
Red Hat Enterprise Linux 8

Configuring and managing virtualization

Setting up your host, creating and administering virtual machines, and understanding
virtualization features in Red Hat Enterprise Linux 8

Last Updated: 2024-05-23





Red Hat Enterprise Linux 8 Configuring and managing virtualization

Setting up your host, creating and administering virtual machines, and understanding virtualization
features in Red Hat Enterprise Linux 8



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

To use a Red Hat Enterprise Linux (RHEL) system as a virtualization host, follow the instructions in
this document. The information provided includes: What the capabilities and use cases of
virtualization are How to manage your host and your virtual machines by using command-line
utilities, as well as by using the web console What the support limitations of virtualization are on
various system architectures, such as Intel 64, AMD64, IBM POWER, and IBM Z



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCING VIRTUALIZATION IN RHEL
1.1. WHAT IS VIRTUALIZATION?
1.2. ADVANTAGES OF VIRTUALIZATION
1.3. VIRTUAL MACHINE COMPONENTS AND THEIR INTERACTION
1.4. TOOLS AND INTERFACES FOR VIRTUALIZATION MANAGEMENT
1.5. RED HAT VIRTUALIZATION SOLUTIONS

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION
2.1. ENABLING VIRTUALIZATION
2.2. CREATING VIRTUAL MACHINES

2.2.1. Creating virtual machines by using the command-line interface
2.2.2. Creating virtual machines and installing guest operating systems by using the web console

2.2.2.1. Creating virtual machines by using the web console
2.2.2.2. Creating virtual machines by importing disk images by using the web console
2.2.2.3. Installing guest operating systems by using the web console

2.2.3. Creating virtual machines with cloud image authentication by using the web console
2.3. STARTING VIRTUAL MACHINES

2.3.1. Starting a virtual machine by using the command-line interface
2.3.2. Starting virtual machines by using the web console
2.3.3. Starting virtual machines automatically when the host starts

2.4. CONNECTING TO VIRTUAL MACHINES
2.4.1. Interacting with virtual machines by using the web console

2.4.1.1. Viewing the virtual machine graphical console in the web console
2.4.1.2. Viewing the graphical console in a remote viewer by using the web console
2.4.1.3. Viewing the virtual machine serial console in the web console
2.4.1.4. Replacing the SPICE remote display protocol with VNC in the web console

2.4.2. Opening a virtual machine graphical console by using Virt Viewer
2.4.3. Connecting to a virtual machine by using SSH
2.4.4. Opening a virtual machine serial console
2.4.5. Setting up easy access to remote virtualization hosts

2.5. SHUTTING DOWN VIRTUAL MACHINES
2.5.1. Shutting down a virtual machine by using the command-line interface
2.5.2. Shutting down and restarting virtual machines by using the web console

2.5.2.1. Shutting down virtual machines in the web console
2.5.2.2. Restarting virtual machines by using the web console
2.5.2.3. Sending non-maskable interrupts to VMs by using the web console

2.6. DELETING VIRTUAL MACHINES
2.6.1. Deleting virtual machines by using the command line interface
2.6.2. Deleting virtual machines by using the web console

CHAPTER 3. GETTING STARTED WITH VIRTUALIZATION ON IBM POWER
3.1. ENABLING VIRTUALIZATION ON IBM POWER
3.2. HOW VIRTUALIZATION ON IBM POWER DIFFERS FROM AMD64 AND INTEL 64

CHAPTER 4. GETTING STARTED WITH VIRTUALIZATION ON IBM Z
4.1. ENABLING VIRTUALIZATION ON IBM Z
4.2. UPDATING VIRTUALIZATION ON IBM Z FROM RHEL 8.5 TO RHEL 8.6 OR LATER
4.3. HOW VIRTUALIZATION ON IBM Z DIFFERS FROM AMD64 AND INTEL 64

8

9

10
10
10
11

12
13

15
15
17
17

20
21
22
23
24
27
27
28
29
30
31
31
32
33
34
35
36
37
39
41
41

42
42
42
43
43
43
44

46
46
47

50
50
52
53

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4. NEXT STEPS
4.5. ADDITIONAL RESOURCES

CHAPTER 5. ENABLING QEMU GUEST AGENT FEATURES ON YOUR VIRTUAL MACHINES
5.1. ENABLING QEMU GUEST AGENT ON LINUX GUESTS
5.2. ENABLING QEMU GUEST AGENT ON WINDOWS GUESTS
5.3. VIRTUALIZATION FEATURES THAT REQUIRE QEMU GUEST AGENT

CHAPTER 6. MANAGING VIRTUAL MACHINES IN THE WEB CONSOLE
6.1. OVERVIEW OF VIRTUAL MACHINE MANAGEMENT BY USING THE WEB CONSOLE
6.2. SETTING UP THE WEB CONSOLE TO MANAGE VIRTUAL MACHINES
6.3. RENAMING VIRTUAL MACHINES BY USING THE WEB CONSOLE
6.4. VIRTUAL MACHINE MANAGEMENT FEATURES AVAILABLE IN THE WEB CONSOLE
6.5. DIFFERENCES BETWEEN VIRTUALIZATION FEATURES IN VIRTUAL MACHINE MANAGER AND THE WEB
CONSOLE

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES
7.1. VIEWING VIRTUAL MACHINE INFORMATION BY USING THE COMMAND-LINE INTERFACE
7.2. VIEWING VIRTUAL MACHINE INFORMATION BY USING THE WEB CONSOLE

7.2.1. Viewing a virtualization overview in the web console
7.2.2. Viewing storage pool information by using the web console
7.2.3. Viewing basic virtual machine information in the web console
7.2.4. Viewing virtual machine resource usage in the web console
7.2.5. Viewing virtual machine disk information in the web console
7.2.6. Viewing and editing virtual network interface information in the web console

7.3. SAMPLE VIRTUAL MACHINE XML CONFIGURATION

CHAPTER 8. SAVING AND RESTORING VIRTUAL MACHINES
8.1. HOW SAVING AND RESTORING VIRTUAL MACHINES WORKS
8.2. SAVING A VIRTUAL MACHINE BY USING THE COMMAND LINE INTERFACE
8.3. STARTING A VIRTUAL MACHINE BY USING THE COMMAND-LINE INTERFACE
8.4. STARTING VIRTUAL MACHINES BY USING THE WEB CONSOLE

CHAPTER 9. CLONING VIRTUAL MACHINES
9.1. HOW CLONING VIRTUAL MACHINES WORKS
9.2. CREATING VIRTUAL MACHINE TEMPLATES

9.2.1. Creating a virtual machine template by using virt-sysprep
9.2.2. Creating a virtual machine template manually

9.3. CLONING A VIRTUAL MACHINE BY USING THE COMMAND-LINE INTERFACE
9.4. CLONING A VIRTUAL MACHINE BY USING THE WEB CONSOLE

CHAPTER 10. MIGRATING VIRTUAL MACHINES
10.1. HOW MIGRATING VIRTUAL MACHINES WORKS
10.2. BENEFITS OF MIGRATING VIRTUAL MACHINES
10.3. LIMITATIONS FOR MIGRATING VIRTUAL MACHINES
10.4. VERIFYING HOST CPU COMPATIBILITY FOR VIRTUAL MACHINE MIGRATION
10.5. SHARING VIRTUAL MACHINE DISK IMAGES WITH OTHER HOSTS
10.6. MIGRATING A VIRTUAL MACHINE BY USING THE COMMAND-LINE INTERFACE
10.7. LIVE MIGRATING A VIRTUAL MACHINE BY USING THE WEB CONSOLE
10.8. TROUBLESHOOTING VIRTUAL MACHINE MIGRATIONS

10.8.1. Live migration of a VM takes a long time without completing
10.9. SUPPORTED HOSTS FOR VIRTUAL MACHINE MIGRATION
10.10. ADDITIONAL RESOURCES

CHAPTER 11. MANAGING VIRTUAL DEVICES

55
56

57
57
58
59

61
61
61

62
63

64

67
67
69
69
70
71
72
73
73
75

80
80
80
81

82

84
84
84
84
86
88
90

91
91

92
92
93
96
98
101

103
103
105
106

107

Red Hat Enterprise Linux 8 Configuring and managing virtualization

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.1. HOW VIRTUAL DEVICES WORK
11.2. TYPES OF VIRTUAL DEVICES
11.3. MANAGING DEVICES ATTACHED TO VIRTUAL MACHINES BY USING THE CLI

11.3.1. Attaching devices to virtual machines
11.3.2. Modifying devices attached to virtual machines
11.3.3. Removing devices from virtual machines

11.4. MANAGING HOST DEVICES BY USING THE WEB CONSOLE
11.4.1. Viewing devices attached to virtual machines by using the web console
11.4.2. Attaching devices to virtual machines by using the web console
11.4.3. Removing devices from virtual machines by using the web console

11.5. MANAGING VIRTUAL USB DEVICES
11.5.1. Attaching USB devices to virtual machines
11.5.2. Removing USB devices from virtual machines
11.5.3. Attaching smart card readers to virtual machines

11.6. MANAGING VIRTUAL OPTICAL DRIVES
11.6.1. Attaching optical drives to virtual machines
11.6.2. Adding a CD-ROM to a running virtual machine by using the web console
11.6.3. Replacing ISO images in virtual optical drives
11.6.4. Removing ISO images from virtual optical drives
11.6.5. Removing optical drives from virtual machines
11.6.6. Removing a CD-ROM from a running virtual machine by using the web console

11.7. MANAGING SR-IOV DEVICES
11.7.1. What is SR-IOV?
11.7.2. Attaching SR-IOV networking devices to virtual machines
11.7.3. Supported devices for SR-IOV assignment

11.8. ATTACHING DASD DEVICES TO VIRTUAL MACHINES ON IBM Z
11.9. ATTACHING A WATCHDOG DEVICE TO A VIRTUAL MACHINE BY USING THE WEB CONSOLE
11.10. ATTACHING PCI DEVICES TO VIRTUAL MACHINES ON IBM Z

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES
12.1. UNDERSTANDING VIRTUAL MACHINE STORAGE

12.1.1. Introduction to storage pools
12.1.2. Introduction to storage volumes
12.1.3. Storage management by using libvirt
12.1.4. Overview of storage management
12.1.5. Supported and unsupported storage pool types

12.2. MANAGING VIRTUAL MACHINE STORAGE POOLS BY USING THE CLI
12.2.1. Viewing storage pool information by using the CLI
12.2.2. Creating directory-based storage pools by using the CLI
12.2.3. Creating disk-based storage pools by using the CLI
12.2.4. Creating filesystem-based storage pools by using the CLI
12.2.5. Creating GlusterFS-based storage pools by using the CLI
12.2.6. Creating iSCSI-based storage pools by using the CLI
12.2.7. Creating LVM-based storage pools by using the CLI
12.2.8. Creating NFS-based storage pools by using the CLI
12.2.9. Creating SCSI-based storage pools with vHBA devices by using the CLI
12.2.10. Deleting storage pools by using the CLI

12.3. MANAGING VIRTUAL MACHINE STORAGE POOLS BY USING THE WEB CONSOLE
12.3.1. Viewing storage pool information by using the web console
12.3.2. Creating directory-based storage pools by using the web console
12.3.3. Creating NFS-based storage pools by using the web console
12.3.4. Creating iSCSI-based storage pools by using the web console
12.3.5. Creating disk-based storage pools by using the web console

107
108
110
110
111

113
114
114
115
117
118
118
119

120
121
121
122
123
124
124
125
126
126
128
130
131

134
135

138
138
138
139
139
139
140
140
141
141

143
145
147
149
150
152
153
155
156
156
157
159
160
162

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.3.6. Creating LVM-based storage pools by using the web console
12.3.7. Creating SCSI-based storage pools with vHBA devices by using the web console
12.3.8. Removing storage pools by using the web console
12.3.9. Deactivating storage pools by using the web console

12.4. PARAMETERS FOR CREATING STORAGE POOLS
12.4.1. Directory-based storage pool parameters
12.4.2. Disk-based storage pool parameters
12.4.3. Filesystem-based storage pool parameters
12.4.4. GlusterFS-based storage pool parameters
12.4.5. iSCSI-based storage pool parameters
12.4.6. LVM-based storage pool parameters
12.4.7. NFS-based storage pool parameters
12.4.8. Parameters for SCSI-based storage pools with vHBA devices

12.5. MANAGING VIRTUAL MACHINE STORAGE VOLUMES BY USING THE CLI
12.5.1. Viewing storage volume information by using the CLI
12.5.2. Creating and assigning storage volumes by using the CLI
12.5.3. Deleting storage volumes by using the CLI

12.6. MANAGING VIRTUAL DISK IMAGES BY USING THE CLI
12.6.1. Creating a virtual disk image by using qemu-img
12.6.2. Checking the consistency of a virtual disk image
12.6.3. Resizing a virtual disk image
12.6.4. Converting between virtual disk image formats

12.7. MANAGING VIRTUAL MACHINE STORAGE VOLUMES BY USING THE WEB CONSOLE
12.7.1. Creating storage volumes by using the web console
12.7.2. Removing storage volumes by using the web console

12.8. MANAGING VIRTUAL MACHINE STORAGE DISKS BY USING THE WEB CONSOLE
12.8.1. Viewing virtual machine disk information in the web console
12.8.2. Adding new disks to virtual machines by using the web console
12.8.3. Attaching existing disks to virtual machines by using the web console
12.8.4. Detaching disks from virtual machines by using the web console

12.9. SECURING ISCSI STORAGE POOLS WITH LIBVIRT SECRETS
12.10. CREATING VHBAS

CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL MACHINES
13.1. ASSIGNING A GPU TO A VIRTUAL MACHINE
13.2. MANAGING NVIDIA VGPU DEVICES

13.2.1. Setting up NVIDIA vGPU devices
13.2.2. Removing NVIDIA vGPU devices
13.2.3. Obtaining NVIDIA vGPU information about your system
13.2.4. Remote desktop streaming services for NVIDIA vGPU
13.2.5. Additional resources

CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS
14.1. UNDERSTANDING VIRTUAL NETWORKING

14.1.1. How virtual networks work
14.1.2. Virtual networking default configuration

14.2. USING THE WEB CONSOLE FOR MANAGING VIRTUAL MACHINE NETWORK INTERFACES
14.2.1. Viewing and editing virtual network interface information in the web console
14.2.2. Adding and connecting virtual network interfaces in the web console
14.2.3. Disconnecting and removing virtual network interfaces in the web console

14.3. RECOMMENDED VIRTUAL MACHINE NETWORKING CONFIGURATIONS
14.3.1. Configuring externally visible virtual machines by using the command-line interface
14.3.2. Configuring externally visible virtual machines by using the web console

163
165
167
168
169
169
170
171
172
173
174
176
177
179
179
180
181

182
183
183
185
186
187
187
189
190
190
191

193
194
195
197

200
200
203
203
206
207
209
209

210
210
210
211
212
212
214
214
214
215
216

Red Hat Enterprise Linux 8 Configuring and managing virtualization

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.4. TYPES OF VIRTUAL MACHINE NETWORK CONNECTIONS
14.4.1. Virtual networking with network address translation
14.4.2. Virtual networking in routed mode
14.4.3. Virtual networking in bridged mode
14.4.4. Virtual networking in isolated mode
14.4.5. Virtual networking in open mode
14.4.6. Comparison of virtual machine connection types

14.5. BOOTING VIRTUAL MACHINES FROM A PXE SERVER
14.5.1. Setting up a PXE boot server on a virtual network
14.5.2. Booting virtual machines by using PXE and a virtual network
14.5.3. Booting virtual machines by using PXE and a bridged network

14.6. ADDITIONAL RESOURCES

CHAPTER 15. SHARING FILES BETWEEN THE HOST AND ITS VIRTUAL MACHINES
15.1. SHARING FILES BETWEEN THE HOST AND ITS VIRTUAL MACHINES BY USING NFS

CHAPTER 16. SECURING VIRTUAL MACHINES
16.1. HOW SECURITY WORKS IN VIRTUAL MACHINES
16.2. BEST PRACTICES FOR SECURING VIRTUAL MACHINES
16.3. CREATING A SECUREBOOT VIRTUAL MACHINE
16.4. LIMITING WHAT ACTIONS ARE AVAILABLE TO VIRTUAL MACHINE USERS
16.5. AUTOMATIC FEATURES FOR VIRTUAL MACHINE SECURITY
16.6. SELINUX BOOLEANS FOR VIRTUALIZATION
16.7. SETTING UP IBM SECURE EXECUTION ON IBM Z
16.8. ATTACHING CRYPTOGRAPHIC COPROCESSORS TO VIRTUAL MACHINES ON IBM Z
16.9. ENABLING STANDARD HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES
16.10. ENABLING ENHANCED HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE
17.1. WHAT INFLUENCES VIRTUAL MACHINE PERFORMANCE

The impact of virtualization on system performance
Reducing VM performance loss

17.2. OPTIMIZING VIRTUAL MACHINE PERFORMANCE BY USING TUNED
17.3. CONFIGURING VIRTUAL MACHINE MEMORY

17.3.1. Adding and removing virtual machine memory by using the web console
17.3.2. Adding and removing virtual machine memory by using the command-line interface
17.3.3. Additional resources

17.4. OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE
17.4.1. Tuning block I/O in virtual machines
17.4.2. Disk I/O throttling in virtual machines
17.4.3. Enabling multi-queue virtio-scsi

17.5. OPTIMIZING VIRTUAL MACHINE CPU PERFORMANCE
17.5.1. Adding and removing virtual CPUs by using the command-line interface
17.5.2. Managing virtual CPUs by using the web console
17.5.3. Configuring NUMA in a virtual machine
17.5.4. Sample vCPU performance tuning scenario
17.5.5. Deactivating kernel same-page merging

17.6. OPTIMIZING VIRTUAL MACHINE NETWORK PERFORMANCE
17.7. VIRTUAL MACHINE PERFORMANCE MONITORING TOOLS
17.8. ADDITIONAL RESOURCES

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES
18.1. INSTALLING WINDOWS VIRTUAL MACHINES
18.2. OPTIMIZING WINDOWS VIRTUAL MACHINES

218
219
219

220
222
222
222
223
223
224
225
226

227
227

230
230
231

232
233
235
235
236
240
243
244

246
246
246
246
247
248
248
249
251
251
251

252
253
253
254
255
256
258
264
265
266
268

269
269
271

Table of Contents

5



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18.2.1. Installing KVM paravirtualized drivers for Windows virtual machines
18.2.1.1. How Windows virtio drivers work
18.2.1.2. Preparing virtio driver installation media on a host machine
18.2.1.3. Installing virtio drivers on a Windows guest
18.2.1.4. Updating virtio drivers on a Windows guest
18.2.1.5. Enabling QEMU Guest Agent on Windows guests

18.2.2. Enabling Hyper-V enlightenments
18.2.2.1. Enabling Hyper-V enlightenments on a Windows virtual machine
18.2.2.2. Configurable Hyper-V enlightenments

18.2.3. Configuring NetKVM driver parameters
18.2.4. NetKVM driver parameters
18.2.5. Optimizing background processes on Windows virtual machines

18.3. ENABLING STANDARD HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES
18.4. ENABLING ENHANCED HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES
18.5. NEXT STEPS

CHAPTER 19. CREATING NESTED VIRTUAL MACHINES
19.1. WHAT IS NESTED VIRTUALIZATION?
19.2. RESTRICTIONS AND LIMITATIONS FOR NESTED VIRTUALIZATION
19.3. CREATING A NESTED VIRTUAL MACHINE ON INTEL
19.4. CREATING A NESTED VIRTUAL MACHINE ON AMD
19.5. CREATING A NESTED VIRTUAL MACHINE ON IBM Z
19.6. CREATING A NESTED VIRTUAL MACHINE ON IBM POWER9

CHAPTER 20. DIAGNOSING VIRTUAL MACHINE PROBLEMS
20.1. GENERATING LIBVIRT DEBUG LOGS

20.1.1. Understanding libvirt debug logs
20.1.2. Enabling persistent settings for libvirt debug logs
20.1.3. Enabling libvirt debug logs during runtime
20.1.4. Attaching libvirt debug logs to support requests

20.2. DUMPING A VIRTUAL MACHINE CORE
20.2.1. How virtual machine core dumping works
20.2.2. Creating a virtual machine core dump file

20.3. BACKTRACING VIRTUAL MACHINE PROCESSES

CHAPTER 21. FEATURE SUPPORT AND LIMITATIONS IN RHEL 8 VIRTUALIZATION
21.1. HOW RHEL VIRTUALIZATION SUPPORT WORKS
21.2. RECOMMENDED FEATURES IN RHEL 8 VIRTUALIZATION
21.3. UNSUPPORTED FEATURES IN RHEL 8 VIRTUALIZATION
21.4. RESOURCE ALLOCATION LIMITS IN RHEL 8 VIRTUALIZATION
21.5. AN OVERVIEW OF VIRTUALIZATION FEATURES SUPPORT IN RHEL 8

271
271

272
273
275
276
277
277
278
281
282
284
285
286
287

288
288
289
290
292
293
294

297
297
297
297
298
299
300
300
300
301

303
303
303
305
308
308

Red Hat Enterprise Linux 8 Configuring and managing virtualization

6



Table of Contents

7



MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Enterprise Linux 8 Configuring and managing virtualization

8

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language


PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Log in to the Jira website.

2. Click Create in the top navigation bar.

3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

9

https://issues.redhat.com/projects/RHELDOCS/issues


CHAPTER 1. INTRODUCING VIRTUALIZATION IN RHEL
If you are unfamiliar with the concept of virtualization or its implementation in Linux, the following
sections provide a general overview of virtualization in RHEL 8: its basics, advantages, components, and
other possible virtualization solutions provided by Red Hat.

1.1. WHAT IS VIRTUALIZATION?

RHEL 8 provides the virtualization functionality, which enables a machine running RHEL 8 to host
multiple virtual machines (VMs), also referred to as guests. VMs use the host’s physical hardware and
computing resources to run a separate, virtualized operating system (guest OS) as a user-space process
on the host’s operating system.

In other words, virtualization makes it possible to have operating systems within operating systems.

VMs enable you to safely test software configurations and features, run legacy software, or optimize the
workload efficiency of your hardware. For more information about the benefits, see Advantages of
virtualization.

For more information about what virtualization is, see the Virtualization topic page.

Next steps

To try out virtualization in Red Hat Enterprise Linux 8, see Getting started with virtualization.

In addition to Red Hat Enterprise Linux 8 virtualization, Red Hat offers a number of specialized
virtualization solutions, each with a different user focus and features. For more information, see
Red Hat virtualization solutions .

1.2. ADVANTAGES OF VIRTUALIZATION

Using virtual machines (VMs) has the following benefits in comparison to using physical machines:

Flexible and fine-grained allocation of resources
A VM runs on a host machine, which is usually physical, and physical hardware can also be
assigned for the guest OS to use. However, the allocation of physical resources to the VM is
done on the software level, and is therefore very flexible. A VM uses a configurable fraction of
the host memory, CPUs, or storage space, and that configuration can specify very fine-grained
resource requests.

For example, what the guest OS sees as its disk can be represented as a file on the host file
system, and the size of that disk is less constrained than the available sizes for physical disks.

Software-controlled configurations
The entire configuration of a VM is saved as data on the host, and is under software control.
Therefore, a VM can easily be created, removed, cloned, migrated, operated remotely, or
connected to remote storage.

Separation from the host
A guest OS runs on a virtualized kernel, separate from the host OS. This means that any OS can
be installed on a VM, and even if the guest OS becomes unstable or is compromised, the host is
not affected in any way.

Space and cost efficiency

A single physical machine can host a large number of VMs. Therefore, it avoids the need for

Red Hat Enterprise Linux 8 Configuring and managing virtualization

10

https://www.redhat.com/en/topics/virtualization/what-is-virtualization


A single physical machine can host a large number of VMs. Therefore, it avoids the need for
multiple physical machines to do the same tasks, and thus lowers the space, power, and
maintenance requirements associated with physical hardware.

Software compatibility
Because a VM can use a different OS than its host, virtualization makes it possible to run
applications that were not originally released for your host OS. For example, using a RHEL 7
guest OS, you can run applications released for RHEL 7 on a RHEL 8 host system.

NOTE

Not all operating systems are supported as a guest OS in a RHEL 8 host. For
details, see Recommended features in RHEL 8 virtualization .

1.3. VIRTUAL MACHINE COMPONENTS AND THEIR INTERACTION

Virtualization in RHEL 8 consists of the following principal software components:

Hypervisor

The basis of creating virtual machines (VMs) in RHEL 8 is the hypervisor, a software layer that controls
hardware and enables running multiple operating systems on a host machine.

The hypervisor includes the Kernel-based Virtual Machine (KVM) module and virtualization kernel
drivers. These components ensure that the Linux kernel on the host machine provides resources for
virtualization to user-space software.

At the user-space level, the QEMU emulator simulates a complete virtualized hardware platform that
the guest operating system can run in, and manages how resources are allocated on the host and
presented to the guest.

In addition, the libvirt software suite serves as a management and communication layer, making QEMU
easier to interact with, enforcing security rules, and providing a number of additional tools for
configuring and running VMs.

XML configuration

A host-based XML configuration file (also known as a domain XML  file) determines all settings and
devices in a specific VM. The configuration includes:

Metadata such as the name of the VM, time zone, and other information about the VM.

A description of the devices in the VM, including virtual CPUs (vCPUS), storage devices,
input/output devices, network interface cards, and other hardware, real and virtual.

VM settings such as the maximum amount of memory it can use, restart settings, and other
settings about the behavior of the VM.

For more information about the contents of an XML configuration, see Sample virtual machine XML
configuration.

Component interaction

When a VM is started, the hypervisor uses the XML configuration to create an instance of the VM as a
user-space process on the host. The hypervisor also makes the VM process accessible to the host-
based interfaces, such as the virsh, virt-install, and guestfish utilities, or the web console GUI.

CHAPTER 1. INTRODUCING VIRTUALIZATION IN RHEL

11



When these virtualization tools are used, libvirt translates their input into instructions for QEMU. QEMU
communicates the instructions to KVM, which ensures that the kernel appropriately assigns the
resources necessary to carry out the instructions. As a result, QEMU can execute the corresponding
user-space changes, such as creating or modifying a VM, or performing an action in the VM’s guest
operating system.

NOTE

While QEMU is an essential component of the architecture, it is not intended to be used
directly on RHEL 8 systems, due to security concerns. Therefore, qemu-* commands are
not supported by Red Hat, and it is highly recommended to interact with QEMU by using
libvirt.

For more information about the host-based interfaces, see Tools and interfaces for virtualization
management.

Figure 1.1. RHEL 8 virtualization architecture

1.4. TOOLS AND INTERFACES FOR VIRTUALIZATION MANAGEMENT

You can manage virtualization in RHEL 8 by using the command-line interface (CLI) or several graphical
user interfaces (GUIs).

Command-line interface

The CLI is the most powerful method of managing virtualization in RHEL 8. Prominent CLI commands
for virtual machine (VM) management include:

virsh - A versatile virtualization command-line utility and shell with a great variety of purposes,
depending on the provided arguments. For example:

Starting and shutting down a VM - virsh start and virsh shutdown

Listing available VMs - virsh list

Creating a VM from a configuration file - virsh create

Red Hat Enterprise Linux 8 Configuring and managing virtualization

12



Entering a virtualization shell - virsh

For more information, see the virsh(1) man page.

virt-install - A CLI utility for creating new VMs. For more information, see the virt-install(1)
man page.

virt-xml - A utility for editing the configuration of a VM.

guestfish - A utility for examining and modifying VM disk images. For more information, see the
guestfish(1) man page.

Graphical interfaces

You can use the following GUIs to manage virtualization in RHEL 8:

The RHEL 8 web console, also known as Cockpit, provides a remotely accessible and easy to
use graphical user interface for managing VMs and virtualization hosts.
For instructions on basic virtualization management with the web console, see Managing virtual
machines in the web console.

The Virtual Machine Manager (virt-manager) application provides a specialized GUI for
managing VMs and virtualization hosts.

IMPORTANT

Although still supported in RHEL 8, virt-manager has been deprecated. The web
console is intended to become its replacement in a subsequent release. It is,
therefore, recommended that you get familiar with the web console for
managing virtualization in a GUI.

However, in RHEL 8, some features may only be accessible from either virt-
manager or the command line. For details, see Differences between virtualization
features in Virtual Machine Manager and the web console.

The Gnome Boxes application is a lightweight graphical interface to view and access VMs and
remote systems. Gnome Boxes is primarily designed for use on desktop systems.

IMPORTANT

Gnome Boxes is provided as a part of the GNOME desktop environment and is
supported on RHEL 8, but Red Hat recommends that you use the web console
for managing virtualization in a GUI.

Additional resources

Getting started with virtualization

1.5. RED HAT VIRTUALIZATION SOLUTIONS

The following Red Hat products are built on top of RHEL 8 virtualization features and expand the KVM
virtualization capabilities available in RHEL 8. In addition, many limitations of RHEL 8 virtualization  do
not apply to these products:

OpenShift Virtualization

CHAPTER 1. INTRODUCING VIRTUALIZATION IN RHEL

13



Based on the KubeVirt technology, OpenShift Virtualization is a part of the Red Hat OpenShift
Container Platform, and makes it possible to run virtual machines in containers.
For more information about OpenShift Virtualization see the Red Hat Hybrid Cloud  pages.

Red Hat OpenStack Platform (RHOSP)

Red Hat OpenStack Platform offers an integrated foundation to create, deploy, and scale a secure
and reliable public or private OpenStack cloud.
For more information about Red Hat OpenStack Platform, see the Red Hat Customer Portal  or the
Red Hat OpenStack Platform documentation suite .

NOTE

For details on virtualization features not supported in RHEL but supported in other Red
Hat virtualization solutions, see: Unsupported features in RHEL 8 virtualization

Red Hat Enterprise Linux 8 Configuring and managing virtualization

14

https://cloud.redhat.com/learn/topics/virtualization/
https://www.redhat.com/en/topics/openstack
https://www.redhat.com/en/technologies/linux-platforms/openstack-platform
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/


CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION
To start using virtualization in RHEL 8 , follow the steps below. The default method for this is using the
command-line interface (CLI), but for user convenience, some of the steps can be completed in the web
console GUI.

1. Enable the virtualization module and install the virtualization packages - see Enabling
virtualization.

2. Create a virtual machine (VM):

For CLI, see Creating virtual machines by using the command-line interface .

For GUI, see Creating virtual machines and installing guest operating systems by using the
web console.

3. Start the VM:

For CLI, see Starting a virtual machine by using the command-line interface .

For GUI, see Starting virtual machines by using the web console .

4. Connect to the VM:

For CLI, see Connecting to a virtual machine by using SSH  or Opening a virtual machine
graphical console by using Virt Viewer.

For GUI, see Interacting with virtual machines by using the web console .

NOTE

The web console currently provides only a subset of VM management functions, so using
the command line is recommended for advanced use of virtualization in RHEL 8.

2.1. ENABLING VIRTUALIZATION

To use virtualization in RHEL 8, you must enable the virtualization module, install virtualization packages,
and ensure your system is configured to host virtual machines (VMs).

Prerequisites

RHEL 8 is installed and registered on your host machine.

Your system meets the following hardware requirements to work as a virtualization host:

The following minimum system resources are available:

6 GB free disk space for the host, plus another 6 GB for each intended VM.

2 GB of RAM for the host, plus another 2 GB for each intended VM.

4 CPUs on the host. VMs can generally run with a single assigned vCPU, but Red Hat
recommends assigning 2 or more vCPUs per VM to avoid VMs becoming unresponsive
during high load.

The architecture of your host machine supports KVM virtualization.

Notably, RHEL 8 does not support virtualization on the 64-bit ARM architecture (ARM

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

15

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_8_installation/index


Notably, RHEL 8 does not support virtualization on the 64-bit ARM architecture (ARM
64).

The procedure below applies to the AMD64 and Intel 64 architecture (x86_64). To
enable virtualization on a host with a different supported architecture, see one of the
following sections:

Enabling virtualization on IBM POWER

Enabling virtualization on IBM Z

Procedure

1. Install the packages in the RHEL 8 virtualization module:

# yum module install virt

2. Install the virt-install and virt-viewer packages:

# yum install virt-install virt-viewer

3. Start the libvirtd service:

# systemctl start libvirtd

Verification

1. Verify that your system is prepared to be a virtualization host:

# virt-host-validate
[...]
QEMU: Checking for device assignment IOMMU support       : PASS
QEMU: Checking if IOMMU is enabled by kernel             : WARN (IOMMU appears to be 
disabled in kernel. Add intel_iommu=on to kernel cmdline arguments)
LXC: Checking for Linux >= 2.6.26                        : PASS
[...]
LXC: Checking for cgroup 'blkio' controller mount-point  : PASS
LXC: Checking if device /sys/fs/fuse/connections exists  : FAIL (Load the 'fuse' module to 
enable /proc/ overrides)

2. Review the return values of virt-host-validate checks and take appropriate actions:

a. If all virt-host-validate checks return the PASS value, your system is prepared for creating
VMs.

b. If any of the checks return a FAIL value, follow the displayed instructions to fix the problem.

c. If any of the checks return a WARN value, consider following the displayed instructions to
improve virtualization capabilities

Troubleshooting

If KVM virtualization is not supported by your host CPU, virt-host-validate generates the
following output:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

16



QEMU: Checking for hardware virtualization: FAIL (Only emulated CPUs are available, 
performance will be significantly limited)

However, VMs on such a host system will fail to boot, rather than have performance problems.

To work around this, you can change the <domain type> value in the XML configuration of the
VM to qemu. Note, however, that Red Hat does not support VMs that use the qemu domain
type, and setting this is highly discouraged in production environments.

2.2. CREATING VIRTUAL MACHINES

To create a virtual machine (VM) in RHEL 8, use the command-line interface or the RHEL 8 web
console.

2.2.1. Creating virtual machines by using the command-line interface

To create a virtual machine (VM) on your RHEL 8 host by using the virt-install utility, follow the
instructions below.

Prerequisites

Virtualization is enabled on your host system.

You have a sufficient amount of system resources to allocate to your VMs, such as disk space,
RAM, or CPUs. The recommended values may vary significantly depending on the intended
tasks and workload of the VMs.

An operating system (OS) installation source is available locally or on a network. This can be one
of the following:

An ISO image of an installation medium

A disk image of an existing VM installation

WARNING

Installing from a host CD-ROM or DVD-ROM device is not possible in
RHEL 8. If you select a CD-ROM or DVD-ROM as the installation
source when using any VM installation method available in RHEL 8, the
installation will fail. For more information, see the Red Hat
Knowledgebase.

Also note that Red Hat provides support only for a limited set of guest operating systems .

Optional: A Kickstart file can be provided for faster and easier configuration of the installation.

Procedure

To create a VM and start its OS installation, use the virt-install command, along with the following
mandatory arguments:



CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

17

https://access.redhat.com/solutions/1185913


--name: the name of the new machine

--memory: the amount of allocated memory

--vcpus: the number of allocated virtual CPUs

--disk: the type and size of the allocated storage

--cdrom or --location: the type and location of the OS installation source

Based on the chosen installation method, the necessary options and values can vary. See the commands
below for examples:

NOTE

The listed commands use the VNC remote display protocol instead of the default SPICE
protocol. VNC currently does not have some of the features that SPICE does, but is fully
supported on RHEL 9. As a result, VMs that use VNC will not stop working if you migrate
your host to RHEL 9. For more information, see Considerations in adopting RHEL 9 .

The following command creates a VM named demo-guest1 that installs the Windows 10 OS
from an ISO image locally stored in the /home/username/Downloads/Win10install.iso file.
This VM is also allocated with 2048 MiB of RAM and 2 vCPUs, and an 80 GiB qcow2 virtual disk
is automatically configured for the VM.

# virt-install \
    --graphics vnc \
    --name demo-guest1 --memory 2048 \
    --vcpus 2 --disk size=80 --os-variant win10 \
    --cdrom /home/username/Downloads/Win10install.iso

The following command creates a VM named demo-guest2 that uses the
/home/username/Downloads/rhel8.iso image to run a RHEL 8 OS from a live CD. No disk
space is assigned to this VM, so changes made during the session will not be preserved. In
addition, the VM is allocated with 4096 MiB of RAM and 4 vCPUs.

# virt-install \
    --graphics vnc \
    --name demo-guest2 --memory 4096 --vcpus 4 \
    --disk none --livecd --os-variant rhel8.0 \
    --cdrom /home/username/Downloads/rhel8.iso

The following command creates a RHEL 8 VM named demo-guest3 that connects to an
existing disk image, /home/username/backup/disk.qcow2. This is similar to physically moving
a hard drive between machines, so the OS and data available to demo-guest3 are determined
by how the image was handled previously. In addition, this VM is allocated with 2048 MiB of
RAM and 2 vCPUs.

# virt-install \
    --graphics vnc \
    --name demo-guest3 --memory 2048 --vcpus 2 \
    --os-variant rhel8.0 --import \
    --disk /home/username/backup/disk.qcow2

Note that the --os-variant option is highly recommended when importing a disk image. If it is not

Red Hat Enterprise Linux 8 Configuring and managing virtualization

18

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/considerations_in_adopting_rhel_9/assembly_virtualization_considerations-in-adopting-rhel-9#ref_changes-to-spice_assembly_virtualization


Note that the --os-variant option is highly recommended when importing a disk image. If it is not
provided, the performance of the created VM will be negatively affected.

The following command creates a VM named demo-guest4 that installs from the 
http://example.com/OS-install URL. For the installation to start successfully, the URL must
contain a working OS installation tree. In addition, the OS is automatically configured by using
the /home/username/ks.cfg kickstart file. This VM is also allocated with 2048 MiB of RAM, 2
vCPUs, and a 160 GiB qcow2 virtual disk.

# virt-install \
    --graphics vnc \
    --name demo-guest4 --memory 2048 --vcpus 2 --disk size=160 \
    --os-variant rhel8.0 --location http://example.com/OS-install \
    --initrd-inject /home/username/ks.cfg --extra-args="inst.ks=file:/ks.cfg console=tty0 
console=ttyS0,115200n8"

The following command creates a VM named demo-guest5 that installs from a RHEL8.iso
image file in text-only mode, without graphics. It connects the guest console to the serial
console. The VM has 16384 MiB of memory, 16 vCPUs, and 280 GiB disk. This kind of installation
is useful when connecting to a host over a slow network link.

# virt-install \
    --name demo-guest5 --memory 16384 --vcpus 16 --disk size=280 \
    --os-variant rhel8.0 --location RHEL8.iso \
    --graphics none --extra-args='console=ttyS0'

The following command creates a VM named demo-guest6, which has the same configuration
as demo-guest5, but resides on the 192.0.2.1 remote host.

# virt-install \
    --connect qemu+ssh://root@192.0.2.1/system --name demo-guest6 --memory 16384 \
    --vcpus 16 --disk size=280 --os-variant rhel8.0 --location RHEL8.iso \
    --graphics none --extra-args='console=ttyS0'

Verification

If the VM is created successfully, a virt-viewer window opens with a graphical console of the VM
and starts the guest OS installation.

Troubleshooting

If virt-install fails with a cannot find default network error:

Ensure that the libvirt-daemon-config-network package is installed:

# {PackageManagerCommand} info libvirt-daemon-config-network
Installed Packages
Name         : libvirt-daemon-config-network
[...]

Verify that the libvirt default network is active and configured to start automatically:

# virsh net-list --all
 Name      State    Autostart   Persistent

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

19



--------------------------------------------
 default   active   yes         yes

If it is not, activate the default network and set it to auto-start:

# virsh net-autostart default
Network default marked as autostarted

# virsh net-start default
Network default started

If activating the default network fails with the following error, the libvirt-daemon-
config-network package has not been installed correctly.

error: failed to get network 'default'
error: Network not found: no network with matching name 'default'

To fix this, re-install libvirt-daemon-config-network:

# {PackageManagerCommand} reinstall libvirt-daemon-config-network

If activating the default network fails with an error similar to the following, a conflict has
occurred between the default network’s subnet and an existing interface on the host.

error: Failed to start network default
error: internal error: Network is already in use by interface ens2

To fix this, use the virsh net-edit default command and change the 192.0.2.* values in
the configuration to a subnet not already in use on the host.

Additional resources

The virt-install (1) man page

Creating virtual machines and installing guest operating systems by using the web console

Cloning virtual machines

2.2.2. Creating virtual machines and installing guest operating systems by using the
web console

To manage virtual machines (VMs) in a GUI on a RHEL 8 host, use the web console. The following
sections provide information about how to use the RHEL 8 web console to create VMs and install guest
operating systems on them.

IMPORTANT

VMs created by using the web console currently use the SPICE remote desktop protocol
by default. However, SPICE is unsupported on RHEL 9, so if you upgrade your host to
RHEL 9, the VM will stop working. For more information, see Considerations in adopting
RHEL 9.

To create a VM that uses the VNC protocol, which will work correctly on RHEL 9, use the
command-line interface.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/considerations_in_adopting_rhel_9/assembly_virtualization_considerations-in-adopting-rhel-9#ref_changes-to-spice_assembly_virtualization


2.2.2.1. Creating virtual machines by using the web console

To create a virtual machine (VM) on a host machine to which your RHEL 8 web console is connected, use
the instructions below.

Prerequisites

Virtualization is enabled on your host system .

The web console VM plug-in is installed on your host system .

You have a sufficient amount of system resources to allocate to your VMs, such as disk space,
RAM, or CPUs. The recommended values might vary significantly depending on the intended
tasks and workload of the VMs.

Procedure

1. In the Virtual Machines interface of the web console, click Create VM.
The Create new virtual machine dialog appears.

2. Enter the basic configuration of the VM you want to create.

Name - The name of the VM.

Connection - The level of privileges granted to the session. For more details, expand the
associated dialog box in the web console.

Installation type - The installation can use a local installation medium, a URL, a PXE
network boot, a cloud base image, or download an operating system from a limited set of
operating systems.

Operating system - The guest operating system running on the VM. Note that Red Hat

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

21



Operating system - The guest operating system running on the VM. Note that Red Hat
provides support only for a limited set of guest operating systems .

NOTE

To download and install Red Hat Enterprise Linux directly from web console,
you must add an offline token in the Offline token field.

Storage - The type of storage.

Storage Limit - The amount of storage space.

Memory - The amount of memory.

3. Create the VM:

If you want the VM to automatically install the operating system, click Create and run.

If you want to edit the VM before the operating system is installed, click Create and edit.

Next steps

Installing guest operating systems by using the web console

Additional resources

Creating virtual machines by using the command-line interface

2.2.2.2. Creating virtual machines by importing disk images by using the web console

You can create a virtual machine (VM) by importing a disk image of an existing VM installation in the
RHEL 8 web console.

Prerequisites

The web console VM plug-in is installed on your system .

You have a sufficient amount of system resources to allocate to your VMs, such as disk space,
RAM, or CPUs. The recommended values can vary significantly depending on the intended tasks
and workload of the VMs.

You have downloaded a disk image of an existing VM installation.

Procedure

1. In the Virtual Machines interface of the web console, click Import VM.
The Import a virtual machine dialog appears.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

22



2. Enter the basic configuration of the VM you want to create:

Name - The name of the VM.

Disk image - The path to the existing disk image of a VM on the host system.

Operating system - The operating system running on a VM disk. Note that Red Hat
provides support only for a limited set of guest operating systems .

Memory - The amount of memory to allocate for use by the VM.

3. Import the VM:

To install the operating system on the VM without additional edits to the VM settings, click 
Import and run.

To edit the VM settings before the installation of the operating system, click Import and 
edit.

2.2.2.3. Installing guest operating systems by using the web console

When a virtual machine (VM) boots for the first time, you must install an operating system on the VM.

NOTE

If you click Create and run or Import and run while creating a new VM, the installation
routine for the operating system starts automatically when the VM is created.

Prerequisites

The web console VM plug-in is installed on your host system .

Procedure

1. In the Virtual Machines interface, click the VM on which you want to install a guest OS.
A new page opens with basic information about the selected VM and controls for managing
various aspects of the VM.

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

23



2. Optional: Change the firmware.

NOTE

You can change the firmware only if you selected Create and edit or Import and 
edit while creating a new VM and if the OS is not already installed on the VM.

a. Click the firmware.

b. In the Change Firmware window, select the required firmware.

c. Click Save.

3. Click Install.
The installation routine of the operating system runs in the VM console.

Troubleshooting

If the installation routine fails, delete and recreate the VM before starting the installation again.

2.2.3. Creating virtual machines with cloud image authentication by using the web
console

By default, distro cloud images have no login accounts. However, by using the RHEL web console, you
can now create a virtual machine (VM) and specify the root and user account login credentials, which are
then passed to cloud-init.

Prerequisites

The web console VM plug-in is installed on your system .

Red Hat Enterprise Linux 8 Configuring and managing virtualization

24



Virtualization is enabled on your host system.

You have a sufficient amount of system resources to allocate to your VMs, such as disk space,
RAM, or CPUs. The recommended values may vary significantly depending on the intended
tasks and workload of the VMs.

Procedure

1. In the Virtual Machines interface of the web console, click Create VM.
The Create new virtual machine dialog appears.

2. In the Name field, enter a name for the VM.

3. On the Details tab, in the Installation type field, select Cloud base image.

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

25



4. In the Installation source field, set the path to the image file on your host system.

5. Enter the configuration for the VM that you want to create.

Operating system - The VM’s operating system. Note that Red Hat provides support only
for a limited set of guest operating systems .

Storage - The type of storage with which to configure the VM.

Storage Limit - The amount of storage space with which to configure the VM.

Memory - The amount of memory with which to configure the VM.

6. Click on the Automation tab.
Set your cloud authentication credentials.

Root password - Enter a root password for your VM. Leave the field blank if you do not wish
to set a root password.

User login - Enter a cloud-init user login. Leave this field blank if you do not wish to create a
user account.

User password - Enter a password. Leave this field blank if you do not wish to create a user
account.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

26



7. Click Create and run.
The VM is created.

Additional resources

Installing an operating system on a VM

2.3. STARTING VIRTUAL MACHINES

To start a virtual machine (VM) in RHEL 8, you can use the command line interface or the web console
GUI.

Prerequisites

Before a VM can be started, it must be created and, ideally, also installed with an OS. For
instruction to do so, see Creating virtual machines.

2.3.1. Starting a virtual machine by using the command-line interface

You can use the command line interface (CLI) to start a shut-down virtual machine (VM) or restore a
saved VM. By using the CLI, you can start both local and remote VMs.

Prerequisites

An inactive VM that is already defined.

The name of the VM.

For remote VMs:

The IP address of the host where the VM is located.

Root access privileges to the host.

Procedure

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

27



Procedure

For a local VM, use the virsh start utility.
For example, the following command starts the demo-guest1 VM.

# virsh start demo-guest1
Domain 'demo-guest1' started

For a VM located on a remote host, use the virsh start utility along with the QEMU+SSH
connection to the host.
For example, the following command starts the demo-guest1 VM on the 192.0.2.1 host.

# virsh -c qemu+ssh://root@192.0.2.1/system start demo-guest1

root@192.0.2.1's password:

Domain 'demo-guest1' started

Additional resources

The virsh start --help command

Setting up easy access to remote virtualization hosts

Starting virtual machines automatically when the host starts

2.3.2. Starting virtual machines by using the web console

If a virtual machine (VM) is in the shut off state, you can start it by using the RHEL 8 web console. You
can also configure the VM to be started automatically when the host starts.

Prerequisites

The web console VM plug-in is installed on your system .

An inactive VM that is already defined.

The name of the VM.

Procedure

1. In the Virtual Machines interface, click the VM you want to start.
A new page opens with detailed information about the selected VM and controls for shutting
down and deleting the VM.

2. Click Run.
The VM starts, and you can connect to its console or graphical output .

3. Optional: To configure the VM to start automatically when the host starts, toggle the Autostart
checkbox in the Overview section.
If you use network interfaces that are not managed by libvirt, you must also make additional
changes to the systemd configuration. Otherwise, the affected VMs might fail to start, see
starting virtual machines automatically when the host starts .

Additional resources

Red Hat Enterprise Linux 8 Configuring and managing virtualization

28

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8_configuring-and-managing-virtualization#assembly_connecting-to-virtual-machines_virt-getting-started


Additional resources

Shutting down virtual machines in the web console

Restarting virtual machines by using the web console

2.3.3. Starting virtual machines automatically when the host starts

When a host with a running virtual machine (VM) restarts, the VM is shut down, and must be started
again manually by default. To ensure a VM is active whenever its host is running, you can configure the
VM to be started automatically.

Prerequisites

A created virtual machine

Procedure

1. Use the virsh autostart utility to configure the VM to start automatically when the host starts.
For example, the following command configures the demo-guest1 VM to start automatically.

# virsh autostart demo-guest1
Domain 'demo-guest1' marked as autostarted

2. If you use network interfaces that are not managed by libvirt, you must also make additional
changes to the systemd configuration. Otherwise, the affected VMs might fail to start.

NOTE

These interfaces include for example:

Bridge devices created by NetworkManager

Networks configured to use <forward mode='bridge'/>

a. In the systemd configuration directory tree, create a libvirtd.service.d directory if it does
not exist yet.

# mkdir -p /etc/systemd/system/libvirtd.service.d/

b. Create a 10-network-online.conf systemd unit override file in the previously created
directory. The content of this file overrides the default systemd configuration for the
libvirtd service.

# touch /etc/systemd/system/libvirtd.service.d/10-network-online.conf

c. Add the following lines to the 10-network-online.conf file. This configuration change
ensures systemd starts the libvirtd service only after the network on the host is ready.

[Unit]
After=network-online.target

Verification

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

29



1. View the VM configuration, and check that the autostart option is enabled.
For example, the following command displays basic information about the demo-guest1 VM,
including the autostart option.

# virsh dominfo demo-guest1
Id:             2
Name:           demo-guest1
UUID:           e46bc81c-74e2-406e-bd7a-67042bae80d1
OS Type:        hvm
State:          running
CPU(s):         2
CPU time:       385.9s
Max memory:     4194304 KiB
Used memory:    4194304 KiB
Persistent:     yes
Autostart:      enable
Managed save:   no
Security model: selinux
Security DOI:   0
Security label: system_u:system_r:svirt_t:s0:c873,c919 (enforcing)

2. If you use network interfaces that are not managed by libvirt, check if the content of the 10-
network-online.conf file matches the following output.

$ cat /etc/systemd/system/libvirtd.service.d/10-network-online.conf
[Unit]
After=network-online.target

Additional resources

The virsh autostart --help command

Starting virtual machines by using the web console .

2.4. CONNECTING TO VIRTUAL MACHINES

To interact with a virtual machine (VM) in RHEL 8, you need to connect to it by doing one of the
following:

When using the web console interface, use the Virtual Machines pane in the web console
interface. For more information, see Interacting with virtual machines by using the web console .

If you need to interact with a VM graphical display without using the web console, use the Virt
Viewer application. For details, see Opening a virtual machine graphical console by using Virt
Viewer.

When a graphical display is not possible or not necessary, use an SSH terminal connection .

When the virtual machine is not reachable from your system by using a network, use the virsh
console.

If the VMs to which you are connecting are on a remote host rather than a local one, you can optionally
configure your system for more convenient access to remote hosts .

Red Hat Enterprise Linux 8 Configuring and managing virtualization

30



Prerequisites

The VMs you want to interact with are installed and started.

2.4.1. Interacting with virtual machines by using the web console

To interact with a virtual machine (VM) in the RHEL 8 web console, you need to connect to the VM’s
console. These include both graphical and serial consoles.

To interact with the VM’s graphical interface in the web console, use the graphical console.

To interact with the VM’s graphical interface in a remote viewer, use the graphical console in
remote viewers.

To interact with the VM’s CLI in the web console, use the serial console.

2.4.1.1. Viewing the virtual machine graphical console in the web console

By using the virtual machine (VM) console interface, you can view the graphical output of a selected VM
in the RHEL 8 web console.

Prerequisites

The web console VM plug-in is installed on your system .

Ensure that both the host and the VM support a graphical interface.

Procedure

1. In the Virtual Machines interface, click the VM whose graphical console you want to view.
A new page opens with an Overview and a Console section for the VM.

2. Select VNC console in the console drop down menu.
The VNC console appears below the menu in the web interface.

The graphical console appears in the web interface.

3. Click Expand
You can now interact with the VM console by using the mouse and keyboard in the same
manner you interact with a real machine. The display in the VM console reflects the activities
being performed on the VM.

NOTE

The host on which the web console is running may intercept specific key combinations,
such as Ctrl+Alt+Del, preventing them from being sent to the VM.

To send such key combinations, click the Send key menu and select the key sequence to
send.

For example, to send the Ctrl+Alt+Del combination to the VM, click the Send key and
select the Ctrl+Alt+Del menu entry.

Troubleshooting

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

31



If clicking in the graphical console does not have any effect, expand the console to full screen.
This is a known issue with the mouse cursor offset.

Additional resources

Viewing the graphical console in a remote viewer by using the web console

Viewing the virtual machine serial console in the web console

2.4.1.2. Viewing the graphical console in a remote viewer by using the web console

By using the web console interface, you can display the graphical console of a selected virtual machine
(VM) in a remote viewer, such as Virt Viewer.

NOTE

You can launch Virt Viewer from within the web console. Other VNC and SPICE remote
viewers can be launched manually.

Prerequisites

The web console VM plug-in is installed on your system .

Ensure that both the host and the VM support a graphical interface.

Before you can view the graphical console in Virt Viewer, you must install Virt Viewer on the
machine to which the web console is connected.

1. Click Launch remote viewer.
The virt viewer, .vv, file downloads.

2. Open the file to launch Virt Viewer.

NOTE

Remote Viewer is available on most operating systems. However, some browser
extensions and plug-ins do not allow the web console to open Virt Viewer.

Procedure

1. In the Virtual Machines interface, click the VM whose graphical console you want to view.
A new page opens with an Overview and a Console section for the VM.

2. Select Desktop Viewer in the console drop down menu.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

32



3. Click Launch Remote Viewer.
The graphical console opens in Virt Viewer.

You can interact with the VM console by using the mouse and keyboard in the same manner in
which you interact with a real machine. The display in the VM console reflects the activities
being performed on the VM.

NOTE

The server on which the web console is running can intercept specific key combinations,
such as Ctrl+Alt+Del, preventing them from being sent to the VM.

To send such key combinations, click the Send key menu and select the key sequence to
send.

For example, to send the Ctrl+Alt+Del combination to the VM, click the Send key menu
and select the Ctrl+Alt+Del menu entry.

Troubleshooting

If clicking in the graphical console does not have any effect, expand the console to full screen.
This is a known issue with the mouse cursor offset.

If launching the Remote Viewer in the web console does not work or is not optimal, you can
manually connect with any viewer application by using the following protocols:

Address - The default address is 127.0.0.1. You can modify the vnc_listen or the 
spice_listen parameter in /etc/libvirt/qemu.conf to change it to the host’s IP address.

SPICE port - 5900

VNC port - 5901

Additional resources

Viewing the virtual machine graphical console in the web console

Viewing the virtual machine serial console in the web console

2.4.1.3. Viewing the virtual machine serial console in the web console

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

33



You can view the serial console of a selected virtual machine (VM) in the RHEL 8 web console. This is
useful when the host machine or the VM is not configured with a graphical interface.

For more information about the serial console, see Opening a virtual machine serial console .

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines pane, click the VM whose serial console you want to view.
A new page opens with an Overview and a Console section for the VM.

2. Select Serial console in the console drop down menu.
The graphical console appears in the web interface.

You can disconnect and reconnect the serial console from the VM.

To disconnect the serial console from the VM, click Disconnect.

To reconnect the serial console to the VM, click Reconnect.

Additional resources

Viewing the virtual machine graphical console in the web console

Viewing the graphical console in a remote viewer by using the web console

2.4.1.4. Replacing the SPICE remote display protocol with VNC in the web console

The SPICE remote display protocol is deprecated in RHEL 8 and will be removed in RHEL 9. If you have
a virtual machine (VM) that is configured to use the SPICE protocol, you can replace the SPICE protocol
with the VNC protocol by using the web console. However, certain SPICE devices, such as audio and
USB passthrough, will be removed from the VM because they do not have a suitable replacement in the
VNC protocol.

IMPORTANT

Red Hat Enterprise Linux 8 Configuring and managing virtualization

34



IMPORTANT

By default, RHEL 8 VMs are configured to use the SPICE protocol. These VMs fail to
migrate to RHEL 9, unless you switch from SPICE to VNC.

Prerequisites

The web console VM plug-in is installed on your system .

You have an existing VM that is configured to use the SPICE remote display protocol and is
already shut-down.

Procedure

1. In the Virtual Machines interface of the web console, click the Menu button ⋮ of the VM that is
configured to use the SPICE protocol.
A drop down menu opens with controls for various VM operations.

2. Click Replace SPICE devices.
The Replace SPICE devices dialog opens.

NOTE

If you have multiple existing VMs that use the SPICE protocol, they are listed in
this dialog. Here, you can select multiple VMs to be converted from using SPICE
to VNC in a single step.

3. Click Replace.
A confirmation of the successfull operation appears.

2.4.2. Opening a virtual machine graphical console by using Virt Viewer

To connect to a graphical console of a KVM virtual machine (VM) and open it in the Virt Viewer desktop
application, follow the procedure below.

Prerequisites

Your system, as well as the VM you are connecting to, must support graphical displays.

If the target VM is located on a remote host, connection and root access privileges to the host
are needed.

Optional: If the target VM is located on a remote host, set up your libvirt and SSH for more
convenient access to remote hosts.

Procedure

To connect to a local VM, use the following command and replace guest-name with the name of
the VM you want to connect to:

# virt-viewer guest-name

To connect to a remote VM, use the virt-viewer command with the SSH protocol. For example,

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

35



To connect to a remote VM, use the virt-viewer command with the SSH protocol. For example,
the following command connects as root to a VM called guest-name, located on remote system
192.0.2.1. The connection also requires root authentication for 192.0.2.1.

# virt-viewer --direct --connect qemu+ssh://root@192.0.2.1/system guest-name
root@192.0.2.1's password:

Verification

If the connection works correctly, the VM display is shown in the Virt Viewer window.

You can interact with the VM console by using the mouse and keyboard in the same manner you interact
with a real machine. The display in the VM console reflects the activities being performed on the VM.

Troubleshooting

If clicking in the graphical console does not have any effect, expand the console to full screen.
This is a known issue with the mouse cursor offset.

Additional resources

The virt-viewer man page

Setting up easy access to remote virtualization hosts

Interacting with virtual machines by using the web console

2.4.3. Connecting to a virtual machine by using SSH

To interact with the terminal of a virtual machine (VM) by using the SSH connection protocol, follow the
procedure below.

Prerequisites

You have network connection and root access privileges to the target VM.

If the target VM is located on a remote host, you also have connection and root access
privileges to that host.

Your VM network assigns IP addresses by dnsmasq generated by libvirt. This is the case for
example in libvirt NAT networks.
Notably, if your VM is using one of the following network configurations, you cannot connect to
the VM by using SSH:

hostdev interfaces

Direct interfaces

Bridge interaces

The libvirt-nss component is installed and enabled on the VM’s host. If it is not, do the
following:

a. Install the libvirt-nss package:

# yum install libvirt-nss

Red Hat Enterprise Linux 8 Configuring and managing virtualization

36



b. Edit the /etc/nsswitch.conf file and add libvirt_guest to the hosts line:

...
passwd:      compat
shadow:      compat
group:       compat
hosts:       files libvirt_guest dns
...

Procedure

1. When connecting to a remote VM, SSH into its physical host first. The following example
demonstrates connecting to a host machine 192.0.2.1 by using its root credentials:

# ssh root@192.0.2.1
root@192.0.2.1's password:
Last login: Mon Sep 24 12:05:36 2021
root~#

2. Use the VM’s name and user access credentials to connect to it. For example, the following
connects to to the testguest1 VM by using its root credentials:

# ssh root@testguest1
root@testguest1's password:
Last login: Wed Sep 12 12:05:36 2018
root~]#

Troubleshooting

If you do not know the VM’s name, you can list all VMs available on the host by using the virsh 
list --all command:

# virsh list --all
Id    Name                           State
----------------------------------------------------
2     testguest1                    running
-     testguest2                    shut off

Additional resources

Upstream libvirt documentation

2.4.4. Opening a virtual machine serial console

By using the virsh console command, it is possible to connect to the serial console of a virtual machine
(VM).

