
Red Hat Enterprise Linux 7

Virtualization Security Guide

Securing hosts, guests, and shared infrastructure in virtualized environments on
RHEL

Last Updated: 2022-09-01

Red Hat Enterprise Linux 7 Virtualization Security Guide

Securing hosts, guests, and shared infrastructure in virtualized environments on RHEL

Jiri Herrmann
Red Hat Customer Content Services
jherrman@redhat.com

Yehuda Zimmerman
Red Hat Customer Content Services
yzimmerm@redhat.com

Scott Radvan
Red Hat Customer Content Services

Tahlia Richardson
Red Hat Customer Content Services

Paul Moore
Red Hat Engineering

Kurt Seifried
Red Hat Engineering

David Jorm
Red Hat Engineering

Thanks go to the following people for enabling the creation of this guide:

Legal Notice

Copyright © 2019 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides an overview of virtualization security technologies provided by Red Hat. It also
provides recommendations for securing hosts, guests, and shared infrastructure and resources in
virtualized environments.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. VIRTUALIZED AND NON-VIRTUALIZED ENVIRONMENTS
1.2. WHY VIRTUALIZATION SECURITY MATTERS

CHAPTER 2. HOST SECURITY
2.1. SECURING THE HOST PHYSICAL MACHINE
2.2. CLIENT ACCESS CONTROL
2.3. SPECIAL CONSIDERATIONS FOR PUBLIC CLOUD OPERATORS

CHAPTER 3. GUEST SECURITY
3.1. WHY GUEST SECURITY MATTERS
3.2. GUEST SECURITY RECOMMENDED PRACTICES
3.3. KERNEL ADDRESS SPACE RANDOMIZATION
3.4. CREATING A SECUREBOOT RED HAT ENTERPRISE LINUX 7 GUEST WITH VIRT-MANAGER

CHAPTER 4. SVIRT
4.1. INTRODUCTION
4.2. SELINUX AND MANDATORY ACCESS CONTROL (MAC)
4.3. SVIRT CONFIGURATION
4.4. SVIRT LABELING

CHAPTER 5. NETWORK SECURITY IN A VIRTUALIZED ENVIRONMENT
5.1. NETWORK SECURITY OVERVIEW
5.2. NETWORK SECURITY RECOMMENDED PRACTICES

APPENDIX A. FURTHER INFORMATION
A.1. SELINUX AND SVIRT
A.2. VIRTUALIZATION SECURITY

APPENDIX B. REVISION HISTORY

3
3
4

5
5
6
7

9
9
9
9

10

13
13
13
14
15

19
19
19

20
20
20

21

Table of Contents

1

Virtualization Security Guide

2

CHAPTER 1. INTRODUCTION

1.1. VIRTUALIZED AND NON-VIRTUALIZED ENVIRONMENTS

A virtualized environment presents opportunities for both the discovery of new attack vectors and the
refinement of existing exploits that may not previously have presented value to an attacker. Therefore, it
is important to take steps to ensure the security of both the physical hosts and the guests running on
them when creating and maintaining virtual machines.

Non-Virtualized Environment

In a non-virtualized environment, hosts are separated from each other physically and each host has a
self-contained environment, which consists of services such as a web server, or a DNS server. These
services communicate directly to their own user space, host kernel and physical host, offering their
services directly to the network.

Figure 1.1. Non-Virtualized Environment

Virtualized Environment

In a virtualized environment, several operating systems can be housed (as guest virtual machines) within
a single host kernel and physical host.

CHAPTER 1. INTRODUCTION

3

Figure 1.2. Virtualized Environment

When services are not virtualized, machines are physically separated. Any exploit is, therefore, usually
contained to the affected machine, with the exception of network attacks. When services are grouped
together in a virtualized environment, extra vulnerabilities emerge in the system. If a security flaw exists
in the hypervisor that can be exploited by a guest instance, this guest may be able to attack the host, as
well as other guests running on that host.

1.2. WHY VIRTUALIZATION SECURITY MATTERS

Deploying virtualization in your infrastructure provides many benefits, but can also introduce new risks.
Virtualized resources and services should be deployed with the following security considerations:

The host and hypervisor become prime targets; they are often a single point of failure for guests
and data.

Virtual machines can interfere with each other in undesirable ways. If no access controls are in
place to help prevent this, one malicious guest can bypass a vulnerable hypervisor and directly
access other resources on the host system, such as the storage of other guests.

