& RedHat

OpenShift Container Platform 4.13

Service Mesh

Service Mesh installation, usage, and release notes

Last Updated: 2024-06-06

OpenShift Container Platform 4.13 Service Mesh

Service Mesh installation, usage, and release notes

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use Service Mesh in OpenShift Container Platform.

Table of Contents

Table of Contents

CHAPTER 1. SERVICE MESH 2. X ..ttt ttitttitt ettt et eee e eateeaneeeaneeaneeeanaenaneesnneenneenns 17
1.1. ABOUT OPENSHIFT SERVICE MESH 17
1.1.1. Introduction to Red Hat OpenShift Service Mesh 17
1.1.2. Core features 17
1.2. SERVICE MESH RELEASE NOTES 18
1.2.1. Making open source more inclusive 18
1.2.2. New features and enhancements 18
1.2.2.1. New features Red Hat OpenShift Service Mesh version 2.5.2 18
1.2.2.1.1. Component versions for Red Hat OpenShift Service Mesh version 2.5.2 18
1.2.2.2. New features Red Hat OpenShift Service Mesh version 2.5.1 18
1.2.2.2.1. Component versions for Red Hat OpenShift Service Mesh version 2.5.1 18
1.2.2.3. New features Red Hat OpenShift Service Mesh version 2.5 18
1.2.2.3.1. Component versions for Red Hat OpenShift Service Mesh version 2.5 19
1.2.2.3.2. Istio 1.18 support 19
1.2.2.3.3. Cluster-Wide mesh migration 19
1.2.2.3.4. Red Hat OpenShift Service Mesh Operator on ARM-based clusters 19
1.2.2.3.5. Integration with Red Hat OpenShift distributed tracing platform (Tempo) Stack 19
1.2.2.3.6. OpenShift Service Mesh Console plugin 20
1.2.2.3.7. Istio OpenShift Routing (IOR) default setting change 20
1.2.2.3.8. Istio proxy concurrency configuration enhancement 20
1.2.2.3.9. Gateway API CRD versions 20
1.2.2.4. New features Red Hat OpenShift Service Mesh version 2.4.8 21
1.2.2.4.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.8 21
1.2.2.5. New features Red Hat OpenShift Service Mesh version 2.4.7 21
1.2.2.5.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.7 22
1.2.2.6. New features Red Hat OpenShift Service Mesh version 2.4.6 22
1.2.2.6.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.6 22
1.2.2.7. New features Red Hat OpenShift Service Mesh version 2.4.5 22
1.2.2.7.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.5 22
1.2.2.8. New features Red Hat OpenShift Service Mesh version 2.4.4 22
1.2.2.8.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.4 23
1.2.2.9. New features Red Hat OpenShift Service Mesh version 2.4.3 23
1.2.2.9.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.3 23
1.2.2.9.2. Red Hat OpenShift Service Mesh operator to ARM-based clusters 23
1.2.2.9.3. Remote Procedure Calls (gRPC) API support for external authorization configuration 24
1.2.2.10. New features Red Hat OpenShift Service Mesh version 2.4.2 24
1.2.2.10.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.2 24
1.2.2.11. New features Red Hat OpenShift Service Mesh version 2.4.1 24
1.2.2.11.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.1 24
1.2.2.12. New features Red Hat OpenShift Service Mesh version 2.4 24
1.2.2.12.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4 25
1.2.2.12.2. Cluster-wide deployments 25
1.2.2.12.3. Support for discovery selectors 25
1.2.2.12.4. Integration with cert-manager istio-csr 25
1.2.2.12.5. Integration with external authorization systems 26
1.2.2.12.6. Integration with external Prometheus installation 26
1.2.2.12.7. Single stack IPv6 support 26
1.2.2.12.8. OpenShift Container Platform Gateway APl support 26
1.2.2.12.8.1. Enabling OpenShift Container Platform Gateway API 27
1.2.2.12.9. Control plane deployment on infrastructure nodes 27
1.2.2.12.10. Istio 1.16 support 27

OpenShift Container Platform 4.13 Service Mesh

1.2.2.13. New features Red Hat OpenShift Service Mesh version 2.3.12

1.2.2.13.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.12
1.2.2.14. New features Red Hat OpenShift Service Mesh version 2.3.11

1.2.2.14.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.11
1.2.2.15. New features Red Hat OpenShift Service Mesh version 2.3.10

1.2.2.15.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.10
1.2.2.16. New features Red Hat OpenShift Service Mesh version 2.3.9

1.2.2.16.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.9
1.2.2.17. New features Red Hat OpenShift Service Mesh version 2.3.8

1.2.2.17.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.8
1.2.2.18. New features Red Hat OpenShift Service Mesh version 2.3.7

1.2.2.18.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.7
1.2.2.19. New features Red Hat OpenShift Service Mesh version 2.3.6

1.2.2.19.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.6
1.2.2.20. New features Red Hat OpenShift Service Mesh version 2.3.5

1.2.2.20.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.5
1.2.2.21. New features Red Hat OpenShift Service Mesh version 2.3.4

1.2.2.21.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.4
1.2.2.22. New features Red Hat OpenShift Service Mesh version 2.3.3

1.2.2.22.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.3
1.2.2.23. New features Red Hat OpenShift Service Mesh version 2.3.2

1.2.2.23.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.2
1.2.2.24. New features Red Hat OpenShift Service Mesh version 2.3.1

1.2.2.24.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.1
1.2.2.25. New features Red Hat OpenShift Service Mesh version 2.3

1.2.2.25.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3

1.2.2.25.2. New Container Network Interface (CNI) DaemonSet container and ConfigMap

1.2.2.25.3. Gateway injection support

1.2.2.25.4. Istio 1.14 Support

1.2.2.25.5. OpenShift Service Mesh Console

1.2.2.25.6. Cluster-wide deployment

1.2.2.25.6.1. Configuring cluster-wide deployment

1.2.2.26. New features Red Hat OpenShift Service Mesh version 2.2.12

1.2.2.26.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.12
1.2.2.27. New features Red Hat OpenShift Service Mesh version 2.2.11

1.2.2.27.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.11
1.2.2.28. New features Red Hat OpenShift Service Mesh version 2.2.10

1.2.2.28.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.10
1.2.2.29. New features Red Hat OpenShift Service Mesh version 2.2.9

1.2.2.29.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.9
1.2.2.30. New features Red Hat OpenShift Service Mesh version 2.2.8

1.2.2.30.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.8
1.2.2.31. New features Red Hat OpenShift Service Mesh version 2.2.7

1.2.2.31.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.7
1.2.2.32. New features Red Hat OpenShift Service Mesh version 2.2.6

1.2.2.32.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.6
1.2.2.33. New features Red Hat OpenShift Service Mesh version 2.2.5

1.2.2.33.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.5
1.2.2.34. New features Red Hat OpenShift Service Mesh version 2.2.4

1.2.2.34.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.4
1.2.2.35. New features Red Hat OpenShift Service Mesh version 2.2.3

1.2.2.35.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.3
1.2.2.36. New features Red Hat OpenShift Service Mesh version 2.2.2

27
28
28
28
28
28
28
28
29
29
29
29
29
30
30
30
30
30

31

31

31

31

31

31
32
32
32
32
32
33
33
34
34
34
35
35
35
35
35
35
36
36
36
36
36
37
37
37
37
37
38
38
38

1.2.2.36.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.2
1.2.2.36.2. Copy route labels
1.2.2.37. New features Red Hat OpenShift Service Mesh version 2.2.1
1.2.2.37.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.1
1.2.2.38. New features Red Hat OpenShift Service Mesh 2.2
1.2.2.38.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2
1.2.2.38.2. WasmPlugin API
1.2.2.38.3. ROSA support
1.2.2.38.4. istio-node DaemonSet renamed
1.2.2.38.5. Envoy sidecar networking changes
1.2.2.38.6. Service Mesh Control Plane 1.1
1.2.2.38.7. Istio 1.12 Support
1.2.2.38.8. Kubernetes Gateway API
1.2.2.38.8.1. Installing the Gateway APl CRDs
1.2.2.38.8.2. Enabling Kubernetes Gateway API
1.2.2.38.8.3. Manually linking an existing gateway to a Gateway resource
1.2.2.39. New features Red Hat OpenShift Service Mesh 2.1.6
1.2.2.39.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.6
1.2.2.40. New features Red Hat OpenShift Service Mesh 2.1.5.2
1.2.2.40.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.2
1.2.2.41. New features Red Hat OpenShift Service Mesh 2.1.5.1
1.2.2.41.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1
1.2.2.42. New features Red Hat OpenShift Service Mesh 2.1.5
1.2.2.42.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5
1.2.2.43. New features Red Hat OpenShift Service Mesh 2.1.4
1.2.2.43.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.4
1.2.2.44. New features Red Hat OpenShift Service Mesh 2.1.3
1.2.2.44.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.3
1.2.2.45. New features Red Hat OpenShift Service Mesh 2.1.2.1
1.2.2.45.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1
1.2.2.46. New features Red Hat OpenShift Service Mesh 2.1.2
1.2.2.46.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2
1.2.2.47. New features Red Hat OpenShift Service Mesh 2.1.1
1.2.2.47.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.1
1.2.2.47.2. Disabling network policies
1.2.2.48. New features and enhancements Red Hat OpenShift Service Mesh 2.1
1.2.2.48.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1
1.2.2.48.2. Service Mesh Federation
1.2.2.48.3. OVN-Kubernetes Container Network Interface (CNI) generally available
1.2.2.48.4. Service Mesh WebAssembly (WASM) Extensions
1.2.2.48.5. 3scale WebAssembly Adapter (WASM)
1.2.2.48.6. Istio 1.9 Support
1.2.2.48.7. Improved Service Mesh operator performance
1.2.2.48.8. Kiali updates
1.2.2.49. New features Red Hat OpenShift Service Mesh 2.0.11.1
1.2.2.49.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1
1.2.2.50. New features Red Hat OpenShift Service Mesh 2.0.11
1.2.2.50.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11
1.2.2.51. New features Red Hat OpenShift Service Mesh 2.0.10
1.2.2.51.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.10
1.2.2.52. New features Red Hat OpenShift Service Mesh 2.0.9
1.2.2.52.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.9
1.2.2.53. New features Red Hat OpenShift Service Mesh 2.0.8

Table of Contents

38
38
38
39
39
39
39
39
39
39
40
40
40
40
40

41

41

41

41
42
42
42
42
42
43
43
43
43
43
43
44
44
44
44
44
45
45
46
46
46
46
46
47
47
47
47
48
48
48
48
48
48
49

OpenShift Container Platform 4.13 Service Mesh

1.2.2.54. New features Red Hat OpenShift Service Mesh 2.0.7.1 49
1.2.2.54.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments 49
1.2.2.54.2. Required update for authorization policies 50

1.2.2.55. New features Red Hat OpenShift Service Mesh 2.0.7 51

1.2.2.56. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft Azure Red Hat

OpenShift 51

1.2.2.57. New features Red Hat OpenShift Service Mesh 2.0.6 51

1.2.2.58. New features Red Hat OpenShift Service Mesh 2.0.5 51

1.2.2.59. New features Red Hat OpenShift Service Mesh 2.0.4 51
1.2.2.59.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920 51
1.2.2.59.2. Updating the path normalization configuration 52
1.2.2.59.3. Path normalization configuration examples 53
1.2.2.59.4. Configuring your SMCP for path normalization 54
1.2.2.59.5. Configuring for case normalization 54

1.2.2.60. New features Red Hat OpenShift Service Mesh 2.0.3 55

1.2.2.61. New features Red Hat OpenShift Service Mesh 2.0.2 55

1.2.2.62. New features Red Hat OpenShift Service Mesh 2.0.1 55

1.2.2.63. New features Red Hat OpenShift Service Mesh 2.0 55

1.2.3. Technology Preview 56
1.2.4. Deprecated and removed features 56

1.2.4.1. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.5 56

1.2.4.2. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.4 57

1.2.4.3. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.3 57

1.2.4.4. Deprecated features in Red Hat OpenShift Service Mesh 2.2 57

1.2.4.5. Removed features in Red Hat OpenShift Service Mesh 2.2 58

1.2.4.6. Removed features in Red Hat OpenShift Service Mesh 2.1 58

1.2.4.7. Deprecated features in Red Hat OpenShift Service Mesh 2.0 58

1.2.5. Known issues 58
1.2.5.1. Service Mesh known issues 59
1.2.5.2. Kiali known issues 62

1.2.6. Fixed issues 62
1.2.6.1. Service Mesh fixed issues 63

1.3. UPGRADING SERVICE MESH 70

1.3.1. Understanding versioning 70
1.3.1.1. How versioning affects Service Mesh upgrades 70
1.3.1.2. Understanding Service Mesh versions 70

1.3.2. Upgrade considerations 71
1.3.2.1. Known issues that may affect upgrade 72

1.3.3. Upgrading the Operators 72

1.3.4. Upgrading the control plane 73

1.3.4.1. Upgrade changes from version 2.4 to version 2.5 74
1.3.4.1.1. Istio OpenShift Routing (IOR) default setting change 74
1.3.4.1.2. Istio proxy concurrency configuration enhancement 74

1.3.4.2. Upgrade changes from version 2.3 to version 2.4 74

1.3.4.3. Upgrade changes from version 2.2 to version 2.3 75

1.3.4.4. Upgrade changes from version 2.1 to version 2.2 75

1.3.4.5. Upgrade changes from version 2.0 to version 2.1 75

1.3.4.6. Upgrading the Service Mesh control plane 76

1.3.4.7. Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0 77
1.3.4.7.1. Upgrading Red Hat OpenShift Service Mesh 77
1.3.4.7.2. Configuring the 2.0 ServiceMeshControlPlane 79

1.3.4.7.2.1. Architecture changes 79
1.3.4.7.2.2. Annotation changes 79

Table of Contents

1.3.4.7.2.3. Behavioral changes 80
1.3.4.7.2.4. Migration details for unsupported resources 80
1.3.4.7.2.5. Mixer plugins 81
1.3.4.7.2.6. Mutual TLS changes 82
1.3.4.7.2.6.1. Other mTLS Examples 82
1.3.4.7.3. Configuration recipes 85
1.3.4.7.3.1. Mutual TLS in a data plane 85
1.3.4.7.3.2. Custom signing key 85
1.3.4.7.3.3. Tracing 85
1.3.4.7.3.4. Visualization 86
1.3.4.7.3.5. Resource utilization and scheduling 86
1.3.4.7.4. Next steps for migrating your applications and workloads 88
1.3.5. Upgrading the data plane 88
1.3.5.1. Updating your applications and workloads 88
1.4. UNDERSTANDING SERVICE MESH 88
1.4.1. What is Red Hat OpenShift Service Mesh? 88
1.4.2. Service Mesh architecture 89
1.4.3. Understanding Kiali 91
1.4.3.1. Kiali overview 91
1.4.3.2. Kiali architecture 91
1.4.3.3. Kiali features 92
1.4.4. Understanding distributed tracing 92
1.4.4.1. Distributed tracing overview 93
1.4.4.2. Red Hat OpenShift distributed tracing platform architecture 93
1.4.4.3. Red Hat OpenShift distributed tracing platform features 94
1.4.5. Next steps 95
1.5. SERVICE MESH DEPLOYMENT MODELS 95
1.5.1. Cluster-Wide (Single Tenant) mesh deployment model 95
1.5.2. Multitenant deployment model 95
1.5.2.1. About migrating to a cluster-wide mesh 95
1.5.2.1.1. Including and excluding namespaces from a cluster-wide mesh by using the web console 96
1.5.2.1.2. Including and excluding namespaces from a cluster-wide mesh by using the CLI 97

1.5.2.1.3. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the web
console 99

1.5.2.1.4. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the CLI 100

1.5.2.1.5. Excluding individual pods from a cluster-wide mesh by using the web console 101
1.5.2.1.6. Excluding individual pods from a cluster-wide mesh by using the CLI 102
1.5.3. Multimesh or federated deployment model 103
1.6. SERVICE MESH AND ISTIO DIFFERENCES 104
1.6.1. Differences between Istio and Red Hat OpenShift Service Mesh 104
1.6.1.1. Command line tool 104
1.6.1.2. Installation and upgrades 104
1.6.1.3. Automatic injection 104
1.6.1.4. Istio Role Based Access Control features 104
1.6.1.5. OpenSSL 105
1.6.1.6. External workloads 105
1.6.1.7. Virtual Machine Support 105
1.6.1.8. Component modifications 105
1.6.1.9. Envoy filters 106
1.6.1.10. Envoy services 106
1.6.1.11. Istio Container Network Interface (CNI) plugin 106
1.6.1.12. Global mTLS settings 106
1.6.1.13. Gateways 106

OpenShift Container Platform 4.13 Service Mesh

1.6.1.14. Multicluster configurations
1.6.1.15. Custom Certificate Signing Requests (CSR)
1.6.1.16. Routes for Istio Gateways
1.6.116.1. Catch-all domains
1.6.116.2. Subdomains
1.6.1.16.3. Transport layer security
Additional resources
1.6.2. Multitenant installations
1.6.2.1. Multitenancy versus cluster-wide installations
1.6.2.2. Cluster scoped resources
1.6.3. Kiali and service mesh
1.6.4. Distributed tracing and service mesh
1.7. PREPARING TO INSTALL SERVICE MESH
1.7.1. Prerequisites
1.7.2. Supported configurations
1.7.2.1. Supported platforms
1.7.2.2. Unsupported configurations
1.7.2.3. Supported network configurations
1.7.2.4. Supported configurations for Service Mesh
1.7.2.5. Supported configurations for Kiali
1.7.2.6. Supported configurations for Distributed Tracing
1.7.2.7. Supported WebAssembly module
1.7.3. Next steps
1.8. INSTALLING THE OPERATORS
1.8.1. Service Mesh Operators overview
1.8.2. Installing the Operators
1.8.3. Configuring the Service Mesh Operator to run on infrastructure nodes
1.8.4. Verifying the Service Mesh Operator is running on infrastructure node
1.8.5. Next steps
1.9. CREATING THE SERVICEMESHCONTROLPLANE
1.9.1. About ServiceMeshControlPlane
1.9.1.1. Deploying the Service Mesh control plane from the web console
1.9.1.2. Deploying the Service Mesh control plane using the CLI
1.9.1.3. Validating your SMCP installation with the CLI
1.9.2. About control plane components and infrastructure nodes

1.9.2.1. Configuring all control plane components to run on infrastructure nodes using the web console

106
106
107
107
107
107
107
107
107
108
108
109
109
109
110
110
110
110
110
m
m
m
m
m
12
13
14
15
116
116
116
116
n7
18
19
19

1.9.2.2. Configuring individual control plane components to run on infrastructure nodes using the web console

1.9.2.3. Configuring all control plane components to run on infrastructure nodes using the CLI
1.9.2.4. Configuring individual control plane components to run on infrastructure nodes using the CLI
1.9.2.5. Verifying the Service Mesh control plane is running on infrastructure nodes

1.9.3. About control plane and cluster-wide deployments

1.9.3.1. Configuring the control plane for cluster-wide deployment with the web console

1.9.3.2. Configuring the control plane for cluster-wide deployment with the CLI
1.9.3.3. Customizing the member roll for a cluster-wide mesh

1.9.4. Validating your SMCP installation with Kiali

1.9.5. Additional resources

1.9.6. Next steps

1.10. ADDING SERVICES TO A SERVICE MESH

1.10.1. About adding projects to a service mesh

1.10.2. Creating the Red Hat OpenShift Service Mesh member roll
1.10.2.1. Creating the member roll from the web console
1.10.2.2. Creating the member roll from the CLI

120
122
123
124
124
124
126
127
127
130
130
130
130
130
130

131

Table of Contents

1.10.3. About adding projects using the ServiceMeshMemberRoll resource 132
1.10.3.1. Adding or removing projects from the mesh using the ServiceMeshMemberRoll resource with the web
console 133
110.3.2. Adding or removing projects from the mesh using ServiceMeshMemberRoll resource with the CLI

134

1.10.4. About adding projects using the ServiceMeshMember resource 135
1.10.4.1. Adding a project to the mesh using the ServiceMeshMember resource with the web console 136
1.10.4.2. Adding a project to the mesh using the ServiceMeshMember resource with the CLI 137

1.10.5. About adding projects using label selectors 138
1.10.5.1. Adding a project to the mesh using label selectors with the web console 139
1.10.5.2. Adding a project to the mesh using label selectors with the CLI 139

1.10.6. Bookinfo example application 140
1.10.6.1. Installing the Bookinfo application 141
1.10.6.2. Adding default destination rules 143
1.10.6.3. Verifying the Bookinfo installation 144
110.6.4. Removing the Bookinfo application 145

1.10.6.4.1. Delete the Bookinfo project 145
110.6.4.2. Remove the Bookinfo project from the Service Mesh member roll 146

1.10.7. Next steps 146
1.11. ENABLING SIDECAR INJECTION 146

1.11.1. Prerequisites 147

1.11.2. Enabling automatic sidecar injection 147

1.11.3. Validating sidecar injection 148

1.11.4. Setting proxy environment variables through annotations 149

1.11.5. Updating sidecar proxies 150

1.11.6. Next steps 150

112. MANAGING USERS AND PROFILES 151

112.1. Creating the Red Hat OpenShift Service Mesh members 151

112.2. Creating Service Mesh control plane profiles 152
112.2.1. Creating the ConfigMap 152
112.2.2. Setting the correct network policy 153

113. SECURITY 153

1.13.1. About mutual Transport Layer Security (mTLS) 153

113.1.1. Enabling strict mTLS across the service mesh 153
1.13.1.1.1. Configuring sidecars for incoming connections for specific services 154
1.13.1.1.2. Configuring sidecars for outgoing connections 155
1.13.1.1.3. Setting the minimum and maximum protocol versions 155

113.1.2. Validating encryption with Kiali 156

1.13.2. Configuring Role Based Access Control (RBAC) 157

113.2.1. Configure intra-project communication 159
113.2.1.1. Restrict access to services outside a namespace 159
113.2.1.2. Creating allow-all and default deny-all authorization policies 159

113.2.2. Allow or deny access to the ingress gateway 160

113.2.3. Restrict access with JSSON Web Token 160

1.13.3. Configuring cipher suites and ECDH curves 161

113.4. Configuring JSON Web Key Sets resolver certificate authority 162

113.5. Adding an external certificate authority key and certificate 163
113.5.1. Adding an existing certificate and key 163
113.5.2. Verifying your certificates 164
113.5.3. Removing the certificates 165

1.13.6. About integrating Service Mesh with cert-manager and istio-csr 166
113.6.1. Installing cert-manager 166

113.7. Additional resources 170

OpenShift Container Platform 4.13 Service Mesh

114. MANAGING TRAFFIC IN YOUR SERVICE MESH
1.14.1. Using gateways
114.1.1. Enabling gateway injection
114.1.2. Deploying automatic gateway injection
114.1.3. Managing ingress traffic
1.14.1.3.1. Determining the ingress IP and ports
1.14.1.3.1.1. Determining ingress ports with a load balancer
1.14.1.3.1.2. Determining ingress ports without a load balancer
114.1.4. Configuring an ingress gateway
1.14.2. Understanding automatic routes
1.14.2.1. Routes with subdomains
114.2.2. Creating subdomain routes
114.2.3. Route labels and annotations
1.14.2.4. Disabling automatic route creation
114.2.4.1. Disabling automatic route creation for specific cases
114.2.4.2. Disabling automatic route creation for all cases
1.14.3. Understanding service entries
1.14.4. Using VirtualServices
114.4.1. Configuring VirtualServices
114.4.2. VirtualService configuration reference
1.14.5. Understanding destination rules
1.14.6. Understanding network policies
1.14.6.1. Disabling automatic NetworkPolicy creation
114.7. Configuring sidecars for traffic management
1.14.8. Routing Tutorial
114.8.1. Bookinfo routing tutorial
1.14.8.2. Applying a virtual service
114.8.3. Testing the new route configuration
1.14.8.4. Route based on user identity
115. METRICS, LOGS, AND TRACES
1.15.1. Discovering console addresses
1.15.2. Accessing the Kiali console
115.3. Viewing service mesh data in the Kiali console
1.15.3.1. Changing graph layouts in Kiali
115.3.2. Viewing logs in the Kiali console
115.3.3. Viewing metrics in the Kiali console
1.15.4. Distributed tracing
115.4.1. Configuring the distributed tracing platform (Tempo)
115.4.2. Connecting an existing distributed tracing Jaeger instance
1.15.4.3. Adjusting the sampling rate
115.5. Accessing the Jaeger console
115.6. Accessing the Grafana console
115.7. Accessing the Prometheus console
1.15.8. Integrating with user-workload monitoring
115.9. Additional resources
116. PERFORMANCE AND SCALABILITY
1.16.1. Setting limits on compute resources
116.2. Load test results
116.2.1. Service Mesh Control plane performance
116.2.2. Data plane performance
1.16.2.2.1. CPU and memory consumption
116.2.2.2. Additional latency
1.17. CONFIGURING SERVICE MESH FOR PRODUCTION

171
171
172
172
175
175
175
176
177
178
179
179
180
180
180
180
181
182
182
183
183
184
184
185
186
186
187
187
187
188
188
190
190
191
192
193
193
194
196
197
198
199
199
199
204
204
205
206
206
207
207
207
208

