml

resourcequota/gpu-quota created

oc describe quota gpu-quota -n nvidia

Red Hat OpenShift Service on AWS 4 Building applications

164

5. Define a pod that asks for a single GPU. The following example definition file is called gpu-
pod.yaml:

6. Create the pod:

7. Verify that the pod is running:

Example output

8. Verify that the quota Used counter is correct:

Example output

Name: gpu-quota
Namespace: nvidia
Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 0 1

apiVersion: v1
kind: Pod
metadata:
 generateName: gpu-pod-
 namespace: nvidia
spec:
 restartPolicy: OnFailure
 containers:
 - name: rhel7-gpu-pod
 image: rhel7
 env:
 - name: NVIDIA_VISIBLE_DEVICES
 value: all
 - name: NVIDIA_DRIVER_CAPABILITIES
 value: "compute,utility"
 - name: NVIDIA_REQUIRE_CUDA
 value: "cuda>=5.0"
 command: ["sleep"]
 args: ["infinity"]
 resources:
 limits:
 nvidia.com/gpu: 1

oc create -f gpu-pod.yaml

oc get pods

NAME READY STATUS RESTARTS AGE
gpu-pod-s46h7 1/1 Running 0 1m

oc describe quota gpu-quota -n nvidia

Name: gpu-quota
Namespace: nvidia

CHAPTER 8. QUOTAS

165

9. Attempt to create a second GPU pod in the nvidia namespace. This is technically available on
the node because it has 2 GPUs:

Example output

This Forbidden error message is expected because you have a quota of 1 GPU and this pod
tried to allocate a second GPU, which exceeds its quota.

8.1.7. Viewing a quota

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Quota page.

You can also use the CLI to view quota details.

Procedure

1. Get the list of quotas defined in the project. For example, for a project called demoproject:

Example output

2. Describe the quota you are interested in, for example the core-object-counts quota:

Example output

Resource Used Hard
-------- ---- ----
requests.nvidia.com/gpu 1 1

oc create -f gpu-pod.yaml

Error from server (Forbidden): error when creating "gpu-pod.yaml": pods "gpu-pod-f7z2w" is
forbidden: exceeded quota: gpu-quota, requested: requests.nvidia.com/gpu=1, used:
requests.nvidia.com/gpu=1, limited: requests.nvidia.com/gpu=1

$ oc get quota -n demoproject

NAME AGE REQUEST
LIMIT
besteffort 4s pods: 1/2
compute-resources-time-bound 10m pods: 0/2
limits.cpu: 0/1, limits.memory: 0/1Gi
core-object-counts 109s configmaps: 2/10, persistentvolumeclaims: 1/4,
replicationcontrollers: 1/20, secrets: 9/10, services: 2/10

$ oc describe quota core-object-counts -n demoproject

Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10

Red Hat OpenShift Service on AWS 4 Building applications

166

1

2

3

4

8.1.8. Configuring explicit resource quotas

Configure explicit resource quotas in a project request template to apply specific resource quotas in
new projects.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Add a resource quota definition to a project request template:

If a project request template does not exist in a cluster:

a. Create a bootstrap project template and output it to a file called template.yaml:

b. Add a resource quota definition to template.yaml. The following example defines a
resource quota named 'storage-consumption'. The definition must be added before the
parameters: section in the template:

The total number of persistent volume claims in a project.

Across all persistent volume claims in a project, the sum of storage requested
cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in
the gold storage class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in
the silver storage class cannot exceed this value.

persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

- apiVersion: v1
 kind: ResourceQuota
 metadata:
 name: storage-consumption
 namespace: ${PROJECT_NAME}
 spec:
 hard:
 persistentvolumeclaims: "10" 1
 requests.storage: "50Gi" 2
 gold.storageclass.storage.k8s.io/requests.storage: "10Gi" 3
 silver.storageclass.storage.k8s.io/requests.storage: "20Gi" 4
 silver.storageclass.storage.k8s.io/persistentvolumeclaims: "5" 5
 bronze.storageclass.storage.k8s.io/requests.storage: "0" 6
 bronze.storageclass.storage.k8s.io/persistentvolumeclaims: "0" 7

CHAPTER 8. QUOTAS

167

5

6

7

the silver storage class cannot exceed this value.

Across all persistent volume claims in a project, the total number of claims in the
silver storage class cannot exceed this value.

Across all persistent volume claims in a project, the sum of storage requested in
the bronze storage class cannot exceed this value. When this value is set to 0, the
bronze storage class cannot request storage.

Across all persistent volume claims in a project, the sum of storage requested in
the bronze storage class cannot exceed this value. When this value is set to 0, the
bronze storage class cannot create claims.

c. Create a project request template from the modified template.yaml file in the
openshift-config namespace:

NOTE

To include the configuration as a kubectl.kubernetes.io/last-applied-
configuration annotation, add the --save-config option to the oc create
command.

By default, the template is called project-request.

If a project request template already exists within a cluster:

NOTE

If you declaratively or imperatively manage objects within your cluster by
using configuration files, edit the existing project request template through
those files instead.

a. List templates in the openshift-config namespace:

b. Edit an existing project request template:

c. Add a resource quota definition, such as the preceding storage-consumption example,
into the existing template. The definition must be added before the parameters:
section in the template.

2. If you created a project request template, reference it in the cluster’s project configuration
resource:

a. Access the project configuration resource for editing:

By using the web console:

i. Navigate to the Administration → Cluster Settings page.

$ oc create -f template.yaml -n openshift-config

$ oc get templates -n openshift-config

$ oc edit template <project_request_template> -n openshift-config

Red Hat OpenShift Service on AWS 4 Building applications

168

ii. Click Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

By using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

b. Update the spec section of the project configuration resource to include the
projectRequestTemplate and name parameters. The following example references the
default project request template name project-request:

3. Verify that the resource quota is applied when projects are created:

a. Create a project:

b. List the project’s resource quotas:

c. Describe the resource quota in detail:

8.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS

A multi-project quota, defined by a ClusterResourceQuota object, allows quotas to be shared across
multiple projects. Resources used in each selected project are aggregated and that aggregate is used to
limit resources across all the selected projects.

This guide describes how cluster administrators can set and manage resource quotas across multiple
projects.

IMPORTANT

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
...
spec:
 projectRequestTemplate:
 name: project-request

$ oc new-project <project_name>

$ oc get resourcequotas

$ oc describe resourcequotas <resource_quota_name>

CHAPTER 8. QUOTAS

169

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

8.2.1. Selecting multiple projects during quota creation

When creating quotas, you can select multiple projects based on annotation selection, label selection, or
both.

Procedure

1. To select projects based on annotations, run the following command:

This creates the following ClusterResourceQuota object:

$ oc create clusterquota for-user \
 --project-annotation-selector openshift.io/requester=<user_name> \
 --hard pods=10 \
 --hard secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 name: for-user
spec:
 quota: 1
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: 2
 openshift.io/requester: <user_name>
 labels: null 3
status:
 namespaces: 4
 - namespace: ns-one
 status:
 hard:
 pods: "10"
 secrets: "20"
 used:
 pods: "1"
 secrets: "9"
 total: 5
 hard:
 pods: "10"

Red Hat OpenShift Service on AWS 4 Building applications

170

1

2

3

4

5

1

2

The ResourceQuotaSpec object that will be enforced over the selected projects.

A simple key-value selector for annotations.

A label selector that can be used to select projects.

A per-namespace map that describes current quota usage in each selected project.

The aggregate usage across all selected projects.

This multi-project quota document controls all projects requested by <user_name> using the
default project request endpoint. You are limited to 10 pods and 20 secrets.

2. Similarly, to select projects based on labels, run this command:

Both clusterresourcequota and clusterquota are aliases of the same command. for-
name is the name of the ClusterResourceQuota object.

To select projects by label, provide a key-value pair by using the format --project-label-
selector=key=value.

This creates the following ClusterResourceQuota object definition:

8.2.2. Viewing applicable cluster resource quotas

A project administrator is not allowed to create or modify the multi-project quota that limits his or her
project, but the administrator is allowed to view the multi-project quota documents that are applied to
his or her project. The project administrator can do this via the AppliedClusterResourceQuota

 secrets: "20"
 used:
 pods: "1"
 secrets: "9"

$ oc create clusterresourcequota for-name \ 1
 --project-label-selector=name=frontend \ 2
 --hard=pods=10 --hard=secrets=20

apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
 creationTimestamp: null
 name: for-name
spec:
 quota:
 hard:
 pods: "10"
 secrets: "20"
 selector:
 annotations: null
 labels:
 matchLabels:
 name: frontend

CHAPTER 8. QUOTAS

171

resource.

Procedure

1. To view quotas applied to a project, run:

Example output

8.2.3. Selection granularity

Because of the locking consideration when claiming quota allocations, the number of active projects
selected by a multi-project quota is an important consideration. Selecting more than 100 projects under
a single multi-project quota can have detrimental effects on API server responsiveness in those
projects.

$ oc describe AppliedClusterResourceQuota

Name: for-user
Namespace: <none>
Created: 19 hours ago
Labels: <none>
Annotations: <none>
Label Selector: <null>
AnnotationSelector: map[openshift.io/requester:<user-name>]
Resource Used Hard
-------- ---- ----
pods 1 10
secrets 9 20

Red Hat OpenShift Service on AWS 4 Building applications

172

1

2

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS
Config maps allow you to decouple configuration artifacts from image content to keep containerized
applications portable.