Resources and services can become difficult to track and maintain; with rapid deployment of
virtualized systems comes an increased need for management of resources, including sufficient
patching, monitoring and maintenance.

Resources such as storage can be spread across, and dependent upon, several machines. This
can lead to overly complex environments and poorly managed and maintained systems.

Virtualization does not remove any of the traditional security risks present in your environment;
the entire solution stack, not just the virtualization layer, must be secured.

This guide aims to assist you in mitigating your security risks by offering a number of virtualization
recommended practices for Red Hat Enterprise Linux that will help you secure your virtualized
infrastructure.

Virtualization Security Guide

4

CHAPTER 2. HOST SECURITY
When deploying virtualization technologies on a Red Hat Enterprise Linux system, the host is
responsible for managing and controlling access to the physical devices, storage, and network, but also
to all virtualized guests. If the host system is compromised, the guests and their data become vulnerable
as well.

Therefore, securing the Red Hat Enterprise Linux host system is the first step towards ensuring a secure
virtualization platform.

2.1. SECURING THE HOST PHYSICAL MACHINE

The following tasks and tips can assist you with securing and ensuring reliability, as well increasing the
performance, of your Red Hat Enterprise Linux host.

Ensure that SELinux is configured properly for your installation and is operating in enforcing
mode:

setenforce 1

In addition to being a good security practice, the advanced virtualization security functionality
provided by sVirt relies on SELinux. See Chapter 4, sVirt for more information on SELinux and
sVirt.

Remove or disable any unnecessary services such as AutoFS, NFS, FTP, HTTP, NIS, telnetd, or
sendmail.

Only add the minimum number of user accounts needed for platform management on the
server and remove unnecessary user accounts. Limit direct access to the system to only those
users who have a need to manage the system. Consider disallowing shared root access and
instead use tools such as sudo to grant privileged access to administrators based on their
administrative roles.

Avoid running any unessential applications on your host. Running applications on the host may
impact virtual machine performance and can affect server stability. Any application that may
crash the server will also cause all virtual machines on the server to fail. In addition, vulnerable
applications can become vectors for an attack on the host.

Use a central location for virtual machine installations and images. Virtual machine images
should be stored under /var/lib/libvirt/images/. If you are using a different directory for your
virtual machine images make sure you add the directory to your SELinux policy and relabel it
before starting the installation. Use of shareable, network storage in a central location is highly
recommended.

Run only the services necessary to support the use and management of your guest systems. If
you need to provide additional services, such as file or print services, consider running those
services on a Red Hat Enterprise Linux guest.

Ensure that auditing is enabled on the host system and that libvirt is configured to generate
audit records. When auditing is enabled, libvirt generates audit records for changes to guest
configuration and start/stop events, which can help you track the guest's state. In addition, the
libvirt audit events can also be viewed using the specialized auvirt utility. For more information,
use the man auvirt command.

Ensure that any remote management of the system takes place only over secured network

CHAPTER 2. HOST SECURITY

5

https://libvirt.org/auditlog.html

channels. Utilities such as SSH and network protocols such as TLS or SSL provide both
authentication and data encryption to help ensure that only approved administrators can
manage the system remotely.

Ensure that the firewall is configured properly for your installation and is activated at boot. Only
network ports needed for the use and management of the system should be allowed.

Do not grant guests with direct access to entire disks or block devices (for example, /dev/sdb);
instead, use partitions (for example, /dev/sdb1) or LVM volumes for guest storage.

Attaching a USB device, Physical Function or physical device when SR-IOV is not available to a
virtual machine could provide access to the device which is sufficient enough to overwrite that
device's firmware. This presents a potential security issue by which an attacker could overwrite
the device's firmware with malicious code and cause problems when moving the device between
virtual machines or at host boot time.

It is advised to use SR-IOV Virtual Function device assignment where applicable.

NOTE

For more security tips and instructions for your host system, see the Red Hat Enterprise
Linux Security Guide.

2.2. CLIENT ACCESS CONTROL

libvirt's client access control framework allows system administrators to setup fine-grained permission
rules across client users, managed objects, and API operations. This allows client connections to be
locked down to a minimal set of privileges.

In the default configuration, the libvirtd daemon has three levels of access control:

1. All connections start off in an unauthenticated state, where the only API operations allowed are
those required to complete authentication.

2. After successful authentication, a connection either has full, unrestricted access to all libvirt API
calls, or is locked down to only "read only" operations, according to what socket the client
connection originated on.