This is useful when the VM:

Does not provide VNC or SPICE protocols, and thus does not offer video display for GUI tools.

Does not have a network connection, and thus cannot be interacted with using SSH.

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

37

https://libvirt.org/nss.html


Prerequisites

The GRUB boot loader on your host must be configured to use serial console. To verify, check
that the /etc/default/grub file on your host contains the GRUB_TERMINAL=serial parameter.

$ sudo grep GRUB_TERMINAL /etc/default/grub
GRUB_TERMINAL=serial

The VM must have a serial console device configured, such as console type='pty'. To verify, do
the following:

# virsh dumpxml vm-name | grep console

<console type='pty' tty='/dev/pts/2'>
</console>

The VM must have the serial console configured in its kernel command line. To verify this, the 
cat /proc/cmdline command output on the VM should include console=<console-name>, where
<console-name> is architecture-specific:

For AMD64 and Intel 64: ttyS0

NOTE

The following commands in this procedure use ttyS0.

# cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-3.10.0-948.el7.x86_64 root=/dev/mapper/rhel-root ro 
console=tty0 console=ttyS0,9600n8 rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb

If the serial console is not set up properly on a VM, using virsh console to connect to the
VM connects you to an unresponsive guest console. However, you can still exit the
unresponsive console by using the Ctrl+] shortcut.

To set up serial console on the VM, do the following:

i. On the VM, enable the console=ttyS0 kernel option:

# grubby --update-kernel=ALL --args="console=ttyS0"

ii. Clear the kernel options that might prevent your changes from taking effect.

# grub2-editenv - unset kernelopts

iii. Reboot the VM.

The serial-getty@<console-name> service must be enabled. For example, on AMD64 and Intel
64:

# systemctl status serial-getty@ttyS0.service

○ serial-getty@ttyS0.service - Serial Getty on ttyS0
     Loaded: loaded (/usr/lib/systemd/system/serial-getty@.service; enabled; preset: enabled)

Red Hat Enterprise Linux 8 Configuring and managing virtualization

38



Procedure

1. On your host system, use the virsh console command. The following example connects to the
guest1 VM, if the libvirt driver supports safe console handling:

# virsh console guest1 --safe
Connected to domain 'guest1'
Escape character is ^]

Subscription-name
Kernel 3.10.0-948.el7.x86_64 on an x86_64

localhost login:

2. You can interact with the virsh console in the same way as with a standard command-line
interface.

Additional resources

The virsh man page

2.4.5. Setting up easy access to remote virtualization hosts

When managing VMs on a remote host system by using libvirt utilities, it is recommended to use the -c 
qemu+ssh://root@hostname/system syntax. For example, to use the virsh list command as root on
the 192.0.2.1 host:

# virsh -c qemu+ssh://root@192.0.2.1/system list
root@192.0.2.1's password:

Id   Name              State
---------------------------------
1    remote-guest      running

However, you can remove the need to specify the connection details in full by modifying your SSH and
libvirt configuration. For example:

# virsh -c remote-host list
root@192.0.2.1's password:

Id   Name              State
---------------------------------
1    remote-guest      running

To enable this improvement, follow the instructions below.

Procedure

1. Edit the ~/.ssh/config file with the following details, where host-alias is a shortened name
associated with a specific remote host and an alias for root@192.0.2.1, and hosturl is the URL
address of the host :

# vi ~/.ssh/config
Host example-host-alias

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

39



  User                    root
  Hostname                192.0.2.1

2. Edit the /etc/libvirt/libvirt.conf file with the following details, the example-qemu-host-alias is a
host alias that QEMU and libvirt utilities will associate for qemu+ssh://192.0.2.1/system with
the intended host example-host-alias :

# vi /etc/libvirt/libvirt.conf
uri_aliases = [
  "example-qemu-host-alias=qemu+ssh://example-host-alias/system",
]

Verification

1. Confirm that you can manage remote VMs by using libvirt-based utilities on the local system
with an added -c qemu-host-alias parameter. This automatically performs the commands over
SSH on the remote host.
For example, verify that the following lists VMs on the 192.0.2.1 remote host, the connection to
which was set up as example-qemu-host-alias in the previous steps:

# virsh -c example-qemu-host-alias list

root@192.0.2.1's password:

Id   Name                       State
----------------------------------------
1    example-remote-guest      running

NOTE

In addition to virsh, the -c (or --connect) option and the remote host access
configuration described above can be used by the following utilities:

virt-install

virt-viewer

Next steps

If you want to use libvirt utilities exclusively on a single remote host, you can also set a specific
connection as the default target for libvirt-based utilities. However, this is not recommended if you also
want to manage VMs on your local host or on different remote hosts.

You can edit the /etc/libvirt/libvirt.conf file and set the value of the uri_default parameter to
example-qemu-host-alias as a default libvirt target.

# These can be used in cases when no URI is supplied by the application
# (@uri_default also prevents probing of the hypervisor driver).
#
uri_default = "example-qemu-host-alias"

As a result, all libvirt-based commands will automatically be performed on the specified remote
host.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

40



$ virsh list
root@192.0.2.1's password:

Id   Name              State
---------------------------------
1   example-remote-guest      running

When connecting to a remote host, you can avoid providing the root password to the remote
system. To do so, use one or more of the following methods:

Set up key-based SSH access to the remote host

Use SSH connection multiplexing to connect to the remote system

Kerberos authentication in Identity Management

The -c (or --connect) option can be used to run the virt-install, virt-viewer, virsh and virt-
manager commands on a remote host.

2.5. SHUTTING DOWN VIRTUAL MACHINES

To shut down a running virtual machine hosted on RHEL 8, use the command line interface or the web
console GUI.

2.5.1. Shutting down a virtual machine by using the command-line interface

To shut down a responsive virtual machine (VM), do one of the following:

Use a shutdown command appropriate to the guest OS while connected to the guest .

Use the virsh shutdown command on the host:

If the VM is on a local host:

# virsh shutdown demo-guest1
Domain 'demo-guest1' is being shutdown

If the VM is on a remote host, in this example 192.0.2.1:

# virsh -c qemu+ssh://root@192.0.2.1/system shutdown demo-guest1

root@192.0.2.1's password:
Domain 'demo-guest1' is being shutdown

To force a VM to shut down, for example if it has become unresponsive, use the virsh destroy command
on the host:

# virsh destroy demo-guest1
Domain 'demo-guest1' destroyed

NOTE

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

41

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/assembly_using-secure-communications-between-two-systems-with-openssh_configuring-basic-system-settings
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/logging-in-to-ipa-in-the-web-ui-using-a-kerberos-ticket_configuring-and-managing-idm#kerberos-authentication-in-identity-management_login-web-ui-krb


NOTE

The virsh destroy command does not actually delete or remove the VM configuration or
disk images. It only terminates the running VM instance of the VM, similarly to pulling the
power cord from a physical machine. As such, in rare cases, virsh destroy may cause
corruption of the VM’s file system, so using this command is only recommended if all
other shutdown methods have failed.

2.5.2. Shutting down and restarting virtual machines by using the web console

Using the RHEL 8 web console, you can shut down or restart running virtual machines. You can also send
a non-maskable interrupt to an unresponsive virtual machine.

2.5.2.1. Shutting down virtual machines in the web console

If a virtual machine (VM) is in the running state, you can shut it down by using the RHEL 8 web console.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, find the row of the VM you want to shut down.

2. On the right side of the row, click Shut Down.
The VM shuts down.

Troubleshooting

If the VM does not shut down, click the Menu button ⋮ next to the Shut Down button and
select Force Shut Down.

To shut down an unresponsive VM, you can also send a non-maskable interrupt .

Additional resources

Starting virtual machines by using the web console

Restarting virtual machines by using the web console

2.5.2.2. Restarting virtual machines by using the web console

If a virtual machine (VM) is in the running state, you can restart it by using the RHEL 8 web console.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, find the row of the VM you want to restart.

2. On the right side of the row, click the Menu button ⋮.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

42



A drop-down menu of actions appears.

3. In the drop-down menu, click Reboot.
The VM shuts down and restarts.

Troubleshooting

If the VM does not restart, click the Menu button ⋮ next to the Reboot button and select 
Force Reboot.

To shut down an unresponsive VM, you can also send a non-maskable interrupt .

Additional resources

Starting virtual machines by using the web console

Shutting down virtual machines in the web console

2.5.2.3. Sending non-maskable interrupts to VMs by using the web console

Sending a non-maskable interrupt (NMI) may cause an unresponsive running virtual machine (VM) to
respond or shut down. For example, you can send the Ctrl+Alt+Del NMI to a VM that is not responding
to standard input.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, find the row of the VM to which you want to send an NMI.

2. On the right side of the row, click the Menu button ⋮.
A drop-down menu of actions appears.

3. In the drop-down menu, click Send non-maskable interrupt.
An NMI is sent to the VM.

Additional resources

Starting virtual machines by using the web console

Restarting virtual machines by using the web console

Shutting down virtual machines in the web console

2.6. DELETING VIRTUAL MACHINES

To delete virtual machines in RHEL 8, use the command line interface or the web console GUI.

2.6.1. Deleting virtual machines by using the command line interface

To delete a virtual machine (VM), you can remove its XML configuration and associated storage files
from the host by using the command line. Follow the procedure below:

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

43



Prerequisites

Back up important data from the VM.

Shut down the VM.

Make sure no other VMs use the same associated storage.

Procedure

Use the virsh undefine utility.
For example, the following command removes the guest1 VM, its associated storage volumes,
and non-volatile RAM, if any.

# virsh undefine guest1 --remove-all-storage --nvram
Domain 'guest1' has been undefined
Volume 'vda'(/home/images/guest1.qcow2) removed.

Additional resources

The virsh undefine --help command

The virsh man page

2.6.2. Deleting virtual machines by using the web console

To delete a virtual machine (VM) and its associated storage files from the host to which the RHEL 8 web
console is connected with, follow the procedure below:

Prerequisites

The web console VM plug-in is installed on your system .

Back up important data from the VM.

Make sure no other VM uses the same associated storage.

Optional: Shut down the VM.

Procedure

1. In the Virtual Machines interface, click the Menu button ⋮ of the VM that you want to delete.
A drop down menu appears with controls for various VM operations.

2. Click Delete.
A confirmation dialog appears.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

44



3. Optional: To delete all or some of the storage files associated with the VM, select the
checkboxes next to the storage files you want to delete.

4. Click Delete.
The VM and any selected storage files are deleted.

Additional resources

Getting started with virtualization on IBM POWER

Getting started with virtualization on IBM Z

CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION

45



CHAPTER 3. GETTING STARTED WITH VIRTUALIZATION ON
IBM POWER

You can use KVM virtualization when using RHEL 8 on IBM POWER8 or POWER9 hardware. However,
enabling the KVM hypervisor on your system requires extra steps compared to virtualization on AMD64
and Intel64 architectures. Certain RHEL 8 virtualization features also have different or restricted
functionality on IBM POWER.

Apart from the information in the following sections, using virtualization on IBM POWER works the same
as on AMD64 and Intel 64. Therefore, you can see other RHEL 8 virtualization documentation for more
information when using virtualization on IBM POWER.

3.1. ENABLING VIRTUALIZATION ON IBM POWER

To set up a KVM hypervisor and create virtual machines (VMs) on an IBM POWER8 or IBM POWER9
system running RHEL 8, follow the instructions below.

Prerequisites

RHEL 8 is installed and registered on your host machine.

The following minimum system resources are available:

6 GB free disk space for the host, plus another 6 GB for each intended VM.

2 GB of RAM for the host, plus another 2 GB for each intended VM.

4 CPUs on the host. VMs can generally run with a single assigned vCPU, but Red Hat
recommends assigning 2 or more vCPUs per VM to avoid VMs becoming unresponsive
during high load.

Your CPU machine type must support IBM POWER virtualization.
To verify this, query the platform information in your /proc/cpuinfo file.

# grep ^platform /proc/cpuinfo/
platform        : PowerNV

If the output of this command includes the PowerNV entry, you are running a PowerNV machine
type and can use virtualization on IBM POWER.

Procedure

1. Load the KVM-HV kernel module

# modprobe kvm_hv

2. Verify that the KVM kernel module is loaded

# lsmod | grep kvm

If KVM loaded successfully, the output of this command includes kvm_hv.

3. Install the packages in the virtualization module:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

46



# yum module install virt

4. Install the virt-install package:

# yum install virt-install

5. Start the libvirtd service.

# systemctl start libvirtd

Verification

1. Verify that your system is prepared to be a virtualization host:

# virt-host-validate
[...]
QEMU: Checking if device /dev/vhost-net exists                : PASS
QEMU: Checking if device /dev/net/tun exists                  : PASS
QEMU: Checking for cgroup 'memory' controller support         : PASS
QEMU: Checking for cgroup 'memory' controller mount-point     : PASS
[...]
QEMU: Checking for cgroup 'blkio' controller support          : PASS
QEMU: Checking for cgroup 'blkio' controller mount-point      : PASS
QEMU: Checking if IOMMU is enabled by kernel                  : PASS

2. If all virt-host-validate checks return a PASS value, your system is prepared for creating VMs.
If any of the checks return a FAIL value, follow the displayed instructions to fix the problem.

If any of the checks return a WARN value, consider following the displayed instructions to
improve virtualization capabilities.

Troubleshooting

If KVM virtualization is not supported by your host CPU, virt-host-validate generates the
following output:

QEMU: Checking for hardware virtualization: FAIL (Only emulated CPUs are available, 
performance will be significantly limited)

However, VMs on such a host system will fail to boot, rather than have performance problems.

To work around this, you can change the <domain type> value in the XML configuration of the
VM to qemu. Note, however, that Red Hat does not support VMs that use the qemu domain
type, and setting this is highly discouraged in production environments.

3.2. HOW VIRTUALIZATION ON IBM POWER DIFFERS FROM AMD64
AND INTEL 64

KVM virtualization in RHEL 8 on IBM POWER systems is different from KVM on AMD64 and Intel 64
systems in a number of aspects, notably:

Memory requirements

VMs on IBM POWER consume more memory. Therefore, the recommended minimum memory

CHAPTER 3. GETTING STARTED WITH VIRTUALIZATION ON IBM POWER

47



VMs on IBM POWER consume more memory. Therefore, the recommended minimum memory
allocation for a virtual machine (VM) on an IBM POWER host is 2GB RAM.

Display protocols

The SPICE protocol is not supported on IBM POWER systems. To display the graphical output of a
VM, use the VNC protocol. In addition, only the following virtual graphics card devices are supported:

vga - only supported in -vga std mode and not in -vga cirrus mode.

virtio-vga

virtio-gpu

SMBIOS

SMBIOS configuration is not available.

Memory allocation errors

POWER8 VMs, including compatibility mode VMs, may fail with an error similar to:

qemu-kvm: Failed to allocate KVM HPT of order 33 (try smaller maxmem?): Cannot allocate 
memory

This is significantly more likely to occur on VMs that use RHEL 7.3 and prior as the guest OS.

To fix the problem, increase the CMA memory pool available for the guest’s hashed page table (HPT)
by adding kvm_cma_resv_ratio=memory to the host’s kernel command line, where memory is the
percentage of the host memory that should be reserved for the CMA pool (defaults to 5).

Huge pages

Transparent huge pages (THPs) do not provide any notable performance benefits on IBM POWER8
VMs. However, IBM POWER9 VMs can benefit from THPs as expected.
In addition, the size of static huge pages on IBM POWER8 systems are 16 MiB and 16 GiB, as
opposed to 2 MiB and 1 GiB on AMD64, Intel 64, and IBM POWER9. As a consequence, to migrate a
VM configured with static huge pages from an IBM POWER8 host to an IBM POWER9 host, you must
first set up 1GiB huge pages on the VM.

kvm-clock

The kvm-clock service does not have to be configured for time management in VMs on IBM
POWER9.

pvpanic

IBM POWER9 systems do not support the pvpanic device. However, an equivalent functionality is
available and activated by default on this architecture. To enable it in a VM, use the <on_crash>
XML configuration element with the preserve value.
In addition, make sure to remove the <panic> element from the <devices> section, as its presence
can lead to the VM failing to boot on IBM POWER systems.

Single-threaded host

On IBM POWER8 systems, the host machine must run in single-threaded mode to support VMs.
This is automatically configured if the qemu-kvm packages are installed. However, VMs running on
single-threaded hosts can still use multiple threads.

Peripheral devices

A number of peripheral devices supported on AMD64 and Intel 64 systems are not supported on IBM
POWER systems, or a different device is supported as a replacement.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

48



Devices used for PCI-E hierarchy, including ioh3420 and xio3130-downstream, are not
supported. This functionality is replaced by multiple independent PCI root bridges provided
by the spapr-pci-host-bridge device.

UHCI and EHCI PCI controllers are not supported. Use OHCI and XHCI controllers instead.

IDE devices, including the virtual IDE CD-ROM (ide-cd) and the virtual IDE disk ( ide-hd), are
not supported. Use the virtio-scsi and virtio-blk devices instead.

Emulated PCI NICs (rtl8139) are not supported. Use the virtio-net device instead.

Sound devices, including intel-hda, hda-output, and AC97, are not supported.

USB redirection devices, including usb-redir and usb-tablet, are not supported.

v2v and p2v

The virt-v2v and virt-p2v utilities are only supported on the AMD64 and Intel 64 architecture, and
are not provided on IBM POWER.

Additional sources

For a comparison of selected supported and unsupported virtualization features across system
architectures supported by Red Hat, see An overview of virtualization features support in
RHEL 8.

CHAPTER 3. GETTING STARTED WITH VIRTUALIZATION ON IBM POWER

49



CHAPTER 4. GETTING STARTED WITH VIRTUALIZATION ON
IBM Z

You can use KVM virtualization when using RHEL 8 on IBM Z hardware. However, enabling the KVM
hypervisor on your system requires extra steps compared to virtualization on AMD64 and Intel 64
architectures. Certain RHEL 8 virtualization features also have different or restricted functionality on
IBM Z.

Apart from the information in the following sections, using virtualization on IBM Z works the same as on
AMD64 and Intel 64. Therefore, you can see other RHEL 8 virtualization documentation for more
information when using virtualization on IBM Z.

NOTE

Running KVM on the z/VM OS is not supported.

4.1. ENABLING VIRTUALIZATION ON IBM Z

To set up a KVM hypervisor and create virtual machines (VMs) on an IBM Z system running RHEL 8,
follow the instructions below.

Prerequisites

RHEL 8.6 or later is installed and registered on your host machine.

IMPORTANT

If you already enabled virtualization on an IBM Z machine by using RHEL 8.5 or
earlier, you should instead reconfigure your virtualization module and update your
system. For instructions, see How virtualization on IBM Z differs from AMD64 and
Intel 64.

The following minimum system resources are available:

6 GB free disk space for the host, plus another 6 GB for each intended VM.

2 GB of RAM for the host, plus another 2 GB for each intended VM.

4 CPUs on the host. VMs can generally run with a single assigned vCPU, but Red Hat
recommends assigning 2 or more vCPUs per VM to avoid VMs becoming unresponsive
during high load.

Your IBM Z host system is using a z13 CPU or later.

RHEL 8 is installed on a logical partition (LPAR). In addition, the LPAR supports the start-
interpretive execution (SIE) virtualization functions.
To verify this, search for sie in your /proc/cpuinfo file.

# grep sie /proc/cpuinfo
features        : esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te sie

Procedure

Red Hat Enterprise Linux 8 Configuring and managing virtualization

50



1. Load the KVM kernel module:

# modprobe kvm

2. Verify that the KVM kernel module is loaded:

# lsmod | grep kvm

If KVM loaded successfully, the output of this command includes kvm.

3. Install the packages in the virt:rhel/common module:

# yum module install virt:rhel/common

4. Start the virtualization services:

# for drv in qemu network nodedev nwfilter secret storage interface; do systemctl start 
virt${drv}d{,-ro,-admin}.socket; done

Verification

1. Verify that your system is prepared to be a virtualization host.

# virt-host-validate
[...]
QEMU: Checking if device /dev/kvm is accessible             : PASS
QEMU: Checking if device /dev/vhost-net exists              : PASS
QEMU: Checking if device /dev/net/tun exists                : PASS
QEMU: Checking for cgroup 'memory' controller support       : PASS
QEMU: Checking for cgroup 'memory' controller mount-point   : PASS
[...]

2. If all virt-host-validate checks return a PASS value, your system is prepared for creating VMs.
If any of the checks return a FAIL value, follow the displayed instructions to fix the problem.

If any of the checks return a WARN value, consider following the displayed instructions to
improve virtualization capabilities.

Troubleshooting

If KVM virtualization is not supported by your host CPU, virt-host-validate generates the
following output:

QEMU: Checking for hardware virtualization: FAIL (Only emulated CPUs are available, 
performance will be significantly limited)

However, VMs on such a host system will fail to boot, rather than have performance problems.

To work around this, you can change the <domain type> value in the XML configuration of the
VM to qemu. Note, however, that Red Hat does not support VMs that use the qemu domain
type, and setting this is highly discouraged in production environments.

4.2. UPDATING VIRTUALIZATION ON IBM Z FROM RHEL 8.5 TO

CHAPTER 4. GETTING STARTED WITH VIRTUALIZATION ON IBM Z

51



4.2. UPDATING VIRTUALIZATION ON IBM Z FROM RHEL 8.5 TO
RHEL 8.6 OR LATER

If you installed RHEL 8 on IBM Z hardware prior to RHEL 8.6, you had to obtain virtualization RPMs from
the AV stream, separate from the base RPM stream of RHEL 8. Starting with RHEL 8.6, virtualization
RPMs previously available only from the AV stream are available on the base RHEL stream. In addition,
the AV stream will be discontinued in a future minor release of RHEL 8. Therefore, using the AV stream
is no longer recommended.

By following the instructions below, you will deactivate your AV stream and enable your access to
virtualization RPMs available in RHEL 8.6 and later versions.

Prerequisites

You are using a RHEL 8.5 on IBM Z, with the virt:av module installed. To confirm that this is the
case:

# hostnamectl | grep "Operating System"
Operating System: Red Hat Enterprise Linux 8.5 (Ootpa)
# yum module list --installed
[...]
Advanced Virtualization for RHEL 8 IBM Z Systems (RPMs)
Name                Stream                  Profiles                  Summary
virt                av [e]                common [i]                Virtualization module

Procedure

1. Disable the virt:av module.

# yum disable virt:av

2. Remove the pre-existing virtualization packages and modules that your system already
contains.

# yum module reset virt -y

3. Upgrade your packages to their latest RHEL versions.

# yum update

This also automatically enables the virt:rhel module on your system.

Verification

Ensure the virt module on your system is provided by the rhel stream.

# yum module info virt

Name             : virt
Stream           : rhel [d][e][a]
Version          : 8050020211203195115
[...]

Red Hat Enterprise Linux 8 Configuring and managing virtualization

52



Additional resources

How virtualization on IBM Z differs from AMD64 and Intel 64

4.3. HOW VIRTUALIZATION ON IBM Z DIFFERS FROM AMD64 AND
INTEL 64

KVM virtualization in RHEL 8 on IBM Z systems differs from KVM on AMD64 and Intel 64 systems in the
following:

PCI and USB devices

Virtual PCI and USB devices are not supported on IBM Z. This also means that virtio-*-pci devices
are unsupported, and virtio-*-ccw devices should be used instead. For example, use virtio-net-ccw
instead of virtio-net-pci.
Note that direct attachment of PCI devices, also known as PCI passthrough, is supported.

Supported guest operating system

Red Hat only supports VMs hosted on IBM Z if they use RHEL 7, 8, or 9 as their guest operating
system.

Device boot order

IBM Z does not support the <boot dev='device'> XML configuration element. To define device boot
order, use the <boot order='number'> element in the <devices> section of the XML.
In addition, you can select the required boot entry by using the architecture-specific loadparm
attribute in the <boot> element. For example, the following determines that the disk should be used
first in the boot sequence and if a Linux distribution is available on that disk, it will select the second
boot entry:

NOTE

By using <boot order='number'> for boot order management is also preferred on
AMD64 and Intel 64 hosts.

Memory hot plug

Adding memory to a running VM is not possible on IBM Z. Note that removing memory from a
running VM (memory hot unplug ) is also not possible on IBM Z, as well as on AMD64 and Intel 64.

NUMA topology

Non-Uniform Memory Access (NUMA) topology for CPUs is not supported by libvirt on IBM Z.
Therefore, tuning vCPU performance by using NUMA is not possible on these systems.

GPU devices

Assigning GPU devices is not supported on IBM Z systems.

vfio-ap

VMs on an IBM Z host can use the vfio-ap cryptographic device passthrough, which is not supported

<disk type='file' device='disk'>
  <driver name='qemu' type='qcow2'/>
  <source file='/path/to/qcow2'/>
  <target dev='vda' bus='virtio'/>
  <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0000'/>
  <boot order='1' loadparm='2'/>
</disk>

CHAPTER 4. GETTING STARTED WITH VIRTUALIZATION ON IBM Z

53



VMs on an IBM Z host can use the vfio-ap cryptographic device passthrough, which is not supported
on any other architecture.

vfio-ccw

VMs on an IBM Z host can use the vfio-ccw disk device passthrough, which is not supported on any
other architecture.

SMBIOS

SMBIOS configuration is not available on IBM Z.

Watchdog devices

If using watchdog devices in your VM on an IBM Z host, use the diag288 model. For example:

kvm-clock

The kvm-clock service is specific to AMD64 and Intel 64 systems, and does not have to be
configured for VM time management on IBM Z.

v2v and p2v

The virt-v2v and virt-p2v utilities are supported only on the AMD64 and Intel 64 architecture, and
are not provided on IBM Z.

Nested virtualization

Creating nested VMs requires different settings on IBM Z than on AMD64 and Intel 64. For details,
see Creating nested virtual machines .

No graphical output in earlier releases

When using RHEL 8.3 or an earlier minor version on your host, displaying the VM graphical output is
not possible when connecting to the VM by using the VNC protocol. This is because the gnome-
desktop utility was not supported in earlier RHEL versions on IBM Z. In addition, the SPICE display
protocol does not work on IBM Z.

Migrations

To successfully migrate to a later host model (for example from IBM z14 to z15), or to update the
hypervisor, use the host-model CPU mode. The host-passthrough and maximum CPU modes are
not recommended, as they are generally not migration-safe.
If you want to specify an explicit CPU model in the custom CPU mode, follow these guidelines:

Do not use CPU models that end with -base.

Do not use the qemu, max or host CPU model.

To successfully migrate to an older host model (such as from z15 to z14), or to an earlier version of
QEMU, KVM, or the RHEL kernel, use the CPU type of the oldest available host model without -base
at the end.

If you have both the source host and the destination host running, you can instead use the 
virsh hypervisor-cpu-baseline command on the destination host to obtain a suitable CPU
model. For details, see Verifying host CPU compatibility for virtual machine migration .

For more information about supported machine types in RHEL 8, see Recommended
features in RHEL 8 virtualization.

PXE installation and booting

<devices>
  <watchdog model='diag288' action='poweroff'/>
</devices>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

54



When using PXE to run a VM on IBM Z, a specific configuration is required for the 
pxelinux.cfg/default file. For example:

# pxelinux
default linux
label linux
kernel kernel.img
initrd initrd.img
append ip=dhcp inst.repo=example.com/redhat/BaseOS/s390x/os/

Secure Execution

You can boot a VM with a prepared secure guest image by defining <launchSecurity type="s390-
pv"/> in the XML configuration of the VM. This encrypts the VM’s memory to protect it from
unwanted access by the hypervisor.

Note that the following features are not supported when running a VM in secure execution mode:

Device passthrough by using vfio

Obtaining memory information by using virsh domstats and virsh memstat

The memballoon and virtio-rng virtual devices

Memory backing by using huge pages

Live and non-live VM migrations

Saving and restoring VMs

VM snapshots, including memory snapshots (using the --memspec option)

Full memory dumps. Instead, specify the --memory-only option for the virsh dump command.

248 or more vCPUs. The vCPU limit for secure guests is 247.

Nested virtualization

Additional resources

An overview of virtualization features support across architectures

4.4. NEXT STEPS

When setting up a VM on an IBM Z system, it is recommended to protect the guest OS from the
"Spectre" vulnerability. To do so, use the virsh edit command to modify the VM’s XML
configuration and configure its CPU in one of the following ways:

Use the host CPU model:

This makes the ppa15 and bpb features available to the guest if the host supports them.

If using a specific host model, add the ppa15 and pbp features. The following example uses

<cpu mode='host-model' check='partial'>
  <model fallback='allow'/>
</cpu>

CHAPTER 4. GETTING STARTED WITH VIRTUALIZATION ON IBM Z

55

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_8_installation/index#preparing-for-a-network-install_installing-rhel-as-an-experienced-user
https://access.redhat.com/security/vulnerabilities/speculativeexecution


If using a specific host model, add the ppa15 and pbp features. The following example uses
the zEC12 CPU model:

Note that when using the ppa15 feature with the z114 and z196 CPU models on a host
machine that uses a z12 CPU, you also need to use the latest microcode level (bundle 95 or
later).

4.5. ADDITIONAL RESOURCES

Attaching DASD devices to virtual machines on IBM Z

Attaching cryptographic coprocessors to virtual machines on IBM Z

Setting up IBM Secure Execution on IBM Z

Creating a nested virtual machine on IBM Z

Configuring passthrough PCI devices on IBM Z

<cpu mode='custom' match='exact' check='partial'>
    <model fallback='allow'>zEC12</model>
    <feature policy='force' name='ppa15'/>
    <feature policy='force' name='bpb'/>
</cpu>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

56

https://www.ibm.com/docs/en/linux-on-systems?topic=vfio-pass-through-pci


CHAPTER 5. ENABLING QEMU GUEST AGENT FEATURES ON
YOUR VIRTUAL MACHINES

To use certain features on a virtual machine (VM) hosted on your RHEL 8 system, you must first
configure the VM to use the QEMU Guest Agent (GA).

For a complete list of these features, see Virtualization features that require QEMU Guest Agent .

The specific steps required to configure QEMU GA on a VM differ based on the guest operating system
used by the VM:

For Linux VMs, see Enabling QEMU Guest Agent on Linux guests .

For Windows VMs, see Enabling QEMU Guest Agent on Windows guests .

5.1. ENABLING QEMU GUEST AGENT ON LINUX GUESTS

To allow a RHEL host to perform a certain subset of operations  on a Linux virtual machine (VM), you
must enable the QEMU Guest Agent (GA).

You can enable QEMU GA both on running and shut-down VMs.

Procedure

1. Create an XML configuration file for the QEMU GA, for example named qemuga.xml:

# touch qemuga.xml

2. Add the following lines to the file:

3. Use the XML file to add QEMU GA to the configuration of the VM.

If the VM is running, use the following command:

# virsh attach-device <vm-name> qemuga.xml --live --config

If the VM is shut-down, use the following command:

# virsh attach-device <vm-name> qemuga.xml --config

4. In the Linux guest operating system, install the QEMU GA:

# yum install qemu-guest-agent

5. Start the QEMU GA service on the guest:

# systemctl start qemu-guest-agent

<channel type='unix'>
   <source mode='bind' path='/var/lib/libvirt/qemu/f16x86_64.agent'/>
   <target type='virtio' name='org.qemu.guest_agent.0'/>
</channel>

CHAPTER 5. ENABLING QEMU GUEST AGENT FEATURES ON YOUR VIRTUAL MACHINES

57



Verification

To ensure that QEMU GA is enabled and running on the Linux VM, do any of the following:

In the guest operating system, use the systemctl status qemu-guest-agent | grep Loaded
command. If the output includes enabled, QEMU GA is active on the VM.

Use the virsh domfsinfo <vm-name> command on the host. If it displays any output, QEMU
GA is active on the specified VM.

Additional resources

Virtualization features that require QEMU Guest Agent

5.2. ENABLING QEMU GUEST AGENT ON WINDOWS GUESTS

To allow a RHEL host to perform a certain subset of operations  on a Windows virtual machine (VM), you
must enable the QEMU Guest Agent (GA). To do so, add a storage device that contains the QEMU
Guest Agent installer to an existing VM or when creating a new VM, and install the drivers on the
Windows guest operating system.

To install the Guest Agent (GA) by using the graphical interface, see the procedure below. To install the
GA in a command-line interface, use the Microsoft Windows Installer (MSI) .

Prerequisites

An installation medium with the Guest Agent is attached to the VM. For instructions on
preparing the medium, see Preparing virtio driver installation media on a host machine .

Procedure

1. In the Windows guest operating system, open the File Explorer application.

2. Click This PC.

3. In the Devices and drives pane, open the virtio-win medium.

4. Open the guest-agent folder.

5. Based on the operating system installed on the VM, run one of the following installers:

If using a 32-bit operating system, run the qemu-ga-i386.msi installer.

If using a 64-bit operating system, run the qemu-ga-x86_64.msi installer.

6. Optional: If you want to use the para-virtualized serial driver ( virtio-serial) as the
communication interface between the host and the Windows guest, verify that the virtio-serial
driver is installed on the Windows guest. For more information about installing virtio drivers, see:
Installing virtio drivers on a Windows guest .

Verification

1. On your Windows VM, navigate to the Services window.
Computer Management > Services

2. Ensure that the status of the QEMU Guest Agent service is Running.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

58

https://docs.microsoft.com/en-us/windows/win32/msi/about-windows-installer


Additional resources

Virtualization features that require QEMU Guest Agent

5.3. VIRTUALIZATION FEATURES THAT REQUIRE QEMU GUEST
AGENT

If you enable QEMU Guest Agent (GA) on a virtual machine (VM), you can use the following commands
on your host to manage the VM:

virsh shutdown --mode=agent

This shutdown method is more reliable than virsh shutdown --mode=acpi, because virsh 
shutdown used with QEMU GA is guaranteed to shut down a cooperative guest in a clean state.

virsh domfsfreeze and virsh domfsthaw

Freezes the guest file system in isolation.

virsh domfstrim

Instructs the guest to trim its file system, which helps to reduce the data that needs to be transferred
during migrations.

IMPORTANT

If you want to use this command to manage a Linux VM, you must also set the
following SELinux boolean in the guest operating system:

# setsebool virt_qemu_ga_read_nonsecurity_files on

virsh domtime

Queries or sets the guest’s clock.

virsh setvcpus --guest

Instructs the guest to take CPUs offline, which is useful when CPUs cannot be hot-unplugged.

virsh domifaddr --source agent

Queries the guest operating system’s IP address by using QEMU GA. For example, this is useful when
the guest interface is directly attached to a host interface.

virsh domfsinfo

Shows a list of mounted file systems in the running guest.

virsh set-user-password

Sets the password for a given user account in the guest.

virsh set-user-sshkeys

Edits the authorized SSH keys file for a given user in the guest.

IMPORTANT

If you want to use this command to manage a Linux VM, you must also set the
following SELinux boolean in the guest operating system:

# setsebool virt_qemu_ga_manage_ssh on

CHAPTER 5. ENABLING QEMU GUEST AGENT FEATURES ON YOUR VIRTUAL MACHINES

59



Additional resources

Enabling QEMU Guest Agent on Linux guests

Enabling QEMU Guest Agent on Windows guests

Red Hat Enterprise Linux 8 Configuring and managing virtualization

60



CHAPTER 6. MANAGING VIRTUAL MACHINES IN THE WEB
CONSOLE

To manage virtual machines in a graphical interface on a RHEL 8 host, you can use the Virtual Machines
pane in the RHEL 8 web console.

6.1. OVERVIEW OF VIRTUAL MACHINE MANAGEMENT BY USING THE
WEB CONSOLE

The RHEL 8 web console is a web-based interface for system administration. As one of its features, the
web console provides a graphical view of virtual machines (VMs) on the host system, and makes it
possible to create, access, and configure these VMs.

Note that to use the web console to manage your VMs on RHEL 8, you must first install a web console
plug-in for virtualization.

Next steps

For instructions on enabling VMs management in your web console, see Setting up the web
console to manage virtual machines.

For a comprehensive list of VM management actions that the web console provides, see Virtual
machine management features available in the web console.

For a list of features that are currently not available in the web console but can be used in the
virt-manager application, see Differences between virtualization features in Virtual Machine
Manager and the web console.

6.2. SETTING UP THE WEB CONSOLE TO MANAGE VIRTUAL
MACHINES

Before using the RHEL 8 web console to manage virtual machines (VMs), you must install the web
console virtual machine plug-in on the host.

Prerequisites

CHAPTER 6. MANAGING VIRTUAL MACHINES IN THE WEB CONSOLE

61



Ensure that the web console is installed and enabled on your machine.

# systemctl status cockpit.socket
cockpit.socket - Cockpit Web Service Socket
Loaded: loaded (/usr/lib/systemd/system/cockpit.socket
[...]

If this command returns Unit cockpit.socket could not be found, follow the Installing the web
console document to enable the web console.

Procedure

Install the cockpit-machines plug-in.

# yum install cockpit-machines

Verification

1. Access the web console, for example by entering the https://localhost:9090 address in your
browser.

2. Log in.

3. If the installation was successful, Virtual Machines appears in the web console side menu.

Additional resources

Managing systems by using the RHEL 8 web console

6.3. RENAMING VIRTUAL MACHINES BY USING THE WEB CONSOLE

You might require renaming an existing virtual machine (VM) to avoid naming conflicts or assign a new
unique name based on your use case. To rename the VM, you can use the RHEL web console.

Prerequisites

The web console VM plug-in is installed on your system .

The VM is shut down.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

62

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/getting-started-with-the-rhel-8-web-console_system-management-using-the-rhel-8-web-console#installing-the-web-console_getting-started-with-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/index


Procedure

1. In the Virtual Machines interface, click the Menu button ⋮ of the VM that you want to rename.
A drop-down menu appears with controls for various VM operations.

2. Click Rename.
The Rename a VM dialog appears.

3. In the New name field, enter a name for the VM.

4. Click Rename.

Verification

Check that the new VM name has appeared in the Virtual Machines interface.

6.4. VIRTUAL MACHINE MANAGEMENT FEATURES AVAILABLE IN THE
WEB CONSOLE

By using the RHEL 8 web console, you can perform the following actions to manage the virtual machines
(VMs) on your system.

Table 6.1. VM management tasks that you can perform in the RHEL 8 web console

Task For details, see

Create a VM and install it with a guest operating
system

Creating virtual machines and installing guest
operating systems by using the web console

Delete a VM Deleting virtual machines by using the web console

Start, shut down, and restart the VM Starting virtual machines by using the web console
and Shutting down and restarting virtual machines by
using the web console

Connect to and interact with a VM using a variety of
consoles

Interacting with virtual machines by using the web
console

View a variety of information about the VM Viewing virtual machine information by using the web
console

CHAPTER 6. MANAGING VIRTUAL MACHINES IN THE WEB CONSOLE

63



Adjust the host memory allocated to a VM Adding and removing virtual machine memory by
using the web console

Manage network connections for the VM Using the web console for managing virtual machine
network interfaces

Manage the VM storage available on the host and
attach virtual disks to the VM

Managing storage for virtual machines by using the
web console

Configure the virtual CPU settings of the VM Managing virtal CPUs by using the web console

Live migrate a VM Live migrating a virtual machine by using the web
console

Manage host devices Managing host devices by using the web console

Manage virtual optical drives Managing virtual optical drives

Attach watchdog device Attaching a watchdog device to a virtual machine by
using the web console

Task For details, see

6.5. DIFFERENCES BETWEEN VIRTUALIZATION FEATURES IN
VIRTUAL MACHINE MANAGER AND THE WEB CONSOLE

The Virtual Machine Manager (virt-manager) application is supported in RHEL 8, but has been
deprecated. The web console is intended to become its replacement in a subsequent major release. It is,
therefore, recommended that you get familiar with the web console for managing virtualization in a GUI.

However, in RHEL 8, some VM management tasks can only be performed in virt-manager or the
command line. The following table highlights the features that are available in virt-manager but not
available in the RHEL 8.0 web console.

If a feature is available in a later minor version of RHEL 8, the minimum RHEL 8 version appears in the
Support in web console introduced  column.

Table 6.2. VM managemennt tasks that cannot be performed using the web console in RHEL 8.0

Task Support in web console
introduced

Alternative method by using CLI

Setting a virtual machine to start
when the host boots

RHEL 8.1 virsh autostart

Suspending a virtual machine RHEL 8.1 virsh suspend

Red Hat Enterprise Linux 8 Configuring and managing virtualization

64



Resuming a suspended virtual
machine

RHEL 8.1 virsh resume

Creating file-system directory
storage pools

RHEL 8.1 virsh pool-define-as

Creating NFS storage pools RHEL 8.1 virsh pool-define-as

Creating physical disk device
storage pools

RHEL 8.1 virsh pool-define-as

Creating LVM volume group
storage pools

RHEL 8.1 virsh pool-define-as

Creating partition-based storage
pools

CURRENTLY UNAVAILABLE virsh pool-define-as

Creating GlusterFS-based
storage pools

CURRENTLY UNAVAILABLE virsh pool-define-as

Creating vHBA-based storage
pools with SCSI devices

CURRENTLY UNAVAILABLE virsh pool-define-as

Creating Multipath-based storage
pools

CURRENTLY UNAVAILABLE virsh pool-define-as

Creating RBD-based storage
pools

CURRENTLY UNAVAILABLE virsh pool-define-as

Creating a new storage volume RHEL 8.1 virsh vol-create

Adding a new virtual network RHEL 8.1 virsh net-create or virsh net-
define

Deleting a virtual network RHEL 8.1 virsh net-undefine

Creating a bridge from a host
machine’s interface to a virtual
machine

CURRENTLY UNAVAILABLE virsh iface-bridge

Creating a snapshot CURRENTLY UNAVAILABLE virsh snapshot-create-as

Reverting to a snapshot CURRENTLY UNAVAILABLE virsh snapshot-revert

Deleting a snapshot CURRENTLY UNAVAILABLE virsh snapshot-delete

Task Support in web console
introduced

Alternative method by using CLI

CHAPTER 6. MANAGING VIRTUAL MACHINES IN THE WEB CONSOLE

65



Cloning a virtual machine RHEL 8.4 virt-clone

Migrating a virtual machine to
another host machine

RHEL 8.5 virsh migrate

Attaching a host device to a VM RHEL 8.5 virt-xml --add-device

Removing a host device from a
VM

RHEL 8.5 virt-xml --remove-device

Task Support in web console
introduced

Alternative method by using CLI

Additional resources

Getting started with Virtual Machine Manager in RHEL 7 ( Deprecated in RHEL 8 and later )

Red Hat Enterprise Linux 8 Configuring and managing virtualization

66

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_getting_started_guide/chap-virtualization_manager-introduction


CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL
MACHINES

When you need to adjust or troubleshoot any aspect of your virtualization deployment on RHEL 8, the
first step you need to perform usually is to view information about the current state and configuration of
your virtual machines. To do so, you can use the command-line interface or the web console. You can
also view the information in the VM’s XML configuration.

7.1. VIEWING VIRTUAL MACHINE INFORMATION BY USING THE
COMMAND-LINE INTERFACE

To retrieve information about virtual machines (VMs) on your host and their configurations, use one or
more of the following commands.

Procedure

To obtain a list of VMs on your host:

# virsh list --all
Id   Name              State
----------------------------------
1    testguest1             running
-    testguest2             shut off
-    testguest3             shut off
-    testguest4             shut off

To obtain basic information about a specific VM:

# virsh dominfo testguest1
Id:             1
Name:           testguest1
UUID:           a973666f-2f6e-415a-8949-75a7a98569e1
OS Type:        hvm
State:          running
CPU(s):         2
CPU time:       188.3s
Max memory:     4194304 KiB
Used memory:    4194304 KiB
Persistent:     yes
Autostart:      disable
Managed save:   no
Security model: selinux
Security DOI:   0
Security label: system_u:system_r:svirt_t:s0:c486,c538 (enforcing)

To obtain the complete XML configuration of a specific VM:

# virsh dumpxml testguest2

<domain type='kvm' id='1'>
  <name>testguest2</name>

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES

67



  <uuid>a973434f-2f6e-4ěša-8949-76a7a98569e1</uuid>
  <metadata>
[...]

For information about a VM’s disks and other block devices:

# virsh domblklist testguest3
 Target   Source
---------------------------------------------------------------
 vda      /var/lib/libvirt/images/testguest3.qcow2
 sda      -
 sdb      /home/username/Downloads/virt-p2v-1.36.10-1.el7.iso

For instructions on managing a VM’s storage, see Managing storage for virtual machines.

To obtain information about a VM’s file systems and their mountpoints:

# virsh domfsinfo testguest3
Mountpoint   Name   Type   Target
------------------------------------
 /            dm-0   xfs
 /boot        vda1   xfs

To obtain more details about the vCPUs of a specific VM:

# virsh vcpuinfo testguest4
VCPU:           0
CPU:            3
State:          running
CPU time:       103.1s
CPU Affinity:   yyyy

VCPU:           1
CPU:            0
State:          running
CPU time:       88.6s
CPU Affinity:   yyyy

To configure and optimize the vCPUs in your VM, see Optimizing virtual machine CPU
performance.

To list all virtual network interfaces on your host:

# virsh net-list --all
 Name       State    Autostart   Persistent
---------------------------------------------
 default    active   yes         yes
 labnet     active   yes         yes

For information about a specific interface:

# virsh net-info default
Name:           default
UUID:           c699f9f6-9202-4ca8-91d0-6b8cb9024116

Red Hat Enterprise Linux 8 Configuring and managing virtualization

68



Active:         yes
Persistent:     yes
Autostart:      yes
Bridge:         virbr0

For details about network interfaces, VM networks, and instructions for configuring them, see
Configuring virtual machine network connections .

For instructions on viewing information about storage pools and storage volumes on your host,
see Viewing virtual machine storage information by using the CLI .

7.2. VIEWING VIRTUAL MACHINE INFORMATION BY USING THE WEB
CONSOLE

By using the RHEL 8 web console, you can view information about all VMs and storage pools  the web
console session can access.

You can view information about a selected VM  to which the web console session is connected. This
includes information about its disks, virtual network interface and resource usage.

7.2.1. Viewing a virtualization overview in the web console

By using the web console, you can access a virtualization overview that contains summarized information
about available virtual machines (VMs), storage pools, and networks.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

Click Virtual Machines in the web console’s side menu.
A dialog box appears with information about the available storage pools, available networks, and
the VMs to which the web console is connected.

The information includes the following:

Storage Pools - The number of storage pools, active or inactive, that can be accessed by the
web console and their state.

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES

69



Networks - The number of networks, active or inactive, that can be accessed by the web
console and their state.

Name - The name of the VM.

Connection - The type of libvirt connection, system or session.

State - The state of the VM.

Additional resources

Viewing virtual machine information by using the web console

7.2.2. Viewing storage pool information by using the web console

By using the web console, you can view detailed information about storage pools available on your
system. Storage pools can be used to create disk images for your virtual machines.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. Click Storage Pools at the top of the Virtual Machines interface.
The Storage pools window appears, showing a list of configured storage pools.

The information includes the following:

Name - The name of the storage pool.

Size - The current allocation and the total capacity of the storage pool.

Connection - The connection used to access the storage pool.

State - The state of the storage pool.

2. Click the arrow next to the storage pool whose information you want to see.
The row expands to reveal the Overview pane with detailed information about the selected
storage pool.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

70



The information includes:

Target path - The location of the storage pool.

Persistent - Indicates whether or not the storage pool has a persistent configuration.

Autostart - Indicates whether or not the storage pool starts automatically when the system
boots up.

Type - The type of the storage pool.

3. To view a list of storage volumes associated with the storage pool, click Storage Volumes.
The Storage Volumes pane appears, showing a list of configured storage volumes.

The information includes:

Name - The name of the storage volume.

Used by - The VM that is currently using the storage volume.

Size - The size of the volume.

Additional resources

Viewing virtual machine information by using the web console

7.2.3. Viewing basic virtual machine information in the web console

By using the web console, you can view basic information, such as assigned resources or hypervisor
details, about a selected virtual machine (VM).

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. Click Virtual Machines in the web console side menu.

2. Click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES

71



The Overview section includes the following general VM details:

State - The VM state, Running or Shut off.

Memory - The amount of memory assigned to the VM.

CPU - The number and type of virtual CPUs configured for the VM.

Boot Order - The boot order configured for the VM.

Autostart - Whether or not autostart is enabled for the VM.

The information also includes the following hypervisor details:

Emulated Machine - The machine type emulated by the VM.

Firmware - The firmware of the VM.

Additional resources

Viewing virtual machine information by using the web console

Managing virtual CPUs by using the web console

7.2.4. Viewing virtual machine resource usage in the web console

By using the web console, you can view memory and virtual CPU usage of a selected virtual machine
(VM).

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Usage.
The Usage section displays information about the memory and virtual CPU usage of the VM.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

72



Additional resources

Viewing virtual machine information by using the web console

7.2.5. Viewing virtual machine disk information in the web console

By using the web console, you can view detailed information about disks assigned to a selected virtual
machine (VM).

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. Click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Disks.
The Disks section displays information about the disks assigned to the VM, as well as options to
Add or Edit disks.

The information includes the following:

Device - The device type of the disk.

Used - The amount of disk currently allocated.

Capacity - The maximum size of the storage volume.

Bus - The type of disk device that is emulated.

Access - Whether the disk is Writeable or Read-only . For raw disks, you can also set the
access to Writeable and shared.

Source - The disk device or file.

Additional resources

Viewing virtual machine information by using the web console

7.2.6. Viewing and editing virtual network interface information in the web console

By using the RHEL 8 web console, you can view and modify the virtual network interfaces on a selected
virtual machine (VM):

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES

73



Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Network Interfaces.
The Networks Interfaces section displays information about the virtual network interface
configured for the VM as well as options to Add, Delete, Edit, or Unplug network interfaces.

The information includes the following:

Type - The type of network interface for the VM. The types include virtual network, bridge
to LAN, and direct attachment.

NOTE

Generic Ethernet connection is not supported in RHEL 8 and later.

Model type - The model of the virtual network interface.

MAC Address - The MAC address of the virtual network interface.

IP Address - The IP address of the virtual network interface.

Source - The source of the network interface. This is dependent on the network type.

State - The state of the virtual network interface.

3. To edit the virtual network interface settings, Click Edit. The Virtual Network Interface Settings
dialog opens.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

74



4. Change the interface type, source, model, or MAC address.

5. Click Save. The network interface is modified.

NOTE

Changes to the virtual network interface settings take effect only after restarting
the VM.

Additionally, MAC address can only be modified when the VM is shut off.

Additional resources

Viewing virtual machine information by using the web console

7.3. SAMPLE VIRTUAL MACHINE XML CONFIGURATION

The XML configuration of a VM, also referred to as a domain XML , determines the VM’s settings and
components. The following table shows sections of a sample XML configuration of a virtual machine
(VM) and explains the contents.

To obtain the XML configuration of a VM, you can use the virsh dumpxml command followed by the
VM’s name.

# virsh dumpxml testguest1

Table 7.1. Sample XML configuration

Domain XML Section Description

<domain type='kvm'>
 <name>Testguest1</name>
 <uuid>ec6fbaa1-3eb4-49da-bf61-bb02fbec4967</uuid>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>

This is a KVM virtual machine called
Testguest1, with 1024 MiB allocated
RAM.

 <vcpu placement='static'>1</vcpu>
The VM is allocated with a single
virtual CPU (vCPU).

For information about configuring
vCPUs, see Optimizing virtual
machine CPU performance.

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES

75



 <os>
  <type arch='x86_64' machine='pc-q35-4.1'>hvm</type>
  <boot dev='hd'/>
 </os>

The machine architecture is set to
the AMD64 and Intel 64
architecture, and uses the Intel Q35
machine type to determine feature
compatibility. The OS is set to be
booted from the hard disk drive.

For information about creating a
VM with an installed OS, see
Creating virtual machines and
installing guest operating systems
by using the web console.

 <features>
  <acpi/>
  <apic/>
 </features>

The acpi and apic hypervisor
features are disabled.

 <cpu mode='host-model' check='partial'/>
The host CPU definitions from
capabilities XML (obtainable with 
virsh capabilities) are
automatically copied into the VM’s
XML configuration. Therefore, when
the VM is booted, libvirt picks a
CPU model that is similar to the
host CPU, and then adds extra
features to approximate the host
model as closely as possible.

 <clock offset='utc'>
  <timer name='rtc' tickpolicy='catchup'/>
  <timer name='pit' tickpolicy='delay'/>
  <timer name='hpet' present='no'/>
 </clock>

The VM’s virtual hardware clock
uses the UTC time zone. In addition,
three different timers are set up for
synchronization with the QEMU
hypervisor.

 <on_poweroff>destroy</on_poweroff>
 <on_reboot>restart</on_reboot>
 <on_crash>destroy</on_crash>

When the VM powers off, or its OS
terminates unexpectedly, libvirt
terminates the VM and releases all
its allocated resources. When the
VM is rebooted, libvirt restarts it
with the same configuration.

 <pm>
  <suspend-to-mem enabled='no'/>
  <suspend-to-disk enabled='no'/>
 </pm>

The S3 and S4 ACPI sleep states
are disabled for this VM.

Domain XML Section Description

Red Hat Enterprise Linux 8 Configuring and managing virtualization

76



 <devices>
  <emulator>/usr/bin/qemu-kvm</emulator>
  <disk type='file' device='disk'>
   <driver name='qemu' type='qcow2'/>
   <source file='/var/lib/libvirt/images/Testguest.qcow2'/>
   <target dev='hda' bus='ide'/>
  </disk>
  <disk type='file' device='cdrom'>
   <driver name='qemu' type='raw'/>
   <target dev='hdb' bus='ide'/>
   <readonly/>
  </disk>

The VM uses the /usr/bin/qemu-
kvm binary file for emulation and it
has two disk devices attached.

The first disk is a virtualized hard-
drive based on the 
/var/lib/libvirt/images/Testgue
st.qcow2 stored on the host, and
its logical device name is set to 
hda.

The second disk is a virtualized CD-
ROM and its logical device name is
set to hdb.

  <controller type='usb' index='0' model='qemu-xhci' 
ports='15'/>
  <controller type='sata' index='0'/>
  <controller type='pci' index='0' model='pcie-root'/>
  <controller type='pci' index='1' model='pcie-root-port'>
   <model name='pcie-root-port'/>
   <target chassis='1' port='0x10'/>
  </controller>
  <controller type='pci' index='2' model='pcie-root-port'>
   <model name='pcie-root-port'/>
   <target chassis='2' port='0x11'/>
  </controller>
  <controller type='pci' index='3' model='pcie-root-port'>
   <model name='pcie-root-port'/>
   <target chassis='3' port='0x12'/>
  </controller>
  <controller type='pci' index='4' model='pcie-root-port'>
   <model name='pcie-root-port'/>
   <target chassis='4' port='0x13'/>
  </controller>
  <controller type='pci' index='5' model='pcie-root-port'>
   <model name='pcie-root-port'/>
   <target chassis='5' port='0x14'/>
  </controller>
  <controller type='pci' index='6' model='pcie-root-port'>
   <model name='pcie-root-port'/>
   <target chassis='6' port='0x15'/>
  </controller>
  <controller type='pci' index='7' model='pcie-root-port'>
   <model name='pcie-root-port'/>
   <target chassis='7' port='0x16'/>
  </controller>
  <controller type='virtio-serial' index='0'/>

The VM uses a single controller for
attaching USB devices, and a root
controller for PCI-Express (PCIe)
devices. In addition, a virtio-serial
controller is available, which enables
the VM to interact with the host in a
variety of ways, such as the serial
console.

For more information about virtual
devices, see Types of virtual
devices.

Domain XML Section Description

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES

77



 <interface type='network'>
  <mac address='52:54:00:65:29:21'/>
  <source network='default'/>
  <model type='rtl8139'/>
 </interface>

A network interface is set up in the
VM that uses the default virtual
network and the rtl8139 network
device model.

For information about configuring
the network interface, see
Optimizing virtual machine network
performance.

  <serial type='pty'>
   <target type='isa-serial' port='0'>
    <model name='isa-serial'/>
   </target>
  </serial>
  <console type='pty'>
   <target type='serial' port='0'/>
  </console>
  <channel type='unix'>
   <target type='virtio' name='org.qemu.guest_agent.0'/>
   <address type='virtio-serial' controller='0' bus='0' port='1'/>
  </channel>
  <channel type='spicevmc'>
   <target type='virtio' name='com.redhat.spice.0'/>
    <address type='virtio-serial' controller='0' bus='0' port='2'/>
  </channel>

A pty serial console is set up on the
VM, which enables rudimentary VM
communication with the host. The
console uses the UNIX channel on
port 1, and the paravirtualized 
SPICE on port 2. This is set up
automatically and changing these
settings is not recommended.

For more information about
interacting with VMs, see
Interacting with virtual machines by
using the web console.

  <input type='tablet' bus='usb'>
   <address type='usb' bus='0' port='1'/>
  </input>
  <input type='mouse' bus='ps2'/>
  <input type='keyboard' bus='ps2'/>

The VM uses a virtual usb port,
which is set up to receive tablet
input, and a virtual ps2 port set up
to receive mouse and keyboard
input. This is set up automatically
and changing these settings is not
recommended.

  <graphics type='spice' autoport='yes' listen='127.0.0.1'>
   <listen type='address' address='127.0.0.1'/>
   <image compression='off'/>
  </graphics>
  <graphics type='vnc' port='-1' autoport='yes' 
listen='127.0.0.1'>
   <listen type='address' address='127.0.0.1'/>
  </graphics>

The VM uses the VNC and SPICE
protocols for rendering its graphical
output, and image compression is
turned off.

Domain XML Section Description

Red Hat Enterprise Linux 8 Configuring and managing virtualization

78



  <sound model='ich6'>
   <address type='pci' domain='0x0000' bus='0x00' 
slot='0x04' function='0x0'/>
  </sound>
  <video>
   <model type='qxl' ram='65536' vram='65536' 
vgamem='16384' heads='1' primary='yes'/>
   <address type='pci' domain='0x0000' bus='0x00' 
slot='0x02' function='0x0'/>
  </video>

An ICH6 HDA sound device is set
up for the VM, and the QEMU QXL
paravirtualized framebuffer device
is set up as the video accelerator.
This is set up automatically and
changing these settings is not
recommended.

  <redirdev bus='usb' type='spicevmc'>
   <address type='usb' bus='0' port='1'/>
  </redirdev>
  <redirdev bus='usb' type='spicevmc'>
   <address type='usb' bus='0' port='2'/>
  </redirdev>
  <memballoon model='virtio'>
   <address type='pci' domain='0x0000' bus='0x00' 
slot='0x07' function='0x0'/>
  </memballoon>
 </devices>
</domain>

The VM has two re-directors for
attaching USB devices remotely,
and memory ballooning is turned
on. This is set up automatically and
changing these settings is not
recommended.

Domain XML Section Description

CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES

79



CHAPTER 8. SAVING AND RESTORING VIRTUAL MACHINES
To free up system resources, you can shut down a virtual machine (VM) running on that system.
However, when you require the VM again, you must boot up the guest operating system (OS) and restart
the applications, which may take a considerable amount of time. To reduce this downtime and enable
the VM workload to start running sooner, you can use the save and restore feature to avoid the OS
shutdown and boot sequence entirely.

This section provides information about saving VMs, as well as about restoring them to the same state
without a full VM boot-up.

8.1. HOW SAVING AND RESTORING VIRTUAL MACHINES WORKS

Saving a virtual machine (VM) saves its memory and device state to the host’s disk, and immediately
stops the VM process. You can save a VM that is either in a running or paused state, and upon restoring,
the VM will return to that state.

This process frees up RAM and CPU resources on the host system in exchange for disk space, which
may improve the host system performance. When the VM is restored, because the guest OS does not
need to be booted, the long boot-up period is avoided as well.

To save a VM, you can use the command-line interface (CLI). For instructions, see Saving virtual
machines by using the command line interface.

To restore a VM you can use the CLI or the web console GUI.

8.2. SAVING A VIRTUAL MACHINE BY USING THE COMMAND LINE
INTERFACE

You can save a virtual machine (VM) and its current state to the host’s disk. This is useful, for example,
when you need to use the host’s resources for some other purpose. The saved VM can then be quickly
restored to its previous running state.

To save a VM by using the command line, follow the procedure below.