The following sections define config maps and how to create and use them.

9.1. UNDERSTANDING CONFIG MAPS

Many applications require configuration by using some combination of configuration files, command line
arguments, and environment variables. In Red Hat OpenShift Service on AWS, these configuration
artifacts are decoupled from image content to keep containerized applications portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while keeping
containers agnostic of Red Hat OpenShift Service on AWS. A config map can be used to store fine-
grained information like individual properties or coarse-grained information like entire configuration files
or JSON blobs.

The ConfigMap object holds key-value pairs of configuration data that can be consumed in pods or
used to store configuration data for system components such as controllers. For example:

ConfigMap Object Definition

Contains the configuration data.

Points to a file that contains non-UTF8 data, for example, a binary Java keystore file. Enter the file
data in Base 64.

NOTE

You can use the binaryData field when you create a config map from a binary file, such as
an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used to:

Populate environment variable values in containers

kind: ConfigMap
apiVersion: v1
metadata:
 creationTimestamp: 2016-02-18T19:14:38Z
 name: example-config
 namespace: my-namespace
data: 1
 example.property.1: hello
 example.property.2: world
 example.property.file: |-
 property.1=value-1
 property.2=value-2
 property.3=value-3
binaryData:
 bar: L3Jvb3QvMTAw 2

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

173

1

2

Set command-line arguments in a container

Populate configuration files in a volume

Users and system components can store configuration data in a config map.

A config map is similar to a secret, but designed to more conveniently support working with strings that
do not contain sensitive information.

Config map restrictions
A config map must be created before its contents can be consumed in pods.

Controllers can be written to tolerate missing configuration data. Consult individual components
configured by using config maps on a case-by-case basis.

ConfigMap objects reside in a project.

They can only be referenced by pods in the same project.

The Kubelet only supports the use of a config map for pods it gets from the API server.

This includes any pods created by using the CLI, or indirectly from a replication controller. It does not
include pods created by using the Red Hat OpenShift Service on AWS node’s --manifest-url flag, its --
config flag, or its REST API because these are not common ways to create pods.

Additional resources

Creating and using config maps

9.2. USE CASES: CONSUMING CONFIG MAPS IN PODS

The following sections describe some uses cases when consuming ConfigMap objects in pods.

9.2.1. Populating environment variables in containers by using config maps

You can use config maps to populate individual environment variables in containers or to populate
environment variables in containers from all keys that form valid environment variable names.

As an example, consider the following config map:

ConfigMap with two environment variables

Name of the config map.

The project in which the config map resides. Config maps can only be referenced by pods in the

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config 1
 namespace: default 2
data:
 special.how: very 3
 special.type: charm 4

Red Hat OpenShift Service on AWS 4 Building applications

174

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/nodes/#creating-and-using-config-maps

3 4

1

2

The project in which the config map resides. Config maps can only be referenced by pods in the
same project.

Environment variables to inject.

ConfigMap with one environment variable

Name of the config map.

Environment variable to inject.

Procedure

You can consume the keys of this ConfigMap in a pod using configMapKeyRef sections.

Sample Pod specification configured to inject specific environment variables

apiVersion: v1
kind: ConfigMap
metadata:
 name: env-config 1
 namespace: default
data:
 log_level: INFO 2

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env: 1
 - name: SPECIAL_LEVEL_KEY 2
 valueFrom:
 configMapKeyRef:
 name: special-config 3
 key: special.how 4
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config 5
 key: special.type 6
 optional: true 7
 envFrom: 8
 - configMapRef:

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

175

1

2

3 5

4 6

7

8

9

Stanza to pull the specified environment variables from a ConfigMap.

Name of a pod environment variable that you are injecting a key’s value into.

Name of the ConfigMap to pull specific environment variables from.

Environment variable to pull from the ConfigMap.

Makes the environment variable optional. As optional, the pod will be started even if the
specified ConfigMap and keys do not exist.

Stanza to pull all environment variables from a ConfigMap.

Name of the ConfigMap to pull all environment variables from.

When this pod is run, the pod logs will include the following output:

SPECIAL_LEVEL_KEY=very
log_level=INFO

NOTE

SPECIAL_TYPE_KEY=charm is not listed in the example output because optional: true
is set.

9.2.2. Setting command-line arguments for container commands with config maps

You can use a config map to set the value of the commands or arguments in a container by using the
Kubernetes substitution syntax $(VAR_NAME).

As an example, consider the following config map:

Procedure

To inject values into a command in a container, you must consume the keys you want to use as
environment variables. Then you can refer to them in a container’s command using the
$(VAR_NAME) syntax.

 name: env-config 9
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default
data:
 special.how: very
 special.type: charm

Red Hat OpenShift Service on AWS 4 Building applications

176

1

Sample pod specification configured to inject specific environment variables

Inject the values into a command in a container using the keys you want to use as
environment variables.

When this pod is run, the output from the echo command run in the test-container container is
as follows:

very charm

9.2.3. Injecting content into a volume by using config maps

You can inject content into a volume by using config maps.

Example ConfigMap custom resource (CR)

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)"]
1

 env:
 - name: SPECIAL_LEVEL_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.how
 - name: SPECIAL_TYPE_KEY
 valueFrom:
 configMapKeyRef:
 name: special-config
 key: special.type
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: special-config
 namespace: default

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

177

1

Procedure

You have a couple different options for injecting content into a volume by using config maps.

The most basic way to inject content into a volume by using a config map is to populate the
volume with files where the key is the file name and the content of the file is the value of the
key:

File containing key.

When this pod is run, the output of the cat command will be:

very

You can also control the paths within the volume where config map keys are projected:

data:
 special.how: very
 special.type: charm

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/special.how"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config 1
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: dapi-test-pod
spec:
 securityContext:
 runAsNonRoot: true
 seccompProfile:

Red Hat OpenShift Service on AWS 4 Building applications

178

1 Path to config map key.

When this pod is run, the output of the cat command will be:

very

 type: RuntimeDefault
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "cat", "/etc/config/path/to/special-key"]
 volumeMounts:
 - name: config-volume
 mountPath: /etc/config
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop: [ALL]
 volumes:
 - name: config-volume
 configMap:
 name: special-config
 items:
 - key: special.how
 path: path/to/special-key 1
 restartPolicy: Never

CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS

179

CHAPTER 10. MONITORING PROJECT AND APPLICATION
METRICS USING THE DEVELOPER PERSPECTIVE

The Observe view in the Developer perspective provides options to monitor your project or application
metrics, such as CPU, memory, and bandwidth usage, and network related information.

10.1. PREREQUISITES

You have created and deployed applications on Red Hat OpenShift Service on AWS .

You have logged in to the web console and have switched to the Developer perspective.

10.2. MONITORING YOUR PROJECT METRICS

After you create applications in your project and deploy them, you can use the Developer perspective in
the web console to see the metrics for your project.

Procedure

1. Go to Observe to see the Dashboard, Metrics, Alerts, and Events for your project.

2. Optional: Use the Dashboard tab to see graphs depicting the following application metrics:

CPU usage

Memory usage

Bandwidth consumption

Network-related information such as the rate of transmitted and received packets and the
rate of dropped packets.

In the Dashboard tab, you can access the Kubernetes compute resources dashboards.

Figure 10.1. Observe dashboard

NOTE

Red Hat OpenShift Service on AWS 4 Building applications

180

NOTE

In the Dashboard list, Kubernetes / Compute Resources / Namespace (Pods)
dashboard is selected by default.

Use the following options to see further details:

Select a dashboard from the Dashboard list to see the filtered metrics. All dashboards
produce additional sub-menus when selected, except Kubernetes / Compute Resources /
Namespace (Pods).

Select an option from the Time Range list to determine the time frame for the data being
captured.

Set a custom time range by selecting Custom time range from the Time Range list. You
can input or select the From and To dates and times. Click Save to save the custom time
range.

Select an option from the Refresh Interval list to determine the time period after which the
data is refreshed.

Hover your cursor over the graphs to see specific details for your pod.

Click Inspect located in the upper-right corner of every graph to see any particular graph
details. The graph details appear in the Metrics tab.

3. Optional: Use the Metrics tab to query for the required project metric.

Figure 10.2. Monitoring metrics

a. In the Select Query list, select an option to filter the required details for your project. The
filtered metrics for all the application pods in your project are displayed in the graph. The
pods in your project are also listed below.

b. From the list of pods, clear the colored square boxes to remove the metrics for specific
pods to further filter your query result.

c. Click Show PromQL to see the Prometheus query. You can further modify this query with
the help of prompts to customize the query and filter the metrics you want to see for that
namespace.

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

181

d. Use the drop-down list to set a time range for the data being displayed. You can click Reset
Zoom to reset it to the default time range.

e. Optional: In the Select Query list, select Custom Query to create a custom Prometheus
query and filter relevant metrics.

4. Optional: Use the Alerts tab to do the following tasks:

See the rules that trigger alerts for the applications in your project.

Identify the alerts firing in the project.

Silence such alerts if required.

Figure 10.3. Monitoring alerts

Use the following options to see further details:

Use the Filter list to filter the alerts by their Alert State and Severity.

Click on an alert to go to the details page for that alert. In the Alerts Details page, you can
click View Metrics to see the metrics for the alert.