Table of Contents

117.1. Configuring your ServiceMeshControlPlane resource for production 208
1.17.2. Additional resources 209
118. CONNECTING SERVICE MESHES 209
1.18.1. Federation overview 209
1.18.2. Federation features 210
1.18.3. Federation security 210
1.18.4. Federation limitations 21
1.18.5. Federation prerequisites 21
1.18.6. Planning your mesh federation 21
1.18.7. Mesh federation across clusters 212
118.7.1. Exposing the federation ingress on clusters running on bare metal 212
118.7.2. Exposing the federation ingress on clusters running on IBM Power and IBM Z 212
1.18.7.3. Exposing the federation ingress on Amazon Web Services (AWS) 212
118.7.4. Exposing the federation ingress on Azure 213
118.7.5. Exposing the federation ingress on Google Cloud Platform (GCP) 213
1.18.8. Federation implementation checklist 213
1.18.9. Configuring a Service Mesh control plane for federation 214
118.9.1. Understanding federation gateways 215
118.9.2. Understanding federation trust domain parameters 219
1.18.10. Joining a federated mesh 221
1.18.10.1. Creating a ServiceMeshPeer resource 224
118.11. Exporting a service from a federated mesh 226
1.18.11.1. Creating an ExportedServiceSet 229
118.12. Importing a service into a federated mesh 231
1.18.12.1. Creating an ImportedServiceSet 234
118.13. Configuring a federated mesh for failover 236
118.13.1. Configuring an ImportedServiceSet for failover 236
118.13.2. Configuring a DestinationRule for failover 238
1.18.14. Removing a service from the federated mesh 239
118.14.1. To remove a service from a single mesh 239
118.14.2. To remove a service from the entire federated mesh 239
118.15. Removing a mesh from the federated mesh 239
119. EXTENSIONS 240
1.19.1. WebAssembly modules overview 240
119.2. WasmPlugin container format 241
1.19.3. WasmPlugin API reference 241
1.19.3.1. Deploying WasmPlugin resources 246
1.19.4. ServiceMeshExtension container format 247
119.5. ServiceMeshExtension reference 248
1.19.5.1. Deploying ServiceMeshExtension resources 249
1.19.6. Migrating from ServiceMeshExtension to WasmPlugin resources 250
1.19.6.1. APl changes 250
1.19.6.2. Container image format changes 251
1.19.6.3. Migrating to WasmPlugin resources 251
1.20. OPENSHIFT SERVICE MESH CONSOLE PLUGIN 252
1.20.1. About the OpenShift Service Mesh Console plugin 252
1.20.2. Installing OpenShift Service Mesh Console plugin using the OpenShift Container Platform web console
253
1.20.3. Installing OpenShift Service Mesh Console plugin using the CLI 254
1.20.4. Uninstalling OpenShift Service Mesh Console plugin using the OpenShift Container Platform web
console 255
1.20.5. Uninstalling OpenShift Service Mesh Console plugin using the CLI 255
1.20.6. Additional resources 255

9

OpenShift Container Platform 4.13 Service Mesh

1.21. USING THE 3SCALE WEBASSEMBLY MODULE
1.21.1. Compatibility
1.21.2. Usage as a stand-alone module
1.21.3. Prerequisites
1.21.4. Configuring the threescale-wasm-auth module
1.21.4.1. The WasmPlugin API extension
1.21.5. Applying 3scale external ServiceEntry objects
1.21.6. The 3scale WebAssembly module configuration
1.21.6.1. Configuring the 3scale WebAssembly module
1.21.6.2. The 3scale WebAssembly module api object
1.21.6.3. The 3scale WebAssembly module system object
1.21.6.4. The 3scale WebAssembly module upstream object
1.21.6.5. The 3scale WebAssembly module backend object
1.21.6.6. The 3scale WebAssembly module services object
1.21.6.7. The 3scale WebAssembly module credentials object
1.21.6.8. The 3scale WebAssembly module lookup queries
1.21.6.9. The 3scale WebAssembly module source object
1.21.6.10. The 3scale WebAssembly module operations object
1.21.6.11. The 3scale WebAssembly module mapping_rules object
1.21.6.12. The 3scale WebAssembly module mapping_rule object
1.21.7. The 3scale WebAssembly module examples for credentials use cases
1.21.7.1. APl key (user_key) in query string parameters
1.21.7.2. Application ID and key
1.21.7.3. Authorization header
1.21.7.4. OpenlD Connect (OIDC) use case
1.21.7.5. Picking up the JWT token from a header
1.21.8. 3scale WebAssembly module minimal working configuration
1.22. USING THE 3SCALE ISTIO ADAPTER
1.22.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh
1.22.1.1. Generating 3scale custom resources
1.22.1.1.1. Generate templates from URL examples
1.22.1.2. Generating manifests from a deployed adapter
1.22.1.3. Routing service traffic through the adapter
1.22.2. Configure the integration settings in 3scale
1.22.3. Caching behavior
1.22.4. Authenticating requests
1.22.4.1. Applying authentication patterns
1.22.4.1.1. API key authentication method
1.22.4.1.2. Application ID and application key pair authentication method
1.22.4.1.3. OpenlD authentication method
1.22.4.1.4. Hybrid authentication method
1.22.5. 3scale Adapter metrics
1.22.6. 3scale backend cache
1.22.6.1. Advantages of enabling backend cache
1.22.6.2. Trade-offs for having lower latencies
1.22.6.3. Backend cache configuration settings
1.22.7. 3scale Istio Adapter APlcast emulation
1.22.8. 3scale Istio adapter verification
1.22.9. 3scale Istio adapter troubleshooting checklist
1.23. TROUBLESHOOTING YOUR SERVICE MESH
1.23.1. Understanding Service Mesh versions
1.23.2. Troubleshooting Operator installation
1.23.2.1. Validating Operator installation

10

256
256
256
256
256
256
258
260
260
261
261
262
263
264
265
266
267
268
268
268
270
270

271

271
274
275
276
277
277
279
279
280

281

281
282
282
282
283
283
284
285
285
286
286
286
287
287
288
288
289
289
289
289

Table of Contents

1.23.2.2. Troubleshooting service mesh Operators 291
1.23.2.2.1. Viewing Operator pod logs 291
1.23.3. Troubleshooting the control plane 291
1.23.3.1. Validating the Service Mesh control plane installation 291
1.23.3.1.1. Accessing the Kiali console 294
1.23.3.1.2. Accessing the Jaeger console 295
1.23.3.2. Troubleshooting the Service Mesh control plane 297
1.23.4. Troubleshooting the data plane 297
1.23.4.1. Troubleshooting sidecar injection 297
1.23.4.1.1. Troubleshooting Istio sidecar injection 297
1.23.4.1.2. Troubleshooting Jaeger agent sidecar injection 297
1.24. TROUBLESHOOTING ENVOY PROXY 297
1.24.1. Enabling Envoy access logs 297
1.24.2. Getting support 298
1.24.2.1. About the Red Hat Knowledgebase 298
1.24.2.2. Searching the Red Hat Knowledgebase 299
1.24.2.3. About collecting service mesh data 299
1.24.2.4. Submitting a support case 300
1.25. SERVICE MESH CONTROL PLANE CONFIGURATION REFERENCE 301
1.25.1. Service Mesh Control plane parameters 301
1.25.2. spec parameters 308
1.25.2.1. general parameters 308
1.25.2.2. profiles parameters 309
1.25.2.3. techPreview parameters 309
1.25.2.4. tracing parameters 310
1.25.2.5. version parameter 3Mm
1.25.2.6. 3scale configuration 31
1.25.3. status parameter 313
1.25.4. Additional resources 315
1.26. KIALI CONFIGURATION REFERENCE 315
1.26.1. Specifying Kiali configuration in the SMCP 315
1.26.2. Specifying Kiali configuration in a Kiali custom resource 319
1.27. JAEGER CONFIGURATION REFERENCE 319
1.27.1. Enabling and disabling tracing 319
1.27.2. Specifying Jaeger configuration in the SMCP 320
1.27.3. Deploying the distributed tracing platform 320
1.27.3.1. Default distributed tracing platform (Jaeger) deployment 321
1.27.3.2. Production distributed tracing platform (Jaeger) deployment (minimal) 321
1.27.3.3. Production distributed tracing platform (Jaeger) deployment (fully customized) 322
1.27.3.4. Streaming Jaeger deployment 322
1.27.4. Specifying Jaeger configuration in a Jaeger custom resource 323
1.27.4.1. Deployment best practices 323
1.27.4.2. Configuring distributed tracing security for service mesh 323
1.27.4.2.1. Configuring distributed tracing security for service mesh from the web console 324
1.27.4.2.2. Configuring distributed tracing security for service mesh from the command line 325
1.27.4.3. Distributed tracing default configuration options 326
1.27.4.4. Jaeger Collector configuration options 329
1.27.4.5. Distributed tracing sampling configuration options 332
1.27.4.6. Distributed tracing storage configuration options 334
1.27.4.6.1. Auto-provisioning an Elasticsearch instance 335
1.27.4.6.2. Connecting to an existing Elasticsearch instance 339
1.27.4.7. Managing certificates with Elasticsearch 347
1.27.4.8. Query configuration options 349

1

OpenShift Container Platform 4.13 Service Mesh

CHAPTER 2. SERVICE MESH 1.X
2.1. SERVICE MESH RELEASE NOTES

12

1.27.4.9. Ingester configuration options

1.28. UNINSTALLING SERVICE MESH

1.28.1. Removing the Red Hat OpenShift Service Mesh control plane
1.28.1.1. Removing the Service Mesh control plane using the web console
1.28.1.2. Removing the Service Mesh control plane using the CLI

1.28.2. Removing the installed Operators
1.28.2.1. Removing the Operators

1.28.3. Clean up Operator resources

2.1.1. Making open source more inclusive

2.1.2. Introduction to Red Hat OpenShift Service Mesh

2.1.3. Getting support
2.1.3.1. About the must-gather tool
2.1.3.2. Prerequisites
2.1.3.3. About collecting service mesh data

2.1.4. Red Hat OpenShift Service Mesh supported configurations
2.1.4.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
2.1.4.2. Supported Mixer adapters

2.1.5. New Features
2.1.5.1. New features Red Hat OpenShift Service Mesh 1.1.18.2

2.1.5.1.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.2

2.1.5.2. New features Red Hat OpenShift Service Mesh 1.1.18.1

2.1.5.2.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.1

2.1.5.3. New features Red Hat OpenShift Service Mesh 1.1.18

2.1.5.3.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18

2.1.5.4. New features Red Hat OpenShift Service Mesh 1.1.17.1

2.1.5.4.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments

2.1.5.4.2. Required update for authorization policies
2.1.5.5. New features Red Hat OpenShift Service Mesh 1.1.17
2.1.5.6. New features Red Hat OpenShift Service Mesh 1.1.16
2.15.7. New features Red Hat OpenShift Service Mesh 1.1.15
2.1.5.8. New features Red Hat OpenShift Service Mesh 1.1.14
2.1.5.8.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920
2.1.5.8.2. Updating the path normalization configuration
2.1.5.8.3. Path normalization configuration examples
2.1.5.8.4. Configuring your SMCP for path normalization
2.1.5.9. New features Red Hat OpenShift Service Mesh 1.1.13
2.1.5.10. New features Red Hat OpenShift Service Mesh 1.1.12
2.1.5.11. New features Red Hat OpenShift Service Mesh 1.1.11
2.1.5.12. New features Red Hat OpenShift Service Mesh 1.1.10
2.1.5.13. New features Red Hat OpenShift Service Mesh 1.1.9
2.15.14. New features Red Hat OpenShift Service Mesh 1.1.8
2.1.5.15. New features Red Hat OpenShift Service Mesh 1.1.7
2.1.5.16. New features Red Hat OpenShift Service Mesh 1.1.6
2.15.17. New features Red Hat OpenShift Service Mesh 1.1.5
2.1.5.18. New features Red Hat OpenShift Service Mesh 1.1.4
2.1.5.18.1. Manual updates required by CVE-2020-8663
2.1.5.18.2. Upgrading from Elasticsearch 5 to Elasticsearch 6
2.1.5.19. New features Red Hat OpenShift Service Mesh 1.1.3
2.1.5.20. New features Red Hat OpenShift Service Mesh 1.1.2
2.1.5.21. New features Red Hat OpenShift Service Mesh 1.1.1

350
352
352
352
352
353
353
353

356
356
356
356
356
357
358
358
359
359
359
359
360
360
360
360
360

361

361

361

361
362
362
362
362
362
363
365
365
366
366
366
366
366
366
366
366
366
366
367
368
369
369
369

Table of Contents

2.1.5.22. New features Red Hat OpenShift Service Mesh 1.1.0 369
2.1.5.22.1. Manual updates from 1.0 to 1.1 369
2.1.6. Deprecated features 370
2.1.6.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5 370
2.1.7. Known issues 371
2.1.7.1. Service Mesh known issues 371
2.1.7.2. Kiali known issues 372
2.1.8. Fixed issues 372
2.1.8.1. Service Mesh fixed issues 372
2.1.8.2. Kiali fixed issues 373
2.2. UNDERSTANDING SERVICE MESH 374
2.2.1. What is Red Hat OpenShift Service Mesh? 374
2.2.2. Red Hat OpenShift Service Mesh Architecture 375
2.2.3. Understanding Kiali 376
2.2.3.1. Kiali overview 376
2.2.3.2. Kiali architecture 376
2.2.3.3. Kiali features 377
2.2.4. Understanding Jaeger 377
2.2.4.1. Distributed tracing overview 378
2.2.4.2. Distributed tracing architecture 378
2.2.4.3. Red Hat OpenShift distributed tracing platform features 379
2.2.5. Next steps 379
2.3. SERVICE MESH AND ISTIO DIFFERENCES 379
2.3.1. Multitenant installations 379
2.3.1.1. Multitenancy versus cluster-wide installations 380
2.3.1.2. Cluster scoped resources 380
2.3.2. Differences between Istio and Red Hat OpenShift Service Mesh 381
2.3.2.1. Command line tool 381
2.3.2.2. Automatic injection 381
2.3.2.3. Istio Role Based Access Control features 381
2.3.2.4. OpenSSL 382
2.3.2.5. Component modifications 382
2.3.2.6. Envoy, Secret Discovery Service, and certificates 382
2.3.2.7. Istio Container Network Interface (CNI) plugin 382
2.3.2.8. Routes for Istio Gateways 382
2.3.2.8.1. Catch-all domains 382
2.3.2.8.2. Subdomains 383
2.3.2.8.3. Transport layer security 383
Additional resources 383

2.3.3. Kiali and service mesh 383
2.3.4. Distributed tracing and service mesh 383
2.4. PREPARING TO INSTALL SERVICE MESH 384
2.4.1. Prerequisites 384
2.4.2. Red Hat OpenShift Service Mesh supported configurations 385
2.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh 385
2.4.2.2. Supported Mixer adapters 385
2.4.3. Service Mesh Operators overview 385
2.4.4. Next steps 387
2.5.INSTALLING SERVICE MESH 387
2.5.1. Prerequisites 387
2.5.2. Installing the OpenShift Elasticsearch Operator 388
2.5.3. Installing the Red Hat OpenShift distributed tracing platform Operator 389
2.5.4. Installing the Kiali Operator 390

13

OpenShift Container Platform 4.13 Service Mesh

14

2.5.5. Installing the Operators
2.5.6. Deploying the Red Hat OpenShift Service Mesh control plane
2.5.6.1. Deploying the control plane from the web console
2.5.6.2. Deploying the control plane from the CLI
2.5.7. Creating the Red Hat OpenShift Service Mesh member roll
2.5.7.1. Creating the member roll from the web console
2.5.7.2. Creating the member roll from the CLI
2.5.8. Adding or removing projects from the service mesh
2.5.8.1. Adding or removing projects from the member roll using the web console
2.5.8.2. Adding or removing projects from the member roll using the CLI
2.5.9. Manual updates
2.5.9.1. Updating sidecar proxies
2.5.10. Next steps
2.6. CUSTOMIZING SECURITY IN A SERVICE MESH
2.6.1. Enabling mutual Transport Layer Security (mTLS)
2.6.1.1. Enabling strict mTLS across the mesh
2.6.1.1.1. Configuring sidecars for incoming connections for specific services
2.6.1.2. Configuring sidecars for outgoing connections
2.6.1.3. Setting the minimum and maximum protocol versions
2.6.2. Configuring cipher suites and ECDH curves
2.6.3. Adding an external certificate authority key and certificate
2.6.3.1. Adding an existing certificate and key
2.6.3.2. Verifying your certificates
2.6.3.3. Removing the certificates
2.7. TRAFFIC MANAGEMENT
2.7.1. Using gateways
2.7.2. Configuring an ingress gateway
2.7.3. Managing ingress traffic
2.7.3.1. Determining the ingress IP and ports
2.7.3.1.1. Determining ingress ports with a load balancer
2.7.3.1.2. Determining ingress ports without a load balancer
2.7.4. Automatic route creation
2.7.4.1. Enabling Automatic Route Creation
2.7.4.2. Subdomains
2.7.5. Understanding service entries
2.7.6. Using VirtualServices
2.7.6.1. Configuring VirtualServices
2.7.6.2. VirtualService configuration reference
2.7.7. Understanding destination rules
2.7.8. Bookinfo routing tutorial
2.7.8.1. Applying a virtual service
2.7.8.2. Testing the new route configuration
2.7.8.3. Route based on user identity
2.7.9. Additional resources
2.8. DEPLOYING APPLICATIONS ON SERVICE MESH
2.8.1. Prerequisites
2.8.2. Creating control plane templates
2.8.2.1. Creating the ConfigMap
2.8.3. Enabling automatic sidecar injection
2.8.4. Setting proxy environment variables through annotations
2.8.5. Updating Mixer policy enforcement
2.8.5.1. Setting the correct network policy
2.8.6. Bookinfo example application

391
393
393
394
395
396
396
397
398
398
399
399
399
399
400
400
400

401

401
402
403
403
404
405
406
406
407
409
409
409

410

410

4n
4n

412

413

413

414

415

415

416

416

417

417

417

418

418

418
420

421
422
422
423

Table of Contents

2.8.6.1. Installing the Bookinfo application 423
2.8.6.2. Adding default destination rules 425
2.8.6.3. Verifying the Bookinfo installation 426
2.8.6.4. Removing the Bookinfo application 427
2.8.6.4.1. Delete the Bookinfo project 428
2.8.6.4.2. Remove the Bookinfo project from the Service Mesh member roll 428
2.8.7. Generating example traces and analyzing trace data 428
2.9. DATA VISUALIZATION AND OBSERVABILITY 429
2.9.1. Viewing service mesh data 430
2.9.2. Viewing service mesh data in the Kiali console 430
2.9.2.1. Changing graph layouts in Kiali 431
2.10. CUSTOM RESOURCES 432
2.10.1. Prerequisites 432
2.10.2. Red Hat OpenShift Service Mesh custom resources 432
2.10.3. ServiceMeshControlPlane parameters 434
2.10.3.1. Istio global example 434
2.10.3.2. Istio gateway configuration 436
2.10.3.3. Istio Mixer configuration 438
2.10.3.4. Istio Pilot configuration 439
2.10.4. Configuring Kiali 440
2.10.4.1. Configuring Kiali for Grafana 441
2.10.4.2. Configuring Kiali for Jaeger 442
2.10.5. Configuring Jaeger 442
2.10.5.1. Configuring Elasticsearch 443
2.10.5.2. Connecting to an existing Jaeger instance 446
2.10.5.3. Configuring Elasticsearch 447
2.10.5.4. Configuring the Elasticsearch index cleaner job 450
2.10.6. 3scale configuration 450
2.11. USING THE 3SCALE ISTIO ADAPTER 453
2.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh 453
2.11.1.1. Generating 3scale custom resources 455
2.11.1.1.1. Generate templates from URL examples 455
2.11.1.2. Generating manifests from a deployed adapter 456
2.11.1.3. Routing service traffic through the adapter 457
2.11.2. Configure the integration settings in 3scale 457
2.11.3. Caching behavior 458
2.11.4. Authenticating requests 458
2.11.4.1. Applying authentication patterns 458
2.11.4.1.1. API key authentication method 459
2.11.4.1.2. Application ID and application key pair authentication method 459
2.11.4.1.3. OpenlD authentication method 460
2.11.4.1.4. Hybrid authentication method 461
2.11.5. 3scale Adapter metrics 461
2.11.6. 3scale Istio adapter verification 461
2.11.7. 3scale Istio adapter troubleshooting checklist 462
2.12. REMOVING SERVICE MESH 462
2.12.1. Removing the Red Hat OpenShift Service Mesh control plane 463
2.12.1.1. Removing the Service Mesh control plane using the web console 463
2.12.1.2. Removing the Service Mesh control plane using the CLI 463
2.12.2. Removing the installed Operators 464
2.12.2.1. Removing the Operators 464
2.12.2.2. Clean up Operator resources 464

15

OpenShift Container Platform 4.13 Service Mesh

16

CHAPTER 1. SERVICE MESH 2.X

CHAPTER 1. SERVICE MESH 2.X

1.1. ABOUT OPENSHIFT SERVICE MESH

NOTE

Because Red Hat OpenShift Service Mesh releases on a different cadence from
OpenShift Container Platform and because the Red Hat OpenShift Service Mesh
Operator supports deploying multiple versions of the ServiceMeshControlPlane, the
Service Mesh documentation does not maintain separate documentation sets for minor
versions of the product. The current documentation set applies to the most recent
version of Service Mesh unless version-specific limitations are called out in a particular
topic or for a particular feature.

For additional information about the Red Hat OpenShift Service Mesh life cycle and
supported platforms, refer to the Platform Life Cycle Policy.

1.1.1. Introduction to Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh addresses a variety of problems in a microservice architecture by
creating a centralized point of control in an application. It adds a transparent layer on existing distributed
applications without requiring any changes to the application code.

Microservice architectures split the work of enterprise applications into modular services, which can
make scaling and maintenance easier. However, as an enterprise application built on a microservice
architecture grows in size and complexity, it becomes difficult to understand and manage. Service Mesh
can address those architecture problems by capturing or intercepting traffic between services and can
modify, redirect, or create new requests to other services.

Service Mesh, which is based on the open source Istio project, provides an easy way to create a network
of deployed services that provides discovery, load balancing, service-to-service authentication, failure
recovery, metrics, and monitoring. A service mesh also provides more complex operational functionality,
including A/B testing, canary releases, access control, and end-to-end authentication.

1.1.2. Core features

Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of
services:

e Traffic Management - Control the flow of traffic and API calls between services, make calls
more reliable, and make the network more robust in the face of adverse conditions.

® Service Identity and Security- Provide services in the mesh with a verifiable identity and
provide the ability to protect service traffic as it flows over networks of varying degrees of
trustworthiness.

® Policy Enforcement - Apply organizational policy to the interaction between services, ensure
access policies are enforced and resources are fairly distributed among consumers. Policy

changes are made by configuring the mesh, not by changing application code.

® Telemetry - Gain understanding of the dependencies between services and the nature and flow
of traffic between them, providing the ability to quickly identify issues.

17

https://access.redhat.com/support/policy/updates/openshift#ossm
https://istio.io/

OpenShift Container Platform 4.13 Service Mesh

1.2. SERVICE MESH RELEASE NOTES

1.2.1. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

1.2.2. New features and enhancements

This release adds improvements related to the following components and concepts.

1.2.2.1. New features Red Hat OpenShift Service Mesh version 2.5.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

The most current version of the Red Hat OpenShift Service Mesh Operator can be used with all

supported versions of Service Mesh. The version of Service Mesh is specified using the
ServiceMeshControlPlane.

1.2.2.1.1. Component versions for Red Hat OpenShift Service Mesh version 2.5.2

Component Version

Istio 118.5
Envoy Proxy 1.26.8
Kiali 1.73.8

1.2.2.2. New features Red Hat OpenShift Service Mesh version 2.5.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.2.1. Component versions for Red Hat OpenShift Service Mesh version 2.5.1

Component Version
Istio 118.5
Envoy Proxy 1.26.8
Kiali 1.73.7

1.2.2.3. New features Red Hat OpenShift Service Mesh version 2.5

18

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. SERVICE MESH 2.X

This release of Red Hat OpenShift Service Mesh adds new features, addresses Common Vulnerabilities
and Exposures (CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and
later.

This release ends maintenance support for OpenShift Service Mesh version 2.2. If you are using
OpenShift Service Mesh version 2.2, you should update to a supported version.

1.2.2.3.1. Component versions for Red Hat OpenShift Service Mesh version 2.5

Component Version

Istio 118.5
Envoy Proxy 1.26.8
Kiali 1.73.4

1.2.2.3.2. Istio 1.18 support

Service Mesh 2.5 is based on Istio 1.18, which brings in new features and product enhancements. While
Red Hat OpenShift Service Mesh supports many Istio 1.18 features, the following exceptions should be
noted:

® Ambient mesh is not supported

® QuickAssist Technology (QAT) PrivateKeyProvider in Istio is not supported

1.2.2.3.3. Cluster-Wide mesh migration

This release adds documentation for migrating from a multitenant mesh to a cluster-wide mesh. For
more information, see the following documentation:

® "About migrating to a cluster-wide mesh"
® "Excluding namespaces from a cluster-wide mesh"
® "Defining which namespaces receive sidecar injection in a cluster-wide mesh"

® "Excluding individual pods from a cluster-wide mesh"

1.2.2.3.4. Red Hat OpenShift Service Mesh Operator on ARM-based clusters

This release provides the Red Hat OpenShift Service Mesh Operator on ARM-based clusters as a
generally available feature.

1.2.2.3.5. Integration with Red Hat OpenShift distributed tracing platform (Tempo) Stack

This release introduces a generally available integration of the tracing extension provider(s). You can
expose tracing data to the Red Hat OpenShift distributed tracing platform (Tempo) stack by appending
a named element and the zipkin provider to the spec.meshConfig.extensionProviders specification.
Then, a telemetry custom resource configures Istio proxies to collect trace spans and send them to the
Tempo distributor service endpoint.

19

OpenShift Container Platform 4.13 Service Mesh

NOTE

Red Hat OpenShift distributed tracing platform (Tempo) Stack is not supported on IBM
Z

1.2.2.3.6. OpenShift Service Mesh Console plugin

This release introduces a generally available version of the OpenShift Service Mesh Console (OSSMC)
plugin.

The OSSMC plugin is an extension to the OpenShift Console that provides visibility into your Service
Mesh. With the OSSMC plugin installed, a new Service Mesh menu option is available on the navigation
pane of the web console, as well as new Service Mesh tabs that enhance existing Workloads and Service
console pages.

The features of the OSSMC plugin are very similar to those of the standalone Kiali Console. The
OSSMC plugin does not replace the Kiali Console, and after installing the OSSMC plugin, you can still
access the standalone Kiali Console.

1.2.2.3.7. Istio OpenShift Routing (IOR) default setting change

The default setting for Istio OpenShift Routing (IOR) has changed. Starting with this release, automatic
routes are disabled by default for new instances of the ServiceMeshControlPlane resource.

For new instances of the ServiceMeshControlPlane resources, you can use automatic routes by setting
the enabled field to true in the gateways.openshiftRoute specification of the
ServiceMeshControlPlane resource.

Example ServiceMeshControlPlane resource

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
gateways:
openshiftRoute:
enabled: true

When updating existing instances of the ServiceMeshControlPlane resource to Red Hat OpenShift
Service Mesh version 2.5, automatic routes remain enabled by default.

1.2.2.3.8. Istio proxy concurrency configuration enhancement

The concurrency parameter in the networking.istio API configures how many worker threads the Istio
proxy runs.

For consistency across deployments, Istio now configures the concurrency parameter based upon the
CPU limit allocated to the proxy container. For example, a limit of 2500m would set the concurrency
parameter to 3. If you set the concurrency parameter to a different value, then Istio uses that value to
configure how many threads the proxy runs instead of using the CPU limit.

Previously, the default setting for the parameter was 2.