Prerequisites

Ensure you have sufficient disk space to save the VM and its configuration. Note that the space
occupied by the VM depends on the amount of RAM allocated to that VM.

Ensure the VM is persistent.

Optional: Back up important data from the VM if required.

Procedure

Use the virsh managedsave utility.
For example, the following command stops the demo-guest1 VM and saves its configuration.

# virsh managedsave demo-guest1
Domain 'demo-guest1' saved by libvirt

The saved VM file is located by default in the /var/lib/libvirt/qemu/save directory as demo-
guest1.save.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

80



The next time the VM is started, it will automatically restore the saved state from the above file.

Verification

List the VMs that have managed save enabled. In the following example, the VMs listed as saved
have their managed save enabled.

# virsh list --managed-save --all
Id    Name                           State
----------------------------------------------------
-     demo-guest1                    saved
-     demo-guest2                    shut off

To list the VMs that have a managed save image:

# virsh list --with-managed-save --all
Id    Name                           State
----------------------------------------------------
-     demo-guest1                    shut off

Note that to list the saved VMs that are in a shut off state, you must use the --all or --inactive
options with the command.

Troubleshooting

If the saved VM file becomes corrupted or unreadable, restoring the VM will initiate a standard
VM boot instead.

Additional resources

The virsh managedsave --help command

Restoring a saved VM by using the command-line interface

Restoring a saved VM by using the web console

8.3. STARTING A VIRTUAL MACHINE BY USING THE COMMAND-LINE
INTERFACE

You can use the command line interface (CLI) to start a shut-down virtual machine (VM) or restore a
saved VM. By using the CLI, you can start both local and remote VMs.

Prerequisites

An inactive VM that is already defined.

The name of the VM.

For remote VMs:

The IP address of the host where the VM is located.

Root access privileges to the host.

Procedure

CHAPTER 8. SAVING AND RESTORING VIRTUAL MACHINES

81



Procedure

For a local VM, use the virsh start utility.
For example, the following command starts the demo-guest1 VM.

# virsh start demo-guest1
Domain 'demo-guest1' started

For a VM located on a remote host, use the virsh start utility along with the QEMU+SSH
connection to the host.
For example, the following command starts the demo-guest1 VM on the 192.0.2.1 host.

# virsh -c qemu+ssh://root@192.0.2.1/system start demo-guest1

root@192.0.2.1's password:

Domain 'demo-guest1' started

Additional resources

The virsh start --help command

Setting up easy access to remote virtualization hosts

Starting virtual machines automatically when the host starts

8.4. STARTING VIRTUAL MACHINES BY USING THE WEB CONSOLE

If a virtual machine (VM) is in the shut off state, you can start it by using the RHEL 8 web console. You
can also configure the VM to be started automatically when the host starts.

Prerequisites

The web console VM plug-in is installed on your system .

An inactive VM that is already defined.

The name of the VM.

Procedure

1. In the Virtual Machines interface, click the VM you want to start.
A new page opens with detailed information about the selected VM and controls for shutting
down and deleting the VM.

2. Click Run.
The VM starts, and you can connect to its console or graphical output .

3. Optional: To configure the VM to start automatically when the host starts, toggle the Autostart
checkbox in the Overview section.
If you use network interfaces that are not managed by libvirt, you must also make additional
changes to the systemd configuration. Otherwise, the affected VMs might fail to start, see
starting virtual machines automatically when the host starts .

Additional resources

Red Hat Enterprise Linux 8 Configuring and managing virtualization

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/getting-started-with-virtualization-in-rhel-8_configuring-and-managing-virtualization#assembly_connecting-to-virtual-machines_virt-getting-started


Additional resources

Shutting down virtual machines in the web console

Restarting virtual machines by using the web console

CHAPTER 8. SAVING AND RESTORING VIRTUAL MACHINES

83



CHAPTER 9. CLONING VIRTUAL MACHINES
To quickly create a new virtual machine (VM) with a specific set of properties, you can clone an existing
VM.

Cloning creates a new VM that uses its own disk image for storage, but most of the clone’s configuration
and stored data is identical to the source VM. This makes it possible to prepare multiple VMs optimized
for a certain task without the need to optimize each VM individually.

9.1. HOW CLONING VIRTUAL MACHINES WORKS

Cloning a virtual machine (VM) copies the XML configuration of the source VM and its disk images, and
makes adjustments to the configurations to ensure the uniqueness of the new VM. This includes
changing the name of the VM and ensuring it uses the disk image clones. Nevertheless, the data stored
on the clone’s virtual disks is identical to the source VM.

This process is faster than creating a new VM and installing it with a guest operating system, and can be
used to rapidly generate VMs with a specific configuration and content.

If you are planning to create multiple clones of a VM, first create a VM template that does not contain:

Unique settings, such as persistent network MAC configuration, which can prevent the clones
from working correctly.

Sensitive data, such as SSH keys and password files.

For instructions, see Creating virtual machines templates.

Additional resources

Cloning a virtual machine by using the command-line interface

Cloning a virtual machine by using the web console

9.2. CREATING VIRTUAL MACHINE TEMPLATES

To create multiple virtual machine (VM) clones that work correctly, you can remove information and
configurations that are unique to a source VM, such as SSH keys or persistent network MAC
configuration. This creates a VM template, which you can use to easily and safely create VM clones.

You can create VM templates using the virt-sysprep utility or you can create them manually  based on
your requirements.

9.2.1. Creating a virtual machine template by using virt-sysprep

To create a cloning template from an existing virtual machine (VM), you can use the virt-sysprep utility.
This removes certain configurations that might cause the clone to work incorrectly, such as specific
network settings or system registration metadata. As a result, virt-sysprep makes creating clones of the
VM more efficient, and ensures that the clones work more reliably.

Prerequisites

The libguestfs-tools-c package, which contains the virt-sysprep utility, is installed on your
host:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

84



# yum install libguestfs-tools-c

The source VM intended as a template is shut down.

You know where the disk image for the source VM is located, and you are the owner of the VM’s
disk image file.
Note that disk images for VMs created in the system connection of libvirt are located in the 
/var/lib/libvirt/images directory and owned by the root user by default:

# ls -la /var/lib/libvirt/images
-rw-------.  1 root root  9665380352 Jul 23 14:50 a-really-important-vm.qcow2
-rw-------.  1 root root  8591507456 Jul 26  2017 an-actual-vm-that-i-use.qcow2
-rw-------.  1 root root  8591507456 Jul 26  2017 totally-not-a-fake-vm.qcow2
-rw-------.  1 root root 10739318784 Sep 20 17:57 another-vm-example.qcow2

Optional: Any important data on the source VM’s disk has been backed up. If you want to
preserve the source VM intact, clone it first and turn the clone into a template.

Procedure

1. Ensure you are logged in as the owner of the VM’s disk image:

# whoami
root

2. Optional: Copy the disk image of the VM.

# cp /var/lib/libvirt/images/a-really-important-vm.qcow2 /var/lib/libvirt/images/a-really-
important-vm-original.qcow2

This is used later to verify that the VM was successfully turned into a template.

3. Use the following command, and replace /var/lib/libvirt/images/a-really-important-vm.qcow2
with the path to the disk image of the source VM.

# virt-sysprep -a /var/lib/libvirt/images/a-really-important-vm.qcow2
[   0.0] Examining the guest ...
[   7.3] Performing "abrt-data" ...
[   7.3] Performing "backup-files" ...
[   9.6] Performing "bash-history" ...
[   9.6] Performing "blkid-tab" ...
[...]

Verification

To confirm that the process was successful, compare the modified disk image to the original
one. The following example shows a successful creation of a template:

# virt-diff -a /var/lib/libvirt/images/a-really-important-vm-orig.qcow2 -A /var/lib/libvirt/images/a-
really-important-vm.qcow2
- - 0644       1001 /etc/group-
- - 0000        797 /etc/gshadow-
= - 0444         33 /etc/machine-id

CHAPTER 9. CLONING VIRTUAL MACHINES

85



[...]
- - 0600        409 /home/username/.bash_history
- d 0700          6 /home/username/.ssh
- - 0600        868 /root/.bash_history
[...]

Additional resources

The OPERATIONS section in the virt-sysprep man page

Cloning a virtual machine by using the command-line interface

9.2.2. Creating a virtual machine template manually

To create a template from an existing virtual machine (VM), you can manually reset or unconfigure a
guest VM to prepare it for cloning.

Prerequisites

Ensure that you know the location of the disk image for the source VM and are the owner of the
VM’s disk image file.
Note that disk images for VMs created in the system connection of libvirt are by default located
in the /var/lib/libvirt/images directory and owned by the root user:

# ls -la /var/lib/libvirt/images
-rw-------.  1 root root  9665380352 Jul 23 14:50 a-really-important-vm.qcow2
-rw-------.  1 root root  8591507456 Jul 26  2017 an-actual-vm-that-i-use.qcow2
-rw-------.  1 root root  8591507456 Jul 26  2017 totally-not-a-fake-vm.qcow2
-rw-------.  1 root root 10739318784 Sep 20 17:57 another-vm-example.qcow2

Ensure that the VM is shut down.

Optional: Any important data on the VM’s disk has been backed up. If you want to preserve the
source VM intact, clone it first and edit the clone to create a template.

Procedure

1. Configure the VM for cloning:

a. Install any software needed on the clone.

b. Configure any non-unique settings for the operating system.

c. Configure any non-unique application settings.

2. Remove the network configuration:

a. Remove any persistent udev rules by using the following command:

# rm -f /etc/udev/rules.d/70-persistent-net.rules

NOTE

Red Hat Enterprise Linux 8 Configuring and managing virtualization

86



NOTE

If udev rules are not removed, the name of the first NIC might be eth1
instead of eth0.

b. Remove unique network details from ifcfg scripts by editing /etc/sysconfig/network-
scripts/ifcfg-eth[x] as follows:

i. Remove the HWADDR and Static lines:

NOTE

If the HWADDR does not match the new guest’s MAC address, the ifcfg
will be ignored.

DEVICE=eth[x] BOOTPROTO=none ONBOOT=yes #NETWORK=192.0.2.0 <- 
REMOVE #NETMASK=255.255.255.0 <- REMOVE #IPADDR=192.0.2.1 <- 
REMOVE #HWADDR=xx:xx:xx:xx:xx <- REMOVE #USERCTL=no <- REMOVE # 
Remove any other *unique or non-desired settings, such as UUID.*

ii. Configure DHCP but do not include HWADDR or any other unique information:

DEVICE=eth[x] BOOTPROTO=dhcp ONBOOT=yes

c. Ensure the following files also contain the same content, if they exist on your system:

/etc/sysconfig/networking/devices/ifcfg-eth[x]

/etc/sysconfig/networking/profiles/default/ifcfg-eth[x]

NOTE

If you had used NetworkManager or any special settings with the VM,
ensure that any additional unique information is removed from the ifcfg
scripts.

3. Remove registration details:

For VMs registered on the Red Hat Network (RHN):

# rm /etc/sysconfig/rhn/systemid

For VMs registered with Red Hat Subscription Manager (RHSM):

If you do not plan to use the original VM:

# subscription-manager unsubscribe --all # subscription-manager unregister # 
subscription-manager clean

If you plan to use the original VM:

# subscription-manager clean

NOTE

CHAPTER 9. CLONING VIRTUAL MACHINES

87



NOTE

The original RHSM profile remains in the Portal along with your ID code.
Use the following command to reactivate your RHSM registration on the
VM after it is cloned:

# subscription-manager register --consumerid=71rd64fx-6216-4409-
bf3a-e4b7c7bd8ac9

4. Remove other unique details:

a. Remove SSH public and private key pairs:

# rm -rf /etc/ssh/ssh_host_example

b. Remove the configuration of LVM devices:

# rm /etc/lvm/devices/system.devices

c. Remove any other application-specific identifiers or configurations that might cause
conflicts if running on multiple machines.

5. Remove the gnome-initial-setup-done file to configure the VM to run the configuration wizard
on the next boot:

# rm ~/.config/gnome-initial-setup-done

NOTE

The wizard that runs on the next boot depends on the configurations that have
been removed from the VM. In addition, on the first boot of the clone, it is
recommended that you change the hostname.

9.3. CLONING A VIRTUAL MACHINE BY USING THE COMMAND-LINE
INTERFACE

For testing, to create a new virtual machine (VM) with a specific set of properties, you can clone an
existing VM by using CLI.

Prerequisites

The source VM is shut down.

Ensure that there is sufficient disk space to store the cloned disk images.

Optional: When creating multiple VM clones, remove unique data and settings from the source
VM to ensure the cloned VMs work properly. For instructions, see Creating virtual machine
templates.

Procedure

Use the virt-clone utility with options that are appropriate for your environment and use case.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

88



Sample use cases

The following command clones a local VM named example-VM-1 and creates the example-
VM-1-clone VM. It also creates and allocates the example-VM-1-clone.qcow2 disk image
in the same location as the disk image of the original VM, and with the same data:

# virt-clone --original example-VM-1 --auto-clone
Allocating 'example-VM-1-clone.qcow2'                            | 50.0 GB  00:05:37

Clone 'example-VM-1-clone' created successfully.

The following command clones a VM named example-VM-2, and creates a local VM named 
example-VM-3, which uses only two out of multiple disks of example-VM-2:

# virt-clone --original example-VM-2 --name example-VM-3 --file 
/var/lib/libvirt/images/disk-1-example-VM-2.qcow2 --file /var/lib/libvirt/images/disk-2-
example-VM-2.qcow2
Allocating 'disk-1-example-VM-2-clone.qcow2'                                      | 78.0 GB  00:05:37
Allocating 'disk-2-example-VM-2-clone.qcow2'                                      | 80.0 GB  00:05:37

Clone 'example-VM-3' created successfully.

To clone your VM to a different host, migrate the VM without undefining it on the local host.
For example, the following commands clone the previously created example-VM-3 VM to
the 192.0.2.1 remote system, including its local disks. Note that you require root privileges
to run these commands for 192.0.2.1:

# virsh migrate --offline --persistent example-VM-3 qemu+ssh://root@192.0.2.1/system
root@192.0.2.1's password:

# scp /var/lib/libvirt/images/<disk-1-example-VM-2-clone>.qcow2 
root@192.0.2.1/<user@remote_host.com>://var/lib/libvirt/images/

# scp /var/lib/libvirt/images/<disk-2-example-VM-2-clone>.qcow2 
root@192.0.2.1/<user@remote_host.com>://var/lib/libvirt/images/

Verification

1. To verify the VM has been successfully cloned and is working correctly:

a. Confirm the clone has been added to the list of VMs on your host:

# virsh list --all
Id   Name                  State
---------------------------------------
-    example-VM-1          shut off
-    example-VM-1-clone    shut off

b. Start the clone and observe if it boots up:

# virsh start example-VM-1-clone
Domain 'example-VM-1-clone' started

Additional resources

CHAPTER 9. CLONING VIRTUAL MACHINES

89



Additional resources
virt-clone (1) man page

Migrating virtual machines

9.4. CLONING A VIRTUAL MACHINE BY USING THE WEB CONSOLE

To create new virtual machines (VMs) with a specific set of properties, you can clone a VM that you had
previously configured by using the web console.

NOTE

Cloning a VM also clones the disks associated with that VM.

Prerequisites

The web console VM plug-in is installed on your system .

Ensure that the VM you want to clone is shut down.

Procedure

1. In the Virtual Machines interface of the web console, click the Menu button ⋮ of the VM that
you want to clone.
A drop down menu appears with controls for various VM operations.

2. Click Clone.
The Create a clone VM dialog appears.

3. Optional: Enter a new name for the VM clone.

4. Click Clone.
A new VM is created based on the source VM.

Verification

Confirm whether the cloned VM appears in the list of VMs available on your host.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

90



CHAPTER 10. MIGRATING VIRTUAL MACHINES
If the current host of a virtual machine (VM) becomes unsuitable or cannot be used anymore, or if you
want to redistribute the hosting workload, you can migrate the VM to another KVM host.

10.1. HOW MIGRATING VIRTUAL MACHINES WORKS

The essential part of virtual machine (VM) migration is copying the XML configuration of a VM to a
different host machine. If the migrated VM is not shut down, the migration also transfers the state of the
VM’s memory and any virtualized devices to a destination host machine. For the VM to remain functional
on the destination host, the VM’s disk images must remain available to it.

By default, the migrated VM is transient on the destination host, and remains defined also on the source
host.

You can migrate a running VM by using live or non-live migrations. To migrate a shut-off VM, you must
use an offline migration. For details, see the following table.

Table 10.1. VM migration types

Migration type Description Use case Storage requirements

Live migration The VM continues to run
on the source host
machine while KVM is
transferring the VM’s
memory pages to the
destination host. When
the migration is nearly
complete, KVM very
briefly suspends the VM,
and resumes it on the
destination host.

Useful for VMs that
require constant uptime.
However, VMs that
modify memory pages
faster than KVM can
transfer them, such as
VMs under heavy I/O
load, cannot be live-
migrated, and non-live
migration must be used
instead.

The VM’s disk images
must be located on a
shared network,
accessible both to the
source host and the
destination host.

Non-live migration Suspends the VM,
copies its configuration
and its memory to the
destination host, and
resumes the VM.

Creates downtime for
the VM, but is generally
more reliable than live
migration.
Recommended for VMs
under heavy memory
load.

The VM’s disk images
must be located on a
shared network,
accessible both to the
source host and the
destination host.

Offline migration Moves the VM’s
configuration to the
destination host

Recommended for shut-
off VMs and in situations
when shutting down the
VM does not disrupt
your workloads.

The VM’s disk images do
not have to be available
on a shared network,
and can be copied or
moved manually to the
destination host instead.

You can also combine live migration and non-live migration. This is recommended for example when live-
migrating a VM that uses very many vCPUs or a large amount of memory, which prevents the migration
from completing. In such a scenario, you can suspend the source VM. This prevents additional dirty

CHAPTER 10. MIGRATING VIRTUAL MACHINES

91



memory pages from being generated, and thus makes it significantly more likely for the migration to
complete. Based on guest workload and the number of static pages during migration, such a hybrid
migration might cause significantly less downtime than a non-live migration.

Additional resources

Benefits of migrating virtual machines

Sharing virtual machine disk images with other hosts

10.2. BENEFITS OF MIGRATING VIRTUAL MACHINES

Migrating virtual machines (VMs) can be useful for:

Load balancing

VMs can be moved to host machines with lower usage if their host becomes overloaded, or if another
host is under-utilized.

Hardware independence

When you need to upgrade, add, or remove hardware devices on the host machine, you can safely
relocate VMs to other hosts. This means that VMs do not experience any downtime for hardware
improvements.

Energy saving

VMs can be redistributed to other hosts, and the unloaded host systems can thus be powered off to
save energy and cut costs during low usage periods.

Geographic migration

VMs can be moved to another physical location for lower latency or when required for other reasons.

10.3. LIMITATIONS FOR MIGRATING VIRTUAL MACHINES

Before migrating virtual machines (VMs) in RHEL 8, ensure you are aware of the migration’s limitations.

Live storage migration cannot be performed on RHEL 8, but you can migrate storage while the
VM is powered down. Note that live storage migration is available on Red Hat Virtualization.

Migrating VMs from or to a session connection of libvirt is unreliable and therefore not
recommended.

VMs that use certain features and configurations will not work correctly if migrated, or the
migration will fail. Such features include:

Device passthrough

SR-IOV device assignment

Mediated devices, such as vGPUs

A migration between hosts that use Non-Uniform Memory Access (NUMA) pinning works only if
the hosts have similar topology. However, the performance on running workloads might be
negatively affected by the migration.

The emulated CPUs, both on the source VM and the destination VM, must be identical,
otherwise the migration might fail. Any differences between the VMs in the following CPU
related areas can cause problems with the migration:

CPU model

Red Hat Enterprise Linux 8 Configuring and managing virtualization

92

https://www.redhat.com/en/technologies/virtualization/enterprise-virtualization


CPU model

Migrating between an Intel 64 host and an AMD64 host is unsupported, even though
they share the x86-64 instruction set.

For steps to ensure that a VM will work correctly after migrating to a host with a
different CPU model, see Verifying host CPU compatibility for virtual machine
migration.

Firmware settings

Microcode version

BIOS version

BIOS settings

QEMU version

Kernel version

Live migrating a VM that uses more than 1 TB of memory might in some cases be unreliable. For
instructions on how to prevent or fix this problem, see Live migration of a VM takes a long time
without completing.

10.4. VERIFYING HOST CPU COMPATIBILITY FOR VIRTUAL MACHINE
MIGRATION

For migrated virtual machines (VMs) to work correctly on the destination host, the CPUs on the source
and the destination hosts must be compatible. To ensure that this is the case, calculate a common CPU
baseline before you begin the migration.

NOTE

The instructions in this section use an example migration scenario with the following host
CPUs:

Source host: Intel Core i7-8650U

Destination hosts: Intel Xeon CPU E5-2620 v2

Prerequisites

Virtualization is installed and enabled on your system.

You have administrator access to the source host and the destination host for the migration.

Procedure

1. On the source host, obtain its CPU features and paste them into a new XML file, such as 
domCaps-CPUs.xml.

# virsh domcapabilities | xmllint --xpath "//cpu/mode[@name='host-model']" - > domCaps-
CPUs.xml

CHAPTER 10. MIGRATING VIRTUAL MACHINES

93



2. In the XML file, replace the <mode> </mode> tags with <cpu> </cpu>.

3. Optional: Verify that the content of the domCaps-CPUs.xml file looks similar to the following:

# cat domCaps-CPUs.xml

    <cpu>
          <model fallback="forbid">Skylake-Client-IBRS</model>
          <vendor>Intel</vendor>
          <feature policy="require" name="ss"/>
          <feature policy="require" name="vmx"/>
          <feature policy="require" name="pdcm"/>
          <feature policy="require" name="hypervisor"/>
          <feature policy="require" name="tsc_adjust"/>
          <feature policy="require" name="clflushopt"/>
          <feature policy="require" name="umip"/>
          <feature policy="require" name="md-clear"/>
          <feature policy="require" name="stibp"/>
          <feature policy="require" name="arch-capabilities"/>
          <feature policy="require" name="ssbd"/>
          <feature policy="require" name="xsaves"/>
          <feature policy="require" name="pdpe1gb"/>
          <feature policy="require" name="invtsc"/>
          <feature policy="require" name="ibpb"/>
          <feature policy="require" name="ibrs"/>
          <feature policy="require" name="amd-stibp"/>
          <feature policy="require" name="amd-ssbd"/>
          <feature policy="require" name="rsba"/>
          <feature policy="require" name="skip-l1dfl-vmentry"/>
          <feature policy="require" name="pschange-mc-no"/>
          <feature policy="disable" name="hle"/>
          <feature policy="disable" name="rtm"/>
    </cpu>

4. On the destination host, use the following command to obtain its CPU features:

# virsh domcapabilities | xmllint --xpath "//cpu/mode[@name='host-model']" -

    <mode name="host-model" supported="yes">
            <model fallback="forbid">IvyBridge-IBRS</model>
            <vendor>Intel</vendor>
            <feature policy="require" name="ss"/>
            <feature policy="require" name="vmx"/>
            <feature policy="require" name="pdcm"/>
            <feature policy="require" name="pcid"/>
            <feature policy="require" name="hypervisor"/>
            <feature policy="require" name="arat"/>
            <feature policy="require" name="tsc_adjust"/>
            <feature policy="require" name="umip"/>
            <feature policy="require" name="md-clear"/>
            <feature policy="require" name="stibp"/>
            <feature policy="require" name="arch-capabilities"/>
            <feature policy="require" name="ssbd"/>
            <feature policy="require" name="xsaveopt"/>
            <feature policy="require" name="pdpe1gb"/>
            <feature policy="require" name="invtsc"/>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

94



            <feature policy="require" name="ibpb"/>
            <feature policy="require" name="amd-ssbd"/>
            <feature policy="require" name="skip-l1dfl-vmentry"/>
            <feature policy="require" name="pschange-mc-no"/>
    </mode>

5. Add the obtained CPU features from the destination host to the domCaps-CPUs.xml file on
the source host. Again, replace the <mode> </mode> tags with <cpu> </cpu> and save the file.

6. Optional: Verify that the XML file now contains the CPU features from both hosts.

# cat domCaps-CPUs.xml

    <cpu>
          <model fallback="forbid">Skylake-Client-IBRS</model>
          <vendor>Intel</vendor>
          <feature policy="require" name="ss"/>
          <feature policy="require" name="vmx"/>
          <feature policy="require" name="pdcm"/>
          <feature policy="require" name="hypervisor"/>
          <feature policy="require" name="tsc_adjust"/>
          <feature policy="require" name="clflushopt"/>
          <feature policy="require" name="umip"/>
          <feature policy="require" name="md-clear"/>
          <feature policy="require" name="stibp"/>
          <feature policy="require" name="arch-capabilities"/>
          <feature policy="require" name="ssbd"/>
          <feature policy="require" name="xsaves"/>
          <feature policy="require" name="pdpe1gb"/>
          <feature policy="require" name="invtsc"/>
          <feature policy="require" name="ibpb"/>
          <feature policy="require" name="ibrs"/>
          <feature policy="require" name="amd-stibp"/>
          <feature policy="require" name="amd-ssbd"/>
          <feature policy="require" name="rsba"/>
          <feature policy="require" name="skip-l1dfl-vmentry"/>
          <feature policy="require" name="pschange-mc-no"/>
          <feature policy="disable" name="hle"/>
          <feature policy="disable" name="rtm"/>
    </cpu>
    <cpu>
          <model fallback="forbid">IvyBridge-IBRS</model>
          <vendor>Intel</vendor>
          <feature policy="require" name="ss"/>
          <feature policy="require" name="vmx"/>
          <feature policy="require" name="pdcm"/>
          <feature policy="require" name="pcid"/>
          <feature policy="require" name="hypervisor"/>
          <feature policy="require" name="arat"/>
          <feature policy="require" name="tsc_adjust"/>
          <feature policy="require" name="umip"/>
          <feature policy="require" name="md-clear"/>
          <feature policy="require" name="stibp"/>
          <feature policy="require" name="arch-capabilities"/>
          <feature policy="require" name="ssbd"/>
          <feature policy="require" name="xsaveopt"/>

CHAPTER 10. MIGRATING VIRTUAL MACHINES

95



          <feature policy="require" name="pdpe1gb"/>
          <feature policy="require" name="invtsc"/>
          <feature policy="require" name="ibpb"/>
          <feature policy="require" name="amd-ssbd"/>
          <feature policy="require" name="skip-l1dfl-vmentry"/>
          <feature policy="require" name="pschange-mc-no"/>
    </cpu>

7. Use the XML file to calculate the CPU feature baseline for the VM you intend to migrate.

# virsh hypervisor-cpu-baseline domCaps-CPUs.xml

    <cpu mode='custom' match='exact'>
      <model fallback='forbid'>IvyBridge-IBRS</model>
      <vendor>Intel</vendor>
      <feature policy='require' name='ss'/>
      <feature policy='require' name='vmx'/>
      <feature policy='require' name='pdcm'/>
      <feature policy='require' name='pcid'/>
      <feature policy='require' name='hypervisor'/>
      <feature policy='require' name='arat'/>
      <feature policy='require' name='tsc_adjust'/>
      <feature policy='require' name='umip'/>
      <feature policy='require' name='md-clear'/>
      <feature policy='require' name='stibp'/>
      <feature policy='require' name='arch-capabilities'/>
      <feature policy='require' name='ssbd'/>
      <feature policy='require' name='xsaveopt'/>
      <feature policy='require' name='pdpe1gb'/>
      <feature policy='require' name='invtsc'/>
      <feature policy='require' name='ibpb'/>
      <feature policy='require' name='amd-ssbd'/>
      <feature policy='require' name='skip-l1dfl-vmentry'/>
      <feature policy='require' name='pschange-mc-no'/>
    </cpu>

8. Open the XML configuration of the VM you intend to migrate, and replace the contents of the 
<cpu> section with the settings obtained in the previous step.

# virsh edit VM-name

9. If the VM is running, restart it.

# virsh reboot VM-name

Next steps

Sharing virtual machine disk images with other hosts

Migrating a virtual machine by using the command-line interface

Live-migrating a virtual machine by using the web console

10.5. SHARING VIRTUAL MACHINE DISK IMAGES WITH OTHER HOSTS

Red Hat Enterprise Linux 8 Configuring and managing virtualization

96



To perform a live migration of a virtual machine (VM) between supported KVM hosts , shared VM storage
is required. The following procedure provides instructions for sharing a locally stored VM image with the
source host and the destination host by using the NFS protocol.

Prerequisites

The VM intended for migration is shut down.

Optional: A host system is available for hosting the storage that is not the source or destination
host, but both the source and the destination host can reach it through the network. This is the
optimal solution for shared storage and is recommended by Red Hat.

Make sure that NFS file locking is not used as it is not supported in KVM.

The NFS is installed and enabled on the source and destination hosts. See

Deploying an NFS server .

Procedure

1. Connect to the host that will provide shared storage. In this example, it is the example-shared-
storage host:

# ssh root@example-shared-storage
root@example-shared-storage's password:
Last login: Mon Sep 24 12:05:36 2019
root~#

2. Create a directory on the source host that will hold the disk image and will be shared with the
migration hosts:

# mkdir /var/lib/libvirt/shared-images

3. Copy the disk image of the VM from the source host to the newly created directory. The
following example copies the disk image example-disk-1 of the VM to the 
/var/lib/libvirt/shared-images/ directory of the example-shared-storage host:

# scp /var/lib/libvirt/images/example-disk-1.qcow2 root@example-shared-
storage:/var/lib/libvirt/shared-images/example-disk-1.qcow2

4. On the host that you want to use for sharing the storage, add the sharing directory to the 
/etc/exports file. The following example shares the /var/lib/libvirt/shared-images directory
with the example-source-machine and example-destination-machine hosts:

# /var/lib/libvirt/shared-images example-source-machine(rw,no_root_squash) example-
destination-machine(rw,no\_root_squash)

5. On both the source and destination host, mount the shared directory in the 
/var/lib/libvirt/images directory:

# mount example-shared-storage:/var/lib/libvirt/shared-images /var/lib/libvirt/images

Verification

CHAPTER 10. MIGRATING VIRTUAL MACHINES

97

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/deploying-an-nfs-server_deploying-different-types-of-servers


Start the VM on the source host and observe if it boots successfully.

Additional resources

Deploying an NFS server

10.6. MIGRATING A VIRTUAL MACHINE BY USING THE COMMAND-
LINE INTERFACE

If the current host of a virtual machine (VM) becomes unsuitable or cannot be used anymore, or if you
want to redistribute the hosting workload, you can migrate the VM to another KVM host. The following
procedure provides instructions and examples for various scenarios of such migrations.

Prerequisites

The source host and the destination host both use the KVM hypervisor.

The source host and the destination host are able to reach each other over the network. Use the
ping utility to verify this.

Ensure the following ports are open on the destination host.

Port 22 is needed for connecting to the destination host by using SSH.

Port 16509 is needed for connecting to the destination host by using TLS.

Port 16514 is needed for connecting to the destination host by using TCP.

Ports 49152-49215 are needed by QEMU for transfering the memory and disk migration
data.

For the migration to be supportable by Red Hat, the source host and destination host must be
using specific operating systems and machine types. To ensure this is the case, see Supported
hosts for virtual machine migration.

The VM must be compatible with the CPU features of the destination host. To ensure this is the
case, see Verifying host CPU compatibility for virtual machine migration .

The disk images of VMs that will be migrated are located on a separate networked location
accessible to both the source host and the destination host. This is optional for offline
migration, but required for migrating a running VM.
For instructions to set up such shared VM storage, see Sharing virtual machine disk images with
other hosts.

When migrating a running VM, your network bandwidth must be higher than the rate in which the
VM generates dirty memory pages.
To obtain the dirty page rate of your VM before you start the live migration, do the following:

Monitor the rate of dirty page generation of the VM for a short period of time.

# virsh domdirtyrate-calc example-VM 30

After the monitoring finishes, obtain its results:

# virsh domstats example-VM --dirtyrate

Red Hat Enterprise Linux 8 Configuring and managing virtualization

98

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/deploying-an-nfs-server_deploying-different-types-of-servers


Domain: 'example-VM'
  dirtyrate.calc_status=2
  dirtyrate.calc_start_time=200942
  dirtyrate.calc_period=30
  dirtyrate.megabytes_per_second=2

In this example, the VM is generating 2 MB of dirty memory pages per second. Attempting
to live-migrate such a VM on a network with a bandwidth of 2 MB/s or less will cause the live
migration not to progress if you do not pause the VM or lower its workload.

To ensure that the live migration finishes successfully, Red Hat recommends that your
network bandwidth is significantly greater than the VM’s dirty page generation rate.

When migrating an existing VM in a public bridge tap network, the source and destination hosts
must be located on the same network. Otherwise, the VM network will not operate after
migration.

NOTE

The value of the calc_period option might differ based on the workload and dirty page
rate. You can experiment with several calc_period values to determine the most suitable
period that aligns with the dirty page rate in your environment.

Ensure that the libvirtd service is enabled and running.

# systemctl enable --now libvirtd.service

Procedure

1. Use the virsh migrate command with options appropriate for your migration requirements.

a. The following command migrates the example-VM-1 VM from your local host to the system
connection of the example-destination host by using an SSH tunnel. The VM keeps
running during the migration.

# virsh migrate --persistent --live example-VM-1 qemu+ssh://example-destination/system

b. The following commands enable you to make manual adjustments to the configuration of
the example-VM-2 VM running on your local host, and then migrate the VM to the 
example-destination host. The migrated VM will automatically use the updated
configuration.

# virsh dumpxml --migratable example-VM-2 > example-VM-2.xml
# vi example-VM-2.xml
# virsh migrate --live --persistent --xml example-VM-2.xml example-VM-2 
qemu+ssh://example-destination/system

This procedure can be useful for example when the destination host needs to use a different
path to access the shared VM storage or when configuring a feature specific to the
destination host.

c. The following command suspends the example-VM-3 VM from the example-source host,
migrates it to the example-destination host, and instructs it to use the adjusted XML
configuration, provided by the example-VM-3-alt.xml file. When the migration is

CHAPTER 10. MIGRATING VIRTUAL MACHINES

99



completed, libvirt resumes the VM on the destination host.

# virsh migrate example-VM-3 qemu+ssh://example-source/system qemu+ssh://example-
destination/system --xml example-VM-3-alt.xml

After the migration, the VM is in the shut off state on the source host, and the migrated
copy is deleted after it is shut down.

d. The following deletes the shut-down example-VM-4 VM from the example-source host,
and moves its configuration to the example-destination host.

# virsh migrate --offline --persistent --undefinesource example-VM-4 
qemu+ssh://example-source/system qemu+ssh://example-destination/system

Note that this type of migration does not require moving the VM’s disk image to shared
storage. However, for the VM to be usable on the destination host, you also need to migrate
the VM’s disk image. For example:

# scp root@example-source:/var/lib/libvirt/images/example-VM-4.qcow2 root@example-
destination:/var/lib/libvirt/images/example-VM-4.qcow2

e. The following command migrates the example-VM-5 VM to the example-destination host
and uses multiple parallel connections, also known as multiple file descriptors (multi-FD)
migration. With multi-FD migration, you can speed up the migration by utilizing all of the
available network bandwidth for the migration process.

# virsh migrate --parallel --parallel-connections 4 <example-VM-5> 
qemu+ssh://<example-destination>/system

This example uses 4 multi-FD channels to migrate the example-VM-5 VM. It is
recommended to use one channel for each 10 Gbps of available network bandwidth. The
default value is 2 channels.

2. Wait for the migration to complete. The process may take some time depending on network
bandwidth, system load, and the size of the VM. If the --verbose option is not used for virsh 
migrate, the CLI does not display any progress indicators except errors.
When the migration is in progress, you can use the virsh domjobinfo utility to display the
migration statistics.

Verification

On the destination host, list the available VMs to verify if the VM has been migrated:

# virsh list
Id      Name             State
----------------------------------
10    example-VM-1      running

If the migration is still running, this command will list the VM state as paused.

Troubleshooting

In some cases, the target host will not be compatible with certain values of the migrated VM’s
XML configuration, such as the network name or CPU type. As a result, the VM will fail to boot

Red Hat Enterprise Linux 8 Configuring and managing virtualization

100



on the target host. To fix these problems, you can update the problematic values by using the 
virsh edit command. After updating the values, you must restart the VM for the changes to be
applied.

If a live migration is taking a long time to complete, this may be because the VM is under heavy
load and too many memory pages are changing for live migration to be possible. To fix this
problem, change the migration to a non-live one by suspending the VM.

# virsh suspend example-VM-1

Additional resources

virsh migrate --help command

virsh (1) man page

10.7. LIVE MIGRATING A VIRTUAL MACHINE BY USING THE WEB
CONSOLE

If you wish to migrate a virtual machine (VM) that is performing tasks which require it to be constantly
running, you can migrate that VM to another KVM host without shutting it down. This is also known as
live migration. The following instructions explain how to do so by using the web console.

WARNING

For tasks that modify memory pages faster than KVM can transfer them, such as
heavy I/O load tasks, it is recommended that you do not live migrate the VM.

Prerequisites

The web console VM plug-in is installed on your system .

The source and destination hosts are running.

Ensure the following ports are open on the destination host.

Port 22 is needed for connecting to the destination host by using SSH.

Port 16509 is needed for connecting to the destination host by using TLS.

Port 16514 is needed for connecting to the destination host by using TCP.

Ports 49152-49215 are needed by QEMU for transfering the memory and disk migration
data.

The VM must be compatible with the CPU features of the destination host. To ensure this is the
case, see Verifying host CPU compatibility for virtual machine migration .

The VM’s disk images are located on a shared storage that is accessible to the source host as
well as the destination host.



CHAPTER 10. MIGRATING VIRTUAL MACHINES

101



When migrating a running VM, your network bandwidth must be higher than the rate in which the
VM generates dirty memory pages.
To obtain the dirty page rate of your VM before you start the live migration, do the following in
your command-line interface:

a. Monitor the rate of dirty page generation of the VM for a short period of time.

# virsh domdirtyrate-calc vm-name 30

b. After the monitoring finishes, obtain its results:

# virsh domstats vm-name --dirtyrate
Domain: 'vm-name'
  dirtyrate.calc_status=2
  dirtyrate.calc_start_time=200942
  dirtyrate.calc_period=30
  dirtyrate.megabytes_per_second=2

In this example, the VM is generating 2 MB of dirty memory pages per second. Attempting
to live-migrate such a VM on a network with a bandwidth of 2 MB/s or less will cause the live
migration not to progress if you do not pause the VM or lower its workload.

To ensure that the live migration finishes successfully, Red Hat recommends that your
network bandwidth is significantly greater than the VM’s dirty page generation rate.

NOTE

The value of the calc_period option might differ based on the workload and dirty page
rate. You can experiment with several calc_period values to determine the most suitable
period that aligns with the dirty page rate in your environment.

Procedure

1. In the Virtual Machines interface of the web console, click the Menu button ⋮ of the VM that
you want to migrate.
A drop down menu appears with controls for various VM operations.

2. Click Migrate
The Migrate VM to another host dialog appears.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

102



3. Enter the URI of the destination host.

4. Configure the duration of the migration:

Permanent - Do not check the box if you wish to migrate the VM permanently. Permanent
migration completely removes the VM configuration from the source host.

Temporary - Temporary migration migrates a copy of the VM to the destination host. This
copy is deleted from the destination host when the VM is shut down. The original VM
remains on the source host.

5. Click Migrate
Your VM is migrated to the destination host.

Verification

To verify whether the VM has been successfully migrated and is working correctly:

Confirm whether the VM appears in the list of VMs available on the destination host.

Start the migrated VM and observe if it boots up.

10.8. TROUBLESHOOTING VIRTUAL MACHINE MIGRATIONS

If you are facing one of the following problems when migrating virtual machines (VMs), see the provided
instructions to fix or avoid the issue.

10.8.1. Live migration of a VM takes a long time without completing

Cause

In some cases, migrating a running VM might cause the the VM to generate dirty memory pages  faster
than they can be migrated. When this occurs, the migration cannot complete successfully.

The following scenarios frequently cause this problem:

Live migrating a VM under a heavy load

Live migrating a VM that uses a large amount of memory, such as 1 TB or more

IMPORTANT

Red Hat has successfully tested live migration of VMs with up to 6 TB of memory.
However, for live migration scenarios that involve VMs with more than 1 TB of
memory, customers should reach out to Red Hat technical support.

CHAPTER 10. MIGRATING VIRTUAL MACHINES

103

https://access.redhat.com/support/contact/technicalSupport


Diagnosis

If your VM live migration is taking longer than expected, use the virsh domjobinfo command to obtain
the memory page data for the VM:

# virsh domjobinfo vm-name

Job type:         Unbounded
Operation:        Outgoing migration
Time elapsed:     168286974    ms
Data processed:   26.106 TiB
Data remaining:   34.383 MiB
Data total:       10.586 TiB
Memory processed: 26.106 TiB
Memory remaining: 34.383 MiB
Memory total:     10.586 TiB
Memory bandwidth: 29.056 MiB/s
Dirty rate: 17225 pages/s
Page size: 4096 bytes

In this output, the multiplication of Dirty rate and Page size is greater than Memory bandwidth. This
means that the VM is generating dirty memory pages faster than the network can migrate them. As a
consequence, the state of the VM on the destination host cannot converge with the state of the VM on
the source host, which prevents the migration from completing.

Fix

To improve the chances that a stalled live migration finishes successfully, you can do any of the
following:

Reduce the workload of the VM, especially memory updates.

To do this, stop or cancel non-essential processes in the guest operating system of the
source VM.

Increase the downtime allowed for the live migration:

a. Display the current maximum downtime at the end of a live migration for the VM that is
being migrated:

# virsh migrate-getmaxdowntime vm-name

b. Set a higher maximum downtime:

# virsh migrate-setmaxdowntime vm-name downtime-in-miliseconds

The higher you set the maximum downtime, the more likely it will be for the migration to
complete.

Switch the live migration to post-copy mode.

# virsh migrate-start-postcopy vm-name

This ensures that the memory pages of the VM can converge on the destination host, and
that the migration can complete.

However, when post-copy mode is active, the VM might slow down significantly, due to

Red Hat Enterprise Linux 8 Configuring and managing virtualization

104



However, when post-copy mode is active, the VM might slow down significantly, due to
remote page requests from the destination host to the source host. In addition, if the
network connection between the source host and the destination host stops working during
post-copy migration, some of the VM processes may halt due to missing memory pages.

Therefore, do not use post-copy migration if the VM availability is critical or if the migration
network is unstable.

If your workload allows it, suspend the VM and let the migration finish as a non-live migration.
This increases the downtime of the VM, but in most cases ensures that the migration completes
successfully.

Prevention

The probability of successfully completing a live migration of a VM depends on the following:

The workload of the VM during the migration

Before starting the migration, stop or cancel non-essential processes in the guest operating
system of the VM.

The network bandwidth that the host can use for migration

For optimal results of a live migration, the bandwidth of the network used for the migration
must be significantly higher than the dirty page generation of the VM. For instructions on
obtaining the VM dirty page generation rate, see the Prerequisites in Migrating a virtual
machine by using the command-line interface.

Both the source host and the destination host must have a dedicated network interface
controller (NIC) for the migration. For live migrating a VM with more than 1 TB of memory,
Red Hat recommends a NIC with the speed of 25 Gb/s or more.

You can also specify the network bandwidth assigned to the live migration by using the --
bandwidth option when initiating the migration. For migrating very large VMs, assign as
much bandwidth as viable for your deployment.

The mode of live migration

The default pre-copy migration mode copies memory pages repeatedly if they become
dirty.

Post-copy migration copies memory pages only once.
To enable your live migration to switch to post-copy mode if the migration stalls, use the --
postcopy option with virsh migrate when starting the migration.

The downtime specified for the deployment

You can adjust this during the migration by using virsh migrate-setmaxdowntime as
described previously.

10.9. SUPPORTED HOSTS FOR VIRTUAL MACHINE MIGRATION

For the virtual machine (VM) migration to work properly and be supported by Red Hat, the source and
destination hosts must be specific RHEL versions and machine types. The following table shows
supported VM migration paths.

Table 10.2. Live migration compatibility

CHAPTER 10. MIGRATING VIRTUAL MACHINES

105



Migration method Release type Example Support status

Forward Major release 7.6+ → 8.1 On supported RHEL 7
systems: machine types
i440fx and q35

Backward Major release 8.1 → 7.6+ On supported RHEL 8
systems: machine types
i440fx and q35

Forward Minor release 8.0.1+ → 8.1+ On supported RHEL 7
systems: machine types
i440fx and q35 on
RHEL 7.6.0 and later.

On supported RHEL 8
systems: machine type
q35.

Backward Minor release 8.1 → 8.0.1 On supported RHEL 7
systems. Fully supported
for machine types
i440fx and q35.

On supported RHEL 8
systems: machine type
q35.

Additional resources

Red Hat Enterprise Linux life cycle

10.10. ADDITIONAL RESOURCES

Converting virtual machines from other hypervisors to KVM with virt-v2v in RHEL 7 and RHEL 8

Red Hat Enterprise Linux 8 Configuring and managing virtualization

106

https://access.redhat.com/support/policy/updates/errata/#RHEL8_Life_Cycle
https://access.redhat.com/articles/1351473


CHAPTER 11. MANAGING VIRTUAL DEVICES
One of the most effective ways to manage the functionality, features, and performance of a virtual
machine (VM) is to adjust its virtual devices.

The following sections provide a general overview of what virtual devices are, and instructions on how to
manage them using the CLI or the web console.

11.1. HOW VIRTUAL DEVICES WORK

Just like physical machines, virtual machines (VMs) require specialized devices to provide functions to
the system, such as processing power, memory, storage, networking, or graphics. Physical systems
usually use hardware devices for these purposes. However, because VMs work as software implements,
they need to use software abstractions of such devices instead, referred to as virtual devices.

The basics

Virtual devices attached to a VM can be configured when creating the VM, and can also be managed on
an existing VM. Generally, virtual devices can be attached or detached from a VM only when the VM is
shut off, but some can be added or removed when the VM is running. This feature is referred to as
device hot plug and hot unplug.

When creating a new VM, libvirt automatically creates and configures a default set of essential virtual
devices, unless specified otherwise by the user. These are based on the host system architecture and
machine type, and usually include:

the CPU

memory

a keyboard

a network interface controller (NIC)

various device controllers

a video card

a sound card

To manage virtual devices after the VM is created, use the command-line interface (CLI). However, to
manage virtual storage devices and NICs, you can also use the RHEL 8 web console.

Performance or flexibility

For some types of devices, RHEL 8 supports multiple implementations, often with a trade-off between
performance and flexibility.

For example, the physical storage used for virtual disks can be represented by files in various formats,
such as qcow2 or raw, and presented to the VM by using a variety of controllers:

an emulated controller

virtio-scsi

virtio-blk

An emulated controller is slower than a virtio controller, because virtio devices are designed specifically

CHAPTER 11. MANAGING VIRTUAL DEVICES

107



An emulated controller is slower than a virtio controller, because virtio devices are designed specifically
for virtualization purposes. On the other hand, emulated controllers make it possible to run operating
systems that have no drivers for virtio devices. Similarly, virtio-scsi offers a more complete support for
SCSI commands, and makes it possible to attach a larger number of disks to the VM. Finally, virtio-blk
provides better performance than both virtio-scsi and emulated controllers, but a more limited range of
use-cases. For example, attaching a physical disk as a LUN device to a VM is not possible when using 
virtio-blk.

For more information about types of virtual devices, see Types of virtual devices.

Additional resources

Managing storage for virtual machines

Using the web console for managing virtual machine network interfaces

Managing NVIDIA vGPU devices

11.2. TYPES OF VIRTUAL DEVICES

Virtualization in RHEL 8 can present several distinct types of virtual devices that you can attach to
virtual machines (VMs):

Emulated devices

Emulated devices are software implementations of widely used physical devices. Drivers designed for
physical devices are also compatible with emulated devices. Therefore, emulated devices can be
used very flexibly.
However, since they need to faithfully emulate a particular type of hardware, emulated devices may
suffer a significant performance loss compared with the corresponding physical devices or more
optimized virtual devices.

The following types of emulated devices are supported:

Virtual CPUs (vCPUs), with a large choice of CPU models available. The performance impact
of emulation depends significantly on the differences between the host CPU and the
emulated vCPU.

Emulated system components, such as PCI bus controllers.

Emulated storage controllers, such as SATA, SCSI or even IDE.

Emulated sound devices, such as ICH9, ICH6 or AC97.

Emulated graphics cards, such as VGA or QXL cards.

Emulated network devices, such as rtl8139.

Paravirtualized devices

Paravirtualization provides a fast and efficient method for exposing virtual devices to VMs.
Paravirtualized devices expose interfaces that are designed specifically for use in VMs, and thus
significantly increase device performance. RHEL 8 provides paravirtualized devices to VMs by using
the virtio API as a layer between the hypervisor and the VM. The drawback of this approach is that it
requires a specific device driver in the guest operating system.
It is recommended to use paravirtualized devices instead of emulated devices for VM whenever
possible, notably if they are running I/O intensive applications. Paravirtualized devices decrease I/O

Red Hat Enterprise Linux 8 Configuring and managing virtualization

108



latency and increase I/O throughput, in some cases bringing them very close to bare-metal
performance. Other paravirtualized devices also add functionality to VMs that is not otherwise
available.

The following types of paravirtualized devices are supported:

The paravirtualized network device (virtio-net).

Paravirtualized storage controllers:

virtio-blk - provides block device emulation.

virtio-scsi - provides more complete SCSI emulation.

The paravirtualized clock.

The paravirtualized serial device (virtio-serial).

The balloon device (virtio-balloon), used to dynamically distribute memory between a VM
and its host.

The paravirtualized random number generator (virtio-rng).

The paravirtualized graphics card (QXL).

Physically shared devices

Certain hardware platforms enable VMs to directly access various hardware devices and
components. This process is known as device assignment or passthrough.
When attached in this way, some aspects of the physical device are directly available to the VM as
they would be to a physical machine. This provides superior performance for the device when used in
the VM. However, devices physically attached to a VM become unavailable to the host, and also
cannot be migrated.

Nevertheless, some devices can be shared across multiple VMs. For example, a single physical device
can in certain cases provide multiple mediated devices, which can then be assigned to distinct VMs.

The following types of passthrough devices are supported:

USB, PCI, and SCSI passthrough - expose common industry standard buses directly to VMs in
order to make their specific features available to guest software.

Single-root I/O virtualization (SR-IOV) - a specification that enables hardware-enforced
isolation of PCI Express resources. This makes it safe and efficient to partition a single physical
PCI resource into virtual PCI functions. It is commonly used for network interface cards (NICs).

N_Port ID virtualization (NPIV) - a Fibre Channel technology to share a single physical host bus
adapter (HBA) with multiple virtual ports.

GPUs and vGPUs - accelerators for specific kinds of graphic or compute workloads. Some
GPUs can be attached directly to a VM, while certain types also offer the ability to create virtual
GPUs (vGPUs) that share the underlying physical hardware.

NOTE

CHAPTER 11. MANAGING VIRTUAL DEVICES

109



NOTE

Some devices of these types might be unsupported or not compatible with RHEL. If you
require assistance with setting up virtual devices, consult Red Hat support.

11.3. MANAGING DEVICES ATTACHED TO VIRTUAL MACHINES BY
USING THE CLI

To modify the functionality of your virtual machine (VM), you can manage the devices attached to your
VM by using the command-line interface (CLI).

You can use the CLI to:

Attach devices

Modify devices

Remove devices

11.3.1. Attaching devices to virtual machines

You can add a specific functionality to your virtual machines (VMs) by attaching a new virtual device.

The following procedure creates and attaches virtual devices to your virtual machines (VMs) by using
the command-line interface (CLI). Some devices can also be attached to VMs using the RHEL web
console.

For example, you can increase the storage capacity of a VM by attaching a new virtual disk device to it.
This is also referred to as memory hot plug.

WARNING

Removing a memory device from a VM, also known as memory hot unplug, is not
supported in RHEL 8, and Red Hat highly discourages its use.

Prerequisites

Obtain the required options for the device you intend to attach to a VM. To see the available
options for a specific device, use the virt-xml --device=? command. For example:

# virt-xml --network=?
--network options:
[...]
address.unit
boot_order
clearxml
driver_name
[...]



Red Hat Enterprise Linux 8 Configuring and managing virtualization

110



Procedure

1. To attach a device to a VM, use the virt-xml --add-device command, including the definition of
the device and the required options:

For example, the following command creates a 20GB newdisk qcow2 disk image in the 
/var/lib/libvirt/images/ directory, and attaches it as a virtual disk to the running testguest
VM on the next start-up of the VM:

# virt-xml testguest --add-device --disk 
/var/lib/libvirt/images/newdisk.qcow2,format=qcow2,size=20
Domain 'testguest' defined successfully.
Changes will take effect after the domain is fully powered off.

The following attaches a USB flash drive, attached as device 004 on bus 002 on the host,
to the testguest2 VM while the VM is running:

# virt-xml testguest2 --add-device --update --hostdev 002.004
Device hotplug successful.
Domain 'testguest2' defined successfully.

The bus-device combination for defining the USB can be obtained by using the lsusb
command.

Verification

To verify the device has been added, do any of the following:

Use the virsh dumpxml command and see if the device’s XML definition has been added to the
<devices> section in the VM’s XML configuration.
For example, the following output shows the configuration of the testguest VM and confirms
that the 002.004 USB flash disk device has been added.

# virsh dumpxml testguest
[...]
<hostdev mode='subsystem' type='usb' managed='yes'>
  <source>
    <vendor id='0x4146'/>
    <product id='0x902e'/>
    <address bus='2' device='4'/>
  </source>
  <alias name='hostdev0'/>
  <address type='usb' bus='0' port='3'/>
</hostdev>
[...]

Run the VM and test if the device is present and works properly.

Additional resources

The man virt-xml command

11.3.2. Modifying devices attached to virtual machines

You can change the functionality of your virtual machines (VMs) by editing a configuration of the

CHAPTER 11. MANAGING VIRTUAL DEVICES

111



You can change the functionality of your virtual machines (VMs) by editing a configuration of the
attached virtual devices. For example, if you want to optimize the performance of your VMs, you can
change their virtual CPU models to better match the CPUs of the hosts.

The following procedure provides general instructions for modifying virtual devices by using the
command-line interface (CLI). Some devices attached to your VM, such as disks and NICs, can also be
modified using the RHEL 8 web console .

Prerequisites

Obtain the required options for the device you intend to attach to a VM. To see the available
options for a specific device, use the virt-xml --device=? command. For example:

# virt-xml --network=?
--network options:
[...]
address.unit
boot_order
clearxml
driver_name
[...]

Optional: Back up the XML configuration of your VM by using virsh dumpxml vm-name and
sending the output to a file. For example, the following backs up the configuration of your
testguest1 VM as the testguest1.xml file:

# virsh dumpxml testguest1 > testguest1.xml
# cat testguest1.xml
<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
  <name>testguest1</name>
  <uuid>ede29304-fe0c-4ca4-abcd-d246481acd18</uuid>
  [...]
</domain>

Procedure

1. Use the virt-xml --edit command, including the definition of the device and the required
options:
For example, the following clears the <cpu> configuration of the shut-off testguest VM and sets
it to host-model:

# virt-xml testguest --edit --cpu host-model,clearxml=yes
Domain 'testguest' defined successfully.

Verification

To verify the device has been modified, do any of the following:

Run the VM and test if the device is present and reflects the modifications.

Use the virsh dumpxml command and see if the device’s XML definition has been modified in
the VM’s XML configuration.
For example, the following output shows the configuration of the testguest VM and confirms
that the CPU mode has been configured as host-model.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

112



# virsh dumpxml testguest
[...]
<cpu mode='host-model' check='partial'>
  <model fallback='allow'/>
</cpu>
[...]

Troubleshooting

If modifying a device causes your VM to become unbootable, use the virsh define utility to
restore the XML configuration by reloading the XML configuration file you backed up previously.

# virsh define testguest.xml

NOTE

For small changes to the XML configuration of your VM, you can use the virsh edit
command - for example virsh edit testguest. However, do not use this method for more
extensive changes, as it is more likely to break the configuration in ways that could
prevent the VM from booting.

Additional resources

The man virt-xml command

11.3.3. Removing devices from virtual machines

You can change the functionality of your virtual machines (VMs) by removing a virtual device. For
example, you can remove a virtual disk device from one of your VMs if it is no longer needed.

The following procedure demonstrates how to remove virtual devices from your virtual machines (VMs)
by using the command-line interface (CLI). Some devices, such as disks or NICs, can also be removed
from VMs using the RHEL 8 web console .

Prerequisites

Optional: Back up the XML configuration of your VM by using virsh dumpxml vm-name and
sending the output to a file. For example, the following backs up the configuration of your
testguest1 VM as the testguest1.xml file:

# virsh dumpxml testguest1 > testguest1.xml
# cat testguest1.xml
<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
  <name>testguest1</name>
  <uuid>ede29304-fe0c-4ca4-abcd-d246481acd18</uuid>
  [...]
</domain>

Procedure

1. Use the virt-xml --remove-device command, including a definition of the device. For example:

The following removes the storage device marked as vdb from the running testguest VM

CHAPTER 11. MANAGING VIRTUAL DEVICES

113



The following removes the storage device marked as vdb from the running testguest VM
after it shuts down:

# virt-xml testguest --remove-device --disk target=vdb
Domain 'testguest' defined successfully.
Changes will take effect after the domain is fully powered off.

The following immediately removes a USB flash drive device from the running testguest2
VM:

# virt-xml testguest2 --remove-device --update --hostdev type=usb
Device hotunplug successful.
Domain 'testguest2' defined successfully.

Troubleshooting

If removing a device causes your VM to become unbootable, use the virsh define utility to
restore the XML configuration by reloading the XML configuration file you backed up previously.

# virsh define testguest.xml

Additional resources

The man virt-xml command

11.4. MANAGING HOST DEVICES BY USING THE WEB CONSOLE

To modify the functionality of your virtual machine (VM), you can manage the host devices attached to
your VM by using the RHEL 8 web console.

Host devices are physical devices that are attached to the host system. Based on your requirements,
you can enable your VMs to directly access these hardware devices and components.

You can use the web console to:

View devices

Attach devices

Remove devices

11.4.1. Viewing devices attached to virtual machines by using the web console

Before adding or modifying the devices attached to your virtual machine (VM), you may want to view
the devices that are already attached to your VM. The following procedure provides instructions for
viewing such devices by using the web console.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

Red Hat Enterprise Linux 8 Configuring and managing virtualization

114



1. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with detailed information about the VM.

2. Scroll to the Host devices section.

Additional resources

Managing virtual devices

11.4.2. Attaching devices to virtual machines by using the web console

To add specific functionalities to your virtual machine (VM), you can use the web console to attach host
devices to the VM.

NOTE

Attaching multiple host devices at the same time does not work. You can attach only one
device at a time.

For more information, see RHEL 8 Known Issues.

Prerequisites

If you are attaching PCI devices, ensure that the status of the managed attribute of the 
hostdev element is set to yes.

NOTE

When attaching PCI devices to your VM, do not omit the managed attribute of
the hostdev element, or set it to no. If you do so, PCI devices cannot
automatically detach from the host when you pass them to the VM. They also
cannot automatically reattach to the host when you turn off the VM.

As a consequence, the host may become unresponsive or shut down
unexpectedly.

You can find the status of the managed attribute in your VM’s XML configuration. The
following example opens the XML configuration of the example-VM-1 VM.

# virsh edit example-VM-1

Back up important data from the VM.

Optional: Back up the XML configuration of your VM. For example, to back up the example-
VM-1 VM:

# virsh dumpxml example-VM-1 > example-VM-1.xml

CHAPTER 11. MANAGING VIRTUAL DEVICES

115

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/8.5_release_notes/known-issues#known-issue_virtualization


The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM to which you want to attach a host device.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Host devices.
The Host devices section displays information about the devices attached to the VM as well as
options to Add or Remove devices.

3. Click Add host device.
The Add host device dialog appears.

4. Select the device you wish to attach to the VM.

5. Click Add
The selected device is attached to the VM.

Verification

Run the VM and check if the device appears in the Host devices section.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

116



11.4.3. Removing devices from virtual machines by using the web console

To free up resources, modify the functionalities of your VM, or both, you can use the web console to
modify the VM and remove host devices that are no longer required.