3. The access control framework allows authenticated connections to have fine-grained
permission rules to be defined by the administrator.

Every API call in libvirt has a set of permissions that will be validated against the object being used.
Further permissions will also be checked if certain flags are set in the API call. In addition to checks on
the object passed in to an API call, some methods will filter their results.

2.2.1. Access Control Drivers

The access control framework is designed as a pluggable system to enable future integration with
arbitrary access control technologies. By default, the none driver is used, which performs no access
control checks at all. Currently, libvirt provides support for using polkit as a real access control driver. To
learn how to use the polkit access driver see the configuration documentation.

The access driver is configured in the /etc/libvirt/libvirtd.conf configuration file, using the
access_drivers parameter. This parameter accepts an array of access control driver names. If more
than one access driver is requested, then all must succeed in order for access to be granted. To enable

Virtualization Security Guide

6

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/index.html
http://libvirt.org/aclpolkit.html

'polkit' as the driver, use the augtool command:

augtool -s set '/files/etc/libvirt/libvirtd.conf/access_drivers[1]' polkit

To set the driver back to the default (no access control), enter the following command:

augtool -s rm /files/etc/libvirt/libvirtd.conf/access_drivers

For the changes made to libvirtd.conf to take effect, restart the libvirtd service.

systemctl restart libvirtd.service

2.2.2. Objects and Permissions

libvirt applies access control to all the main object types in its API. Each object type, in turn, has a set of
permissions defined. To determine what permissions are checked for a specific API call, consult the API
reference manual documentation for the API in question. For the complete list of objects and
permissions, see libvirt.org.

2.2.3. Security Concerns when Adding Block Devices to a Guest

The host physical machine should not use file system labels to identify file systems in the fstab
file, the initrd file or on the kernel command line. Doing so presents a security risk if guest virtual
machines have write access to whole partitions or LVM volumes, because a guest virtual
machine could potentially write a file-system label belonging to the host physical machine, to its
own block device storage. Upon reboot of the host physical machine, the host physical machine
could then mistakenly use the guest virtual machine's disk as a system disk, which would
compromise the host physical machine system.

It is preferable to use the UUID of a device to identify it in the /etc/fstab file, the /dev/initrd file,
or on the kernel command line.

Guest virtual machines should not be given write access to entire disks or block devices (for
example, /dev/sdb). Guest virtual machines with access to entire block devices may be able to
modify volume labels, which can be used to compromise the host physical machine system. Use
partitions (for example, /dev/sdb1) or LVM volumes to prevent this problem. See LVM
Administration with CLI Commands or LVM Configuration Examples for information on LVM
administration and configuration examples.

If you are using raw access to partitions, for example /dev/sdb1 or raw disks such as /dev/sdb,
you should configure LVM to only scan disks that are safe, using the global_filter setting. See
the Logical Volume Manager Administration Guide for an example of an LVM configuration
script using the global_filter command.

2.3. SPECIAL CONSIDERATIONS FOR PUBLIC CLOUD OPERATORS

Public cloud service providers are exposed to a number of security risks beyond that of the traditional
virtualization user. Virtual guest isolation, both between the host and guest as well as between guests, is
critical due to the threat of malicious guests and the requirements on customer data confidentiality and
integrity across the virtualization infrastructure.

In addition to the Red Hat Enterprise Linux virtualization recommended practices previously listed,
public cloud operators should also consider the following items:

CHAPTER 2. HOST SECURITY

7

http://libvirt.org/acl.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LVM_CLI.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/LVM_examples.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Logical_Volume_Manager_Administration/lvmconf_file.html

Disallow any direct hardware access from the guest. PCI, USB, FireWire, Thunderbolt, eSATA,
and other device passthrough mechanisms make management difficult and often rely on the
underlying hardware to enforce separation between the guests.

Isolate the cloud operator's private management network from the customer guest network,
and customer networks from one another, so that:

The guests cannot access the host systems over the network.

One customer cannot access another customer's guest systems directly through the cloud
provider's internal network.

Virtualization Security Guide

8

CHAPTER 3. GUEST SECURITY

3.1. WHY GUEST SECURITY MATTERS

While the security of the host system is critical in ensuring the security of the guests running on the
host, it does not remove the need for properly securing the individual guest machines. All of the security
risks associated with a conventional, non-virtualized system still exist when the system is run as a
virtualized guest. Any resources accessible to the guest system, such as critical business data or
sensitive customer information, could be made vulnerable if the guest system were to be compromised.