1.2.2.3.9. Gateway API CRD versions

20

CHAPTER 1. SERVICE MESH 2.X

IMPORTANT

OpenShift Container Platform Gateway APl support is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

A new version of the Gateway API custom resource definition (CRD) is now available. Refer to the
following table to determine which Gateway API version should be installed with the OpenShift Service
Mesh version you are using:

Service Mesh Version Istio Version Gateway API Version

2.5x 118.x 0.6.2 Use the experimental
branch because
ReferenceGrand is
missing in v0.6.2

2.4.x 116.x 0.51 For multitenant mesh
deployment, all Gateway
API CRDs must be
present. Use the
experimental branch.

1.2.2.4. New features Red Hat OpenShift Service Mesh version 2.4.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

The most current version of the Red Hat OpenShift Service Mesh Operator can be used with all

supported versions of Service Mesh. The version of Service Mesh is specified using the
ServiceMeshControlPlane.

1.2.2.4.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.8

Component Version

Istio 116.7
Envoy Proxy 1.24.12
Kiali 1.65.1

1.2.2.5. New features Red Hat OpenShift Service Mesh version 2.4.7

21

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.13 Service Mesh

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.5.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.7

Component Version

Istio 116.7
Envoy Proxy 1.24.12
Kiali 1.65.1

1.2.2.6. New features Red Hat OpenShift Service Mesh version 2.4.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.6.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.6

Component Version

Istio 116.7
Envoy Proxy 1.24.12
Kiali 1.65.1

1.2.2.7. New features Red Hat OpenShift Service Mesh version 2.4.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.7.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.5

Component Version

Istio 116.7
Envoy Proxy 1.24.12
Kiali 1.65.1

1.2.2.8. New features Red Hat OpenShift Service Mesh version 2.4.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

22

CHAPTER 1. SERVICE MESH 2.X

1.2.2.8.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.4

Component Version

Istio 1.16.7
Envoy Proxy 1.24.12
Jaeger 1.47.0
Kiali 1.65.10

1.2.2.9. New features Red Hat OpenShift Service Mesh version 2.4.3

® The Red Hat OpenShift Service Mesh Operator is now available on ARM-based clusters as a
Technology Preview feature.

® The envoyExtAuthzGrpc field has been added, which is used to configure an external
authorization provider using the gRPC API.

® Common Vulnerabilities and Exposures (CVEs) have been addressed.

® This release is supported on OpenShift Container Platform 4.10 and newer versions.

1.2.2.9.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.3

Component Version

Istio 1.16.7
Envoy Proxy 1.24.10
Jaeger 1.42.0
Kiali 1.65.8

1.2.2.9.2. Red Hat OpenShift Service Mesh operator to ARM-based clusters

IMPORTANT

Red Hat OpenShift Service Mesh operator to ARM based clusters is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

23

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.13 Service Mesh

This release makes the Red Hat OpenShift Service Mesh Operator available on ARM-based clusters as a
Technology Preview feature. Images are available for Istio, Envoy, Prometheus, Kiali, and Grafana.
Images are not available for Jaeger, so Jaeger must be disabled as a Service Mesh add-on.

1.2.2.9.3. Remote Procedure Calls (gRPC) API support for external authorization configuration

This enhancement adds the envoyExtAuthzGrpc field to configure an external authorization provider
using the gRPC API.

1.2.2.10. New features Red Hat OpenShift Service Mesh version 2.4.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.10.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.2

Component Version

Istio 1.16.7
Envoy Proxy 1.24.10
Jaeger 1.42.0
Kiali 1.65.7

1.2.2.11. New features Red Hat OpenShift Service Mesh version 2.4.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.11.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.1

Component Version

Istio 116.5

Envoy Proxy 1.24.8
Jaeger 1.42.0
Kiali 1.65.7

1.2.2.12. New features Red Hat OpenShift Service Mesh version 2.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

24

CHAPTER 1. SERVICE MESH 2.X

1.2.2.12.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4

Component Version

Istio 1.16.5

Envoy Proxy 1.24.8
Jaeger 1.42.0
Kiali 1.65.6

1.2.2.12.2. Cluster-wide deployments

This enhancement introduces a generally available version of cluster-wide deployments. A cluster-wide
deployment contains a service mesh control plane that monitors resources for an entire cluster. The
control plane uses a single query across all namespaces to monitor each Istio or Kubernetes resource
that affects the mesh configuration. Reducing the number of queries the control plane performsin a
cluster-wide deployment improves performance.

1.2.2.12.3. Support for discovery selectors

This enhancement introduces a generally available version of the meshConfig.discoverySelectors
field, which can be used in cluster-wide deployments to limit the services the service mesh control plane
can discover.

spec:
meshConfig
discoverySelectors:
- matchLabels:
env: prod
region: us-easti
- matchExpressions:
- key: app
operator: In
values:
- cassandra
- spark

1.2.2.12.4. Integration with cert-manager istio-csr

With this update, Red Hat OpenShift Service Mesh integrates with the cert-manager controller and the
istio-csr agent. cert-manager adds certificates and certificate issuers as resource types in Kubernetes
clusters, and simplifies the process of obtaining, renewing, and using those certificates. cert-manager
provides and rotates an intermediate CA certificate for Istio. Integration with istio-csr enables users to
delegate signing certificate requests from Istio proxies to cert-manager. ServiceMeshControlPlane
v2.4 accepts CA certificates provided by cert-manager as cacerts secret.

NOTE

Integration with cert-manager and istio-csr is not supported on IBM Power, IBM Z, and
IBM® LinuxONE.

25

OpenShift Container Platform 4.13 Service Mesh

1.2.2.12.5. Integration with external authorization systems

This enhancement introduces a generally available method of integrating Red Hat OpenShift Service
Mesh with external authorization systems by using the action: CUSTOM field of the
AuthorizationPolicy resource. Use the envoyExtAuthzHttp field to delegate the access control to an
external authorization system.

1.2.2.12.6. Integration with external Prometheus installation

This enhancement introduces a generally available version of the Prometheus extension provider. You
can expose metrics to the OpenShift Container Platform monitoring stack or a custom Prometheus
installation by setting the value of the extensionProviders field to prometheus in the
spec.meshConfig specification. The telemetry object configures Istio proxies to collect traffic metrics.
Service Mesh only supports the Telemetry APl for Prometheus metrics.

spec:
meshConfig:
extensionProviders:
- name: prometheus
prometheus: {}
apiVersion: telemetry.istio.io/vialphai
kind: Telemetry
metadata:
name: enable-prometheus-metrics
spec:
metrics:
- providers:
- name: prometheus

1.2.2.12.7. Single stack IPv6 support

This enhancement introduces generally available support for single stack IPv6 clusters, providing access
to a broader range of IP addresses. Dual stack IPv4 or IPv6 cluster is not supported.

NOTE

Single stack IPv6 support is not available on IBM Power, IBM Z, and IBM® LinuxONE.

1.2.2.12.8. OpenShift Container Platform Gateway API support

IMPORTANT

OpenShift Container Platform Gateway APl support is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

26

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. SERVICE MESH 2.X

This enhancement introduces an updated Iechnology Preview version ot the OpenShitt Container
Platform Gateway API. By default, the OpenShift Container Platform Gateway APl is disabled.
1.2.2.12.8.1. Enabling OpenShift Container Platform Gateway API

To enable the OpenShift Container Platform Gateway API, set the value of the enabled field to true in
the techPreview.gatewayAPI specification of the ServiceMeshControlPlane resource.

spec:
techPreview:
gatewayAPI:
enabled: true

Previously, environment variables were used to enable the Gateway API.

spec:
runtime:
components:
pilot:
container:
env:
PILOT_ENABLE_GATEWAY_API: "true"
PILOT_ENABLE_GATEWAY_API_STATUS: "true"
PILOT_ENABLE_GATEWAY_API DEPLOYMENT_CONTROLLER: "true"

1.2.2.12.9. Control plane deployment on infrastructure nodes

Service Mesh control plane deployment is now supported and documented on OpenShift infrastructure
nodes. For more information, see the following documentation:

e Configuring all Service Mesh control plane components to run on infrastructure nodes

e Configuring individual Service Mesh control plane components to run on infrastructure nodes

1.2.2.12.10. Istio 1.16 support

Service Mesh 2.4 is based on Istio 1.16, which brings in new features and product enhancements. While
many Istio 1.16 features are supported, the following exceptions should be noted:

e HBONE protocol for sidecars is an experimental feature that is not supported.
® Service Mesh on ARM64 architecture is not supported.

® OpenTelemetry APl remains a Technology Preview feature.

1.2.2.13. New features Red Hat OpenShift Service Mesh version 2.3.12

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

The most current version of the Red Hat OpenShift Service Mesh Operator can be used with all

supported versions of Service Mesh. The version of Service Mesh is specified using the
ServiceMeshControlPlane.

27

OpenShift Container Platform 4.13 Service Mesh

1.2.2.13.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.12

Component Version

Istio 114.5
Envoy Proxy 1221
Kiali 1.57.14

1.2.2.14. New features Red Hat OpenShift Service Mesh version 2.3.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.14.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.11

Component Version

Istio 114.5
Envoy Proxy 1221
Kiali 1.57.14

1.2.2.15. New features Red Hat OpenShift Service Mesh version 2.3.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.15.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.10

Component Version

Istio 114.5
Envoy Proxy 1221
Kiali 1.57.14

1.2.2.16. New features Red Hat OpenShift Service Mesh version 2.3.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.16.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.9

28

CHAPTER 1. SERVICE MESH 2.X

Component Version

Istio 114.5
Envoy Proxy 1221
Jaeger 1.47.0
Kiali 1.57.14

1.2.2.17. New features Red Hat OpenShift Service Mesh version 2.3.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.17.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.8

Component Version

Istio 1.14.5

Envoy Proxy 1221
Jaeger 1.47.0
Kiali 1.57.13

1.2.2.18. New features Red Hat OpenShift Service Mesh version 2.3.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.18.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.7

Component Version

Istio 114.6
Envoy Proxy 1221
Jaeger 1.42.0
Kiali 1.57.11

1.2.2.19. New features Red Hat OpenShift Service Mesh version 2.3.6

OpenShift Container Platform 4.13 Service Mesh

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.19.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.6

Component Version

Istio 1.14.5
Envoy Proxy 1221
Jaeger 1.42.0
Kiali 1.57.10

1.2.2.20. New features Red Hat OpenShift Service Mesh version 2.3.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.20.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.5

Component Version

Istio 1.14.5
Envoy Proxy 1.22.9
Jaeger 1.42.0
Kiali 1.57.10

1.2.2.21. New features Red Hat OpenShift Service Mesh version 2.3.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.21.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.4

Component Version

Istio 114.6
Envoy Proxy 1.22.9
Jaeger 1.42.0

30

CHAPTER 1. SERVICE MESH 2.X

Component Version

Kiali 1.57.9

1.2.2.22. New features Red Hat OpenShift Service Mesh version 2.3.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.22.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.3

Component Version

Istio 1.14.5

Envoy Proxy 1.22.9
Jaeger 1.42.0
Kiali 1.57.7

1.2.2.23. New features Red Hat OpenShift Service Mesh version 2.3.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.23.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.2

Component Version

Istio 1.14.5
Envoy Proxy 1.22.7
Jaeger 1.39

Kiali 1.57.6

1.2.2.24. New features Red Hat OpenShift Service Mesh version 2.3.1

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common
Vulnerabilities and Exposures (CVESs), contains bug fixes, and is supported on OpenShift Container
Platform 4.9 and later versions.

1.2.2.24.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.1

31

OpenShift Container Platform 4.13 Service Mesh

Component Version

Istio 1.14.5
Envoy Proxy 1.22.4
Jaeger 1.39

Kiali 1.57.5

1.2.2.25. New features Red Hat OpenShift Service Mesh version 2.3

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common
Vulnerabilities and Exposures (CVESs), contains bug fixes, and is supported on OpenShift Container
Platform 4.9 and later versions.

1.2.2.25.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3

Component Version

Istio 1.14.3
Envoy Proxy 1.22.4
Jaeger 1.38

Kiali 1.57.3

1.2.2.25.2. New Container Network Interface (CNI) DaemonSet container and ConfigMap

The openshift-operators namespace includes a new istio CNI DaemonSet istio-chi-node-v2-3 and a
new ConfigMap resource, istio-cni-config-v2-3.

When upgrading to Service Mesh Control Plane 2.3, the existing istio-cni-node DaemonSet is not
changed, and a new istio-cni-node-v2-3 DaemonSet is created.

This name change does not affect previous releases or any istio-cni-node CNI DaemonSet associated
with a Service Mesh Control Plane deployed using a previous release.

1.2.2.25.3. Gateway injection support

This release introduces generally available support for Gateway injection. Gateway configurations are
applied to standalone Envoy proxies that are running at the edge of the mesh, rather than the sidecar
Envoy proxies running alongside your service workloads. This enables the ability to customize gateway
options. When using gateway injection, you must create the following resources in the namespace where
you want to run your gateway proxy: Service, Deployment, Role, and RoleBinding.

1.2.2.25.4. Istio 1.14 Support

32

CHAPTER 1. SERVICE MESH 2.X

Service Mesh 2.3 is based on Istio 1.14, which brings in new features and product enhancements. While
many Istio 1.14 features are supported, the following exceptions should be noted:

e ProxyConfig APl is supported with the exception of the image field.
® Telemetry APl is a Technology Preview feature.

® SPIRE runtime is not a supported feature.

1.2.2.25.5. OpenShift Service Mesh Console

IMPORTANT

OpenShift Service Mesh Console is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

This release introduces a Technology Preview version of the OpenShift Container Platform Service
Mesh Console, which integrates the Kiali interface directly into the OpenShift web console. For
additional information, see Introducing the OpenShift Service Mesh Console (A Technology Preview)

1.2.2.25.6. Cluster-wide deployment

IMPORTANT

Cluster-wide deployment is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

This release introduces cluster-wide deployment as a Technology Preview feature. A cluster-wide
deployment contains a Service Mesh Control Plane that monitors resources for an entire cluster. The
control plane uses a single query across all namespaces to monitor each Istio or Kubernetes resource
kind that affects the mesh configuration. In contrast, the multitenant approach uses a query per
namespace for each resource kind. Reducing the number of queries the control plane performsin a
cluster-wide deployment improves performance.

NOTE

This cluster-wide deployment documentation is only applicable for control planes
deployed using SMCP v2.3. cluster-wide deployments created using SMCP v2.3 are not
compatible with cluster-wide deployments created using SMCP v2.4.

33

https://access.redhat.com/support/offerings/techpreview/
https://cloud.redhat.com/blog/introducing-the-openshift-service-mesh-console-a-developer-preview
https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.13 Service Mesh

1.2.2.25.6.1. Configuring cluster-wide deployment

The following example ServiceMeshControlPlane object configures a cluster-wide deployment.

To create an SMCP for cluster-wide deployment, a user must belong to the cluster-admin ClusterRole.
If the SMCP is configured for cluster-wide deployment, it must be the only SMCP in the cluster. You
cannot change the control plane mode from multitenant to cluster-wide (or from cluster-wide to
multitenant). If a multitenant control plane already exists, delete it and create a new one.

This example configures the SMCP for cluster-wide deployment.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:

name: cluster-wide

namespace: istio-system
spec:

version: v2.3

techPreview:

controlPlaneMode: ClusterScoped ﬂ

Enables Istiod to monitor resources at the cluster level rather than monitor each individual
namespace.

Additionally, the SMMR must also be configured for cluster-wide deployment. This example configures
the SMMR for cluster-wide deployment.

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
name: default
spec:
members:

- 0

Adds all namespaces to the mesh, including any namespaces you subsequently create. The
following namespaces are not part of the mesh: kube, openshift, kube-* and openshift-*.

1.2.2.26. New features Red Hat OpenShift Service Mesh version 2.2.12

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.26.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.12

Component Version

Istio 112.9

Envoy Proxy 1.20.8

34

CHAPTER 1. SERVICE MESH 2.X

Component Version

Jaeger 1.47.0

Kiali 1.48.11

1.2.2.27. New features Red Hat OpenShift Service Mesh version 2.2.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.27.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.11

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.47.0
Kiali 1.48.10

1.2.2.28. New features Red Hat OpenShift Service Mesh version 2.2.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.28.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.10

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.8

1.2.2.29. New features Red Hat OpenShift Service Mesh version 2.2.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.29.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.9

OpenShift Container Platform 4.13 Service Mesh

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.7

1.2.2.30. New features Red Hat OpenShift Service Mesh version 2.2.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.30.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.8

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.7

1.2.2.31. New features Red Hat OpenShift Service Mesh version 2.2.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.31.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.7

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.6

1.2.2.32. New features Red Hat OpenShift Service Mesh version 2.2.6

36

CHAPTER 1. SERVICE MESH 2.X

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.32.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.6

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.39
Kiali 1.48.5

1.2.2.33. New features Red Hat OpenShift Service Mesh version 2.2.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.33.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.5

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.39
Kiali 1.48.3

1.2.2.34. New features Red Hat OpenShift Service Mesh version 2.2.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.34.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.4

Component Version

Istio 112.9
Envoy Proxy 1.20.8
Jaeger 1.36.14

OpenShift Container Platform 4.13 Service Mesh

Component Version

Kiali 1.48.3

1.2.2.35. New features Red Hat OpenShift Service Mesh version 2.2.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.35.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.3

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.36
Kiali 1.48.3

1.2.2.36. New features Red Hat OpenShift Service Mesh version 2.2.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.36.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.2

Component Version

Istio 112.7
Envoy Proxy 1.20.6
Jaeger 1.36
Kiali 1.48.2-1

1.2.2.36.2. Copy route labels

With this enhancement, in addition to copying annotations, you can copy specific labels for an OpenShift
route. Red Hat OpenShift Service Mesh copies all labels and annotations present in the Istio Gateway
resource (with the exception of annotations starting with kubectl.kubernetes.io) into the managed
OpenShift Route resource.

1.2.2.37. New features Red Hat OpenShift Service Mesh version 2.2.1

38

CHAPTER 1. SERVICE MESH 2.X

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.37.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.1

Component Version

Istio 112.7
Envoy Proxy 1.20.6
Jaeger 1.34.1
Kiali 1.48.2-1

1.2.2.38. New features Red Hat OpenShift Service Mesh 2.2

This release of Red Hat OpenShift Service Mesh adds new features and enhancements, and is
supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.38.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2

Component Version

Istio 112.7
Envoy Proxy 1.20.4
Jaeger 1.34.1
Kiali 1.48.0.16

1.2.2.38.2. WasmPlugin API

This release adds support for the WasmPlugin APl and deprecates the ServiceMeshExtension API.

1.2.2.38.3. ROSA support

This release introduces service mesh support for Red Hat OpenShift on AWS (ROSA), including multi-
cluster federation.

1.2.2.38.4. istio-node DaemonSet renamed

This release, the istio-node DaemonSet is renamed to istio-cnhi-node to match the name in upstream
Istio.

1.2.2.38.5. Envoy sidecar networking changes

Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by default.

OpenShift Container Platform 4.13 Service Mesh

1.2.2.38.6. Service Mesh Control Plane 1.1

This release marks the end of support for Service Mesh Control Planes based on Service Mesh 1.1 for all
platforms.

1.2.2.38.7. Istio 1.12 Support

Service Mesh 2.2 is based on Istio 1.12, which brings in new features and product enhancements. While
many Istio 1.12 features are supported, the following unsupported features should be noted:

e AuthPolicy Dry Runis a tech preview feature.

® gRPC Proxyless Service Mesh is a tech preview feature.
® Telemetry APl is a tech preview feature.

® Discovery selectors is not a supported feature.

® External control plane is not a supported feature.

® Gateway injection is not a supported feature.

1.2.2.38.8. Kubernetes Gateway API

IMPORTANT

Kubernetes Gateway APl is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Kubernetes Gateway APl is a technology preview feature that is disabled by default. If the Kubernetes
API deployment controller is disabled, you must manually deploy and link an ingress gateway to the
created Gateway object.

If the Kubernetes API deployment controller is enabled, then an ingress gateway automatically deploys
when a Gateway object is created.

1.2.2.38.8.1. Installing the Gateway APl CRDs

The Gateway API CRDs do not come preinstalled by default on OpenShift clusters. Install the CRDs
prior to enabling Gateway API support in the SMCP.

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize "github.com/kubernetes-
sigs/gateway-api/config/crd?ref=v0.4.0" | kubectl apply -f -; }

1.2.2.38.8.2. Enabling Kubernetes Gateway API

To enable the feature, set the following environment variables for the Istiod container in
ServiceMeshControlPlane:

40

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. SERVICE MESH 2.X

spec:
runtime:
components:
pilot:
container:
env:
PILOT_ENABLE_GATEWAY_API: "true"
PILOT_ENABLE_GATEWAY_API_STATUS: "true"
and optionally, for the deployment controller
PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"

Restricting route attachment on Gateway APl listeners is possible using the SameNamespace or All
settings. Istio ignores usage of label selectors in listeners.allowedRoutes.namespaces and reverts to
the default behavior (SameNamespace).

1.2.2.38.8.3. Manually linking an existing gateway to a Gateway resource

If the Kubernetes API deployment controller is disabled, you must manually deploy and then link an
ingress gateway to the created Gateway resource.

apiVersion: gateway.networking.k8s.io/v1alpha2
kind: Gateway
metadata:
name: gateway
spec:
addresses:
- value: ingress.istio-gateways.svc.cluster.local
type: Hosthname

1.2.2.39. New features Red Hat OpenShift Service Mesh 2.1.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.39.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.6

Component Version

Istio 1.9.9
Envoy Proxy 117.5
Jaeger 1.36
Kiali 1.36.16

1.2.2.40. New features Red Hat OpenShift Service Mesh 2.1.5.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

41

OpenShift Container Platform 4.13 Service Mesh

1.2.2.40.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.2

Component Version

Istio 1.9.9
Envoy Proxy 117.5
Jaeger 1.36
Kiali 1.24.17

1.2.2.41. New features Red Hat OpenShift Service Mesh 2.1.5.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.41.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1

Component Version

Istio 1.9.9
Envoy Proxy 117.5
Jaeger 1.36
Kiali 1.36.13

1.2.2.42. New features Red Hat OpenShift Service Mesh 2.1.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.42.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.36
Kiali 1.36.12-1

42

CHAPTER 1. SERVICE MESH 2.X

1.2.2.43. New features Red Hat OpenShift Service Mesh 2.1.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.43.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.4

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.30.2
Kiali 1.36.12-1

1.2.2.44. New features Red Hat OpenShift Service Mesh 2.1.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.44.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.3

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.30.2
Kiali 1.36.10-2

1.2.2.45. New features Red Hat OpenShift Service Mesh 2.1.2.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.45.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1

Component Version

Istio 1.9.9

Envoy Proxy 1171

OpenShift Container Platform 4.13 Service Mesh

Component Version

Jaeger 1.30.2

Kiali 1.36.9

1.2.2.46. New features Red Hat OpenShift Service Mesh 2.1.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

With this release, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is now installed

to the openshift-distributed-tracing namespace by default. Previously the default installation had
been in the openshift-operator namespace.

1.2.2.46.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.30.1
Kiali 1.36.8

1.2.2.47. New features Red Hat OpenShift Service Mesh 2.1.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

This release also adds the ability to disable the automatic creation of network policies.
1.2.2.47.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.1

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.24.1
Kiali 1.36.7

1.2.2.47.2. Disabling network policies

44

CHAPTER 1. SERVICE MESH 2.X

Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies
resources in the Service Mesh control plane and application namespaces. This is to ensure that
applications and the control plane can communicate with each other.

If you want to disable the automatic creation and management of NetworkPolicies resources, for
example to enforce company security policies, you can do so. You can edit the
ServiceMeshControlPlane to set the spec.security.manageNetworkPolicy setting to false

NOTE

When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service
Mesh will not create any NetworkPolicy objects. The system administrator is responsible
for managing the network and fixing any issues this might cause.

ol

Procedure

1. In the OpenShift Container Platform web console, click Operators = Installed Operators.

2. Select the project where you installed the Service Mesh control plane, for example istio-system,
from the Project menu.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane, for example basic-install.

4. On the Create ServiceMeshControlPlane Details page, click YAML to modify your
configuration.

5. Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as
shown in this example.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
security:
trust:
manageNetworkPolicy: false

6. Click Save.

1.2.2.48. New features and enhancements Red Hat OpenShift Service Mesh 2.1

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.9.8, Envoy Proxy 1.17.1, Jaeger
1.24.1, and Kiali 1.36.5 on OpenShift Container Platform 4.6 EUS, 4.7, 4.8, 4.9, along with new features
and enhancements.

1.2.2.48.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1

Component Version

Istio 1.9.6

Envoy Proxy 1171

45

OpenShift Container Platform 4.13 Service Mesh

Component Version

Jaeger 1.24.1

Kiali 1.36.5

1.2.2.48.2. Service Mesh Federation

New Custom Resource Definitions (CRDs) have been added to support federating service meshes.
Service meshes may be federated both within the same cluster or across different OpenShift clusters.
These new resources include:

e ServiceMeshPeer - Defines a federation with a separate service mesh, including gateway
configuration, root trust certificate configuration, and status fields. In a pair of federated
meshes, each mesh will define its own separate ServiceMeshPeer resource.

e ExportedServiceMeshSet - Defines which services for a given ServiceMeshPeer are available
for the peer mesh to import.

e ImportedServiceSet - Defines which services for a given ServiceMeshPeer are imported from
the peer mesh. These services must also be made available by the peer’s
ExportedServiceMeshSet resource.

Service Mesh Federation is not supported between clusters on Red Hat OpenShift Service on AWS
(ROSA), Azure Red Hat OpenShift (ARO), or OpenShift Dedicated (OSD).

1.2.2.48.3. OVN-Kubernetes Container Network Interface (CNI) generally available

The OVN-Kubernetes Container Network Interface (CNI) was previously introduced as a Technology
Preview feature in Red Hat OpenShift Service Mesh 2.0.1and is now generally available in Red Hat
OpenShift Service Mesh 2.1and 2.0.x for use on OpenShift Container Platform 4.7.32, OpenShift
Container Platform 4.8.12, and OpenShift Container Platform 4.9.

1.2.2.48.4. Service Mesh WebAssembly (WASM) Extensions

The ServiceMeshExtensions Custom Resource Definition (CRD), first introduced in 2.0 as Technology
Preview, is now generally available. You can use CRD to build your own plugins, but Red Hat does not
provide support for the plugins you create.

Mixer has been completely removed in Service Mesh 2.1. Upgrading from a Service Mesh 2.0.x release to
2.1 will be blocked if Mixer is enabled. Mixer plugins will need to be ported to WebAssembly Extensions.