WARNING

Removing attached USB host devices by using the web console may fail because of
incorrect correlation between the device and bus numbers of the USB device.

For more information, see RHEL 8 Known Issues.

As a workaround, remove the <hostdev> part of the USB device, from the XML
configuration of VM by using the virsh utility. The following example opens the XML
configuration of the example-VM-1 VM:

# virsh edit <example-VM-1>

Prerequisites

The web console VM plug-in is installed on your system .

Optional: Back up the XML configuration of your VM by using virsh dumpxml example-VM-1
and sending the output to a file. For example, the following backs up the configuration of your
testguest1 VM as the testguest1.xml file:

# virsh dumpxml testguest1 > testguest1.xml
# cat testguest1.xml
<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
  <name>testguest1</name>
  <uuid>ede29304-fe0c-4ca4-abcd-d246481acd18</uuid>
  [...]
</domain>

Procedure

1. In the Virtual Machines interface, click the VM from which you want to remove a host device.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Host devices.
The Host devices section displays information about the devices attached to the VM as well as
options to Add or Remove devices.



CHAPTER 11. MANAGING VIRTUAL DEVICES

117

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/8.6_release_notes/known-issues#known-issue_virtualization


3. Click the Remove button next to the device you want to remove from the VM.
A remove device confirmation dialog appears.

4. Click Remove.
The device is removed from the VM.

Troubleshooting

If removing a host device causes your VM to become unbootable, use the virsh define utility to
restore the XML configuration by reloading the XML configuration file you backed up previously.

# virsh define testguest1.xml

11.5. MANAGING VIRTUAL USB DEVICES

When using a virtual machine (VM), you can access and control a USB device, such as a flash drive or a
web camera, that is attached to the host system. In this scenario, the host system passes control of the
device to the VM. This is also known as a USB-passthrough.

The following sections provide information about using the command line to:

Attach a USB device  to a VM

Remove a USB device  from a VM

11.5.1. Attaching USB devices to virtual machines

To attach a USB device to a virtual machine (VM), you can include the USB device information in the
XML configuration file of the VM.

Prerequisites

Ensure the device you want to pass through to the VM is attached to the host.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

118



Procedure

1. Locate the bus and device values of the USB that you want to attach to the VM.
For example, the following command displays a list of USB devices attached to the host. The
device we will use in this example is attached on bus 001 as device 005.

# lsusb
[...]
Bus 001 Device 003: ID 2567:0a2b Intel Corp.
Bus 001 Device 005: ID 0407:6252 Kingston River 2.0
[...]

2. Use the virt-xml utility along with the --add-device argument.
For example, the following command attaches a USB flash drive to the example-VM-1 VM.

# virt-xml example-VM-1 --add-device --hostdev 001.005
Domain 'example-VM-1' defined successfully.

NOTE

To attach a USB device to a running VM, add the --update argument to the previous
command.

Verification

Run the VM and test if the device is present and works as expected.

Use the virsh dumpxml command to see if the device’s XML definition has been added to the
<devices> section in the VM’s XML configuration file.

# virsh dumpxml example-VM-1
[...]
<hostdev mode='subsystem' type='usb' managed='yes'>
  <source>
    <vendor id='0x0407'/>
    <product id='0x6252'/>
    <address bus='1' device='5'/>
  </source>
  <alias name='hostdev0'/>
  <address type='usb' bus='0' port='3'/>
</hostdev>
[...]

Additional resources

The virt-xml (1) man page

Attaching devices to virtual machines

11.5.2. Removing USB devices from virtual machines

To remove a USB device from a virtual machine (VM), you can remove the USB device information from
the XML configuration of the VM.

CHAPTER 11. MANAGING VIRTUAL DEVICES

119



Procedure

1. Locate the bus and device values of the USB that you want to remove from the VM.
For example, the following command displays a list of USB devices attached to the host. The
device we will use in this example is attached on bus 001 as device 005.

# lsusb
[...]
Bus 001 Device 003: ID 2567:0a2b Intel Corp.
Bus 001 Device 005: ID 0407:6252 Kingston River 2.0
[...]

2. Use the virt-xml utility along with the --remove-device argument.
For example, the following command removes a USB flash drive, attached to the host as device
005 on bus 001, from the example-VM-1 VM.

# virt-xml example-VM-1 --remove-device --hostdev 001.005
Domain 'example-VM-1' defined successfully.

NOTE

To remove a USB device from a running VM, add the --update argument to the previous
command.

Verification

Run the VM and check if the device has been removed from the list of devices.

Additional resources

The virt-xml (1) man page

Attaching devices to virtual machines

11.5.3. Attaching smart card readers to virtual machines

If you have a smart card reader attached to a host, you can also make it available to virtual machines
(VMs) on that host. Libvirt provides a specialized virtual device that presents a smart card interface to
the guest VM. It is recommended you only use the spicevmc device type, which utilizes the SPICE
remote display protocol to tunnel authentication requests to the host.

Although it is possible to use standard device passthrough with smart card readers, this method does
not make the device available on both the host and guest system. As a consequence, you could lock the
host system when you attach the smart card reader to the VM.

IMPORTANT

The SPICE remote display protocol has become deprecated in RHEL 8. Since the only
recommended way to attach smart card readers to VMs depends on the SPICE protocol,
the usage of smart cards in guest VMs is also deprecated in RHEL 8.

In a future major version of RHEL, the functionality of attaching smart card readers to
VMs will only be supported by third party remote visualization solutions.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

120



Prerequisites

Ensure the smart card reader you want to pass through to the VM is attached to the host.

Ensure the smart card reader type is supported in RHEL 8 .

Procedure

Create and attach a virtual smart card reader device to a VM. For example, to attach a smart
card reader to the testguest VM:

# virt-xml testguest --add-device --smartcard mode=passthrough,type=spicevmc
Domain 'testguest' defined successfully.
Changes will take effect after the domain is fully powered off.

NOTE

To attach a virtual smart card reader device to a running VM, add the --update
argument to the previous command.

Verification

1. View the XML configuration of the VM.

# virsh dumpxml testguest

2. Ensure the XML configuration contains the following smart card device definition.

11.6. MANAGING VIRTUAL OPTICAL DRIVES

When using a virtual machine (VM), you can access information stored in an ISO image on the host. To
do so, attach the ISO image to the VM as a virtual optical drive, such as a CD drive or a DVD drive.

The following sections provide information about using the command line to:

Attach a drive and an ISO image  to a VM

Attach a CD-ROM to a running VM

Replace an ISO image  in a virtual optical drive

Remove an ISO image  from a virtual optical drive

Remove a drive  from the VM

Remove a CD-ROM from a running VM

11.6.1. Attaching optical drives to virtual machines

To attach an ISO image as a virtual optical drive, edit the XML configuration file of the virtual machine
(VM) and add the new drive.

Prerequisites

<smartcard mode='passthrough' type='spicevmc'/>

CHAPTER 11. MANAGING VIRTUAL DEVICES

121

https://access.redhat.com/articles/4253861


Prerequisites

You must store and copy path of the ISO image on the host machine.

Procedure

Use the virt-xml utility with the --add-device argument:
For example, the following command attaches the example-ISO-name ISO image, stored in the
/home/username/Downloads directory, to the example-VM-name VM.

# virt-xml example-VM-name --add-device --disk /home/username/Downloads/example-ISO-
name.iso,device=cdrom
Domain 'example-VM-name' defined successfully.

Verification

Run the VM and test if the device is present and works as expected.

Additional resources

The man virt-xml command

Attaching devices to virtual machines

11.6.2. Adding a CD-ROM to a running virtual machine by using the web console

You can use the web console to insert a CD-ROM to a running virtual machine (VM) without specifying
the media.

Prerequisites

You have installed the web console VM plug-in on your system .

Procedure

1. Shut down the VM.

2. Attach a virtual CD-ROM device without specifying a source image.

# virt-xml vmname --add-device --disk target.dev=sda,device=cdrom

3. Run the VM.

4. Open the web console and in the Virtual Machines interface, click the VM to which you want to
attach a CD-ROM.

5. Scroll to Disks.
The Disks section displays information about the disks assigned to the VM, as well as options to
Add or Edit disks.

6. Click the Insert option for the cdrom device.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

122



7. Choose a Source for the file you want to attach:

Custom Path: The file is located in a custom directory on the host machine.

Use existing: The file is located in the storage pools that you have created.

8. Click Insert.

Verification

In the Virtual Machines interface, the file will appear under the Disks section.

11.6.3. Replacing ISO images in virtual optical drives

To replace an ISO image attached as a virtual optical drive to a virtual machine (VM), edit the XML
configuration file of the VM and specify the replacement.

Prerequisites

You must store the ISO image on the host machine.

You must know the path to the ISO image.

Procedure

1. Locate the target device where the CD-ROM is attached to the VM. You can find this
information in the VM’s XML configuration file.
For example, the following command displays the example-VM-name VM’s XML configuration
file, where the target device for CD-ROM is sda.

2. Use the virt-xml utility with the --edit argument.
For example, the following command replaces the example-ISO-name ISO image, attached to
the example-VM-name VM at target sda, with the example-ISO-name-2 ISO image stored in
the /dev/cdrom directory.

# virt-xml example-VM-name --edit target=sda --disk /dev/cdrom/example-ISO-name-2.iso
Domain 'example-VM-name' defined successfully.

Verification

# virsh dumpxml example-VM-name
...
<disk>
  ...
  <source file='$(/home/username/Downloads/example-ISO-name.iso)'/>
  <target dev='sda' bus='sata'/>
  ...
</disk>
...

CHAPTER 11. MANAGING VIRTUAL DEVICES

123



Verification

Run the VM and test if the device is replaced and works as expected.

Additional resources

The man virt-xml command

11.6.4. Removing ISO images from virtual optical drives

To remove an ISO image from a virtual optical drive attached to a virtual machine (VM), edit the XML
configuration file of the VM.

Procedure

1. Locate the target device where the CD-ROM is attached to the VM. You can find this
information in the VM’s XML configuration file.
For example, the following command displays the example-VM-name VM’s XML configuration
file, where the target device for CD-ROM is sda.

# virsh dumpxml example-VM-name
...
<disk>
  ...
  <source file='$(/home/username/Downloads/example-ISO-name.iso)'/>
  <target dev='sda' bus='sata'/>
  ...
</disk>
...

2. Use the virt-xml utility with the --edit argument.
For example, the following command removes the example-ISO-name ISO image from the CD
drive attached to the example-VM-name VM.

# virt-xml example-VM-name --edit target=sda --disk path=
Domain 'example-VM-name' defined successfully.

Verification

Run the VM and check that image is no longer available.

Additional resources

The man virt-xml command

11.6.5. Removing optical drives from virtual machines

To remove an optical drive attached to a virtual machine (VM), edit the XML configuration file of the
VM.

Procedure

1. Locate the target device where the CD-ROM is attached to the VM. You can find this
information in the VM’s XML configuration file.
For example, the following command displays the example-VM-name VM’s XML configuration

Red Hat Enterprise Linux 8 Configuring and managing virtualization

124



For example, the following command displays the example-VM-name VM’s XML configuration
file, where the target device for CD-ROM is sda.

# virsh dumpxml example-VM-name
...
<disk type='file' device='cdrom'>
  <driver name='qemu' type='raw'/>
  <target dev='sda' bus='sata'/>
  ...
</disk>
...

2. Use the virt-xml utility with the --remove-device argument.
For example, the following command removes the optical drive attached as target sda from the
example-VM-name VM.

# virt-xml example-VM-name --remove-device --disk target=sda
Domain 'example-VM-name' defined successfully.

Verification

Confirm that the device is no longer listed in the XML configuration file of the VM.

Additional resources

The man virt-xml command

11.6.6. Removing a CD-ROM from a running virtual machine by using the web console

You can use the web console to eject a CD-ROM device from a running virtual machine (VM).

Prerequisites

You have installed the web console VM plug-in on your system .

Procedure

1. In the Virtual Machines interface, click the VM from which you want to remove the CD-ROM.

2. Scroll to Disks.
The Disks section displays information about the disks assigned to the VM, as well as options to
Add or Edit disks.

3. Click the Eject option for the cdrom device.
The Eject media from VM? dialog box opens.

4. Click Eject.

Verification

CHAPTER 11. MANAGING VIRTUAL DEVICES

125



Verification

In the Virtual Machines interface, the attached file is no longer displayed under the Disks
section.

11.7. MANAGING SR-IOV DEVICES

An emulated virtual device often uses more CPU and memory than a hardware network device. This can
limit the performance of a virtual machine (VM). However, if any devices on your virtualization host
support Single Root I/O Virtualization (SR-IOV), you can use this feature to improve the device
performance, and possibly also the overall performance of your VMs.

11.7.1. What is SR-IOV?

Single-root I/O virtualization (SR-IOV) is a specification that enables a single PCI Express (PCIe) device
to present multiple separate PCI devices, called virtual functions  (VFs), to the host system. Each of
these devices:

Is able to provide the same or similar service as the original PCIe device.

Appears at a different address on the host PCI bus.

Can be assigned to a different VM by using VFIO assignment.

For example, a single SR-IOV capable network device can present VFs to multiple VMs. While all of the
VFs use the same physical card, the same network connection, and the same network cable, each of the
VMs directly controls its own hardware network device, and uses no extra resources from the host.

How SR-IOV works

The SR-IOV functionality is possible thanks to the introduction of the following PCIe functions:

Physical functions (PFs) - A PCIe function that provides the functionality of its device (for
example networking) to the host, but can also create and manage a set of VFs. Each SR-IOV
capable device has one or more PFs.

Virtual functions (VFs) - Lightweight PCIe functions that behave as independent devices. Each
VF is derived from a PF. The maximum number of VFs a device can have depends on the device
hardware. Each VF can be assigned only to a single VM at a time, but a VM can have multiple
VFs assigned to it.

VMs recognize VFs as virtual devices. For example, a VF created by an SR-IOV network device appears
as a network card to a VM to which it is assigned, in the same way as a physical network card appears to
the host system.

Figure 11.1. SR-IOV architecture

Red Hat Enterprise Linux 8 Configuring and managing virtualization

126



Figure 11.1. SR-IOV architecture

Advantages

The primary advantages of using SR-IOV VFs rather than emulated devices are:

Improved performance

Reduced use of host CPU and memory resources

For example, a VF attached to a VM as a vNIC performs at almost the same level as a physical NIC, and
much better than paravirtualized or emulated NICs. In particular, when multiple VFs are used
simultaneously on a single host, the performance benefits can be significant.

Disadvantages

To modify the configuration of a PF, you must first change the number of VFs exposed by the
PF to zero. Therefore, you also need to remove the devices provided by these VFs from the VM
to which they are assigned.

A VM with an VFIO-assigned devices attached, including SR-IOV VFs, cannot be migrated to
another host. In some cases, you can work around this limitation by pairing the assigned device
with an emulated device. For example, you can bond an assigned networking VF to an emulated
vNIC, and remove the VF before the migration.

In addition, VFIO-assigned devices require pinning of VM memory, which increases the memory
consumption of the VM and prevents the use of memory ballooning on the VM.

Additional resources

CHAPTER 11. MANAGING VIRTUAL DEVICES

127

https://access.redhat.com/solutions/67546


Supported devices for SR-IOV assignment

Configuring passthrough PCI devices on IBM Z

11.7.2. Attaching SR-IOV networking devices to virtual machines

To attach an SR-IOV networking device to a virtual machine (VM) on an Intel or AMD host, you must
create a virtual function (VF) from an SR-IOV capable network interface on the host and assign the VF
as a device to a specified VM. For details, see the following instructions.

Prerequisites

The CPU and the firmware of your host support the I/O Memory Management Unit (IOMMU).

If using an Intel CPU, it must support the Intel Virtualization Technology for Directed I/O
(VT-d).

If using an AMD CPU, it must support the AMD-Vi feature.

The host system uses Access Control Service (ACS) to provide direct memory access (DMA)
isolation for PCIe topology. Verify this with the system vendor.
For additional information, see Hardware Considerations for Implementing SR-IOV .

The physical network device supports SR-IOV. To verify if any network devices on your system
support SR-IOV, use the lspci -v command and look for Single Root I/O Virtualization (SR-
IOV) in the output.

# lspci -v
[...]
02:00.0 Ethernet controller: Intel Corporation 82576 Gigabit Network Connection (rev 01)
 Subsystem: Intel Corporation Gigabit ET Dual Port Server Adapter
 Flags: bus master, fast devsel, latency 0, IRQ 16, NUMA node 0
 Memory at fcba0000 (32-bit, non-prefetchable) [size=128K]
[...]
 Capabilities: [150] Alternative Routing-ID Interpretation (ARI)
 Capabilities: [160] Single Root I/O Virtualization (SR-IOV)
 Kernel driver in use: igb
 Kernel modules: igb
[...]

The host network interface you want to use for creating VFs is running. For example, to activate
the eth1 interface and verify it is running:

# ip link set eth1 up
# ip link show eth1
8: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode 
DEFAULT qlen 1000
   link/ether a0:36:9f:8f:3f:b8 brd ff:ff:ff:ff:ff:ff
   vf 0 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
   vf 1 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
   vf 2 MAC 00:00:00:00:00:00, spoof checking on, link-state auto
   vf 3 MAC 00:00:00:00:00:00, spoof checking on, link-state auto

For SR-IOV device assignment to work, the IOMMU feature must be enabled in the host BIOS
and kernel. To do so:

On an Intel host, enable VT-d:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

128

https://www.ibm.com/docs/en/linux-on-systems?topic=vfio-pass-through-pci
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.0/html/hardware_considerations_for_implementing_sr-iov/index


On an Intel host, enable VT-d:

i. Regenerate the GRUB configuration with the intel_iommu=on and iommu=pt
parameters:

# grubby --args="intel_iommu=on iommu=pt" --update-kernel=ALL

ii. Reboot the host.

On an AMD host, enable AMD-Vi:

i. Regenerate the GRUB configuration with the iommu=pt parameter:

# grubby --args="iommu=pt" --update-kernel=ALL

ii. Reboot the host.

Procedure

1. Optional: Confirm the maximum number of VFs your network device can use. To do so, use the
following command and replace eth1 with your SR-IOV compatible network device.

# cat /sys/class/net/eth1/device/sriov_totalvfs
7

2. Use the following command to create a virtual function (VF):

# echo VF-number > /sys/class/net/network-interface/device/sriov_numvfs

In the command, replace:

VF-number with the number of VFs you want to create on the PF.

network-interface with the name of the network interface for which the VFs will be created.

The following example creates 2 VFs from the eth1 network interface:

# echo 2 > /sys/class/net/eth1/device/sriov_numvfs

3. Verify the VFs have been added:

# lspci | grep Ethernet
82:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network 
Connection (rev 01)
82:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network 
Connection (rev 01)
82:10.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 
01)
82:10.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual Function (rev 
01)

4. Make the created VFs persistent by creating a udev rule for the network interface you used to
create the VFs. For example, for the eth1 interface, create the /etc/udev/rules.d/eth1.rules file,
and add the following line:

CHAPTER 11. MANAGING VIRTUAL DEVICES

129



This ensures that the two VFs that use the ixgbe driver will automatically be available for the 
eth1 interface when the host starts. If you do not require persistent SR-IOV devices, skip this
step.

WARNING

Currently, the setting described above does not work correctly when
attempting to make VFs persistent on Broadcom NetXtreme II BCM57810
adapters. In addition, attaching VFs based on these adapters to Windows
VMs is currently not reliable.

5. Hot-plug one of the newly added VF interface devices to a running VM.

# virsh attach-interface testguest1 hostdev 0000:82:10.0 --managed --live --config

Verification

If the procedure is successful, the guest operating system detects a new network interface card.

11.7.3. Supported devices for SR-IOV assignment

Not all devices can be used for SR-IOV. The following devices have been tested and verified as
compatible with SR-IOV in RHEL 8.

Networking devices

Intel 82599ES 10 Gigabit Ethernet Controller - uses the ixgbe driver

Intel Ethernet Controller XL710 Series - uses the i40e driver

Mellanox ConnectX-5 Ethernet Adapter Cards - use the mlx5_core driver

Intel Ethernet Network Adapter XXV710 - uses the i40e driver

Intel 82576 Gigabit Ethernet Controller - uses the igb driver

Broadcom NetXtreme II BCM57810 - uses the bnx2x driver

Ethernet Controller E810-C for QSFP - uses the ice driver

SFC9220 10/40G Ethernet Controller - uses the sfc driver

FastLinQ QL41000 Series 10/25/40/50GbE Controller - uses the qede driver

MT2892 Family [ConnectX-6 Dx] - uses the mlx5_core driver

ACTION=="add", SUBSYSTEM=="net", ENV{ID_NET_DRIVER}=="ixgbe", 
ATTR{device/sriov_numvfs}="2"



Red Hat Enterprise Linux 8 Configuring and managing virtualization

130



Storage devices

Non-Volatile memory controller: Samsung Electronics Co Ltd NVMe SSD Controller
172Xa/172Xb (rev 01)

Non-Volatile memory controller: Toshiba Corporation Cx5 NVMe SSD Controller (rev 01)

NOTE

Non-volatile memory devices are not supported on ARM 64 systems.

11.8. ATTACHING DASD DEVICES TO VIRTUAL MACHINES ON IBM Z

By using the vfio-ccw feature, you can assign direct-access storage devices (DASDs) as mediated
devices to your virtual machines (VMs) on IBM Z hosts. This for example makes it possible for the VM to
access a z/OS dataset, or to provide the assigned DASDs to a z/OS machine.

Prerequisites

You have a system with IBM Z hardware architecture supported with the FICON protocol.

You have a target VM of a Linux operating system.

The driverctl package is installed.

# yum install driverctl

The necessary vfio kernel modules have been loaded on the host.

# lsmod | grep vfio

The output of this command must contain the following modules:

vfio_ccw

vfio_mdev

vfio_iommu_type1

You have a spare DASD device for exclusive use by the VM, and you know the identifier of the
device.
The following procedure uses 0.0.002c as an example. When performing the commands, replace
0.0.002c with the identifier of your DASD device.

Procedure

1. Obtain the subchannel identifier of the DASD device.

# lscss -d 0.0.002c
Device   Subchan.  DevType CU Type Use  PIM PAM POM  CHPIDs
----------------------------------------------------------------------
0.0.002c 0.0.29a8  3390/0c 3990/e9 yes  f0  f0  ff   02111221 00000000

In this example, the subchannel identifier is detected as 0.0.29a8. In the following commands of

CHAPTER 11. MANAGING VIRTUAL DEVICES

131



In this example, the subchannel identifier is detected as 0.0.29a8. In the following commands of
this procedure, replace 0.0.29a8 with the detected subchannel identifier of your device.

2. If the lscss command in the previous step only displayed the header output and no device
information, perform the following steps:

a. Remove the device from the cio_ignore list.

# cio_ignore -r 0.0.002c

b. In the guest OS, edit the kernel command line  of the VM and add the device identifier with a
! mark to the line that starts with cio_ignore=, if it is not present already.

cio_ignore=all,!condev,!0.0.002c

c. Repeat step 1 on the host to obtain the subchannel identifier.

3. Bind the subchannel to the vfio_ccw passthrough driver.

# driverctl -b css set-override 0.0.29a8 vfio_ccw

NOTE

This binds the 0.0.29a8 subchannel to vfio_ccw persistently, which means the
DASD will not be usable on the host. If you need to use the device on the host,
you must first remove the automatic binding to 'vfio_ccw' and rebind the
subchannel to the default driver:

# driverctl -b css unset-override 0.0.29a8

4. Define and start the DASD mediated device.

# cat nodedev.xml
<device>
    <parent>css_0_0_29a8</parent>
    <capability type="mdev">
        <type id="vfio_ccw-io"/>
    </capability>
</device>

# virsh nodedev-define nodedev.xml
Node device 'mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8' defined from 
'nodedev.xml'

# virsh nodedev-start mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8
Device mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8 started

5. Shut down the VM, if it is running.

6. Display the UUID of the previously defined device and save it for the next step.

# virsh nodedev-dumpxml mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8

<device>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

132

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel


  <name>mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8</name>
  <parent>css_0_0_29a8</parent>
  <capability type='mdev'>
    <type id='vfio_ccw-io'/>
    <uuid>30820a6f-b1a5-4503-91ca-0c10ba12345a</uuid>
    <iommuGroup number='0'/>
    <attr name='assign_adapter' value='0x02'/>
    <attr name='assign_domain' value='0x002b'/>
  </capability>
</device>

7. Attach the mediated device to the VM. To do so, use the virsh edit utility to edit the XML
configuration of the VM, add the following section to the XML, and replace the uuid value with
the UUID you obtained in the previous step.

8. Optional: Configure the mediated device to start automatically on host boot.

# virsh nodedev-autostart mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8

Verification

1. Ensure that the mediated device is configured correctly.

# virsh nodedev-info mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8
Name:           mdev_30820a6f_b1a5_4503_91ca_0c10ba12345a_0_0_29a8
Parent:         css_0_0_0121
Active:         yes
Persistent:     yes
Autostart:      yes

2. Obtain the identifier that libvirt assigned to the mediated DASD device. To do so, display the
XML configuration of the VM and look for a vfio-ccw device.

# virsh dumpxml vm-name

<domain>
[...]
    <hostdev mode='subsystem' type='mdev' managed='no' model='vfio-ccw'>
      <source>
        <address uuid='10620d2f-ed4d-437b-8aff-beda461541f9'/>
      </source>
      <alias name='hostdev0'/>
      <address type='ccw' cssid='0xfe' ssid='0x0' devno='0x0009'/>
    </hostdev>
[...]
</domain>

In this example, the assigned identifier of the device is 0.0.0009.

<hostdev mode='subsystem' type='mdev' model='vfio-ccw'>
  <source>
    <address uuid="30820a6f-b1a5-4503-91ca-0c10ba12345a"/>
  </source>
</hostdev>

CHAPTER 11. MANAGING VIRTUAL DEVICES

133



3. Start the VM and log in to its guest OS.

4. In the guest OS, confirm that the DASD device is listed. For example:

# lscss | grep 0.0.0009
0.0.0009 0.0.0007  3390/0c 3990/e9      f0  f0  ff   12212231 00000000

5. In the guest OS, set the device online. For example:

# chccwdev -e 0.0009
Setting device 0.0.0009 online
Done

Additional resources

IBM documentation on cio_ignore

Configuring kernel parameters at runtime

11.9. ATTACHING A WATCHDOG DEVICE TO A VIRTUAL MACHINE BY
USING THE WEB CONSOLE

To force the virtual machine (VM) to perform a specified action when it stops responding, you can
attach virtual watchdog devices to a VM.

Prerequisites

You have installed the web console VM plug-in on your system. For more information, see
Section 6.2, “Setting up the web console to manage virtual machines” .

Procedure

1. In the command line interface, install the watchdog service.
# yum install watchdog

2. Shut down the VM.

3. Add the watchdog service to the VM.
# virt-xml vmname  --add-device --watchdog action=reset --update

4. Run the VM.

5. Open the web console and in the Virtual Machines interface of the web console, click on the
VM to which you want to add the watchdog device.

6. Click add next to the Watchdog field in the Overview pane.
The Add watchdog device type dialog appears.

7. Select the action that you want the watchdog device to perform if the VM stops responding.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

134

https://www.ibm.com/docs/en/linux-on-systems?topic=parameters-cio-ignore
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-parameters-at-runtime_managing-monitoring-and-updating-the-kernel


8. Click Add.

Verification

The action you selected is visible next to the Watchdog field in the Overview pane.

11.10. ATTACHING PCI DEVICES TO VIRTUAL MACHINES ON IBM Z

By using the vfio-pci device driver, you can assign PCI devices in pass-through mode to your virtual
machines (VMs) on IBM Z hosts. This for example makes it possible for the VM to use NVMe flash disks
for handling databases.

Prerequisites

You have a host system with the IBM Z hardware architecture.

You have a target VM of Linux operating system.

The necessary vfio kernel modules have been loaded on the host.

# lsmod | grep vfio

The output of this command must contain the following modules:

vfio_pci

vfio_pci_core

vfio_iommu_type1

Procedure

1. Obtain the PCI address identifier of the device that you want to use.

CHAPTER 11. MANAGING VIRTUAL DEVICES

135



# lspci -nkD

0000:00:00.0 0000: 1014:04ed
 Kernel driver in use: ism
 Kernel modules: ism
0001:00:00.0 0000: 1014:04ed
 Kernel driver in use: ism
 Kernel modules: ism
0002:00:00.0 0200: 15b3:1016
 Subsystem: 15b3:0062
 Kernel driver in use: mlx5_core
 Kernel modules: mlx5_core
0003:00:00.0 0200: 15b3:1016
 Subsystem: 15b3:0062
 Kernel driver in use: mlx5_core
 Kernel modules: mlx5_core

2. Open the XML configuration of the VM to which you want to attach the PCI device.

# virsh edit vm-name

3. Add the following <hostdev> configuration to the <devices> section of the XML file.
Replace the values on the address line with the PCI address of your device. For example, if the
device address is 0003:00:00.0, use the following configuration:

<hostdev mode="subsystem" type="pci" managed="yes">
  <driver name="vfio"/>
   <source>
    <address domain="0x0003" bus="0x00" slot="0x00" function="0x0"/>
   </source>
   <address type="pci"/>
</hostdev>

4. Optional: To modify how the guest operating system will detect the PCI device, you can also
add a <zpci> sub-element to the <address> element. In the <zpci> line, you can adjust the uid
and fid values, which modifies the PCI address and function ID of the device in the guest
operating system.

<hostdev mode="subsystem" type="pci" managed="yes">
  <driver name="vfio"/>
   <source>
    <address domain="0x0003" bus="0x00" slot="0x00" function="0x0"/>
   </source>
   <address type="pci">
     <zpci uid="0x0008" fid="0x001807"/>
   </address>
</hostdev>

In this example:

uid="0x0008" sets the domain PCI address of the device in the VM to 0008:00:00.0.

fid="0x001807" sets the slot value of the device to 0x001807. As a result, the device

Red Hat Enterprise Linux 8 Configuring and managing virtualization

136



fid="0x001807" sets the slot value of the device to 0x001807. As a result, the device
configuration in the file system of the VM is saved to 
/sys/bus/pci/slots/00001087/address.
If these values are not specified, libvirt configures them automatically.

5. Save the XML configuration.

6. If the VM is running, shut it down.

# virsh shutdown vm-name

Verification

1. Start the VM and log in to its guest operating system.

2. In the guest operating system, confirm that the PCI device is listed.
For example, if the device address is 0003:00:00.0, use the following command:

# lspci -nkD | grep 0003:00:00.0

0003:00:00.0 8086:9a09 (rev 01)

CHAPTER 11. MANAGING VIRTUAL DEVICES

137



CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES
A virtual machine (VM), just like a physical machine, requires storage for data, program, and system files.
As a VM administrator, you can assign physical or network-based storage to your VMs as virtual storage.
You can also modify how the storage is presented to a VM regardless of the underlying hardware.

The following sections provide information about the different types of VM storage, how they work, and
how you can manage them by using the CLI or the web console.

12.1. UNDERSTANDING VIRTUAL MACHINE STORAGE

If you are new to virtual machine (VM) storage, or are unsure about how it works, the following sections
provide a general overview about the various components of VM storage, how it works, management
basics, and the supported solutions provided by Red Hat.

You can find information about:

Storage pools

Storage volumes

Managing storage using libvirt

Overview of VM storage

Supported and unsupported storage pool types

12.1.1. Introduction to storage pools

A storage pool is a file, directory, or storage device, managed by libvirt to provide storage for virtual
machines (VMs). You can divide storage pools into storage volumes, which store VM images or are
attached to VMs as additional storage.

Furthermore, multiple VMs can share the same storage pool, allowing for better allocation of storage
resources.

Storage pools can be persistent or transient:

A persistent storage pool survives a system restart of the host machine. You can use the 
virsh pool-define to create a persistent storage pool.

A transient storage pool only exists until the host reboots. You can use the virsh pool-
create command to create a transient storage pool.

Storage pool storage types

Storage pools can be either local or network-based (shared):

Local storage pools
Local storage pools are attached directly to the host server. They include local directories,
directly attached disks, physical partitions, and Logical Volume Management (LVM) volume
groups on local devices.

Local storage pools are useful for development, testing, and small deployments that do not
require migration or have a large number of VMs.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

138



Networked (shared) storage pools
Networked storage pools include storage devices shared over a network by using standard
protocols.

12.1.2. Introduction to storage volumes

Storage pools are divided into storage volumes. Storage volumes are abstractions of physical
partitions, LVM logical volumes, file-based disk images, and other storage types handled by libvirt.
Storage volumes are presented to VMs as local storage devices, such as disks, regardless of the
underlying hardware.

On the host machine, a storage volume is referred to by its name and an identifier for the storage pool
from which it derives. On the virsh command line, this takes the form --pool storage_pool 
volume_name.

For example, to display information about a volume named firstimage in the guest_images pool.

# virsh vol-info --pool guest_images firstimage
  Name:             firstimage
  Type:             block
  Capacity:         20.00 GB
  Allocation:       20.00 GB

12.1.3. Storage management by using libvirt

By using the libvirt remote protocol, you can manage all aspects of VM storage. These operations can
also be performed on a remote host. Consequently, a management application that uses libvirt, such as
the RHEL web console, can be used to perform all the required tasks of configuring the storage of a VM.

You can use the libvirt API to query the list of volumes in a storage pool or to get information regarding
the capacity, allocation, and available storage in that storage pool. For storage pools that support it, you
can also use the libvirt API to create, clone, resize, and delete storage volumes. Furthermore, you can
use the libvirt API to upload data to storage volumes, download data from storage volumes, or wipe
data from storage volumes.

12.1.4. Overview of storage management

To illustrate the available options for managing storage, the following example talks about a sample NFS
server that uses mount -t nfs nfs.example.com:/path/to/share /path/to/data.

As a storage administrator:

You can define an NFS storage pool on the virtualization host to describe the exported server
path and the client target path. Consequently, libvirt can mount the storage either
automatically when libvirt is started or as needed while libvirt is running.

You can simply add the storage pool and storage volume to a VM by name. You do not need to
add the target path to the volume. Therefore, even if the target client path changes, it does not
affect the VM.

You can configure storage pools to autostart. When you do so, libvirt automatically mounts the
NFS shared disk on the directory which is specified when libvirt is started. libvirt mounts the
share on the specified directory, similar to the command mount 
nfs.example.com:/path/to/share /vmdata.

You can query the storage volume paths by using the libvirt API. These storage volumes are

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

139



You can query the storage volume paths by using the libvirt API. These storage volumes are
basically the files present in the NFS shared disk. You can then copy these paths into the section
of a VM’s XML definition that describes the source storage for the VM’s block devices.

In the case of NFS, you can use an application that uses the libvirt API to create and delete
storage volumes in the storage pool (files in the NFS share) up to the limit of the size of the pool
(the storage capacity of the share).
Note that, not all storage pool types support creating and deleting volumes.

You can stop a storage pool when no longer required. Stopping a storage pool (pool-destroy)
undoes the start operation, in this case, unmounting the NFS share. The data on the share is not
modified by the destroy operation, despite what the name of the command suggests. For more
information, see man virsh.

12.1.5. Supported and unsupported storage pool types

Supported storage pool types

The following is a list of storage pool types supported by RHEL:

Directory-based storage pools

Disk-based storage pools

Partition-based storage pools

GlusterFS storage pools

iSCSI-based storage pools

LVM-based storage pools

NFS-based storage pools

SCSI-based storage pools with vHBA devices

Multipath-based storage pools

RBD-based storage pools

Unsupported storage pool types

The following is a list of libvirt storage pool types not supported by RHEL:

Sheepdog-based storage pools

Vstorage-based storage pools

ZFS-based storage pools

12.2. MANAGING VIRTUAL MACHINE STORAGE POOLS BY USING THE
CLI

You can use the CLI to manage the following aspects of your storage pools to assign storage to your
virtual machines (VMs):

Red Hat Enterprise Linux 8 Configuring and managing virtualization

140



View storage pool information

Create storage pools

Create directory-based storage pools by using the CLI

Create disk-based storage pools by using the CLI

Create filesystem-based storage pools by using the CLI

Create GlusterFS-based storage pools by using the CLI

Create iSCSI-based storage pools by using the CLI

Create LVM-based storage pools by using the CLI

Create NFS-based storage pools by using the CLI

Create SCSI-based storage pools with vHBA devices by using the CLI

Remove storage pools

12.2.1. Viewing storage pool information by using the CLI

By using the CLI, you can view a list of all storage pools with limited or full details about the storage
pools. You can also filter the storage pools listed.

Procedure

Use the virsh pool-list command to view storage pool information.

# virsh pool-list --all --details
 Name                State    Autostart  Persistent    Capacity  Allocation   Available
 default             running  yes        yes          48.97 GiB   23.93 GiB   25.03 GiB
 Downloads           running  yes        yes         175.62 GiB   62.02 GiB  113.60 GiB
 RHEL-Storage-Pool   running  yes        yes         214.62 GiB   93.02 GiB  168.60 GiB

Additional resources

The virsh pool-list --help command

12.2.2. Creating directory-based storage pools by using the CLI

A directory-based storage pool is based on a directory in an existing mounted file system. This is useful,
for example, when you want to use the remaining space on the file system for other purposes. You can
use the virsh utility to create directory-based storage pools.

Prerequisites

Ensure your hypervisor supports directory storage pools:

# virsh pool-capabilities | grep "'dir' supported='yes'"

If the command displays any output, directory pools are supported.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

141



Procedure

1. Create a storage pool
Use the virsh pool-define-as command to define and create a directory-type storage pool. For
example, to create a storage pool named guest_images_dir that uses the /guest_images
directory:

# virsh pool-define-as guest_images_dir dir --target "/guest_images"
Pool guest_images_dir defined

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see Directory-based storage pool parameters .

2. Create the storage pool target path
Use the virsh pool-build command to create a storage pool target path for a pre-formatted file
system storage pool, initialize the storage source device, and define the format of the data.

# virsh pool-build guest_images_dir
  Pool guest_images_dir built

# ls -la /guest_images
  total 8
  drwx------.  2 root root 4096 May 31 19:38 .
  dr-xr-xr-x. 25 root root 4096 May 31 19:38 ..

3. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                 State      Autostart
  -----------------------------------------
  default              active     yes
  guest_images_dir     inactive   no

4. Start the storage pool
Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_dir
  Pool guest_images_dir started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

5. [Optional] Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

# virsh pool-autostart guest_images_dir
  Pool guest_images_dir marked as autostarted

Red Hat Enterprise Linux 8 Configuring and managing virtualization

142



Verification

Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

# virsh pool-info guest_images_dir
  Name:           guest_images_dir
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

12.2.3. Creating disk-based storage pools by using the CLI

In a disk-based storage pool, the pool is based on a disk partition. This is useful, for example, when you
want to have an entire disk partition dedicated as virtual machine (VM) storage. You can use the virsh
utility to create disk-based storage pools.

Prerequisites

Ensure your hypervisor supports disk-based storage pools:

# virsh pool-capabilities | grep "'disk' supported='yes'"

If the command displays any output, disk-based pools are supported.

Prepare a device on which you will base the storage pool. For this purpose, prefer partitions (for
example, /dev/sdb1) or LVM volumes. If you provide a VM with write access to an entire disk or
block device (for example, /dev/sdb), the VM will likely partition it or create its own LVM groups
on it. This can result in system errors on the host.
However, if you require using an entire block device for the storage pool, Red Hat recommends
protecting any important partitions on the device from GRUB’s os-prober function. To do so,
edit the /etc/default/grub file and apply one of the following configurations:

Disable os-prober.

GRUB_DISABLE_OS_PROBER=true

Prevent os-prober from discovering a specific partition. For example:

GRUB_OS_PROBER_SKIP_LIST="5ef6313a-257c-4d43@/dev/sdb1"

Back up any data on the selected storage device before creating a storage pool. Depending on
the version of libvirt being used, dedicating a disk to a storage pool may reformat and erase all
data currently stored on the disk device.

Procedure

1. Create a storage pool

Use the virsh pool-define-as command to define and create a disk-type storage pool. The

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

143



Use the virsh pool-define-as command to define and create a disk-type storage pool. The
following example creates a storage pool named guest_images_disk that uses the /dev/sdb
device and is mounted on the /dev directory.

# virsh pool-define-as guest_images_disk disk --source-format=gpt --source-dev=/dev/sdb --
target /dev
Pool guest_images_disk defined

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see Disk-based storage pool parameters .

2. Create the storage pool target path
Use the virsh pool-build command to create a storage pool target path for a pre-formatted
file-system storage pool, initialize the storage source device, and define the format of the data.

# virsh pool-build guest_images_disk
  Pool guest_images_disk built

NOTE

Building the target path is only necessary for disk-based, file system-based, and
logical storage pools. If libvirt detects that the source storage device’s data
format differs from the selected storage pool type, the build fails, unless the 
overwrite option is specified.

3. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                 State      Autostart
  -----------------------------------------
  default              active     yes
  guest_images_disk    inactive   no

4. Start the storage pool
Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_disk
  Pool guest_images_disk started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

5. [Optional] Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

144



# virsh pool-autostart guest_images_disk
  Pool guest_images_disk marked as autostarted

Verification

Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

# virsh pool-info guest_images_disk
  Name:           guest_images_disk
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

12.2.4. Creating filesystem-based storage pools by using the CLI

When you want to create a storage pool on a file system that is not mounted, use the filesystem-based
storage pool. This storage pool is based on a given file-system mountpoint. You can use the virsh utility
to create filesystem-based storage pools.

Prerequisites

Ensure your hypervisor supports filesystem-based storage pools:

# virsh pool-capabilities | grep "'fs' supported='yes'"

If the command displays any output, file-based pools are supported.

Prepare a device on which you will base the storage pool. For this purpose, prefer partitions (for
example, /dev/sdb1) or LVM volumes. If you provide a VM with write access to an entire disk or
block device (for example, /dev/sdb), the VM will likely partition it or create its own LVM groups
on it. This can result in system errors on the host.
However, if you require using an entire block device for the storage pool, Red Hat recommends
protecting any important partitions on the device from GRUB’s os-prober function. To do so,
edit the /etc/default/grub file and apply one of the following configurations:

Disable os-prober.

GRUB_DISABLE_OS_PROBER=true

Prevent os-prober from discovering a specific partition. For example:

GRUB_OS_PROBER_SKIP_LIST="5ef6313a-257c-4d43@/dev/sdb1"

Procedure

1. Create a storage pool

Use the virsh pool-define-as command to define and create a filesystem-type storage pool.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

145



Use the virsh pool-define-as command to define and create a filesystem-type storage pool.
For example, to create a storage pool named guest_images_fs that uses the /dev/sdc1
partition, and is mounted on the /guest_images directory:

# virsh pool-define-as guest_images_fs fs --source-dev /dev/sdc1 --target /guest_images
Pool guest_images_fs defined

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see Filesystem-based storage pool parameters .

2. Define the storage pool target path
Use the virsh pool-build command to create a storage pool target path for a pre-formatted
file-system storage pool, initialize the storage source device, and define the format of the data.

# virsh pool-build guest_images_fs
  Pool guest_images_fs built

# ls -la /guest_images
  total 8
  drwx------.  2 root root 4096 May 31 19:38 .
  dr-xr-xr-x. 25 root root 4096 May 31 19:38 ..

3. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                 State      Autostart
  -----------------------------------------
  default              active     yes
  guest_images_fs      inactive   no

4. Start the storage pool
Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_fs
  Pool guest_images_fs started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

5. Optional: Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

# virsh pool-autostart guest_images_fs
  Pool guest_images_fs marked as autostarted

Verification

Red Hat Enterprise Linux 8 Configuring and managing virtualization

146



1. Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

# virsh pool-info guest_images_fs
  Name:           guest_images_fs
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

2. Verify there is a lost+found directory in the target path on the file system, indicating that the
device is mounted.

# mount | grep /guest_images
  /dev/sdc1 on /guest_images type ext4 (rw)

# ls -la /guest_images
  total 24
  drwxr-xr-x.  3 root root  4096 May 31 19:47 .
  dr-xr-xr-x. 25 root root  4096 May 31 19:38 ..
  drwx------.  2 root root 16384 May 31 14:18 lost+found

12.2.5. Creating GlusterFS-based storage pools by using the CLI

GlusterFS is a user-space file system that uses the File System in Userspace (FUSE) software interface.
If you want to have a storage pool on a Gluster server, you can use the virsh utility to create GlusterFS-
based storage pools.

Prerequisites

Before you can create GlusterFS-based storage pool on a host, prepare a Gluster.

a. Obtain the IP address of the Gluster server by listing its status with the following command:

# gluster volume status
Status of volume: gluster-vol1
Gluster process                           Port Online Pid
------------------------------------------------------------
Brick 222.111.222.111:/gluster-vol1       49155   Y    18634

Task Status of Volume gluster-vol1
------------------------------------------------------------
There are no active volume tasks

b. If not installed, install the glusterfs-fuse package.

c. If not enabled, enable the virt_use_fusefs boolean. Check that it is enabled.

# setsebool virt_use_fusefs on
# getsebool virt_use_fusefs
virt_use_fusefs --> on

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

147



Ensure your hypervisor supports GlusterFS-based storage pools:

# virsh pool-capabilities | grep "'gluster' supported='yes'"

If the command displays any output, GlusterFS-based pools are supported.

Procedure

1. Create a storage pool
Use the virsh pool-define-as command to define and create a GlusterFS-based storage pool.
For example, to create a storage pool named guest_images_glusterfs that uses a Gluster
server named gluster-vol1 with IP 111.222.111.222, and is mounted on the root directory of the
Gluster server:

# virsh pool-define-as --name guest_images_glusterfs --type gluster --source-host 
111.222.111.222 --source-name gluster-vol1 --source-path /
Pool guest_images_glusterfs defined

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see GlusterFS-based storage pool parameters .

2. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                    State      Autostart
  --------------------------------------------
  default                 active     yes
  guest_images_glusterfs  inactive   no

3. Start the storage pool
Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_glusterfs
  Pool guest_images_glusterfs started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

4. [Optional] Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

# virsh pool-autostart guest_images_glusterfs
  Pool guest_images_glusterfs marked as autostarted

Verification

Use the virsh pool-info command to verify that the storage pool is in the running state. Check

Red Hat Enterprise Linux 8 Configuring and managing virtualization

148



Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

# virsh pool-info guest_images_glusterfs
  Name:           guest_images_glusterfs
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

12.2.6. Creating iSCSI-based storage pools by using the CLI

Internet Small Computer Systems Interface (iSCSI) is an IP-based storage networking standard for
linking data storage facilities. If you want to have a storage pool on an iSCSI server, you can use the virsh
utility to create iSCSI-based storage pools.

Prerequisites

Ensure your hypervisor supports iSCSI-based storage pools:

# virsh pool-capabilities | grep "'iscsi' supported='yes'"

If the command displays any output, iSCSI-based pools are supported.

Procedure

1. Create a storage pool
Use the virsh pool-define-as command to define and create an iSCSI-type storage pool. For
example, to create a storage pool named guest_images_iscsi that uses the iqn.2010-
05.com.example.server1:iscsirhel7guest IQN on the server1.example.com, and is mounted
on the /dev/disk/by-path path:

# virsh pool-define-as --name guest_images_iscsi --type iscsi --source-host 
server1.example.com --source-dev iqn.2010-05.com.example.server1:iscsirhel7guest --
target /dev/disk/by-path
Pool guest_images_iscsi defined

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see iSCSI-based storage pool parameters .

2. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                 State      Autostart
  -----------------------------------------
  default              active     yes
  guest_images_iscsi   inactive   no

3. Start the storage pool

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

149



Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_iscsi
  Pool guest_images_iscsi started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

4. [Optional] Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

# virsh pool-autostart guest_images_iscsi
  Pool guest_images_iscsi marked as autostarted

Verification

Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

# virsh pool-info guest_images_iscsi
  Name:           guest_images_iscsi
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

12.2.7. Creating LVM-based storage pools by using the CLI

If you want to have a storage pool that is part of an LVM volume group, you can use the virsh utility to
create LVM-based storage pools.

Recommendations

Be aware of the following before creating an LVM-based storage pool:

LVM-based storage pools do not provide the full flexibility of LVM.

libvirt supports thin logical volumes, but does not provide the features of thin storage pools.

LVM-based storage pools are volume groups. You can create volume groups by using the virsh
utility, but this way you can only have one device in the created volume group. To create a
volume group with multiple devices, use the LVM utility instead, see How to create a volume
group in Linux with LVM.
For more detailed information about volume groups, refer to the Red Hat Enterprise Linux
Logical Volume Manager Administration Guide.

LVM-based storage pools require a full disk partition. If you activate a new partition or device by

Red Hat Enterprise Linux 8 Configuring and managing virtualization

150

https://www.redhat.com/sysadmin/create-volume-group


LVM-based storage pools require a full disk partition. If you activate a new partition or device by
using virsh commands, the partition will be formatted and all data will be erased. If you are using
a host’s existing volume group, as in these procedures, nothing will be erased.

Prerequisites

Ensure your hypervisor supports LVM-based storage pools:

# virsh pool-capabilities | grep "'logical' supported='yes'"

If the command displays any output, LVM-based pools are supported.

Procedure

1. Create a storage pool
Use the virsh pool-define-as command to define and create an LVM-type storage pool. For
example, the following command creates a storage pool named guest_images_lvm that uses
the lvm_vg volume group and is mounted on the /dev/lvm_vg directory:

# virsh pool-define-as guest_images_lvm logical --source-name lvm_vg --target 
/dev/lvm_vg
Pool guest_images_lvm defined

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see LVM-based storage pool parameters .

2. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                   State      Autostart
  -------------------------------------------
  default                active     yes
  guest_images_lvm       inactive   no

3. Start the storage pool
Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_lvm
  Pool guest_images_lvm started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

4. [Optional] Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

151



# virsh pool-autostart guest_images_lvm
  Pool guest_images_lvm marked as autostarted

Verification

Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

# virsh pool-info guest_images_lvm
  Name:           guest_images_lvm
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

12.2.8. Creating NFS-based storage pools by using the CLI

If you want to have a storage pool on a Network File System (NFS) server, you can use the virsh utility to
create NFS-based storage pools.

Prerequisites

Ensure your hypervisor supports NFS-based storage pools:

# virsh pool-capabilities | grep "<value>nfs</value>"

If the command displays any output, NFS-based pools are supported.

Procedure

1. Create a storage pool
Use the virsh pool-define-as command to define and create an NFS-type storage pool. For
example, to create a storage pool named guest_images_netfs that uses a NFS server with IP 
111.222.111.222 mounted on the server directory /home/net_mount by using the target
directory /var/lib/libvirt/images/nfspool:

# virsh pool-define-as --name guest_images_netfs --type netfs --source-
host='111.222.111.222' --source-path='/home/net_mount' --source-format='nfs' --
target='/var/lib/libvirt/images/nfspool'

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see NFS-based storage pool parameters .

2. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                 State      Autostart

Red Hat Enterprise Linux 8 Configuring and managing virtualization

152



  -----------------------------------------
  default              active     yes
  guest_images_netfs   inactive   no

3. Start the storage pool
Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_netfs
  Pool guest_images_netfs started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

4. [Optional] Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

# virsh pool-autostart guest_images_netfs
  Pool guest_images_netfs marked as autostarted

Verification

Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

# virsh pool-info guest_images_netfs
  Name:           guest_images_netfs
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

12.2.9. Creating SCSI-based storage pools with vHBA devices by using the CLI

If you want to have a storage pool on a Small Computer System Interface (SCSI) device, your host must
be able to connect to the SCSI device by using a virtual host bus adapter (vHBA). You can then use the 
virsh utility to create SCSI-based storage pools.

Prerequisites

Ensure your hypervisor supports SCSI-based storage pools:

# virsh pool-capabilities | grep "'scsi' supported='yes'"

If the command displays any output, SCSI-based pools are supported.

Before creating a SCSI-based storage pools with vHBA devices, create a vHBA. For more

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

153



Before creating a SCSI-based storage pools with vHBA devices, create a vHBA. For more
information, see Creating vHBAs.

Procedure

1. Create a storage pool
Use the virsh pool-define-as command to define and create SCSI storage pool by using a
vHBA. For example, the following creates a storage pool named guest_images_vhba that uses
a vHBA identified by the scsi_host3 parent adapter, world-wide port number 
5001a4ace3ee047d, and world-wide node number 5001a4a93526d0a1. The storage pool is
mounted on the /dev/disk/ directory:

# virsh pool-define-as guest_images_vhba scsi --adapter-parent scsi_host3 --adapter-
wwnn 5001a4a93526d0a1 --adapter-wwpn 5001a4ace3ee047d --target /dev/disk/
Pool guest_images_vhba defined

If you already have an XML configuration of the storage pool you want to create, you can also
define the pool based on the XML. For details, see Parameters for SCSI-based storage pools
with vHBA devices.

2. Verify that the pool was created
Use the virsh pool-list command to verify that the pool was created.

# virsh pool-list --all

  Name                 State      Autostart
  -----------------------------------------
  default              active     yes
  guest_images_vhba    inactive   no

3. Start the storage pool
Use the virsh pool-start command to mount the storage pool.

# virsh pool-start guest_images_vhba
  Pool guest_images_vhba started

NOTE

The virsh pool-start command is only necessary for persistent storage pools.
Transient storage pools are automatically started when they are created.

4. [Optional] Turn on autostart
By default, a storage pool defined with the virsh command is not set to automatically start each
time virtualization services start. Use the virsh pool-autostart command to configure the
storage pool to autostart.

# virsh pool-autostart guest_images_vhba
  Pool guest_images_vhba marked as autostarted

Verification

Use the virsh pool-info command to verify that the storage pool is in the running state. Check
if the sizes reported are as expected and if autostart is configured correctly.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

154



# virsh pool-info guest_images_vhba
  Name:           guest_images_vhba
  UUID:           c7466869-e82a-a66c-2187-dc9d6f0877d0
  State:          running
  Persistent:     yes
  Autostart:      yes
  Capacity:       458.39 GB
  Allocation:     197.91 MB
  Available:      458.20 GB

12.2.10. Deleting storage pools by using the CLI

To remove a storage pool from your host system, you must stop the pool and remove its XML definition.

Procedure

1. List the defined storage pools by using the virsh pool-list command.

# virsh pool-list --all
Name                 State      Autostart
-------------------------------------------
default              active     yes
Downloads            active     yes
RHEL-Storage-Pool   active     yes

2. Stop the storage pool you want to delete by using the virsh pool-destroy command.

# virsh pool-destroy Downloads
Pool Downloads destroyed

3. Optional: For some types of storage pools, you can remove the directory where the storage
pool resides by using the virsh pool-delete command. Note that to do so, the directory must be
empty.

# virsh pool-delete Downloads
Pool Downloads deleted

4. Delete the definition of the storage pool by using the virsh pool-undefine command.

# virsh pool-undefine Downloads
Pool Downloads has been undefined

Verification

Confirm that the storage pool was deleted.

# virsh pool-list --all
Name                 State      Autostart
-------------------------------------------
default              active     yes
rhel-Storage-Pool   active     yes

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

155



12.3. MANAGING VIRTUAL MACHINE STORAGE POOLS BY USING THE
WEB CONSOLE

By using the RHEL web console, you can manage the storage pools to assign storage to your virtual
machines (VMs).

You can use the web console to:

View storage pool information .

Create storage pools:

Create directory-based storage pools .

Create NFS-based storage pools .

Create iSCSI-based storage pools .

Create LVM-based storage pools .

Create SCSI-based storage pools with vHBA devices .

Remove storage pools .

Deactivate storage pools .

12.3.1. Viewing storage pool information by using the web console

By using the web console, you can view detailed information about storage pools available on your
system. Storage pools can be used to create disk images for your virtual machines.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. Click Storage Pools at the top of the Virtual Machines interface.
The Storage pools window appears, showing a list of configured storage pools.

The information includes the following:

Name - The name of the storage pool.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

156



Size - The current allocation and the total capacity of the storage pool.

Connection - The connection used to access the storage pool.

State - The state of the storage pool.

2. Click the arrow next to the storage pool whose information you want to see.
The row expands to reveal the Overview pane with detailed information about the selected
storage pool.

The information includes:

Target path - The location of the storage pool.

Persistent - Indicates whether or not the storage pool has a persistent configuration.

Autostart - Indicates whether or not the storage pool starts automatically when the system
boots up.

Type - The type of the storage pool.

3. To view a list of storage volumes associated with the storage pool, click Storage Volumes.
The Storage Volumes pane appears, showing a list of configured storage volumes.

The information includes:

Name - The name of the storage volume.

Used by - The VM that is currently using the storage volume.

Size - The size of the volume.

Additional resources

Viewing virtual machine information by using the web console

12.3.2. Creating directory-based storage pools by using the web console

A directory-based storage pool is based on a directory in an existing mounted file system. This is useful,
for example, when you want to use the remaining space on the file system for other purposes.

Prerequisites

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

157



The web console VM plug-in is installed on your system .

Procedure

1. In the RHEL web console, click Storage pools in the Virtual Machines tab.
The Storage pools window appears, showing a list of configured storage pools, if any.

2. Click Create storage pool.
The Create storage pool dialog appears.

3. Enter a name for the storage pool.

4. In the Type drop down menu, select Filesystem directory.

NOTE

If you do not see the Filesystem directory option in the drop down menu, then
your hypervisor does not support directory-based storage pools.

5. Enter the following information:

Target path - The location of the storage pool.

Startup - Whether or not the storage pool starts when the host boots.

6. Click Create.
The storage pool is created, the Create Storage Pool dialog closes, and the new storage pool
appears in the list of storage pools.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

158



Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.3.3. Creating NFS-based storage pools by using the web console

An NFS-based storage pool is based on a file system that is hosted on a server.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the RHEL web console, click Storage pools in the Virtual Machines tab.
The Storage pools window appears, showing a list of configured storage pools, if any.

2. Click Create storage pool.
The Create storage pool dialog appears.

3. Enter a name for the storage pool.

4. In the Type drop down menu, select Network file system.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

159

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


NOTE

If you do not see the Network file system option in the drop down menu, then
your hypervisor does not support nfs-based storage pools.

5. Enter the rest of the information:

Target path - The path specifying the target. This will be the path used for the storage
pool.

Host - The hostname of the network server where the mount point is located. This can be a
hostname or an IP address.

Source path - The directory used on the network server.

Startup - Whether or not the storage pool starts when the host boots.

6. Click Create.
The storage pool is created. The Create storage pool dialog closes, and the new storage pool
appears in the list of storage pools.

Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.3.4. Creating iSCSI-based storage pools by using the web console

An iSCSI-based storage pool is based on the Internet Small Computer Systems Interface (iSCSI), an IP-
based storage networking standard for linking data storage facilities.

Prerequisites

The web console VM plug-in is installed on your system .

Red Hat Enterprise Linux 8 Configuring and managing virtualization

160

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


Procedure

1. In the RHEL web console, click Storage pools in the Virtual Machines tab.
The Storage pools window appears, showing a list of configured storage pools, if any.

2. Click Create storage pool.
The Create storage pool dialog appears.

3. Enter a name for the storage pool.

4. In the Type drop down menu, select iSCSI target.

5. Enter the rest of the information:

Target Path - The path specifying the target. This will be the path used for the storage
pool.

Host - The hostname or IP address of the ISCSI server.

Source path - The unique iSCSI Qualified Name (IQN) of the iSCSI target.

Startup - Whether or not the storage pool starts when the host boots.

6. Click Create.

The storage pool is created. The Create storage pool dialog closes, and the new storage pool

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

161



The storage pool is created. The Create storage pool dialog closes, and the new storage pool
appears in the list of storage pools.

Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.3.5. Creating disk-based storage pools by using the web console

A disk-based storage pool uses entire disk partitions.

WARNING

Depending on the version of libvirt being used, dedicating a disk to a
storage pool may reformat and erase all data currently stored on the disk
device. It is strongly recommended that you back up the data on the
storage device before creating a storage pool.

When whole disks or block devices are passed to the VM, the VM will likely
partition it or create its own LVM groups on it. This can cause the host
machine to detect these partitions or LVM groups and cause errors.
These errors can also occur when you manually create partitions or LVM
groups and pass them to the VM.

To avoid theses errors, use file-based storage pools instead.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the RHEL web console, click Storage pools in the Virtual Machines tab.
The Storage pools window appears, showing a list of configured storage pools, if any.