3.2. GUEST SECURITY RECOMMENDED PRACTICES

All of the recommended practices for securing a Red Hat Enterprise Linux system documented in the
Red Hat Enterprise Linux Security Guide apply to conventional, non-virtualized systems as well as
systems installed as a virtualized guest. However, there are a few security practices which are of critical
importance when running guests in a virtualized environment:

With all management of the guest likely taking place remotely, ensure that the management of
the system takes place only over secured network channels. Tools such as SSH and network
protocols such as TLS or SSL provide both authentication and data encryption to ensure that
only approved administrators can manage the system remotely.

Some virtualization technologies use special guest agents or drivers to enable some
virtualization specific features. Ensure that these agents and applications are secured using the
standard Red Hat Enterprise Linux security features, such as SELinux.

In virtualized environments, a greater risk exists of sensitive data being accessed outside the
protection boundaries of the guest system. Protect stored sensitive data using encryption tools
such as dm-crypt and GnuPG; although special care needs to be taken to ensure the
confidentiality of the encryption keys.

NOTE

Using page deduplication technology such as Kernel Same-page Merging (KSM) may
introduce side channels that could potentially be used to leak information across guests.
In situations where this is a concern, KSM can be disabled either globally or on a per-
guest basis. For more information about KSM, see the Red Hat Enterprise Linux 7
Virtualization Tuning and Optimization Guide.

3.3. KERNEL ADDRESS SPACE RANDOMIZATION

Red Hat Enterprise Linux 7.5 and later include the Kernel Address Space Randomization (KASLR)
feature for KVM guest virtual machines. KASLR enables randomizing the physical and virtual address at
which the kernel image is decompressed, and thus prevents guest security exploits based on the
location of kernel objects.

KASLR is activated by default, but can be deactivated on a specific guest by adding the nokaslr string to
the guest's kernel command line. To edit the guest boot options, use the following command, where
guestname is the name of your guest:

virt-edit -d guestname /etc/default/grub

Afterwards, modify the GRUB_CMDLINE_LINUX line, for example:

CHAPTER 3. GUEST SECURITY

9

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Tuning_and_Optimization_Guide/index.html

GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet nokaslr"

IMPORTANT

Guest dump files created from guests that have with KASLR activated are not readable
by the crash utility. To fix this, add the <vmcoreinfo/> element to the <features>
section of the XML configuration files of your guests.

Note, however, that migrating guests with <vmcoreinfo/> fails if the destination host is
using an OS that does not support <vmcoreinfo/>. These include Red Hat Enterprise
Linux 7.4 and earlier, as well as Red Hat Enterprise Linux 6.9 and earlier.

3.4. CREATING A SECUREBOOT RED HAT ENTERPRISE LINUX 7
GUEST WITH VIRT-MANAGER

This procedure covers creating a SecureBoot Red Hat Enterprise Linux 7 guest virtual machine with a
locally stored installation DVD or DVD image. Red Hat Enterprise Linux 7 DVD images are available from
the Red Hat Customer Portal .

The SecureBoot feature ensures that your VM is running a cryptographically signed OS. If the guest OS
of a VM has been altered by malware, SecureBoot prevents the VM from booting, which stops the
potential spread of the malware to your host machine.

Procedure 3.1. Creating a SecureBoot Red Hat Enterprise Linux 7 guest virtual machine with virt-
manager using local installation media

1. Perform steps 1 to 6 of Creating a Red Hat Enterprise Linux 7 Guest with virt-manager .

2. Name and final configuration
Name the virtual machine. Virtual machine names can contain letters, numbers and the following
characters: underscores (_), periods (.), and hyphens (-). Virtual machine names must be unique
for migration and cannot consist only of numbers.

By default, the virtual machine will be created with network address translation (NAT) for a
network called 'default' . To change the network selection, click Network selection and select a
host device and source mode.

Virtualization Security Guide

10

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/chap-kvm_live_migration
https://access.redhat.com/downloads/content/71/ver=/rhel---7/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/sect-creating_guests_with_virt_manager#sect-Installing_a_Red_Hat_Enterprise_Linux_7_guest_virtual_machine_on_a_Red_Hat_Enterprise_Linux_7_host-Creating_a_Red_Hat_Enterprise_Linux_7_guest_with_local_installation_media

Figure 3.1. Verifying the configuration

To further configure the virtual machine's hardware, check the Customize configuration
before install check box to change the guest's storage or network devices, to use the
paravirtualized (virtio) drivers or to add additional devices. Verify the settings of the virtual
machine and click Finish when you are satisfied. This will open a new wizard for futher
configuring your virtual machine.