1.2.2.48.5. 3scale WebAssembly Adapter (WASM)

With Mixer now officially removed, OpenShift Service Mesh 2.1 does not support the 3scale mixer
adapter. Before upgrading to Service Mesh 2.1, remove the Mixer-based 3scale adapter and any
additional Mixer plugins. Then, manually install and configure the new 3scale WebAssembly adapter with
Service Mesh 2.1+ using a ServiceMeshExtension resource.

3scale 2.1Tintroduces an updated Service Mesh integration based on WebAssembly.

1.2.2.48.6. Istio 1.9 Support

46

CHAPTER 1. SERVICE MESH 2.X

Service Mesh 2.1is based on Istio 1.9, which brings in a large number of new features and product
enhancements. While the majority of Istio 1.9 features are supported, the following exceptions should be
noted:

® \Virtual Machine integration is not yet supported

® Kubernetes Gateway APl is not yet supported

® Remote fetch and load of WebAssembly HTTP filters are not yet supported

® Custom CA Integration using the Kubernetes CSR APl is not yet supported

® Request Classification for monitoring traffic is a tech preview feature

® |ntegration with external authorization systems via Authorization policy’'s CUSTOM action is a
tech preview feature

1.2.2.48.7. Improved Service Mesh operator performance

The amount of time Red Hat OpenShift Service Mesh uses to prune old resources at the end of every
ServiceMeshControlPlane reconciliation has been reduced. This results in faster
ServiceMeshControlPlane deployments, and allows changes applied to existing SMCPs to take effect
more quickly.

1.2.2.48.8. Kiali updates

Kiali 1.36 includes the following features and enhancements:

® Service Mesh troubleshooting functionality

o Control plane and gateway monitoring

o Proxy sync statuses

o Envoy configuration views

o Unified view showing Envoy proxy and application logs interleaved
® Namespace and cluster boxing to support federated service mesh views

® New validations, wizards, and distributed tracing enhancements

1.2.2.49. New features Red Hat OpenShift Service Mesh 2.0.11.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.49.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1

Component Version

Istio 1.6.14

Envoy Proxy 114.5

47

OpenShift Container Platform 4.13 Service Mesh

Component Version

Jaeger 1.36

Kiali 1.24.17

1.2.2.50. New features Red Hat OpenShift Service Mesh 2.0.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.50.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11

Component Version

Istio 1.6.14
Envoy Proxy 114.5
Jaeger 1.36
Kiali 1.24.16-1

1.2.2.51. New features Red Hat OpenShift Service Mesh 2.0.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.51.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.10

Component Version

Istio 1.6.14
Envoy Proxy 114.5
Jaeger 1.28.0
Kiali 1.24.16-1

1.2.2.52. New features Red Hat OpenShift Service Mesh 2.0.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.52.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.9

48

CHAPTER 1. SERVICE MESH 2.X

Component Version

Istio 1.6.14
Envoy Proxy 114.5
Jaeger 1.24.1
Kiali 1.24.11

1.2.2.53. New features Red Hat OpenShift Service Mesh 2.0.8

This release of Red Hat OpenShift Service Mesh addresses bug fixes.

1.2.2.54. New features Red Hat OpenShift Service Mesh 2.0.7.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs).

1.2.2.54.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments

Red Hat OpenShift Service Mesh contains a remotely exploitable vulnerability, CVE-2021-39156, where
an HTTP request with a fragment (a section in the end of a URI that begins with a # character) in the URI
path could bypass the Istio URI path-based authorization policies. For instance, an Istio authorization
policy denies requests sent to the URI path /user/profile. In the vulnerable versions, a request with URI
path /user/profile#section1 bypasses the deny policy and routes to the backend (with the normalized
URI path /user/profile%23section1), possibly leading to a security incident.

You are impacted by this vulnerability if you use authorization policies with DENY actions and
operation.paths, or ALLOW actions and operation.notPaths.

With the mitigation, the fragment part of the request’s URI is removed before the authorization and
routing. This prevents a request with a fragment in its URI from bypassing authorization policies which

are based on the URI without the fragment part.

To opt-out from the new behavior in the mitigation, the fragment section in the URI will be kept. You can
configure your ServiceMeshControlPlane to keep URI fragments.

' WARNING
A Disabling the new behavior will normalize your paths as described above and is

considered unsafe. Ensure that you have accommodated for this in any security
policies before opting to keep URI fragments.

Example ServiceMeshControlPlane modification

I apiVersion: maistra.io/v2

49

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39156

OpenShift Container Platform 4.13 Service Mesh

kind: ServiceMeshControlPlane
metadata:

name: basic
spec:

techPreview:

meshConfig:
defaultConfig:
proxyMetadata: HTTP_STRIP_FRAGMENT_FROM_PATH_UNSAFE_IF_DISABLED: "false"

1.2.2.54.2. Required update for authorization policies

Istio generates hostnames for both the hostname itself and all matching ports. For instance, a virtual
service or Gateway for a host of "httpbin.foo" generates a config matching "httpbin.foo and
httpbin.foo:*". However, exact match authorization policies only match the exact string given for the
hosts or notHosts fields.

Your cluster is impacted if you have AuthorizationPolicy resources using exact string comparison for
the rule to determine hosts or notHosts.

You must update your authorization policy rules to use prefix match instead of exact match. For
example, replacing hosts: ["httpbin.com™] with hosts: ["httpbin.com:*""] in the first
AuthorizationPolicy example.

First example AuthorizationPolicy using prefix match

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: httpbin
namespace: foo
spec:
action: DENY
rules:
- from:
- source:
namespaces: ["dev"]
to:
- operation:
hosts: [“httpbin.com”,"httpbin.com:*"]

Second example AuthorizationPolicy using prefix match

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:

name: httpbin

namespace: default
spec:

action: DENY

rules:

- to:

- operation:
hosts: ["httpbin.example.com:*"]

50

https://istio.io/latest/docs/reference/config/security/authorization-policy/#Operation
https://istio.io/latest/docs/reference/config/security/authorization-policy/#Rule

CHAPTER 1. SERVICE MESH 2.X

1.2.2.55. New features Red Hat OpenShift Service Mesh 2.0.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.56. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft
Azure Red Hat OpenShift

Red Hat OpenShift Service Mesh is now supported through Red Hat OpenShift Dedicated and
Microsoft Azure Red Hat OpenShift.

1.2.2.57. New features Red Hat OpenShift Service Mesh 2.0.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.58. New features Red Hat OpenShift Service Mesh 2.0.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.59. New features Red Hat OpenShift Service Mesh 2.0.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

IMPORTANT

There are manual steps that must be completed to address CVE-2021-29492 and CVE-
2021-31920.

1.2.2.59.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920

Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or
escaped slash characters (%2F or %5C) could potentially bypass an Istio authorization policy when path-
based authorization rules are used.

For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the
request at path /admin. A request sent to the URL path //admin will NOT be rejected by the
authorization policy.

According to RFC 3986, the path //admin with multiple slashes should technically be treated as a
different path from the /admin. However, some backend services choose to normalize the URL paths by
merging multiple slashes into a single slash. This can result in a bypass of the authorization policy
(//admin does not match /admin), and a user can access the resource at path /admin in the backend;
this would represent a security incident.

Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action +
notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected
policy bypasses.

Your cluster is NOT impacted by this vulnerability if:

® You don't have authorization policies.

51

https://tools.ietf.org/html/rfc3986#section-6

OpenShift Container Platform 4.13 Service Mesh

® Your authorization policies don’t define paths or notPaths fields.

® Your authorization policies use ALLOW action + paths field or DENY action + notPaths field
patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The

upgrade is optional for these cases.

NOTE

The Red Hat OpenShift Service Mesh configuration location for path normalization is

different from the Istio configuration.

1.2.2.59.2. Updating the path normalization configuration

Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also
known as URI normalization, modifies and standardizes the incoming requests' paths so that the
normalized paths can be processed in a standard way. Syntactically different paths may be equivalent

after path normalization.

Istio supports the following normalization schemes on the request paths before evaluating against the

authorization policies and routing the requests:

Table 1.1. Normalization schemes

Option Description Example

NONE No normalization is ../%2Fa../b is evaluated
done. Anything received by the authorization
by Envoy will be policies and sent to your
forwarded exactly as-is service.

to any backend service.

BASE This is currently the /al../b is normalized to
option used in the /b.\da is normalized to
default installation of /da.

Istio. This applies the
normalize_path
option on Envoy proxies,
which follows RFC 3986
with extra normalization
to convert backslashes
to forward slashes.

MERGE_SLASHES Slashes are merged /al/b is normalized to
after the BASE /a/b.
normalization.

52

Notes

This setting is vulnerable
to CVE-2021-31920.

This setting is vulnerable
to CVE-2021-31920.

Update to this setting to
mitigate CVE-2021-
31920.

https://en.wikipedia.org/wiki/URI_normalization
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986

CHAPTER 1. SERVICE MESH 2.X

Option Description Example Notes

DECODE_AND MER The strictest setting /a%2fb is normalized to Update to this setting to

GE_SLASHES when you allow all traffic ~ /a/b. mitigate CVE-2021-
by default. This setting is 31920. This setting is
recommended, with the more secure, but also
caveat that you must has the potential to
thoroughly test your break applications. Test
authorization policies your applications before
routes. Percent- deploying to production.

encoded slash and
backslash characters
(%2F, %2f, %5C and
%5¢) are decoded to/
or\, before the
MERGE_SLASHES

normalization.

The normalization algorithms are conducted in the following order:
1. Percent-decode %2F, %2f, %5C and %5c.
2. The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.

3. Merge slashes.

' WARNING
A While these normalization options represent recommendations from HTTP

standards and common industry practices, applications may interpret a URL in any
way it chooses to. When using denial policies, ensure that you understand how your
application behaves.

1.2.2.59.3. Path normalization configuration examples

Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the
security of your system. The following examples can be used as a reference for you to configure your
system. The normalized URL paths, or the original URL paths if NONE is selected, will be:

1. Used to check against the authorization policies.

2. Forwarded to the backend application.

Table 1.2. Configuration examples

If your application...

53

https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path

OpenShift Container Platform 4.13 Service Mesh

If your application... Choose...

Relies on the proxy to do normalization BASE, MERGE_SLASHES or
DECODE_AND_ MERGE_SLASHES

Normalizes request paths based on RFC 3986 and BASE
does not merge slashes.

Normalizes request paths based on RFC 3986 and MERGE_SLASHES
merges slashes, but does not decode percent-
encoded slashes.

Normalizes request paths based on RFC 3986, DECODE_AND_ MERGE_SLASHES
decodes percent-encoded slashes, and merges

slashes.

Processes request paths in a way that is NONE

incompatible with RFC 3986.

1.2.2.59.4. Configuring your SMCP for path normalization

To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your
ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your
system.

SMCP v2 pathNormalization

spec:
techPreview:
global:
pathNormalization: <option>

1.2.2.59.5. Configuring for case normalization

In some environments, it may be useful to have paths in authorization policies compared in a case
insensitive manner. For example, treating hitps:/myurl/get and https://myurl/GeT as equivalent. In
those cases, you can use the EnvoyFilter shown below. This filter will change both the path used for
comparison and the path presented to the application. In this example, istio-system is the name of the
Service Mesh control plane project.

Save the EnvoyfFilter to a file and run the following command:

I $ oc create -f <myEnvoyFilterFile>

apiVersion: networking.istio.io/vialpha3
kind: EnvoyFilter
metadata:
name: ingress-case-insensitive
namespace: istio-system

54

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://myurl/get
https://myurl/GeT

CHAPTER 1. SERVICE MESH 2.X

spec:
configPatches:
- applyTo: HTTP_FILTER
match:
context: GATEWAY
listener:
filterChain:
filter:
name: "envoy.filters.network.http_connection_manager"
subFilter:
name: "envoy.filters.http.router"
patch:
operation: INSERT_BEFORE
value:
name: envoy.lua
typed_config:
"@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
inlineCode: |
function envoy_on_request(request_handle)
local path = request_handle:headers():get(":path")
request_handle:headers():replace(":path", string.lower(path))
end

1.2.2.60. New features Red Hat OpenShift Service Mesh 2.0.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

In addition, this release has the following new features:

® Added an option to the must-gather data collection tool that gathers information from a
specified Service Mesh control plane namespace. For more information, see OSSM-351.

® Improved performance for Service Mesh control planes with hundreds of namespaces

1.2.2.61. New features Red Hat OpenShift Service Mesh 2.0.2

This release of Red Hat OpenShift Service Mesh adds support for IBM Z and IBM Power Systems. It also
addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.2.62. New features Red Hat OpenShift Service Mesh 2.0.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.63. New features Red Hat OpenShift Service Mesh 2.0

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.6.5, Jaeger 1.20.0, Kiali 1.24.2,
and the 3scale Istio Adapter 2.0 and OpenShift Container Platform 4.6.

In addition, this release has the following new features:
e Simplifies installation, upgrades, and management of the Service Mesh control plane.

® Reduces the Service Mesh control plane’s resource usage and startup time.

55

https://issues.redhat.com/browse/OSSM-351

OpenShift Container Platform 4.13 Service Mesh

® |mproves performance by reducing inter-control plane communication over networking.

o Adds support for Envoy's Secret Discovery Service (SDS). SDS is a more secure and
efficient mechanism for delivering secrets to Envoy side car proxies.

® Removes the need to use Kubernetes Secrets, which have well known security risks.

e |mproves performance during certificate rotation, as proxies no longer require a restart to
recognize new certificates.

o Adds support for Istio’s Telemetry v2 architecture, which is built using WebAssembly
extensions. This new architecture brings significant performance improvements.

o Updates the ServiceMeshControlPlane resource to v2 with a streamlined configuration to
make it easier to manage the Service Mesh Control Plane.

o Introduces WebAssembly extensions as a Technology Preview feature.

1.2.3. Technology Preview

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

1.2.4. Deprecated and removed features

Some features available in previous releases have been deprecated or removed.
Deprecated functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not recommended for

new deployments.

Removed functionality no longer exists in the product.

1.2.4.1. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.5

The v2.2 ServiceMeshControlPlane resource is no longer supported. Customers should update their
mesh deployments to use a later version of the ServiceMeshControlPlane resource.

Support for the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is deprecated. To
collect trace spans, use the Red Hat OpenShift distributed tracing platform (Tempo) Stack.

Support for the OpenShift Elasticsearch Operator is deprecated.

Istio will remove support for first-party JSON Web Tokens (JWTs). Istio will still support third-Party
JWTs.

56

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. SERVICE MESH 2.X

1.2.4.2. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.4

The v2.1ServiceMeshControlPlane resource is no longer supported. Customers should upgrade their
mesh deployments to use a later version of the ServiceMeshControlPlane resource.

Support for Istio OpenShift Routing (IOR) is deprecated and will be removed in a future release.
Support for Grafana is deprecated and will be removed in a future release.
Support for the following cipher suites, which were deprecated in Red Hat OpenShift Service Mesh 2.3,
has been removed from the default list of ciphers used in TLS negotiations on both the client and server
sides. Applications that require access to services requiring one of these cipher suites will fail to connect
when a TLS connection is initiated from the proxy.

e ECDHE-ECDSA-AESI28-SHA

e ECDHE-RSA-AES128-SHA

e AESI28-GCM-SHA256

e AESI28-SHA

e ECDHE-ECDSA-AES256-SHA

e ECDHE-RSA-AES256-SHA

® AES256-GCM-SHA384

o AES256-SHA

1.2.4.3. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.3

Support for the following cipher suites has been deprecated. In a future release, they will be removed
from the default list of ciphers used in TLS negotiations on both the client and server sides.

e ECDHE-ECDSA-AESI28-SHA

e ECDHE-RSA-AES128-SHA

e AESI28-GCM-SHA256

e AESI28-SHA

e ECDHE-ECDSA-AES256-SHA

e ECDHE-RSA-AES256-SHA

o AES256-GCM-SHA384

® AES256-SHA
The ServiceMeshExtension API, which was deprecated in Red Hat OpenShift Service Mesh version 2.2,
was removed in Red Hat OpenShift Service Mesh version 2.3. If you are using the

ServiceMeshExtension API, you must migrate to the WasmPlugin API to continue using your
WebAssembly extensions.

1.2.4.4. Deprecated features in Red Hat OpenShift Service Mesh 2.2

57

OpenShift Container Platform 4.13 Service Mesh

The ServiceMeshExtension APl is deprecated as of release 2.2 and will be removed in a future release.
While ServiceMeshExtension APl is still supported in release 2.2, customers should start moving to the
new WasmPlugin API.

1.2.4.5. Removed features in Red Hat OpenShift Service Mesh 2.2

This release marks the end of support for Service Mesh control planes based on Service Mesh 1.1 for all
platforms.

1.2.4.6. Removed features in Red Hat OpenShift Service Mesh 2.1

In Service Mesh 2.1, the Mixer component is removed. Bug fixes and support is provided through the end
of the Service Mesh 2.0 life cycle.

Upgrading from a Service Mesh 2.0.x release to 2.1 will not proceed if Mixer plugins are enabled. Mixer
plugins must be ported to WebAssembly Extensions.

1.2.4.7. Deprecated features in Red Hat OpenShift Service Mesh 2.0

The Mixer component was deprecated in release 2.0 and will be removed in release 2.1. While using Mixer
for implementing extensions was still supported in release 2.0, extensions should have been migrated to
the new WebAssembly mechanism.
The following resource types are no longer supported in Red Hat OpenShift Service Mesh 2.0:

e Policy (authentication.istio.io/vlalphal) is no longer supported. Depending on the specific

configuration in your Policy resource, you may have to configure multiple resources to achieve
the same effect.

o Use RequestAuthentication (security.istio.io/vibetal)
o Use PeerAuthentication (security.istio.io/vibetal)

e ServiceMeshPolicy (maistra.io/v1) is no longer supported.

o Use RequestAuthentication or PeerAuthentication, as mentioned above, but place in the
Service Mesh control plane namespace.

® RbacConfig (rbac.istio.io/vlalphal) is no longer supported.

o Replaced by AuthorizationPolicy (security.istio.io/vibetal), which encompasses behavior of
RbacConfig, ServiceRole, and ServiceRoleBinding.

e ServiceMeshRbacConfig (maistra.io/v1) is no longer supported.

o Use AuthorizationPolicy as above, but place in Service Mesh control plane namespace.
e ServiceRole (rbac.istio.io/vlalphal) is no longer supported.
e ServiceRoleBinding (rbac.istio.io/vlalphal) is no longer supported.

® |nKiali, the login and LDAP strategies are deprecated. A future version will introduce
authentication using OpenlD providers.

1.2.5. Known issues

58

https://istio.io/latest/blog/2020/wasm-announce/

CHAPTER 1. SERVICE MESH

These limitations exist in Red Hat OpenShift Service Mesh:

Red Hat OpenShift Service Mesh does not yet fully support IPv6. As a result, Red Hat
OpenShift Service Mesh does not support dual-stack clusters.

Graph layout - The layout for the Kiali graph can render differently, depending on your

2.X

application architecture and the data to display (number of graph nodes and their interactions).

Because it is difficult if not impossible to create a single layout that renders nicely for every
situation, Kiali offers a choice of several different layouts. To choose a different layout, you can
choose a different Layout Schema from the Graph Settings menu.

The first time you access related services such as distributed tracing platform (Jaeger) and
Grafana, from the Kiali console, you must accept the certificate and re-authenticate using your
OpenShift Container Platform login credentials. This happens due to an issue with how the
framework displays embedded pages in the console.

The Bookinfo sample application cannot be installed on IBM Power, IBM Z, and IBM® LinuxONE.

WebAssembly extensions are not supported on IBM Power, IBM Z, and IBM® LinuxONE.
LuaJIT is not supported on IBM Power, IBM Z, and IBM® LinuxONE.

Single stack IPv6 support is not available on IBM Power, IBM Z, and IBM® LinuxONE.

1.2.5.1. Service Mesh known issues

These are the known issues in Red Hat OpenShift Service Mesh:

OSSM-6267 After a data source is configured correctly in the Grafana, a data query returns
authentication error. Users are not able to view data in the Istio service and Istio workload
dashboards. Currently, no workaround exists for this issue.

OSSM-5556 Gateways are skipped when istio-system labels do not match discovery selectors.

Workaround: Label the control plane namespace to match discovery selectors to avoid skipping

the Gateway configurations.

Example ServiceMeshControlPlane resource

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
namespace: istio-system
spec:
mode: ClusterWide
meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: enabled
gateways:
ingress:
enabled: true

Then, run the following command at the command line:

59

https://issues.redhat.com/browse/MAISTRA-1314
https://issues.redhat.com/browse/OSSM-6267
https://issues.redhat.com/browse/OSSM-5556

OpenShift Container Platform 4.13 Service Mesh

60

I oc label namespace istio-system istio-discovery=enabled

® OSSM-3890 Attempting to use the Gateway APl in a multitenant mesh deployment generates

an error message similar to the following:

2023-05-02T15:20:42.541034Z error watch error in cluster Kubernetes: failed to list
*vialpha2.TLSRoute: the server could not find the requested resource (get
tisroutes.gateway.networking.k8s.io)

2023-05-02T15:20:42.616450Z info kube controller
"gateway.networking.k8s.io/vialpha2/TCPRoute" is syncing...

To support Gateway APl in a multitenant mesh deployment, all Gateway API Custom Resource
Definition (CRD) files must be present in the cluster.

In a multitenant mesh deployment, CRD scan is disabled, and Istio has no way to discover which
CRDs are present in a cluster. As a result, Istio attempts to watch all supported Gateway API
CRDs, but generates errors if some of those CRDs are not present.

Service Mesh 2.3.1and later versions support both vialpha2 and vibetal CRDs. Therefore,
both CRD versions must be present for a multitenant mesh deployment to support the Gateway
API.

Workaround: In the following example, the kubectl get operation installs the vialpha2 and
vibetal CRDs. Note the URL contains the additional experimental segment and updates any
of your existing scripts accordingly:

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize
"github.com/kubernetes-sigs/gateway-api/config/crd/experimental ?ref=v0.5.1" | kubectl apply

-5}

OSSM-2042 Deployment of SMCP named default fails. If you are creating an SMCP object, and
set its version field to v2.3, the name of the object cannot be default. If the name is default,
then the control plane fails to deploy, and OpenShift generates a Warning event with the
following message:

Error processing component mesh-config: error: [mesh-
config/templates/telemetryv2_1.6.yaml: Internal error occurred: failed calling webhook
"rev.validation.istio.io": Post "https://istiod-default.istio-system.svc:443/validate?
timeout=10s": x509: certificate is valid for istiod.istio-system.svc, istiod-remote.istio-
system.svc, istio-pilot.istio-system.svc, not istiod-default.istio-system.svc, mesh-
config/templates/enable-mesh-permissive.yaml

OSSM-1655 Kiali dashboard shows error after enabling mTLS in SMCP.
After enabling the spec.security.controlPlane.mtls setting in the SMCP, the Kiali console
displays the following error message No subsets defined.

OSSM-1505 This issue only occurs when using the ServiceMeshExtension resource on
OpenShift Container Platform 4.11. When you use ServiceMeshExtension on OpenShift
Container Platform 4.11 the resource never becomes ready. If you inspect the issue using oc
describe ServiceMeshExtension you will see the following error: stderr: Error creating
mount namespace before pivot: function not implemented.

Workaround: ServiceMeshExtension was deprecated in Service Mesh 2.2. Migrate from
ServiceMeshExtension to the WasmPlugin resource. For more information, see Migrating
from ServiceMeshExtension to WasmPlugin resources.

https://issues.redhat.com/browse/OSSM-3890
https://issues.redhat.com/browse/OSSM-2042
https://issues.redhat.com/browse/OSSM-1655
https://issues.redhat.com/browse/OSSM-1505

CHAPTER 1. SERVICE MESH 2.X

OSSM-1396 If a gateway resource contains the spec.externallPs setting, instead of being
recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never
recreated.

OSSM-1168 When service mesh resources are created as a single YAML file, the Envoy proxy
sidecar is not reliably injected into pods. When the SMCP, SMMR, and Deployment resources
are created individually, the deployment works as expected.

OSSM-1115 The concurrency field of the spec.proxy API did not propagate to the istio-proxy.
The concurrency field works when set with ProxyConfig. The concurrency field specifies the
number of worker threads to run. If the field is set to 0, then the number of worker threads
available is equal to the number of CPU cores. If the field is not set, then the number of worker
threads available defaults to 2.

In the following example, the concurrency field is set to 0.

apiVersion: networking.istio.io/vibetat
kind: ProxyConfig
metadata:
name: mesh-wide-concurrency
namespace: <istiod-namespace>
spec:
concurrency: 0

OSSM-1052 When configuring a Service ExternallP for the ingressgateway in the Service Mesh
control plane, the service is not created. The schema for the SMCP is missing the parameter for
the service.

Workaround: Disable the gateway creation in the SMCP spec and manage the gateway
deployment entirely manually (including Service, Role and RoleBinding).

OSSM-882 This applies for Service Mesh 2.1 and earlier. Namespace is in the
accessible_namespace list but does not appear in Kiali Ul. By default, Kiali will not show any
namespaces that start with "kube" because these namespaces are typically internal-use only
and not part of a mesh.

For example, if you create a namespace called 'akube-a' and add it to the Service Mesh member
roll, then the Kiali Ul does not display the namespace. For defined exclusion patterns, the
software excludes namespaces that start with or contain the pattern.

Workaround: Change the Kiali Custom Resource setting so it prefixes the setting with a carat
(™). For example:

api:
namespaces:
exclude:
- "Nistio-operator”
- "kube-.*"
- "Aopenshift.*"
- "Nbm.*"
- ""kiali-operator"

MAISTRA-2692 With Mixer removed, custom metrics that have been defined in Service Mesh
2.0.x cannot be used in 2.1. Custom metrics can be configured using EnvoyFilter. Red Hat is
unable to support EnvoyFilter configuration except where explicitly documented. This is due to
tight coupling with the underlying Envoy APIs, meaning that backward compatibility cannot be
maintained.

61

https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1168
https://issues.redhat.com/browse/OSSM-1115
https://issues.redhat.com/browse/OSSM-1052
https://issues.redhat.com/browse/OSSM-882
https://issues.redhat.com/browse/MAISTRA-2692

OpenShift Container Platform 4.13 Service Mesh

® MAISTRA-2648 Service mesh extensions are currently not compatible with meshes deployed on

IBM Z.

MAISTRA-1959 Migration to 2.0 Prometheus scraping (spec.addons.prometheus.scrape set

to true) does not work when mTLS is enabled. Additionally, Kiali displays extraneous graph data
when mTLS is disabled.