2. Click Create storage pool.



Red Hat Enterprise Linux 8 Configuring and managing virtualization

162

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


The Create storage pool dialog appears.

3. Enter a name for the storage pool.

4. In the Type drop down menu, select Physical disk device.

NOTE

If you do not see the Physical disk device option in the drop down menu, then
your hypervisor does not support disk-based storage pools.

5. Enter the rest of the information:

Target Path - The path specifying the target device. This will be the path used for the
storage pool.

Source path - The path specifying the storage device. For example, /dev/sdb.

Format - The type of the partition table.

Startup - Whether or not the storage pool starts when the host boots.

6. Click Create.
The storage pool is created. The Create storage pool dialog closes, and the new storage pool
appears in the list of storage pools.

Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.3.6. Creating LVM-based storage pools by using the web console

An LVM-based storage pool is based on volume groups, which you can manage by using the Logical
Volume Manager (LVM). A volume group is a combination of multiple physical volumes that creates a
single storage structure.

NOTE

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

163

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


NOTE

LVM-based storage pools do not provide the full flexibility of LVM.

libvirt supports thin logical volumes, but does not provide the features of thin
storage pools.

LVM-based storage pools require a full disk partition. If you activate a new
partition or device by using virsh commands, the partition will be formatted and
all data will be erased. If you are using a host’s existing volume group, as in these
procedures, nothing will be erased.

To create a volume group with multiple devices, use the LVM utility instead, see
How to create a volume group in Linux with LVM .
For more detailed information about volume groups, refer to the Red Hat
Enterprise Linux Logical Volume Manager Administration Guide.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the RHEL web console, click Storage pools in the Virtual Machines tab.
The Storage pools window appears, showing a list of configured storage pools, if any.

2. Click Create storage pool.
The Create storage pool dialog appears.

3. Enter a name for the storage pool.

4. In the Type drop down menu, select LVM volume group.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

164

https://www.redhat.com/sysadmin/create-volume-group


NOTE

If you do not see the LVM volume group option in the drop down menu, then
your hypervisor does not support LVM-based storage pools.

5. Enter the rest of the information:

Source volume group - The name of the LVM volume group that you wish to use.

Startup - Whether or not the storage pool starts when the host boots.

6. Click Create.
The storage pool is created. The Create storage pool dialog closes, and the new storage pool
appears in the list of storage pools.

Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.3.7. Creating SCSI-based storage pools with vHBA devices by using the web
console

An SCSI-based storage pool is based on a Small Computer System Interface (SCSI) device. In this
configuration, your host must be able to connect to the SCSI device by using a virtual host bus adapter
(vHBA).

Prerequisites

Create a vHBA. For more information, see Creating vHBAs.

The web console VM plug-in is installed on your system .

Procedure

1. In the RHEL web console, click Storage pools in the Virtual Machines tab.
The Storage pools window appears, showing a list of configured storage pools, if any.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

165

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


2. Click Create storage pool.
The Create storage pool dialog appears.

3. Enter a name for the storage pool.

4. In the Type drop down menu, select iSCSI direct target.

NOTE

If you do not see the iSCSI direct target option in the drop down menu, then
your hypervisor does not support SCSI-based storage pools.

5. Enter the rest of the information:

Host - The hostname of the network server where the mount point is located. This can be a
hostname or an IP address.

Source path - The unique iSCSI Qualified Name (IQN) of the iSCSI target.

Initiator - The unique iSCSI Qualified Name (IQN) of the iSCSI initiator, the vHBA.

Startup - Whether or not the storage pool starts when the host boots.

6. Click Create.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

166



The storage pool is created. The Create storage pool dialog closes, and the new storage pool
appears in the list of storage pools.

Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.3.8. Removing storage pools by using the web console

You can remove storage pools to free up resources on the host or on the network to improve system
performance. Deleting storage pools also frees up resources that can then be used by other virtual
machines (VMs).

IMPORTANT

Unless explicitly specified, deleting a storage pool does not simultaneously delete the
storage volumes inside that pool.

To temporarily deactivate a storage pool instead of deleting it, see Deactivating storage pools by using
the web console

Prerequisites

The web console VM plug-in is installed on your system .

Detach the disk from the VM.

If you want to delete the associated storage volumes along with the pool, activate the pool.

Procedure

1. Click Storage Pools on the Virtual Machines tab.
The Storage Pools window appears, showing a list of configured storage pools.

2. Click the Menu button ⋮ of the storage pool you want to delete and click Delete.
A confirmation dialog appears.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

167

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


3. Optional: To delete the storage volumes inside the pool, select the corresponding check boxes
in the dialog.

4. Click Delete.
The storage pool is deleted. If you had selected the checkbox in the previous step, the
associated storage volumes are deleted as well.

Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.3.9. Deactivating storage pools by using the web console

If you do not want to permanently delete a storage pool, you can temporarily deactivate it instead.

When you deactivate a storage pool, no new volumes can be created in that pool. However, any virtual
machines (VMs) that have volumes in that pool will continue to run. This is useful for a number of
reasons, for example, you can limit the number of volumes that can be created in a pool to increase
system performance.

To deactivate a storage pool by using the RHEL web console, see the following procedure.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. Click Storage Pools at the top of the Virtual Machines tab. The Storage Pools window appears,
showing a list of configured storage pools.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

168

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


2. Click Deactivate on the storage pool row.
The storage pool is deactivated.

Additional resources

Understanding storage pools

Viewing storage pool information by using the web console

12.4. PARAMETERS FOR CREATING STORAGE POOLS

Based on the type of storage pool you require, you can modify its XML configuration file and define a
specific type of storage pool. This section provides information about the XML parameters required for
creating various types of storage pools along with examples.

12.4.1. Directory-based storage pool parameters

When you want to create or modify a directory-based storage pool by using an XML configuration file,
you must include certain required parameters. See the following table for more information about these
parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_dir

Parameters

The following table provides a list of required parameters for the XML file for a directory-based storage
pool.

Table 12.1. Directory-based storage pool parameters

Description XML

The type of storage pool <pool type='dir'>

The name of the storage pool <name>name</name>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

169

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#understanding-storage-pools_understanding-virtual-machine-storage


The path specifying the target. This will be the path
used for the storage pool.

<target>
    <path>target_path</path>
 </target>

Description XML

Example

The following is an example of an XML file for a storage pool based on the /guest_images directory:

Additional resources

Creating directory-based storage pools by using the CLI

12.4.2. Disk-based storage pool parameters

When you want to create or modify a disk-based storage pool by using an XML configuration file, you
must include certain required parameters. See the following table for more information about these
parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_disk

Parameters

The following table provides a list of required parameters for the XML file for a disk-based storage pool.

Table 12.2. Disk-based storage pool parameters

Description XML

The type of storage pool <pool type='disk'>

The name of the storage pool <name>name</name>

The path specifying the storage device. For example,
/dev/sdb.

<source>
    <path>source_path</path>
 </source>

<pool type='dir'>
  <name>dirpool</name>
  <target>
    <path>/guest_images</path>
  </target>
</pool>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

170



The path specifying the target device. This will be the
path used for the storage pool.

<target>
    <path>target_path</path>
 </target>

Description XML

Example

The following is an example of an XML file for a disk-based storage pool:

Additional resources

Creating disk-based storage pools by using the CLI

12.4.3. Filesystem-based storage pool parameters

When you want to create or modify a filesystem-based storage pool by using an XML configuration file,
you must include certain required parameters. See the following table for more information about these
parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_fs

Parameters

The following table provides a list of required parameters for the XML file for a filesystem-based
storage pool.

Table 12.3. Filesystem-based storage pool parameters

Description XML

The type of storage pool <pool type='fs'>

The name of the storage pool <name>name</name>

<pool type='disk'>
  <name>phy_disk</name>
  <source>
    <device path='/dev/sdb'/>
    <format type='gpt'/>
  </source>
  <target>
    <path>/dev</path>
  </target>
</pool>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

171



The path specifying the partition. For example, 
/dev/sdc1

<source>
    <device path=device_path />

The file system type, for example ext4.     <format type=fs_type />
 </source>

The path specifying the target. This will be the path
used for the storage pool.

<target>
     <path>path-to-pool</path> 
 </target>

Description XML

Example

The following is an example of an XML file for a storage pool based on the /dev/sdc1 partition:

Additional resources

Creating filesystem-based storage pools by using the CLI

12.4.4. GlusterFS-based storage pool parameters

When you want to create or modify a GlusterFS-based storage pool by using an XML configuration file,
you must include certain required parameters. See the following table for more information about these
parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_glusterfs

Parameters

The following table provides a list of required parameters for the XML file for a GlusterFS-based
storage pool.

Table 12.4. GlusterFS-based storage pool parameters

<pool type='fs'>
  <name>guest_images_fs</name>
  <source>
    <device path='/dev/sdc1'/>
    <format type='auto'/>
  </source>
  <target>
    <path>/guest_images</path>
  </target>
</pool>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

172



Description XML

The type of storage pool <pool type='gluster'>

The name of the storage pool <name>name</name>

The hostname or IP address of the Gluster server <source>
    <name=gluster-name />

The path on the Gluster server used for the storage
pool.

    <dir path=gluster-path />
 </source>

Example

The following is an example of an XML file for a storage pool based on the Gluster file system at
111.222.111.222:

Additional resources

Creating GlusterFS-based storage pools by using the CLI

12.4.5. iSCSI-based storage pool parameters

When you want to create or modify an iSCSI-based storage pool by using an XML configuration file, you
must include certain required parameters. See the following table for more information about these
parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_iscsi

Parameters

The following table provides a list of required parameters for the XML file for an iSCSI-based storage
pool.

Table 12.5. iSCSI-based storage pool parameters

<pool type='gluster'>
  <name>Gluster_pool</name>
  <source>
    <host name='111.222.111.222'/>
    <dir path='/'/>
    <name>gluster-vol1</name>
  </source>
</pool>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

173



Description XML

The type of storage pool <pool type='iscsi'>

The name of the storage pool <name>name</name>

The name of the host <source>
   <host name=hostname />

The iSCSI IQN     <device path= iSCSI_IQN /> 
 </source>

The path specifying the target. This will be the path
used for the storage pool.

<target> 
    <path>/dev/disk/by-path</path> 
 </target>

[Optional] The IQN of the iSCSI initiator. This is only
needed when the ACL restricts the LUN to a
particular initiator.

<initiator> 
    <iqn name='initiator0' /> 
 </initiator>

NOTE

The IQN of the iSCSI initiator can be determined by using the virsh find-storage-pool-
sources-as iscsi command.

Example

The following is an example of an XML file for a storage pool based on the specified iSCSI device:

Additional resources

Creating iSCSI-based storage pools by using the CLI

12.4.6. LVM-based storage pool parameters

When you want to create or modify an LVM-based storage pool by using an XML configuration file, you
must include certain required parameters. See the following table for more information about these
parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration

<pool type='iscsi'>
  <name>iSCSI_pool</name>
  <source>
    <host name='server1.example.com'/>
    <device path='iqn.2010-05.com.example.server1:iscsirhel7guest'/>
  </source>
  <target>
    <path>/dev/disk/by-path</path>
  </target>
</pool>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

174



You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_logical

Parameters

The following table provides a list of required parameters for the XML file for a LVM-based storage
pool.

Table 12.6. LVM-based storage pool parameters

Description XML

The type of storage pool <pool type='logical'>

The name of the storage pool <name>name</name>

The path to the device for the storage pool <source> 
    <device path='device_path' />`

The name of the volume group     <name>VG-name</name>

The virtual group format     <format type='lvm2' /> 
 </source>

The target path <target> 
    <path=target_path />
 </target>

NOTE

If the logical volume group is made of multiple disk partitions, there may be multiple
source devices listed. For example:

<source>
  <device path='/dev/sda1'/>
  <device path='/dev/sdb3'/>
  <device path='/dev/sdc2'/>
  ...
</source>

Example

The following is an example of an XML file for a storage pool based on the specified LVM:

<pool type='logical'>
  <name>guest_images_lvm</name>
  <source>
    <device path='/dev/sdc'/>
    <name>libvirt_lvm</name>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

175



Additional resources

Creating LVM-based storage pools by using the CLI

12.4.7. NFS-based storage pool parameters

When you want to create or modify an NFS-based storage pool by using an XML configuration file, you
must include certain required parameters. See the following table for more information about these
parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_netfs

Parameters

The following table provides a list of required parameters for the XML file for an NFS-based storage
pool.

Table 12.7. NFS-based storage pool parameters

Description XML

The type of storage pool <pool type='netfs'>

The name of the storage pool <name>name</name>

The hostname of the network server where the
mount point is located. This can be a hostname or an
IP address.

<source> 
    <host name=hostname />

The format of the storage pool One of the following:

    <format type='nfs' />

    <format type='glusterfs' />

    <format type='cifs' />

The directory used on the network server     <dir path=source_path /> 
 </source>

    <format type='lvm2'/>
  </source>
  <target>
    <path>/dev/libvirt_lvm</path>
  </target>
</pool>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

176



The path specifying the target. This will be the path
used for the storage pool.

<target> 
    <path>target_path</path> 
 </target>

Description XML

Example

The following is an example of an XML file for a storage pool based on the /home/net_mount directory
of the file_server NFS server:

Additional resources

Creating NFS-based storage pools by using the CLI

12.4.8. Parameters for SCSI-based storage pools with vHBA devices

To create or modify an XML configuration file for a SCSi-based storage pool that uses a virtual host
adapter bus (vHBA) device, you must include certain required parameters in the XML configuration file.
See the following table for more information about the required parameters.

You can use the virsh pool-define command to create a storage pool based on the XML configuration
in a specified file. For example:

# virsh pool-define ~/guest_images.xml
  Pool defined from guest_images_vhba

Parameters

The following table provides a list of required parameters for the XML file for a SCSI-based storage
pool with vHBA.

Table 12.8. Parameters for SCSI-based storage pools with vHBA devices

Description XML

The type of storage pool <pool type='scsi'>

The name of the storage pool <name>name</name>

<pool type='netfs'>
  <name>nfspool</name>
  <source>
    <host name='file_server'/>
    <format type='nfs'/>
    <dir path='/home/net_mount'/>
  </source>
  <target>
    <path>/var/lib/libvirt/images/nfspool</path>
  </target>
</pool>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

177



The identifier of the vHBA. The parent attribute is
optional.

<source> 
    <adapter type='fc_host'
    [parent=parent_scsi_device]
    wwnn='WWNN'
    wwpn='WWPN' />
 </source>

The target path. This will be the path used for the
storage pool.

<target> 
    <path=target_path />
 </target>

Description XML

IMPORTANT

When the <path> field is /dev/, libvirt generates a unique short device path for the
volume device path. For example, /dev/sdc. Otherwise, the physical host path is used. For
example, /dev/disk/by-path/pci-0000:10:00.0-fc-0x5006016044602198-lun-0. The
unique short device path allows the same volume to be listed in multiple virtual machines
(VMs) by multiple storage pools. If the physical host path is used by multiple VMs,
duplicate device type warnings may occur.

NOTE

The parent attribute can be used in the <adapter> field to identify the physical HBA
parent from which the NPIV LUNs by varying paths can be used. This field, scsi_hostN, is
combined with the vports and max_vports attributes to complete the parent
identification. The parent, parent_wwnn, parent_wwpn, or parent_fabric_wwn
attributes provide varying degrees of assurance that after the host reboots the same
HBA is used.

If no parent is specified, libvirt uses the first scsi_hostN adapter that supports
NPIV.

If only the parent is specified, problems can arise if additional SCSI host adapters
are added to the configuration.

If parent_wwnn or parent_wwpn is specified, after the host reboots the same
HBA is used.

If parent_fabric_wwn is used, after the host reboots an HBA on the same fabric
is selected, regardless of the scsi_hostN used.

Examples

The following are examples of XML files for SCSI-based storage pools with vHBA.

A storage pool that is the only storage pool on the HBA:

<pool type='scsi'>
  <name>vhbapool_host3</name>
  <source>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

178



A storage pool that is one of several storage pools that use a single vHBA and uses the parent
attribute to identify the SCSI host device:

Additional resources

Creating SCSI-based storage pools with vHBA devices by using the CLI

12.5. MANAGING VIRTUAL MACHINE STORAGE VOLUMES BY USING
THE CLI

You can use the CLI to manage the following aspects of your storage volumes to assign storage to your
virtual machines (VMs):

View storage volume information

Create storage volumes

Delete storage volumes

12.5.1. Viewing storage volume information by using the CLI

By using the command line, you can view a list of all storage pools available on your host, as well as
details about a specified storage pool

Procedure

1. Use the virsh vol-list command to list the storage volumes in a specified storage pool.

# virsh vol-list --pool RHEL-Storage-Pool --details
 Name                Path                                               Type   Capacity  Allocation
---------------------------------------------------------------------------------------------
 .bash_history       /home/VirtualMachines/.bash_history       file  18.70 KiB   20.00 KiB
 .bash_logout        /home/VirtualMachines/.bash_logout        file    18.00 B    4.00 KiB
 .bash_profile       /home/VirtualMachines/.bash_profile       file   193.00 B    4.00 KiB
 .bashrc             /home/VirtualMachines/.bashrc             file   1.29 KiB    4.00 KiB
 .git-prompt.sh      /home/VirtualMachines/.git-prompt.sh      file  15.84 KiB   16.00 KiB

    <adapter type='fc_host' wwnn='5001a4a93526d0a1' wwpn='5001a4ace3ee047d'/>
  </source>
  <target>
    <path>/dev/disk/by-path</path>
  </target>
</pool>

<pool type='scsi'>
  <name>vhbapool_host3</name>
  <source>
    <adapter type='fc_host' parent='scsi_host3' wwnn='5001a4a93526d0a1' 
wwpn='5001a4ace3ee047d'/>
  </source>
  <target>
    <path>/dev/disk/by-path</path>
  </target>
</pool>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

179



 .gitconfig          /home/VirtualMachines/.gitconfig          file   167.00 B    4.00 KiB
 RHEL_Volume.qcow2   /home/VirtualMachines/RHEL8_Volume.qcow2  file  60.00 GiB   
13.93 GiB

2. Use the virsh vol-info command to list the storage volumes in a specified storage pool.

# virsh vol-info --pool RHEL-Storage-Pool --vol RHEL_Volume.qcow2
Name:           RHEL_Volume.qcow2
Type:           file
Capacity:       60.00 GiB
Allocation:     13.93 GiB

12.5.2. Creating and assigning storage volumes by using the CLI

To obtain a disk image and attach it to a virtual machine (VM) as a virtual disk, create a storage volume
and assign its XML configuration to a the VM.

Prerequisites

A storage pool with unallocated space is present on the host.

To verify, list the storage pools on the host:

# virsh pool-list --details

Name               State     Autostart   Persistent   Capacity     Allocation   Available
--------------------------------------------------------------------------------------------
default            running   yes         yes          48.97 GiB    36.34 GiB    12.63 GiB
Downloads          running   yes         yes          175.92 GiB   121.20 GiB   54.72 GiB
VM-disks           running   yes         yes          175.92 GiB   121.20 GiB   54.72 GiB

If you do not have an existing storage pool, create one. For more information, see Managing
storage for virtual machines.

Procedure

1. Create a storage volume by using the virsh vol-create-as command. For example, to create a
20 GB qcow2 volume based on the guest-images-fs storage pool:

# virsh vol-create-as --pool guest-images-fs --name vm-disk1 --capacity 20 --format qcow2

Important: Specific storage pool types do not support the virsh vol-create-as command and
instead require specific processes to create storage volumes:

GlusterFS-based - Use the qemu-img command to create storage volumes.

iSCSI-based - Prepare the iSCSI LUNs in advance on the iSCSI server.

Multipath-based - Use the multipathd command to prepare or manage the multipath.

vHBA-based - Prepare the fibre channel card in advance.

2. Create an XML file, and add the following lines in it. This file will be used to add the storage
volume as a disk to a VM.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

180



This example specifies a virtual disk that uses the vm-disk1 volume, created in the previous
step, and sets the volume to be set up as disk hdk on an ide bus. Modify the respective
parameters as appropriate for your environment.

Important: With specific storage pool types, you must use different XML formats to describe a
storage volume disk.

For GlusterFS-based pools:

For multipath-based pools:

For RBD-based storage pools:

3. Use the XML file to assign the storage volume as a disk to a VM. For example, to assign a disk
defined in ~/vm-disk1.xml to the testguest1 VM, use the following command:

# virsh attach-device --config testguest1 ~/vm-disk1.xml

Verification

In the guest operating system of the VM, confirm that the disk image has become available as
an un-formatted and un-allocated disk.

12.5.3. Deleting storage volumes by using the CLI

<disk type='volume' device='disk'>
    <driver name='qemu' type='qcow2'/>
    <source pool='guest-images-fs' volume='vm-disk1'/>
    <target dev='hdk' bus='ide'/>
</disk>

  <disk type='network' device='disk'>
    <driver name='qemu' type='raw'/>
    <source protocol='gluster' name='Volume1/Image'>
      <host name='example.org' port='6000'/>
    </source>
    <target dev='vda' bus='virtio'/>
    <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
  </disk>

<disk type='block' device='disk'>
<driver name='qemu' type='raw'/>
<source dev='/dev/mapper/mpatha' />
<target dev='sda' bus='scsi'/>
</disk>

  <disk type='network' device='disk'>
    <driver name='qemu' type='raw'/>
    <source protocol='rbd' name='pool/image'>
      <host name='mon1.example.org' port='6321'/>
    </source>
    <target dev='vdc' bus='virtio'/>
  </disk>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

181



To remove a storage volume from your host system, you must stop the pool and remove its XML
definition.

Prerequisites

Any virtual machine that uses the storage volume you want to delete is shut down.

Procedure

1. Use the virsh vol-list command to list the storage volumes in a specified storage pool.

# virsh vol-list --pool RHEL-SP
 Name                 Path
---------------------------------------------------------------
 .bash_history        /home/VirtualMachines/.bash_history
 .bash_logout         /home/VirtualMachines/.bash_logout
 .bash_profile        /home/VirtualMachines/.bash_profile
 .bashrc              /home/VirtualMachines/.bashrc
 .git-prompt.sh       /home/VirtualMachines/.git-prompt.sh
 .gitconfig           /home/VirtualMachines/.gitconfig
 vm-disk1             /home/VirtualMachines/vm-disk1

2. Optional: Use the virsh vol-wipe command to wipe a storage volume. For example, to wipe a
storage volume named vm-disk1 associated with the storage pool RHEL-SP:

# virsh vol-wipe --pool RHEL-SP vm-disk1
Vol vm-disk1 wiped

3. Use the virsh vol-delete command to delete a storage volume. For example, to delete a
storage volume named vm-disk1 associated with the storage pool RHEL-SP:

# virsh vol-delete --pool RHEL-SP vm-disk1
Vol vm-disk1 deleted

Verification

Use the virsh vol-list command again to verify that the storage volume was deleted.

# virsh vol-list --pool RHEL-SP
 Name                 Path
---------------------------------------------------------------
 .bash_history        /home/VirtualMachines/.bash_history
 .bash_logout         /home/VirtualMachines/.bash_logout
 .bash_profile        /home/VirtualMachines/.bash_profile
 .bashrc              /home/VirtualMachines/.bashrc
 .git-prompt.sh       /home/VirtualMachines/.git-prompt.sh
 .gitconfig           /home/VirtualMachines/.gitconfig

12.6. MANAGING VIRTUAL DISK IMAGES BY USING THE CLI

Virtual disk images are a type of virtual storage volumes and provide storage to virtual machines (VMs)
in a similar way as hard drives provide storage for physical machines.

When creating a new VM  , libvirt creates a new disk image automatically, unless you specify otherwise.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

182



When creating a new VM  , libvirt creates a new disk image automatically, unless you specify otherwise.
However, depending on your use case, you might want to create and manage a disk image separately
from the VM.

12.6.1. Creating a virtual disk image by using qemu-img

If you require creating a new virtual disk image separately from a new virtual machine (VM) and creating
a storage volume is not viable for you, you can use the qemu-img command-line utility.

Procedure

Create a virtual disk image by using the qemu-img utility:

# qemu-img create -f <format> <image-name> <size>

For example, the following command creates a qcow2 disk image named test-image with the
size of 30 gigabytes.

# qemu-img create -f qcow2 test-image 30G

Formatting 'test-img', fmt=qcow2 cluster_size=65536 extended_l2=off compression_type=zlib 
size=32212254720 lazy_refcounts=off refcount_bits=16

Verification

Display the information about the image you created and check that it has the required size and
does not have any corruption:

# qemu-img info <test-img>
image: test-img
file format: qcow2
virtual size: 30 GiB (32212254720 bytes)
disk size: 196 KiB
cluster_size: 65536
Format specific information:
    compat: 1.1
    compression type: zlib
    lazy refcounts: false
    refcount bits: 16
    corrupt: false
    extended l2: false

Additional resources

Creating and assigning storage volumes by using the CLI

Adding new disks to virtual machines by using the web console

qemu-img man page

12.6.2. Checking the consistency of a virtual disk image

Before attaching a disk image to a virtual machine (VM), ensure that the disk image does not have

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

183



Before attaching a disk image to a virtual machine (VM), ensure that the disk image does not have
problems, such as corruption or high fragmentation. To do so, you can use the qemu-img check
command.

If needed, you can also use this command to attempt repairing the disk image.

Prerequisites

Any virtual machines (VMs) that use the disk image must be shut down.

Procedure

1. Use the qemu-img check command on the image you want to test. For example:

# qemu-img check <test-name.qcow2>

No errors were found on the image.
327434/327680 = 99.92% allocated, 0.00% fragmented, 0.00% compressed clusters
Image end offset: 21478375424

If the check finds problems on the disk image, the output of the command looks similar to the
following:

167 errors were found on the image.
Data may be corrupted, or further writes to the image may corrupt it.

453368 leaked clusters were found on the image.
This means waste of disk space, but no harm to data.

259 internal errors have occurred during the check.
Image end offset: 21478375424

2. Repair them by using the qemu-img check command with the -r all option. Note, however, that
this might fix only some of the problems.

WARNING

Repairing the disk image can cause data corruption or other issues. Back up
the disk image before attempting the repair.

# qemu-img check -r all <test-name.qcow2>

[...]
122 errors were found on the image.
Data may be corrupted, or further writes to the image may corrupt it.

250 internal errors have occurred during the check.
Image end offset: 27071414272



Red Hat Enterprise Linux 8 Configuring and managing virtualization

184



This output indicates the number of problems found on the disk image after the repair.

3. If further disk image repairs are required, you can use various libguestfs tools in the guestfish
shell.

Additional resources

The qemu-img man page

The guestfish man page

12.6.3. Resizing a virtual disk image

If an existing disk image requires additional space, you can use the qemu-img resize utility to change
the size of the image to fit your use case.

Prerequisites

You have created a back up of the disk image.

Any virtual machines (VMs) that use the disk image must be shutdown.

WARNING

Resizing the disk image of a running VM can cause data corruption or other
issues.

The hard disk of the host has sufficient free space for the intended disk image size.

Optional: You have ensured that the disk image does not have data corruption or similar
problems. For instructions, see Checking the consistency of a virtual disk image .

Procedure

1. Determine the location of the disk image file for the VM you want to resize. For example:

# virsh domblklist <vm-name>

 Target   Source
----------------------------------------------------------
 vda      /home/username/disk-images/example-image.qcow2

2. Optional: Back up the current disk image.

# cp <example-image.qcow2> <example-image-backup.qcow2>

3. Use the qemu-img resize utility to resize the image.
For example, to increase the <example-image.qcow2> size by 10 gigabytes:



CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

185

https://www.libguestfs.org/guestfish.1.html


# qemu-img resize <example-image.qcow2> +10G

4. Resize the file system, partitions, or physical volumes inside the disk image to use the additional
space. To do so in a RHEL guest operating system, use the instructions in Managing storage
devices and Managing file systems.

Verification

1. Display information about the resized image and see if it has the intended size:

# qemu-img info <converted-image.qcow2>

image: converted-image.qcow2
file format: qcow2
virtual size: 30 GiB (32212254720 bytes)
disk size: 196 KiB
cluster_size: 65536
Format specific information:
    compat: 1.1
    compression type: zlib
    lazy refcounts: false
    refcount bits: 16
    corrupt: false
    extended l2: false

2. Check the resized disk image for potential errors. For instructions, see Checking the
consistency of a virtual disk image.

Additional resources

The qemu-img man page

Managing storage devices

Managing file systems

12.6.4. Converting between virtual disk image formats

You can convert the virtual disk image to a different format by using the qemu-img convert command.
For example, converting between virtual disk image formats might be necessary if you want to attach
the disk image to a virtual machine (VM) running on a different hypervisor.

Prerequisites

Any virtual machines (VMs) that use the disk image must be shut down.

Procedure

Use the qemu-im convert command to convert an existing virtual disk image to a different
format. For example, to convert a raw disk image to a QCOW2 disk image:

# qemu-img convert -f raw <original-image.img> -O qcow2 <converted-image.qcow2>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

186

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-partitions_managing-storage-devices#proc_resizing-a-partition-with-parted_getting-started-with-partitions
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_storage_devices/getting-started-with-partitions_managing-storage-devices#proc_resizing-a-partition-with-parted_getting-started-with-partitions
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/index


Verification

1. Display information about the converted image and see if it has the intended format and size.

# qemu-img info <converted-image.qcow2>

image: converted-image.qcow2
file format: qcow2
virtual size: 30 GiB (32212254720 bytes)
disk size: 196 KiB
cluster_size: 65536
Format specific information:
    compat: 1.1
    compression type: zlib
    lazy refcounts: false
    refcount bits: 16
    corrupt: false
    extended l2: false

2. Check the disk image for potential errors. for instructions, see Checking the consistency of a
virtual disk image.

Additional resources

Checking the consistency of a virtual disk image

The qemu-img man page

12.7. MANAGING VIRTUAL MACHINE STORAGE VOLUMES BY USING
THE WEB CONSOLE

By using the RHEL, you can manage the storage volumes used to allocate storage to your virtual
machines (VMs).

You can use the RHEL web console to:

Create storage volumes .

Remove storage volumes .

12.7.1. Creating storage volumes by using the web console

To create a functioning virtual machine (VM) you require a local storage device assigned to the VM that
can store the VM image and VM-related data. You can create a storage volume in a storage pool and
assign it to a VM as a storage disk.

To create storage volumes by using the web console, see the following procedure.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. Click Storage Pools at the top of the Virtual Machines tab. The Storage Pools window appears,

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

187



1. Click Storage Pools at the top of the Virtual Machines tab. The Storage Pools window appears,
showing a list of configured storage pools.

2. In the Storage Pools window, click the storage pool from which you want to create a storage
volume.
The row expands to reveal the Overview pane with basic information about the selected storage
pool.

3. Click Storage Volumes next to the Overview tab in the expanded row.
The Storage Volume tab appears with basic information about existing storage volumes, if any.

4. Click Create Volume.
The Create storage volume dialog appears.

5. Enter the following information in the Create Storage Volume dialog:

Name - The name of the storage volume.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

188



Size - The size of the storage volume in MiB or GiB.

Format - The format of the storage volume. The supported types are qcow2 and raw.

6. Click Create.
The storage volume is created, the Create Storage Volume dialog closes, and the new storage
volume appears in the list of storage volumes.

Additional resources

Understanding storage volumes

Adding new disks to virtual machines by using the web console

12.7.2. Removing storage volumes by using the web console

You can remove storage volumes to free up space in the storage pool, or to remove storage items
associated with defunct virtual machines (VMs).

To remove storage volumes by using the RHEL web console, see the following procedure.

Prerequisites

The web console VM plug-in is installed on your system .

Any virtual machine that uses the storage volume you want to delete is shut down.

Procedure

1. Click Storage Pools at the top of the Virtual Machines tab. The Storage Pools window appears,
showing a list of configured storage pools.

2. In the Storage Pools window, click the storage pool from which you want to remove a storage
volume.
The row expands to reveal the Overview pane with basic information about the selected storage
pool.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

189

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#storage-volumes_understanding-virtual-machine-storage
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#creating-and-attaching-disks-to-virtual-machines-using-the-web-console_assembly_managing-virtual-machine-storage-disks-using-the-web-console


3. Click Storage Volumes next to the Overview tab in the expanded row.
The Storage Volume tab appears with basic information about existing storage volumes, if any.

4. Select the storage volume you want to remove.

5. Click Delete 1 Volume

Additional resources

Understanding storage volumes

12.8. MANAGING VIRTUAL MACHINE STORAGE DISKS BY USING THE
WEB CONSOLE

By using RHEL, you can manage the storage disks that are attached to your virtual machines (VMs).

You can use the RHEL web console to:

View VM disk information.

Add new disks to a VM .

Attach disks to a VM .

Detach disks from a VM .

12.8.1. Viewing virtual machine disk information in the web console

By using the web console, you can view detailed information about disks assigned to a selected virtual
machine (VM).

Prerequisites

The web console VM plug-in is installed on your system .

Red Hat Enterprise Linux 8 Configuring and managing virtualization

190

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/managing-storage-for-virtual-machines_configuring-and-managing-virtualization#storage-volumes_understanding-virtual-machine-storage


Procedure

1. Click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Disks.
The Disks section displays information about the disks assigned to the VM, as well as options to
Add or Edit disks.

The information includes the following:

Device - The device type of the disk.

Used - The amount of disk currently allocated.

Capacity - The maximum size of the storage volume.

Bus - The type of disk device that is emulated.

Access - Whether the disk is Writeable or Read-only . For raw disks, you can also set the
access to Writeable and shared.

Source - The disk device or file.

Additional resources

Viewing virtual machine information by using the web console

12.8.2. Adding new disks to virtual machines by using the web console

You can add new disks to virtual machines (VMs) by creating a new storage volume and attaching it to a
VM by using the RHEL 8 web console.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM for which you want to create and attach a new
disk.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Disks.
The Disks section displays information about the disks assigned to the VM, as well as options to
Add or Edit disks.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

191



3. Click Add Disk.
The Add Disk dialog appears.

4. Select the Create New option.

5. Configure the new disk.

Pool - Select the storage pool from which the virtual disk will be created.

Name - Enter a name for the virtual disk that will be created.

Size - Enter the size and select the unit (MiB or GiB) of the virtual disk that will be created.

Format - Select the format for the virtual disk that will be created. The supported types are
qcow2 and raw.

Persistence - If checked, the virtual disk is persistent. If not checked, the virtual disk is
transient.

NOTE

Transient disks can only be added to VMs that are running.

Additional Options - Set additional configurations for the virtual disk.

Cache - Select the cache mechanism.

Bus - Select the type of disk device to emulate.

Disk Identifier - Set an identifier for the attached disk that you can use for multipath

Red Hat Enterprise Linux 8 Configuring and managing virtualization

192



Disk Identifier - Set an identifier for the attached disk that you can use for multipath
storage setups. The identifier is also useful when using proprietary software licensed to
specific disk serial numbers.

6. Click Add.
The virtual disk is created and connected to the VM.

Additional resources

Viewing virtual machine disk information in the web console

Attaching existing disks to virtual machines by using the web console

Detaching disks from virtual machines by using the web console

12.8.3. Attaching existing disks to virtual machines by using the web console

By using the web console, you can attach existing storage volumes as disks to a virtual machine (VM).

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM for which you want to create and attach a new
disk.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Disks.
The Disks section displays information about the disks assigned to the VM, as well as options to
Add or Edit disks.

3. Click Add Disk.
The Add Disk dialog appears.

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

193



4. Click the Use Existing radio button.
The appropriate configuration fields appear in the Add Disk dialog.

5. Configure the disk for the VM.

Pool - Select the storage pool from which the virtual disk will be attached.

Volume - Select the storage volume that will be attached.

Persistence - Available when the VM is running. Select the Always attach checkbox to
make the virtual disk persistent. Clear the checkbox to make the virtual disk transient.

Additional Options - Set additional configurations for the virtual disk.

Cache - Select the cache mechanism.

Bus - Select the type of disk device to emulate.

Disk Identifier - Set an identifier for the attached disk that you can use for multipath
storage setups. The identifier is also useful when using proprietary software licensed to
specific disk serial numbers.

6. Click Add
The selected virtual disk is attached to the VM.

Additional resources

Viewing virtual machine disk information in the web console

Adding new disks to virtual machines by using the web console

Detaching disks from virtual machines by using the web console

12.8.4. Detaching disks from virtual machines by using the web console

By using the web console, you can detach disks from virtual machines (VMs).

Prerequisites

Red Hat Enterprise Linux 8 Configuring and managing virtualization

194



Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM from which you want to detach a disk.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Disks.
The Disks section displays information about the disks assigned to the VM, as well as options to
Add or Edit disks.

3. On the right side of the row for the disk that you want to detach, click the Menu button ⋮.

4. In the drop-down menu that appears, click the Remove button.
A Remove disk from VM? confirmation dialog box appears.

5. In the confirmation dialog box, click Remove. Optionally, if you also want to remove the disk
image, click Remove and delete file.
The virtual disk is detached from the VM.

Additional resources

Viewing virtual machine disk information in the web console

Adding new disks to virtual machines by using the web console

Attaching existing disks to virtual machines by using the web console

12.9. SECURING ISCSI STORAGE POOLS WITH LIBVIRT SECRETS

Username and password parameters can be configured with virsh to secure an iSCSI storage pool. You
can configure this before or after you define the pool, but the pool must be started for the
authentication settings to take effect.

The following provides instructions for securing iSCSI-based storage pools with libvirt secrets.

NOTE

This procedure is required if a user_ID and password were defined when creating the
iSCSI target.

Prerequisites

Ensure that you have created an iSCSI-based storage pool. For more information, see Creating

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

195



Ensure that you have created an iSCSI-based storage pool. For more information, see Creating
iSCSI-based storage pools by using the CLI.

Procedure

1. Create a libvirt secret file with a challenge-handshake authentication protocol (CHAP) user
name. For example:

2. Define the libvirt secret with the virsh secret-define command:

# virsh secret-define secret.xml

3. Verify the UUID with the virsh secret-list command:

# virsh secret-list
UUID                                       Usage
--------------------------------------------------------------
2d7891af-20be-4e5e-af83-190e8a922360      iscsi iscsirhel7secret

4. Assign a secret to the UUID in the output of the previous step using the virsh secret-set-value
command. This ensures that the CHAP username and password are in a libvirt-controlled secret
list. For example:

# virsh secret-set-value --interactive 2d7891af-20be-4e5e-af83-190e8a922360
Enter new value for secret:
Secret value set

5. Add an authentication entry in the storage pool’s XML file using the virsh edit command, and
add an <auth> element, specifying authentication type, username, and secret usage. For
example:

NOTE

<secret ephemeral='no' private='yes'>
    <description>Passphrase for the iSCSI example.com server</description>
    <usage type='iscsi'>
        <target>iscsirhel7secret</target>
    </usage>
</secret>

<pool type='iscsi'>
  <name>iscsirhel7pool</name>
    <source>
       <host name='192.0.2.1'/>
       <device path='iqn.2010-05.com.example.server1:iscsirhel7guest'/>
       <auth type='chap' username='_example-user_'>
          <secret usage='iscsirhel7secret'/>
       </auth>
    </source>
  <target>
    <path>/dev/disk/by-path</path>
  </target>
</pool>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

196



NOTE

The <auth> sub-element exists in different locations within the virtual machine’s 
<pool> and <disk> XML elements. For a <pool>, <auth> is specified within the 
<source> element, as this describes where to find the pool sources, since
authentication is a property of some pool sources (iSCSI and RBD). For a <disk>,
which is a sub-element of a domain, the authentication to the iSCSI or RBD disk is
a property of the disk. In addition, the <auth> sub-element for a disk differs from
that of a storage pool.

6. To activate the changes, activate the storage pool. If the pool has already been started, stop and
restart the storage pool:

# virsh pool-destroy iscsirhel7pool
# virsh pool-start iscsirhel7pool

12.10. CREATING VHBAS

A virtual host bus adapter (vHBA) device connects the host system to an SCSI device and is required
for creating an SCSI-based storage pool.

You can create a vHBA device by defining it in an XML configuration file.

Procedure

1. Locate the HBAs on your host system, by using the virsh nodedev-list --cap vports command.
The following example shows a host that has two HBAs that support vHBA:

# virsh nodedev-list --cap vports
scsi_host3
scsi_host4

2. View the HBA’s details, by using the virsh nodedev-dumpxml HBA_device command.

# virsh nodedev-dumpxml scsi_host3

The output from the command lists the <name>, <wwnn>, and <wwpn> fields, which are used
to create a vHBA. <max_vports> shows the maximum number of supported vHBAs. For
example:

<auth username='redhat'>
  <secret type='iscsi' usage='iscsirhel7secret'/>
</auth>

<device>
  <name>scsi_host3</name>
  <path>/sys/devices/pci0000:00/0000:00:04.0/0000:10:00.0/host3</path>
  <parent>pci_0000_10_00_0</parent>
  <capability type='scsi_host'>
    <host>3</host>
    <unique_id>0</unique_id>
    <capability type='fc_host'>
      <wwnn>20000000c9848140</wwnn>

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

197



In this example, the <max_vports> value shows there are a total 127 virtual ports available for
use in the HBA configuration. The <vports> value shows the number of virtual ports currently
being used. These values update after creating a vHBA.

3. Create an XML file similar to one of the following for the vHBA host. In these examples, the file
is named vhba_host3.xml.
This example uses scsi_host3 to describe the parent vHBA.

This example uses a WWNN/WWPN pair to describe the parent vHBA.

NOTE

The WWNN and WWPN values must match those in the HBA details seen in the
previous step.

The <parent> field specifies the HBA device to associate with this vHBA device. The details in
the <device> tag are used in the next step to create a new vHBA device for the host. For more
information about the nodedev XML format, see the libvirt upstream pages .

NOTE

The virsh command does not provide a way to define the parent_wwnn, 
parent_wwpn, or parent_fabric_wwn attributes.

4. Create a VHBA based on the XML file created in the previous step by using the virsh nodev-
create command.

      <wwpn>10000000c9848140</wwpn>
      <fabric_wwn>2002000573de9a81</fabric_wwn>
    </capability>
    <capability type='vport_ops'>
      <max_vports>127</max_vports>
      <vports>0</vports>
    </capability>
  </capability>
</device>

<device>
  <parent>scsi_host3</parent>
  <capability type='scsi_host'>
    <capability type='fc_host'>
    </capability>
  </capability>
</device>

<device>
  <name>vhba</name>
  <parent wwnn='20000000c9848140' wwpn='10000000c9848140'/>
  <capability type='scsi_host'>
    <capability type='fc_host'>
    </capability>
  </capability>
</device>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

198

https://libvirt.org/formatnode.html


# virsh nodedev-create vhba_host3
Node device scsi_host5 created from vhba_host3.xml

Verification

Verify the new vHBA’s details (scsi_host5) by using the virsh nodedev-dumpxml command:

# virsh nodedev-dumpxml scsi_host5
<device>
  <name>scsi_host5</name>
  <path>/sys/devices/pci0000:00/0000:00:04.0/0000:10:00.0/host3/vport-3:0-0/host5</path>
  <parent>scsi_host3</parent>
  <capability type='scsi_host'>
    <host>5</host>
    <unique_id>2</unique_id>
    <capability type='fc_host'>
      <wwnn>5001a4a93526d0a1</wwnn>
      <wwpn>5001a4ace3ee047d</wwpn>
      <fabric_wwn>2002000573de9a81</fabric_wwn>
    </capability>
  </capability>
</device>

Additional resources

Creating SCSI-based storage pools with vHBA devices by using the CLI

CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES

199



CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL
MACHINES

To enhance the graphical performance of your virtual machine (VMs) on a RHEL 8 host, you can assign a
host GPU to a VM.

You can detach the GPU from the host and pass full control of the GPU directly to the VM.

You can create multiple mediated devices from a physical GPU, and assign these devices as
virtual GPUs (vGPUs) to multiple guests. This is currently only supported on selected NVIDIA
GPUs, and only one mediated device can be assigned to a single guest.

IMPORTANT

GPU assignment is currently only supported on Intel 64 and AMD64 systems.

13.1. ASSIGNING A GPU TO A VIRTUAL MACHINE

To access and control GPUs that are attached to the host system, you must configure the host system
to pass direct control of the GPU to the virtual machine (VM).

NOTE

If you are looking for information about assigning a virtual GPU, see Managing NVIDIA
vGPU devices.

Prerequisites

You must enable IOMMU support on the host machine kernel.

On an Intel host, you must enable VT-d:

1. Regenerate the GRUB configuration with the intel_iommu=on and iommu=pt
parameters:

# grubby --args="intel_iommu=on iommu_pt" --update-kernel DEFAULT

2. Reboot the host.

On an AMD host, you must enable AMD-Vi.
Note that on AMD hosts, IOMMU is enabled by default, you can add iommu=pt to switch it
to pass-through mode:

1. Regenerate the GRUB configuration with the iommu=pt parameter:

# grubby --args="iommu=pt" --update-kernel DEFAULT

NOTE

The pt option only enables IOMMU for devices used in pass-through
mode and provides better host performance. However, not all hardware
supports the option. You can still assign devices even when this option is
not enabled.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

200



2. Reboot the host.

Procedure

1. Prevent the driver from binding to the GPU.

a. Identify the PCI bus address to which the GPU is attached.

# lspci -Dnn | grep VGA
0000:02:00.0 VGA compatible controller [0300]: NVIDIA Corporation GK106GL [Quadro 
K4000] [10de:11fa] (rev a1)

b. Prevent the host’s graphics driver from using the GPU. To do so, use the GPU PCI ID with
the pci-stub driver.
For example, the following command prevents the driver from binding to the GPU attached
at the 10de:11fa bus:

# grubby --args="pci-stub.ids=10de:11fa" --update-kernel DEFAULT

c. Reboot the host.

2. Optional: If certain GPU functions, such as audio, cannot be passed through to the VM due to
support limitations, you can modify the driver bindings of the endpoints within an IOMMU group
to pass through only the necessary GPU functions.

a. Convert the GPU settings to XML and note the PCI address of the endpoints that you want
to prevent from attaching to the host drivers.
To do so, convert the GPU’s PCI bus address to a libvirt-compatible format by adding the 
pci_ prefix to the address, and converting the delimiters to underscores.

For example, the following command displays the XML configuration of the GPU attached
at the 0000:02:00.0 bus address.

# virsh nodedev-dumpxml pci_0000_02_00_0

<device>
 <name>pci_0000_02_00_0</name>
 <path>/sys/devices/pci0000:00/0000:00:03.0/0000:02:00.0</path>
 <parent>pci_0000_00_03_0</parent>
 <driver>
  <name>pci-stub</name>
 </driver>
 <capability type='pci'>
  <domain>0</domain>
  <bus>2</bus>
  <slot>0</slot>
  <function>0</function>
  <product id='0x11fa'>GK106GL [Quadro K4000]</product>
  <vendor id='0x10de'>NVIDIA Corporation</vendor>
  <iommuGroup number='13'>
   <address domain='0x0000' bus='0x02' slot='0x00' function='0x0'/>
   <address domain='0x0000' bus='0x02' slot='0x00' function='0x1'/>
  </iommuGroup>
  <pci-express>
   <link validity='cap' port='0' speed='8' width='16'/>

CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL MACHINES

201



b. Prevent the endpoints from attaching to the host driver.
In this example, to assign the GPU to a VM, prevent the endpoints that correspond to the
audio function, <address domain='0x0000' bus='0x02' slot='0x00' function='0x1'/>, from
attaching to the host audio driver, and instead attach the endpoints to VFIO-PCI.

# driverctl set-override 0000:02:00.1 vfio-pci

3. Attach the GPU to the VM

a. Create an XML configuration file for the GPU by using the PCI bus address.
For example, you can create the following XML file, GPU-Assign.xml, by using parameters
from the GPU’s bus address.

b. Save the file on the host system.

c. Merge the file with the VM’s XML configuration.
For example, the following command merges the GPU XML file, GPU-Assign.xml, with the
XML configuration file of the System1 VM.

# virsh attach-device System1 --file /home/GPU-Assign.xml --persistent
Device attached successfully.

NOTE

The GPU is attached as a secondary graphics device to the VM. Assigning a
GPU as the primary graphics device is not supported, and Red Hat does not
recommend removing the primary emulated graphics device in the VM’s
XML configuration.

Verification

The device appears under the <devices> section in VM’s XML configuration. For more
information, see Sample virtual machine XML configuration .

Known Issues

The number of GPUs that can be attached to a VM is limited by the maximum number of
assigned PCI devices, which in RHEL 8 is currently 64. However, attaching multiple GPUs to a
VM is likely to cause problems with memory-mapped I/O (MMIO) on the guest, which may result
in the GPUs not being available to the VM.

To work around these problems, set a larger 64-bit MMIO space and configure the vCPU

   <link validity='sta' speed='2.5' width='16'/>
  </pci-express>
 </capability>
</device>

<hostdev mode='subsystem' type='pci' managed='yes'>
 <driver name='vfio'/>
 <source>
  <address domain='0x0000' bus='0x02' slot='0x00' function='0x0'/>
 </source>
</hostdev>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

202



To work around these problems, set a larger 64-bit MMIO space and configure the vCPU
physical address bits to make the extended 64-bit MMIO space addressable.

Attaching an NVIDIA GPU device to a VM that uses a RHEL 8 guest operating system currently
disables the Wayland session on that VM, and loads an Xorg session instead. This is because of
incompatibilities between NVIDIA drivers and Wayland.

13.2. MANAGING NVIDIA VGPU DEVICES

The vGPU feature makes it possible to divide a physical NVIDIA GPU device into multiple virtual
devices, referred to as mediated devices. These mediated devices can then be assigned to multiple
virtual machines (VMs) as virtual GPUs. As a result, these VMs can share the performance of a single
physical GPU.

IMPORTANT

Assigning a physical GPU to VMs, with or without using mediated devices, makes it
impossible for the host to use the GPU.

13.2.1. Setting up NVIDIA vGPU devices

To set up the NVIDIA vGPU feature, you need to download NVIDIA vGPU drivers for your GPU device,
create mediated devices, and assign them to the intended virtual machines. For detailed instructions,
see below.

Prerequisites

Your GPU supports vGPU mediated devices. For an up-to-date list of NVIDIA GPUs that
support creating vGPUs, see the NVIDIA vGPU software documentation.

If you do not know which GPU your host is using, install the lshw package and use the lshw -
C display command. The following example shows the system is using an NVIDIA Tesla P4
GPU, compatible with vGPU.

# lshw -C display

*-display
       description: 3D controller
       product: GP104GL [Tesla P4]
       vendor: NVIDIA Corporation
       physical id: 0
       bus info: pci@0000:01:00.0
       version: a1
       width: 64 bits
       clock: 33MHz
       capabilities: pm msi pciexpress cap_list
       configuration: driver=vfio-pci latency=0
       resources: irq:16 memory:f6000000-f6ffffff memory:e0000000-efffffff 
memory:f0000000-f1ffffff

Procedure

1. Download the NVIDIA vGPU drivers and install them on your system. For instructions, see the
NVIDIA documentation.

CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL MACHINES

203

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html#validated-platforms
https://docs.nvidia.com/grid/latest/grid-software-quick-start-guide/index.html#getting-your-nvidia-grid-software


2. If the NVIDIA software installer did not create the /etc/modprobe.d/nvidia-installer-disable-
nouveau.conf file, create a conf file of any name in /etc/modprobe.d/, and add the following
lines in the file:

blacklist nouveau
options nouveau modeset=0

3. Regenerate the initial ramdisk for the current kernel, then reboot.

# dracut --force
# reboot

4. Check that the kernel has loaded the nvidia_vgpu_vfio module and that the nvidia-vgpu-
mgr.service service is running.

# lsmod | grep nvidia_vgpu_vfio
nvidia_vgpu_vfio 45011 0
nvidia 14333621 10 nvidia_vgpu_vfio
mdev 20414 2 vfio_mdev,nvidia_vgpu_vfio
vfio 32695 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_type1

# systemctl status nvidia-vgpu-mgr.service
nvidia-vgpu-mgr.service - NVIDIA vGPU Manager Daemon
   Loaded: loaded (/usr/lib/systemd/system/nvidia-vgpu-mgr.service; enabled; vendor preset: 
disabled)
   Active: active (running) since Fri 2018-03-16 10:17:36 CET; 5h 8min ago
 Main PID: 1553 (nvidia-vgpu-mgr)
 [...]

In addition, if creating vGPU based on an NVIDIA Ampere GPU device, ensure that virtual
functions are enable for the physical GPU. For instructions, see the NVIDIA documentation.

5. Generate a device UUID.

# uuidgen
30820a6f-b1a5-4503-91ca-0c10ba58692a

6. Prepare an XML file with a configuration of the mediated device, based on the detected GPU
hardware. For example, the following configures a mediated device of the nvidia-63 vGPU type
on an NVIDIA Tesla P4 card that runs on the 0000:01:00.0 PCI bus and uses the UUID
generated in the previous step.

7. Define a vGPU mediated device based on the XML file you prepared. For example:

<device>
    <parent>pci_0000_01_00_0</parent>
    <capability type="mdev">
        <type id="nvidia-63"/>
        <uuid>30820a6f-b1a5-4503-91ca-0c10ba58692a</uuid>
    </capability>
</device>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

204

https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#creating-sriov-vgpu-device-red-hat-el-kvm


# virsh nodedev-define vgpu-test.xml
Node device mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0 created 
from vgpu-test.xml

8. Optional: Verify that the mediated device is listed as inactive.

# virsh nodedev-list --cap mdev --inactive
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0

9. Start the vGPU mediated device you created.

# virsh nodedev-start mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Device mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0 started

10. Optional: Ensure that the mediated device is listed as active.

# virsh nodedev-list --cap mdev
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0

11. Set the vGPU device to start automatically after the host reboots

# virsh nodedev-autostart 
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Device mdev_d196754e_d8ed_4f43_bf22_684ed698b08b_0000_9b_00_0 marked as 
autostarted

12. Attach the mediated device to a VM that you want to share the vGPU resources. To do so, add
the following lines, along with the previously genereated UUID, to the <devices/> sections in the
XML configuration of the VM.

Note that each UUID can only be assigned to one VM at a time. In addition, if the VM does not
have QEMU video devices, such as virtio-vga, add also the ramfb='on' parameter on the 
<hostdev> line.

13. For full functionality of the vGPU mediated devices to be available on the assigned VMs, set up
NVIDIA vGPU guest software licensing on the VMs. For further information and instructions, see
the NVIDIA Virtual GPU Software License Server User Guide .

Verification

1. Query the capabilities of the vGPU you created, and ensure it is listed as active and persistent.

# virsh nodedev-info mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Name:           virsh nodedev-autostart 
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Parent:         pci_0000_01_00_0

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-pci' display='on'>
  <source>
    <address uuid='30820a6f-b1a5-4503-91ca-0c10ba58692a'/>
  </source>
</hostdev>

CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL MACHINES

205

https://docs.nvidia.com/grid/ls/latest/grid-license-server-user-guide/index.html#installing-nvidia-grid-license-server


Active:         yes
Persistent:     yes
Autostart:      yes

2. Start the VM and verify that the guest operating system detects the mediated device as an
NVIDIA GPU. For example, if the VM uses Linux:

# lspci -d 10de: -k
07:00.0 VGA compatible controller: NVIDIA Corporation GV100GL [Tesla V100 SXM2 32GB] 
(rev a1)
        Subsystem: NVIDIA Corporation Device 12ce
        Kernel driver in use: nvidia
        Kernel modules: nouveau, nvidia_drm, nvidia

Known Issues

Assigning an NVIDIA vGPU mediated device to a VM that uses a RHEL 8 guest operating
system currently disables the Wayland session on that VM, and loads an Xorg session instead.
This is because of incompatibilities between NVIDIA drivers and Wayland.

Additional resources

NVIDIA vGPU software documentation

The man virsh command

13.2.2. Removing NVIDIA vGPU devices

To change the configuration of assigned vGPU mediated devices, you need to remove the existing
devices from the assigned VMs. For instructions, see below:

Prerequisites

The VM from which you want to remove the device is shut down.

Procedure

1. Obtain the ID of the mediated device that you want to remove.

# virsh nodedev-list --cap mdev
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0

2. Stop the running instance of the vGPU mediated device.

# virsh nodedev-destroy mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Destroyed node device 'mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0'

3. Optional: Ensure the mediated device has been deactivated.

# virsh nodedev-info mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Name:           virsh nodedev-autostart 
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Parent:         pci_0000_01_00_0

Red Hat Enterprise Linux 8 Configuring and managing virtualization

206

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html#validated-platforms


Active:         no
Persistent:     yes
Autostart:      yes

4. Remove the device from the XML configuration of the VM. To do so, use the virsh edit utility to
edit the XML configuration of the VM, and remove the mdev’s configuration segment. The
segment will look similar to the following:

Note that stopping and detaching the mediated device does not delete it, but rather keeps it as
defined. As such, you can restart and attach the device to a different VM.

5. Optional: To delete the stopped mediated device, remove its definition.

# virsh nodedev-undefine 
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0
Undefined node device 'mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0'

Verification

If you only stopped and detached the device, ensure the mediated device is listed as inactive.

# virsh nodedev-list --cap mdev --inactive
mdev_30820a6f_b1a5_4503_91ca_0c10ba58692a_0000_01_00_0

If you also deleted the device, ensure the following command does not display it.

# virsh nodedev-list --cap mdev

Additional resources

The man virsh command

13.2.3. Obtaining NVIDIA vGPU information about your system

To evaluate the capabilities of the vGPU features available to you, you can obtain additional information
about the mediated devices on your system, such as:

How many mediated devices of a given type can be created

What mediated devices are already configured on your system.

Procedure

To see the available GPUs devices on your host that can support vGPU mediated devices, use
the virsh nodedev-list --cap mdev_types command. For example, the following shows a
system with two NVIDIA Quadro RTX6000 devices.

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-pci'>
  <source>
    <address uuid='30820a6f-b1a5-4503-91ca-0c10ba58692a'/>
  </source>
</hostdev>

CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL MACHINES

207



# virsh nodedev-list --cap mdev_types
pci_0000_5b_00_0
pci_0000_9b_00_0

To display vGPU types supported by a specific GPU device, as well as additional metadata, use
the virsh nodedev-dumpxml command.

# virsh nodedev-dumpxml pci_0000_9b_00_0
<device>
  <name>pci_0000_9b_00_0</name>
  <path>/sys/devices/pci0000:9a/0000:9a:00.0/0000:9b:00.0</path>
  <parent>pci_0000_9a_00_0</parent>
  <driver>
    <name>nvidia</name>
  </driver>
  <capability type='pci'>
    <class>0x030000</class>
    <domain>0</domain>
    <bus>155</bus>
    <slot>0</slot>
    <function>0</function>
    <product id='0x1e30'>TU102GL [Quadro RTX 6000/8000]</product>
    <vendor id='0x10de'>NVIDIA Corporation</vendor>
    <capability type='mdev_types'>
      <type id='nvidia-346'>
        <name>GRID RTX6000-12C</name>
        <deviceAPI>vfio-pci</deviceAPI>
        <availableInstances>2</availableInstances>
      </type>
      <type id='nvidia-439'>
        <name>GRID RTX6000-3A</name>
        <deviceAPI>vfio-pci</deviceAPI>
        <availableInstances>8</availableInstances>
      </type>
      [...]
      <type id='nvidia-440'>
        <name>GRID RTX6000-4A</name>
        <deviceAPI>vfio-pci</deviceAPI>
        <availableInstances>6</availableInstances>
      </type>
      <type id='nvidia-261'>
        <name>GRID RTX6000-8Q</name>
        <deviceAPI>vfio-pci</deviceAPI>
        <availableInstances>3</availableInstances>
      </type>
    </capability>
    <iommuGroup number='216'>
      <address domain='0x0000' bus='0x9b' slot='0x00' function='0x3'/>
      <address domain='0x0000' bus='0x9b' slot='0x00' function='0x1'/>
      <address domain='0x0000' bus='0x9b' slot='0x00' function='0x2'/>
      <address domain='0x0000' bus='0x9b' slot='0x00' function='0x0'/>
    </iommuGroup>
    <numa node='2'/>
    <pci-express>
      <link validity='cap' port='0' speed='8' width='16'/>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

208



      <link validity='sta' speed='2.5' width='8'/>
    </pci-express>
  </capability>
</device>

Additional resources

The man virsh command

13.2.4. Remote desktop streaming services for NVIDIA vGPU

The following remote desktop streaming services are supported on the RHEL 8 hypervisor with NVIDIA
vGPU or NVIDIA GPU passthrough enabled:

HP ZCentral Remote Boost/Teradici

NICE DCV

Mechdyne TGX

For support details, see the appropriate vendor support matrix.