3. Customize virtual machine hardware
In the overview section of the wizard, select Q35 in the Chipset drop-down menu.

In the Firmware drop-down menu, select UEFI x86_64.

CHAPTER 3. GUEST SECURITY

11

Figure 3.2. The configure hardware window

Verify the settings of the virtual machine and click Apply when you are satisfied.

Click Begin Installation to create a virtual machine with the specified networking settings,
virtualization type, and architecture.

A SecureBoot Red Hat Enterprise Linux 7 guest virtual machine is now created from an ISO installation
disk image.

Virtualization Security Guide

12

CHAPTER 4. SVIRT

4.1. INTRODUCTION

Since virtual machines under KVM are implemented as Linux processes, KVM uses the standard Linux
security model to provide isolation and resource controls. The Linux kernel includes Security-Enhanced
Linux (SELinux) to add mandatory access control (MAC), multi-level security (MLS) and multi-category
security (MCS) through a flexible and customizable security policy. SELinux provides strict resource
isolation and confinement for processes running on top of the Linux kernel, including virtual machine
processes. The sVirt project builds upon SELinux to further enable virtual machine isolation and
controlled sharing. For example, fine-grained permissions could be applied to group virtual machines
together to share resources.

From a security point of view, the hypervisor is a likely target for attackers, as a compromised hypervisor
can lead to the all virtual machines running on the host system. Integrating SELinux into virtualization
technologies helps improve hypervisor security against malicious virtual machines trying to gain access
to the host system or other virtual machines.

The following image represents SELinux isolating guests, which limits the ability for a compromised
hypervisor (or guest) to launch further attacks, or to extend to another instance:

Figure 4.1. Attack path isolated by SELinux

NOTE

For more information on SELinux, refer to the Red Hat Enterprise Linux SELinux Users
and Administrators Guide.

4.2. SELINUX AND MANDATORY ACCESS CONTROL (MAC)

Security-Enhanced Linux (SELinux) is an implementation of MAC in the Linux kernel, checking for
allowed operations after standard discretionary access controls (DAC) are checked. SELinux can
enforce a user-customizable security policy on running processes and their actions, including attempts
to access file system objects. Enabled by default in Red Hat Enterprise Linux, SELinux limits the scope
of potential damage that can result from the exploitation of vulnerabilities in applications and system
services, such as the hypervisor.

CHAPTER 4. SVIRT

13

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html

sVirt integrates with libvirt, a virtualization management abstraction layer, to provide a MAC framework
for virtual machines. This architecture allows all virtualization platforms supported by libvirt and all MAC
implementations supported by sVirt to interoperate.

4.3. SVIRT CONFIGURATION

SELinux Booleans are variables that can be toggled on or off, quickly enabling or disabling features or
other special conditions. Booleans can be toggled by running either setsebool boolean_name {on|off}
for a temporary change, or setsebool -P boolean_name {on|off} to make the change persistent across
reboots.

The following table shows the SELinux Boolean values that affect KVM when launched by libvirt. The
current state of these booleans (on or off) can be found by running the command getsebool -a|grep
virt.

Table 4.1. KVM SELinux Booleans

SELinux Boolean Description

staff_use_svirt Enables staff users to create and transition to sVirt
domains.

unprivuser_use_svirt Enables unprivileged users to create and transition to
sVirt domains.

virt_sandbox_use_audit Enables sandbox containers to send audit messages.

virt_sandbox_use_netlink Enables sandbox containers to use netlink system
calls.

virt_sandbox_use_sys_admin Enables sandbox containers to use sys_admin system
calls, such as mount.

virt_transition_userdomain Enables virtual processes to run as user domains.

virt_use_comm Enables virt to use serial/parallel communication
ports.

virt_use_execmem Enables confined virtual guests to use executable
memory and executable stack.

virt_use_fusefs Enables virt to read FUSE mounted files.

virt_use_nfs Enables virt to manage NFS mounted files.

virt_use_rawip Enables virt to interact with rawip sockets.

virt_use_samba Enables virt to manage CIFS mounted files.

Virtualization Security Guide

14

virt_use_sanlock Enables confined virtual guests to interact with the
sanlock.

virt_use_usb Enables virt to use USB devices.

virt_use_xserver Enables virtual machine to interact with the X
Window System.