Use the Notifications toggle adjoining an alert rule to silence all the alerts for that rule, and
then select the duration for which the alerts will be silenced from the Silence for list. You
must have the permissions to edit alerts to see the Notifications toggle.

Use the Options menu adjoining an alert rule to see the details of the alerting rule.

5. Optional: Use the Events tab to see the events for your project.

Figure 10.4. Monitoring events

Red Hat OpenShift Service on AWS 4 Building applications

182

Figure 10.4. Monitoring events

You can filter the displayed events using the following options:

In the Resources list, select a resource to see events for that resource.

In the All Types list, select a type of event to see events relevant to that type.

Search for specific events using the Filter events by names or messages field.

10.3. MONITORING YOUR APPLICATION METRICS

After you create applications in your project and deploy them, you can use the Topology view in the
Developer perspective to see the alerts and metrics for your application. Critical and warning alerts for
your application are indicated on the workload node in the Topology view.

Procedure

To see the alerts for your workload:

1. In the Topology view, click the workload to see the workload details in the right panel.

2. Click the Observe tab to see the critical and warning alerts for the application; graphs for
metrics, such as CPU, memory, and bandwidth usage; and all the events for the application.

NOTE

Only critical and warning alerts in the Firing state are displayed in the Topology
view. Alerts in the Silenced, Pending and Not Firing states are not displayed.

Figure 10.5. Monitoring application metrics

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

183

Figure 10.5. Monitoring application metrics

a. Click the alert listed in the right panel to see the alert details in the Alert Details page.

b. Click any of the charts to go to the Metrics tab to see the detailed metrics for the
application.

c. Click View monitoring dashboard to see the monitoring dashboard for that application.

10.4. IMAGE VULNERABILITIES BREAKDOWN

In the Developer perspective, the project dashboard shows the Image Vulnerabilities link in the Status
section. Using this link, you can view the Image Vulnerabilities breakdown window, which includes
details regarding vulnerable container images and fixable container images. The icon color indicates
severity:

Red: High priority. Fix immediately.

Orange: Medium priority. Can be fixed after high-priority vulnerabilities.

Yellow: Low priority. Can be fixed after high and medium-priority vulnerabilities.

Based on the severity level, you can prioritize vulnerabilities and fix them in an organized manner.

Figure 10.6. Viewing image vulnerabilities

Red Hat OpenShift Service on AWS 4 Building applications

184

Figure 10.6. Viewing image vulnerabilities

10.5. MONITORING YOUR APPLICATION AND IMAGE
VULNERABILITIES METRICS

After you create applications in your project and deploy them, use the Developer perspective in the web
console to see the metrics for your application dependency vulnerabilities across your cluster. The
metrics help you to analyze the following image vulnerabilities in detail:

Total count of vulnerable images in a selected project

Severity-based counts of all vulnerable images in a selected project

Drilldown into severity to obtain the details, such as count of vulnerabilities, count of fixable
vulnerabilities, and number of affected pods for each vulnerable image

Prerequisites

You have installed the Red Hat Quay Container Security operator from the Operator Hub.

NOTE

The Red Hat Quay Container Security operator detects vulnerabilities by
scanning the images that are in the quay registry.

Procedure

1. For a general overview of the image vulnerabilities, on the navigation panel of the Developer
perspective, click Project to see the project dashboard.

2. Click Image Vulnerabilities in the Status section. The window that opens displays details such

CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE

185

2. Click Image Vulnerabilities in the Status section. The window that opens displays details such
as Vulnerable Container Images and Fixable Container Images.

3. For a detailed vulnerabilities overview, click the Vulnerabilities tab on the project dashboard.

a. To get more detail about an image, click its name.

b. View the default graph with all types of vulnerabilities in the Details tab.

c. Optional: Click the toggle button to view a specific type of vulnerability. For example,
click App dependency to see vulnerabilities specific to application dependency.

d. Optional: You can filter the list of vulnerabilities based on their Severity and Type or sort
them by Severity, Package, Type, Source, Current Version, and Fixed in Version.

e. Click a Vulnerability to get its associated details:

Base image vulnerabilities display information from a Red Hat Security Advisory
(RHSA).

App dependency vulnerabilities display information from the Snyk security application.

10.6. ADDITIONAL RESOURCES

Monitoring overview

Red Hat OpenShift Service on AWS 4 Building applications

186

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/monitoring/#monitoring-overview

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING
HEALTH CHECKS

In software systems, components can become unhealthy due to transient issues such as temporary
connectivity loss, configuration errors, or problems with external dependencies. Red Hat OpenShift
Service on AWS applications have a number of options to detect and handle unhealthy containers.

11.1. UNDERSTANDING HEALTH CHECKS

A health check periodically performs diagnostics on a running container using any combination of the
readiness, liveness, and startup health checks.

You can include one or more probes in the specification for the pod that contains the container which
you want to perform the health checks.

NOTE

If you want to add or edit health checks in an existing pod, you must edit the pod
DeploymentConfig object or use the Developer perspective in the web console. You
cannot use the CLI to add or edit health checks for an existing pod.

Readiness probe

A readiness probe determines if a container is ready to accept service requests. If the readiness
probe fails for a container, the kubelet removes the pod from the list of available service endpoints.
After a failure, the probe continues to examine the pod. If the pod becomes available, the kubelet
adds the pod to the list of available service endpoints.

Liveness health check

A liveness probe determines if a container is still running. If the liveness probe fails due to a condition
such as a deadlock, the kubelet kills the container. The pod then responds based on its restart policy.
For example, a liveness probe on a pod with a restartPolicy of Always or OnFailure kills and restarts
the container.

Startup probe

A startup probe indicates whether the application within a container is started. All other probes are
disabled until the startup succeeds. If the startup probe does not succeed within a specified time
period, the kubelet kills the container, and the container is subject to the pod restartPolicy.
Some applications can require additional startup time on their first initialization. You can use a
startup probe with a liveness or readiness probe to delay that probe long enough to handle lengthy
start-up time using the failureThreshold and periodSeconds parameters.

For example, you can add a startup probe, with a failureThreshold of 30 failures and a
periodSeconds of 10 seconds (30 * 10s = 300s) for a maximum of 5 minutes, to a liveness probe.
After the startup probe succeeds the first time, the liveness probe takes over.

You can configure liveness, readiness, and startup probes with any of the following types of tests:

HTTP GET: When using an HTTP GET test, the test determines the healthiness of the container
by using a web hook. The test is successful if the HTTP response code is between 200 and 399.
You can use an HTTP GET test with applications that return HTTP status codes when
completely initialized.

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

187

Container Command: When using a container command test, the probe executes a command
inside the container. The probe is successful if the test exits with a 0 status.

TCP socket: When using a TCP socket test, the probe attempts to open a socket to the
container. The container is only considered healthy if the probe can establish a connection. You
can use a TCP socket test with applications that do not start listening until initialization is
complete.

You can configure several fields to control the behavior of a probe:

initialDelaySeconds: The time, in seconds, after the container starts before the probe can be
scheduled. The default is 0.

periodSeconds: The delay, in seconds, between performing probes. The default is 10. This value
must be greater than timeoutSeconds.

timeoutSeconds: The number of seconds of inactivity after which the probe times out and the
container is assumed to have failed. The default is 1. This value must be lower than
periodSeconds.

successThreshold: The number of times that the probe must report success after a failure to
reset the container status to successful. The value must be 1 for a liveness probe. The default is
1.

failureThreshold: The number of times that the probe is allowed to fail. The default is 3. After
the specified attempts:

for a liveness probe, the container is restarted

for a readiness probe, the pod is marked Unready

for a startup probe, the container is killed and is subject to the pod’s restartPolicy

Example probes
The following are samples of different probes as they would appear in an object specification.

Sample readiness probe with a container command readiness probe in a pod spec

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 readinessProbe: 3
 exec: 4
 command: 5
 - cat
 - /tmp/healthy
...

Red Hat OpenShift Service on AWS 4 Building applications

188

1

2

3

4

5

1

2

3

4

5

6

The container name.

The container image to deploy.

A readiness probe.

A container command test.

The commands to execute on the container.

Sample container command startup probe and liveness probe with container command
tests in a pod spec

The container name.

Specify the container image to deploy.

A liveness probe.

An HTTP GET test.

The internet scheme: HTTP or HTTPS. The default value is HTTP.

The port on which the container is listening.

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 livenessProbe: 3
 httpGet: 4
 scheme: HTTPS 5
 path: /healthz
 port: 8080 6
 httpHeaders:
 - name: X-Custom-Header
 value: Awesome
 startupProbe: 7
 httpGet: 8
 path: /healthz
 port: 8080 9
 failureThreshold: 30 10
 periodSeconds: 10 11
...

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

189

7

8

9

10

11

1

2

3

4

5

6

7

8

A startup probe.

An HTTP GET test.

The port on which the container is listening.

The number of times to try the probe after a failure.

The number of seconds to perform the probe.

Sample liveness probe with a container command test that uses a timeout in a pod spec

The container name.

Specify the container image to deploy.

The liveness probe.

The type of probe, here a container command probe.

The command line to execute inside the container.

How often in seconds to perform the probe.

The number of consecutive successes needed to show success after a failure.

The number of times to try the probe after a failure.