13.2.5. Additional resources

NVIDIA vGPU software documentation

CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL MACHINES

209

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-red-hat-el-kvm/index.html#validated-platforms


CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK
CONNECTIONS

For your virtual machines (VMs) to connect over a network to your host, to other VMs on your host, and
to locations on an external network, the VM networking must be configured accordingly. To provide VM
networking, the RHEL 8 hypervisor and newly created VMs have a default network configuration, which
can also be modified further. For example:

You can enable the VMs on your host to be discovered and connected to by locations outside
the host, as if the VMs were on the same network as the host.

You can partially or completely isolate a VM from inbound network traffic to increase its security
and minimize the risk of any problems with the VM impacting the host.

The following sections explain the various types of VM network configuration and provide instructions
for setting up selected VM network configurations.

14.1. UNDERSTANDING VIRTUAL NETWORKING

The connection of virtual machines (VMs) to other devices and locations on a network has to be
facilitated by the host hardware. The following sections explain the mechanisms of VM network
connections and describe the default VM network setting.

14.1.1. How virtual networks work

Virtual networking uses the concept of a virtual network switch. A virtual network switch is a software
construct that operates on a host machine. VMs connect to the network through the virtual network
switch. Based on the configuration of the virtual switch, a VM can use an existing virtual network
managed by the hypervisor, or a different network connection method.

The following figure shows a virtual network switch connecting two VMs to the network:

From the perspective of a guest operating system, a virtual network connection is the same as a physical
network connection. Host machines view virtual network switches as network interfaces. When the 
libvirtd service is first installed and started, it creates virbr0, the default network interface for VMs.

To view information about this interface, use the ip utility on the host.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

210



$ ip addr show virbr0
3: virbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN link/ether 1b:c4:94:cf:fd:17 brd ff:ff:ff:ff:ff:ff
inet 192.0.2.1/24 brd 192.0.2.255 scope global virbr0

By default, all VMs on a single host are connected to the same NAT-type virtual network, named
default, which uses the virbr0 interface. For details, see Virtual networking default configuration .

For basic outbound-only network access from VMs, no additional network setup is usually needed,
because the default network is installed along with the libvirt-daemon-config-network package, and is
automatically started when the libvirtd service is started.

If a different VM network functionality is needed, you can create additional virtual networks and network
interfaces and configure your VMs to use them. In addition to the default NAT, these networks and
interfaces can be configured to use one of the following modes:

Routed mode

Bridged mode

Isolated mode

Open mode

14.1.2. Virtual networking default configuration

When the libvirtd service is first installed on a virtualization host, it contains an initial virtual network
configuration in network address translation (NAT) mode. By default, all VMs on the host are connected
to the same libvirt virtual network, named default. VMs on this network can connect to locations both
on the host and on the network beyond the host, but with the following limitations:

VMs on the network are visible to the host and other VMs on the host, but the network traffic is
affected by the firewalls in the guest operating system’s network stack and by the libvirt
network filtering rules attached to the guest interface.

VMs on the network can connect to locations outside the host but are not visible to them.
Outbound traffic is affected by the NAT rules, as well as the host system’s firewall.

The following diagram illustrates the default VM network configuration:

CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

211



14.2. USING THE WEB CONSOLE FOR MANAGING VIRTUAL MACHINE
NETWORK INTERFACES

Using the RHEL 8 web console, you can manage the virtual network interfaces for the virtual machines
to which the web console is connected. You can:

View information about network interfaces and edit them .

Add network interfaces to virtual machines , and disconnect or delete the interfaces.

14.2.1. Viewing and editing virtual network interface information in the web console

By using the RHEL 8 web console, you can view and modify the virtual network interfaces on a selected
virtual machine (VM):

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Network Interfaces.
The Networks Interfaces section displays information about the virtual network interface
configured for the VM as well as options to Add, Delete, Edit, or Unplug network interfaces.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

212



The information includes the following:

Type - The type of network interface for the VM. The types include virtual network, bridge
to LAN, and direct attachment.

NOTE

Generic Ethernet connection is not supported in RHEL 8 and later.

Model type - The model of the virtual network interface.

MAC Address - The MAC address of the virtual network interface.

IP Address - The IP address of the virtual network interface.

Source - The source of the network interface. This is dependent on the network type.

State - The state of the virtual network interface.

3. To edit the virtual network interface settings, Click Edit. The Virtual Network Interface Settings
dialog opens.

4. Change the interface type, source, model, or MAC address.

5. Click Save. The network interface is modified.

NOTE

Changes to the virtual network interface settings take effect only after restarting
the VM.

Additionally, MAC address can only be modified when the VM is shut off.

Additional resources

CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

213



Viewing virtual machine information by using the web console

14.2.2. Adding and connecting virtual network interfaces in the web console

By using the RHEL 8 web console, you can create a virtual network interface and connect a virtual
machine (VM) to it.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Network Interfaces.
The Networks Interfaces section displays information about the virtual network interface
configured for the VM as well as options to Add, Edit, or Plug network interfaces.

3. Click Plug in the row of the virtual network interface you want to connect.
The selected virtual network interface connects to the VM.

14.2.3. Disconnecting and removing virtual network interfaces in the web console

By using the RHEL 8 web console, you can disconnect the virtual network interfaces connected to a
selected virtual machine (VM).

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Scroll to Network Interfaces.
The Networks Interfaces section displays information about the virtual network interface
configured for the VM as well as options to Add, Delete, Edit, or Unplug network interfaces.

3. Click Unplug in the row of the virtual network interface you want to disconnect.
The selected virtual network interface disconnects from the VM.

14.3. RECOMMENDED VIRTUAL MACHINE NETWORKING
CONFIGURATIONS

Red Hat Enterprise Linux 8 Configuring and managing virtualization

214



In many scenarios, the default VM networking configuration is sufficient. However, if adjusting the
configuration is required, you can use the command-line interface (CLI) or the RHEL 8 web console to
do so. The following sections describe selected VM network setups for such situations.

14.3.1. Configuring externally visible virtual machines by using the command-line
interface

By default, a newly created VM connects to a NAT-type network that uses virbr0, the default virtual
bridge on the host. This ensures that the VM can use the host’s network interface controller (NIC) for
connecting to outside networks, but the VM is not reachable from external systems.

If you require a VM to appear on the same external network as the hypervisor, you must use bridged
mode instead. To do so, attach the VM to a bridge device connected to the hypervisor’s physical
network device. To use the command-line interface for this, follow the instructions below.

Prerequisites

A shut-down existing VM with the default NAT setup.

The IP configuration of the hypervisor. This varies depending on the network connection of the
host. As an example, this procedure uses a scenario where the host is connected to the network
by using an ethernet cable, and the hosts' physical NIC MAC address is assigned to a static IP on
a DHCP server. Therefore, the ethernet interface is treated as the hypervisor IP.
To obtain the IP configuration of the ethernet interface, use the ip addr utility:

# ip addr
[...]
enp0s25: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP 
group default qlen 1000
    link/ether 54:ee:75:49:dc:46 brd ff:ff:ff:ff:ff:ff
    inet 192.0.2.1/24 brd 192.0.2.255 scope global dynamic noprefixroute enp0s25

Procedure

1. Create and set up a bridge connection for the physical interface on the host. For instructions,
see the Configuring a network bridge .
Note that in a scenario where static IP assignment is used, you must move the IPv4 setting of
the physical ethernet interface to the bridge interface.

2. Modify the VM’s network to use the created bridged interface. For example, the following sets
testguest to use bridge0.

# virt-xml testguest --edit --network bridge=bridge0
Domain 'testguest' defined successfully.

3. Start the VM.

# virsh start testguest

4. In the guest operating system, adjust the IP and DHCP settings of the system’s network
interface as if the VM was another physical system in the same network as the hypervisor.
The specific steps for this will differ depending on the guest OS used by the VM. For example, if
the guest OS is RHEL 8, see Configuring an Ethernet connection.

CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

215

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-a-network-bridge_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-an-ethernet-connection_configuring-and-managing-networking


Verification

1. Ensure the newly created bridge is running and contains both the host’s physical interface and
the interface of the VM.

# ip link show master bridge0
2: enp0s25: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master 
bridge0 state UP mode DEFAULT group default qlen 1000
    link/ether 54:ee:75:49:dc:46 brd ff:ff:ff:ff:ff:ff
10: vnet0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel master 
bridge0 state UNKNOWN mode DEFAULT group default qlen 1000
    link/ether fe:54:00:89:15:40 brd ff:ff:ff:ff:ff:ff

2. Ensure the VM appears on the same external network as the hypervisor:

a. In the guest operating system, obtain the network ID of the system. For example, if it is a
Linux guest:

# ip addr
[...]
enp0s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state 
UP group default qlen 1000
    link/ether 52:54:00:09:15:46 brd ff:ff:ff:ff:ff:ff
    inet 192.0.2.1/24 brd 192.0.2.255 scope global dynamic noprefixroute enp0s0

b. From an external system connected to the local network, connect to the VM by using the
obtained ID.

# ssh root@192.0.2.1
root@192.0.2.1's password:
Last login: Mon Sep 24 12:05:36 2019
root~#*

If the connection works, the network has been configured successfully.

Troubleshooting

In certain situations, such as when using a client-to-site VPN while the VM is hosted on the
client, using bridged mode for making your VMs available to external locations is not possible.
To work around this problem, you can set destination NAT by using nftables for the VM.

Additional resources

Configuring externally visible virtual machines by using the web console

Virtual networking in bridged mode

14.3.2. Configuring externally visible virtual machines by using the web console

By default, a newly created VM connects to a NAT-type network that uses virbr0, the default virtual
bridge on the host. This ensures that the VM can use the host’s network interface controller (NIC) for
connecting to outside networks, but the VM is not reachable from external systems.

If you require a VM to appear on the same external network as the hypervisor, you must use bridged

Red Hat Enterprise Linux 8 Configuring and managing virtualization

216

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking


If you require a VM to appear on the same external network as the hypervisor, you must use bridged
mode instead. To do so, attach the VM to a bridge device connected to the hypervisor’s physical
network device. To use the RHEL 8 web console for this, follow the instructions below.

Prerequisites

The web console VM plug-in is installed on your system .

A shut-down existing VM with the default NAT setup.

The IP configuration of the hypervisor. This varies depending on the network connection of the
host. As an example, this procedure uses a scenario where the host is connected to the network
by using an ethernet cable, and the hosts' physical NIC MAC address is assigned to a static IP on
a DHCP server. Therefore, the ethernet interface is treated as the hypervisor IP.
To obtain the IP configuration of the ethernet interface, go to the Networking tab in the web
console, and see the Interfaces section.

Procedure

1. Create and set up a bridge connection for the physical interface on the host. For instructions,
see Configuring network bridges in the web console .
Note that in a scenario where static IP assignment is used, you must move the IPv4 setting of
the physical ethernet interface to the bridge interface.

2. Modify the VM’s network to use the bridged interface. In the Network Interfaces  tab of the VM:

a. Click Add Network Interface

b. In the Add Virtual Network Interface dialog, set:

Interface Type to Bridge to LAN

Source to the newly created bridge, for example bridge0

c. Click Add

d. Optional: Click Unplug for all the other interfaces connected to the VM.

3. Click Run to start the VM.

4. In the guest operating system, adjust the IP and DHCP settings of the system’s network
interface as if the VM was another physical system in the same network as the hypervisor.
The specific steps for this will differ depending on the guest OS used by the VM. For example, if
the guest OS is RHEL 8, see Configuring an Ethernet connection.

Verification

1. In the Networking tab of the host’s web console, click the row with the newly created bridge to
ensure it is running and contains both the host’s physical interface and the interface of the VM.

CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

217

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_systems_using_the_rhel_8_web_console/configuring-network-bridges-in-the-web-console_system-management-using-the-rhel-8-web-console
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-an-ethernet-connection_configuring-and-managing-networking


2. Ensure the VM appears on the same external network as the hypervisor.

a. In the guest operating system, obtain the network ID of the system. For example, if it is a
Linux guest:

# ip addr
[...]
enp0s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state 
UP group default qlen 1000
    link/ether 52:54:00:09:15:46 brd ff:ff:ff:ff:ff:ff
    inet 192.0.2.1/24 brd 192.0.2.255 scope global dynamic noprefixroute enp0s0

b. From an external system connected to the local network, connect to the VM by using the
obtained ID.

# ssh root@192.0.2.1
root@192.0.2.1's password:
Last login: Mon Sep 24 12:05:36 2019
root~#*

If the connection works, the network has been configured successfully.

Troubleshooting

In certain situations, such as when using a client-to-site VPN while the VM is hosted on the
client, using bridged mode for making your VMs available to external locations is not possible.

To work around this problem, you can set destination NAT by using nftables for the VM.

Additional resources

Configuring externally visible virtual machines by using the command-line interface

Virtual networking in bridged mode

14.4. TYPES OF VIRTUAL MACHINE NETWORK CONNECTIONS

To modify the networking properties and behavior of your VMs, change the type of virtual network or
interface the VMs use. The following sections describe the connection types available to VMs in RHEL 8.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

218

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#configuring-destination-nat-using-nftables_configuring-nat-using-nftables


14.4.1. Virtual networking with network address translation

By default, virtual network switches operate in network address translation (NAT) mode. They use IP
masquerading rather than Source-NAT (SNAT) or Destination-NAT (DNAT). IP masquerading enables
connected VMs to use the host machine’s IP address for communication with any external network.
When the virtual network switch is operating in NAT mode, computers external to the host cannot
communicate with the VMs inside the host.

WARNING

Virtual network switches use NAT configured by firewall rules. Editing these rules
while the switch is running is not recommended, because incorrect rules may result
in the switch being unable to communicate.

14.4.2. Virtual networking in routed mode

When using Routed mode, the virtual switch connects to the physical LAN connected to the host
machine, passing traffic back and forth without the use of NAT. The virtual switch can examine all traffic
and use the information contained within the network packets to make routing decisions. When using
this mode, the virtual machines (VMs) are all in a single subnet, separate from the host machine. The VM
subnet is routed through a virtual switch, which exists on the host machine. This enables incoming
connections, but requires extra routing-table entries for systems on the external network.

Routed mode uses routing based on the IP address:



CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

219



A common topology that uses routed mode is virtual server hosting (VSH). A VSH provider may have
several host machines, each with two physical network connections. One interface is used for
management and accounting, the other for the VMs to connect through. Each VM has its own public IP
address, but the host machines use private IP addresses so that only internal administrators can manage
the VMs.

14.4.3. Virtual networking in bridged mode

In most VM networking modes, VMs automatically create and connect to the virbr0 virtual bridge. In
contrast, in bridged mode, the VM connects to an existing Linux bridge on the host. As a result, the VM is
directly visible on the physical network. This enables incoming connections, but does not require any
extra routing-table entries.

Bridged mode uses connection switching based on the MAC address:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

220



In bridged mode, the VM appear within the same subnet as the host machine. All other physical
machines on the same physical network can detect the VM and access it.

Bridged network bonding

It is possible to use multiple physical bridge interfaces on the hypervisor by joining them together with a
bond. The bond can then be added to a bridge, after which the VMs can be added to the bridge as well.
However, the bonding driver has several modes of operation, and not all of these modes work with a
bridge where VMs are in use.

The following bonding modes are usable:

mode 1

mode 2

mode 4

In contrast, modes 0, 3, 5, or 6 is likely to cause the connection to fail. Also note that media-independent
interface (MII) monitoring should be used to monitor bonding modes, as Address Resolution Protocol
(ARP) monitoring does not work correctly.

For more information about bonding modes, refer to the Red Hat Knowledgebase .

Common scenarios

The most common use cases for bridged mode include:

Deploying VMs in an existing network alongside host machines, making the difference between
virtual and physical machines invisible to the end user.

Deploying VMs without making any changes to existing physical network configuration settings.

Deploying VMs that must be easily accessible to an existing physical network. Placing VMs on a
physical network where they must access DHCP services.

Connecting VMs to an existing network where virtual LANs (VLANs) are used.

A demilitarized zone (DMZ) network. For a DMZ deployment with VMs, Red Hat recommends
setting up the DMZ at the physical network router and switches, and connecting the VMs to the
physical network by using bridged mode.

CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

221

https://access.redhat.com/solutions/67546
https://access.redhat.com/solutions/67546


Additional resources

Configuring externally visible virtual machines by using the command-line interface

Configuring externally visible virtual machines by using the web console

Explanation of bridge_opts parameters

14.4.4. Virtual networking in isolated mode

By using isolated mode, virtual machines connected to the virtual switch can communicate with each
other and with the host machine, but their traffic will not pass outside of the host machine, and they
cannot receive traffic from outside the host machine. Using dnsmasq in this mode is required for basic
functionality such as DHCP.

14.4.5. Virtual networking in open mode

When using open mode for networking, libvirt does not generate any firewall rules for the network. As a
result, libvirt does not overwrite firewall rules provided by the host, and the user can therefore manually
manage the VM’s firewall rules.

14.4.6. Comparison of virtual machine connection types

The following table provides information about the locations to which selected types of virtual machine
(VM) network configurations can connect, and to which they are visible.

Table 14.1. Virtual machine connection types

 Connection to the
host

Connection to
other VMs on the
host

Connection to
outside locations

Visible to outside
locations

Bridged mode YES YES YES YES

NAT YES YES YES no

Routed mode YES YES YES YES

Red Hat Enterprise Linux 8 Configuring and managing virtualization

222

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.1/html/administration_guide/appe-custom_network_properties#Explanation_of_bridge_opts_Parameters


Isolated mode YES YES no no

Open mode Depends on the host’s firewall rules

 Connection to the
host

Connection to
other VMs on the
host

Connection to
outside locations

Visible to outside
locations

14.5. BOOTING VIRTUAL MACHINES FROM A PXE SERVER

Virtual machines (VMs) that use Preboot Execution Environment (PXE) can boot and load their
configuration from a network. This chapter describes how to use libvirt to boot VMs from a PXE server
on a virtual or bridged network.

WARNING

These procedures are provided only as an example. Ensure that you have sufficient
backups before proceeding.

14.5.1. Setting up a PXE boot server on a virtual network

This procedure describes how to configure a libvirt virtual network to provide Preboot Execution
Environment (PXE). This enables virtual machines on your host to be configured to boot from a boot
image available on the virtual network.

Prerequisites

A local PXE server (DHCP and TFTP), such as:

libvirt internal server

manually configured dhcpd and tftpd

dnsmasq

Cobbler server

PXE boot images, such as PXELINUX configured by Cobbler or manually.

Procedure

1. Place the PXE boot images and configuration in /var/lib/tftpboot folder.

2. Set folder permissions:

# chmod -R a+r /var/lib/tftpboot

3. Set folder ownership:



CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

223



# chown -R nobody: /var/lib/tftpboot

4. Update SELinux context:

# chcon -R --reference /usr/sbin/dnsmasq /var/lib/tftpboot
# chcon -R --reference /usr/libexec/libvirt_leaseshelper /var/lib/tftpboot

5. Shut down the virtual network:

# virsh net-destroy default

6. Open the virtual network configuration file in your default editor:

# virsh net-edit default

7. Edit the <ip> element to include the appropriate address, network mask, DHCP address range,
and boot file, where example-pxelinux is the name of the boot image file.

8. Start the virtual network:

# virsh net-start default

Verification

Verify that the default virtual network is active:

# virsh net-list
Name             State    Autostart   Persistent
---------------------------------------------------
default          active   no          no

Additional resources

Preparing to install from the network by using PXE

14.5.2. Booting virtual machines by using PXE and a virtual network

To boot virtual machines (VMs) from a Preboot Execution Environment (PXE) server available on a
virtual network, you must enable PXE booting.

Prerequisites

A PXE boot server is set up on the virtual network as described in Setting up a PXE boot server
on a virtual network.

<ip address='192.0.2.1' netmask='255.255.255.0'>
   <tftp root='/var/lib/tftpboot'/>
   <dhcp>
      <range start='192.0.2.2' end='192.0.2.254' />
      <bootp file='example-pxelinux'/>
   </dhcp>
</ip>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

224

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/performing_an_advanced_rhel_8_installation/index#preparing-for-a-network-install_installing-rhel-as-an-experienced-user


Procedure

Create a new VM with PXE booting enabled. For example, to install from a PXE, available on the 
default virtual network, into a new 10 GB qcow2 image file:

# virt-install --pxe --network network=default --memory 2048 --vcpus 2 --disk size=10

Alternatively, you can manually edit the XML configuration file of an existing VM:

i. Ensure the <os> element has a <boot dev='network'/> element inside:

<os>
   <type arch='x86_64' machine='pc-i440fx-rhel7.0.0'>hvm</type>
   <boot dev='network'/>
   <boot dev='hd'/>
</os>

ii. Ensure the guest network is configured to use your virtual network:

<interface type='network'>
   <mac address='52:54:00:66:79:14'/>
   <source network='default'/>
   <target dev='vnet0'/>
   <alias name='net0'/>
   <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</interface>

Verification

Start the VM by using the virsh start command. If PXE is configured correctly, the VM boots
from a boot image available on the PXE server.

14.5.3. Booting virtual machines by using PXE and a bridged network

To boot virtual machines (VMs) from a Preboot Execution Environment (PXE) server available on a
bridged network, you must enable PXE booting.

Prerequisites

Network bridging is enabled.

A PXE boot server is available on the bridged network.

Procedure

Create a new VM with PXE booting enabled. For example, to install from a PXE, available on the 
breth0 bridged network, into a new 10 GB qcow2 image file:

# virt-install --pxe --network bridge=breth0 --memory 2048 --vcpus 2 --disk size=10

Alternatively, you can manually edit the XML configuration file of an existing VM:

i. Ensure the <os> element has a <boot dev='network'/> element inside:

CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS

225



<os>
   <type arch='x86_64' machine='pc-i440fx-rhel7.0.0'>hvm</type>
   <boot dev='network'/>
   <boot dev='hd'/>
</os>

ii. Ensure the VM is configured to use your bridged network:

<interface type='bridge'>
   <mac address='52:54:00:5a:ad:cb'/>
   <source bridge='breth0'/>
   <target dev='vnet0'/>
   <alias name='net0'/>
   <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</interface>

Verification

Start the VM by using the virsh start command. If PXE is configured correctly, the VM boots
from a boot image available on the PXE server.

Additional resources

Configuring a network bridge

14.6. ADDITIONAL RESOURCES

Configuring and managing networking

Attach specific network interface cards as SR-IOV devices  to increase VM performance.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

226

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/configuring-a-network-bridge_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/index


CHAPTER 15. SHARING FILES BETWEEN THE HOST AND ITS
VIRTUAL MACHINES

You may frequently require to share data between your host system and the virtual machines (VMs) it
runs. To do so quickly and efficiently, you can set up NFS file shares on your system.

15.1. SHARING FILES BETWEEN THE HOST AND ITS VIRTUAL
MACHINES BY USING NFS

For efficient file sharing between the RHEL 8 host system and the virtual machines (VMs), you can
export an NFS share that VMs can mount and access.

Prerequisites

The nfs-utils package is installed on the host.

# yum install nfs-utils -y

Virtual network of NAT or bridge type is configured to connect a host to VMs.

Optional: For improved security, ensure your VMs are compatible with NFS version 4 or later.

Procedure

1. On the host, export a directory with the files you want to share as a network file system (NFS):

a. Share an existing directory with VMs. If you do not want to share any of the existing
directories, create a new one:

# mkdir shared-files

b. Obtain the IP address of each VM to share files from the host, for example, testguest1 and
testguest2 :

# virsh domifaddr testguest1
Name       MAC address          Protocol     Address
----------------------------------------------------------------
vnet0      52:53:00:84:57:90    ipv4         192.0.2.2/24

# virsh domifaddr testguest2
Name       MAC address          Protocol     Address
----------------------------------------------------------------
vnet1      52:53:00:65:29:21    ipv4         192.0.2.3/24

c. Edit the /etc/exports file on the host and add a line that includes the directory you want to
share, IPs of VMs to share, and additional options:

/home/<username>/Downloads/<shared_directory>/ <VM1-IP(options)> <VM2-
IP(options)>
...

The following example shares the /usr/local/shared-files directory on the host with
testguest1 and testguest2, and enables the VMs to edit the content of the directory:

CHAPTER 15. SHARING FILES BETWEEN THE HOST AND ITS VIRTUAL MACHINES

227



/usr/local/shared-files/ 192.0.2.2(rw,sync) 192.0.2.3(rw,sync)

NOTE

To share a directory with a Windows VM, you need to ensure the Windows
NFS client has write permissions in the shared directory. You can use the 
all_squash, anonuid, and anongid options in the /etc/exports file.

/usr/local/shared-files/ 
192.0.2.2(rw,sync,all_squash,anonuid=<directory-owner-
UID>,anongid=<directory-owner-GID>)

The <directory-owner-UID> and <directory-owner-GID> are the UID and GID
of the local user that owns the shared directory on the host.

For other options to manage NFS client permissions, follow the Securing the
NFS service guide.

d. Export the updated file system:

# exportfs -a

e. Start the nfs-server service:

# systemctl start nfs-server

f. Obtain the IP address of the host system to mount the shared directory on the VMs:

# ip addr
...
5: virbr0: [BROADCAST,MULTICAST,UP,LOWER_UP] mtu 1500 qdisc noqueue state 
UP group default qlen 1000
link/ether 52:54:00:32:ff:a5 brd ff:ff:ff:ff:ff:ff
inet 192.0.2.1/24 brd 192.0.2.255 scope global virbr0
valid_lft forever preferred_lft forever
...

Note that the relevant network connects the host with VMs to share files. Usually, this is 
virbr0.

2. Mount the shared directory on a Linux VM that is specified in the /etc/exports file:

# mount 192.0.2.1:/usr/local/shared-files /mnt/host-share

192.0.2.1: The IP address of the host.

/usr/local/shared-files: A file-system path to the exported directory on the host.

/mnt/host-share: A mount point on the VM

NOTE

The mount point must be an empty directory.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

228

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/securing_networks/securing-network-services_securing-networks#securing-the-nfs-service_securing-network-services


3. To mount the shared directory on a Windows VM as mentioned in the /etc/exports file:

a. Open a PowerShell shell prompt as an Administrator.

b. Install the NFS-Client package on the Windows.

i. To install on a server version, enter:

# Install-WindowsFeature NFS-Client

ii. To install on a desktop version, enter:

# Enable-WindowsOptionalFeature -FeatureName ServicesForNFS-ClientOnly, 
ClientForNFS-Infrastructure -Online -NoRestart

c. Mount the directory exported by the host on a Windows VM:

# C:\Windows\system32\mount.exe -o anon \\192.0.2.1\usr\local\shared-files Z:

In this example:

192.0.2.1: The IP address of the host.

/usr/local/shared-files: A file system path to the exported directory on the host.

Z:: The drive letter for a mount point.

NOTE

You must choose a drive letter that is not in use on the system.

Verification

List the contents of the shared directory on the VM so that you can share files between the host
and the VM:

$ ls <mount_point>
shared-file1  shared-file2  shared-file3

In this example, replace <mount_point> with a file system path to the mounted shared directory.

Additional resources

Deploying an NFS server

CHAPTER 15. SHARING FILES BETWEEN THE HOST AND ITS VIRTUAL MACHINES

229

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/deploying_different_types_of_servers/deploying-an-nfs-server_deploying-different-types-of-servers


CHAPTER 16. SECURING VIRTUAL MACHINES
As an administrator of a RHEL 8 system with virtual machines (VMs), ensuring that your VMs are as
secure as possible significantly lowers the risk of your guest and host OSs being infected by malicious
software.

This document outlines the mechanics of securing VMs  on a RHEL 8 host and provides a list of methods
to increase the security of your VMs.

16.1. HOW SECURITY WORKS IN VIRTUAL MACHINES

When using virtual machines (VMs), multiple operating systems can be housed within a single host
machine. These systems are connected with the host through the hypervisor, and usually also through a
virtual network. As a consequence, each VM can be used as a vector for attacking the host with malicious
software, and the host can be used as a vector for attacking any of the VMs.

Figure 16.1. A potential malware attack vector on a virtualization host

Because the hypervisor uses the host kernel to manage VMs, services running on the VM’s operating
system are frequently used for injecting malicious code into the host system. However, you can protect
your system against such security threats by using a number of security features  on your host and your
guest systems.

These features, such as SELinux or QEMU sandboxing, provide various measures that make it more
difficult for malicious code to attack the hypervisor and transfer between your host and your VMs.

Figure 16.2. Prevented malware attacks on a virtualization host

Red Hat Enterprise Linux 8 Configuring and managing virtualization

230



Figure 16.2. Prevented malware attacks on a virtualization host

Many of the features that RHEL 8 provides for VM security are always active and do not have to be
enabled or configured. For details, see Automatic features for virtual machine security .

In addition, you can adhere to a variety of best practices to minimize the vulnerability of your VMs and
your hypervisor. For more information, see Best practices for securing virtual machines .

16.2. BEST PRACTICES FOR SECURING VIRTUAL MACHINES

Following the instructions below significantly decreases the risk of your virtual machines being infected
with malicious code and used as attack vectors to infect your host system.

On the guest side:

Secure the virtual machine as if it was a physical machine. The specific methods available to
enhance security depend on the guest OS.
If your VM is running RHEL 8, see Securing Red Hat Enterprise Linux 8 for detailed instructions
on improving the security of your guest system.

On the host side:

When managing VMs remotely, use cryptographic utilities such as SSH and network protocols
such as SSL for connecting to the VMs.

Ensure SELinux is in Enforcing mode:

# getenforce
Enforcing

If SELinux is disabled or in Permissive mode, see the Using SELinux document for instructions
on activating Enforcing mode.

NOTE

CHAPTER 16. SECURING VIRTUAL MACHINES

231

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/changing-selinux-states-and-modes_using-selinux#changing-to-enforcing-mode_changing-selinux-states-and-modes


NOTE

SELinux Enforcing mode also enables the sVirt RHEL 8 feature. This is a set of
specialized SELinux booleans for virtualization, which can be manually adjusted
for fine-grained VM security management.

Use VMs with SecureBoot:
SecureBoot is a feature that ensures that your VM is running a cryptographically signed OS.
This prevents VMs whose OS has been altered by a malware attack from booting.

SecureBoot can only be applied when installing a Linux VM that uses OVMF firmware on an
AMD64 or Intel 64 host. For instructions, see Creating a SecureBoot virtual machine .

Do not use qemu-* commands, such as qemu-kvm.
QEMU is an essential component of the virtualization architecture in RHEL 8, but it is difficult to
manage manually, and improper QEMU configurations may cause security vulnerabilities.
Therefore, using most qemu-* commands is not supported by Red Hat. Instead, use libvirt
utilities, such as virsh, virt-install, and virt-xml, as these orchestrate QEMU according to the
best practices.

Note, however, that the qemu-img utility is supported for management of virtual disk images.

Additional resources

SELinux booleans for virtualization in RHEL

16.3. CREATING A SECUREBOOT VIRTUAL MACHINE

You can create a Linux virtual machine (VM) that uses the SecureBoot feature, which ensures that your
VM is running a cryptographically signed OS. This can be useful if the guest OS of a VM has been altered
by malware. In such a scenario, SecureBoot prevents the VM from booting, which stops the potential
spread of the malware to your host machine.

Prerequisites

The VM is the Q35 machine type.

Your host system uses the AMD64 or Intel 64 architecture.

The edk2-OVMF packages is installed:

# yum install edk2-ovmf

An operating system (OS) installation source is available locally or on a network. This can be one
of the following formats:

An ISO image of an installation medium

A disk image of an existing VM installation

Red Hat Enterprise Linux 8 Configuring and managing virtualization

232



WARNING

Installing from a host CD-ROM or DVD-ROM device is not possible in
RHEL 8. If you select a CD-ROM or DVD-ROM as the installation
source when using any VM installation method available in RHEL 8, the
installation will fail. For more information, see the Red Hat
Knowledgebase.

Optional: A Kickstart file can be provided for faster and easier configuration of the installation.

Procedure

1. Use the virt-install command to create a VM as detailed in Creating virtual machines by using
the command-line interface. For the --boot option, use the 
uefi,nvram_template=/usr/share/OVMF/OVMF_VARS.secboot.fd value. This uses the 
OVMF_VARS.secboot.fd and OVMF_CODE.secboot.fd files as templates for the VM’s non-
volatile RAM (NVRAM) settings, which enables the SecureBoot feature.
For example:

# virt-install --name rhel8sb --memory 4096 --vcpus 4 --os-variant rhel8.0 --boot 
uefi,nvram_template=/usr/share/OVMF/OVMF_VARS.secboot.fd --disk 
boot_order=2,size=10 --disk boot_order=1,device=cdrom,bus=scsi,path=/images/RHEL-8.0-
installation.iso

2. Follow the OS installation procedure according to the instructions on the screen.

Verification

1. After the guest OS is installed, access the VM’s command line by opening the terminal in the
graphical guest console or connecting to the guest OS using SSH.

2. To confirm that SecureBoot has been enabled on the VM, use the mokutil --sb-state command:

# mokutil --sb-state
SecureBoot enabled

Additional resources

Installing RHEL 8 on AMD64, Intel 64, and 64-bit ARM

16.4. LIMITING WHAT ACTIONS ARE AVAILABLE TO VIRTUAL
MACHINE USERS

In some cases, actions that users of virtual machines (VMs) hosted on RHEL 8 can perform by default
may pose a security risk. If that is the case, you can limit the actions available to VM users by configuring
the libvirt daemons to use the polkit policy toolkit on the host machine.

Procedure

1. Optional: Ensure your system’s polkit control policies related to libvirt are set up according to



CHAPTER 16. SECURING VIRTUAL MACHINES

233

https://access.redhat.com/solutions/1185913
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/performing_a_standard_rhel_8_installation/installing-rhel-on-adm64-intel-64-and-64-bit-arm


1. Optional: Ensure your system’s polkit control policies related to libvirt are set up according to
your preferences.

a. Find all libvirt-related files in the /usr/share/polkit-1/actions/ and /usr/share/polkit-
1/rules.d/ directories.

# ls /usr/share/polkit-1/actions | grep libvirt
# ls /usr/share/polkit-1/rules.d | grep libvirt

b. Open the files and review the rule settings.
For information about reading the syntax of polkit control policies, use man polkit.

c. Modify the libvirt control policies. To do so:

i. Create a new .rules file in the /etc/polkit-1/rules.d/ directory.

ii. Add your custom policies to this file, and save it.
For further information and examples of libvirt control policies, see the libvirt upstream
documentation.

2. Configure your VMs to use access policies determined by polkit.
To do so, uncomment the access_drivers = [ "polkit" ] line in the /etc/libvirt/libvirtd.conf file.

# sed -i 's/#access_drivers = \[ "polkit" \]/access_drivers = \[ "polkit" \]/' /etc/libvirt/libvirtd.conf

3. Restart the libvirtd service.

# systemctl restart libvirtd

Verification

As a user whose VM actions you intended to limit, perform one of the restricted actions.
For example, if unprivileged users are restricted from viewing VMs created in the system
session:

$ virsh -c qemu:///system list --all
Id   Name           State
-------------------------------

If this command does not list any VMs even though one or more VMs exist on your system, 
polkit successfully restricts the action for unprivileged users.

Troubleshooting

Currently, configuring libvirt to use polkit makes it impossible to connect to VMs using the
RHEL 8 web console, due to an incompatibility with the libvirt-dbus service.
If you require fine-grained access control of VMs in the web console, create a custom D-Bus
policy. For instructions, see How to configure fine-grained control of Virtual Machines in
Cockpit in the Red Hat Knowledgebase.

Additional resources

The man polkit command

Red Hat Enterprise Linux 8 Configuring and managing virtualization

234

https://libvirt.org/aclpolkit.html#writing-access-control-policies
https://access.redhat.com/solutions/6106401


The libvirt upstream information about polkit access control policies

16.5. AUTOMATIC FEATURES FOR VIRTUAL MACHINE SECURITY

In addition to manual means of improving the security of your virtual machines listed in Best practices
for securing virtual machines, a number of security features are provided by the libvirt software suite
and are automatically enabled when using virtualization in RHEL 8. These include:

System and session connections

To access all the available utilities for virtual machine management in RHEL 8, you need to use the
system connection of libvirt (qemu:///system). To do so, you must have root privileges on the system
or be a part of the libvirt user group.
Non-root users that are not in the libvirt group can only access a session connection of libvirt
(qemu:///session), which has to respect the access rights of the local user when accessing resources.
For example, using the session connection, you cannot detect or access VMs created in the system
connection or by other users. Also, available VM networking configuration options are significantly
limited.

NOTE

The RHEL 8 documentation assumes you have system connection privileges.

Virtual machine separation

Individual VMs run as isolated processes on the host, and rely on security enforced by the host kernel.
Therefore, a VM cannot read or access the memory or storage of other VMs on the same host.

QEMU sandboxing

A feature that prevents QEMU code from executing system calls that can compromise the security
of the host.

Kernel Address Space Randomization (KASLR)

Enables randomizing the physical and virtual addresses at which the kernel image is decompressed.
Thus, KASLR prevents guest security exploits based on the location of kernel objects.

16.6. SELINUX BOOLEANS FOR VIRTUALIZATION

RHEL 8 provides the sVirt feature, which is a set of specialized SELinux booleans that are automatically
enabled on a host with SELinux in Enforcing mode.

For fine-grained configuration of virtual machines security on a RHEL 8 system, you can configure
SELinux booleans on the host to ensure the hypervisor acts in a specific way.

To list all virtualization-related booleans and their statuses, use the getsebool -a | grep virt command:

$ getsebool -a | grep virt
[...]
virt_sandbox_use_netlink --> off
virt_sandbox_use_sys_admin --> off
virt_transition_userdomain --> off
virt_use_comm --> off
virt_use_execmem --> off
virt_use_fusefs --> off
[...]

CHAPTER 16. SECURING VIRTUAL MACHINES

235

https://libvirt.org/aclpolkit.html#writing-access-control-policies


To enable a specific boolean, use the setsebool -P boolean_name on command as root. To disable a
boolean, use setsebool -P boolean_name off.

The following table lists virtualization-related booleans available in RHEL 8 and what they do when
enabled:

Table 16.1. SELinux virtualization booleans

SELinux Boolean Description

staff_use_svirt Enables non-root users to create and transition VMs
to sVirt.

unprivuser_use_svirt Enables unprivileged users to create and transition
VMs to sVirt.

virt_sandbox_use_audit Enables sandbox containers to send audit messages.

virt_sandbox_use_netlink Enables sandbox containers to use netlink system
calls.

virt_sandbox_use_sys_admin Enables sandbox containers to use sys_admin system
calls, such as mount.

virt_transition_userdomain Enables virtual processes to run as user domains.

virt_use_comm Enables virt to use serial/parallel communication
ports.

virt_use_execmem Enables confined virtual guests to use executable
memory and executable stack.

virt_use_fusefs Enables virt to read FUSE mounted files.

virt_use_nfs Enables virt to manage NFS mounted files.

virt_use_rawip Enables virt to interact with rawip sockets.

virt_use_samba Enables virt to manage CIFS mounted files.

virt_use_sanlock Enables confined virtual guests to interact with the
sanlock.

virt_use_usb Enables virt to use USB devices.

virt_use_xserver Enables virtual machine to interact with the X
Window System.

16.7. SETTING UP IBM SECURE EXECUTION ON IBM Z

Red Hat Enterprise Linux 8 Configuring and managing virtualization

236



When using IBM Z hardware to run a RHEL 8 host, you can improve the security of your virtual machines
(VMs) by configuring IBM Secure Execution for the VMs.

IBM Secure Execution, also known as Protected Virtualization, prevents the host system from accessing
a VM’s state and memory contents. As a result, even if the host is compromised, it cannot be used as a
vector for attacking the guest operating system. In addition, Secure Execution can be used to prevent
untrusted hosts from obtaining sensitive information from the VM.

The following procedure describes how to convert an existing VM on an IBM Z host into a secured VM.

Prerequisites

The system hardware is one of the following:

IBM z15 or later

IBM LinuxONE III or later

The Secure Execution feature is enabled for your system. To verify, use:

# grep facilities /proc/cpuinfo | grep 158

If this command displays any output, your CPU is compatible with Secure Execution.

The kernel includes support for Secure Execution. To confirm, use:

# ls /sys/firmware | grep uv

If the command generates any output, your kernel supports Secure Execution.

The host CPU model contains the unpack facility. To confirm, use:

# virsh domcapabilities | grep unpack
<feature policy='require' name='unpack'/>

If the command generates the above output, your CPU host model is compatible with Secure
Execution.

The CPU mode of the VM is set to host-model. To confirm this, use the following and replace 
vm-name with the name of your VM.

# virsh dumpxml vm-name | grep "<cpu mode='host-model'/>"

If the command generates any output, the VM’s CPU mode is set correctly.

You have obtained and verified the IBM Z host key document. For instructions to do so, see
Verifying the host key document  in IBM documentation.

Procedure

Do the following steps on your host:

1. Add the prot_virt=1 kernel parameter to the boot configuration of the host.

# grubby --update-kernel=ALL --args="prot_virt=1"

CHAPTER 16. SECURING VIRTUAL MACHINES

237

https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxse/lxse_t_verify.html#lxse_verify
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-command-line-parameters_managing-monitoring-and-updating-the-kernel#changing-kernel-command-line-parameters-for-all-boot-entries_setting-kernel-command-line-parameters


2. Update the boot menu:
# zipl

3. Use virsh edit to modify the XML configuration of the VM you want to secure.

4. Add <launchSecurity type="s390-pv"/> to the under the </devices> line. For example:

5. If the <devices> section of the configuration includes a virtio-rng device (<rng 
model="virtio">), remove all lines of the <rng> </rng> block.

Do the following steps in the guest operating system of the VM you want to secure.

1. Create a parameter file. For example:

# touch ~/secure-parameters

2. In the /boot/loader/entries directory, identify the boot loader entry with the latest version:

# ls /boot/loader/entries -l
[...]
-rw-r--r--. 1 root root  281 Oct  9 15:51 3ab27a195c2849429927b00679db15c1-4.18.0-
240.el8.s390x.conf

3. Retrieve the kernel options line of the boot loader entry:

# cat /boot/loader/entries/3ab27a195c2849429927b00679db15c1-4.18.0-240.el8.s390x.conf 
| grep options
options root=/dev/mapper/rhel-root
crashkernel=auto
rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap

4. Add the content of the options line and swiotlb=262144 to the created parameters file.

# echo "root=/dev/mapper/rhel-root crashkernel=auto rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap 
swiotlb=262144" > ~/secure-parameters

5. Generate an IBM Secure Execution image.
For example, the following creates a /boot/secure-image secured image based on the 
/boot/vmlinuz-4.18.0-240.el8.s390x image, using the secure-parameters file, the 
/boot/initramfs-4.18.0-240.el8.s390x.img initial RAM disk file, and the HKD-8651-
000201C048.crt host key document.

# genprotimg -i /boot/vmlinuz-4.18.0-240.el8.s390x -r /boot/initramfs-4.18.0-
240.el8.s390x.img -p ~/secure-parameters -k HKD-8651-00020089A8.crt -o /boot/secure-
image

By using the genprotimg utility creates the secure image, which contains the kernel parameters,
initial RAM disk, and boot image.

[...]
    </memballoon>
  </devices>
  <launchSecurity type="s390-pv"/>
</domain>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

238



6. Update the VM’s boot menu to boot from the secure image. In addition, remove the lines
starting with initrd and options, as they are not needed.
For example, in a RHEL 8.3 VM, the boot menu can be edited in the /boot/loader/entries/
directory:

# cat /boot/loader/entries/3ab27a195c2849429927b00679db15c1-4.18.0-240.el8.s390x.conf
title Red Hat Enterprise Linux 8.3
version 4.18.0-240.el8.s390x
linux /boot/secure-image
[...]

7. Create the bootable disk image:

# zipl -V

8. Securely remove the original unprotected files. For example:

# shred /boot/vmlinuz-4.18.0-240.el8.s390x
# shred /boot/initramfs-4.18.0-240.el8.s390x.img
# shred secure-parameters

The original boot image, the initial RAM image, and the kernel parameter file are unprotected,
and if they are not removed, VMs with Secure Execution enabled can still be vulnerable to
hacking attempts or sensitive data mining.

Verification

On the host, use the virsh dumpxml utility to confirm the XML configuration of the secured
VM. The configuration must include the <launchSecurity type="s390-pv"/> element, and no
<rng model="virtio"> lines.

# virsh dumpxml vm-name
[...]
  <cpu mode='host-model'/>
  <devices>
    <disk type='file' device='disk'>
      <driver name='qemu' type='qcow2' cache='none' io='native'>
      <source file='/var/lib/libvirt/images/secure-guest.qcow2'/>
      <target dev='vda' bus='virtio'/>
    </disk>
    <interface type='network'>
      <source network='default'/>
      <model type='virtio'/>
    </interface>
    <console type='pty'/>
    <memballoon model='none'/>
  </devices>
  <launchSecurity type="s390-pv"/>
</domain>

Additional resources

IBM documentation on starting a secure virtual server

CHAPTER 16. SECURING VIRTUAL MACHINES

239

https://www.ibm.com/docs/en/linux-on-systems?topic=tasks-start-virtual-server


IBM documentation on genprotimg

Configuring kernel command-line parameters

16.8. ATTACHING CRYPTOGRAPHIC COPROCESSORS TO VIRTUAL
MACHINES ON IBM Z

To use hardware encryption in your virtual machine (VM) on an IBM Z host, create mediated devices
from a cryptographic coprocessor device and assign them to the intended VMs. For detailed
instructions, see below.

Prerequisites

Your host is running on IBM Z hardware.

The cryptographic coprocessor is compatible with device assignment. To confirm this, ensure
that the type of your coprocessor is listed as CEX4 or later.

# lszcrypt -V

CARD.DOMAIN TYPE  MODE        STATUS  REQUESTS  PENDING HWTYPE QDEPTH 
FUNCTIONS  DRIVER
--------------------------------------------------------------------------------------------
05         CEX5C CCA-Coproc  online         1        0     11     08 S--D--N--  cex4card
05.0004    CEX5C CCA-Coproc  online         1        0     11     08 S--D--N--  cex4queue
05.00ab    CEX5C CCA-Coproc  online         1        0     11     08 S--D--N--  cex4queue

The vfio_ap kernel module is loaded. To verify, use:

# lsmod | grep vfio_ap
vfio_ap         24576  0
[...]

To load the module, use:

# modprobe vfio_ap

The s390utils version supports ap handling:

# lszdev --list-types
...
ap           Cryptographic Adjunct Processor (AP) device
...

Procedure

1. Obtain the decimal values for the devices that you want to assign to the VM. For example, for
the devices 05.0004 and 05.00ab:

# echo "obase=10; ibase=16; 04" | bc
4
# echo "obase=10; ibase=16; AB" | bc
171

Red Hat Enterprise Linux 8 Configuring and managing virtualization

240

https://www.ibm.com/support/knowledgecenter/linuxonibm/com.ibm.linux.z.lxse/lxse_r_cmd.html#cmd_genprotimg
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_monitoring_and_updating_the_kernel/configuring-kernel-command-line-parameters_managing-monitoring-and-updating-the-kernel


2. On the host, reassign the devices to the vfio-ap drivers:

# chzdev -t ap apmask=-5 aqmask=-4,-171

NOTE

To assign the devices persistently, use the -p flag.

3. Verify that the cryptographic devices have been reassigned correctly.

# lszcrypt -V

CARD.DOMAIN TYPE  MODE        STATUS  REQUESTS  PENDING HWTYPE QDEPTH 
FUNCTIONS  DRIVER
--------------------------------------------------------------------------------------------
05          CEX5C CCA-Coproc  -              1        0     11     08 S--D--N--  cex4card
05.0004     CEX5C CCA-Coproc  -              1        0     11     08 S--D--N--  vfio_ap
05.00ab     CEX5C CCA-Coproc  -              1        0     11     08 S--D--N--  vfio_ap

If the DRIVER values of the domain queues changed to vfio_ap, the reassignment succeeded.

4. Create an XML snippet that defines a new mediated device.
The following example shows defining a persistent mediated device and assigning queues to it.
Specifically, the vfio_ap.xml XML snippet in this example assigns a domain adapter 0x05,
domain queues 0x0004 and 0x00ab, and a control domain 0x00ab to the mediated device.

# vim vfio_ap.xml

<device>
  <parent>ap_matrix</parent>
  <capability type="mdev">
    <type id="vfio_ap-passthrough"/>
    <attr name='assign_adapter' value='0x05'/>
    <attr name='assign_domain' value='0x0004'/>
    <attr name='assign_domain' value='0x00ab'/>
    <attr name='assign_control_domain' value='0x00ab'/>
  </capability>
</device>

5. Create a new mediated device from the vfio_ap.xml XML snippet.

# virsh nodedev-define vfio_ap.xml
Node device 'mdev_8f9c4a73_1411_48d2_895d_34db9ac18f85_matrix' defined from 
'vfio_ap.xml'

6. Start the mediated device that you created in the previous step, in this case 
mdev_8f9c4a73_1411_48d2_895d_34db9ac18f85_matrix.

# virsh nodedev-start mdev_8f9c4a73_1411_48d2_895d_34db9ac18f85_matrix
Device mdev_8f9c4a73_1411_48d2_895d_34db9ac18f85_matrix started

7. Check that the configuration has been applied correctly

CHAPTER 16. SECURING VIRTUAL MACHINES

241



# cat /sys/devices/vfio_ap/matrix/mdev_supported_types/vfio_ap-
passthrough/devices/669d9b23-fe1b-4ecb-be08-a2fabca99b71/matrix
05.0004
05.00ab

If the output contains the numerical values of queues that you have previously assigned to vfio-
ap, the process was successful.

8. Attach the mediated device to the VM.

a. Display the UUID of the mediated device that you created and save it for the next step.

# virsh nodedev-dumpxml mdev_8f9c4a73_1411_48d2_895d_34db9ac18f85_matrix

<device>
  <name>mdev_8f9c4a73_1411_48d2_895d_34db9ac18f85_matrix</name>
  <parent>ap_matrix</parent>
  <capability type='mdev'>
    <type id='vfio_ap-passthrough'/>
    <uuid>8f9c4a73-1411-48d2-895d-34db9ac18f85</uuid>
    <iommuGroup number='0'/>
    <attr name='assign_adapter' value='0x05'/>
    <attr name='assign_domain' value='0x0004'/>
    <attr name='assign_domain' value='0x00ab'/>
    <attr name='assign_control_domain' value='0x00ab'/>
  </capability>
</device>

b. Create and open an XML file for the cryptographic card mediated device. For example:

# vim crypto-dev.xml

c. Add the following lines to the file and save it. Replace the uuid value with the UUID you
obtained in step a.

d. Use the XML file to attach the mediated device to the VM. For example, to permanently
attach a device defined in the crypto-dev.xml file to the running testguest1 VM:

# virsh attach-device testguest1 crypto-dev.xml --live --config

The --live option attaches the device to a running VM only, without persistence between
boots. The --config option makes the configuration changes persistent. You can use the --
config option alone to attach the device to a shut-down VM.

Note that each UUID can only be assigned to one VM at a time.

Verification

<hostdev mode='subsystem' type='mdev' managed='no' model='vfio-ap'>
  <source>
    <address uuid='8f9c4a73-1411-48d2-895d-34db9ac18f85'/>
  </source>
</hostdev>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

242



1. Ensure that the guest operating system detects the assigned cryptographic devices.

# lszcrypt -V

CARD.DOMAIN TYPE  MODE        STATUS  REQUESTS  PENDING HWTYPE QDEPTH 
FUNCTIONS  DRIVER
--------------------------------------------------------------------------------------------
05          CEX5C CCA-Coproc  online         1        0     11     08 S--D--N--  cex4card
05.0004     CEX5C CCA-Coproc  online         1        0     11     08 S--D--N--  cex4queue
05.00ab     CEX5C CCA-Coproc  online         1        0     11     08 S--D--N--  cex4queue

The output of this command in the guest operating system will be identical to that on a host
logical partition with the same cryptographic coprocessor devices available.

2. In the guest operating system, confirm that a control domain has been successfully assigned to
the cryptographic devices.

# lszcrypt -d C

DOMAIN 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
------------------------------------------------------
    00  .  .  .  .  U  .  .  .  .  .  .  .  .  .  .  .
    10  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    20  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    30  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    40  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    50  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    60  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    70  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    80  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    90  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    a0  .  .  .  .  .  .  .  .  .  .  .  B  .  .  .  .
    b0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    c0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    d0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    e0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
    f0  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .
------------------------------------------------------
C: Control domain
U: Usage domain
B: Both (Control + Usage domain)

If lszcrypt -d C displays U and B intersections in the cryptographic device matrix, the control
domain assignment was successful.

16.9. ENABLING STANDARD HARDWARE SECURITY ON WINDOWS
VIRTUAL MACHINES

To secure Windows virtual machines (VMs), you can enable basic level security by using the standard
hardware capabilities of the Windows device.

Prerequisites

Make sure you have installed the latest WHQL certified VirtIO drivers.

CHAPTER 16. SECURING VIRTUAL MACHINES

243



Make sure the VM’s firmware supports UEFI boot.

Install the edk2-OVMF package on your host machine.

# {PackageManagerCommand} install edk2-ovmf

Install the vTPM packages on your host machine.

# {PackageManagerCommand} install swtpm libtpms

Make sure the VM is using the Q35 machine architecture.

Make sure you have the Windows installation media.

Procedure

1. Enable TPM 2.0 by adding the following parameters to the <devices> section in the VM’s XML
configuration.

2. Install Windows in UEFI mode. For more information about how to do so, see Creating a
SecureBoot virtual machine.

3. Install the VirtIO drivers on the Windows VM. For more information about how to do so, see
Installing virtio drivers on a Windows guest .

4. In UEFI, enable Secure Boot. For more information about how to do so, see Secure Boot.

Verification

Ensure that the Device Security page on your Windows machine displays the following
message:
Settings > Update & Security > Windows Security > Device Security

Your device meets the requirements for standard hardware security.

16.10. ENABLING ENHANCED HARDWARE SECURITY ON WINDOWS
VIRTUAL MACHINES

To further secure Windows virtual machines (VMs), you can enable virtualization-based protection of
code integrity, also known as Hypervisor-Protected Code Integrity (HVCI).

Prerequisites

Ensure that standard hardware security is enabled. For more information, see Enabling standard
hardware security on Windows virtual machines.

<devices>
[...]
  <tpm model='tpm-crb'>
    <backend type='emulator' version='2.0'/>
  </tpm>
[...]
</devices>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

244

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-landing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/securing-virtual-machines-in-rhel_configuring-and-managing-virtualization#enabling-standard-harware-security-on-windows-virtual-machines_securing-virtual-machines-in-rhel


Ensure you have enabled Hyper-V enlightenments. For more information, see Enabling Hyper-V
enlightenments.

Procedure

1. Open the XML configuration of the Windows VM. The following example opens the
configuration of the Example-L1 VM:

# virsh edit Example-L1

2. Under the <cpu> section, specify the CPU mode and add the policy flag.

IMPORTANT

For Intel CPUs, enable the vmx policy flag.

For AMD CPUs, enable the svm policy flag.

If you do not wish to specify a custom CPU, you can set the <cpu mode> as 
host-passthrough.

3. Save the XML configuration and reboot the VM.

4. On the VMs operating system, navigate to the Core isolation details page:
Settings > Update & Security > Windows Security > Device Security > Core isolation details

5. Toggle the switch to enable Memory Integrity.

6. Reboot the VM.

NOTE

For other methods of enabling HVCI, see the relevant Microsoft documentation.

Verification

Ensure that the Device Security page on your Windows VM displays the following message:
Settings > Update & Security > Windows Security > Device Security

Your device meets the requirements for enhanced hardware security.

Alternatively, check System Information about the Windows VM:

a. Run msinfo32.exe in a command prompt.

b. Check if Credential Guard, Hypervisor enforced Code Integrity is listed under
Virtualization-based security Services Running.

<cpu mode='custom' match='exact' check='partial'>
    <model fallback='allow'>Skylake-Client-IBRS</model>
    <topology sockets='1' dies='1' cores='4' threads='1'/>
    <feature policy='require' name='vmx'/>
</cpu>

CHAPTER 16. SECURING VIRTUAL MACHINES

245

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/installing-and-managing-windows-virtual-machines-on-rhel_configuring-and-managing-virtualization#enabling-hyper-v-enlightenments_optimizing-windows-virtual-machines-on-rhel


CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE
Virtual machines (VMs) always experience some degree of performance deterioration in comparison to
the host. The following sections explain the reasons for this deterioration and provide instructions on
how to minimize the performance impact of virtualization in RHEL 8, so that your hardware
infrastructure resources can be used as efficiently as possible.

17.1. WHAT INFLUENCES VIRTUAL MACHINE PERFORMANCE

VMs are run as user-space processes on the host. The hypervisor therefore needs to convert the host’s
system resources so that the VMs can use them. As a consequence, a portion of the resources is
consumed by the conversion, and the VM therefore cannot achieve the same performance efficiency as
the host.

The impact of virtualization on system performance
More specific reasons for VM performance loss include:

Virtual CPUs (vCPUs) are implemented as threads on the host, handled by the Linux scheduler.

VMs do not automatically inherit optimization features, such as NUMA or huge pages, from the
host kernel.

Disk and network I/O settings of the host might have a significant performance impact on the
VM.

Network traffic typically travels to a VM through a software-based bridge.

Depending on the host devices and their models, there might be significant overhead due to
emulation of particular hardware.

The severity of the virtualization impact on the VM performance is influenced by a variety factors, which
include:

The number of concurrently running VMs.

The amount of virtual devices used by each VM.

The device types used by the VMs.

Reducing VM performance loss
RHEL 8 provides a number of features you can use to reduce the negative performance effects of
virtualization. Notably:

The TuneD service can automatically optimize the resource distribution and performance of
your VMs.

Block I/O tuning can improve the performances of the VM’s block devices, such as disks.

NUMA tuning can increase vCPU performance.

Virtual networking can be optimized in various ways.

IMPORTANT

Tuning VM performance can have adverse effects on other virtualization functions. For
example, it can make migrating the modified VM more difficult.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

246



17.2. OPTIMIZING VIRTUAL MACHINE PERFORMANCE BY USING
TUNED

The TuneD utility is a tuning profile delivery mechanism that adapts RHEL for certain workload
characteristics, such as requirements for CPU-intensive tasks or storage-network throughput
responsiveness. It provides a number of tuning profiles that are pre-configured to enhance performance
and reduce power consumption in a number of specific use cases. You can edit these profiles or create
new profiles to create performance solutions tailored to your environment, including virtualized
environments.

To optimize RHEL 8 for virtualization, use the following profiles:

For RHEL 8 virtual machines, use the virtual-guest profile. It is based on the generally
applicable throughput-performance profile, but also decreases the swappiness of virtual
memory.

For RHEL 8 virtualization hosts, use the virtual-host profile. This enables more aggressive
writeback of dirty memory pages, which benefits the host performance.

Prerequisites

The TuneD service is installed and enabled.

Procedure

To enable a specific TuneD profile:

1. List the available TuneD profiles.

# tuned-adm list

Available profiles:
- balanced             - General non-specialized TuneD profile
- desktop              - Optimize for the desktop use-case
[...]
- virtual-guest        - Optimize for running inside a virtual guest
- virtual-host         - Optimize for running KVM guests
Current active profile: balanced

2. Optional: Create a new TuneD profile or edit an existing TuneD profile.
For more information, see Customizing TuneD profiles.

3. Activate a TuneD profile.

# tuned-adm profile selected-profile

To optimize a virtualization host, use the virtual-host profile.

# tuned-adm profile virtual-host

On a RHEL guest operating system, use the virtual-guest profile.

# tuned-adm profile virtual-guest

Additional resources

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

247

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance#installing-and-enabling-tuned_getting-started-with-tuned
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance


Additional resources

Monitoring and managing system status and performance

17.3. CONFIGURING VIRTUAL MACHINE MEMORY

To improve the performance of a virtual machine (VM), you can assign additional host RAM to the VM.
Similarly, you can decrease the amount of memory allocated to a VM so the host memory can be
allocated to other VMs or tasks.