This problem can be addressed by excluding port 15020 from proxy configuration, for example,

spec:
proxy:
networking:
trafficControl:
inbound:
excludedPorts:
- 15020

MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does
not occur. The operator fails to add the maistra.io/member-of before the pods are created,
therefore the pods must be deleted and recreated for sidecar injection to occur.

MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all
gateways to stop functioning.

1.2.5.2. Kiali known issues

NOTE

New issues for Kiali should be created in the OpenShift Service Mesh project with the
Component set to Kiali.

These are the known issues in Kiali:

e KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached

browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details
page redirects to the wrong location. The only way you would encounter this issue is if you are
accessing Kiali for the first time.

KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks
do not support Internet Explorer. To access the Kiali console, use one of the two most recent
versions of the Chrome, Edge, Firefox or Safari browser.

1.2.6. Fixed issues

The following issues have been resolved in the current release:

62

® OSSM-6331 Previously, the smcp.general.logging.componentLevels spec accepted invalid

LogLevel values, and the ServiceMeshControlPlane resource was still created. Now, the
terminal shows an error message if an invalid value is used, and the control plane is not created.

OSSM-6290 Previously, the Project filter of the Istio Config list page did not work correctly. All
istio config items were displayed from all namespaces even if you selected a specific project
from the drop-down menu. Now, only the istio config items that belong to the selected project
in the filter dropdown are displayed.

https://issues.redhat.com/browse/MAISTRA-2648
https://issues.jboss.org/browse/MAISTRA-1959
https://issues.jboss.org/browse/MAISTRA-453
https://issues.jboss.org/browse/MAISTRA-158
https://issues.redhat.com/projects/OSSM/
https://issues.jboss.org/browse/KIALI-2206
https://github.com/kiali/kiali/issues/507
https://issues.redhat.com/browse/OSSM-6331
https://issues.redhat.com/browse/OSSM-6290

CHAPTER 1. SERVICE MESH 2.X

® (OSSM-6298 Previously, when you clicked an item reference within the OpenShift Service Mesh
Console (OSSMC) plugin, the console sometimes performed multiple redirects before opening
the desired page. As a result, navigating back to the previous page that was open in the console
caused your web browser to open the wrong page. Now, these redirects do not occur, and
clicking Back in a web browser brings you to the correct page.

® (OSSM-6299 Previously, in OpenShift Container Platform 4.15, when you clicked the Node
graph menu option of any node menu within the traffic graph, the node graph was not
displayed. Instead, the page refreshed with the same traffic graph. Now, clicking the Node
graph menu option correctly displays the node graph.

The following issues have been resolved in previous releases:

1.2.6.1. Service Mesh fixed issues

® OSSM-6177 Previously, when validation messages were enabled in the
ServiceMeshControlPlane (SMCP), the istiod crashed continuously unless GatewayAPI
support was enabled. Now, when validation messages are enabled but GatewayAPI support is
not, the istiod does not continuously crash.

® (OSSM-6163 Resolves the following issues:

o Previously, an unstable Prometheus image was included in the Service Mesh control plane
(SMCP) v2.5, and users were not able to access the Prometheus dashboard. Now, in the
Service Mesh operator 2.5.1, the Prometheus image has been updated.

o Previously, in the Service Mesh control plane (SMCP), a Grafana data source was not able
to set Basic authentication password automatically and users were not able to view metrics
from Prometheus in Grafana mesh dashboards. Now, a Grafana data source password is
configured under the securedsonData field. Metrics are displayed correctly in dashboards.

® (OSSM-6148 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not respond
when the user clicked any option in the menu of any node on the Traffic Graph page. Now, the
plugin responds to the selected option in the menu by redirecting to the corresponding details

page.

® (OSSM-6099 Previously, the OpenShift Service Mesh Console (OSSMC) plugin failed to load
correctly in an IPv6 cluster. Now, the OSSMC plugin configuration has been modified to ensure
proper loading in an IPv6 cluster.

® (OSSM-5960 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not display
notification messages such as backend errors or Istio validations. Now, these notifications are
displayed correctly at the top of the plugin page.

® (OSSM-5959 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not display
TLS and Istio certification information in the Overview page. Now, this information is displayed
correctly.

® (OSSM-5902 Previously, the OpenShift Service Mesh Console (OSSMC) plugin redirected to a
"Not Found Page" error when the user clicked the Istio config health symbol on the Overview
page. Now, the plugin redirects to the correct Istio config details page.

® (OSSM-5541 Previously, an Istio operator pod might keep waiting for the leader lease in some

restart conditions. Now, the leader election implementation has been enhanced to avoid this
issue.

63

https://issues.redhat.com/browse/OSSM-6298
https://issues.redhat.com/browse/OSSM-6299
https://issues.redhat.com/browse/OSSM-6177
https://issues.redhat.com/browse/OSSM-6163
https://issues.redhat.com/browse/OSSM-6148
https://issues.redhat.com/browse/OSSM-6099
https://issues.redhat.com/browse/OSSM-5960
https://issues.redhat.com/browse/OSSM-5959
https://issues.redhat.com/browse/OSSM-5902
https://issues.redhat.com/browse/OSSM-5541

OpenShift Container Platform 4.13 Service Mesh

64

® OSSM-139/ Previously, it you removed the maistra.io/member-of label from a namespace, the

Service Mesh Operator did not automatically reapply the label to the namespace. As a result,
sidecar injection did not work in the namespace.

The Operator would reapply the label to the namespace when you made changes to the
ServiceMeshMember object, which triggered the reconciliation of this member object.

Now, any change to the namespace also triggers the member object reconciliation.

OSSM-3647 Previously, in the Service Mesh control plane (SMCP) v2.2 (Istio 1.12), WasmPlugins
were applied only to inbound listeners. Since SMCP v2.3 (Istio 1.14), WasmPlugins have been
applied to inbound and outbound listeners by default, which introduced regression for users of
the 3scale WasmPlugin. Now, the environment variable
APPLY_WASM_PLUGINS_TO_INBOUND_ONLY is added, which allows safe migration from
SMCP v2.2 tov2.3 and v2.4.

The following setting should be added to the SMCP config:

spec:
runtime:
components:
pilot:
container:
env:
APPLY _WASM_PLUGINS _TO _INBOUND_ONLY: "true"

To ensure safe migration, perform the following steps:
1. Set APPLY_WASM_PLUGINS_TO_INBOUND_ONLY in SMCP v2.2.
2. Upgrade to 2.4.
3. Set spec.match[].mode: SERVER in WasmPlugins.
4. Remove the previously-added environment variable.

OSSM-4851 Previously, an error occurred in the operator deploying new pods in a namespace
scoped inside the mesh when runAsGroup, runAsUser, or fsGroup parameters were nil. Now,
a yaml validation has been added to avoid the nil value.

OSSM-3771Previously, OpenShift routes could not be disabled for additional ingress gateways
defined in a Service Mesh Control Plane (SMCP). Now, a routeConfig block can be added to
each additionallngress gateway so the creation of OpenShift routes can be enabled or
disabled for each gateway.

OSSM-4197 Previously, if you deployed a v2.2 or v2.1 of the 'ServiceMeshControlPlane'
resource, the /etc/cni/multus/net.d/ directory was not created. As a result, the istio-cni pod
failed to become ready, and the istio-cni pods log contained the following message:

$ error Installer exits with open /host/etc/cni/multus/net.d/v2-2-istio-
cni.kubeconfig.tmp.841118073: no such file or directory

Now, if you deploy a v2.2 or v2.1 of the 'ServiceMeshControlPlane' resource, the
/etc/cni/multus/net.d/ directory is created, and the istio-cni pod becomes ready.

OSSM-3993 Previously, Kiali only supported OpenShift OAuth via a proxy on the standard
HTTPS port of 443. Now, Kiali supports OpenShift OAuth over a non-standard HTTPS port. To
enable the port, you must set the spec.server.web_port field to the proxy’s non-standard

https://issues.redhat.com/browse/OSSM-1397
https://issues.redhat.com/browse/OSSM-3647
https://issues.redhat.com/browse/OSSM-4851
https://issues.redhat.com/browse/OSSM-3771
https://issues.redhat.com/browse/OSSM-4197
https://issues.redhat.com/browse/OSSM-3993

CHAPTER 1. SERVICE MESH 2.X

HTTPS port in the Kiali CR.

OSSM-3936 Previously, the values for the injection_label_rev and injection_label_name
attributes were hardcoded. This prevented custom configurations from taking effect in the Kiali
Custom Resource Definition (CRD). Now, the attribute values are not hardcoded. You can
customize the values for the injection_label_rev and injection_label_name attributes in the
spec.istio_labels specification.

OSSM-3644 Previously, the federation egress-gateway received the wrong update of network
gateway endpoints, causing extra endpoint entries. Now, the federation-egress gateway has
been updated on the server side so it receives the correct network gateway endpoints.

OSSM-3595 Previously, the istio-cni plugin sometimes failed on RHEL because SELinux did
not allow the utility iptables-restore to open files in the /tmp directory. Now, SELinux passes
iptables-restore via stdin input stream instead of via a file.

OSSM-3586 Previously, Istio proxies were slow to start when Google Cloud Platform (GCP)
metadata servers were not available. When you upgrade to Istio 1.14.6, Istio proxies start as
expected on GCP, even if metadata servers are not available.

OSSM-3025 Istiod sometimes fails to become ready. Sometimes, when a mesh contained many
member namespaces, the Istiod pod did not become ready due to a deadlock within Istiod. The
deadlock is now resolved and the pod now starts as expected.

OSSM-2493 Default nodeSelector and tolerations in SMCP not passed to Kiali. The
nodeSelector and tolerations you add to SMCP.spec.runtime.defaults are now passed to the
Kiali resource.

OSSM-2492 Default tolerations in SMCP not passed to Jaeger. The nodeSelector and
tolerations you add to SMCP.spec.runtime.defaults are now passed to the Jaeger resource.

OSSM-23741f you deleted one of the ServiceMeshMember resources, then the Service Mesh
operator deleted the ServiceMeshMemberRoll. While this is expected behavior when you
delete the last ServiceMeshMember, the operator should not delete the
ServiceMeshMemberRoll if it contains any members in addition to the one that was deleted.
This issue is now fixed and the operator only deletes the ServiceMeshMemberRoll when the last
ServiceMeshMember resource is deleted.

OSSM-2373 Error trying to get OAuth metadata when logging in. To fetch the cluster version,
the system:anonymous account is used. With the cluster’s default bundled ClusterRoles and
ClusterRoleBinding, the anonymous account can fetch the version correctly. If the
system:anonymous account loses its privileges to fetch the cluster version, OpenShift
authentication becomes unusable.

This is fixed by using the Kiali SA to fetch the cluster version. This also allows for improved
security on the cluster.

OSSM-2371 Despite Kiali being configured as "view-only," a user can change the proxy logging
level via the Workload details' Logs tab’s kebab menu. This issue has been fixed so the options
under "Set Proxy Log Level" are disabled when Kiali is configured as "view-only."

OSSM-2344 Restarting Istiod causes Kiali to flood CRI-O with port-forward requests. This issue
occurred when Kiali could not connect to Istiod and Kiali simultaneously issued a large number of
requests to istiod. Kiali now limits the number of requests it sends to istiod.

OSSM-2335 Dragging the mouse pointer over the Traces scatterchart plot sometimes caused
the Kiali console to stop responding due to concurrent backend requests.

65

https://issues.redhat.com/browse/OSSM-3936
https://issues.redhat.com/browse/OSSM-3644
https://issues.redhat.com/browse/OSSM-3595
https://issues.redhat.com/browse/OSSM-3586
https://issues.redhat.com/browse/OSSM-3025
https://issues.redhat.com/browse/OSSM-2493
https://issues.redhat.com/browse/OSSM-2492
https://issues.redhat.com/browse/OSSM-2374
https://issues.redhat.com/browse/OSSM-2373
https://issues.redhat.com/browse/OSSM-2371
https://issues.redhat.com/browse/OSSM-2344
https://issues.redhat.com/browse/OSSM-2335

OpenShift Container Platform 4.13 Service Mesh

66

OSSM-2221Previously, gateway injection in the ServiceMeshControlPlane namespace was not
possible because the ignore-namespace label was applied to the namespace by default.

When creating a v2.4 control plane, the namespace no longer has the ignore-namespace label
applied, and gateway injection is possible.

In the following example, the oc label command removes the ignore-namespace label from a
namespace in an existing deployment:

I $ oc label namespace istio-system maistra.io/ignore-namespace-

where:

istio_system

Specified the name of the ServiceMeshControlPlane namespace.

OSSM-2053 Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, during SMCP
reconciliation, the SMMR controller removed the member namespaces from
SMMR.status.configuredMembers. This caused the services in the member namespaces to
become unavailable for a few moments.

Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, the SMMR controller no longer
removes the namespaces from SMMR.status.configuredMembers. Instead, the controller adds
the namespaces to SMMR.status.pendingMembers to indicate that they are not up-to-date.
During reconciliation, as each namespace synchronizes with the SMCP, the namespace is
automatically removed from SMMR.status.pendingMembers.

OSSM-1962 Use EndpointSlices in federation controller. The federation controller now uses
EndpointSlices, which improves scalability and performance in large deployments. The
PILOT_USE_ENDPOINT_SLICE flag is enabled by default. Disabling the flag prevents use of
federation deployments.

OSSM-1668 A new field spec.security.jwksResolverCA was added to the Version 2.1 SMCP
but was missing in the 2.2.0 and 2.2.1 releases. When upgrading from an Operator version where
this field was present to an Operator version that was missing this field, the
.spec.security.jwksResolverCA field was not available in the SMCP.

OSSM-1325 istiod pod crashes and displays the following error message: fatal error:
concurrent map iteration and map write.

OSSM-1211 Configuring Federated service meshes for failover does not work as expected.
The Istiod pilot log displays the following error: envoy connection [C289] TLS error:
337047686:SSL routines:tls_process_server_certificate:certificate verify failed

OSSM-1099 The Kiali console displayed the message Sorry, there was a problem. Try a
refresh or navigate to a different page.

OSSM-1074 Pod annotations defined in SMCP are not injected in the pods.

OSSM-999 Kiali retention did not work as expected. Calendar times were greyed out in the
dashboard graph.

OSSM-797 Kiali Operator pod generates CreateContainerConfigError while installing or
updating the operator.

OSSM-722 Namespace starting with kube is hidden from Kiali.

https://issues.redhat.com/browse/OSSM-2221
https://issues.redhat.com/browse/OSSM-2053
https://issues.redhat.com/browse/OSSM-1962
https://issues.redhat.com/browse/OSSM-1668
https://issues.redhat.com/browse/OSSM-1325
https://issues.redhat.com/browse/OSSM-1211
https://issues.redhat.com/browse/OSSM-1099
https://issues.redhat.com/browse/OSSM-1074
https://issues.redhat.com/browse/OSSM-999
https://issues.redhat.com/browse/OSSM-797
https://issues.redhat.com/browse/OSSM-722

CHAPTER 1. SERVICE MESH 2.X

OSSM-569 There is no CPU memory limit for the Prometheus istio-proxy container. The
Prometheus istio-proxy sidecar now uses the resource limits defined in
spec.proxy.runtime.container.

OSSM-535 Support validationMessages in SMCP. The ValidationMessages field in the Service
Mesh Control Plane can now be set to True. This writes a log for the status of the resources,
which can be helpful when troubleshooting problems.

OSSM-449 VirtualService and Service causes an error "Only unique values for domains are
permitted. Duplicate entry of domain."

OSSM-419 Namespaces with similar names will all show in Kiali namespace list, even though
namespaces may not be defined in Service Mesh Member Role.

OSSM-296 When adding health configuration to the Kiali custom resource (CR) is it not being
replicated to the Kiali configmap.

OSSM-2911n the Kiali console, on the Applications, Services, and Workloads pages, the "Remove
Label from Filters" function is not working.

OSSM-289 In the Kiali console, on the Service Details pages for the 'istio-ingressgateway' and
‘laeger-query' services there are no Traces being displayed. The traces exist in Jaeger.

OSSM-287 In the Kiali console there are no traces being displayed on the Graph Service.

OSSM-285 When trying to access the Kiali console, receive the following error message "Error
trying to get OAuth Metadata".
Workaround: Restart the Kiali pod.

MAISTRA-2735 The resources that the Service Mesh Operator deletes when reconciling the
SMCP changed in Red Hat OpenShift Service Mesh version 2.1. Previously, the Operator deleted
a resource with the following labels:

o maistra.io/owner
o app.kubernetes.io/version

Now, the Operator ignores resources that does not also include the
app-kubernetes.io/managed-by=maistra-istio-operator label. If you create your own
resources, you should not add the app.kubernetes.io/managed-by=maistra-istio-operator
label to them.

MAISTRA-2687 Red Hat OpenShift Service Mesh 2.1 federation gateway does not send the full
certificate chain when using external certificates. The Service Mesh federation egress gateway
only sends the client certificate. Because the federation ingress gateway only knows about the
root certificate, it cannot verify the client certificate unless you add the root certificate to the
federation import ConfigMap.

MAISTRA-2635 Replace deprecated Kubernetes API. To remain compatible with OpenShift
Container Platform 4.8, the apiextensions.k8s.io/vibetal API was deprecated as of Red Hat
OpenShift Service Mesh 2.0.8.

MAISTRA-2631The WASM feature is not working because podman is failing due to nsenter
binary not being present. Red Hat OpenShift Service Mesh generates the following error
message: Error: error configuring CNI network plugin exec: "nsenter": executable file not
found in $PATH. The container image now contains nsenter and WASM works as expected.

MAISTRA-2534 When istiod attempted to fetch the JWKS for an issuer specified in a JWT rule,

67

https://issues.redhat.com/browse/OSSM-569
https://issues.redhat.com/browse/OSSM-535
https://issues.redhat.com/browse/OSSM-449
https://issues.redhat.com/browse/OSSM-419
https://issues.redhat.com/browse/OSSM-296
https://issues.redhat.com/browse/OSSM-291
https://issues.redhat.com/browse/OSSM-289
https://issues.redhat.com/browse/OSSM-287
https://issues.redhat.com/browse/OSSM-285
https://issues.redhat.com/browse/MAISTRA-2735
https://issues.jboss.org/browse/MAISTRA-2687
https://issues.redhat.com/browse/MAISTRA-2635
https://issues.redhat.com/browse/MAISTRA-2631
https://issues.redhat.com/browse/MAISTRA-2534

OpenShift Container Platform 4.13 Service Mesh

68

the issuer service responded with a 502. This prevented the proxy container from becoming
ready and caused deployments to hang. The fix for the community bug has been included in the
Service Mesh 2.0.7 release.

MAISTRA-2411 When the Operator creates a new ingress gateway using
spec.gateways.additionalngress in the ServiceMeshControlPlane, Operator is not creating a
NetworkPolicy for the additional ingress gateway like it does for the default istio-
ingressgateway. This is causing a 503 response from the route of the new gateway.
Workaround: Manually create the NetworkPolicy in the istio-system namespace.

MAISTRA-2401CVE-2021-3586 servicemesh-operator: NetworkPolicy resources incorrectly
specified ports for ingress resources. The NetworkPolicy resources installed for Red Hat
OpenShift Service Mesh did not properly specify which ports could be accessed. This allowed
access to all ports on these resources from any pod. Network policies applied to the following
resources are affected:

o Galley
o Grafana
o |Istiod

o Jaeger
o Kiali

o Prometheus

o

Sidecar injector

MAISTRA-2378 When the cluster is configured to use OpenShift SDN with ovs-multitenant
and the mesh contains a large number of namespaces (200+), the OpenShift Container
Platform networking plugin is unable to configure the namespaces quickly. Service Mesh times
out causing namespaces to be continuously dropped from the service mesh and then
reenlisted.

MAISTRA-2370 Handle tombstones in listerInformer. The updated cache codebase was not
handling tombstones when translating the events from the namespace caches to the
aggregated cache, leading to a panic in the go routine.

MAISTRA-2117 Add optional ConfigMap mount to operator. The CSV now contains an optional
ConfigMap volume mount, which mounts the smcp-templates ConfigMap if it exists. If the
smcp-templates ConfigMap does not exist, the mounted directory is empty. When you create
the ConfigMap, the directory is populated with the entries from the ConfigMap and can be
referenced in SMCP.spec.profiles. No restart of the Service Mesh operator is required.
Customers using the 2.0 operator with a modified CSV to mount the smcp-templates
ConfigMap can upgrade to Red Hat OpenShift Service Mesh 2.1. After upgrading, you can
continue using an existing ConfigMap, and the profiles it contains, without editing the CSV.
Customers that previously used ConfigMap with a different name will either have to rename the
ConfigMap or update the CSV after upgrading.

MAISTRA-2010 AuthorizationPolicy does not support request.regex.headers field. The
validatingwebhook rejects any AuthorizationPolicy with the field, and even if you disable that,
Pilot tries to validate it using the same code, and it does not work.

MAISTRA-1979 Migration to 2.0 The conversion webhook drops the following important fields
when converting SMCP.status from v2 to vI:

https://github.com/istio/istio/issues/24629
https://issues.jboss.org/browse/MAISTRA-2411
https://issues.redhat.com/browse/MAISTRA-2401
https://issues.redhat.com/browse/MAISTRA-2378
https://issues.redhat.com/browse/MAISTRA-2370
https://issues.redhat.com/browse/MAISTRA-2117
https://issues.redhat.com/browse/MAISTRA-2010
https://issues.jboss.org/browse/MAISTRA-1979

CHAPTER 1. SERVICE MESH 2.X

o conditions
O components
o observedGeneration

© annotations
Upgrading the operator to 2.0 might break client tools that read the SMCP status using the
maistra.io/v1 version of the resource.

This also causes the READY and STATUS columns to be empty when you run oc get
servicemeshcontrolplanes.vi.maistra.io.

MAISTRA-1947 Technology Preview Updates to ServiceMeshExtensions are not applied.
Workaround: Remove and recreate the ServiceMeshExtensions.

MAISTRA-1983 Migration to 2.0 Upgrading to 2.0.0 with an existing invalid
ServiceMeshControlPlane cannot easily be repaired. The invalid items in the
ServiceMeshControlPlane resource caused an unrecoverable error. The fix makes the errors
recoverable. You can delete the invalid resource and replace it with a new one or edit the
resource to fix the errors. For more information about editing your resource, see [Configuring
the Red Hat OpenShift Service Mesh installation].

MAISTRA-1502 As a result of CVEs fixes in version 1.0.10, the Istio dashboards are not available
from the Home Dashboard menu in Grafana. To access the Istio dashboards, click the
Dashboard menu in the navigation panel and select the Manage tab.

MAISTRA-1399 Red Hat OpenShift Service Mesh no longer prevents you from installing
unsupported CNI protocols. The supported network configurations has not changed.

MAISTRA-1089 Migration to 2.0 Gateways created in a non-control plane namespace are
automatically deleted. After removing the gateway definition from the SMCP spec, you need to
manually delete these resources.

MAISTRA-858 The following Envoy log messages describing deprecated options and
configurations associated with Istio 1.1.x are expected:

o [2019-06-03 07:03:28.943][19][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option
‘envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.

o [2019-08-12 22:12:59.001][13][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option
‘envoy.api.v2.Listener.use_original_dst' from file Ids.proto. This configuration will be
removed from Envoy soon.

MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.
Workaround: If the istio-operator pod is evicted while deploying the control pane, delete the
evicted istio-operator pod.

MAISTRA-681When the Service Mesh control plane has many namespaces, it can lead to
performance issues.

MAISTRA-193 Unexpected console info messages are visible when health checking is enabled
for citadel.

Bugzilla 1821432 The toggle controls in OpenShift Container Platform Custom Resource details

69

https://issues.jboss.org/browse/MAISTRA-1947
https://issues.redhat.com/browse/MAISTRA-1983
https://issues.redhat.com/browse/MAISTRA-1502
https://issues.redhat.com/browse/MAISTRA-1399
https://issues.jboss.org/browse/MAISTRA-1089
https://issues.jboss.org/browse/MAISTRA-858
https://www.envoyproxy.io/docs/envoy/latest/intro/deprecated
https://issues.jboss.org/browse/MAISTRA-806
https://issues.jboss.org/browse/MAISTRA-681
https://issues.jboss.org/browse/MAISTRA-193
https://bugzilla.redhat.com/show_bug.cgi?id=1821432

OpenShift Container Platform 4.13 Service Mesh

page does not update the CR correctly. Ul Toggle controls in the Service Mesh Control Plane
(SMCP) Overview page in the OpenShift Container Platform web console sometimes updates
the wrong field in the resource. To update a SMCP, edit the YAML content directly or update
the resource from the command line instead of clicking the toggle controls.

1.3. UPGRADING SERVICE MESH

To access the most current features of Red Hat OpenShift Service Mesh, upgrade to the current
version, 2.5.2.

1.3.1. Understanding versioning

Red Hat uses semantic versioning for product releases. Semantic Versioning is a 3-component number
in the format of X.Y.Z, where:

X stands for a Major version. Major releases usually denote some sort of breaking change:
architectural changes, APl changes, schema changes, and similar major updates.

Y stands for a Minor version. Minor releases contain new features and functionality while
maintaining backwards compatibility.

Z stands for a Patch version (also known as a z-stream release). Patch releases are used to
addresses Common Vulnerabilities and Exposures (CVEs) and release bug fixes. New features
and functionality are generally not released as part of a Patch release.

1.3.1.1. How versioning affects Service Mesh upgrades

Depending on the version of the update you are making, the upgrade process is different.

Patch updates - Patch upgrades are managed by the Operator Lifecycle Manager (OLM); they
happen automatically when you update your Operators.

Minor upgrades - Minor upgrades require both updating to the most recent Red Hat OpenShift
Service Mesh Operator version and manually modifying the spec.version value in your
ServiceMeshControlPlane resources.

Major upgrades - Major upgrades require both updating to the most recent Red Hat OpenShift
Service Mesh Operator version and manually modifying the spec.version value in your
ServiceMeshControlPlane resources. Because major upgrades can contain changes that are
not backwards compatible, additional manual changes might be required.

1.3.1.2. Understanding Service Mesh versions

In order to understand what version of Red Hat OpenShift Service Mesh you have deployed on your
system, you need to understand how each of the component versions is managed.

70

Operator version - The most current Operator version is 2.5.2. The Operator version number
only indicates the version of the currently installed Operator. Because the Red Hat OpenShift
Service Mesh Operator supports multiple versions of the Service Mesh control plane, the
version of the Operator does not determine the version of your deployed
ServiceMeshControlPlane resources.

CHAPTER 1. SERVICE MESH 2.X

IMPORTANT

Upgrading to the latest Operator version automatically applies patch updates,
but does not automatically upgrade your Service Mesh control plane to the latest
minor version.