SELinux Boolean Description

NOTE

For more information on SELinux Booleans, see the Red Hat Enterprise Linux SELinux
Users and Administrators Guide.

4.4. SVIRT LABELING

Like other services under the protection of SELinux, sVirt uses process-based mechanisms, labels, and
restrictions to provide extra security and control over guest instances. Labels are applied automatically
to resources on the system based on the currently running virtual machines (dynamic), but can also be
manually specified by the administrator (static), to meet any specific requirements that may exist.

To edit the sVirt label of a guest, use the virsh edit guest_name command and add or edit <seclabel>
elements as described in the sections below. <seclabel> can be used as a root element for the entire
guest, or it can be specified as a sub-element of the <source> element for selecting a specific sVirt label
of the given device.

For comprehensive information about the <seclabel> element, see the libvirt upstream documentation.

4.4.1. Types of sVirt Labels

The following table outlines the different sVirt labels that can be assigned to resources such as virtual
machine processes, image files and shared content:

Table 4.2. sVirt Labels

Type SELinux Context Description/Effect

Virtual Machine Processes system_u:system_r:svirt_t:MCS1 MCS1 is a randomly selected field.
Currently approximately 500,000
labels are supported.

Virtual Machine Image system_u:object_r:svirt_image_t:M
CS1

Only svirt_t processes with the
same MCS1 fields are able to
read/write these image files and
devices.

Virtual Machine Shared
Read/Write Content

system_u:object_r:svirt_image_t:s
0

All svirt_t processes are allowed to
write to the svirt_image_t:s0 files
and devices.

CHAPTER 4. SVIRT

15

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/index.html
https://libvirt.org/formatdomain.html#seclabel

Virtual Machine Shared Shared
Read Only content

system_u:object_r:svirt_content_t:
s0

All svirt_t processes are able to
read files/devices with this label.

Virtual Machine Image system_u:object_r:virt_content_t:s
0

System default label used when an
image exits. No svirt_t virtual
processes are allowed to read
files/devices with this label.

Type SELinux Context Description/Effect

4.4.2. Dynamic Configuration

Dynamic label configuration is the default labeling option when using sVirt with SELinux. See the
following example which demonstrates dynamic labeling:

ps -eZ | grep qemu-kvm

system_u:system_r:svirt_t:s0:c87,c520 27950 ? 00:00:17 qemu-kvm

In this example, the qemu-kvm process has a base label of system_u:system_r:svirt_t:s0. The libvirt
system has generated a unique MCS label of c87,c520 for this process. The base label and the MCS
label are combined to form the complete security label for the process. Likewise, libvirt takes the same
MCS label and base label to form the image label. This image label is then automatically applied to all
host files that the VM is required to access, such as disk images, disk devices, PCI devices, USB devices,
and kernel/initrd files. Each process is isolated from other virtual machines with different labels.

The following example shows the virtual machine's unique security label (with a corresponding MCS
label of c87,c520 in this case) as applied to the guest disk image file in /var/lib/libvirt/images:

ls -lZ /var/lib/libvirt/images/*

 system_u:object_r:svirt_image_t:s0:c87,c520 image1

The following example shows dynamic labeling in the XML configuration for the guest:

<seclabel type='dynamic' model='selinux' relabel='yes'>
 <label>system_u:system_r:svirt_t:s0:c87,c520</label>
 <imagelabel>system_u:object_r:svirt_image_t:s0:c87,c520</imagelabel>
</seclabel>

4.4.3. Dynamic Configuration with Base Labeling

To override the default base security label in dynamic mode, the <baselabel> option can be configured
manually in the XML guest configuration, as shown in this example:

<seclabel type='dynamic' model='selinux' relabel='yes'>
 <baselabel>system_u:system_r:svirt_custom_t:s0</baselabel>
 <label>system_u:system_r:svirt_custom_t:s0:c87,c520</label>
 <imagelabel>system_u:object_r:svirt_image_t:s0:c87,c520</imagelabel>
</seclabel>

Virtualization Security Guide

16

4.4.4. Static Configuration with Dynamic Resource Labeling

Some applications require full control over the generation of security labels but still require libvirt to take
care of resource labeling. The following guest XML configuration demonstrates an example of static
configuration with dynamic resource labeling:

<seclabel type='static' model='selinux' relabel='yes'>
 <label>system_u:system_r:svirt_custom_t:s0:c87,c520</label>
</seclabel>