To perform these actions, you can use the web console or the command-line interface.

17.3.1. Adding and removing virtual machine memory by using the web console

To improve the performance of a virtual machine (VM) or to free up the host resources it is using, you
can use the web console to adjust amount of memory allocated to the VM.

Prerequisites

The guest OS is running the memory balloon drivers. To verify this is the case:

1. Ensure the VM’s configuration includes the memballoon device:

# virsh dumpxml testguest | grep memballoon
<memballoon model='virtio'>
    </memballoon>

If this commands displays any output and the model is not set to none, the memballoon
device is present.

2. Ensure the balloon drivers are running in the guest OS.

In Windows guests, the drivers are installed as a part of the virtio-win driver package.
For instructions, see Installing KVM paravirtualized drivers for Windows virtual
machines.

In Linux guests, the drivers are generally included by default and activate when the 
memballoon device is present.

The web console VM plug-in is installed on your system .

Procedure

1. Optional: Obtain the information about the maximum memory and currently used memory for a
VM. This will serve as a baseline for your changes, and also for verification.

# virsh dominfo testguest
Max memory:     2097152 KiB
Used memory:    2097152 KiB

2. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

3. Click edit next to the Memory line in the Overview pane.
The Memory Adjustment dialog appears.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

248

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/


4. Configure the virtual memory for the selected VM.

Maximum allocation - Sets the maximum amount of host memory that the VM can use for
its processes. You can specify the maximum memory when creating the VM or increase it
later. You can specify memory as multiples of MiB or GiB.
Adjusting maximum memory allocation is only possible on a shut-off VM.

Current allocation - Sets the actual amount of memory allocated to the VM. This value can
be less than the Maximum allocation but cannot exceed it. You can adjust the value to
regulate the memory available to the VM for its processes. You can specify memory as
multiples of MiB or GiB.
If you do not specify this value, the default allocation is the Maximum allocation value.

5. Click Save.
The memory allocation of the VM is adjusted.

Additional resources

Adding and removing virtual machine memory by using the command-line interface

Optimizing virtual machine CPU performance

17.3.2. Adding and removing virtual machine memory by using the command-line
interface

To improve the performance of a virtual machine (VM) or to free up the host resources it is using, you
can use the CLI to adjust amount of memory allocated to the VM.

Prerequisites

The guest OS is running the memory balloon drivers. To verify this is the case:

1. Ensure the VM’s configuration includes the memballoon device:

# virsh dumpxml testguest | grep memballoon
<memballoon model='virtio'>
    </memballoon>

If this commands displays any output and the model is not set to none, the memballoon
device is present.

2. Ensure the ballon drivers are running in the guest OS.

In Windows guests, the drivers are installed as a part of the virtio-win driver package.

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

249



In Windows guests, the drivers are installed as a part of the virtio-win driver package.
For instructions, see Installing KVM paravirtualized drivers for Windows virtual
machines.

In Linux guests, the drivers are generally included by default and activate when the 
memballoon device is present.

Procedure

1. Optional: Obtain the information about the maximum memory and currently used memory for a
VM. This will serve as a baseline for your changes, and also for verification.

# virsh dominfo testguest
Max memory:     2097152 KiB
Used memory:    2097152 KiB

2. Adjust the maximum memory allocated to a VM. Increasing this value improves the performance
potential of the VM, and reducing the value lowers the performance footprint the VM has on
your host. Note that this change can only be performed on a shut-off VM, so adjusting a running
VM requires a reboot to take effect.
For example, to change the maximum memory that the testguest VM can use to 4096 MiB:

# virt-xml testguest --edit --memory memory=4096,currentMemory=4096
Domain 'testguest' defined successfully.
Changes will take effect after the domain is fully powered off.

To increase the maximum memory of a running VM, you can attach a memory device to the VM.
This is also referred to as memory hot plug. For details, see Attaching devices to virtual
machines.

WARNING

Removing memory devices from a running VM (also referred as a memory
hot unplug) is not supported, and highly discouraged by Red Hat.

3. Optional: You can also adjust the memory currently used by the VM, up to the maximum
allocation. This regulates the memory load that the VM has on the host until the next reboot,
without changing the maximum VM allocation.

# virsh setmem testguest --current 2048

Verification

1. Confirm that the memory used by the VM has been updated:

# virsh dominfo testguest
Max memory:     4194304 KiB
Used memory:    2097152 KiB

2. Optional: If you adjusted the current VM memory, you can obtain the memory balloon statistics



Red Hat Enterprise Linux 8 Configuring and managing virtualization

250



2. Optional: If you adjusted the current VM memory, you can obtain the memory balloon statistics
of the VM to evaluate how effectively it regulates its memory use.

 # virsh domstats --balloon testguest
Domain: 'testguest'
  balloon.current=365624
  balloon.maximum=4194304
  balloon.swap_in=0
  balloon.swap_out=0
  balloon.major_fault=306
  balloon.minor_fault=156117
  balloon.unused=3834448
  balloon.available=4035008
  balloon.usable=3746340
  balloon.last-update=1587971682
  balloon.disk_caches=75444
  balloon.hugetlb_pgalloc=0
  balloon.hugetlb_pgfail=0
  balloon.rss=1005456

Additional resources

Adding and removing virtual machine memory by using the web console

Optimizing virtual machine CPU performance

17.3.3. Additional resources

Attaching devices to virtual machines .

17.4. OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE

The input and output (I/O) capabilities of a virtual machine (VM) can significantly limit the VM’s overall
efficiency. To address this, you can optimize a VM’s I/O by configuring block I/O parameters.

17.4.1. Tuning block I/O in virtual machines

When multiple block devices are being used by one or more VMs, it might be important to adjust the I/O
priority of specific virtual devices by modifying their I/O weights.

Increasing the I/O weight of a device increases its priority for I/O bandwidth, and therefore provides it
with more host resources. Similarly, reducing a device’s weight makes it consume less host resources.

NOTE

Each device’s weight value must be within the 100 to 1000 range. Alternatively, the value
can be 0, which removes that device from per-device listings.

Procedure

To display and set a VM’s block I/O parameters:

1. Display the current <blkio> parameters for a VM:
# virsh dumpxml VM-name

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

251



2. Edit the I/O weight of a specified device:

# virsh blkiotune VM-name --device-weights device, I/O-weight

For example, the following changes the weight of the /dev/sda device in the testguest1 VM to
500.

# virsh blkiotune testguest1 --device-weights /dev/sda, 500

17.4.2. Disk I/O throttling in virtual machines

When several VMs are running simultaneously, they can interfere with system performance by using
excessive disk I/O. Disk I/O throttling in KVM virtualization provides the ability to set a limit on disk I/O
requests sent from the VMs to the host machine. This can prevent a VM from over-utilizing shared
resources and impacting the performance of other VMs.

To enable disk I/O throttling, set a limit on disk I/O requests sent from each block device attached to
VMs to the host machine.

Procedure

1. Use the virsh domblklist command to list the names of all the disk devices on a specified VM.

# virsh domblklist rollin-coal
Target     Source
------------------------------------------------
vda        /var/lib/libvirt/images/rollin-coal.qcow2
sda        -
sdb        /home/horridly-demanding-processes.iso

2. Find the host block device where the virtual disk that you want to throttle is mounted.
For example, if you want to throttle the sdb virtual disk from the previous step, the following
output shows that the disk is mounted on the /dev/nvme0n1p3 partition.

$ lsblk
NAME                                          MAJ:MIN RM   SIZE RO TYPE  MOUNTPOINT
zram0                                         252:0    0     4G  0 disk  [SWAP]

<domain>
  [...]
  <blkiotune>
    <weight>800</weight>
    <device>
      <path>/dev/sda</path>
      <weight>1000</weight>
    </device>
    <device>
      <path>/dev/sdb</path>
      <weight>500</weight>
    </device>
  </blkiotune>
  [...]
</domain>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

252



nvme0n1                                       259:0    0 238.5G  0 disk
├─nvme0n1p1                                   259:1    0   600M  0 part  /boot/efi
├─nvme0n1p2                                   259:2    0     1G  0 part  /boot
└─nvme0n1p3                                   259:3    0 236.9G  0 part
  └─luks-a1123911-6f37-463c-b4eb-fxzy1ac12fea 253:0    0 236.9G  0 crypt /home

3. Set I/O limits for the block device by using the virsh blkiotune command.

# virsh blkiotune VM-name --parameter device,limit

The following example throttles the sdb disk on the rollin-coal VM to 1000 read and write I/O
operations per second and to 50 MB per second read and write throughput.

# virsh blkiotune rollin-coal --device-read-iops-sec /dev/nvme0n1p3,1000 --device-
write-iops-sec /dev/nvme0n1p3,1000 --device-write-bytes-sec 
/dev/nvme0n1p3,52428800 --device-read-bytes-sec /dev/nvme0n1p3,52428800

Additional information

Disk I/O throttling can be useful in various situations, for example when VMs belonging to
different customers are running on the same host, or when quality of service guarantees are
given for different VMs. Disk I/O throttling can also be used to simulate slower disks.

I/O throttling can be applied independently to each block device attached to a VM and
supports limits on throughput and I/O operations.

Red Hat does not support using the virsh blkdeviotune command to configure I/O throttling in
VMs. For more information about unsupported features when using RHEL 8 as a VM host, see
Unsupported features in RHEL 8 virtualization .

17.4.3. Enabling multi-queue virtio-scsi

When using virtio-scsi storage devices in your virtual machines (VMs), the multi-queue virtio-scsi
feature provides improved storage performance and scalability. It enables each virtual CPU (vCPU) to
have a separate queue and interrupt to use without affecting other vCPUs.

Procedure

To enable multi-queue virtio-scsi support for a specific VM, add the following to the VM’s XML
configuration, where N is the total number of vCPU queues:

17.5. OPTIMIZING VIRTUAL MACHINE CPU PERFORMANCE

Much like physical CPUs in host machines, vCPUs are critical to virtual machine (VM) performance. As a
result, optimizing vCPUs can have a significant impact on the resource efficiency of your VMs. To
optimize your vCPU:

1. Adjust how many host CPUs are assigned to the VM. You can do this using the CLI or the web
console.

<controller type='scsi' index='0' model='virtio-scsi'>
   <driver queues='N' />
</controller>

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

253



2. Ensure that the vCPU model is aligned with the CPU model of the host. For example, to set the
testguest1 VM to use the CPU model of the host:

# virt-xml testguest1 --edit --cpu host-model

3. Deactivate kernel same-page merging (KSM) .

4. If your host machine uses Non-Uniform Memory Access (NUMA), you can also configure NUMA
for its VMs. This maps the host’s CPU and memory processes onto the CPU and memory
processes of the VM as closely as possible. In effect, NUMA tuning provides the vCPU with a
more streamlined access to the system memory allocated to the VM, which can improve the
vCPU processing effectiveness.
For details, see Configuring NUMA in a virtual machine  and Sample vCPU performance tuning
scenario.

17.5.1. Adding and removing virtual CPUs by using the command-line interface

To increase or optimize the CPU performance of a virtual machine (VM), you can add or remove virtual
CPUs (vCPUs) assigned to the VM.

When performed on a running VM, this is also referred to as vCPU hot plugging and hot unplugging.
However, note that vCPU hot unplug is not supported in RHEL 8, and Red Hat highly discourages its use.

Prerequisites

Optional: View the current state of the vCPUs in the targeted VM. For example, to display the
number of vCPUs on the testguest VM:

# virsh vcpucount testguest
maximum      config         4
maximum      live           2
current      config         2
current      live           1

This output indicates that testguest is currently using 1 vCPU, and 1 more vCPu can be hot
plugged to it to increase the VM’s performance. However, after reboot, the number of vCPUs
testguest uses will change to 2, and it will be possible to hot plug 2 more vCPUs.

Procedure

1. Adjust the maximum number of vCPUs that can be attached to a VM, which takes effect on the
VM’s next boot.
For example, to increase the maximum vCPU count for the testguest VM to 8:

# virsh setvcpus testguest 8 --maximum --config

Note that the maximum may be limited by the CPU topology, host hardware, the hypervisor,
and other factors.

2. Adjust the current number of vCPUs attached to a VM, up to the maximum configured in the
previous step. For example:

To increase the number of vCPUs attached to the running testguest VM to 4:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

254



# virsh setvcpus testguest 4 --live

This increases the VM’s performance and host load footprint of testguest until the VM’s
next boot.

To permanently decrease the number of vCPUs attached to the testguest VM to 1:

# virsh setvcpus testguest 1 --config

This decreases the VM’s performance and host load footprint of testguest after the VM’s
next boot. However, if needed, additional vCPUs can be hot plugged to the VM to
temporarily increase its performance.

Verification

Confirm that the current state of vCPU for the VM reflects your changes.

# virsh vcpucount testguest
maximum      config         8
maximum      live           4
current      config         1
current      live           4

Additional resources

Managing virtual CPUs by using the web console

17.5.2. Managing virtual CPUs by using the web console

By using the RHEL 8 web console, you can review and configure virtual CPUs used by virtual machines
(VMs) to which the web console is connected.

Prerequisites

The web console VM plug-in is installed on your system .

Procedure

1. In the Virtual Machines interface, click the VM whose information you want to see.
A new page opens with an Overview section with basic information about the selected VM and a
Console section to access the VM’s graphical interface.

2. Click edit next to the number of vCPUs in the Overview pane.
The vCPU details dialog appears.

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

255



1. Configure the virtual CPUs for the selected VM.

vCPU Count - The number of vCPUs currently in use.

NOTE

The vCPU count cannot be greater than the vCPU Maximum.

vCPU Maximum - The maximum number of virtual CPUs that can be configured for the
VM. If this value is higher than the vCPU Count, additional vCPUs can be attached to the
VM.

Sockets - The number of sockets to expose to the VM.

Cores per socket - The number of cores for each socket to expose to the VM.

Threads per core - The number of threads for each core to expose to the VM.
Note that the Sockets, Cores per socket, and Threads per core options adjust the CPU
topology of the VM. This may be beneficial for vCPU performance and may impact the
functionality of certain software in the guest OS. If a different setting is not required by your
deployment, keep the default values.

2. Click Apply.
The virtual CPUs for the VM are configured.

NOTE

Changes to virtual CPU settings only take effect after the VM is restarted.

Additional resources

Adding and removing virtual CPUs by using the command-line interface

17.5.3. Configuring NUMA in a virtual machine

The following methods can be used to configure Non-Uniform Memory Access (NUMA) settings of a
virtual machine (VM) on a RHEL 8 host.

Prerequisites

The host is a NUMA-compatible machine. To detect whether this is the case, use the virsh 

Red Hat Enterprise Linux 8 Configuring and managing virtualization

256



The host is a NUMA-compatible machine. To detect whether this is the case, use the virsh 
nodeinfo command and see the NUMA cell(s) line:

# virsh nodeinfo
CPU model:           x86_64
CPU(s):              48
CPU frequency:       1200 MHz
CPU socket(s):       1
Core(s) per socket:  12
Thread(s) per core:  2
NUMA cell(s):        2
Memory size:         67012964 KiB

If the value of the line is 2 or greater, the host is NUMA-compatible.

Procedure

For ease of use, you can set up a VM’s NUMA configuration by using automated utilities and services.
However, manual NUMA setup is more likely to yield a significant performance improvement.

Automatic methods

Set the VM’s NUMA policy to Preferred. For example, to do so for the testguest5 VM:

# virt-xml testguest5 --edit --vcpus placement=auto
# virt-xml testguest5 --edit --numatune mode=preferred

Enable automatic NUMA balancing on the host:

# echo 1 > /proc/sys/kernel/numa_balancing

Start the numad service to automatically align the VM CPU with memory resources.

# systemctl start numad

Manual methods

1. Pin specific vCPU threads to a specific host CPU or range of CPUs. This is also possible on non-
NUMA hosts and VMs, and is recommended as a safe method of vCPU performance
improvement.
For example, the following commands pin vCPU threads 0 to 5 of the testguest6 VM to host
CPUs 1, 3, 5, 7, 9, and 11, respectively:

# virsh vcpupin testguest6 0 1
# virsh vcpupin testguest6 1 3
# virsh vcpupin testguest6 2 5
# virsh vcpupin testguest6 3 7
# virsh vcpupin testguest6 4 9
# virsh vcpupin testguest6 5 11

Afterwards, you can verify whether this was successful:

# virsh vcpupin testguest6
VCPU   CPU Affinity
----------------------

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

257



0      1
1      3
2      5
3      7
4      9
5      11

2. After pinning vCPU threads, you can also pin QEMU process threads associated with a specified
VM to a specific host CPU or range of CPUs. For example, the following commands pin the
QEMU process thread of testguest6 to CPUs 13 and 15, and verify this was successful:

# virsh emulatorpin testguest6 13,15
# virsh emulatorpin testguest6
emulator: CPU Affinity
----------------------------------
       *: 13,15

3. Finally, you can also specify which host NUMA nodes will be assigned specifically to a certain
VM. This can improve the host memory usage by the VM’s vCPU. For example, the following
commands set testguest6 to use host NUMA nodes 3 to 5, and verify this was successful:

# virsh numatune testguest6 --nodeset 3-5
# virsh numatune testguest6

NOTE

For best performance results, it is recommended to use all of the manual tuning methods
listed above

Known issues

NUMA tuning currently cannot be performed on IBM Z hosts

Additional resources

Sample vCPU performance tuning scenario

View the current NUMA configuration of your system  using the numastat utility

17.5.4. Sample vCPU performance tuning scenario

To obtain the best vCPU performance possible, Red Hat recommends by using manual vcpupin, 
emulatorpin, and numatune settings together, for example like in the following scenario.

Starting scenario

Your host has the following hardware specifics:

2 NUMA nodes

3 CPU cores on each node

2 threads on each core

Red Hat Enterprise Linux 8 Configuring and managing virtualization

258



The output of virsh nodeinfo of such a machine would look similar to:

# virsh nodeinfo
CPU model:           x86_64
CPU(s):              12
CPU frequency:       3661 MHz
CPU socket(s):       2
Core(s) per socket:  3
Thread(s) per core:  2
NUMA cell(s):        2
Memory size:         31248692 KiB

You intend to modify an existing VM to have 8 vCPUs, which means that it will not fit in a single
NUMA node.
Therefore, you should distribute 4 vCPUs on each NUMA node and make the vCPU topology
resemble the host topology as closely as possible. This means that vCPUs that run as sibling
threads of a given physical CPU should be pinned to host threads on the same core. For details,
see the Solution below:

Solution

1. Obtain the information about the host topology:

# virsh capabilities

The output should include a section that looks similar to the following:

<topology>
  <cells num="2">
    <cell id="0">
      <memory unit="KiB">15624346</memory>
      <pages unit="KiB" size="4">3906086</pages>
      <pages unit="KiB" size="2048">0</pages>
      <pages unit="KiB" size="1048576">0</pages>
      <distances>
        <sibling id="0" value="10" />
        <sibling id="1" value="21" />
      </distances>
      <cpus num="6">
        <cpu id="0" socket_id="0" core_id="0" siblings="0,3" />
        <cpu id="1" socket_id="0" core_id="1" siblings="1,4" />
        <cpu id="2" socket_id="0" core_id="2" siblings="2,5" />
        <cpu id="3" socket_id="0" core_id="0" siblings="0,3" />
        <cpu id="4" socket_id="0" core_id="1" siblings="1,4" />
        <cpu id="5" socket_id="0" core_id="2" siblings="2,5" />
      </cpus>
    </cell>
    <cell id="1">
      <memory unit="KiB">15624346</memory>
      <pages unit="KiB" size="4">3906086</pages>
      <pages unit="KiB" size="2048">0</pages>
      <pages unit="KiB" size="1048576">0</pages>
      <distances>
        <sibling id="0" value="21" />
        <sibling id="1" value="10" />

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

259



2. Optional: Test the performance of the VM by using the applicable tools and utilities.

3. Set up and mount 1 GiB huge pages on the host:

NOTE

1 GiB huge pages might not be available on some architectures and
configurations, such as ARM 64 hosts.

a. Add the following line to the host’s kernel command line:

default_hugepagesz=1G hugepagesz=1G

b. Create the /etc/systemd/system/hugetlb-gigantic-pages.service file with the following
content:

[Unit]
Description=HugeTLB Gigantic Pages Reservation
DefaultDependencies=no
Before=dev-hugepages.mount
ConditionPathExists=/sys/devices/system/node
ConditionKernelCommandLine=hugepagesz=1G

[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/etc/systemd/hugetlb-reserve-pages.sh

[Install]
WantedBy=sysinit.target

c. Create the /etc/systemd/hugetlb-reserve-pages.sh file with the following content:

#!/bin/sh

nodes_path=/sys/devices/system/node/
if [ ! -d $nodes_path ]; then
 echo "ERROR: $nodes_path does not exist"
 exit 1
fi

      </distances>
      <cpus num="6">
        <cpu id="6" socket_id="1" core_id="3" siblings="6,9" />
        <cpu id="7" socket_id="1" core_id="4" siblings="7,10" />
        <cpu id="8" socket_id="1" core_id="5" siblings="8,11" />
        <cpu id="9" socket_id="1" core_id="3" siblings="6,9" />
        <cpu id="10" socket_id="1" core_id="4" siblings="7,10" />
        <cpu id="11" socket_id="1" core_id="5" siblings="8,11" />
      </cpus>
    </cell>
  </cells>
</topology>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

260



reserve_pages()
{
 echo $1 > $nodes_path/$2/hugepages/hugepages-1048576kB/nr_hugepages
}

reserve_pages 4 node1
reserve_pages 4 node2

This reserves four 1GiB huge pages from node1 and four 1GiB huge pages from node2.

d. Make the script created in the previous step executable:

# chmod +x /etc/systemd/hugetlb-reserve-pages.sh

e. Enable huge page reservation on boot:

# systemctl enable hugetlb-gigantic-pages

4. Use the virsh edit command to edit the XML configuration of the VM you wish to optimize, in
this example super-VM:

# virsh edit super-vm

5. Adjust the XML configuration of the VM in the following way:

a. Set the VM to use 8 static vCPUs. Use the <vcpu/> element to do this.

b. Pin each of the vCPU threads to the corresponding host CPU threads that it mirrors in the
topology. To do so, use the <vcpupin/> elements in the <cputune> section.
Note that, as shown by the virsh capabilities utility above, host CPU threads are not
ordered sequentially in their respective cores. In addition, the vCPU threads should be
pinned to the highest available set of host cores on the same NUMA node. For a table
illustration, see the Sample topology section below.

The XML configuration for steps a. and b. can look similar to:

c. Set the VM to use 1 GiB huge pages:

<cputune>
  <vcpupin vcpu='0' cpuset='1'/>
  <vcpupin vcpu='1' cpuset='4'/>
  <vcpupin vcpu='2' cpuset='2'/>
  <vcpupin vcpu='3' cpuset='5'/>
  <vcpupin vcpu='4' cpuset='7'/>
  <vcpupin vcpu='5' cpuset='10'/>
  <vcpupin vcpu='6' cpuset='8'/>
  <vcpupin vcpu='7' cpuset='11'/>
  <emulatorpin cpuset='6,9'/>
</cputune>

<memoryBacking>
  <hugepages>
    <page size='1' unit='GiB'/>

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

261



d. Configure the VM’s NUMA nodes to use memory from the corresponding NUMA nodes on
the host. To do so, use the <memnode/> elements in the <numatune/> section:

e. Ensure the CPU mode is set to host-passthrough, and that the CPU uses cache in 
passthrough mode:

6. Confirm that the resulting XML configuration of the VM includes a section similar to the
following:

  </hugepages>
</memoryBacking>

<numatune>
  <memory mode="preferred" nodeset="1"/>
  <memnode cellid="0" mode="strict" nodeset="0"/>
  <memnode cellid="1" mode="strict" nodeset="1"/>
</numatune>

<cpu mode="host-passthrough">
  <topology sockets="2" cores="2" threads="2"/>
  <cache mode="passthrough"/>

[...]
  <memoryBacking>
    <hugepages>
      <page size='1' unit='GiB'/>
    </hugepages>
  </memoryBacking>
  <vcpu placement='static'>8</vcpu>
  <cputune>
    <vcpupin vcpu='0' cpuset='1'/>
    <vcpupin vcpu='1' cpuset='4'/>
    <vcpupin vcpu='2' cpuset='2'/>
    <vcpupin vcpu='3' cpuset='5'/>
    <vcpupin vcpu='4' cpuset='7'/>
    <vcpupin vcpu='5' cpuset='10'/>
    <vcpupin vcpu='6' cpuset='8'/>
    <vcpupin vcpu='7' cpuset='11'/>
    <emulatorpin cpuset='6,9'/>
  </cputune>
  <numatune>
    <memory mode="preferred" nodeset="1"/>
    <memnode cellid="0" mode="strict" nodeset="0"/>
    <memnode cellid="1" mode="strict" nodeset="1"/>
  </numatune>
  <cpu mode="host-passthrough">
    <topology sockets="2" cores="2" threads="2"/>
    <cache mode="passthrough"/>
    <numa>
      <cell id="0" cpus="0-3" memory="2" unit="GiB">
        <distances>
          <sibling id="0" value="10"/>
          <sibling id="1" value="21"/>
        </distances>
      </cell>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

262



7. Optional: Test the performance of the VM by using the applicable tools and utilities to evaluate
the impact of the VM’s optimization.

Sample topology

The following tables illustrate the connections between the vCPUs and the host CPUs they
should be pinned to:

Table 17.1. Host topology

CPU threads 0 3 1 4 2 5 6 9 7 10 8 11

Cores 0 1 2 3 4 5

Sockets 0 1

NUMA nodes 0 1

Table 17.2. VM topology

vCPU threads 0 1 2 3 4 5 6 7

Cores 0 1 2 3

Sockets 0 1

NUMA nodes 0 1

Table 17.3. Combined host and VM topology

vCPU threads  0 1 2 3  4 5 6 7

Host CPU
threads

0 3 1 4 2 5 6 9 7 10 8 11

Cores 0 1 2 3 4 5

Sockets 0 1

      <cell id="1" cpus="4-7" memory="2" unit="GiB">
        <distances>
          <sibling id="0" value="21"/>
          <sibling id="1" value="10"/>
        </distances>
      </cell>
    </numa>
  </cpu>
</domain>

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

263



NUMA nodes 0 1

In this scenario, there are 2 NUMA nodes and 8 vCPUs. Therefore, 4 vCPU threads should be
pinned to each node.

In addition, Red Hat recommends leaving at least a single CPU thread available on each node
for host system operations.

Because in this example, each NUMA node houses 3 cores, each with 2 host CPU threads, the
set for node 0 translates as follows:

17.5.5. Deactivating kernel same-page merging

Although kernel same-page merging (KSM) improves memory density, it increases CPU utilization, and
might adversely affect overall performance depending on the workload. In such cases, you can improve
the virtual machine (VM) performance by deactivating KSM.

Depending on your requirements, you can either deactivate KSM for a single session or persistently.

Procedure

To deactivate KSM for a single session, use the systemctl utility to stop ksm and ksmtuned
services.

# systemctl stop ksm

# systemctl stop ksmtuned

To deactivate KSM persistently, use the systemctl utility to disable ksm and ksmtuned
services.

# systemctl disable ksm
Removed /etc/systemd/system/multi-user.target.wants/ksm.service.
# systemctl disable ksmtuned
Removed /etc/systemd/system/multi-user.target.wants/ksmtuned.service.

NOTE

Memory pages shared between VMs before deactivating KSM will remain shared. To stop
sharing, delete all the PageKSM pages in the system by using the following command:

# echo 2 > /sys/kernel/mm/ksm/run

After anonymous pages replace the KSM pages, the khugepaged kernel service will
rebuild transparent hugepages on the VM’s physical memory.

<vcpupin vcpu='0' cpuset='1'/>
<vcpupin vcpu='1' cpuset='4'/>
<vcpupin vcpu='2' cpuset='2'/>
<vcpupin vcpu='3' cpuset='5'/>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

264



17.6. OPTIMIZING VIRTUAL MACHINE NETWORK PERFORMANCE

Due to the virtual nature of a VM’s network interface card (NIC), the VM loses a portion of its allocated
host network bandwidth, which can reduce the overall workload efficiency of the VM. The following tips
can minimize the negative impact of virtualization on the virtual NIC (vNIC) throughput.

Procedure

Use any of the following methods and observe if it has a beneficial effect on your VM network
performance:

Enable the vhost_net module

On the host, ensure the vhost_net kernel feature is enabled:

# lsmod | grep vhost
vhost_net              32768  1
vhost                  53248  1 vhost_net
tap                    24576  1 vhost_net
tun                    57344  6 vhost_net

If the output of this command is blank, enable the vhost_net kernel module:

# modprobe vhost_net

Set up multi-queue virtio-net

To set up the multi-queue virtio-net feature for a VM, use the virsh edit command to edit to the
XML configuration of the VM. In the XML, add the following to the <devices> section, and replace N
with the number of vCPUs in the VM, up to 16:

<interface type='network'>
      <source network='default'/>
      <model type='virtio'/>
      <driver name='vhost' queues='N'/>
</interface>

If the VM is running, restart it for the changes to take effect.

Batching network packets

In Linux VM configurations with a long transmission path, batching packets before submitting them
to the kernel may improve cache utilization. To set up packet batching, use the following command
on the host, and replace tap0 with the name of the network interface that the VMs use:

# ethtool -C tap0 rx-frames 64

SR-IOV

If your host NIC supports SR-IOV, use SR-IOV device assignment for your vNICs. For more
information, see Managing SR-IOV devices.

Additional resources

Understanding virtual networking

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

265



17.7. VIRTUAL MACHINE PERFORMANCE MONITORING TOOLS

To identify what consumes the most VM resources and which aspect of VM performance needs
optimization, performance diagnostic tools, both general and VM-specific, can be used.

Default OS performance monitoring tools

For standard performance evaluation, you can use the utilities provided by default by your host and
guest operating systems:

On your RHEL 8 host, as root, use the top utility or the system monitor application, and look for
qemu and virt in the output. This shows how much host system resources your VMs are
consuming.

If the monitoring tool displays that any of the qemu or virt processes consume a large
portion of the host CPU or memory capacity, use the perf utility to investigate. For details,
see below.

In addition, if a vhost_net thread process, named for example vhost_net-1234, is displayed
as consuming an excessive amount of host CPU capacity, consider using virtual network
optimization features, such as multi-queue virtio-net.

On the guest operating system, use performance utilities and applications available on the
system to evaluate which processes consume the most system resources.

On Linux systems, you can use the top utility.

On Windows systems, you can use the Task Manager application.

perf kvm

You can use the perf utility to collect and analyze virtualization-specific statistics about the
performance of your RHEL 8 host. To do so:

1. On the host, install the perf package:

# yum install perf

2. Use one of the perf kvm stat commands to display perf statistics for your virtualization host:

For real-time monitoring of your hypervisor, use the perf kvm stat live command.

To log the perf data of your hypervisor over a period of time, activate the logging by using
the perf kvm stat record command. After the command is canceled or interrupted, the
data is saved in the perf.data.guest file, which can be analyzed by using the perf kvm stat 
report command.

3. Analyze the perf output for types of VM-EXIT events and their distribution. For example, the 
PAUSE_INSTRUCTION events should be infrequent, but in the following output, the high
occurrence of this event suggests that the host CPUs are not handling the running vCPUs well.
In such a scenario, consider shutting down some of your active VMs, removing vCPUs from
these VMs, or tuning the performance of the vCPUs.

# perf kvm stat report

Analyze events for all VMs, all VCPUs:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

266



             VM-EXIT    Samples  Samples%     Time%    Min Time    Max Time         Avg time

  EXTERNAL_INTERRUPT     365634    31.59%    18.04%      0.42us  58780.59us    
204.08us ( +-   0.99% )
           MSR_WRITE     293428    25.35%     0.13%      0.59us  17873.02us      1.80us ( +-   
4.63% )
    PREEMPTION_TIMER     276162    23.86%     0.23%      0.51us  21396.03us      3.38us ( 
+-   5.19% )
   PAUSE_INSTRUCTION     189375    16.36%    11.75%      0.72us  29655.25us    256.77us 
( +-   0.70% )
                 HLT      20440     1.77%    69.83%      0.62us  79319.41us  14134.56us ( +-   0.79% 
)
              VMCALL      12426     1.07%     0.03%      1.02us   5416.25us      8.77us ( +-   7.36% 
)
       EXCEPTION_NMI         27     0.00%     0.00%      0.69us      1.34us      0.98us ( +-   
3.50% )
       EPT_MISCONFIG          5     0.00%     0.00%      5.15us     10.85us      7.88us ( +-  
11.67% )

Total Samples:1157497, Total events handled time:413728274.66us.

Other event types that can signal problems in the output of perf kvm stat include:

INSN_EMULATION - suggests suboptimal VM I/O configuration .

For more information about using perf to monitor virtualization performance, see the perf-kvm man
page.

numastat

To see the current NUMA configuration of your system, you can use the numastat utility, which is
provided by installing the numactl package.

The following shows a host with 4 running VMs, each obtaining memory from multiple NUMA nodes. This
is not optimal for vCPU performance, and warrants adjusting:

# numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID              Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total
---------------  ------ ------ ------ ------ ------ ------ ------ ------ -----
51722 (qemu-kvm)     68     16    357   6936      2      3    147    598  8128
51747 (qemu-kvm)    245     11      5     18   5172   2532      1     92  8076
53736 (qemu-kvm)     62    432   1661    506   4851    136     22    445  8116
53773 (qemu-kvm)   1393      3      1      2     12      0      0   6702  8114
---------------  ------ ------ ------ ------ ------ ------ ------ ------ -----
Total              1769    463   2024   7462  10037   2672    169   7837 32434

In contrast, the following shows memory being provided to each VM by a single node, which is
significantly more efficient.

# numastat -c qemu-kvm

Per-node process memory usage (in MBs)
PID              Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Total

CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE

267



---------------  ------ ------ ------ ------ ------ ------ ------ ------ -----
51747 (qemu-kvm)      0      0      7      0   8072      0      1      0  8080
53736 (qemu-kvm)      0      0      7      0      0      0   8113      0  8120
53773 (qemu-kvm)      0      0      7      0      0      0      1   8110  8118
59065 (qemu-kvm)      0      0   8050      0      0      0      0      0  8051
---------------  ------ ------ ------ ------ ------ ------ ------ ------ -----
Total                 0      0   8072      0   8072      0   8114   8110 32368

17.8. ADDITIONAL RESOURCES

Optimizing Windows virtual machines

Red Hat Enterprise Linux 8 Configuring and managing virtualization

268



CHAPTER 18. INSTALLING AND MANAGING WINDOWS
VIRTUAL MACHINES

To use Microsoft Windows as the guest operating system in your virtual machines (VMs) on a RHEL 8
host, Red Hat recommends taking extra steps to ensure these VMs run correctly.

For this purpose, the following sections provide information about installing and optimizing Windows
VMs on the host, as well as installing and configuring drivers in these VMs.

18.1. INSTALLING WINDOWS VIRTUAL MACHINES

You can create a fully-virtualized Windows machine on a RHEL 8 host, launch the graphical Windows
installer inside the virtual machine (VM), and optimize the installed Windows guest operating system
(OS).

To create the VM and to install the Windows guest OS, use the virt-install command or the RHEL 8 web
console.

Prerequisites

A Windows OS installation source, which can be one of the following, and be available locally or
on a network:

An ISO image of an installation medium

A disk image of an existing VM installation

A storage medium with the KVM virtio drivers.
To create this medium, see Preparing virtio driver installation media on a host machine .

If you are installing Windows 11, the edk2-ovmf, swtpm and libtpms packages must be installed
on the host.

Procedure

1. Create the VM. For instructions, see Creating virtual machines, but keep in mind the following
specifics.

If using the virt-install utility to create the VM, add the following options to the command:

The storage medium with the KVM virtio drivers. For example:

--disk path=/usr/share/virtio-win/virtio-win.iso,device=cdrom

The Windows version you will install. For example, for Windows 10 and 11:

--os-variant win10

For a list of available Windows versions and the appropriate option, use the following
command:

# osinfo-query os

If you are installing Windows 11, enable Unified Extensible Firmware Interface  (UEFI) and

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

269



If you are installing Windows 11, enable Unified Extensible Firmware Interface  (UEFI) and
virtual Trusted Platform Module  (vTPM):

--boot uefi --tpm model=tpm-crb,backend.type=emulator,backend.version=2.0

If using the web console to create the VM, specify your version of Windows in the
Operating system field of the Create new virtual machine window.

If you are installing Windows versions prior to Windows 11 and Windows Server 2022,
start the installation by clicking Create and run.

If you are installing Windows 11, or you want to use additional Windows Server 2022
features, confirm by clicking Create and edit and enable UEFI and vTPM using the CLI:

A. Open the VM’s XML configuration:

# virsh edit windows-vm

B. Add the firmware='efi' option to the os element:

<os firmware='efi'>
  <type arch='x86_64' machine='pc-q35-6.2'>hvm</type>
  <boot dev='hd'/>
</os>

C. Add the tpm device inside the devices element:

<devices>
  <tpm model='tpm-crb'>
    <backend type='emulator' version='2.0'/>
  </tpm>
</devices>

D. Start the Windows installation by clicking Install in the Virtual machines table.

2. Install the Windows OS in the VM.
For information about how to install a Windows operating system, refer to the relevant
Microsoft installation documentation.

3. If using the web console to create the VM, attach the storage medium with virtio drivers to the
VM by using the Disks interface. For instructions, see Attaching existing disks to virtual
machines by using the web console.

4. Configure KVM virtio drivers in the Windows guest OS. For details, see Installing KVM
paravirtualized drivers for Windows virtual machines.

Additional resources

Optimizing Windows virtual machines

Enabling standard hardware security on Windows virtual machines

Enabling enhanced hardware security on Windows virtual machines

Sample virtual machine XML configuration

Red Hat Enterprise Linux 8 Configuring and managing virtualization

270



18.2. OPTIMIZING WINDOWS VIRTUAL MACHINES

When using Microsoft Windows as a guest operating system in a virtual machine (VM) hosted in RHEL 8,
the performance of the guest may be negatively impacted.

Therefore, Red Hat recommends optimizing your Windows VMs by doing any combination of the
following:

Using paravirtualized drivers. For more information, see Installing KVM paravirtualized drivers
for Windows virtual machines.

Enabling Hyper-V enlightenments. For more information, see Enabling Hyper-V enlightenments.

Configuring NetKVM driver parameters. For more information, see Configuring NetKVM driver
parameters.

Optimizing or disabling Windows background processes. For more information, see Optimizing
background processes on Windows virtual machines.

18.2.1. Installing KVM paravirtualized drivers for Windows virtual machines

The primary method of improving the performance of your Windows virtual machines (VMs) is to install
KVM paravirtualized (virtio) drivers for Windows on the guest operating system.

NOTE

The virtio-win drivers are certified (WHQL) against the latest releases of Windows 10 and
11, available at the time of the respective virtio-win release. However, virtio-win drivers
are generally tested and expected to function correctly on previous builds of Windows 10
and 11 as well.

To install the drivers on a Windows VM, perform the following actions:

1. Prepare the install media on the host machine. For more information, see Preparing virtio driver
installation media on a host machine.

2. Attach the install media to an existing Windows VM, or attach it when creating a new Windows
VM. For more information, see Installing Windows virtual machines on RHEL .

3. Install the virtio drivers on the Windows guest operating system. For more information, see
Installing virtio drivers on a Windows guest .

4. Install the QEMU Guest Agent on the Windows guest operating system. For more information,
see Installing QEMU Guest Agent on a Windows guest .

18.2.1.1. How Windows virtio drivers work

Paravirtualized drivers enhance the performance of virtual machines (VMs) by decreasing I/O latency
and increasing throughput to almost bare-metal levels. Red Hat recommends that you use
paravirtualized drivers for VMs that run I/O-heavy tasks and applications.

virtio drivers are KVM’s paravirtualized device drivers, available for Windows VMs running on KVM hosts.
These drivers are provided by the virtio-win package, which includes drivers for:

Block (storage) devices

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

271



Network interface controllers

Video controllers

Memory ballooning device

Paravirtual serial port device

Entropy source device

Paravirtual panic device

Input devices, such as mice, keyboards, or tablets

A small set of emulated devices

NOTE

For additional information about emulated, virtio, and assigned devices, refer to
Managing virtual devices.

By using KVM virtio drivers, the following Microsoft Windows versions are expected to run similarly to
physical systems:

Windows Server versions: See Certified guest operating systems for Red Hat
Enterprise Linux with KVM in the Red Hat Knowledgebase.

Windows Desktop (non-server) versions:

Windows 10 (32-bit and 64-bit versions)

18.2.1.2. Preparing virtio driver installation media on a host machine

To install or update KVM virtio drivers on a Windows virtual machine (VM), you must first prepare the 
virtio driver installation media on the host machine. To do so, attach the .iso file, provided by the virtio-
win package, as a storage device to the Windows VM.

Prerequisites

Ensure that virtualization is enabled in your RHEL 8 host system. For more information, see
Enabling virtualization.

Ensure that you have root access privileges to the VM.

Procedure

1. Refresh your subscription data:

# subscription-manager refresh
All local data refreshed

2. Get the latest version of the virtio-win package.

If virtio-win is not installed:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

272

https://access.redhat.com/articles/973163#rhelkvm


# yum install -y virtio-win

If virtio-win is installed:

# yum upgrade -y virtio-win

If the installation succeeds, the virtio-win driver files are available in the /usr/share/virtio-
win/ directory. These include ISO files and a drivers directory with the driver files in
directories, one for each architecture and supported Windows version.

# ls /usr/share/virtio-win/
drivers/  guest-agent/  virtio-win-1.9.9.iso  virtio-win.iso

3. Attach the virtio-win.iso file as a storage device to the Windows VM.

When creating a new Windows VM , attach the file by using the virt-install command options.

When installing the drivers on an existing Windows VM, attach the file as a CD-ROM by using
the virt-xml utility:

# virt-xml WindowsVM --add-device --disk virtio-win.iso,device=cdrom
Domain 'WindowsVM' defined successfully.

Additional resources

Installing the virtio driver on the Windows guest operating system .

18.2.1.3. Installing virtio drivers on a Windows guest

To install KVM virtio drivers on a Windows guest operating system, you must add a storage device that
contains the drivers (either when creating the virtual machine (VM) or afterwards) and install the drivers
in the Windows guest operating system.

This procedure provides instructions to install the drivers by using the graphical interface. You can also
use the Microsoft Windows Installer (MSI)  command line interface.

Prerequisites

An installation medium with the KVM virtio drivers must be attached to the VM. For instructions
on preparing the medium, see Preparing virtio driver installation media on a host machine .

Procedure

1. In the Windows guest operating system, open the File Explorer application.

2. Click This PC.

3. In the Devices and drives pane, open the virtio-win medium.

4. Based on the operating system installed on the VM, run one of the installers:

If using a 32-bit operating system, run the virtio-win-gt-x86.msi installer.

If using a 64-bit operating system, run the virtio-win-gt-x64.msi installer.

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

273

https://docs.microsoft.com/en-us/windows/win32/msi/about-windows-installer


5. In the Virtio-win-driver-installer setup wizard that opens, follow the displayed instructions until
you reach the Custom Setup step.

6. In the Custom Setup window, select the device drivers you want to install. The recommended
driver set is selected automatically, and the descriptions of the drivers are displayed on the right
of the list.

7. Click next, then click Install.

8. After the installation completes, click Finish.

9. Reboot the VM to complete the driver installation.

Verification

1. On your Windows VM, navigate to the Device Manager:

a. Click Start

b. Search for Device Manager

2. Ensure that the devices are using the correct drivers:

a. Click a device to open the Driver Properties window.

b. Navigate to the Driver tab.

c. Click Driver Details.

Next steps

Red Hat Enterprise Linux 8 Configuring and managing virtualization

274



If you installed the NetKVM driver, you might also need to configure the Windows guest’s
networking parameters. For more information, see Configuring NetKVM driver parameters.

18.2.1.4. Updating virtio drivers on a Windows guest

To update KVM virtio drivers on a Windows guest operating system (OS), you can use the 
Windows Update service, if the Windows OS version supports it. If it does not, reinstall the drivers from 
virtio driver installation media attached to the Windows virtual machine (VM).

Prerequisites

A Windows guest OS with virtio drivers installed .

If not using Windows Update, an installation medium with up-to-date KVM virtio drivers must
be attached to the Windows VM. For instructions on preparing the medium, see Preparing virtio
driver installation media on a host machine.

Procedure 1: Updating the drivers by using Windows Update

On Windows 10, Windows Server 2016 and later operating systems, check if the driver updates are
available by using the Windows Update graphical interface:

1. Start the Windows VM and log in to its guest OS.

2. Navigate to the Optional updates page:
Settings → Windows Update → Advanced options → Optional updates

3. Install all updates from Red Hat, Inc.

Procedure 2: Updating the drivers by reinstalling them

On operating systems prior to Windows 10 and Windows Server 2016, or if the OS does not have access
to Windows Update, reinstall the drivers. This restores the Windows guest OS network configuration to
default (DHCP). If you want to preserve a customized network configuration, you also need to create a
backup and restore it by using the netsh utility:

1. Start the Windows VM and log in to its guest OS.

2. Open the Windows Command Prompt:

a. Use the Super+R keyboard shortcut.

b. In the window that appears, type cmd and press Ctrl+Shift+Enter to run as administrator.

3. Back up the OS network configuration by using the Windows Command Prompt:

C:\WINDOWS\system32\netsh dump > backup.txt

4. Reinstall KVM virtio drivers from the attached installation media. Do one of the following:

Reinstall the drivers by using the Windows Command Prompt, where X is the installation
media drive letter. The following commands install all virtio drivers.

If using a 64-bit vCPU:

C:\WINDOWS\system32\msiexec.exe /i X:\virtio-win-gt-x64.msi /passive 
/norestart

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

275



If using a 32-bit vCPU:

C:\WINDOWS\system32\msiexec.exe /i X:\virtio-win-gt-x86.msi /passive 
/norestart

Reinstall the drivers using the graphical interface without rebooting the VM.

5. Restore the OS network configuration using the Windows Command Prompt:

C:\WINDOWS\system32\netsh -f backup.txt

6. Reboot the VM to complete the driver installation.

Additional resources

Microsoft documentation on Windows Update

18.2.1.5. Enabling QEMU Guest Agent on Windows guests

To allow a RHEL host to perform a certain subset of operations  on a Windows virtual machine (VM), you
must enable the QEMU Guest Agent (GA). To do so, add a storage device that contains the QEMU
Guest Agent installer to an existing VM or when creating a new VM, and install the drivers on the
Windows guest operating system.

To install the Guest Agent (GA) by using the graphical interface, see the procedure below. To install the
GA in a command-line interface, use the Microsoft Windows Installer (MSI) .

Prerequisites

An installation medium with the Guest Agent is attached to the VM. For instructions on
preparing the medium, see Preparing virtio driver installation media on a host machine .

Procedure

1. In the Windows guest operating system, open the File Explorer application.

2. Click This PC.

3. In the Devices and drives pane, open the virtio-win medium.

4. Open the guest-agent folder.

5. Based on the operating system installed on the VM, run one of the following installers:

If using a 32-bit operating system, run the qemu-ga-i386.msi installer.

If using a 64-bit operating system, run the qemu-ga-x86_64.msi installer.

6. Optional: If you want to use the para-virtualized serial driver ( virtio-serial) as the
communication interface between the host and the Windows guest, verify that the virtio-serial
driver is installed on the Windows guest. For more information about installing virtio drivers, see:
Installing virtio drivers on a Windows guest .

Verification

Red Hat Enterprise Linux 8 Configuring and managing virtualization

276

https://docs.microsoft.com/en-us/windows/deployment/update/windows-update-overview
https://docs.microsoft.com/en-us/windows/win32/msi/about-windows-installer


1. On your Windows VM, navigate to the Services window.
Computer Management > Services

2. Ensure that the status of the QEMU Guest Agent service is Running.

Additional resources

Virtualization features that require QEMU Guest Agent

18.2.2. Enabling Hyper-V enlightenments

Hyper-V enlightenments provide a method for KVM to emulate the Microsoft Hyper-V hypervisor. This
improves the performance of Windows virtual machines.

The following sections provide information about the supported Hyper-V enlightenments and how to
enable them.

18.2.2.1. Enabling Hyper-V enlightenments on a Windows virtual machine

Hyper-V enlightenments provide better performance in a Windows virtual machine (VM) running in a
RHEL 8 host. For instructions on how to enable them, see the following.

Procedure

1. Use the virsh edit command to open the XML configuration of the VM. For example:

# virsh edit windows-vm

2. Add the following <hyperv> sub-section to the <features> section of the XML:

If the XML already contains a <hyperv> sub-section, modify it as shown above.

3. Change the clock section of the configuration as follows:

<features>
  [...]
  <hyperv>
    <relaxed state='on'/>
    <vapic state='on'/>
    <spinlocks state='on' retries='8191'/>
    <vpindex state='on'/>
    <runtime state='on' />
    <synic state='on'/>
    <stimer state='on'>
      <direct state='on'/>
    </stimer>
    <frequencies state='on'/>
  </hyperv>
  [...]
</features>

<clock offset='localtime'>
  ...
  <timer name='hypervclock' present='yes'/>

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

277



4. Save and exit the XML configuration.

5. If the VM is running, restart it.

Verification

Use the virsh dumpxml command to display the XML configuration of the running VM. If it
includes the following segments, the Hyper-V enlightenments are enabled on the VM.

18.2.2.2. Configurable Hyper-V enlightenments

You can configure certain Hyper-V features to optimize Windows VMs. The following table provides
information about these configurable Hyper-V features and their values.

Table 18.1. Configurable Hyper-V features

Enlightenment Description Values

crash Provides MSRs to the VMs that
can be used to store information
and logs if a VM crashes. The
information in available in the
QEMU log.

NOTE

If hv_crash is
enabled, Windows
crash dumps are
not created.

on, off

</clock>

<hyperv>
  <relaxed state='on'/>
  <vapic state='on'/>
  <spinlocks state='on' retries='8191'/>
  <vpindex state='on'/>
  <runtime state='on' />
  <synic state='on'/>
  <stimer state='on'>
    <direct state='on'/>
  </stimer>
  <frequencies state='on'/>
</hyperv>

<clock offset='localtime'>
  ...
  <timer name='hypervclock' present='yes'/>
</clock>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

278



evmcs Implements paravirtualized
protocol between L0 (KVM) and
L1 (Hyper-V) hypervisors, which
enables faster L2 exits to the
hypervisor.

NOTE

This feature is
exclusive to Intel
processors.

on, off

frequencies Enables Hyper-V frequency
Machine Specific Registers
(MSRs).

on, off

ipi Enables paravirtualized inter
processor interrupts (IPI) support.

on, off

no-nonarch-coresharing Notifies the guest OS that virtual
processors will never share a
physical core unless they are
reported as sibling SMT threads.
This information is required by
Windows and Hyper-V guests to
properly mitigate simultaneous
multithreading (SMT) related
CPU vulnerabilities.

on, off, auto

reenlightenment Notifies when there is a time
stamp counter (TSC) frequency
change which only occurs during
migration. It also allows the guest
to keep using the old frequency
until it is ready to switch to the
new one.

on, off

relaxed Disables a Windows sanity check
that commonly results in a BSOD
when the VM is running on a
heavily loaded host. This is similar
to the Linux kernel option
no_timer_check, which is
automatically enabled when Linux
is running on KVM.

on, off

runtime Sets processor time spent on
running the guest code, and on
behalf of the guest code.

on, off

Enlightenment Description Values

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

279



spinlocks
Used by a VM’s
operating system to
notify Hyper-V that the
calling virtual processor
is attempting to acquire
a resource that is
potentially held by
another virtual processor
within the same partition.

Used by Hyper-V to
indicate to the virtual
machine’s operating
system the number of
times a spinlock
acquisition should be
attempted before
indicating an excessive
spin situation to Hyper-
V.

on, off

stimer Enables synthetic timers for
virtual processors. Note that
certain Windows versions revert
to using HPET (or even RTC
when HPET is unavailable) when
this enlightenment is not
provided, which can lead to
significant CPU consumption,
even when the virtual CPU is idle.

on, off

stimer-direct Enables synthetic timers when an
expiration event is delivered via a
normal interrupt.

on, off.

synic Together with stimer, activates
the synthetic timer. Windows 8
uses this feature in periodic mode.

on, off

time Enables the following Hyper-V-
specific clock sources available to
the VM,

MSR-based 82 Hyper-V
clock source
(HV_X64_MSR_TIME_RE
F_COUNT,
0x40000020)

Reference TSC 83 page
which is enabled via MSR
(HV_X64_MSR_REFERE
NCE_TSC, 0x40000021)

on, off

Enlightenment Description Values

Red Hat Enterprise Linux 8 Configuring and managing virtualization

280



tlbflush Flushes the TLB of the virtual
processors.

on, off

vapic Enables virtual APIC, which
provides accelerated MSR access
to the high-usage, memory-
mapped Advanced Programmable
Interrupt Controller (APIC)
registers.

on, off

vendor_id Sets the Hyper-V vendor id.
on, off

Id value - string of up to
12 characters

vpindex Enables virtual processor index. on, off

Enlightenment Description Values

18.2.3. Configuring NetKVM driver parameters

After the NetKVM driver is installed, you can configure it to better suit your environment. The
parameters listed in the following procedure can be configured by using the Windows Device Manager
(devmgmt.msc).

IMPORTANT

Modifying the driver’s parameters causes Windows to reload that driver. This interrupts
existing network activity.

Prerequisites

The NetKVM driver is installed on the virtual machine.
For more information, see Installing KVM paravirtualized drivers for Windows virtual machines .

Procedure

1. Open Windows Device Manager.
For information about opening Device Manager, refer to the Windows documentation.

2. Locate the Red Hat VirtIO Ethernet Adapter.

a. In the Device Manager window, click + next to Network adapters.

b. Under the list of network adapters, double-click Red Hat VirtIO Ethernet Adapter.
The Properties window for the device opens.

3. View the device parameters.
In the Properties window, click the Advanced tab.

4. Modify the device parameters.

a. Click the parameter you want to modify.

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

281



a. Click the parameter you want to modify.
Options for that parameter are displayed.

b. Modify the options as needed.
For information about the NetKVM parameter options, refer to NetKVM driver parameters.

c. Click OK to save the changes.

18.2.4. NetKVM driver parameters

The following table provides information about the configurable NetKVM driver logging parameters.

Table 18.2. Logging parameters

Parameter Description 2

Logging.Enable A Boolean value that determines whether logging is
enabled. The default value is Enabled.

Logging.Level An integer that defines the logging level. As the
integer increases, so does the verbosity of the log.

The default value is 0 (errors only).

1-2 adds configuration messages.

3-4 adds packet flow information.

5-6 adds interrupt and DPC level trace
information.

NOTE

High logging levels will slow down
your virtual machine.

The following table provides information about the configurable NetKVM driver initial parameters.

Table 18.3. Initial parameters

Parameter Description

Assign MAC A string that defines the locally-administered MAC
address for the paravirtualized NIC. This is not set by
default.

Init.Do802.1PQ A Boolean value that enables Priority/VLAN tag
population and removal support. The default value is
Enabled.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

282



Init.MaxTxBuffers An integer that represents the number of TX ring
descriptors that will be allocated. The value is limited
by the size of Tx queue of QEMU.

The default value is 1024.

Valid values are: 16, 32, 64, 128, 256, 512, and 1024.

Init.MaxRxBuffers An integer that represents the number of RX ring
descriptors that will be allocated. The value is limited
by the size of Tx queue of QEMU.

The default value is 1024.

Valid values are: 16, 32, 64, 128, 256, 512, 1024, 2048,
and 4096.

Offload.Tx.Checksum Specifies the TX checksum offloading capability.

In Red Hat Enterprise Linux 8, the valid values for this
parameter are:

All (the default) which enables IP, TCP, and
UDP checksum offloading for both IPv4 and
IPv6

TCP/UDP(v4,v6) which enables TCP and
UDP checksum offloading for both IPv4 and
IPv6

TCP/UDP(v4) which enables TCP and UDP
checksum offloading for IPv4 only

TCP(v4) which enables only TCP checksum
offloading for IPv4 only

Offload.Rx.Checksum Specifies the RX checksum offloading capability.

In Red Hat Enterprise Linux 8, the valid values for this
parameter are:

All (the default) which enables IP, TCP, and
UDP checksum offloading for both IPv4 and
IPv6

TCP/UDP(v4,v6) which enables TCP and
UDP checksum offloading for both IPv4 and
IPv6

TCP/UDP(v4) which enables TCP and UDP
checksum offloading for IPv4 only

TCP(v4) which enables only TCP checksum
offloading for IPv4 only

Parameter Description

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

283



Offload.Tx.LSO Specifies the TX large segments offloading (LSO)
capability.

In Red Hat Enterprise Linux 8, the valid values for this
parameter are:

Maximal (the default) which enables LSO
offloading for both TCPv4 and TCPv6

IPv4 which enables LSO offloading for
TCPv4 only

Disable which disables LSO offloading

MinRxBufferPercent Specifies minimal amount of available buffers in RX
queue in percent of total amount of RX buffers. If the
actual number of available buffers is lower than that
value, the NetKVM driver indicates low resources
condition to the operating system (requesting it to
return the RX buffers as soon as possible)

Minimum value (default) - 0, meaning the driver
never indicates low resources condition.

Maximum value - 100, meaning the driver indicates
low resources condition all the time.

Parameter Description

Additional resources

INF enumeration keywords

INF keywords that can be edited

18.2.5. Optimizing background processes on Windows virtual machines

To optimize the performance of a virtual machine (VM) running a Windows OS, you can configure or
disable a variety of Windows processes.

WARNING

Certain processes might not work as expected if you change their configuration.

Procedure

You can optimize your Windows VMs by performing any combination of the following:

Remove unused devices, such as USBs or CD-ROMs, and disable the ports.



Red Hat Enterprise Linux 8 Configuring and managing virtualization

284

https://learn.microsoft.com/en-us/windows-hardware/drivers/network/enumeration-keywords
https://learn.microsoft.com/en-us/windows-hardware/drivers/network/keywords-that-can-be-edited


Disable background services, such as SuperFetch and Windows Search. For more information
about stopping services, see Disabling system services  or Stop-Service.

Disable useplatformclock. To do so, run the following command,

# bcdedit /set useplatformclock No

Review and disable unnecessary scheduled tasks, such as scheduled disk defragmentation. For
more information about how to do so, see Disable Scheduled Tasks.

Make sure the disks are not encrypted.

Reduce periodic activity of server applications. You can do so by editing the respective timers.
For more information, see Multimedia Timers.

Close the Server Manager application on the VM.

Disable the antivirus software. Note that disabling the antivirus might compromise the security
of the VM.

Disable the screen saver.

Keep the Windows OS on the sign-in screen when not in use.

18.3. ENABLING STANDARD HARDWARE SECURITY ON WINDOWS
VIRTUAL MACHINES

To secure Windows virtual machines (VMs), you can enable basic level security by using the standard
hardware capabilities of the Windows device.

Prerequisites

Make sure you have installed the latest WHQL certified VirtIO drivers.

Make sure the VM’s firmware supports UEFI boot.

Install the edk2-OVMF package on your host machine.

# {PackageManagerCommand} install edk2-ovmf

Install the vTPM packages on your host machine.

# {PackageManagerCommand} install swtpm libtpms

Make sure the VM is using the Q35 machine architecture.

Make sure you have the Windows installation media.

Procedure

1. Enable TPM 2.0 by adding the following parameters to the <devices> section in the VM’s XML
configuration.

<devices>

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

285

https://docs.microsoft.com/en-us/windows-server/security/windows-services/security-guidelines-for-disabling-system-services-in-windows-server
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/stop-service?view=powershell-7
https://docs.microsoft.com/en-us/powershell/module/scheduledtasks/disable-scheduledtask?view=win10-ps
https://docs.microsoft.com/en-us/windows/win32/multimedia/multimedia-timers


2. Install Windows in UEFI mode. For more information about how to do so, see Creating a
SecureBoot virtual machine.

3. Install the VirtIO drivers on the Windows VM. For more information about how to do so, see
Installing virtio drivers on a Windows guest .

4. In UEFI, enable Secure Boot. For more information about how to do so, see Secure Boot.

Verification

Ensure that the Device Security page on your Windows machine displays the following
message:
Settings > Update & Security > Windows Security > Device Security

Your device meets the requirements for standard hardware security.