® ServiceMeshControlPlane version - The ServiceMeshControlPlane version determines what
version of Red Hat OpenShift Service Mesh you are using. The value of the spec.version field in
the ServiceMeshControlPlane resource controls the architecture and configuration settings
that are used to install and deploy Red Hat OpenShift Service Mesh. When you create the
Service Mesh control plane you can set the version in one of two ways:

o To configure in the Form View, select the version from the Control Plane Version menu.
o To configure in the YAML View, set the value for spec.version in the YAML file.
Operator Lifecycle Manager (OLM) does not manage Service Mesh control plane upgrades, so the

version number for your Operator and ServiceMeshControlPlane (SMCP) may not match, unless you
have manually upgraded your SMCP.

1.3.2. Upgrade considerations

The maistra.io/ label or annotation should not be used on a user-created custom resource, because it
indicates that the resource was generated by and should be managed by the Red Hat OpenShift Service
Mesh Operator.

' WARNING
A During the upgrade, the Operator makes changes, including deleting or replacing

files, to resources that include the following labels or annotations that indicate that
the resource is managed by the Operator.

Before upgrading check for user-created custom resources that include the following labels or
annotations:

® maistra.io/ AND the app.kubernetes.io/managed-by label set to maistra-istio-operator (Red
Hat OpenShift Service Mesh)

e kiali.io/ (Kiali)

e jaegertracing.io/ (Red Hat OpenShift distributed tracing platform (Jaeger))

® |ogging.openshift.io/ (Red Hat Elasticsearch)
Before upgrading, check your user-created custom resources for labels or annotations that indicate
they are Operator managed. Remove the label or annotation from custom resources that you do not

want to be managed by the Operator.

When upgrading to version 2.0, the Operator only deletes resources with these labels in the same
namespace as the SMCP.

71

OpenShift Container Platform 4.13 Service Mesh

When upgrading to version 2.1, the Operator deletes resources with these labels in all namespaces.

1.3.2.1. Known issues that may affect upgrade

Known issues that may affect your upgrade include:

® When upgrading an Operator, custom configurations for Jaeger or Kiali might be reverted.
Before upgrading an Operator, note any custom configuration settings for the Jaeger or Kiali
objects in the Service Mesh production deployment so that you can recreate them.

® Red Hat OpenShift Service Mesh does not support the use of EnvoyFilter configuration except
where explicitly documented. This is due to tight coupling with the underlying Envoy APlIs,
meaning that backward compatibility cannot be maintained. If you are using Envoy Filters, and
the configuration generated by Istio has changed due to the lastest version of Envoy introduced
by upgrading your ServiceMeshControlPlane, that has the potential to break any EnvoyFilter
you may have implemented.

e (OSSM-1505 ServiceMeshExtension does not work with OpenShift Container Platform version
4.11. Because ServiceMeshExtension has been deprecated in Red Hat OpenShift Service Mesh
2.2, this known issue will not be fixed and you must migrate your extensions to WasmPluging

® OSSM-1396 If a gateway resource contains the spec.externallPs setting, rather than being
recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never
recreated.

® (OSSM-1052 When configuring a Service ExternallP for the ingressgateway in the Service Mesh
control plane, the service is not created. The schema for the SMCP is missing the parameter for
the service.
Workaround: Disable the gateway creation in the SMCP spec and manage the gateway
deployment entirely manually (including Service, Role and RoleBinding).

1.3.3. Upgrading the Operators

In order to keep your Service Mesh patched with the latest security fixes, bug fixes, and software
updates, you must keep your Operators updated. You initiate patch updates by upgrading your
Operators.

IMPORTANT

The version of the Operator does not determine the version of your service mesh. The
version of your deployed Service Mesh control plane determines your version of Service
Mesh.

Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh
control plane, updating the Red Hat OpenShift Service Mesh Operator does not update the
spec.version value of your deployed ServiceMeshControlPlane. Also note that the spec.version
value is a two digit number, for example 2.2, and that patch updates, for example 2.2.1, are not reflected
in the SMCP version value.

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. The OLM runs by default in OpenShift Container Platform. OLM

queries for available Operators as well as upgrades for installed Operators.

Whether or not you have to take action to upgrade your Operators depends on the settings you selected
when installing them. When you installed each of your Operators, you selected an Update Channeland

72

https://issues.redhat.com/browse/OSSM-1505
https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1052

CHAPTER 1. SERVICE MESH 2.X

an Approval Strategy. The combination of these two settings determine when and how your Operators
are updated.

Table 1.3. Interaction of Update Channel and Approval Strategy

Versioned channel "Stable" or "Preview" Channel

Automatic Automatically updates the Automatically updates Operator
Operator for minor and patch for all major, minor, and patch
releases for that version only. Will releases.

not automatically update to the
next major version (that is, from
version 2.0 to 3.0). Manual
change to Operator subscription
required to update to the next
major version.

Manual Manual updates required for Manual updates required for all
minor and patch releases for the major, minor, and patch releases.
specified version. Manual change
to Operator subscription required
to update to the next major
version.

When you update your Red Hat OpenShift Service Mesh Operator the Operator Lifecycle Manager
(OLM) removes the old Operator pod and starts a new pod. Once the new Operator pod starts, the
reconciliation process checks the ServiceMeshControlPlane (SMCP), and if there are updated
container images available for any of the Service Mesh control plane components, it replaces those
Service Mesh control plane pods with ones that use the new container images.

When you upgrade the Kiali and Red Hat OpenShift distributed tracing platform (Jaeger) Operators, the
OLM reconciliation process scans the cluster and upgrades the managed instances to the version of the
new Operator. For example, if you update the Red Hat OpenShift distributed tracing platform (Jaeger)
Operator from version 1.30.2 to version 1.34.1, the Operator scans for running instances of distributed
tracing platform (Jaeger) and upgrades them to 1.34.1 as well.

To stay on a particular patch version of Red Hat OpenShift Service Mesh, you would need to disable
automatic updates and remain on that specific version of the Operator.

For more information about upgrading Operators, refer to the Operator Lifecycle Manager
documentation.

1.3.4. Upgrading the control plane

You must manually update the control plane for minor and major releases. The community Istio project
recommends canary upgrades, Red Hat OpenShift Service Mesh only supports in-place upgrades. Red
Hat OpenShift Service Mesh requires that you upgrade from each minor release to the next minor
release in sequence. For example, you must upgrade from version 2.0 to version 2.1, and then upgrade to
version 2.2. You cannot update from Red Hat OpenShift Service Mesh 2.0 to 2.2 directly.

When you upgrade the service mesh control plane, all Operator managed resources, for example
gateways, are also upgraded.

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/operators/#updating-installed-operators

OpenShift Container Platform 4.13 Service Mesh

Although you can deploy multiple versions of the control plane in the same cluster, Red Hat OpenShift
Service Mesh does not support canary upgrades of the service mesh. That is, you can have different
SCMP resources with different values for spec.version, but they cannot be managing the same mesh.

For more information about migrating your extensions, refer to Migrating from ServiceMeshExtension to
WasmPlugin resources.

1.3.4.1. Upgrade changes from version 2.4 to version 2.5

1.3.4.1.1. Istio OpenShift Routing (IOR) default setting change

The default setting for Istio OpenShift Routing (IOR) has changed. The setting is now disabled by
default.

You can use |IOR by setting the enabled field to true in the spec.gateways.openshiftRoute
specification of the ServiceMeshControlPlane resource.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
gateways:
openshiftRoute:
enabled: true

1.3.4.1.2. Istio proxy concurrency configuration enhancement

For consistency across deployments, Istio now configures the concurrency parameter based on the
CPU limit allocated to the proxy container. For example, a limit of 2500m would set the concurrency
parameter to 3. If you set the concurrency parameter to a value, Istio uses that value to configure how
many threads the proxy runs instead of using the CPU limit.

Previously, the default setting for the parameter was 2.

1.3.4.2. Upgrade changes from version 2.3 to version 2.4

Upgrading the Service Mesh control plane from version 2.3 to 2.4 introduces the following behavioral
changes:

® Support for Istio OpenShift Routing (IOR) has been deprecated. IOR functionality is still
enabled, but it will be removed in a future release.

® The following cipher suites are no longer supported, and were removed from the list of ciphers
used in client and server side TLS negotiations.

o ECDHE-ECDSA-AES128-SHA
o ECDHE-RSA-AES128-SHA

o AES128-GCM-SHA256

o AES128-SHA

o ECDHE-ECDSA-AES256-SHA

o ECDHE-RSA-AES256-SHA

74

CHAPTER 1. SERVICE MESH 2.X

o AES256-GCM-SHA384

o AES256-SHA
Applications that require access to services that use one of these cipher suites will fail to
connect when the proxy initiates a TLS connection.

1.3.4.3. Upgrade changes from version 2.2 to version 2.3

Upgrading the Service Mesh control plane from version 2.2 to 2.3 introduces the following behavioral
changes:

® This release requires use of the WasmPlugin API. Support for the ServiceMeshExtension AP],
which was deprecated in 2.2, has now been removed. If you attempt to upgrade while using the
ServiceMeshExtension API, then the upgrade fails.

1.3.4.4. Upgrade changes from version 2.1to version 2.2

Upgrading the Service Mesh control plane from version 2.1to 2.2 introduces the following behavioral
changes:

® The istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream Istio.

® |stio 110 updated Envoy to send traffic to the application container using eth0 rather than lo by
default.

® This release adds support for the WasmPlugin API and deprecates the
ServiceMeshExtension API.

1.3.4.5. Upgrade changes from version 2.0 to version 2.1

Upgrading the Service Mesh control plane from version 2.0 to 2.1introduces the following architectural
and behavioral changes.

Architecture changes

Mixer has been completely removed in Red Hat OpenShift Service Mesh 2.1. Upgrading from a Red Hat
OpenShift Service Mesh 2.0.x release to 2.1 will be blocked if Mixer is enabled.

If you see the following message when upgrading from v2.0 to v2.1, update the existing Mixer type to
Istiod type in the existing Control Plane spec before you update the .spec.version field:

An error occurred

admission webhook smcp.validation.maistra.io denied the request: [support for policy.type "Mixer"
and policy.Mixer options have been removed in v2.1, please use another alternative, support for
telemetry.type "Mixer" and telemetry.Mixer options have been removed in v2.1, please use another
alternative]”

For example:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
policy:
type: Istiod

75

OpenShift Container Platform 4.13 Service Mesh

telemetry:
type: Istiod
version: v2.5
Behavioral changes
e AuthorizationPolicy updates:

o With the PROXY protocol, if you're using ipBlocks and notlpBlocks to specify remote IP
addresses, update the configuration to use remotelpBlocks and notRemotelpBlocks
instead.

o Added support for nested JSON Web Token (JWT) claims.
® EnvoyFilter breaking changes>

o Must use typed_config

o xDSv2is no longer supported

o Deprecated filter names

e QOlder versions of proxies may report 503 status codes when receiving 1xx or 204 status codes
from newer proxies.

1.3.4.6. Upgrading the Service Mesh control plane

To upgrade Red Hat OpenShift Service Mesh, you must update the version field of the Red Hat
OpenShift Service Mesh ServiceMeshControlPlane v2 resource. Then, once it is configured and
applied, restart the application pods to update each sidecar proxy and its configuration.

Prerequisites

® You are running OpenShift Container Platform 4.9 or later.

® You have the latest Red Hat OpenShift Service Mesh Operator.

Procedure

1. Switch to the project that contains your ServiceMeshControlPlane resource. In this example,
istio-system is the name of the Service Mesh control plane project.

I $ oc project istio-system

2. Check your v2 ServiceMeshControlPlane resource configuration to verify it is valid.

a. Run the following command to view your ServiceMeshControlPlane resource as a v2
resource.

I $ oc get smcp -0 yaml

TIP

Back up your Service Mesh control plane configuration.

76

CHAPTER 1. SERVICE MESH 2.X

3. Update the .spec.version field and apply the configuration.
For example:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
version: v2.5

Alternatively, instead of using the command line, you can use the web console to edit the
Service Mesh control plane. In the OpenShift Container Platform web console, click Project and
select the project name you just entered.

a. Click Operators — Installed Operators.

b. Find your ServiceMeshControlPlane instance.

(@]

. Select YAML view and update text of the YAML file, as shown in the previous example.

o

. Click Save.

1.3.4.7. Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0

Upgrading from version 1.1to 2.0 requires manual steps that migrate your workloads and application to a
new instance of Red Hat OpenShift Service Mesh running the new version.

Prerequisites

® You must upgrade to OpenShift Container Platform 4.7. before you upgrade to Red Hat
OpenShift Service Mesh 2.0.

® You must have Red Hat OpenShift Service Mesh version 2.0 operator. If you selected the
automatic upgrade path, the operator automatically downloads the latest information.
However, there are steps you must take to use the features in Red Hat OpenShift Service Mesh
version 2.0.

1.3.4.7.1. Upgrading Red Hat OpenShift Service Mesh

To upgrade Red Hat OpenShift Service Mesh, you must create an instance of Red Hat OpenShift
Service Mesh ServiceMeshControlPlane v2 resource in a new namespace. Then, once it's configured,
move your microservice applications and workloads from your old mesh to the new service mesh.

Procedure
1. Check your vl ServiceMeshControlPlane resource configuration to make sure it is valid.

a. Run the following command to view your ServiceMeshControlPlane resource as a v2
resource.

I $ oc get smcp -0 yaml

b. Check the spec.techPreview.errored.message field in the output for information about
any invalid fields.

77

OpenShift Container Platform 4.13 Service Mesh

78

c. If there are invalid fields in your vl resource, the resource is not reconciled and cannot be
edited as a v2 resource. All updates to v2 fields will be overridden by the original vl settings.
To fix the invalid fields, you can replace, patch, or edit the vl version of the resource. You
can also delete the resource without fixing it. After the resource has been fixed, it can be
reconciled, and you can to modify or view the v2 version of the resource.

d. To fix the resource by editing a file, use oc get to retrieve the resource, edit the text file
locally, and replace the resource with the file you edited.

$ oc get smcp.v1.maistra.io <smcp_names> > smcp-resource.yam|
#Edit the smcp-resource.yaml file.
$ oc replace -f smcp-resource.yaml

e. To fix the resource using patching, use oc patch.

$ oc patch smcp.v1.maistra.io <smcp_name> --type json --patch '[{"op":
"replace”,"path":"/spec/path/to/bad/setting","value":"corrected-value"}]'

f. To fix the resource by editing with command line tools, use oc edit.

I $ oc edit smcp.v1.maistra.io <smcp_name>

. Back up your Service Mesh control plane configuration. Switch to the project that contains your

ServiceMeshControlPlane resource. In this example, istio-system is the name of the Service
Mesh control plane project.

I $ oc project istio-system

. Enter the following command to retrieve the current configuration. Your <smcp_name> is

specified in the metadata of your ServiceMeshControlPlane resource, for example basic-
install or full-install.

$ oc get servicemeshcontrolplanes.v1.maistra.io <smcp_name> -o yaml >
<smcp_name>.v1.yaml

. Convert your ServiceMeshControlPlane to a v2 control plane version that contains information

about your configuration as a starting point.

I $ oc get smcp <smcp_name> -0 yaml > <smcp_name>.v2.yam|

. Create a project. In the OpenShift Container Platform console Project menu, click New Project

and enter a name for your project, istio-system-upgrade, for example. Or, you can run this
command from the CLI.

I $ oc new-project istio-system-upgrade

. Update the metadata.namespace field in your v2 ServiceMeshControlPlane with your new

project name. In this example, use istio-system-upgrade.

. Update the version field from 1.1to 2.0 or remove it in your v2 ServiceMeshControlPlane.

. Create a ServiceMeshControlPlane in the new namespace. On the command line, run the

following command to deploy the control plane with the v2 version of the

CHAPTER 1. SERVICE MESH 2.X

ServiceMeshControlPlane that you retrieved. In this example, replace “<smcp_name.v2> “with
the path to your file.

I $ oc create -n istio-system-upgrade -f <smcp_name>.v2.yaml

Alternatively, you can use the console to create the Service Mesh control plane. In the
OpenShift Container Platform web console, click Project. Then, select the project name you
just entered.

a. Click Operators — Installed Operators.
b. Click Create ServiceMeshControlPlane.

c. Select YAML view and paste text of the YAML file you retrieved into the field. Check that
the apiVersion field is set to maistra.io/v2 and modify the metadata.namespace field to
use the new namespace, for example istio-system-upgrade.

d. Click Create.

1.3.4.7.2. Configuring the 2.0 ServiceMeshControlPlane

The ServiceMeshControlPlane resource has been changed for Red Hat OpenShift Service Mesh
version 2.0. After you created a v2 version of the ServiceMeshControlPlane resource, modify it to take
advantage of the new features and to fit your deployment. Consider the following changes to the
specification and behavior of Red Hat OpenShift Service Mesh 2.0 as you're modifying your
ServiceMeshControlPlane resource. You can also refer to the Red Hat OpenShift Service Mesh 2.0
product documentation for new information to features you use. The v2 resource must be used for Red
Hat OpenShift Service Mesh 2.0 installations.

1.3.4.7.2.1. Architecture changes

The architectural units used by previous versions have been replaced by Istiod. In 2.0 the Service Mesh
control plane components Mixer, Pilot, Citadel, Galley, and the sidecar injector functionality have been
combined into a single component, Istiod.

Although Mixer is no longer supported as a control plane component, Mixer policy and telemetry plugins
are now supported through WASM extensions in Istiod. Mixer can be enabled for policy and telemetry if
you need to integrate legacy Mixer plugins.

Secret Discovery Service (SDS) is used to distribute certificates and keys to sidecars directly from
Istiod. In Red Hat OpenShift Service Mesh version 1.1, secrets were generated by Citadel, which were
used by the proxies to retrieve their client certificates and keys.

1.3.4.7.2.2. Annotation changes

The following annotations are no longer supported in v2.0. If you are using one of these annotations, you
must update your workload before moving it to a v2.0 Service Mesh control plane.

e sidecar.maistra.io/proxyCPULimit has been replaced with sidecar.istio.io/proxyCPULimit. If
you were using sidecar.maistra.io annotations on your workloads, you must modify those

workloads to use sidecar.istio.io equivalents instead.

® sidecar.maistra.io/proxyMemoryLimit has been replaced with
sidecar.istio.io/proxyMemoryLimit

79

OpenShift Container Platform 4.13 Service Mesh

® sjaecar.Ist10.10/AISCOVeryAdaress is no longer supported. Also, the detault discovery address
has moved from pilot.<control_plane_namespace>.svc:15010 (or port 15011, if mtls is
enabled) to istiod-<smcp_names.<control_plane_namespace>.svc:15012.

® The health status port is no longer configurable and is hard-coded to 15021. * If you were
defining a custom status port, for example, status.sidecar.istio.io/port, you must remove the
override before moving the workload to a v2.0 Service Mesh control plane. Readiness checks
can still be disabled by setting the status port to 0.

® Kubernetes Secret resources are no longer used to distribute client certificates for sidecars.
Certificates are now distributed through Istiod’s SDS service. If you were relying on mounted
secrets, they are longer available for workloads in v2.0 Service Mesh control planes.

1.3.4.7.2.3. Behavioral changes

Some features in Red Hat OpenShift Service Mesh 2.0 work differently than they did in previous
versions.

® The readiness port on gateways has moved from 15020 to 15021.

® The target host visibility includes VirtualService, as well as ServiceEntry resources. It includes
any restrictions applied through Sidecar resources.

® Automatic mutual TLS is enabled by default. Proxy to proxy communication is automatically
configured to use mTLS, regardless of global PeerAuthentication policies in place.

® Secure connections are always used when proxies communicate with the Service Mesh control
plane regardless of spec.security.controlPlane.mtls setting. The
spec.security.controlPlane.mtls setting is only used when configuring connections for Mixer
telemetry or policy.

1.3.4.7.2.4. Migration details for unsupported resources

Policy (authentication.istio.io/vlalphal)

Policy resources must be migrated to new resource types for use with v2.0 Service Mesh control planes,
PeerAuthentication and RequestAuthentication. Depending on the specific configuration in your Policy
resource, you may have to configure multiple resources to achieve the same effect.

Mutual TLS

Mutual TLS enforcement is accomplished using the security.istio.io/vibetal PeerAuthentication
resource. The legacy spec.peers.mtls.mode field maps directly to the new resource’s spec.mtls.mode
field. Selection criteria has changed from specifying a service name in spec.targets[x].name to a label
selector in spec.selector.matchLabels. In PeerAuthentication, the labels must match the selector on
the services named in the targets list. Any port-specific settings will need to be mapped into
spec.portLevelMtls.

Authentication

Additional authentication methods specified in spec.origins, must be mapped into a
security.istio.io/vibetal RequestAuthentication resource. spec.selector.matchLabels must be
configured similarly to the same field on PeerAuthentication. Configuration specific to JWT principals
from spec.origins.jwt items map to similar fields in spec.rules items.

80

CHAPTER 1. SERVICE MESH 2.X

® spec.origins|x].Jwt.triggersuies specitied in the Folicy must be mapped Into one or more
security.istio.io/vibetal AuthorizationPolicy resources. Any spec.selector.labels must be
configured similarly to the same field on RequestAuthentication.

e spec.origins[x].jwt.triggerRules.excludedPaths must be mapped into an AuthorizationPolicy
whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path entries matching the
excluded paths.

e spec.origins[x].jwt.triggerRules.includedPaths must be mapped into a separate
AuthorizationPolicy whose spec.actionis set to ALLOW, with spec.rules[x].to.operation.path
entries matching the included paths, and spec.rules.[x].from.source.requestPrincipals entries
that align with the specified spec.origins[x].jwt.issuer in the Policy resource.

ServiceMeshPolicy (maistra.io/v1)

ServiceMeshPolicy was configured automatically for the Service Mesh control plane through the
spec.istio.global.mtls.enabled in the vi resource or spec.security.dataPlane.mtls in the v2 resource
setting. For v2 control planes, a functionally equivalent PeerAuthentication resource is created during
installation. This feature is deprecated in Red Hat OpenShift Service Mesh version 2.0

RbacConfig, ServiceRole, ServiceRoleBinding (rbac.istio.io/vlalphat)

These resources were replaced by the security.istio.io/vibetal AuthorizationPolicy resource.

Mimicking RbacConfig behavior requires writing a default AuthorizationPolicy whose settings depend on
the spec.mode specified in the RbacConfig.

e When spec.mode is set to OFF, no resource is required as the default policy is ALLOW, unless
an AuthorizationPolicy applies to the request.

e When spec.mode is set to ON, set spec: {}. You must create AuthorizationPolicy policies for all
services in the mesh.

o spec.modeis set to ON_WITH_INCLUSION, must create an AuthorizationPolicy with spec: {}
in each included namespace. Inclusion of individual services is not supported by
AuthorizationPolicy. However, as soon as any AuthorizationPolicy is created that applies to the
workloads for the service, all other requests not explicitly allowed will be denied.

® When spec.modeis set to ON_WITH_EXCLUSION, it is not supported by AuthorizationPolicy.
A global DENY policy can be created, but an AuthorizationPolicy must be created for every
workload in the mesh because there is no allow-all policy that can be applied to either a
namespace or a workload.

AuthorizationPolicy includes configuration for both the selector to which the configuration applies,
which is similar to the function ServiceRoleBinding provides and the rules which should be applied, which
is similar to the function ServiceRole provides.

ServiceMeshRbacConfig (maistra.io/v1)

This resource is replaced by using a security.istio.io/vibetal AuthorizationPolicy resource with an
empty spec.selector in the Service Mesh control plane’s namespace. This policy will be the default
authorization policy applied to all workloads in the mesh. For specific migration details, see RbacConfig
above.

1.3.4.7.2.5. Mixer plugins

Mixer components are disabled by default in version 2.0. If you rely on Mixer plugins for your workload,
you must configure your version 2.0 ServiceMeshControlPlane to include the Mixer components.

81

OpenShift Container Platform 4.13 Service Mesh

To enable the Mixer policy components, add the following snippet to your ServiceMeshControlPlane.

spec:

policy:
type: Mixer

To enable the Mixer telemetry components, add the following snippet to your
ServiceMeshControlPlane.

spec:
telemetry:
type: Mixer

Legacy mixer plugins can also be migrated to WASM and integrated using the new
ServiceMeshExtension (maistra.io/vlalphal) custom resource.

Built-in WASM filters included in the upstream Istio distribution are not available in Red Hat OpenShift
Service Mesh 2.0.

1.3.4.7.2.6. Mutual TLS changes

When using mTLS with workload specific PeerAuthentication policies, a corresponding DestinationRule
is required to allow traffic if the workload policy differs from the namespace/global policy.

Auto mTLS is enabled by default, but can be disabled by setting spec.security.dataPlane.automtls to
false in the ServiceMeshControlPlane resource. When disabling auto mTLS, DestinationRules may be
required for proper communication between services. For example, setting PeerAuthentication to
STRICT for one namespace may prevent services in other namespaces from accessing them, unless a
DestinationRule configures TLS mode for the services in the namespace.

For information about mTLS, see Enabling mutual Transport Layer Security (mTLS)

1.3.4.7.2.6.1. Other mTLS Examples

To disable mTLS For productpage service in the bookinfo sample application, your Policy resource was
configured the following way for Red Hat OpenShift Service Mesh v1.1.

Example Policy resource

apiVersion: authentication.istio.io/vialphai
kind: Policy
metadata:
name: productpage-mTLS-disable
namespace: <namespace>
spec:
targets:
- name: productpage

To disable mTLS For productpage service in the bookinfo sample application, use the following example
to configure your PeerAuthentication resource for Red Hat OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

I apiVersion: security.istio.io/vibetat

82

CHAPTER 1. SERVICE MESH 2.X

kind: PeerAuthentication
metadata:
name: productpage-mTLS-disable
namespace: <namespace>
spec:
mtls:
mode: DISABLE
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample
application, your Policy resource was configured the following way for Red Hat OpenShift Service Mesh
Vil

Example Policy resource

apiVersion: authentication.istio.io/vialphai
kind: Policy
metadata:
name: productpage-mTLS-with-JWT
namespace: <namespace>

spec:
targets:
- name: productpage
ports:
- number: 9000
peers:
- mtls:
origins:
- jwt:
issuer: "https://securetoken.google.com”
audiences:
- "productpage”
jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
jwtHeaders:

- "X-goog-iap-jwt-assertion"
triggerRules:
- excludedPaths:
- exact: /health_check
principalBinding: USE_ORIGIN

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample
application, use the following example to configure your PeerAuthentication resource for Red Hat
OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

#require mtls for productpage:9000
apiVersion: security.istio.io/vibetai
kind: PeerAuthentication
metadata:
name: productpage-mTLS-with-JWT
namespace: <namespace>

83

OpenShift Container Platform 4.13 Service Mesh

spec:
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage
portLevelMtls:
9000:
mode: STRICT
#JWT authentication for productpage
apiVersion: security.istio.io/vibetai
kind: RequestAuthentication
metadata:
name: productpage-mTLS-with-JWT
namespace: <namespace>
spec:
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage
jwtRules:
- issuer: "https://securetoken.google.com”
audiences:
- "productpage”
jwksUri: "https://www.googleapis.com/oauth2/vi/certs"
fromHeaders:
- hame: "X-goog-iap-jwt-assertion"
#Require JWT token to access product page service from
#any client to all paths except /health _check
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: productpage-mTLS-with-JWT
namespace: <namespace>
spec:
action: ALLOW
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage
rules:
- to: # require JWT token to access all other paths
- operation:
notPaths:
- /health_check
from:
- source:
if using principalBinding: USE_PEER in the Policy,
then use principals, e.g.
principals:
#_
requestPrincipals:

Gk

- to: # no JWT token required to access health_check

84

CHAPTER 1. SERVICE MESH 2.X

- operation:
paths:
- /health_check

1.3.4.7.3. Configuration recipes

You can configure the following items with these configuration recipes.