Sample readiness probe and liveness probe with a TCP socket test in a deployment

apiVersion: v1
kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
...
spec:
 containers:
 - name: goproxy-app 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 livenessProbe: 3
 exec: 4
 command: 5
 - /bin/bash
 - '-c'
 - timeout 60 /opt/eap/bin/livenessProbe.sh
 periodSeconds: 10 6
 successThreshold: 1 7
 failureThreshold: 3 8
...

Red Hat OpenShift Service on AWS 4 Building applications

190

1

2

The readiness probe.

The liveness probe.

11.2. CONFIGURING HEALTH CHECKS USING THE CLI

To configure readiness, liveness, and startup probes, add one or more probes to the specification for
the pod that contains the container which you want to perform the health checks

NOTE

If you want to add or edit health checks in an existing pod, you must edit the pod
DeploymentConfig object or use the Developer perspective in the web console. You
cannot use the CLI to add or edit health checks for an existing pod.

Procedure

To add probes for a container:

1. Create a Pod object to add one or more probes:

kind: Deployment
apiVersion: apps/v1
metadata:
 labels:
 test: health-check
 name: my-application
spec:
...
 template:
 spec:
 containers:
 - resources: {}
 readinessProbe: 1
 tcpSocket:
 port: 8080
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
 terminationMessagePath: /dev/termination-log
 name: ruby-ex
 livenessProbe: 2
 tcpSocket:
 port: 8080
 initialDelaySeconds: 15
 timeoutSeconds: 1
 periodSeconds: 10
 successThreshold: 1
 failureThreshold: 3
...

apiVersion: v1

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

191

1

2

3

4

5

6

7

8

9

10

11

Specify the container name.

Specify the container image to deploy.

Optional: Create a Liveness probe.

Specify a test to perform, here a TCP Socket test.

Specify the port on which the container is listening.

Specify the time, in seconds, after the container starts before the probe can be scheduled.

Specify the number of seconds to perform the probe. The default is 10. This value must be
greater than timeoutSeconds.

Specify the number of seconds of inactivity after which the probe is assumed to have
failed. The default is 1. This value must be lower than periodSeconds.

Optional: Create a Readiness probe.

Specify the type of test to perform, here an HTTP test.

Specify a host IP address. When host is not defined, the PodIP is used.

kind: Pod
metadata:
 labels:
 test: health-check
 name: my-application
spec:
 containers:
 - name: my-container 1
 args:
 image: registry.k8s.io/goproxy:0.1 2
 livenessProbe: 3
 tcpSocket: 4
 port: 8080 5
 initialDelaySeconds: 15 6
 periodSeconds: 20 7
 timeoutSeconds: 10 8
 readinessProbe: 9
 httpGet: 10
 host: my-host 11
 scheme: HTTPS 12
 path: /healthz
 port: 8080 13
 startupProbe: 14
 exec: 15
 command: 16
 - cat
 - /tmp/healthy
 failureThreshold: 30 17
 periodSeconds: 20 18
 timeoutSeconds: 10 19

Red Hat OpenShift Service on AWS 4 Building applications

192

12

13

14

15

16

17

18

19

Specify HTTP or HTTPS. When scheme is not defined, the HTTP scheme is used.

Specify the port on which the container is listening.

Optional: Create a Startup probe.

Specify the type of test to perform, here an Container Execution probe.

Specify the commands to execute on the container.

Specify the number of times to try the probe after a failure.

Specify the number of seconds to perform the probe. The default is 10. This value must be
greater than timeoutSeconds.

Specify the number of seconds of inactivity after which the probe is assumed to have
failed. The default is 1. This value must be lower than periodSeconds.

NOTE

If the initialDelaySeconds value is lower than the periodSeconds value, the
first Readiness probe occurs at some point between the two periods due to an
issue with timers.

The timeoutSeconds value must be lower than the periodSeconds value.

2. Create the Pod object:

3. Verify the state of the health check pod:

Example output

The following is the output of a failed probe that restarted a container:

Sample Liveness check output with unhealthy container

$ oc create -f <file-name>.yaml

$ oc describe pod my-application

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 9s default-scheduler Successfully assigned openshift-
logging/liveness-exec to ip-10-0-143-40.ec2.internal
 Normal Pulling 2s kubelet, ip-10-0-143-40.ec2.internal pulling image
"registry.k8s.io/liveness"
 Normal Pulled 1s kubelet, ip-10-0-143-40.ec2.internal Successfully pulled image
"registry.k8s.io/liveness"
 Normal Created 1s kubelet, ip-10-0-143-40.ec2.internal Created container
 Normal Started 1s kubelet, ip-10-0-143-40.ec2.internal Started container

$ oc describe pod pod1

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

193

Example output

11.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER
PERSPECTIVE

You can use the Developer perspective to add three types of health probes to your container to ensure
that your application is healthy:

Use the Readiness probe to check if the container is ready to handle requests.

Use the Liveness probe to check if the container is running.

Use the Startup probe to check if the application within the container has started.

You can add health checks either while creating and deploying an application, or after you have
deployed an application.

11.4. ADDING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE

You can use the Topology view to add health checks to your deployed application.

Prerequisites:

You have switched to the Developer perspective in the web console.

You have created and deployed an application on Red Hat OpenShift Service on AWS using the
Developer perspective.

Procedure

....

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> Successfully
assigned aaa/liveness-http to ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
 Normal AddedInterface 47s multus Add eth0
[10.129.2.11/23]
 Normal Pulled 46s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 773.406244ms
 Normal Pulled 28s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 233.328564ms
 Normal Created 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Created container liveness
 Normal Started 10s (x3 over 46s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Started container liveness
 Warning Unhealthy 10s (x6 over 34s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-
snzrj Liveness probe failed: HTTP probe failed with statuscode: 500
 Normal Killing 10s (x2 over 28s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Container liveness failed liveness probe, will be restarted
 Normal Pulling 10s (x3 over 47s) kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Pulling image "registry.k8s.io/liveness"
 Normal Pulled 10s kubelet, ci-ln-37hz77b-f76d1-wdpjv-worker-b-snzrj
Successfully pulled image "registry.k8s.io/liveness" in 244.116568ms

Red Hat OpenShift Service on AWS 4 Building applications

194

Procedure

1. In the Topology view, click on the application node to see the side panel. If the container does
not have health checks added, a Health Checks notification is displayed with a link to add health
checks.

2. In the displayed notification, click the Add Health Checks link.

3. Alternatively, you can also click the Actions list and select Add Health Checks. Note that if the
container already has health checks, you will see the Edit Health Checks option instead of the
add option.

4. In the Add Health Checks form, if you have deployed multiple containers, use the Container list
to ensure that the appropriate container is selected.

5. Click the required health probe links to add them to the container. Default data for the health
checks is prepopulated. You can add the probes with the default data or further customize the
values and then add them. For example, to add a Readiness probe that checks if your container
is ready to handle requests:

a. Click Add Readiness Probe, to see a form containing the parameters for the probe.

b. Click the Type list to select the request type you want to add. For example, in this case,
select Container Command to select the command that will be executed inside the
container.

c. In the Command field, add an argument cat, similarly, you can add multiple arguments for
the check, for example, add another argument /tmp/healthy.

d. Retain or modify the default values for the other parameters as required.

NOTE

The Timeout value must be lower than the Period value. The Timeout
default value is 1. The Period default value is 10.

e. Click the check mark at the bottom of the form. The Readiness Probe Added message is
displayed.

6. Click Add to add the health check. You are redirected to the Topology view and the container is
restarted.

7. In the side panel, verify that the probes have been added by clicking on the deployed pod under
the Pods section.

8. In the Pod Details page, click the listed container in the Containers section.

9. In the Container Details page, verify that the Readiness probe - Exec Command cat
/tmp/healthy has been added to the container.

11.5. EDITING HEALTH CHECKS USING THE DEVELOPER
PERSPECTIVE

You can use the Topology view to edit health checks added to your application, modify them, or add
more health checks.

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

195

Prerequisites:

You have switched to the Developer perspective in the web console.

You have created and deployed an application on Red Hat OpenShift Service on AWS using the
Developer perspective.

You have added health checks to your application.

Procedure

1. In the Topology view, right-click your application and select Edit Health Checks. Alternatively,
in the side panel, click the Actions drop-down list and select Edit Health Checks.

2. In the Edit Health Checks page:

To remove a previously added health probe, click the Remove icon adjoining it.

To edit the parameters of an existing probe:

a. Click the Edit Probe link next to a previously added probe to see the parameters for
the probe.

b. Modify the parameters as required, and click the check mark to save your changes.

To add a new health probe, in addition to existing health checks, click the add probe links.
For example, to add a Liveness probe that checks if your container is running:

a. Click Add Liveness Probe, to see a form containing the parameters for the probe.

b. Edit the probe parameters as required.

NOTE

The Timeout value must be lower than the Period value. The Timeout
default value is 1. The Period default value is 10.

c. Click the check mark at the bottom of the form. The Liveness Probe Added message
is displayed.

3. Click Save to save your modifications and add the additional probes to your container. You are
redirected to the Topology view.

4. In the side panel, verify that the probes have been added by clicking on the deployed pod under
the Pods section.

5. In the Pod Details page, click the listed container in the Containers section.

6. In the Container Details page, verify that the Liveness probe - HTTP Get 10.129.4.65:8080/
has been added to the container, in addition to the earlier existing probes.