18.4. ENABLING ENHANCED HARDWARE SECURITY ON WINDOWS
VIRTUAL MACHINES

To further secure Windows virtual machines (VMs), you can enable virtualization-based protection of
code integrity, also known as Hypervisor-Protected Code Integrity (HVCI).

Prerequisites

Ensure that standard hardware security is enabled. For more information, see Enabling standard
hardware security on Windows virtual machines.

Ensure you have enabled Hyper-V enlightenments. For more information, see Enabling Hyper-V
enlightenments.

Procedure

1. Open the XML configuration of the Windows VM. The following example opens the
configuration of the Example-L1 VM:

# virsh edit Example-L1

2. Under the <cpu> section, specify the CPU mode and add the policy flag.

IMPORTANT

[...]
  <tpm model='tpm-crb'>
    <backend type='emulator' version='2.0'/>
  </tpm>
[...]
</devices>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

286

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/secure-boot-landing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/securing-virtual-machines-in-rhel_configuring-and-managing-virtualization#enabling-standard-harware-security-on-windows-virtual-machines_securing-virtual-machines-in-rhel
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_virtualization/installing-and-managing-windows-virtual-machines-on-rhel_configuring-and-managing-virtualization#enabling-hyper-v-enlightenments_optimizing-windows-virtual-machines-on-rhel


IMPORTANT

For Intel CPUs, enable the vmx policy flag.

For AMD CPUs, enable the svm policy flag.

If you do not wish to specify a custom CPU, you can set the <cpu mode> as 
host-passthrough.

3. Save the XML configuration and reboot the VM.

4. On the VMs operating system, navigate to the Core isolation details page:
Settings > Update & Security > Windows Security > Device Security > Core isolation details

5. Toggle the switch to enable Memory Integrity.

6. Reboot the VM.

NOTE

For other methods of enabling HVCI, see the relevant Microsoft documentation.

Verification

Ensure that the Device Security page on your Windows VM displays the following message:
Settings > Update & Security > Windows Security > Device Security

Your device meets the requirements for enhanced hardware security.

Alternatively, check System Information about the Windows VM:

a. Run msinfo32.exe in a command prompt.

b. Check if Credential Guard, Hypervisor enforced Code Integrity is listed under
Virtualization-based security Services Running.

18.5. NEXT STEPS

To share files between your RHEL 8 host and its Windows VMs, you can use NFS.

<cpu mode='custom' match='exact' check='partial'>
    <model fallback='allow'>Skylake-Client-IBRS</model>
    <topology sockets='1' dies='1' cores='4' threads='1'/>
    <feature policy='require' name='vmx'/>
</cpu>

CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES

287



CHAPTER 19. CREATING NESTED VIRTUAL MACHINES
You can use nested virtual machines (VMs) if you require a different host operating system than what
your local host is running. This eliminates the need for additional physical hardware.

WARNING

Red Hat currently provides nested virtualization only as a Technology Preview, and it
is therefore unsupported.

Additionally, nested virtualization has only been tested on a limited set of
architectures and operating system versions. Before you use this feature in your
environment, see Restrictions and limitations for nested virtualization .

19.1. WHAT IS NESTED VIRTUALIZATION?

With nested virtualization, you can run virtual machines (VMs) within other VMs. A standard VM that
runs on a physical host can also act as a second hypervisor and create its own VMs.

Nested virtualization terminology

Level 0 (L0)

A physical host, a bare-metal machine.

Level 1 (L1)

A standard VM, running on an L0 physical host, that can act as an additional virtual host.

Level 2 (L2)

A nested VM running on an L1 virtual host.
Important: The second level of virtualization severely limits the performance of an L2 VM. For this
reason, nested virtualization is primarily intended for development and testing scenarios, such as:

Debugging hypervisors in a constrained environment

Testing larger virtual deployments on a limited amount of physical resources

WARNING

Red Hat currently provides nested virtualization only as a Technology Preview, and it
is therefore unsupported.

Additionally, nested virtualization has only been tested on a limited set of
architectures and operating system versions. Before you use this feature in your
environment, see Restrictions and limitations for nested virtualization .





Red Hat Enterprise Linux 8 Configuring and managing virtualization

288

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/


Additional resources

Restrictions and limitations for nested virtualization

19.2. RESTRICTIONS AND LIMITATIONS FOR NESTED
VIRTUALIZATION

Keep the following restrictions in mind when using nested virtualization. To learn more about the
relevant terminology for nested virtualization, see What is nested virtualization?

WARNING

Red Hat currently does not support nested virtualization, and only provides nesting
as a Technology Preview.

Tested architectures

The L0 host must be an Intel, AMD, IBM POWER9, or IBM Z system. Nested virtualization
currently does not work on other architectures, such as ARM.

Tested environments

To create nested virtual machines (VMs), you must use the following versions of operating systems:

On the L0 host: On the L1 VMs: On the L2 VMs:

RHEL 8.2 and later RHEL 7.8 and later RHEL 7.8 and later

 RHEL 8.2 and later RHEL 8.2 and later

  Windows Server 2016

  Windows Server 2019

NOTE

Creating RHEL L1 VMs is not tested when used in other Red Hat virtualization offerings.
These include:

Red Hat Virtualization

Red Hat OpenStack Platform

OpenShift Virtualization

In addition, on IBM POWER9, nested virtualization currently only works under the following
circumstances:



CHAPTER 19. CREATING NESTED VIRTUAL MACHINES

289

https://access.redhat.com/support/offerings/techpreview/


Both the L0 host and the L1 VM use RHEL 8

The L2 VM uses RHEL 8, or RHEL 7 with a rhel-alt kernel.

The L1 VM and L2 VM are not running in POWER8 compatibility mode.

Hypervisor limitations

Currently, Red Hat tests nesting only on RHEL-KVM. When RHEL is used as the L0 hypervisor,
you can use RHEL or Windows as the L1 hypervisor.

When using an L1 RHEL 8 VM on a non-KVM L0 hypervisor, such as VMware ESXi or Amazon
Web Services (AWS), creating L2 VMs in the RHEL 8 guest operating system might work, but is
not tested.

Feature limitations

Use of L2 VMs as hypervisors and creating L3 guests has not been properly tested and is not
expected to work.

Migrating VMs currently does not work on AMD systems if nested virtualization has been
enabled on the L0 host.

On an IBM Z system, huge-page backing storage and nested virtualization cannot be used at
the same time.

# modprobe kvm hpage=1 nested=1
modprobe: ERROR: could not insert 'kvm': Invalid argument
# dmesg |tail -1
[90226.508366] kvm-s390: A KVM host that supports nesting cannot back its KVM guests 
with huge pages

Some features available on the L0 host might be unavailable for the L1 hypervisor.
For example, on IBM POWER 9 hardware, the External Interrupt Virtualization Engine (XIVE)
does not work. However, L1 VMs can use the emulated XIVE interrupt controller to start L2
VMs.

Additional resources

Creating a nested virtual machine on Intel

Creating a nested virtual machine on AMD

Creating a nested virtual machine on IBM Z

Creating a nested virtual machine on IBM POWER9

19.3. CREATING A NESTED VIRTUAL MACHINE ON INTEL

Follow the steps below to enable and configure nested virtualization on an Intel host.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

290



WARNING

Red Hat currently provides nested virtualization only as a Technology Preview, and it
is therefore unsupported.

Additionally, nested virtualization has only been tested on a limited set of
architectures and operating system versions. Before you use this feature in your
environment, see Restrictions and limitations for nested virtualization .

Prerequisites

An L0 RHEL 8 host running an L1 virtual machine (VM).

The hypervisor CPU must support nested virtualization. To verify, use the cat /proc/cpuinfo
command on the L0 hypervisor. If the output of the command includes the vmx and ept flags,
creating L2 VMs is possible. This is generally the case on Intel Xeon v3 cores and later.

Ensure that nested virtualization is enabled on the L0 host:

# cat /sys/module/kvm_intel/parameters/nested

If the command returns 1 or Y, the feature is enabled. Skip the remaining prerequisite steps,
and continue with the Procedure section.

If the command returns 0 or N but your system supports nested virtualization, use the
following steps to enable the feature.

i. Unload the kvm_intel module:

# modprobe -r kvm_intel

ii. Activate the nesting feature:

# modprobe kvm_intel nested=1

iii. The nesting feature is now enabled, but only until the next reboot of the L0 host. To
enable it permanently, add the following line to the /etc/modprobe.d/kvm.conf file:

options kvm_intel nested=1

Procedure

1. Configure your L1 VM for nested virtualization.

a. Open the XML configuration of the VM. The following example opens the configuration of
the Intel-L1 VM:

# virsh edit Intel-L1

b. Configure the VM to use host-passthrough CPU mode by editing the <cpu> element:



CHAPTER 19. CREATING NESTED VIRTUAL MACHINES

291

https://access.redhat.com/support/offerings/techpreview/


<cpu mode='host-passthrough'/>

If you require the VM to use a specific CPU model, configure the VM to use custom CPU
mode. Inside the <cpu> element, add a <feature policy='require' name='vmx'/> element
and a <model> element with the CPU model specified inside. For example:

<cpu mode ='custom' match ='exact' check='partial'>
  <model fallback='allow'>Haswell-noTSX</model>
  <feature policy='require' name='vmx'/>
  ...
</cpu>

2. Create an L2 VM within the L1 VM. To do this, follow the same procedure as when creating the
L1 VM.

19.4. CREATING A NESTED VIRTUAL MACHINE ON AMD

Follow the steps below to enable and configure nested virtualization on an AMD host.

WARNING

Red Hat currently provides nested virtualization only as a Technology Preview, and it
is therefore unsupported.

Additionally, nested virtualization has only been tested on a limited set of
architectures and operating system versions. Before you use this feature in your
environment, see Restrictions and limitations for nested virtualization .

Prerequisites

An L0 RHEL 8 host running an L1 virtual machine (VM).

The hypervisor CPU must support nested virtualization. To verify, use the cat /proc/cpuinfo
command on the L0 hypervisor. If the output of the command includes the svm and npt flags,
creating L2 VMs is possible. This is generally the case on AMD EPYC cores and later.

Ensure that nested virtualization is enabled on the L0 host:

# cat /sys/module/kvm_amd/parameters/nested

If the command returns 1 or Y, the feature is enabled. Skip the remaining prerequisite steps,
and continue with the Procedure section.

If the command returns 0 or N, use the following steps to enable the feature.

i. Stop all running VMs on the L0 host.

ii. Unload the kvm_amd module:

# modprobe -r kvm_amd



Red Hat Enterprise Linux 8 Configuring and managing virtualization

292

https://access.redhat.com/support/offerings/techpreview/


iii. Activate the nesting feature:

# modprobe kvm_amd nested=1

iv. The nesting feature is now enabled, but only until the next reboot of the L0 host. To
enable it permanently, add the following to the /etc/modprobe.d/kvm.conf file:

options kvm_amd nested=1

Procedure

1. Configure your L1 VM for nested virtualization.

a. Open the XML configuration of the VM. The following example opens the configuration of
the AMD-L1 VM:

# virsh edit AMD-L1

b. Configure the VM to use host-passthrough CPU mode by editing the <cpu> element:

<cpu mode='host-passthrough'/>

If you require the VM to use a specific CPU model, configure the VM to use custom CPU
mode. Inside the <cpu> element, add a <feature policy='require' name='svm'/> element
and a <model> element with the CPU model specified inside. For example:

<cpu mode="custom" match="exact" check="none">
  <model fallback="allow">EPYC-IBPB</model>
  <feature policy="require" name="svm"/>
  ...
</cpu>

2. Create an L2 VM within the L1 VM. To do this, follow the same procedure as when creating the
L1 VM.

19.5. CREATING A NESTED VIRTUAL MACHINE ON IBM Z

Follow the steps below to enable and configure nested virtualization on an IBM Z host.

NOTE

IBM Z does not really provide a bare-metal L0 host. Instead, user systems are set up on a
logical partition (LPAR), which is already a virtualized system, so it is often referred to as 
L1. However, for better alignment with other architectures in this guide, the following
steps refer to IBM Z as if it provides an L0 host.

To learn more about nested virtualization, see: What is nested virtualization?

CHAPTER 19. CREATING NESTED VIRTUAL MACHINES

293



WARNING

Red Hat currently provides nested virtualization only as a Technology Preview, and it
is therefore unsupported.

Additionally, nested virtualization has only been tested on a limited set of
architectures and operating system versions. Before you use this feature in your
environment, see Restrictions and limitations for nested virtualization .

Prerequisites

An L0 RHEL 8 host running an L1 virtual machine (VM).

The hypervisor CPU must support nested virtualization. To verify this is the case, use the cat 
/proc/cpuinfo command on the L0 hypervisor. If the output of the command includes the sie
flag, creating L2 VMs is possible.

Ensure that nested virtualization is enabled on the L0 host:

# cat /sys/module/kvm/parameters/nested

If the command returns 1 or Y, the feature is enabled. Skip the remaining prerequisite steps,
and continue with the Procedure section.

If the command returns 0 or N, use the following steps to enable the feature.

i. Stop all running VMs on the L0 host.

ii. Unload the kvm module:

# modprobe -r kvm

iii. Activate the nesting feature:

# modprobe kvm nested=1

iv. The nesting feature is now enabled, but only until the next reboot of the L0 host. To
enable it permanently, add the following line to the /etc/modprobe.d/kvm.conf file:

options kvm nested=1

Procedure

Create an L2 VM within the L1 VM. To do this, follow the same procedure as when creating the
L1 VM.

19.6. CREATING A NESTED VIRTUAL MACHINE ON IBM POWER9

Follow the steps below to enable and configure nested virtualization on an IBM POWER9 host.

NOTE



Red Hat Enterprise Linux 8 Configuring and managing virtualization

294

https://access.redhat.com/support/offerings/techpreview/


NOTE

IBM POWER9 does not really provide a bare-metal L0 host. Instead, user systems are set
up on a logical partition (LPAR), which is already a virtualized system, so it is often
referred to as L1. However, for better alignment with other architectures in this guide, the
following steps refer to IBM POWER9 as if it provides an L0 host.

To learn more about nested virtualization, see: What is nested virtualization?

WARNING

Nested virtualization is currently provided only as a Technology Preview on the IBM
POWER9 architecture, and is therefore unsupported. In addition, creating nested
virtual machines (VMs) is not possible on previous versions of IBM POWER systems,
such as IBM POWER8.

Prerequisites

An L0 RHEL 8 host is running an L1 VM. The L1 VM is using RHEL 8 as the guest operating
system.

Nested virtualization is enabled on the L0 host:

# cat /sys/module/kvm_hv/parameters/nested

If the command returns 1 or Y, the feature is enabled. Skip the remaining prerequisite steps,
and continue with the Procedure section.

If the command returns 0 or N, use the following steps to enable the feature:

i. Stop all running VMs on the L0 host.

ii. Unload the kvm module:

# modprobe -r kvm_hv

iii. Activate the nesting feature:

# modprobe kvm_hv nested=1

iv. The nesting feature is now enabled, but only until the next reboot of the L0 host. To
enable it permanently, add the following line to the /etc/modprobe.d/kvm.conf file:

options kvm_hv nested=1

Procedure

1. To ensure that the L1 VM can create L2 VMs, add the cap-nested-hv parameter to the machine
type of the L1 VM. To do so, use the virsh edit command to modify the L1 VM’s XML
configuration, and the following line to the <features> section:



CHAPTER 19. CREATING NESTED VIRTUAL MACHINES

295

https://access.redhat.com/support/offerings/techpreview/


<nested-hv state='on'/>

2. Create an L2 VM within the L1 VM. To do this, follow the same procedure as when creating the
L1 VM.
To significantly improve the performance of L2 VMs, Red Hat recommends adding the`cap-
nested-hv` parameter to the XML configurations of L2 VMs as well. For instructions, see the
previous step.

Additional information

Note that IBM POWER8 as the architecture for the L2 VM currently does not supported.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

296



CHAPTER 20. DIAGNOSING VIRTUAL MACHINE PROBLEMS
When working with virtual machines (VMs), you may encounter problems with varying levels of severity.
Some problems may have a quick and easy fix, while for others, you may have to capture VM-related
data and logs to report or diagnose the problems.

The following sections provide detailed information about generating logs and diagnosing some
common VM problems, as well as about reporting these problems.

20.1. GENERATING LIBVIRT DEBUG LOGS

To diagnose virtual machine (VM) problems, it is helpful to generate and review libvirt debug logs.
Attaching debug logs is also useful when asking for support to resolve VM-related problems.

The following sections explain what debug logs are , how you can set them to be persistent , enable them
during runtime, and attach them  when reporting problems.

20.1.1. Understanding libvirt debug logs

Debug logs are text files that contain data about events that occur during virtual machine (VM) runtime.
The logs provide information about fundamental server-side functionalities, such as host libraries and
the libvirt daemon. The log files also contain the standard error output (stderr) of all running VMs.

Debug logging is not enabled by default and has to be enabled when libvirt starts. You can enable
logging for a single session or persistently. You can also enable logging when a libvirt daemon session is
already running by modifying the daemon run-time settings .

Attaching the libvirt debug logs is also useful when requesting support with a VM problem.

20.1.2. Enabling persistent settings for libvirt debug logs

You can configure libvirt debug logging to be automatically enabled whenever libvirt starts. By default, 
libvirtd is the only libvirt daemon in RHEL 8. To make persistent changes in the libvirt configuration, you
must edit the libvirtd.conf file, located in the /etc/libvirt directory.

Procedure

1. Open the libvirtd.conf file in an editor.

2. Replace or set the filters according to your requirements.

Table 20.1. Debugging filter values

1 logs all messages generated by libvirt.

2 logs all non-debugging information.

3 logs all warning and error messages. This is the default value.

4 logs only error messages.

Example 20.1. Sample daemon settings for logging filters

CHAPTER 20. DIAGNOSING VIRTUAL MACHINE PROBLEMS

297



The following settings:

Log all error and warning messages from the remote, util.json, and rpc layers

Log only error messages from the event layer.

Save the filtered logs to /var/log/libvirt/libvirt.log

log_filters="3:remote 4:event 3:util.json 3:rpc"
log_outputs="1:file:/var/log/libvirt/libvirt.log"

3. Save and exit.

4. Restart the libvirt daemon.

$ systemctl restart libvirtd.service

20.1.3. Enabling libvirt debug logs during runtime

You can modify the libvirt daemon’s runtime settings to enable debug logs and save them to an output
file.

This is useful when restarting the libvirt daemon is not possible because restarting fixes the problem, or
because there is another process, such as migration or backup, running at the same time. Modifying
runtime settings is also useful if you want to try a command without editing the configuration files or
restarting the daemon.

Prerequisites

Make sure the libvirt-admin package is installed.

Procedure

1. Optional: Back up the active set of log filters.

# virt-admin daemon-log-filters >> virt-filters-backup

NOTE

It is recommended that you back up the active set of filters so that you can
restore them after generating the logs. If you do not restore the filters, the
messages will continue to be logged which may affect system performance.

2. Use the virt-admin utility to enable debugging and set the filters according to your
requirements.

Table 20.2. Debugging filter values

1 logs all messages generated by libvirt.

2 logs all non-debugging information.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

298



3 logs all warning and error messages. This is the default value.

4 logs only error messages.

Example 20.2. Sample virt-admin setting for logging filters

The following command:

Logs all error and warning messages from the remote, util.json, and rpc layers

Logs only error messages from the event layer.

# virt-admin daemon-log-filters "3:remote 4:event 3:util.json 3:rpc"

3. Use the virt-admin utility to save the logs to a specific file or directory.
For example, the following command saves the log output to the libvirt.log file in the 
/var/log/libvirt/ directory.

# virt-admin daemon-log-outputs "1:file:/var/log/libvirt/libvirt.log"

4. Optional: You can also remove the filters to generate a log file that contains all VM-related
information. However, it is not recommended since this file may contain a large amount of
redundant information produced by libvirt’s modules.

Use the virt-admin utility to specify an empty set of filters.

# virt-admin daemon-log-filters
  Logging filters:

5. Optional: Restore the filters to their original state using the backup file.
Perform the second step with the saved values to restore the filters.

20.1.4. Attaching libvirt debug logs to support requests

You may have to request additional support to diagnose and resolve virtual machine (VM) problems.
Attaching the debug logs to the support request is highly recommended to ensure that the support
team has access to all the information they need to provide a quick resolution of the VM-related
problem.

Procedure

To report a problem and request support, open a support case.

Based on the encountered problems, attach the following logs along with your report:

For problems with the libvirt service, attach the /var/log/libvirt/libvirt.log file from the host.

For problems with a specific VM, attach its respective log file.
For example, for the testguest1 VM, attach the testguest1.log file, which can be found at 
/var/log/libvirt/qemu/testguest1.log.

Additional resources

CHAPTER 20. DIAGNOSING VIRTUAL MACHINE PROBLEMS

299

https://access.redhat.com/support/cases/#/case/new?intcmp=hp|a|a3|case&


Additional resources

How to provide log files to Red Hat Support?

20.2. DUMPING A VIRTUAL MACHINE CORE

To analyze why a virtual machine (VM) crashed or malfunctioned, you can dump the VM core to a file on
disk for later analysis and diagnostics.

This section provides a brief introduction to core dumping  and explains how you can dump a VM core  to
a specific file.

20.2.1. How virtual machine core dumping works

A virtual machine (VM) requires numerous running processes to work accurately and efficiently. In some
cases, a running VM may terminate unexpectedly or malfunction while you are using it. Restarting the
VM may cause the data to be reset or lost, which makes it difficult to diagnose the exact problem that
caused the VM to crash.

In such cases, you can use the virsh dump utility to save (or dump) the core of a VM to a file before you
reboot the VM. The core dump file contains a raw physical memory image of the VM which contains
detailed information about the VM. This information can be used to diagnose VM problems, either
manually, or by using a tool such as the crash utility.

Additional resources

crash man page

The crash Github repository

20.2.2. Creating a virtual machine core dump file

A virtual machine (VM) core dump contains detailed information about the state of a VM at any given
time. This information, which is similar to a snapshot of the VM, can help you detect problems if a VM
malfunctions or shuts down suddenly.

Prerequisites

Make sure you have sufficient disk space to save the file. Note that the space occupied by the
VM depends on the amount of RAM allocated to the VM.

Procedure

Use the virsh dump utility.
For example, the following command dumps the lander1 VM’s cores, its memory and the CPU
common register file to gargantua.file in the /core/file directory.

# virsh dump lander1 /core/file/gargantua.file --memory-only
Domain 'lander1' dumped to /core/file/gargantua.file

IMPORTANT

Red Hat Enterprise Linux 8 Configuring and managing virtualization

300

https://access.redhat.com/solutions/2112
https://github.com/crash-utility/crash


IMPORTANT

The crash utility no longer supports the default file format of the virsh dump command.
To analyze a core dump file by using crash, you must create the file with the --memory-
only option.

Additionally, you must use the --memory-only option when creating a core dump file to
attach to a Red Hat Support Case.

Troubleshooting

If the virsh dump command fails with a System is deadlocked on memory error, ensure you are
assigning sufficient memory for the core dump file. To do so, use the following crashkernel option
value. Alternatively, do not use crashkernel at all, which assigns core dump memory automatically.

crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M

Additional resources

The virsh dump --help command

The virsh man page

Opening a Support Case

20.3. BACKTRACING VIRTUAL MACHINE PROCESSES

When a process related to a virtual machine (VM) malfunctions, you can use the gstack command along
with the process identifier (PID) to generate an execution stack trace of the malfunctioning process. If
the process is a part of a thread group then all the threads are traced as well.

Prerequisites

Ensure that the GDB package is installed.
For details about installing GDB and the available components, see Installing the GNU
Debugger.

Make sure you know the PID of the processes that you want to backtrace.
You can find the PID by using the pgrep command followed by the name of the process. For
example:

# pgrep libvirt
22014
22025

Procedure

Use the gstack utility followed by the PID of the process you wish to backtrace.
For example, the following command backtraces the libvirt process with the PID 22014.

# gstack 22014
Thread 3 (Thread 0x7f33edaf7700 (LWP 22017)):
#0  0x00007f33f81aef21 in poll () from /lib64/libc.so.6

CHAPTER 20. DIAGNOSING VIRTUAL MACHINE PROBLEMS

301

https://access.redhat.com/support/cases/#/case/new?intcmp=hp|a|a3|case&
https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/10/html/user_guide/chap-gdb#sect-GDB-Install


#1  0x00007f33f89059b6 in g_main_context_iterate.isra () from /lib64/libglib-2.0.so.0
#2  0x00007f33f8905d72 in g_main_loop_run () from /lib64/libglib-2.0.so.0
...

Additional resources

The gstack man page

GNU Debugger (GDB)

Additional resources for reporting virtual machine problems and providing logs

To request additional help and support, you can:

Raise a service request by using the redhat-support-tool command line option, the Red Hat
Portal UI, or several methods of FTP.

To report problems and request support, see Open a Support Case .

Upload the SOS Report and the log files when you submit a service request.
This ensures that the Red Hat support engineer has all the necessary diagnostic information for
reference.

For more information about SOS reports, see What is an SOS Report and how to create one
in Red Hat Enterprise Linux?

For information about attaching log files, see How to provide files to Red Hat Support?

Red Hat Enterprise Linux 8 Configuring and managing virtualization

302

https://access.redhat.com/documentation/en-us/red_hat_developer_toolset/10/html/user_guide/chap-gdb
https://access.redhat.com/support/cases/#/case/new?intcmp=hp|a|a3|case&
https://access.redhat.com/solutions/3592#command
https://access.redhat.com/solutions/2112


CHAPTER 21. FEATURE SUPPORT AND LIMITATIONS IN RHEL
8 VIRTUALIZATION

This document provides information about feature support and restrictions in Red Hat
Enterprise Linux 8 (RHEL 8) virtualization.

21.1. HOW RHEL VIRTUALIZATION SUPPORT WORKS

A set of support limitations applies to virtualization in Red Hat Enterprise Linux 8 (RHEL 8). This means
that when you use certain features or exceed a certain amount of allocated resources when using virtual
machines in RHEL 8, Red Hat will not support these guests unless you have a specific subscription plan.

Features listed in Recommended features in RHEL 8 virtualization  have been tested and certified by
Red Hat to work with the KVM hypervisor on a RHEL 8 system. Therefore, they are fully supported and
recommended for use in virtualization in RHEL 8.

Features listed in Unsupported features in RHEL 8 virtualization  may work, but are not supported and
not intended for use in RHEL 8. Therefore, Red Hat strongly recommends not using these features in
RHEL 8 with KVM.

Resource allocation limits in RHEL 8 virtualization  lists the maximum amount of specific resources
supported on a KVM guest in RHEL 8. Guests that exceed these limits are not supported by Red Hat.

In addition, unless stated otherwise, all features and solutions used by the documentation for RHEL 8
virtualization are supported. However, some of these have not been completely tested and therefore
may not be fully optimized.

IMPORTANT

Many of these limitations do not apply to other virtualization solutions provided by
Red Hat, such as Red Hat Virtualization (RHV), OpenShift Virtualization or
Red Hat OpenStack Platform (RHOSP).

21.2. RECOMMENDED FEATURES IN RHEL 8 VIRTUALIZATION

The following features are recommended for use with the KVM hypervisor included with Red Hat
Enterprise Linux 8 (RHEL 8):

Host system architectures

RHEL 8 with KVM is only supported on the following host architectures:

AMD64 and Intel 64

IBM Z - IBM z13 systems and later

IBM POWER8

IBM POWER9

Any other hardware architectures are not supported for using RHEL 8 as a KVM virtualization host, and
Red Hat highly discourages doing so. Notably, this includes the 64-bit ARM architecture (ARM 64).

NOTE

CHAPTER 21. FEATURE SUPPORT AND LIMITATIONS IN RHEL 8 VIRTUALIZATION

303



NOTE

RHEL 8 documentation primarily describes AMD64 and Intel 64 features and usage. For
information about the specific of using RHEL 8 virtualization on different architectures,
see:

Getting started with virtualization on IBM POWER

Getting started with virtualization on IBM Z

Guest operating systems

Red Hat provides support with KVM virtual machines that use specific guest operating systems (OSs).
For a detailed list of supported guest OSs, see the Certified Guest Operating Systems in the Red Hat
KnowledgeBase.

Note, however, that by default, your guest OS does not use the same subscription as your host.
Therefore, you must activate a separate licence or subscription for the guest OS to work properly.

In addition, the pass-through devices that you attach to the VM must be supported by both the host OS
and the guest OS.

Similarly, for optimal function of your deployment, Red Hat recommends that the CPU model and
features that you define in the XML configuration of a VM are supported by both the host OS and the
guest OS.

To view the certified CPUs and other hardware for various versions of RHEL, see the Red Hat
Ecosystem Catalog.

Machine types

To ensure that your VM is compatible with your host architecture and that the guest OS runs optimally,
the VM must use an appropriate machine type.

When Creating a VM by using the command line , the virt-install utility provides multiple methods of
setting the machine type.

When you use the --os-variant option, virt-install automatically selects the machine type
recommended for your host CPU and supported by the guest OS.

If you do not use --os-variant or require a different machine type, use the --machine option to
specify the machine type explicitly.

If you specify a --machine value that is unsupported or not compatible with your host, virt-
install fails and displays an error message.

The recommended machine types for KVM virtual machines on supported architectures, and the
corresponding values for the --machine option, are as follows. Y stands for the latest minor version of
RHEL 8.

On Intel 64 and AMD64 (x86_64): pc-q35-rhel8.Y.0 → --machine=q35

On IBM Z (s390x): s390-ccw-virtio-rhel8.Y.0 → --machine=s390-ccw-virtio

On IBM POWER (PPC), pseries-rhel8.Y.0 → --machine=pseries

To obtain the machine type of an existing VM:

Red Hat Enterprise Linux 8 Configuring and managing virtualization

304

https://access.redhat.com/articles/973163#rhelkvm
https://catalog.redhat.com/hardware/search?type=Component|CPU Collection&p=1


# virsh dumpxml VM-name | grep machine=

To view the full list of machine types supported on your host:

# /usr/libexec/qemu-kvm -M help

Additional resources

Unsupported features in RHEL 8 virtualization

Resource allocation limits in RHEL 8 virtualization

Supported hosts for virtual machine migration

21.3. UNSUPPORTED FEATURES IN RHEL 8 VIRTUALIZATION

The following features are not supported by the KVM hypervisor included with Red Hat
Enterprise Linux 8 (RHEL 8):

IMPORTANT

Many of these limitations may not apply to other virtualization solutions provided by
Red Hat, such as OpenShift Virtualization or Red Hat OpenStack Platform (RHOSP).

Features supported by RHV 4.2 and later, or RHOSP 13 and later, are described as such in
the following paragraphs.

Host system architectures

RHEL 8 with KVM is not supported on any host architectures that are not listed in Recommended
features in RHEL 8 virtualization.

Notably, Red Hat does not support using systems with the 64-bit ARM architecture (ARM 64) for KVM
virtualization on RHEL 8.

Guest operating systems

KVM virtual machines (VMs) that use the following guest operating systems (OSs) are not supported on
a RHEL 8 host:

Microsoft Windows 8.1 and earlier

Microsoft Windows Server 2008 R2 and earlier

macOS

Solaris for x86 systems

Any OS released before 2009

For a list of guest OSs supported on RHEL hosts, Red Hat Virtualization (RHV), or other virtualization
solutions, see Certified Guest Operating Systems in Red Hat OpenStack Platform,
Red Hat Virtualization, OpenShift Virtualization and Red Hat Enterprise Linux with KVM.

Creating VMs in containers

CHAPTER 21. FEATURE SUPPORT AND LIMITATIONS IN RHEL 8 VIRTUALIZATION

305

https://access.redhat.com/articles/973163


Red Hat does not support creating KVM virtual machines in any type of container that includes the
elements of the RHEL 8 hypervisor (such as the QEMU emulator or the libvirt package).

To create VMs in containers, Red Hat recommends using the OpenShift Virtualization offering.

The QEMU command line

QEMU is an essential component of the virtualization architecture in RHEL 8, but it is difficult to manage
manually, and improper QEMU configurations may cause security vulnerabilities. Therefore, using qemu-
* command-line utilities, such as qemu-kvm is not supported by Red Hat. Instead, use libvirt utilities,
such as virsh, virt-install, and virt-xml, as these orchestrate QEMU according to the best practices.

Note, however, that the qemu-img utility is supported for management of virtual disk images.

vCPU hot unplug

Removing a virtual CPU (vCPU) from a running VM, also referred to as a vCPU hot unplug, is not
supported in RHEL 8.

Memory hot unplug

Removing a memory device attached to a running VM, also referred to as a memory hot unplug, is
unsupported in RHEL 8.

QEMU-side I/O throttling

By using the virsh blkdeviotune utility to configure maximum input and output levels for operations on
virtual disk, also known as QEMU-side I/O throttling, is not supported in RHEL 8.

To set up I/O throttling in RHEL 8, use virsh blkiotune. This is also known as libvirt-side I/O throttling.
For instructions, see Disk I/O throttling in virtual machines .

QEMU-side I/O throttling is also supported in RHOSP. For details, see Setting Resource Limitation on
Disk and the Use Quality-of-Service Specifications section in the RHOSP Storage Guide .

In addition, OpenShift Virtualizaton supports QEMU-side I/O throttling as well.

Storage live migration

Migrating a disk image of a running VM between hosts is not supported in RHEL 8.

Other solutions:

Storage live migration is supported in RHOSP, but with some limitations. For details, see
Migrate a Volume .

Live snapshots

Creating or loading a snapshot of a running VM, also referred to as a live snapshot, is not supported in
RHEL 8.

In addition, note that non-live VM snapshots are deprecated in RHEL 8. Therefore, creating or loading a
snapshot of a shut-down VM is supported, but Red Hat recommends not using it.

Other solutions:

Live snapshots are supported in RHOSP. For details, see Importing virtual machines into the
overcloud.

Red Hat Enterprise Linux 8 Configuring and managing virtualization

306

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.14/html/virtualization/about#about-virt
https://access.redhat.com/solutions/875363
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/storage_guide/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/storage_guide/ch-cinder#section-volumes-advanced-migrate
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/director_installation_and_usage/performing-basic-overcloud-administration-tasks#importing-virtual-machines-into-the-overcloud


Live snapshots are also supported on OpenShift Virtualization.

vhost-user

RHEL 8 does not support the implementation of a user-space vHost interface.

Note that vhost-user is supported in RHOSP, but only for virtio-net interfaces. For details, see virtio-
net implementation and vhost user ports.

S3 and S4 system power states

Suspending a VM to the Suspend to RAM (S3) or Suspend to disk (S4) system power states is not
supported. Note that these features are disabled by default, and enabling them will make your VM not
supportable by Red Hat.

Note that the S3 and S4 states are also currently not supported in any other virtualization solution
provided by Red Hat.

S3-PR on a multipathed vDisk

SCSI3 persistent reservation (S3-PR) on a multipathed vDisk is not supported in RHEL 8. As a
consequence, Windows Cluster is not supported in RHEL 8.

virtio-crypto

Using the virtio-crypto device in RHEL 8 is not supported and its use is therefore highly discouraged.

Note that virtio-crypto devices are also not supported in any other virtualization solution provided by
Red Hat.

Incremental live backup

Configuring a VM backup that only saves VM changes since the last backup, also known as incremental
live backup, is not supported in RHEL 8, and Red Hat highly discourages its use.

net_failover

Using the net_failover driver to set up an automated network device failover mechanism is not
supported in RHEL 8.

Note that net_failover is also currently not supported in any other virtualization solution provided by
Red Hat.

TPM passthrough

Assigning a physical Trusted Platform Module (TPM) device by using the passthrough back end to a VM
is unsupported on RHEL 8 hosts. Instead, use the vTPM functionality, which uses the emulator back end
and is fully supported.

virtiofs

Sharing files between the host and its VMs by using the virtiofs file system is unsupported in RHEL 8.

Note, however, that using virtiofs is supported by RHEL 9. For more information, see Configuring and
managing virtualization in RHEL 9.

TCG

QEMU and libvirt include a dynamic translation mode by using the QEMU Tiny Code Generator (TCG).
This mode does not require hardware virtualization support. However, TCG is not supported by Red Hat.

CHAPTER 21. FEATURE SUPPORT AND LIMITATIONS IN RHEL 8 VIRTUALIZATION

307

https://access.redhat.com/solutions/3394851
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/network_functions_virtualization_planning_guide/ch-vhost-user-ports
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_virtualization/sharing-files-between-the-host-and-its-virtual-machines_configuring-and-managing-virtualization#sharing-files-between-the-host-and-its-virtual-machines-using-virtio-fs_sharing-files-between-the-host-and-its-virtual-machines


TCG-based guests can be recognized by examining its XML configuration, for example using the "virsh
dumpxml" command.

The configuration file of a TCG guest contains the following line:

The configuration file of a KVM guest contains the following line:

SR-IOV InfiniBand networking devices

Attaching InfiniBand networking devices to VMs by using Single-root I/O virtualization (SR-IOV) is not
supported.

Additional resources

Recommended features in RHEL 8 virtualization

Resource allocation limits in RHEL 8 virtualization

21.4. RESOURCE ALLOCATION LIMITS IN RHEL 8 VIRTUALIZATION

The following limits apply to virtualized resources that can be allocated to a single KVM virtual machine
(VM) on a Red Hat Enterprise Linux 8 (RHEL 8) host.

IMPORTANT

Many of these limitations do not apply to other virtualization solutions provided by
Red Hat, such as Red Hat Virtualization (RHV), OpenShift Virtualization, or
Red Hat OpenStack Platform (RHOSP).

Maximum vCPUs per VM

For the maximum amount of vCPUs and memory that is supported on a single VM running on a RHEL 8
host, see: Virtualization limits for Red Hat Enterprise Linux with KVM

PCI devices per VM

RHEL 8 supports 64 PCI device slots per VM bus, and 8 PCI functions per device slot. This gives a
theoretical maximum of 512 PCI functions per bus when multi-function capabilities are enabled in the
VM, and no PCI bridges are used.

Each PCI bridge adds a new bus, potentially enabling another 512 device addresses. However, some
buses do not make all 512 device addresses available for the user; for example, the root bus has several
built-in devices occupying slots.

Virtualized IDE devices

KVM is limited to a maximum of 4 virtualized IDE devices per VM.

21.5. AN OVERVIEW OF VIRTUALIZATION FEATURES SUPPORT IN
RHEL 8

<domain type='qemu'>

<domain type='kvm'>

Red Hat Enterprise Linux 8 Configuring and managing virtualization

308

https://access.redhat.com/articles/rhel-kvm-limits


The following tables provide comparative information about the support state of selected virtualization
features in RHEL 8 across the supported system architectures.

Table 21.1. Device hot plug and hot unplug

 Intel 64 and AMD64 IBM Z IBM POWER

CPU hot plug Supported Supported Supported

CPU hot unplug UNSUPPORTED UNSUPPORTED UNSUPPORTED

Memory hot plug Supported UNSUPPORTED Supported

Memory hot unplug UNSUPPORTED UNSUPPORTED UNSUPPORTED

PCI hot plug Supported Supported [a] Supported

PCI hot unplug Supported Supported [b] Supported

[a] Requires using virtio-*-ccw devices instead of virtio-*-pci

[b] Requires using virtio-*-ccw devices instead of virtio-*-pci

Table 21.2. Other selected features

 Intel 64 and AMD64 IBM Z IBM POWER

NUMA tuning Supported UNSUPPORTED Supported

SR-IOV devices Supported UNSUPPORTED Supported

virt-v2v and p2v Supported UNSUPPORTED UNSUPPORTED

Note that some of the unsupported features are supported on other Red Hat products, such as
Red Hat Virtualization and Red Hat OpenStack platform. For more information, see Unsupported
features in RHEL 8 virtualization.

Additional sources

For a complete list of unsupported features of virtual machines in RHEL 8, see Unsupported
features in RHEL 8 virtualization.

For details on the specifics for virtualization on the IBM Z architecture, see How virtualization on
IBM Z differs from AMD64 and Intel 64.

For details on the specifics for virtualization on the IBM POWER architecture, see How
virtualization on IBM POWER differs from AMD64 and Intel 64.

CHAPTER 21. FEATURE SUPPORT AND LIMITATIONS IN RHEL 8 VIRTUALIZATION

309



Red Hat Enterprise Linux 8 Configuring and managing virtualization

310


	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCING VIRTUALIZATION IN RHEL
	1.1. WHAT IS VIRTUALIZATION?
	1.2. ADVANTAGES OF VIRTUALIZATION
	1.3. VIRTUAL MACHINE COMPONENTS AND THEIR INTERACTION
	1.4. TOOLS AND INTERFACES FOR VIRTUALIZATION MANAGEMENT
	1.5. RED HAT VIRTUALIZATION SOLUTIONS

	CHAPTER 2. GETTING STARTED WITH VIRTUALIZATION
	2.1. ENABLING VIRTUALIZATION
	2.2. CREATING VIRTUAL MACHINES
	2.2.1. Creating virtual machines by using the command-line interface
	2.2.2. Creating virtual machines and installing guest operating systems by using the web console
	2.2.2.1. Creating virtual machines by using the web console
	2.2.2.2. Creating virtual machines by importing disk images by using the web console
	2.2.2.3. Installing guest operating systems by using the web console

	2.2.3. Creating virtual machines with cloud image authentication by using the web console

	2.3. STARTING VIRTUAL MACHINES
	2.3.1. Starting a virtual machine by using the command-line interface
	2.3.2. Starting virtual machines by using the web console
	2.3.3. Starting virtual machines automatically when the host starts

	2.4. CONNECTING TO VIRTUAL MACHINES
	2.4.1. Interacting with virtual machines by using the web console
	2.4.1.1. Viewing the virtual machine graphical console in the web console
	2.4.1.2. Viewing the graphical console in a remote viewer by using the web console
	2.4.1.3. Viewing the virtual machine serial console in the web console
	2.4.1.4. Replacing the SPICE remote display protocol with VNC in the web console

	2.4.2. Opening a virtual machine graphical console by using Virt Viewer
	2.4.3. Connecting to a virtual machine by using SSH
	2.4.4. Opening a virtual machine serial console
	2.4.5. Setting up easy access to remote virtualization hosts

	2.5. SHUTTING DOWN VIRTUAL MACHINES
	2.5.1. Shutting down a virtual machine by using the command-line interface
	2.5.2. Shutting down and restarting virtual machines by using the web console
	2.5.2.1. Shutting down virtual machines in the web console
	2.5.2.2. Restarting virtual machines by using the web console
	2.5.2.3. Sending non-maskable interrupts to VMs by using the web console


	2.6. DELETING VIRTUAL MACHINES
	2.6.1. Deleting virtual machines by using the command line interface
	2.6.2. Deleting virtual machines by using the web console


	CHAPTER 3. GETTING STARTED WITH VIRTUALIZATION ON IBM POWER
	3.1. ENABLING VIRTUALIZATION ON IBM POWER
	3.2. HOW VIRTUALIZATION ON IBM POWER DIFFERS FROM AMD64 AND INTEL 64

	CHAPTER 4. GETTING STARTED WITH VIRTUALIZATION ON IBM Z
	4.1. ENABLING VIRTUALIZATION ON IBM Z
	4.2. UPDATING VIRTUALIZATION ON IBM Z FROM RHEL 8.5 TO RHEL 8.6 OR LATER
	4.3. HOW VIRTUALIZATION ON IBM Z DIFFERS FROM AMD64 AND INTEL 64
	4.4. NEXT STEPS
	4.5. ADDITIONAL RESOURCES

	CHAPTER 5. ENABLING QEMU GUEST AGENT FEATURES ON YOUR VIRTUAL MACHINES
	5.1. ENABLING QEMU GUEST AGENT ON LINUX GUESTS
	5.2. ENABLING QEMU GUEST AGENT ON WINDOWS GUESTS
	5.3. VIRTUALIZATION FEATURES THAT REQUIRE QEMU GUEST AGENT

	CHAPTER 6. MANAGING VIRTUAL MACHINES IN THE WEB CONSOLE
	6.1. OVERVIEW OF VIRTUAL MACHINE MANAGEMENT BY USING THE WEB CONSOLE
	6.2. SETTING UP THE WEB CONSOLE TO MANAGE VIRTUAL MACHINES
	6.3. RENAMING VIRTUAL MACHINES BY USING THE WEB CONSOLE
	6.4. VIRTUAL MACHINE MANAGEMENT FEATURES AVAILABLE IN THE WEB CONSOLE
	6.5. DIFFERENCES BETWEEN VIRTUALIZATION FEATURES IN VIRTUAL MACHINE MANAGER AND THE WEB CONSOLE

	CHAPTER 7. VIEWING INFORMATION ABOUT VIRTUAL MACHINES
	7.1. VIEWING VIRTUAL MACHINE INFORMATION BY USING THE COMMAND-LINE INTERFACE
	7.2. VIEWING VIRTUAL MACHINE INFORMATION BY USING THE WEB CONSOLE
	7.2.1. Viewing a virtualization overview in the web console
	7.2.2. Viewing storage pool information by using the web console
	7.2.3. Viewing basic virtual machine information in the web console
	7.2.4. Viewing virtual machine resource usage in the web console
	7.2.5. Viewing virtual machine disk information in the web console
	7.2.6. Viewing and editing virtual network interface information in the web console

	7.3. SAMPLE VIRTUAL MACHINE XML CONFIGURATION

	CHAPTER 8. SAVING AND RESTORING VIRTUAL MACHINES
	8.1. HOW SAVING AND RESTORING VIRTUAL MACHINES WORKS
	8.2. SAVING A VIRTUAL MACHINE BY USING THE COMMAND LINE INTERFACE
	8.3. STARTING A VIRTUAL MACHINE BY USING THE COMMAND-LINE INTERFACE
	8.4. STARTING VIRTUAL MACHINES BY USING THE WEB CONSOLE

	CHAPTER 9. CLONING VIRTUAL MACHINES
	9.1. HOW CLONING VIRTUAL MACHINES WORKS
	9.2. CREATING VIRTUAL MACHINE TEMPLATES
	9.2.1. Creating a virtual machine template by using virt-sysprep
	9.2.2. Creating a virtual machine template manually

	9.3. CLONING A VIRTUAL MACHINE BY USING THE COMMAND-LINE INTERFACE
	9.4. CLONING A VIRTUAL MACHINE BY USING THE WEB CONSOLE

	CHAPTER 10. MIGRATING VIRTUAL MACHINES
	10.1. HOW MIGRATING VIRTUAL MACHINES WORKS
	10.2. BENEFITS OF MIGRATING VIRTUAL MACHINES
	10.3. LIMITATIONS FOR MIGRATING VIRTUAL MACHINES
	10.4. VERIFYING HOST CPU COMPATIBILITY FOR VIRTUAL MACHINE MIGRATION
	10.5. SHARING VIRTUAL MACHINE DISK IMAGES WITH OTHER HOSTS
	10.6. MIGRATING A VIRTUAL MACHINE BY USING THE COMMAND-LINE INTERFACE
	10.7. LIVE MIGRATING A VIRTUAL MACHINE BY USING THE WEB CONSOLE
	10.8. TROUBLESHOOTING VIRTUAL MACHINE MIGRATIONS
	10.8.1. Live migration of a VM takes a long time without completing

	10.9. SUPPORTED HOSTS FOR VIRTUAL MACHINE MIGRATION
	10.10. ADDITIONAL RESOURCES

	CHAPTER 11. MANAGING VIRTUAL DEVICES
	11.1. HOW VIRTUAL DEVICES WORK
	11.2. TYPES OF VIRTUAL DEVICES
	11.3. MANAGING DEVICES ATTACHED TO VIRTUAL MACHINES BY USING THE CLI
	11.3.1. Attaching devices to virtual machines
	11.3.2. Modifying devices attached to virtual machines
	11.3.3. Removing devices from virtual machines

	11.4. MANAGING HOST DEVICES BY USING THE WEB CONSOLE
	11.4.1. Viewing devices attached to virtual machines by using the web console
	11.4.2. Attaching devices to virtual machines by using the web console
	11.4.3. Removing devices from virtual machines by using the web console

	11.5. MANAGING VIRTUAL USB DEVICES
	11.5.1. Attaching USB devices to virtual machines
	11.5.2. Removing USB devices from virtual machines
	11.5.3. Attaching smart card readers to virtual machines

	11.6. MANAGING VIRTUAL OPTICAL DRIVES
	11.6.1. Attaching optical drives to virtual machines
	11.6.2. Adding a CD-ROM to a running virtual machine by using the web console
	11.6.3. Replacing ISO images in virtual optical drives
	11.6.4. Removing ISO images from virtual optical drives
	11.6.5. Removing optical drives from virtual machines
	11.6.6. Removing a CD-ROM from a running virtual machine by using the web console

	11.7. MANAGING SR-IOV DEVICES
	11.7.1. What is SR-IOV?
	11.7.2. Attaching SR-IOV networking devices to virtual machines
	11.7.3. Supported devices for SR-IOV assignment

	11.8. ATTACHING DASD DEVICES TO VIRTUAL MACHINES ON IBM Z
	11.9. ATTACHING A WATCHDOG DEVICE TO A VIRTUAL MACHINE BY USING THE WEB CONSOLE
	11.10. ATTACHING PCI DEVICES TO VIRTUAL MACHINES ON IBM Z

	CHAPTER 12. MANAGING STORAGE FOR VIRTUAL MACHINES
	12.1. UNDERSTANDING VIRTUAL MACHINE STORAGE
	12.1.1. Introduction to storage pools
	12.1.2. Introduction to storage volumes
	12.1.3. Storage management by using libvirt
	12.1.4. Overview of storage management
	12.1.5. Supported and unsupported storage pool types

	12.2. MANAGING VIRTUAL MACHINE STORAGE POOLS BY USING THE CLI
	12.2.1. Viewing storage pool information by using the CLI
	12.2.2. Creating directory-based storage pools by using the CLI
	12.2.3. Creating disk-based storage pools by using the CLI
	12.2.4. Creating filesystem-based storage pools by using the CLI
	12.2.5. Creating GlusterFS-based storage pools by using the CLI
	12.2.6. Creating iSCSI-based storage pools by using the CLI
	12.2.7. Creating LVM-based storage pools by using the CLI
	12.2.8. Creating NFS-based storage pools by using the CLI
	12.2.9. Creating SCSI-based storage pools with vHBA devices by using the CLI
	12.2.10. Deleting storage pools by using the CLI

	12.3. MANAGING VIRTUAL MACHINE STORAGE POOLS BY USING THE WEB CONSOLE
	12.3.1. Viewing storage pool information by using the web console
	12.3.2. Creating directory-based storage pools by using the web console
	12.3.3. Creating NFS-based storage pools by using the web console
	12.3.4. Creating iSCSI-based storage pools by using the web console
	12.3.5. Creating disk-based storage pools by using the web console
	12.3.6. Creating LVM-based storage pools by using the web console
	12.3.7. Creating SCSI-based storage pools with vHBA devices by using the web console
	12.3.8. Removing storage pools by using the web console
	12.3.9. Deactivating storage pools by using the web console

	12.4. PARAMETERS FOR CREATING STORAGE POOLS
	12.4.1. Directory-based storage pool parameters
	12.4.2. Disk-based storage pool parameters
	12.4.3. Filesystem-based storage pool parameters
	12.4.4. GlusterFS-based storage pool parameters
	12.4.5. iSCSI-based storage pool parameters
	12.4.6. LVM-based storage pool parameters
	12.4.7. NFS-based storage pool parameters
	12.4.8. Parameters for SCSI-based storage pools with vHBA devices

	12.5. MANAGING VIRTUAL MACHINE STORAGE VOLUMES BY USING THE CLI
	12.5.1. Viewing storage volume information by using the CLI
	12.5.2. Creating and assigning storage volumes by using the CLI
	12.5.3. Deleting storage volumes by using the CLI

	12.6. MANAGING VIRTUAL DISK IMAGES BY USING THE CLI
	12.6.1. Creating a virtual disk image by using qemu-img
	12.6.2. Checking the consistency of a virtual disk image
	12.6.3. Resizing a virtual disk image
	12.6.4. Converting between virtual disk image formats

	12.7. MANAGING VIRTUAL MACHINE STORAGE VOLUMES BY USING THE WEB CONSOLE
	12.7.1. Creating storage volumes by using the web console
	12.7.2. Removing storage volumes by using the web console

	12.8. MANAGING VIRTUAL MACHINE STORAGE DISKS BY USING THE WEB CONSOLE
	12.8.1. Viewing virtual machine disk information in the web console
	12.8.2. Adding new disks to virtual machines by using the web console
	12.8.3. Attaching existing disks to virtual machines by using the web console
	12.8.4. Detaching disks from virtual machines by using the web console

	12.9. SECURING ISCSI STORAGE POOLS WITH LIBVIRT SECRETS
	12.10. CREATING VHBAS

	CHAPTER 13. MANAGING GPU DEVICES IN VIRTUAL MACHINES
	13.1. ASSIGNING A GPU TO A VIRTUAL MACHINE
	13.2. MANAGING NVIDIA VGPU DEVICES
	13.2.1. Setting up NVIDIA vGPU devices
	13.2.2. Removing NVIDIA vGPU devices
	13.2.3. Obtaining NVIDIA vGPU information about your system
	13.2.4. Remote desktop streaming services for NVIDIA vGPU
	13.2.5. Additional resources


	CHAPTER 14. CONFIGURING VIRTUAL MACHINE NETWORK CONNECTIONS
	14.1. UNDERSTANDING VIRTUAL NETWORKING
	14.1.1. How virtual networks work
	14.1.2. Virtual networking default configuration

	14.2. USING THE WEB CONSOLE FOR MANAGING VIRTUAL MACHINE NETWORK INTERFACES
	14.2.1. Viewing and editing virtual network interface information in the web console
	14.2.2. Adding and connecting virtual network interfaces in the web console
	14.2.3. Disconnecting and removing virtual network interfaces in the web console

	14.3. RECOMMENDED VIRTUAL MACHINE NETWORKING CONFIGURATIONS
	14.3.1. Configuring externally visible virtual machines by using the command-line interface
	14.3.2. Configuring externally visible virtual machines by using the web console

	14.4. TYPES OF VIRTUAL MACHINE NETWORK CONNECTIONS
	14.4.1. Virtual networking with network address translation
	14.4.2. Virtual networking in routed mode
	14.4.3. Virtual networking in bridged mode
	14.4.4. Virtual networking in isolated mode
	14.4.5. Virtual networking in open mode
	14.4.6. Comparison of virtual machine connection types

	14.5. BOOTING VIRTUAL MACHINES FROM A PXE SERVER
	14.5.1. Setting up a PXE boot server on a virtual network
	14.5.2. Booting virtual machines by using PXE and a virtual network
	14.5.3. Booting virtual machines by using PXE and a bridged network

	14.6. ADDITIONAL RESOURCES

	CHAPTER 15. SHARING FILES BETWEEN THE HOST AND ITS VIRTUAL MACHINES
	15.1. SHARING FILES BETWEEN THE HOST AND ITS VIRTUAL MACHINES BY USING NFS

	CHAPTER 16. SECURING VIRTUAL MACHINES
	16.1. HOW SECURITY WORKS IN VIRTUAL MACHINES
	16.2. BEST PRACTICES FOR SECURING VIRTUAL MACHINES
	16.3. CREATING A SECUREBOOT VIRTUAL MACHINE
	16.4. LIMITING WHAT ACTIONS ARE AVAILABLE TO VIRTUAL MACHINE USERS
	16.5. AUTOMATIC FEATURES FOR VIRTUAL MACHINE SECURITY
	16.6. SELINUX BOOLEANS FOR VIRTUALIZATION
	16.7. SETTING UP IBM SECURE EXECUTION ON IBM Z
	16.8. ATTACHING CRYPTOGRAPHIC COPROCESSORS TO VIRTUAL MACHINES ON IBM Z
	16.9. ENABLING STANDARD HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES
	16.10. ENABLING ENHANCED HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES

	CHAPTER 17. OPTIMIZING VIRTUAL MACHINE PERFORMANCE
	17.1. WHAT INFLUENCES VIRTUAL MACHINE PERFORMANCE
	The impact of virtualization on system performance
	Reducing VM performance loss

	17.2. OPTIMIZING VIRTUAL MACHINE PERFORMANCE BY USING TUNED
	17.3. CONFIGURING VIRTUAL MACHINE MEMORY
	17.3.1. Adding and removing virtual machine memory by using the web console
	17.3.2. Adding and removing virtual machine memory by using the command-line interface
	17.3.3. Additional resources

	17.4. OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE
	17.4.1. Tuning block I/O in virtual machines
	17.4.2. Disk I/O throttling in virtual machines
	17.4.3. Enabling multi-queue virtio-scsi

	17.5. OPTIMIZING VIRTUAL MACHINE CPU PERFORMANCE
	17.5.1. Adding and removing virtual CPUs by using the command-line interface
	17.5.2. Managing virtual CPUs by using the web console
	17.5.3. Configuring NUMA in a virtual machine
	17.5.4. Sample vCPU performance tuning scenario
	17.5.5. Deactivating kernel same-page merging

	17.6. OPTIMIZING VIRTUAL MACHINE NETWORK PERFORMANCE
	17.7. VIRTUAL MACHINE PERFORMANCE MONITORING TOOLS
	17.8. ADDITIONAL RESOURCES

	CHAPTER 18. INSTALLING AND MANAGING WINDOWS VIRTUAL MACHINES
	18.1. INSTALLING WINDOWS VIRTUAL MACHINES
	18.2. OPTIMIZING WINDOWS VIRTUAL MACHINES
	18.2.1. Installing KVM paravirtualized drivers for Windows virtual machines
	18.2.1.1. How Windows virtio drivers work
	18.2.1.2. Preparing virtio driver installation media on a host machine
	18.2.1.3. Installing virtio drivers on a Windows guest
	18.2.1.4. Updating virtio drivers on a Windows guest
	18.2.1.5. Enabling QEMU Guest Agent on Windows guests

	18.2.2. Enabling Hyper-V enlightenments
	18.2.2.1. Enabling Hyper-V enlightenments on a Windows virtual machine
	18.2.2.2. Configurable Hyper-V enlightenments

	18.2.3. Configuring NetKVM driver parameters
	18.2.4. NetKVM driver parameters
	18.2.5. Optimizing background processes on Windows virtual machines

	18.3. ENABLING STANDARD HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES
	18.4. ENABLING ENHANCED HARDWARE SECURITY ON WINDOWS VIRTUAL MACHINES
	18.5. NEXT STEPS

	CHAPTER 19. CREATING NESTED VIRTUAL MACHINES
	19.1. WHAT IS NESTED VIRTUALIZATION?
	19.2. RESTRICTIONS AND LIMITATIONS FOR NESTED VIRTUALIZATION
	19.3. CREATING A NESTED VIRTUAL MACHINE ON INTEL
	19.4. CREATING A NESTED VIRTUAL MACHINE ON AMD
	19.5. CREATING A NESTED VIRTUAL MACHINE ON IBM Z
	19.6. CREATING A NESTED VIRTUAL MACHINE ON IBM POWER9

	CHAPTER 20. DIAGNOSING VIRTUAL MACHINE PROBLEMS
	20.1. GENERATING LIBVIRT DEBUG LOGS
	20.1.1. Understanding libvirt debug logs
	20.1.2. Enabling persistent settings for libvirt debug logs
	20.1.3. Enabling libvirt debug logs during runtime
	20.1.4. Attaching libvirt debug logs to support requests

	20.2. DUMPING A VIRTUAL MACHINE CORE
	20.2.1. How virtual machine core dumping works
	20.2.2. Creating a virtual machine core dump file

	20.3. BACKTRACING VIRTUAL MACHINE PROCESSES

	CHAPTER 21. FEATURE SUPPORT AND LIMITATIONS IN RHEL 8 VIRTUALIZATION
	21.1. HOW RHEL VIRTUALIZATION SUPPORT WORKS
	21.2. RECOMMENDED FEATURES IN RHEL 8 VIRTUALIZATION
	21.3. UNSUPPORTED FEATURES IN RHEL 8 VIRTUALIZATION
	21.4. RESOURCE ALLOCATION LIMITS IN RHEL 8 VIRTUALIZATION
	21.5. AN OVERVIEW OF VIRTUALIZATION FEATURES SUPPORT IN RHEL 8