4.4.5. Static Configuration without Resource Labeling

Primarily used in multi-level security (MLS) and other strictly controlled environments, static
configuration without resource relabeling is possible. Static labels allow the administrator to select a
specific label, including the MCS/MLS field, for a virtual machine. Administrators who run statically-
labeled virtual machines are responsible for setting the correct label on the image files. The virtual
machine will always be started with that label, and the sVirt system will never modify the label of a
statically-labelled virtual machine's content. The following guest XML configuration demonstrates an
example of this scenario:

<seclabel type='static' model='selinux' relabel='no'>
 <label>system_u:system_r:svirt_custom_t:s0:c87,c520</label>
</seclabel>

4.4.6. sVirt Labeling and NFS

To use sVirt labeling on a NFSv4.1 or NFSv4.2 file system, you need to change the SELinux context to
virt_var_lib_t for the root of the NFS directory that you are exporting for guest sharing. For example, if
you are exporting the /exports/nfs/ directory, use the following commands:

semanage fcontext -a -t virt_var_lib_t '/exports/nfs/'
restorecon -Rv /exports/nfs/

In addition, when libvirt dynamically generates an sVirt label for a guest virtual machines on a NFS
volume, it only guarantees label uniqueness within a single host. This means that if a high number of
guests across multiple hosts share a NFS volume, it is possible for duplicate labels to occur, which
creates a potential vulnerability.

To avoid this situation, do one of the following:

Use a different NFS volume for each virtualization host. In addition, when performing guest
migration, copy the guest storage by using the --migrate-disks and --copy-storage-all options.

When creating a new guest with the virt-install command, set a static label for the guest by:

Using the --security option. For example:

virt-install --name guest1-rhel7 --memory 2048 --vcpus 2 --disk size=8 --cdrom
/home/username/Downloads/rhel-workstation-7.4-x86_64-dvd.iso --os-variant rhel7 --
security model=selinux,label='system_u:object_r:svirt_image_t:s0:c100,c200'

This sets the security label for all disks on the guest.

Using the --disk option with the seclabel parameter. For example:

CHAPTER 4. SVIRT

17

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-KVM_live_migration.html

virt-install --name guest1-rhel7 --memory 2048 --vcpus 2 --disk
/path/to/disk.img,seclabel.model=selinux,seclabel.label='system_u:object_r:svirt_image_t:s0:
c100,c200' --cdrom /home/username/Downloads/rhel-workstation-7.4-x86_64-dvd.iso --
os-variant rhel7

This sets the security label only on the specified disks.

Virtualization Security Guide

18

CHAPTER 5. NETWORK SECURITY IN A VIRTUALIZED
ENVIRONMENT

5.1. NETWORK SECURITY OVERVIEW

In almost all situations, the network is the only way to access systems, applications, and management
interfaces. As networking plays such a critical role in the management of virtualized systems and the
availability of their hosted applications, it is very important to ensure that the network channels both to
and from the virtualized systems are secure.

Securing the network allows administrators to control access and protect sensitive data from
information leaks and tampering.

5.2. NETWORK SECURITY RECOMMENDED PRACTICES

Network security is a critical part of a secure virtualization infrastructure. See the following
recommended practices for securing the network:

Ensure that remote management of the system takes place only over secured network
channels. Tools such as SSH and network protocols such as TLS or SSL provide both
authentication and data encryption to assist with secure and controlled access to systems.

Ensure that guest applications transferring sensitive data do so over secured network channels.
If protocols such as TLS or SSL are not available, consider using one like IPsec.

Configure firewalls and ensure they are activated at boot. Only network ports needed for the
use and management of the system should be allowed. Test and review firewall rules regularly.

5.2.1. Securing Connectivity to SPICE

The SPICE remote desktop protocol supports SSL/TLS which should be enabled for all of the SPICE
communication channels (main, display, inputs, cursor, playback, record).

5.2.2. Securing Connectivity to Storage

You can connect virtualized systems to networked storage in many different ways. Each approach
presents different security benefits and concerns, but the same security principles apply to each:
authenticate the remote store pool before use, and protect the confidentiality and integrity of the data
while it is being transferred.

The data must also remain secure while it is stored. Red Hat recommends that data is encrypted or
digitally signed before storing, or both.

NOTE

For more information on networked storage, see the Using Storage Pools section of the
Red Hat Enterprise Linux Virtualization Deployment and Administration Guide .