11.6. MONITORING HEALTH CHECK FAILURES USING THE
DEVELOPER PERSPECTIVE

In case an application health check fails, you can use the Topology view to monitor these health check
violations.

Red Hat OpenShift Service on AWS 4 Building applications

196

Prerequisites:

You have switched to the Developer perspective in the web console.

You have created and deployed an application on Red Hat OpenShift Service on AWS using the
Developer perspective.

You have added health checks to your application.

Procedure

1. In the Topology view, click on the application node to see the side panel.

2. Click the Observe tab to see the health check failures in the Events (Warning) section.

3. Click the down arrow adjoining Events (Warning) to see the details of the health check failure.

Additional resources

For details on adding health checks while creating and deploying an application, see Advanced
Options in the Creating applications using the Developer perspective section.

CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS

197

CHAPTER 12. EDITING APPLICATIONS
You can edit the configuration and the source code of the application you create using the Topology
view.

12.1. PREREQUISITES

You have created and deployed an application on Red Hat OpenShift Service on AWS using the
Developer perspective.

You have logged in to the web console and have switched to the Developer perspective.

12.2. EDITING THE SOURCE CODE OF AN APPLICATION USING THE
DEVELOPER PERSPECTIVE

You can use the Topology view in the Developer perspective to edit the source code of your
application.

Procedure

In the Topology view, click the Edit Source code icon, displayed at the bottom-right of the
deployed application, to access your source code and modify it.

NOTE

This feature is available only when you create applications using the From Git,
From Catalog, and the From Dockerfile options.

12.3. EDITING THE APPLICATION CONFIGURATION USING THE
DEVELOPER PERSPECTIVE

You can use the Topology view in the Developer perspective to edit the configuration of your
application.

NOTE

Currently, only configurations of applications created by using the From Git, Container
Image, From Catalog, or From Dockerfile options in the Add workflow of the Developer
perspective can be edited. Configurations of applications created by using the CLI or the
YAML option from the Add workflow cannot be edited.

Prerequisites

Ensure that you have created an application using the From Git, Container Image, From Catalog, or
From Dockerfile options in the Add workflow.

Procedure

1. After you have created an application and it is displayed in the Topology view, right-click the
application to see the edit options available.

Figure 12.1. Edit application

Red Hat OpenShift Service on AWS 4 Building applications

198

Figure 12.1. Edit application

2. Click Edit application-name to see the Add workflow you used to create the application. The
form is pre-populated with the values you had added while creating the application.

3. Edit the necessary values for the application.

NOTE

You cannot edit the Name field in the General section, the CI/CD pipelines, or
the Create a route to the application field in the Advanced Options section.

4. Click Save to restart the build and deploy a new image.

Figure 12.2. Edit and redeploy application

CHAPTER 12. EDITING APPLICATIONS

199

Figure 12.2. Edit and redeploy application

Red Hat OpenShift Service on AWS 4 Building applications

200

CHAPTER 13. WORKING WITH QUOTAS
A resource quota, defined by a ResourceQuota object, provides constraints that limit aggregate
resource consumption per project. It can limit the quantity of objects that can be created in a project by
type, as well as the total amount of compute resources and storage that may be consumed by resources
in that project.

An object quota count places a defined quota on all standard namespaced resource types. When using a
resource quota, an object is charged against the quota if it exists in server storage. These types of
quotas are useful to protect against exhaustion of storage resources.

This guide describes how resource quotas work and how developers can work with and view them.

13.1. VIEWING A QUOTA

You can view usage statistics related to any hard limits defined in a project’s quota by navigating in the
web console to the project’s Quota page.

You can also use the CLI to view quota details.

Procedure

1. Get the list of quotas defined in the project. For example, for a project called demoproject:

Example output

2. Describe the quota you are interested in, for example the core-object-counts quota:

Example output

$ oc get quota -n demoproject

NAME AGE REQUEST
LIMIT
besteffort 4s pods: 1/2
compute-resources-time-bound 10m pods: 0/2
limits.cpu: 0/1, limits.memory: 0/1Gi
core-object-counts 109s configmaps: 2/10, persistentvolumeclaims: 1/4,
replicationcontrollers: 1/20, secrets: 9/10, services: 2/10

$ oc describe quota core-object-counts -n demoproject

Name: core-object-counts
Namespace: demoproject
Resource Used Hard
-------- ---- ----
configmaps 3 10
persistentvolumeclaims 0 4
replicationcontrollers 3 20
secrets 9 10
services 2 10

CHAPTER 13. WORKING WITH QUOTAS

201

13.2. RESOURCES MANAGED BY QUOTAS

The following describes the set of compute resources and object types that can be managed by a
quota.

NOTE

A pod is in a terminal state if status.phase in (Failed, Succeeded) is true.

Table 13.1. Compute resources managed by quota

Resource Name Description

cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

requests.cpu The sum of CPU requests across all pods in a non-terminal state cannot exceed
this value. cpu and requests.cpu are the same value and can be used
interchangeably.

requests.memory The sum of memory requests across all pods in a non-terminal state cannot
exceed this value. memory and requests.memory are the same value and
can be used interchangeably.

limits.cpu The sum of CPU limits across all pods in a non-terminal state cannot exceed
this value.

limits.memory The sum of memory limits across all pods in a non-terminal state cannot exceed
this value.

Table 13.2. Storage resources managed by quota

Resource Name Description

requests.storage The sum of storage requests across all persistent volume claims in any state
cannot exceed this value.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

<storage-class-
name>.storageclass.st
orage.k8s.io/requests.
storage

The sum of storage requests across all persistent volume claims in any state
that have a matching storage class, cannot exceed this value.

Red Hat OpenShift Service on AWS 4 Building applications

202

<storage-class-
name>.storageclass.st
orage.k8s.io/persistent
volumeclaims

The total number of persistent volume claims with a matching storage class
that can exist in the project.

ephemeral-storage The sum of local ephemeral storage requests across all pods in a non-terminal
state cannot exceed this value. ephemeral-storage and
requests.ephemeral-storage are the same value and can be used
interchangeably.

requests.ephemeral-
storage

The sum of ephemeral storage requests across all pods in a non-terminal state
cannot exceed this value. ephemeral-storage and requests.ephemeral-
storage are the same value and can be used interchangeably.

limits.ephemeral-
storage

The sum of ephemeral storage limits across all pods in a non-terminal state
cannot exceed this value.

Resource Name Description

Table 13.3. Object counts managed by quota

Resource Name Description

pods The total number of pods in a non-terminal state that can exist in the project.

replicationcontrollers The total number of ReplicationControllers that can exist in the project.

resourcequotas The total number of resource quotas that can exist in the project.

services The total number of services that can exist in the project.

services.loadbalancers The total number of services of type LoadBalancer that can exist in the
project.

services.nodeports The total number of services of type NodePort that can exist in the project.

secrets The total number of secrets that can exist in the project.

configmaps The total number of ConfigMap objects that can exist in the project.

persistentvolumeclaim
s

The total number of persistent volume claims that can exist in the project.

openshift.io/imagestre
ams

The total number of imagestreams that can exist in the project.

CHAPTER 13. WORKING WITH QUOTAS

203

13.3. QUOTA SCOPES

Each quota can have an associated set of scopes. A quota only measures usage for a resource if it
matches the intersection of enumerated scopes.

Adding a scope to a quota restricts the set of resources to which that quota can apply. Specifying a
resource outside of the allowed set results in a validation error.

Scope Description

BestEffort Match pods that have best effort quality of service
for either cpu or memory.

NotBestEffort Match pods that do not have best effort quality of
service for cpu and memory.

A BestEffort scope restricts a quota to limiting the following resources:

pods

A NotBestEffort scope restricts a quota to tracking the following resources:

pods

memory

requests.memory

limits.memory

cpu

requests.cpu

limits.cpu

13.4. QUOTA ENFORCEMENT

After a resource quota for a project is first created, the project restricts the ability to create any new
resources that may violate a quota constraint until it has calculated updated usage statistics.

After a quota is created and usage statistics are updated, the project accepts the creation of new
content. When you create or modify resources, your quota usage is incremented immediately upon the
request to create or modify the resource.

When you delete a resource, your quota use is decremented during the next full recalculation of quota
statistics for the project. A configurable amount of time determines how long it takes to reduce quota
usage statistics to their current observed system value.

If project modifications exceed a quota usage limit, the server denies the action, and an appropriate
error message is returned to the user explaining the quota constraint violated, and what their currently
observed usage statistics are in the system.

Red Hat OpenShift Service on AWS 4 Building applications

204

13.5. REQUESTS VERSUS LIMITS

When allocating compute resources, each container might specify a request and a limit value each for
CPU, memory, and ephemeral storage. Quotas can restrict any of these values.

If the quota has a value specified for requests.cpu or requests.memory, then it requires that every
incoming container make an explicit request for those resources. If the quota has a value specified for
limits.cpu or limits.memory, then it requires that every incoming container specify an explicit limit for
those resources.

CHAPTER 13. WORKING WITH QUOTAS

205

CHAPTER 14. PRUNING OBJECTS TO RECLAIM RESOURCES
Over time, API objects created in Red Hat OpenShift Service on AWS can accumulate in the cluster’s
etcd data store through normal user operations, such as when building and deploying applications.

A user with the dedicated-admin role can periodically prune older versions of objects from the cluster
that are no longer required. For example, by pruning images you can delete older images and layers that
are no longer in use, but are still taking up disk space.