1.3.4.7.3.1. Mutual TLS in a data plane

Mutual TLS for data plane communication is configured through spec.security.dataPlane.mtls in the
ServiceMeshControlPlane resource, which is false by default.

1.3.4.7.3.2. Custom signing key

Istiod manages client certificates and private keys used by service proxies. By default, Istiod uses a self-
signed certificate for signing, but you can configure a custom certificate and private key. For more
information about how to configure signing keys, see Adding an external certificate authority key and
certificate

1.3.4.7.3.3. Tracing

Tracing is configured in spec.tracing. Currently, the only type of tracer that is supported is Jaeger.
Sampling is a scaled integer representing 0.01% increments, for example, 1is 0.01% and 10000 is 100%.
The tracing implementation and sampling rate can be specified:

spec:
tracing:
sampling: 100 # 1%
type: Jaeger

Jaeger is configured in the addons section of the ServiceMeshControlPlane resource.

spec:
addons:
jaeger:
name: jaeger
install:
storage:
type: Memory # or Elasticsearch for production mode
memory:

maxTraces: 100000
elasticsearch: # the following values only apply if storage:type:=Elasticsearch
storage: # specific storageclass configuration for the Jaeger Elasticsearch (optional)
size: "100G"
storageClassName: "storageclass”
nodeCount: 3
redundancyPolicy: SingleRedundancy
runtime:
components:
tracing.jaeger: {} # general Jaeger specific runtime configuration (optional)
tracing.jaeger.elasticsearch: #runtime configuration for Jaeger Elasticsearch deployment
(optional)
container:

85

OpenShift Container Platform 4.13 Service Mesh

resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "1Gi"

The Jaeger installation can be customized with the install field. Container configuration, such as
resource limits is configured in spec.runtime.components.jaeger related fields. If a Jaeger resource
matching the value of spec.addons.jaeger.name exists, the Service Mesh control plane will be
configured to use the existing installation. Use an existing Jaeger resource to fully customize your
Jaeger installation.

1.3.4.7.3.4. Visualization

Kiali and Grafana are configured under the addons section of the ServiceMeshControlPlane resource.

spec:
addons:

grafana:
enabled: true
install: {} # customize install

kiali:
enabled: true
name: kiali
install: {} # customize install

The Grafana and Kiali installations can be customized through their respective install fields. Container
customization, such as resource limits, is configured in spec.runtime.components.kiali and
spec.runtime.components.grafana. If an existing Kiali resource matching the value of name exists, the
Service Mesh control plane configures the Kiali resource for use with the control plane. Some fields in
the Kiali resource are overridden, such as the accessible_namespaces list, as well as the endpoints for
Grafana, Prometheus, and tracing. Use an existing resource to fully customize your Kiali installation.

1.3.4.7.3.5. Resource utilization and scheduling

Resources are configured under spec.runtime.<components. The following component names are
supported.

Component Description Versions supported

security Citadel container v1.0/1.1

galley Galley container v1.0/1.1

pilot Pilot/Istiod container v1.0/1.1/2.0

mixer istio-telemetry and istio-policy v1.0/1.1
containers

mixer.policy istio-policy container v2.0

86

Component

Description

CHAPTER 1. SERVICE MESH 2.X

Versions supported

mixer.telemetry

global.oauthproxy

sidecarlnjectorWebhook

tracing.jaeger

tracing.jaeger.agent

tracing.jaeger.allinOne

tracing.jaeger.collector

tracing.jaeger.elasticsearch

tracing.jaeger.query

prometheus

kiali

grafana

3scale

wasmExtensions.cacher

istio-telemetry container

oauth-proxy container used with
various addons

sidecar injector webhook
container

general Jaeger container - not all
settings may be applied.
Complete customization of
Jaeger installation is supported
by specifying an existing Jaeger
resource in the Service Mesh
control plane configuration.

settings specific to Jaeger agent

settings specific to Jaeger
alllnOne

settings specific to Jaeger
collector

settings specific to Jaeger
elasticsearch deployment

settings specific to Jaeger query

prometheus container

Kiali container - complete
customization of Kiali installation
is supported by specifying an
existing Kiali resource in the
Service Mesh control plane
configuration.

Grafana container

3scale container

WASM extensions cacher
container

v2.0

v1.0/11/2.0

v1.0/1.1

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v1.0/11/2.0

v2.0 - tech preview

Some components support resource limiting and scheduling. For more information, see Performance

and scalability.

87

OpenShift Container Platform 4.13 Service Mesh

1.3.4.7.4. Next steps for migrating your applications and workloads

Move the application workload to the new mesh and remove the old instances to complete your
upgrade.

1.3.5. Upgrading the data plane

Your data plane will still function after you have upgraded the control plane. But in order to apply
updates to the Envoy proxy and any changes to the proxy configuration, you must restart your
application pods and workloads.

1.3.5.1. Updating your applications and workloads

To complete the migration, restart all of the application pods in the mesh to upgrade the Envoy sidecar
proxies and their configuration.

To perform a rolling update of a deployment use the following command:

I $ oc rollout restart <deployment>

You must perform a rolling update for all applications that make up the mesh.

1.4. UNDERSTANDING SERVICE MESH
Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over

your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can
connect, secure, and monitor microservices in your OpenShift Container Platform environment.

1.4.1. What is Red Hat OpenShift Service Mesh?

A service mesh is the network of microservices that make up applications in a distributed microservice
architecture and the interactions between those microservices. When a Service Mesh grows in size and
complexity, it can become harder to understand and manage.

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on
existing distributed applications without requiring any changes to the service code. You add Red Hat
OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in
the mesh that intercepts all network communication between microservices. You configure and manage
the Service Mesh using the Service Mesh control plane features.

Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that
provide:

® Discovery

® | oad balancing

® Service-to-service authentication
® Failure recovery

® Metrics

® Monitoring

88

https://istio.io/

CHAPTER 1. SERVICE MESH 2.X

Red Hat OpenShift Service Mesh also provides more complex operational functions including:
e A/B testing
® Canary releases
® Access control

® [End-to-end authentication

1.4.2. Service Mesh architecture

Service mesh technology operates at the network communication level. That is, service mesh
components capture or intercept traffic to and from microservices, either modifying requests,
redirecting them, or creating new requests to other services.

Service A Service B Service C
Egress traffic

Proxy 4 p Proxy 4 p Proxy »

! I]

Control plane

Data plane \

Ingress gateway

"
!

istiod (proxy configuration)

At a high level, Red Hat OpenShift Service Mesh consists of a data plane and a control plane

The data planeis a set of intelligent proxies, running alongside application containers in a pod, that
intercept and control all inbound and outbound network communication between microservices in the
service mesh. The data plane is implemented in such a way that it intercepts all inbound (ingress) and
outbound (egress) network traffic. The Istio data plane consists of Envoy containers running along side
application containers in a pod. The Envoy container acts as a proxy, controlling all network
communication into and out of the pod.

® Envoy proxies are the only Istio components that interact with data plane traffic. Allincoming
(ingress) and outgoing (egress) network traffic between services flows through the proxies.
The Envoy proxy also collects all metrics related to services traffic within the mesh. Envoy
proxies are deployed as sidecars, running in the same pod as services. Envoy proxies are also
used to implement mesh gateways.

o Sidecar proxies manage inbound and outbound communication for their workload instance.

o Gateways are proxies operating as load balancers receiving incoming or outgoing
HTTP/TCP connections. Gateway configurations are applied to standalone Envoy proxies
that are running at the edge of the mesh, rather than sidecar Envoy proxies running
alongside your service workloads. You use a Gateway to manage inbound and outbound
traffic for your mesh, letting you specify which traffic you want to enter or leave the mesh.

89

OpenShift Container Platform 4.13 Service Mesh

B |ngress-gateway - Also known as an Ingress Controller, the Ingress Gateway is a
dedicated Envoy proxy that receives and controls traffic entering the service mesh. An
Ingress Gateway allows features such as monitoring and route rules to be applied to
traffic entering the cluster.

®m Egress-gateway - Also known as an egress controller, the Egress Gateway is a
dedicated Envoy proxy that manages traffic leaving the service mesh. An Egress
Gateway allows features such as monitoring and route rules to be applied to traffic
exiting the mesh.

The control plane manages and configures the proxies that make up the data plane. It is the
authoritative source for configuration, manages access control and usage policies, and collects metrics
from the proxies in the service mesh.

The Istio control plane is composed of Istiod which consolidates several previous control plane
components (Citadel, Galley, Pilot) into a single binary. Istiod provides service discovery,
configuration, and certificate management. It converts high-level routing rules to Envoy
configurations and propagates them to the sidecars at runtime.

o |Istiod can act as a Certificate Authority (CA), generating certificates supporting secure
mTLS communication in the data plane. You can also use an external CA for this purpose.

o |stiod is responsible for injecting sidecar proxy containers into workloads deployed to an
OpenShift cluster.

Red Hat OpenShift Service Mesh uses the istio-operator to manage the installation of the control
plane. An Operator is a piece of software that enables you to implement and automate common
activities in your OpenShift cluster. It acts as a controller, allowing you to set or change the desired state
of objects in your cluster, in this case, a Red Hat OpenShift Service Mesh installation.

Red Hat OpenShift Service Mesh also bundles the following Istio add-ons as part of the product:

Kiali - Kiali is the management console for Red Hat OpenShift Service Mesh. It provides
dashboards, observability, and robust configuration and validation capabilities. It shows the
structure of your service mesh by inferring traffic topology and displays the health of your mesh.
Kiali provides detailed metrics, powerful validation, access to Grafana, and strong integration
with the distributed tracing platform (Jaeger).

Prometheus - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry
information from services. Kiali depends on Prometheus to obtain metrics, health status, and
mesh topology.

Jaeger - Red Hat OpenShift Service Mesh supports the distributed tracing platform (Jaeger).
Jaeger is an open source traceability server that centralizes and displays traces associated with
a single request between multiple services. Using the distributed tracing platform (Jaeger) you
can monitor and troubleshoot your microservices-based distributed systems.

Elasticsearch - Elasticsearch is an open source, distributed, JSON-based search and analytics
engine. The distributed tracing platform (Jaeger) uses Elasticsearch for persistent storage.

Grafana - Grafana provides mesh administrators with advanced query and metrics analysis and
dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh metrics.

The following Istio integrations are supported with Red Hat OpenShift Service Mesh:

90

CHAPTER 1. SERVICE MESH 2.X

® 3scale - Istio provides an optional integration with Red Hat 3scale APl Management solutions.
For versions prior to 2.1, this integration was achieved via the 3scale Istio adapter. For version 2.1
and later, the 3scale integration is achieved via a WebAssembly module.

For information about how to install the 3scale adapter, refer to the 3scale Istio adapter documentation

1.4.3. Understanding Kiali

Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and
how they are connected.

1.4.3.1. Kiali overview

Kiali provides observability into the Service Mesh running on OpenShift Container Platform. Kiali helps
you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your
service mesh by inferring the topology, and also provides information about the health of your service
mesh.

Kiali provides an interactive graph view of your namespace in real time that provides visibility into
features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights
about components at different levels, from Applications to Services and Workloads, and can display the
interactions with contextual information and charts on the selected graph node or edge. Kiali also
provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual
services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is
available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali
console.

Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.

1.4.3.2. Kiali architecture

Kiali is based on the open source Kiali project. Kiali is composed of two components: the Kiali application
and the Kiali console.

e Kiali application (back end) - This component runs in the container application platform and
communicates with the service mesh components, retrieves and processes data, and exposes
this data to the console. The Kiali application does not need storage. When deploying the
application to a cluster, configurations are set in ConfigMaps and secrets.

e Kiali console (front end) - The Kiali console is a web application. The Kiali application serves the
Kiali console, which then queries the back end for data to present it to the user.

In addition, Kiali depends on external services and components provided by the container application
platform and Istio.

® Red Hat Service Mesh(Istio) - Istio is a Kiali requirement. Istio is the component that provides
and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends
on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations,
which are exposed through Prometheus and the cluster API.

® Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift
Service Mesh installation. When Istio telemetry is enabled, metrics data are stored in
Prometheus. Kiali uses this Prometheus data to determine the mesh topology, display metrics,
calculate health, show possible problems, and so on. Kiali communicates directly with

o1

https://kiali.io/

OpenShift Container Platform 4.13 Service Mesh

Prometheus and assumes the data schema used by Istio Telemetry. Prometheus is an Istio
dependency and a hard dependency for Kiali, and many of Kiali's features will not work without
Prometheus.

Cluster API - Kiali uses the API of the OpenShift Container Platform (cluster API) to fetch and
resolve service mesh configurations. Kiali queries the cluster API to retrieve, for example,
definitions for namespaces, services, deployments, pods, and other entities. Kiali also makes
queries to resolve relationships between the different cluster entities. The cluster APl is also
queried to retrieve Istio configurations like virtual services, destination rules, route rules,
gateways, quotas, and so on.

Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service
Mesh installation. When you install the distributed tracing platform (Jaeger) as part of the
default Red Hat OpenShift Service Mesh installation, the Kiali console includes a tab to display
distributed tracing data. Note that tracing data will not be available if you disable Istio’s
distributed tracing feature. Also note that user must have access to the namespace where the
Service Mesh control plane is installed to view tracing data.

Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift
Service Mesh installation. When available, the metrics pages of Kiali display links to direct the
user to the same metric in Grafana. Note that user must have access to the namespace where
the Service Mesh control plane is installed to view links to the Grafana dashboard and view
Grafana data.

1.4.3.3. Kiali features

The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:

Health - Quickly identify issues with applications, services, or workloads.

Topology - Visualize how your applications, services, or workloads communicate via the Kiali
graph.

Metrics - Predefined metrics dashboards let you chart service mesh and application
performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create
your own custom dashboards.

Tracing - Integration with Jaeger lets you follow the path of a request through various
microservices that make up an application.

Validations - Perform advanced validations on the most common Istio objects (Destination
Rules, Service Entries, Virtual Services, and so on).

Configuration - Optional ability to create, update and delete Istio routing configuration using
wizards or directly in the YAML editor in the Kiali Console.

1.4.4. Understanding distributed tracing

Every time a user takes an action in an application, a request is executed by the architecture that may
require dozens of different services to participate to produce a response. The path of this requestis a
distributed transaction. The distributed tracing platform (Jaeger) lets you perform distributed tracing,
which follows the path of a request through various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work
together—usually executed in different processes or hosts—to understand a whole chain of eventsin a
distributed transaction. Distributed tracing lets developers visualize call flows in large service oriented

92

CHAPTER 1. SERVICE MESH 2.X

architectures. It can be invaluable in understanding serialization, parallelism, and sources of latency.

The distributed tracing platform (Jaeger) records the execution of individual requests across the whole
stack of microservices, and presents them as traces. A trace is a data/execution path through the
system. An end-to-end trace comprises one or more spans.

A span represents a logical unit of work that has an operation name, the start time of the operation, and
the duration. Spans may be nested and ordered to model causal relationships.
1.4.4.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use the Red Hat OpenShift distributed tracing platform for
monitoring, network profiling, and troubleshooting the interaction between components in modern,
cloud-native, microservices-based applications.

With the distributed tracing platform, you can perform the following functions:
® Monitor distributed transactions
e Optimize performance and latency

® Perform root cause analysis

1.4.4.2. Red Hat OpenShift distributed tracing platform architecture

Red Hat OpenShift distributed tracing platform is made up of several components that work together
to collect, store, and display tracing data.

® Red Hat OpenShift distributed tracing platform (Tempo)- This component is based on the
open source Grafana Tempo project.

o Gateway - The Gateway handles authentication, authorization, and forwarding requests to
the Distributor or Query front-end service.

o Distributor - The Distributor accepts spans in multiple formats including Jaeger,
OpenTelemetry, and Zipkin. It routes spans to Ingesters by hashing the tracelD and using a
distributed consistent hash ring.

o Ingester - The Ingester batches a trace into blocks, creates bloom filters and indexes, and
then flushes it all to the back end.

o Query Frontend - The Query Frontend is responsible for sharding the search space for an
incoming query. The search query is then sent to the Queriers. The Query Frontend
deployment exposes the Jaeger Ul through the Tempo Query sidecar.

o Querier - The Querier is responsible for finding the requested trace ID in either the
Ingesters or the back-end storage. Depending on parameters, it can query the Ingesters
and pull Bloom indexes from the back end to search blocks in object storage.

o Compactor - The Compactors stream blocks to and from the back-end storage to reduce
the total number of blocks.

® Red Hat build of OpenTelemetry- This component is based on the open source
OpenTelemetry project.

o OpenTelemetry Collector - The OpenTelemetry Collector is a vendor-agnostic way to

93

https://grafana.com/oss/tempo/
https://opentelemetry.io/

OpenShift Container Platform 4.13 Service Mesh

receive, process, and export telemetry data. The OpenTelemetry Collector supports open-
source observability data formats, for example, Jaeger and Prometheus, sending to one or
more open-source or commercial back-ends. The Collector is the default location
instrumentation libraries export their telemetry data.

® Red Hat OpenShift distributed tracing platform (Jaeger)- This component is based on the
open source Jaeger project.

(o}

Client (Jaeger client, Tracer, Reporter, instrumented application, client libraries)- The
distributed tracing platform (Jaeger) clients are language-specific implementations of the
OpenTracing API. They can be used to instrument applications for distributed tracing either
manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring
Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are
already integrated with OpenTracing.

Agent (Jaeger agent, Server Queue, Processor Workers) - The distributed tracing platform
(Jaeger) agent is a network daemon that listens for spans sent over User Datagram
Protocol (UDP), which it batches and sends to the Collector. The agent is meant to be
placed on the same host as the instrumented application. This is typically accomplished by
having a sidecar in container environments such as Kubernetes.

Jaeger Collector (Collector, Queue, Workers) - Similar to the Jaeger agent, the Jaeger
Collector receives spans and places them in an internal queue for processing. This allows the
Jaeger Collector to return immediately to the client/agent instead of waiting for the span
to make its way to the storage.

Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift
distributed tracing platform (Jaeger) has a pluggable mechanism for span storage. Red Hat
OpenShift distributed tracing platform (Jaeger) supports the Elasticsearch storage.

Query (Query Service) - Query is a service that retrieves traces from storage.

Ingester (Ingester Service) - Red Hat OpenShift distributed tracing platform can use
Apache Kafka as a buffer between the Collector and the actual Elasticsearch backing
storage. Ingester is a service that reads data from Kafka and writes to the Elasticsearch
storage backend.

Jaeger Console - With the Red Hat OpenShift distributed tracing platform (Jaeger) user
interface, you can visualize your distributed tracing data. On the Search page, you can find
traces and explore details of the spans that make up an individual trace.

1.4.4.3. Red Hat OpenShift distributed tracing platform features

Red Hat OpenShift distributed tracing platform provides the following capabilities:

94

Integration with Kiali - When properly configured, you can view distributed tracing platform data
from the Kiali console.

High scalability - The distributed tracing platform back end is designed to have no single points
of failure and to scale with the business needs.

Distributed Context Propagation — Enables you to connect data from different components
together to create a complete end-to-end trace.

Backwards compatibility with Zipkin - Red Hat OpenShift distributed tracing platform has APIs
that enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting
Zipkin compatibility in this release.

https://www.jaegertracing.io/

CHAPTER 1. SERVICE MESH 2.X

1.4.5. Next steps

® Prepare to install Red Hat OpenShift Service Mesh in your OpenShift Container Platform
environment.

1.5. SERVICE MESH DEPLOYMENT MODELS

Red Hat OpenShift Service Mesh supports several different deployment models that can be combined
in different ways to best suit your business requirements.

In Istio, a tenant is a group of users that share common access and privileges for a set of deployed
workloads. You can use tenants to provide a level of isolation between different teams. You can
segregate access to different tenants using NetworkPolicies, AuthorizationPolicies, and exportTo
annotations on istio.io or service resources.

1.5.1. Cluster-Wide (Single Tenant) mesh deployment model

A cluster-wide deployment contains a Service Mesh Control Plane that monitors resources for an entire
cluster. Monitoring resources for an entire cluster closely resembles Istio functionality in that the control
plane uses a single query across all namespaces to monitor Istio and Kubernetes resources. As a result,
cluster-wide deployments decrease the number of requests sent to the APl server.

Similar to Istio, a cluster-wide mesh includes namespaces with the istio-injection=enabled namespace
label by default. You can change this label by modifying the spec.labelSelectors field of the
ServiceMeshMemberRoll resource.

1.5.2. Multitenant deployment model

Red Hat OpenShift Service Mesh installs a ServiceMeshControlPlane that is configured for
multitenancy by default. Red Hat OpenShift Service Mesh uses a multitenant Operator to manage the
Service Mesh control plane lifecycle. Within a mesh, namespaces are used for tenancy.

Red Hat OpenShift Service Mesh uses ServiceMeshControlPlane resources to manage mesh
installations, whose scope is limited by default to namespace that contains the resource. You use
ServiceMeshMemberRoll and ServiceMeshMember resources to include additional namespaces into
the mesh. A namespace can only be included in a single mesh, and multiple meshes can be installed in a
single OpenShift cluster.

Typical service mesh deployments use a single Service Mesh control plane to configure communication
between services in the mesh. Red Hat OpenShift Service Mesh supports “soft multitenancy”, where
there is one control plane and one mesh per tenant, and there can be multiple independent control
planes within the cluster. Multitenant deployments specify the projects that can access the Service
Mesh and isolate the Service Mesh from other control plane instances.

The cluster administrator gets control and visibility across all the Istio control planes, while the tenant
administrator only gets control over their specific Service Mesh, Kiali, and Jaeger instances.

You can grant a team permission to deploy its workloads only to a given namespace or set of
namespaces. If granted the mesh-user role by the service mesh administrator, users can create a
ServiceMeshMember resource to add namespaces to the ServiceMeshMemberRoll.

1.5.2.1. About migrating to a cluster-wide mesh

95

OpenShift Container Platform 4.13 Service Mesh

In a cluster-wide mesh, one ServiceMeshControlPlane (SMCP) watches all of the namespaces for an
entire cluster. You can migrate an existing cluster from a multitenant mesh to a cluster-wide mesh using
Red Hat OpenShift Service Mesh version 2.5 or later.

NOTE

If a cluster must have more than one SMCP, then you cannot migrate to a cluster-wide
mesh.

By default, a cluster-wide mesh discovers all of the namespaces that comprise a cluster. However, you
can configure the mesh to access a limited set of namespaces. Namespaces do not receive sidecar
injection by default. You must specify which namespaces receive sidecar injection.

Similarly, you must specify which pods receive sidecar injection. Pods that exist in a namespace that
receives sidecar injection do not inherit sidecar injection. Applying sidecar injection to namespaces and
to pods are separate operations.

If you change the Istio version when migrating to a cluster-wide mesh, then you must restart the

applications. If you use the same Istio version, the application proxies will connect to the new SMCP for
the cluster-wide mesh, and work the same way they did for a multitenant mesh.

1.5.2.1.1. Including and excluding namespaces from a cluster-wide mesh by using the web console

Using the OpenShift Container Platform web console, you can add discovery selectors to the
ServiceMeshControlPlane resource in a cluster-wide mesh. Discovery selectors define the
namespaces that the control plane can discover. The control plane ignores any namespace that does not
match one of the discovery selectors, which excludes the namespace from the mesh.

NOTE

If you install ingress or egress gateways in the control plane namespace, you must include
the control plane namespace in the discovery selectors.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.
® You have deployed a ServiceMeshControlPlane resource.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform web console.
2. Navigate to Operators - Installed Operators.
3. Click the Red Hat OpenShift Service Mesh Operator.
4. Click Istio Service Mesh Control Plane
5. Click the name of the control plane.

6. Click YAML.

96

CHAPTER 1. SERVICE MESH 2.X

7. Modify the YAML file so that the spec.meshConfig field of the ServiceMeshControlPlane
resource includes the discovery selector.

NOTE

When configuring namespaces that the Istiod service can discover, exclude
namespaces that might contain sensitive services that should not be exposed to
the rest of the mesh.

-

In the following example, the Istiod service discovers any namespace that is labeled istio-
discovery: enabled or any namespace that has the name bookinfo, httpbin or istio-system:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
mode: ClusterWide
meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: enabled ﬂ
- matchExpressions:
- key: kubernetes.io/metadata.name 9
operator: In
values:
- bookinfo
- httpbin
- istio-system

Ensures that the mesh discovers namespaces that contain the label istio-discovery:
enabled.

9 Ensures that the mesh discovers namespaces bookinfo, httpbin and istio-system.
If a namespace matches any of the discovery selectors, then the mesh discovers the
namespace. The mesh excludes namespaces that do not match any of the discovery selectors.

8. Save the file.

1.5.2.1.2. Including and excluding namespaces from a cluster-wide mesh by using the CLI

Using the OpenShift Container Platform CLI, you can add discovery selectors to the
ServiceMeshControlPlane resource in a cluster-wide mesh. Discovery selectors define the
namespaces that the control plane can discover. The control plane ignores any namespace that does not
match one of the discovery selectors, which excludes the namespace from the mesh.

NOTE

If you install ingress or egress gateways in the control plane namespace, you must include
the control plane namespace in the discovery selectors.

Prerequisites

97

OpenShift Container Platform 4.13 Service Mesh

® You have installed the Red Hat OpenShift Service Mesh Operator.
® You have deployed a ServiceMeshControlPlane resource.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform CLI.