CHAPTER 5. NETWORK SECURITY IN A VIRTUALIZED ENVIRONMENT

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_deployment_and_administration_guide/storage_pools

APPENDIX A. FURTHER INFORMATION

A.1. SELINUX AND SVIRT

Further information on SELinux and sVirt:

Main SELinux website: https://www.nsa.gov/what-we-
do/research/selinux/documentation/assets/files/presentations/2004-ottawa-linux-
symposium-bof-presentation.pdf.

SELinux documentation: https://www.nsa.gov/what-we-
do/research/selinux/documentation/index.shtml.

Main sVirt website: http://selinuxproject.org/page/SVirt.

Dan Walsh's blog: http://danwalsh.livejournal.com/.

A.2. VIRTUALIZATION SECURITY

Further information on virtualization security:

NIST (National Institute of Standards and Technology) full virtualization security guidelines:
http://www.nist.gov/itl/csd/virtual-020111.cfm.

Virtualization Security Guide

20

https://www.nsa.gov/what-we-do/research/selinux/documentation/assets/files/presentations/2004-ottawa-linux-symposium-bof-presentation.pdf
https://www.nsa.gov/what-we-do/research/selinux/documentation/index.shtml
http://selinuxproject.org/page/SVirt
http://danwalsh.livejournal.com/
http://www.nist.gov/itl/csd/virtual-020111.cfm

APPENDIX B. REVISION HISTORY

Revision 1.0-22 Thu May 23 2019 Jiri Herrmann
Version for 7.7 Beta publication

Revision 1.0-21 Thu Oct 25 2018 Jiri Herrmann
Version for 7.6 GA publication

Revision 1.0-21 Thu Aug 14 2018 Jiri Herrmann
Version for 7.6 Beta publication

Revision 1.0-20 Thu Apr 5 2018 Jiri Herrmann
Version for 7.5 GA publication

Revision 1.0-18 Thu Jul 27 2017 Jiri Herrmann
Version for 7.4 GA publication

Revision 1.0-15 Mon Oct 17 2016 Jiri Herrmann
Version for 7.3 GA publication

Revision 1.0-9 Thu Oct 08 2015 Jiri Herrmann
Cleaned up the Revision History

Revision 1.0-8 Wed Feb 18 2015 Scott Radvan
Version for 7.1 GA release.

APPENDIX B. REVISION HISTORY

21

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. VIRTUALIZED AND NON-VIRTUALIZED ENVIRONMENTS
	1.2. WHY VIRTUALIZATION SECURITY MATTERS

	CHAPTER 2. HOST SECURITY
	2.1. SECURING THE HOST PHYSICAL MACHINE
	2.2. CLIENT ACCESS CONTROL
	2.2.1. Access Control Drivers
	2.2.2. Objects and Permissions
	2.2.3. Security Concerns when Adding Block Devices to a Guest

	2.3. SPECIAL CONSIDERATIONS FOR PUBLIC CLOUD OPERATORS

	CHAPTER 3. GUEST SECURITY
	3.1. WHY GUEST SECURITY MATTERS
	3.2. GUEST SECURITY RECOMMENDED PRACTICES
	3.3. KERNEL ADDRESS SPACE RANDOMIZATION
	3.4. CREATING A SECUREBOOT RED HAT ENTERPRISE LINUX 7 GUEST WITH VIRT-MANAGER

	CHAPTER 4. SVIRT
	4.1. INTRODUCTION
	4.2. SELINUX AND MANDATORY ACCESS CONTROL (MAC)
	4.3. SVIRT CONFIGURATION
	4.4. SVIRT LABELING
	4.4.1. Types of sVirt Labels
	4.4.2. Dynamic Configuration
	4.4.3. Dynamic Configuration with Base Labeling
	4.4.4. Static Configuration with Dynamic Resource Labeling
	4.4.5. Static Configuration without Resource Labeling
	4.4.6. sVirt Labeling and NFS

	CHAPTER 5. NETWORK SECURITY IN A VIRTUALIZED ENVIRONMENT
	5.1. NETWORK SECURITY OVERVIEW
	5.2. NETWORK SECURITY RECOMMENDED PRACTICES
	5.2.1. Securing Connectivity to SPICE
	5.2.2. Securing Connectivity to Storage

	APPENDIX A. FURTHER INFORMATION
	A.1. SELINUX AND SVIRT
	A.2. VIRTUALIZATION SECURITY

	APPENDIX B. REVISION HISTORY