14.1. BASIC PRUNING OPERATIONS

The CLI groups prune operations under a common parent command:

This specifies:

The <object_type> to perform the action on, such as groups, builds, deployments, or images.

The <options> supported to prune that object type.

14.2. PRUNING GROUPS

To prune groups records from an external provider, administrators can run the following command:

Table 14.1. oc adm prune groups flags

Options Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--blacklist Path to the group blacklist file.

--whitelist Path to the group whitelist file.

--sync-config Path to the synchronization configuration file.

Procedure

1. To see the groups that the prune command deletes, run the following command:

2. To perform the prune operation, add the --confirm flag:

$ oc adm prune <object_type> <options>

$ oc adm prune groups \
 --sync-config=path/to/sync/config [<options>]

$ oc adm prune groups --sync-config=ldap-sync-config.yaml

$ oc adm prune groups --sync-config=ldap-sync-config.yaml --confirm

Red Hat OpenShift Service on AWS 4 Building applications

206

14.3. PRUNING DEPLOYMENT RESOURCES

You can prune resources associated with deployments that are no longer required by the system, due to
age and status.

The following command prunes replication controllers associated with DeploymentConfig objects:

NOTE

To also prune replica sets associated with Deployment objects, use the --replica-sets
flag. This flag is currently a Technology Preview feature.

Table 14.2. oc adm prune deployments flags

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--keep-complete=<N> Per the DeploymentConfig object, keep the last N replication
controllers that have a status of Complete and replica count of zero.
The default is 5.

--keep-failed=<N> Per the DeploymentConfig object, keep the last N replication
controllers that have a status of Failed and replica count of zero. The
default is 1.

--keep-younger-than=
<duration>

Do not prune any replication controller that is younger than <duration>
relative to the current time. Valid units of measurement include
nanoseconds (ns), microseconds (us), milliseconds (ms), seconds (s),
minutes (m), and hours (h). The default is 60m.

--orphans Prune all replication controllers that no longer have a
DeploymentConfig object, has status of Complete or Failed, and
has a replica count of zero.

Procedure

1. To see what a pruning operation would delete, run the following command:

2. To actually perform the prune operation, add the --confirm flag:

14.4. PRUNING BUILDS

$ oc adm prune deployments [<options>]

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

$ oc adm prune deployments --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

CHAPTER 14. PRUNING OBJECTS TO RECLAIM RESOURCES

207

To prune builds that are no longer required by the system due to age and status, administrators can run
the following command:

Table 14.3. oc adm prune builds flags

Option Description

--confirm Indicate that pruning should occur, instead of performing a dry-run.

--orphans Prune all builds whose build configuration no longer exists, status is
complete, failed, error, or canceled.

--keep-complete=<N> Per build configuration, keep the last N builds whose status is complete.
The default is 5.

--keep-failed=<N> Per build configuration, keep the last N builds whose status is failed,
error, or canceled. The default is 1.

--keep-younger-than=
<duration>

Do not prune any object that is younger than <duration> relative to the
current time. The default is 60m.

Procedure

1. To see what a pruning operation would delete, run the following command:

2. To actually perform the prune operation, add the --confirm flag:

NOTE

Developers can enable automatic build pruning by modifying their build configuration.

14.5. AUTOMATICALLY PRUNING IMAGES

Images from the OpenShift image registry that are no longer required by the system due to age, status,
or exceed limits are automatically pruned. Cluster administrators can configure the Pruning Custom
Resource, or suspend it.

Prerequisites

You have access to an Red Hat OpenShift Service on AWS cluster using an account with
dedicated-admin permissions.

Install the oc CLI.

$ oc adm prune builds [<options>]

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m

$ oc adm prune builds --orphans --keep-complete=5 --keep-failed=1 \
 --keep-younger-than=60m --confirm

Red Hat OpenShift Service on AWS 4 Building applications

208

1

2

3

4

5

6

7

Procedure

Verify that the object named imagepruners.imageregistry.operator.openshift.io/cluster
contains the following spec and status fields:

schedule: CronJob formatted schedule. This is an optional field, default is daily at midnight.

suspend: If set to true, the CronJob running pruning is suspended. This is an optional field, default
is false. The initial value on new clusters is false.

keepTagRevisions: The number of revisions per tag to keep. This is an optional field, default is 3.
The initial value is 3.

keepYoungerThanDuration: Retain images younger than this duration. This is an optional field. If a
value is not specified, either keepYoungerThan or the default value 60m (60 minutes) is used.

keepYoungerThan: Deprecated. The same as keepYoungerThanDuration, but the duration is
specified as an integer in nanoseconds. This is an optional field. When keepYoungerThanDuration
is set, this field is ignored.

resources: Standard pod resource requests and limits. This is an optional field.

affinity: Standard pod affinity. This is an optional field.

spec:
 schedule: 0 0 * * * 1
 suspend: false 2
 keepTagRevisions: 3 3
 keepYoungerThanDuration: 60m 4
 keepYoungerThan: 3600000000000 5
 resources: {} 6
 affinity: {} 7
 nodeSelector: {} 8
 tolerations: [] 9
 successfulJobsHistoryLimit: 3 10
 failedJobsHistoryLimit: 3 11
status:
 observedGeneration: 2 12
 conditions: 13
 - type: Available
 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Ready
 message: "Periodic image pruner has been created."
 - type: Scheduled
 status: "True"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Scheduled
 message: "Image pruner job has been scheduled."
 - type: Failed
 staus: "False"
 lastTransitionTime: 2019-10-09T03:13:45
 reason: Succeeded
 message: "Most recent image pruning job succeeded."

CHAPTER 14. PRUNING OBJECTS TO RECLAIM RESOURCES

209

8

9

10

11

12

13

nodeSelector: Standard pod node selector. This is an optional field.

tolerations: Standard pod tolerations. This is an optional field.

successfulJobsHistoryLimit: The maximum number of successful jobs to retain. Must be >= 1 to
ensure metrics are reported. This is an optional field, default is 3. The initial value is 3.

failedJobsHistoryLimit: The maximum number of failed jobs to retain. Must be >= 1 to ensure
metrics are reported. This is an optional field, default is 3. The initial value is 3.

observedGeneration: The generation observed by the Operator.

conditions: The standard condition objects with the following types:

Available: Indicates if the pruning job has been created. Reasons can be Ready or Error.

Scheduled: Indicates if the next pruning job has been scheduled. Reasons can be
Scheduled, Suspended, or Error.

Failed: Indicates if the most recent pruning job failed.

IMPORTANT

The Image Registry Operator’s behavior for managing the pruner is orthogonal to the
managementState specified on the Image Registry Operator’s ClusterOperator object.
If the Image Registry Operator is not in the Managed state, the image pruner can still be
configured and managed by the Pruning Custom Resource.

However, the managementState of the Image Registry Operator alters the behavior of
the deployed image pruner job:

Managed: the --prune-registry flag for the image pruner is set to true.

Removed: the --prune-registry flag for the image pruner is set to false, meaning
it only prunes image metadata in etcd.

14.6. PRUNING CRON JOBS

Cron jobs can perform pruning of successful jobs, but might not properly handle failed jobs. Therefore,
the cluster administrator should perform regular cleanup of jobs manually. They should also restrict the
access to cron jobs to a small group of trusted users and set appropriate quota to prevent the cron job
from creating too many jobs and pods.

Additional resources

Resource quotas across multiple projects

Red Hat OpenShift Service on AWS 4 Building applications

210

CHAPTER 15. IDLING APPLICATIONS
Cluster administrators can idle applications to reduce resource consumption. This is useful when the
cluster is deployed on a public cloud where cost is related to resource consumption.

If any scalable resources are not in use, Red Hat OpenShift Service on AWS discovers and idles them by
scaling their replicas to 0. The next time network traffic is directed to the resources, the resources are
unidled by scaling up the replicas, and normal operation continues.

Applications are made of services, as well as other scalable resources, such as deployment configs. The
action of idling an application involves idling all associated resources.

15.1. IDLING APPLICATIONS

Idling an application involves finding the scalable resources (deployment configurations, replication
controllers, and others) associated with a service. Idling an application finds the service and marks it as
idled, scaling down the resources to zero replicas.

You can use the oc idle command to idle a single service, or use the --resource-names-file option to
idle multiple services.

15.1.1. Idling a single service

Procedure

1. To idle a single service, run:

15.1.2. Idling multiple services

Idling multiple services is helpful if an application spans across a set of services within a project, or when
idling multiple services in conjunction with a script to idle multiple applications in bulk within the same
project.

Procedure

1. Create a file containing a list of the services, each on their own line.

2. Idle the services using the --resource-names-file option:

NOTE

The idle command is limited to a single project. For idling applications across a cluster,
run the idle command for each project individually.

15.2. UNIDLING APPLICATIONS

Application services become active again when they receive network traffic and are scaled back up their
previous state. This includes both traffic to the services and traffic passing through routes.

$ oc idle <service>

$ oc idle --resource-names-file <filename>

CHAPTER 15. IDLING APPLICATIONS

211

Applications can also be manually unidled by scaling up the resources.

Procedure

1. To scale up a DeploymentConfig, run:

NOTE

Automatic unidling by a router is currently only supported by the default HAProxy router.

$ oc scale --replicas=1 dc <dc_name>

Red Hat OpenShift Service on AWS 4 Building applications

212

CHAPTER 16. DELETING APPLICATIONS
You can delete applications created in your project.