2. Open the ServiceMeshControlPlane resource as a YAML file by running the following
command:

I $ oc -n istio-system edit smcp <name> ﬂ

ﬂ <names> represents the name of the ServiceMeshControlPlane resource.

3. Modify the YAML file so that the spec.meshConfig field of the ServiceMeshControlPlane
resource includes the discovery selector.

NOTE

When configuring namespaces that the Istiod service can discover, exclude
namespaces that might contain sensitive services that should not be exposed to
the rest of the mesh.

In the following example, the Istiod service discovers any namespace that is labeled istio-
discovery: enabled or any namespace that has the name bookinfo, httpbin or istio-system:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
mode: ClusterWide
meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: enabled ﬂ
- matchExpressions:
- key: kubernetes.io/metadata.name 9
operator: In
values:
- bookinfo
- httpbin
- istio-system

Ensures that the mesh discovers namespaces that contain the label istio-discovery:
enabled.

9 Ensures that the mesh discovers namespaces bookinfo, httpbin and istio-system.

98

CHAPTER 1. SERVICE MESH 2.X

If a namespace matches any of the discovery selectors, then the mesh discovers the
namespace. The mesh excludes namespaces that do not match any of the discovery selectors.

4. Save the file and exit the editor.

1.5.2.1.3. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the
web console

By default, the Red Hat OpenShift Service Mesh Operator uses member selectors to identify which
namespaces receive sidecar injection. Namespaces that do not match the istio-injection=enabled label
as defined in the ServiceMeshMemberRoll resource do not receive sidecar injection.

NOTE

Using discovery selectors to determine which namespaces the mesh can discover has no
effect on sidecar injection. Discovering namespaces and configuring sidecar injection are
separate operations.

Prerequisites

You have installed the Red Hat OpenShift Service Mesh Operator.

You have deployed a ServiceMeshControlPlanae resource with the mode: ClusterWide
annotation.

You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1.

2.

3.

Log in to the OpenShift Container Platform web console.
Navigate to Operators — Installed Operators.

Click the Red Hat OpenShift Service Mesh Operator.
Click Istio Service Mesh Member Roll

Click the ServiceMeshMemberRoll resource.

Click YAML.

Modify the spec.memberSelectors field in the ServiceMeshMemberRoll resource by adding a
member selector that matches the inject label. The following example uses istio-injection:
enabled:

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:

name: default
spec:

memberSelectors:

- matchLabels:

istio-injection: enabled ﬂ

99

OpenShift Container Platform 4.13 Service Mesh

ﬂ Ensures that the namespace receives sidecar injection.

8. Save the file.
1.5.2.1.4. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the

CLI

By default, the Red Hat OpenShift Service Mesh Operator uses member selectors to identify which
namespaces receive sidecar injection. Namespaces that do not match the istio-injection=enabled label
as defined in the ServiceMeshMemberRoll resource do not receive sidecar injection.

NOTE

Using discovery selectors to determine which namespaces the mesh can discover has no
effect on sidecar injection. Discovering namespaces and configuring sidecar injection are
separate operations.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed a ServiceMeshControlPlanae resource with the mode: ClusterWide
annotation.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform CLI.

2. Edit the ServiceMeshMemberRoll resource.

I $ oc edit smmr -n <controlplane-namespace>

3. Modify the spec.memberSelectors field in the ServiceMeshMemberRoll resource by adding a
member selector that matches the inject label. The following example uses istio-injection:
enabled:

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:

name: default
spec:

memberSelectors:

- matchLabels:

istio-injection: enabled ﬂ

ﬂ Ensures that the namespace receives sidecar injection.

4. Save the file and exit the editor.

100

CHAPTER 1. SERVICE MESH 2.X

1.5.2.1.5. Excluding individual pods from a cluster-wide mesh by using the web console

A pod receives sidecar injection if it has the sidecar.istio.io/inject: true annotation applied, and the pod
exists in a namespace that matches either the label selector or the members list defined in the
ServiceMeshMemberRoll resource.

If a pod does not have the sidecar.istio.io/inject annotation applied, it cannot receive sidecar injection.

Prerequisites

You have installed the Red Hat OpenShift Service Mesh Operator.

You have deployed a ServiceMeshControlPlane resource with the mode: ClusterWide
annotation.

You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1.

2.

3.

Log in to the OpenShift Container Platform web console.
Navigate to Workloads = Deployments.
Click the name of the deployment.

Click YAML.

Modify the YAML file to deploy one application that receives sidecar injection and one that does
not, as shown in the following example:

apiVersion: apps/vi
kind: Deployment

metadata:
name: nginx
spec:
selector:
matchLabels:
app: nginx
template:
metadata:
annotations:
sidecar.istio.io/inject: 'true’ ﬂ
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-without-sidecar

101

OpenShift Container Platform 4.13 Service Mesh

spec:
selector:
matchLabels:
app: nginx-without-sidecar
template:
metadata:
labels:
app: nginx-without-sidecar 9
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

ﬂ This pod has the sidecar.istio.io/inject annotation applied, so it receives sidecar injection.

9 This pod does not have the annotation, so it does not receive sidecar injection.

6. Save the file.

1.5.2.1.6. Excluding individual pods from a cluster-wide mesh by using the CLI

A pod receives sidecar injection if it has the sidecar.istio.io/inject: true annotation applied, and the pod
exists in a namespace that matches either the label selector or the members list defined in the
ServiceMeshMemberRoll resource.

If a pod does not have the sidecar.istio.io/inject annotation applied, it cannot receive sidecar injection.

Prerequisites
® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed a ServiceMeshControlPlane resource with the mode: ClusterWide
annotation.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure
1. Login to the OpenShift Container Platform CLI.

2. Edit the deployment by running the following command:

I $ oc edit deployment -n <namespace> <deploymentName>

3. Modify the YAML file to deploy one application that receives sidecar injection and one that does
not, as shown in the following example:

apiVersion: apps/vi
kind: Deployment
metadata:

name: nginx

102

CHAPTER 1. SERVICE MESH 2.X

spec:
selector:
matchLabels:
app: nginx
template:
metadata:
annotations:
sidecar.istio.io/inject: 'true’ ﬂ
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx-without-sidecar
spec:
selector:
matchLabels:
app: nginx-without-sidecar
template:
metadata:
labels:
app: nginx-without-sidecar 9
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

ﬂ This pod has the sidecar.istio.io/inject annotation applied, so it receives sidecar injection.

9 This pod does not have the annotation, so it does not receive sidecar injection.

4. Save the file.

1.5.3. Multimesh or federated deployment model

Federation is a deployment model that lets you share services and workloads between separate meshes
managed in distinct administrative domains.

The Istio multi-cluster model requires a high level of trust between meshes and remote access to all
Kubernetes APl servers on which the individual meshes reside. Red Hat OpenShift Service Mesh
federation takes an opinionated approach to a multi-cluster implementation of Service Mesh that
assumes minimal trust between meshes.

A federated mesh is a group of meshes behaving as a single mesh. The services in each mesh can be

unique services, for example a mesh adding services by importing them from another mesh, can provide
additional workloads for the same services across the meshes, providing high availability, or a

103

OpenShift Container Platform 4.13 Service Mesh

combination of both. All meshes that are joined into a federated mesh remain managed individually, and
you must explicitly configure which services are exported to and imported from other meshes in the
federation. Support functions such as certificate generation, metrics and trace collection remain local in
their respective meshes.

1.6. SERVICE MESH AND ISTIO DIFFERENCES

Red Hat OpenShift Service Mesh differs from an installation of Istio to provide additional features or to
handle differences when deploying on OpenShift Container Platform.
1.6.1. Differences between Istio and Red Hat OpenShift Service Mesh

The following features are different in Service Mesh and Istio.

1.6.1.1. Command line tool

The command line tool for Red Hat OpenShift Service Mesh is oc. Red Hat OpenShift Service
Mesh does not support istioctl.

1.6.1.2. Installation and upgrades

Red Hat OpenShift Service Mesh does not support Istio installation profiles.

Red Hat OpenShift Service Mesh does not support canary upgrades of the service mesh.

1.6.1.3. Automatic injection

The upstream Istio community installation automatically injects the sidecar into pods within the projects
you have labeled.

Red Hat OpenShift Service Mesh does not automatically inject the sidecar into any pods, but you must
opt in to injection using an annotation without labeling projects. This method requires fewer privileges
and does not conflict with other OpenShift Container Platform capabilities such as builder pods. To
enable automatic injection, specify the sidecar.istio.io/inject label, or annotation, as described in the
Automatic sidecar injection section.

Table 1.4. Sidecar injection label and annotation settings

Upstream Istio Red Hat OpenShift Service Mesh

Namespace Label supports "enabled" and "disabled" supports "disabled"
Pod Label supports "true" and "false” supports "true" and "false”
Pod Annotation supports "false" only supports "true" and "false”

1.6.1.4. Istio Role Based Access Control features

Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a
service. You can identify subjects by user name or by specifying a set of properties and apply access
controls accordingly.

104

CHAPTER 1. SERVICE MESH 2.X

The upstream Istio community installation includes options to perform exact header matches, match
wildcards in headers, or check for a header containing a specific prefix or suffix.

Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular
expression. Specify a property key of request.regex.headers with a regular expression.

Upstream Istio community matching request headers example

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: httpbin-usernamepolicy
spec:
action: ALLOW
rules:
- when:
- key: 'request.regex.headers[username]’
values:
- "allowed.*"
selector:
matchLabels:
app: httpbin

1.6.1.5. OpenSSL
Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that
contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer

Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the
OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.

1.6.1.6. External workloads

Red Hat OpenShift Service Mesh does not support external workloads, such as virtual machines running
outside OpenShift on bare metal servers.

1.6.1.7. Virtual Machine Support

You can deploy virtual machines to OpenShift using OpenShift Virtualization. Then, you can apply a
mesh policy, such as mTLS or AuthorizationPolicy, to these virtual machines, just like any other pod that
is part of a mesh.

1.6.1.8. Component modifications

® A maistra-version label has been added to all resources.
® AllIngress resources have been converted to OpenShift Route resources.

® Grafana, distributed tracing (Jaeger), and Kiali are enabled by default and exposed through
OpenShift routes.

® Godebug has been removed from all templates

® The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-
reader ClusterRole.

105

OpenShift Container Platform 4.13 Service Mesh

1.6.1.9. Envoy filters

Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly
documented. Due to tight coupling with the underlying Envoy APIs, backward compatibility cannot be
maintained. EnvoyFilter patches are very sensitive to the format of the Envoy configuration that is
generated by Istio. If the configuration generated by Istio changes, it has the potential to break the
application of the EnvoyFilter.

1.6.1.10. Envoy services

Red Hat OpenShift Service Mesh does not support QUIC-based services.

1.6.1.11. Istio Container Network Interface (CNI) plugin

Red Hat OpenShift Service Mesh includes CNI plugin, which provides you with an alternate way to
configure application pod networking. The CNI plugin replaces the init-container network configuration
eliminating the need to grant service accounts and projects access to security context constraints
(SCCs) with elevated privileges.

NOTE
By default, Istio Container Network Interface (CNI) pods are created on all OpenShift
Container Platform nodes. To exclude the creation of CNI pods in a specific node, apply

the maistra.io/exclude-cni=true label to the node. Adding this label removes any
previously deployed Istio CNI pods from the node.

1.6.1.12. Global mTLS settings

Red Hat OpenShift Service Mesh creates a PeerAuthentication resource that enables or disables
Mutual TLS authentication (mTLS) within the mesh.

1.6.1.13. Gateways

Red Hat OpenShift Service Mesh installs ingress and egress gateways by default. You can disable
gateway installation in the ServiceMeshControlPlane (SMCP) resource by using the following settings:

® spec.gateways.enabled=false to disable both ingress and egress gateways.
® spec.gateways.ingress.enabled=false to disable ingress gateways.

® spec.gateways.egress.enabled=false to disable egress gateways.

NOTE

The Operator annotates the default gateways to indicate that they are generated by and
managed by the Red Hat OpenShift Service Mesh Operator.

1.6.1.14. Multicluster configurations

Red Hat OpenShift Service Mesh support for multicluster configurations is limited to the federation of
service meshes across multiple clusters.

1.6.1.15. Custom Certificate Signing Requests (CSR)

106

CHAPTER 1. SERVICE MESH 2.X

You cannot configure Red Hat OpenShift Service Mesh to process CSRs through the Kubernetes
certificate authority (CA).

1.6.1.16. Routes for Istio Gateways

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.
Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route
is created, updated or deleted.

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR)
synchronizes the gateway route. For more information, see Automatic route creation.

1.6.1.16.1. Catch-all domains

Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift
Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means
that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form
<route-names[-<project>].<suffix>. See the OpenShift Container Platform documentation for more
information about how default hostnames work and how a cluster-admin can customize it. If you use
Red Hat OpenShift Dedicated, refer to the Red Hat OpenShift Dedicated the dedicated-admin role.

1.6.1.16.2. Subdomains

Subdomains (e.g.: "*.domain.com") are supported. However this ability doesn't come enabled by default
in OpenShift Container Platform. This means that Red Hat OpenShift Service Mesh will create the route
with the subdomain, but it will only be in effect if OpenShift Container Platform is configured to enable
it.

1.6.1.16.3. Transport layer security

Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the
OpenShift Route will be configured to support TLS.

Additional resources

® Automatic route creation

1.6.2. Multitenant installations

Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports
multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a
multitenant operator to manage the control plane lifecycle.

Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects
that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.

1.6.2.1. Multitenancy versus cluster-wide installations

The main difference between a multitenant installation and a cluster-wide installation is the scope of
privileges used by istod. The components no longer use cluster-scoped Role Based Access Control
(RBAC) resource ClusterRoleBinding.

Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service

account associated with the control plane deployment and each control plane deployment will only
watch those member projects. Each member project has a maistra.io/member-of label added to it,

107

OpenShift Container Platform 4.13 Service Mesh

where the member-of value is the project containing the control plane installation.

Red Hat OpenShift Service Mesh configures each member project to ensure network access between
itself, the control plane, and other member projects. The exact configuration differs depending on how
OpenShift Container Platform software-defined networking (SDN) is configured. See About OpenShift
SDN for additional details.

If the OpenShift Container Platform cluster is configured to use the SDN plugin:

o NetworkPolicy: Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each
member project allowing ingress to all pods from the other members and the control plane. If
you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the
project.

NOTE

This also restricts ingress to only member projects. If you require ingress from
non-member projects, you need to create a NetworkPolicy to allow that traffic
through.

® Multitenant: Red Hat OpenShift Service Mesh joins the NetNamespace for each member
project to the NetNamespace of the control plane project (the equivalent of running oc adm
pod-network join-projects --to control-plane-project member-project). If you remove a
member from the Service Mesh, its NetNamespace is isolated from the control plane (the
equivalent of running oc adm pod-network isolate-projects member-project).

® Subnet: No additional configuration is performed.

1.6.2.2. Cluster scoped resources

Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the
ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as
described below.

® ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication
policies. This must be created in the same project as the control plane.

® ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide
role based access control. This must be created in the same project as the control plane.

1.6.3. Kiali and service mesh

Installing Kiali via the Service Mesh on OpenShift Container Platform differs from community Kiali
installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide
additional features, or to handle differences when deploying on OpenShift Container Platform.

e Kiali has been enabled by default.

® Ingress has been enabled by default.

e Updates have been made to the Kiali ConfigMap.

® Updates have been made to the ClusterRole settings for Kiali.

® Do not edit the ConfigMap, because your changes might be overwritten by the Service Mesh or

108

CHAPTER 1. SERVICE MESH 2.X

Kiali Operators. Files that the Kiali Operator manages have a kiali.io/ l[abel or annotation.
Updating the Operator files should be restricted to those users with cluster-admin privileges. If
you use Red Hat OpenShift Dedicated, updating the Operator files should be restricted to
those users with dedicated-admin privileges.

1.6.4. Distributed tracing and service mesh

Installing the distributed tracing platform (Jaeger) with the Service Mesh on OpenShift Container
Platform differs from community Jaeger installations in multiple ways. These modifications are
sometimes necessary to resolve issues, provide additional features, or to handle differences when
deploying on OpenShift Container Platform.

Distributed tracing has been enabled by default for Service Mesh.
Ingress has been enabled by default for Service Mesh.
The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)

Jaeger uses Elasticsearch for storage by default when you select either the production or
streaming deployment option.

The community version of Istio provides a generic "tracing" route. Red Hat OpenShift Service
Mesh uses a "jaeger” route that is installed by the Red Hat OpenShift distributed tracing
platform (Jaeger) Operator and is already protected by OAuth.

Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a
sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be
confused with each other. The proxy sidecar creates spans related to the pod’s ingress and
egress traffic. The agent sidecar receives the spans emitted by the application and sends them
to the Jaeger Collector.

1.7. PREPARING TO INSTALL SERVICE MESH

Before you can install Red Hat OpenShift Service Mesh, you must subscribe to OpenShift Container
Platform and install OpenShift Container Platform in a supported configuration.

1.7.1. Prerequisites

Maintain an active OpenShift Container Platform subscription on your Red Hat account. If you
do not have a subscription, contact your sales representative for more information.

Review the OpenShift Container Platform 4.13 overview.
Install OpenShift Container Platform 4.13. If you are installing Red Hat OpenShift Service Mesh

on arestricted network, follow the instructions for your chosen OpenShift Container Platform
infrastructure.

o Install OpenShift Container Platform 4.13 on AWS

o Install OpenShift Container Platform 4.13 on user-provisioned AWS
o Install OpenShift Container Platform 4.13 on bare metal

o Install OpenShift Container Platform 4.13 on vSphere

o Install OpenShift Container Platform 4.13 on IBM Z and IBM® LinuxONE

109

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/architecture/#installation-overview_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#supported-installation-methods-for-different-platforms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#installing-aws-account
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#installing-ibm-z

OpenShift Container Platform 4.13 Service Mesh

o Install OpenShift Container Platform 4.13 on IBM Power

® |nstall the version of the OpenShift Container Platform command line utility (the oc client tool)
that matches your OpenShift Container Platform version and add it to your path.

o If you are using OpenShift Container Platform 4.13, see About the OpenShift CLI.

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported platforms,
refer to the Support Policy.

1.7.2. Supported configurations

The following configurations are supported for the current release of Red Hat OpenShift Service Mesh.

1.7.2.1. Supported platforms

The Red Hat OpenShift Service Mesh Operator supports multiple versions of the
ServiceMeshControlPlane resource. Version 2.5 Service Mesh control planes are supported on the
following platform versions:

® Red Hat OpenShift Container Platform version 4.10 or later.
® Red Hat OpenShift Dedicated version 4.
® Azure Red Hat OpenShift (ARO) version 4.

® Red Hat OpenShift Service on AWS (ROSA).

1.7.2.2. Unsupported configurations
Explicitly unsupported cases include:
® OpenShift Online is not supported for Red Hat OpenShift Service Mesh.

® Red Hat OpenShift Service Mesh does not support the management of microservices outside
the cluster where Service Mesh is running.

1.7.2.3. Supported network configurations
Red Hat OpenShift Service Mesh supports the following network configurations.
® OpenShift-SDN
® OVN-Kubernetes is available on all supported versions of OpenShift Container Platform.

e Third-Party Container Network Interface (CNI) plugins that have been certified on OpenShift
Container Platform and passed Service Mesh conformance testing. See Certified OpenShift
CNI Plug-ins for more information.

1.7.2.4. Supported configurations for Service Mesh

® This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64, IBM Z, and IBM Power.

o IBM Zis only supported on OpenShift Container Platform 4.10 and later.

110

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#installing-ibm-power
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/cli_tools/#cli-about-cli_cli-developer-commands
https://access.redhat.com/support/policy/updates/openshift#ossm
https://access.redhat.com/articles/5436171

1.7.2.5.

1.7.2.6.

1.7.2.7.

CHAPTER 1. SERVICE MESH 2.X

o IBM Power is only supported on OpenShift Container Platform 4.10 and later.

Configurations where all Service Mesh components are contained within a single OpenShift
Container Platform cluster.

Configurations that do not integrate external services such as virtual machines.

Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where
explicitly documented.
Supported configurations for Kiali

The Kiali console is only supported on the two most recent releases of the Google Chrome,
Microsoft Edge, Mozilla Firefox, or Apple Safari browsers.

The openshift authentication strategy is the only supported authentication configuration when
Kiali is deployed with Red Hat OpenShift Service Mesh (OSSM). The openshift strategy
controls access based on the individual’s role-based access control (RBAC) roles of the
OpenShift Container Platform.

Supported configurations for Distributed Tracing

Jaeger agent as a sidecar is the only supported configuration for Jaeger. Jaeger as a
daemonset is not supported for multitenant installations or OpenShift Dedicated.

Supported WebAssembly module

3scale WebAssembly is the only provided WebAssembly module. You can create custom
WebAssembly modules.

1.7.3. Next steps

Install Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.

1.8. INSTALLING THE OPERATORS

To install Red Hat OpenShift Service Mesh, first install the Red Hat OpenShift Service Mesh Operator
and any optional Operators on OpenShift Container Platform. Then create a
ServiceMeshControlPlane resource to deploy the control plane.

NOTE

This basic installation is configured based on the default OpenShift settings and is not
designed for production use. Use this default installation to verify your installation, and
then configure your service mesh for your specific environment.

Prerequisites

Read the Preparing to install Red Hat OpenShift Service Mesh process.

An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must
have an account with the dedicated-admin role.

m

OpenShift Container Platform 4.13 Service Mesh

The following steps show how to install a basic instance of Red Hat OpenShift Service Mesh on
OpenShift Container Platform.

IMPORTANT

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed
tracing platform (Jaeger) and OpenShift Elasticsearch Operator are deprecated and will
be removed in a future release. Red Hat will provide bug fixes and support for these
features during the current release lifecycle, but this feature will no longer receive
enhancements and will be removed. As an alternative to Red Hat OpenShift distributed
tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform
(Tempo) instead.

1.8.1. Service Mesh Operators overview

Red Hat OpenShift Service Mesh requires the use of the Red Hat OpenShift Service Mesh Operator
which allows you to connect, secure, control, and observe the microservices that comprise your
applications. You can also install other Operators to enhance your service mesh experience.

' WARNING
A Do not install Community versions of the Operators. Community Operators are not

supported.

The following Operator is required:

Red Hat OpenShift Service Mesh Operator

Allows you to connect, secure, control, and observe the microservices that comprise your
applications. It also defines and monitors the ServiceMeshControlPlane resources that manage the
deployment, updating, and deletion of the Service Mesh components. It is based on the open source
Istio project.

The following Operators are optional:

Kiali Operator provided by Red Hat

Provides observability for your service mesh. You can view configurations, monitor traffic, and
analyze traces in a single console. It is based on the open source Kiali project.

Red Hat OpenShift distributed tracing platform (Tempo)

Provides distributed tracing to monitor and troubleshoot transactions in complex distributed
systems. It is based on the open source Grafana Tempo project.

The following optional Operators are deprecated:

12

https://istio.io/
https://www.kiali.io/
https://grafana.com/oss/tempo/

CHAPTER 1. SERVICE MESH 2.X

IMPORTANT

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed
tracing platform (Jaeger) and OpenShift Elasticsearch Operator are deprecated and will
be removed in a future release. Red Hat will provide bug fixes and support for these
features during the current release lifecycle, but these features will no longer receive
enhancements and will be removed. As an alternative to Red Hat OpenShift distributed
tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform
(Tempo) instead.

Red Hat OpenShift distributed tracing platform (Jaeger)

Provides distributed tracing to monitor and troubleshoot transactions in complex distributed
systems. It is based on the open source Jaeger project.

OpenShift Elasticsearch Operator
Provides database storage for tracing and logging with the distributed tracing platform (Jaeger). It is

based on the open source Elasticsearch project.
1.8.2. Installing the Operators

To install Red Hat OpenShift Service Mesh, you must install the Red Hat OpenShift Service Mesh
Operator. Repeat the procedure for each additional Operator you want to install.

Additional Operators include:
® Kiali Operator provided by Red Hat
® Tempo Operator

Deprecated additional Operators include:

IMPORTANT

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift distributed
tracing platform (Jaeger) and OpenShift Elasticsearch Operator are deprecated and will
be removed in a future release. Red Hat will provide bug fixes and support for these
features during the current release lifecycle, but this feature will no longer receive
enhancements and will be removed. As an alternative to Red Hat OpenShift distributed
tracing platform (Jaeger), you can use Red Hat OpenShift distributed tracing platform
(Tempo) instead.

® Red Hat OpenShift distributed tracing platform (Jaeger)

® OpenShift Elasticsearch Operator

NOTE

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift
Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red
Hat OpenShift distributed tracing platform (Jaeger) Operator creates the Elasticsearch
instance using the installed OpenShift Elasticsearch Operator.

Procedure

13

https://www.jaegertracing.io/
https://www.elastic.co/

OpenShift Container Platform 4.13 Service Mesh

1. Login to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin

role.

2. In the OpenShift Container Platform web console, click Operators = OperatorHub.

3. Type the name of the Operator into the filter box and select the Red Hat version of the
Operator. Community versions of the Operators are not supported.

4. Click Install.

5. On the Install Operator page for each Operator, accept the default settings.

6. Click Install. Wait until the Operator installs before repeating the steps for the next Operator

you want to install.

The Red Hat OpenShift Service Mesh Operator installs in the openshift-operators
namespace and is available for all namespaces in the cluster.

The Kiali Operator provided by Red Hat installs in the openshift-operators namespace and
is available for all namespaces in the cluster.

The Tempo Operator installs in the openshift-tempo-operator namespace and is available
for all namespaces in the cluster.

The Red Hat OpenShift distributed tracing platform (Jaeger) installs in the openshift-
distributed-tracing namespace and is available for all namespaces in the cluster.

IMPORTANT

Starting with Red Hat OpenShift Service Mesh 2.5, Red Hat OpenShift
distributed tracing platform (Jaeger) is deprecated and will be removed in a
future release. Red Hat will provide bug fixes and support for this feature
during the current release lifecycle, but this feature will no longer receive
enhancements and will be removed. As an alternative to Red Hat OpenShift
distributed tracing platform (Jaeger), you can use Red Hat OpenShift
distributed tracing platform (Tempo) instead.

® The OpenShift Elasticsearch Operator installs in the openshift-operators-redhat

Verification

namespace and is available for all namespaces in the cluster.

IMPORTANT

Starting with Red Hat OpenShift Service Mesh 2.5, OpenShift Elasticsearch
Operator is deprecated and will be removed in a future release. Red Hat will
provide bug fixes and support for this feature during the current release
lifecycle, but this feature will no longer receive enhancements and will be
removed.

e Afterall you have installed all four Operators, click Operators — Installed Operators to verify
that your Operators are installed.

1.8.3. Configuring the Service Mesh