16.1. DELETING APPLICATIONS USING THE DEVELOPER
PERSPECTIVE

You can delete an application and all of its associated components using the Topology view in the
Developer perspective:

1. Click the application you want to delete to see the side panel with the resource details of the
application.

2. Click the Actions drop-down menu displayed on the upper right of the panel, and select Delete
Application to see a confirmation dialog box.

3. Enter the name of the application and click Delete to delete it.

You can also right-click the application you want to delete and click Delete Application to delete it.

CHAPTER 16. DELETING APPLICATIONS

213

CHAPTER 17. USING THE RED HAT MARKETPLACE
The Red Hat Marketplace is an open cloud marketplace that makes it easy to discover and access
certified software for container-based environments that run on public clouds and on-premises.

17.1. RED HAT MARKETPLACE FEATURES

Cluster administrators can use the Red Hat Marketplace to manage software on Red Hat OpenShift
Service on AWS, give developers self-service access to deploy application instances, and correlate
application usage against a quota.

17.1.1. Connect Red Hat OpenShift Service on AWS clusters to the Marketplace

Cluster administrators can install a common set of applications on Red Hat OpenShift Service on AWS
clusters that connect to the Marketplace. They can also use the Marketplace to track cluster usage
against subscriptions or quotas. Users that they add by using the Marketplace have their product usage
tracked and billed to their organization.

During the cluster connection process, a Marketplace Operator is installed that updates the image
registry secret, manages the catalog, and reports application usage.

17.1.2. Install applications

Cluster administrators can install Marketplace applications from within OperatorHub in Red Hat
OpenShift Service on AWS, or from the Marketplace web application.

You can access installed applications from the web console by clicking Operators > Installed Operators.

17.1.3. Deploy applications from different perspectives

You can deploy Marketplace applications from the web console’s Administrator and Developer
perspectives.

The Developer perspective
Developers can access newly installed capabilities by using the Developer perspective.

For example, after a database Operator is installed, a developer can create an instance from the catalog
within their project. Database usage is aggregated and reported to the cluster administrator.

This perspective does not include Operator installation and application usage tracking.

The Administrator perspective
Cluster administrators can access Operator installation and application usage information from the
Administrator perspective.

They can also launch application instances by browsing custom resource definitions (CRDs) in the
Installed Operators list.

Red Hat OpenShift Service on AWS 4 Building applications

214

https://marketplace.redhat.com
https://marketplace.redhat.com/en-us/documentation/getting-started
https://marketplace.redhat.com/en-us/documentation/clusters
https://marketplace.redhat.com/en-us/documentation/operators
https://marketplace.redhat.com

	Table of Contents
	CHAPTER 1. BUILDING APPLICATIONS OVERVIEW
	1.1. WORKING ON A PROJECT
	1.2. WORKING ON AN APPLICATION
	1.2.1. Creating an application
	1.2.2. Maintaining an application
	1.2.3. Connecting an application to services
	1.2.4. Deploying an application

	1.3. USING THE RED HAT MARKETPLACE

	CHAPTER 2. PROJECTS
	2.1. WORKING WITH PROJECTS
	2.1.1. Creating a project
	2.1.1.1. Creating a project by using the web console
	2.1.1.2. Creating a project by using the CLI

	2.1.2. Viewing a project
	2.1.2.1. Viewing a project by using the web console
	2.1.2.2. Viewing a project using the CLI

	2.1.3. Providing access permissions to your project using the Developer perspective
	2.1.4. Customizing the available cluster roles using the web console
	2.1.5. Adding to a project
	2.1.6. Checking the project status
	2.1.6.1. Checking project status by using the web console
	2.1.6.2. Checking project status by using the CLI

	2.1.7. Deleting a project
	2.1.7.1. Deleting a project by using the web console
	2.1.7.2. Deleting a project by using the CLI

	2.2. CONFIGURING PROJECT CREATION
	2.2.1. About project creation
	2.2.2. Modifying the template for new projects
	2.2.3. Disabling project self-provisioning
	2.2.4. Customizing the project request message

	CHAPTER 3. CREATING APPLICATIONS
	3.1. CREATING APPLICATIONS BY USING THE DEVELOPER PERSPECTIVE
	3.1.1. Prerequisites
	3.1.2. Creating sample applications
	3.1.3. Creating applications by using Quick Starts
	3.1.4. Importing a codebase from Git to create an application
	3.1.5. Creating applications by deploying container image
	3.1.6. Deploying a Java application by uploading a JAR file
	3.1.7. Using the Devfile registry to access devfiles
	3.1.8. Using the Developer Catalog to add services or components to your application
	3.1.9. Additional resources

	3.2. CREATING APPLICATIONS FROM INSTALLED OPERATORS
	3.2.1. Creating an etcd cluster using an Operator

	3.3. CREATING APPLICATIONS BY USING THE CLI
	3.3.1. Creating an application from source code
	3.3.1.1. Local
	3.3.1.2. Remote
	3.3.1.3. Build strategy detection
	3.3.1.4. Language detection

	3.3.2. Creating an application from an image
	3.3.2.1. Docker Hub MySQL image
	3.3.2.2. Image in a private registry
	3.3.2.3. Existing image stream and optional image stream tag

	3.3.3. Creating an application from a template
	3.3.3.1. Template parameters

	3.3.4. Modifying application creation
	3.3.4.1. Specifying environment variables
	3.3.4.2. Specifying build environment variables
	3.3.4.3. Specifying labels
	3.3.4.4. Viewing the output without creation
	3.3.4.5. Creating objects with different names
	3.3.4.6. Creating objects in a different project
	3.3.4.7. Creating multiple objects
	3.3.4.8. Grouping images and source in a single pod
	3.3.4.9. Searching for images, templates, and other inputs
	3.3.4.10. Setting the import mode

	CHAPTER 4. VIEWING APPLICATION COMPOSITION BY USING THE TOPOLOGY VIEW
	4.1. PREREQUISITES
	4.2. VIEWING THE TOPOLOGY OF YOUR APPLICATION
	4.3. INTERACTING WITH APPLICATIONS AND COMPONENTS
	4.4. SCALING APPLICATION PODS AND CHECKING BUILDS AND ROUTES
	4.5. ADDING COMPONENTS TO AN EXISTING PROJECT
	4.6. GROUPING MULTIPLE COMPONENTS WITHIN AN APPLICATION
	4.7. ADDING SERVICES TO YOUR APPLICATION
	4.8. REMOVING SERVICES FROM YOUR APPLICATION
	4.9. LABELS AND ANNOTATIONS USED FOR THE TOPOLOGY VIEW
	4.10. ADDITIONAL RESOURCES

	CHAPTER 5. CONNECTING APPLICATIONS TO SERVICES
	5.1. RELEASE NOTES FOR SERVICE BINDING OPERATOR
	5.1.1. Support matrix
	5.1.2. Making open source more inclusive
	5.1.3. Release notes for Service Binding Operator 1.3.3
	5.1.3.1. Fixed issues

	5.1.4. Release notes for Service Binding Operator 1.3.1
	5.1.4.1. Fixed issues

	5.1.5. Release notes for Service Binding Operator 1.3
	5.1.5.1. Removed functionality

	5.1.6. Release notes for Service Binding Operator 1.2
	5.1.6.1. New features
	5.1.6.2. Known issues

	5.1.7. Release notes for Service Binding Operator 1.1.1
	5.1.7.1. Fixed issues
	5.1.7.2. Known issues

	5.1.8. Release notes for Service Binding Operator 1.1
	5.1.8.1. New features
	5.1.8.2. Fixed issues
	5.1.8.3. Known issues

	5.1.9. Release notes for Service Binding Operator 1.0.1
	5.1.9.1. Support matrix
	5.1.9.2. Fixed issues
	5.1.9.3. Known issues

	5.1.10. Release notes for Service Binding Operator 1.0
	5.1.10.1. Support matrix
	5.1.10.2. New features

	5.1.11. Additional resources

	5.2. UNDERSTANDING SERVICE BINDING OPERATOR
	5.2.1. Service Binding terminology
	5.2.2. About Service Binding Operator
	5.2.2.1. Making an Operator-managed backing service bindable
	5.2.2.2. Binding a workload together with a backing service

	5.2.3. Key features
	5.2.4. API differences
	5.2.5. Additional resources

	5.3. INSTALLING SERVICE BINDING OPERATOR
	Prerequisites
	5.3.1. Installing the Service Binding Operator using the web console
	5.3.2. Additional Resources

	5.4. GETTING STARTED WITH SERVICE BINDING
	Prerequisites
	5.4.1. Creating a PostgreSQL database instance
	5.4.2. Deploying the Spring PetClinic sample application
	5.4.3. Connecting the Spring PetClinic sample application to the PostgreSQL database service
	5.4.4. Additional Resources

	5.5. EXPOSING BINDING DATA FROM A SERVICE
	5.5.1. Methods of exposing binding data
	5.5.1.1. Provisioned service
	5.5.1.2. Direct secret reference
	5.5.1.3. Declaring binding data through CRD or CR annotations
	5.5.1.4. Detection of binding data through owned resources

	5.5.2. Data model
	5.5.3. Setting annotations mapping to be optional
	5.5.4. RBAC requirements
	5.5.5. Categories of exposable binding data
	5.5.5.1. Exposing a string from a resource
	5.5.5.2. Exposing a constant value as the binding item
	5.5.5.3. Exposing an entire config map or secret that is referenced from a resource
	5.5.5.4. Exposing a specific entry from a config map or secret that is referenced from a resource
	5.5.5.5. Exposing a resource definition value
	5.5.5.6. Exposing entries of a collection with the key and value from each entry
	5.5.5.7. Exposing items of a collection with one key per item
	5.5.5.8. Exposing values of collection entries with one key per entry value

	5.5.6. Additional resources

	5.6. PROJECTING BINDING DATA
	5.6.1. Consumption of binding data
	5.6.2. Configuration of the directory path to project the binding data inside workload container
	5.6.2.1. Computation of the final path for projecting the binding data as files

	5.6.3. Projecting the binding data
	5.6.4. Additional resources

	5.7. BINDING WORKLOADS USING SERVICE BINDING OPERATOR
	5.7.1. Naming strategies
	5.7.2. Advanced binding options
	5.7.2.1. Changing the binding names before projecting them into the workload
	5.7.2.2. Composing custom binding data
	5.7.2.3. Binding workloads using a label selector

	5.7.3. Binding secondary workloads that are not compliant with PodSpec
	5.7.3.1. Configuring the custom location of the container path
	5.7.3.2. Configuring the custom location of the secret path
	5.7.3.3. Workload resource mapping

	5.7.4. Unbinding workloads from a backing service
	5.7.5. Additional resources

	5.8. CONNECTING AN APPLICATION TO A SERVICE USING THE DEVELOPER PERSPECTIVE
	5.8.1. Discovering and identifying Operator-backed bindable services
	5.8.2. Creating a visual connection between components
	5.8.3. Creating a binding connection between components
	5.8.4. Verifying the status of your service binding from the Topology view
	5.8.5. Visualizing the binding connections to resources
	5.8.6. Additional resources

	CHAPTER 6. WORKING WITH HELM CHARTS
	6.1. UNDERSTANDING HELM
	6.1.1. Key features
	6.1.2. Red Hat Certification of Helm charts for OpenShift
	6.1.3. Additional resources

	6.2. INSTALLING HELM
	6.2.1. On Linux
	6.2.2. On Windows 7/8
	6.2.3. On Windows 10
	6.2.4. On MacOS

	6.3. CONFIGURING CUSTOM HELM CHART REPOSITORIES
	6.3.1. Creating Helm releases using the Developer perspective
	6.3.2. Using Helm in the web terminal
	6.3.3. Creating a custom Helm chart on Red Hat OpenShift Service on AWS
	6.3.4. Filtering Helm Charts by their certification level

	6.4. WORKING WITH HELM RELEASES
	6.4.1. Prerequisites
	6.4.2. Upgrading a Helm release
	6.4.3. Rolling back a Helm release
	6.4.4. Deleting a Helm release

	CHAPTER 7. DEPLOYMENTS
	7.1. CUSTOM DOMAINS FOR APPLICATIONS
	7.1.1. Configuring custom domains for applications
	7.1.2. Renewing a certificate for custom domains

	7.2. UNDERSTANDING DEPLOYMENTS
	7.2.1. Building blocks of a deployment
	7.2.1.1. Replica sets
	7.2.1.2. Replication controllers

	7.2.2. Deployments
	7.2.3. DeploymentConfig objects
	7.2.4. Comparing Deployment and DeploymentConfig objects
	7.2.4.1. Design
	7.2.4.2. Deployment-specific features
	7.2.4.3. DeploymentConfig object-specific features

	7.3. MANAGING DEPLOYMENT PROCESSES
	7.3.1. Managing DeploymentConfig objects
	7.3.1.1. Starting a deployment
	7.3.1.2. Viewing a deployment
	7.3.1.3. Retrying a deployment
	7.3.1.4. Rolling back a deployment
	7.3.1.5. Executing commands inside a container
	7.3.1.6. Viewing deployment logs
	7.3.1.7. Deployment triggers
	7.3.1.8. Setting deployment resources
	7.3.1.9. Scaling manually
	7.3.1.10. Accessing private repositories from DeploymentConfig objects
	7.3.1.11. Running a pod with a different service account

	7.4. USING DEPLOYMENT STRATEGIES
	7.4.1. Choosing a deployment strategy
	7.4.2. Rolling strategy
	7.4.2.1. Canary deployments
	7.4.2.2. Creating a rolling deployment
	7.4.2.3. Editing a deployment by using the Developer perspective
	7.4.2.4. Starting a rolling deployment using the Developer perspective

	7.4.3. Recreate strategy
	7.4.3.1. Editing a deployment by using the Developer perspective
	7.4.3.2. Starting a recreate deployment using the Developer perspective

	7.4.4. Custom strategy
	7.4.4.1. Editing a deployment by using the Developer perspective

	7.4.5. Lifecycle hooks
	Pod-based lifecycle hook
	7.4.5.1. Setting lifecycle hooks

	7.5. USING ROUTE-BASED DEPLOYMENT STRATEGIES
	7.5.1. Proxy shards and traffic splitting
	7.5.2. N-1 compatibility
	7.5.3. Graceful termination
	7.5.4. Blue-green deployments
	7.5.4.1. Setting up a blue-green deployment

	7.5.5. A/B deployments
	7.5.5.1. Load balancing for A/B testing

	CHAPTER 8. QUOTAS
	8.1. RESOURCE QUOTAS PER PROJECT
	8.1.1. Resources managed by quotas
	8.1.2. Quota scopes
	8.1.3. Quota enforcement
	8.1.4. Requests versus limits
	8.1.5. Sample resource quota definitions
	8.1.6. Creating a quota
	8.1.6.1. Creating object count quotas
	8.1.6.2. Setting resource quota for extended resources

	8.1.7. Viewing a quota
	8.1.8. Configuring explicit resource quotas

	8.2. RESOURCE QUOTAS ACROSS MULTIPLE PROJECTS
	8.2.1. Selecting multiple projects during quota creation
	8.2.2. Viewing applicable cluster resource quotas
	8.2.3. Selection granularity

	CHAPTER 9. USING CONFIG MAPS WITH APPLICATIONS
	9.1. UNDERSTANDING CONFIG MAPS
	Config map restrictions

	9.2. USE CASES: CONSUMING CONFIG MAPS IN PODS
	9.2.1. Populating environment variables in containers by using config maps
	9.2.2. Setting command-line arguments for container commands with config maps
	9.2.3. Injecting content into a volume by using config maps

	CHAPTER 10. MONITORING PROJECT AND APPLICATION METRICS USING THE DEVELOPER PERSPECTIVE
	10.1. PREREQUISITES
	10.2. MONITORING YOUR PROJECT METRICS
	10.3. MONITORING YOUR APPLICATION METRICS
	10.4. IMAGE VULNERABILITIES BREAKDOWN
	10.5. MONITORING YOUR APPLICATION AND IMAGE VULNERABILITIES METRICS
	10.6. ADDITIONAL RESOURCES

	CHAPTER 11. MONITORING APPLICATION HEALTH BY USING HEALTH CHECKS
	11.1. UNDERSTANDING HEALTH CHECKS
	Example probes

	11.2. CONFIGURING HEALTH CHECKS USING THE CLI
	11.3. MONITORING APPLICATION HEALTH USING THE DEVELOPER PERSPECTIVE
	11.4. ADDING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
	11.5. EDITING HEALTH CHECKS USING THE DEVELOPER PERSPECTIVE
	11.6. MONITORING HEALTH CHECK FAILURES USING THE DEVELOPER PERSPECTIVE

	CHAPTER 12. EDITING APPLICATIONS
	12.1. PREREQUISITES
	12.2. EDITING THE SOURCE CODE OF AN APPLICATION USING THE DEVELOPER PERSPECTIVE
	12.3. EDITING THE APPLICATION CONFIGURATION USING THE DEVELOPER PERSPECTIVE

	CHAPTER 13. WORKING WITH QUOTAS
	13.1. VIEWING A QUOTA
	13.2. RESOURCES MANAGED BY QUOTAS
	13.3. QUOTA SCOPES
	13.4. QUOTA ENFORCEMENT
	13.5. REQUESTS VERSUS LIMITS

	CHAPTER 14. PRUNING OBJECTS TO RECLAIM RESOURCES
	14.1. BASIC PRUNING OPERATIONS
	14.2. PRUNING GROUPS
	14.3. PRUNING DEPLOYMENT RESOURCES
	14.4. PRUNING BUILDS
	14.5. AUTOMATICALLY PRUNING IMAGES
	14.6. PRUNING CRON JOBS

	CHAPTER 15. IDLING APPLICATIONS
	15.1. IDLING APPLICATIONS
	15.1.1. Idling a single service
	15.1.2. Idling multiple services

	15.2. UNIDLING APPLICATIONS

	CHAPTER 16. DELETING APPLICATIONS
	16.1. DELETING APPLICATIONS USING THE DEVELOPER PERSPECTIVE

	CHAPTER 17. USING THE RED HAT MARKETPLACE
	17.1. RED HAT MARKETPLACE FEATURES
	17.1.1. Connect Red Hat OpenShift Service on AWS clusters to the Marketplace
	17.1.2. Install applications
	17.1.3. Deploy applications from different perspectives
	The Developer perspective
	The Administrator perspective

