
OpenShift Container Platform 4.13

Registry

Configuring registries for OpenShift Container Platform

Last Updated: 2024-06-06

OpenShift Container Platform 4.13 Registry

Configuring registries for OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing the internal registry for
OpenShift Container Platform. It also provides a general overview of registries associated with
OpenShift Container Platform.

. .

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT IMAGE REGISTRY OVERVIEW
1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT IMAGE REGISTRY
1.2. INTEGRATED OPENSHIFT IMAGE REGISTRY
1.3. THIRD-PARTY REGISTRIES

1.3.1. Authentication
1.3.1.1. Registry authentication with Podman

1.4. RED HAT QUAY REGISTRIES
1.5. AUTHENTICATION ENABLED RED HAT REGISTRY

CHAPTER 2. IMAGE REGISTRY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
2.1. IMAGE REGISTRY ON CLOUD PLATFORMS AND OPENSTACK
2.2. IMAGE REGISTRY ON BARE METAL, NUTANIX, AND VSPHERE

2.2.1. Image registry removed during installation
2.3. IMAGE REGISTRY OPERATOR DISTRIBUTION ACROSS AVAILABILITY ZONES
2.4. ADDITIONAL RESOURCES
2.5. IMAGE REGISTRY OPERATOR CONFIGURATION PARAMETERS
2.6. ENABLE THE IMAGE REGISTRY DEFAULT ROUTE WITH THE CUSTOM RESOURCE DEFINITION
2.7. CONFIGURING ADDITIONAL TRUST STORES FOR IMAGE REGISTRY ACCESS
2.8. CONFIGURING STORAGE CREDENTIALS FOR THE IMAGE REGISTRY OPERATOR
2.9. ADDITIONAL RESOURCES

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY
3.1. CONFIGURING THE REGISTRY FOR AWS USER-PROVISIONED INFRASTRUCTURE

3.1.1. Configuring a secret for the Image Registry Operator
3.1.2. Configuring registry storage for AWS with user-provisioned infrastructure
3.1.3. Image Registry Operator configuration parameters for AWS S3

3.2. CONFIGURING THE REGISTRY FOR GCP USER-PROVISIONED INFRASTRUCTURE
3.2.1. Configuring a secret for the Image Registry Operator
3.2.2. Configuring the registry storage for GCP with user-provisioned infrastructure
3.2.3. Image Registry Operator configuration parameters for GCP GCS

3.3. CONFIGURING THE REGISTRY FOR OPENSTACK USER-PROVISIONED INFRASTRUCTURE
3.3.1. Configuring the Image Registry Operator to trust Swift storage
3.3.2. Configuring a secret for the Image Registry Operator
3.3.3. Registry storage for RHOSP with user-provisioned infrastructure
3.3.4. Image Registry Operator configuration parameters for RHOSP Swift

3.4. CONFIGURING THE REGISTRY FOR AZURE USER-PROVISIONED INFRASTRUCTURE
3.4.1. Configuring a secret for the Image Registry Operator
3.4.2. Configuring registry storage for Azure
3.4.3. Configuring registry storage for Azure Government

3.5. CONFIGURING THE REGISTRY FOR RHOSP
3.5.1. Configuring an image registry with custom storage on clusters that run on RHOSP

3.6. CONFIGURING THE REGISTRY FOR BARE METAL
3.6.1. Image registry removed during installation
3.6.2. Changing the image registry’s management state
3.6.3. Image registry storage configuration

3.6.3.1. Configuring registry storage for bare metal and other manual installations
3.6.3.2. Configuring storage for the image registry in non-production clusters
3.6.3.3. Configuring block registry storage for bare metal
3.6.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data
Foundation
3.6.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data
Foundation

4
4
5
5
5
5
6
6

8
8
8
8
9

10
10
12
12
13
13

14
14
14
14
15
16
16
16
17
18
18
18
19
19

20
20
20
21
21
22
24
24
24
24
24
26
26

28

29

Table of Contents

1

. .

. .

3.6.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data
Foundation
3.6.5. Additional resources

3.7. CONFIGURING THE REGISTRY FOR VSPHERE
3.7.1. Image registry removed during installation
3.7.2. Changing the image registry’s management state
3.7.3. Image registry storage configuration

3.7.3.1. Configuring registry storage for VMware vSphere
3.7.3.2. Configuring storage for the image registry in non-production clusters
3.7.3.3. Configuring block registry storage for VMware vSphere
3.7.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data
Foundation
3.7.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data
Foundation

3.7.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data
Foundation
3.7.5. Additional resources

3.8. CONFIGURING THE REGISTRY FOR RED HAT OPENSHIFT DATA FOUNDATION
3.8.1. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data
Foundation
3.8.2. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data
Foundation
3.8.3. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data
Foundation
3.8.4. Additional resources

3.9. CONFIGURING THE REGISTRY FOR NUTANIX
3.9.1. Image registry removed during installation
3.9.2. Changing the image registry’s management state
3.9.3. Image registry storage configuration

3.9.3.1. Configuring registry storage for Nutanix
3.9.3.2. Configuring storage for the image registry in non-production clusters
3.9.3.3. Configuring block registry storage for Nutanix volumes
3.9.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data
Foundation
3.9.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data
Foundation

3.9.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data
Foundation
3.9.5. Additional resources

CHAPTER 4. ACCESSING THE REGISTRY
4.1. PREREQUISITES
4.2. ACCESSING THE REGISTRY DIRECTLY FROM THE CLUSTER
4.3. CHECKING THE STATUS OF THE REGISTRY PODS
4.4. VIEWING REGISTRY LOGS
4.5. ACCESSING REGISTRY METRICS
4.6. ADDITIONAL RESOURCES

CHAPTER 5. EXPOSING THE REGISTRY
5.1. EXPOSING A DEFAULT REGISTRY MANUALLY
5.2. EXPOSING A SECURE REGISTRY MANUALLY

31
32
32
32
32
32
33
34
35

36

38

39
40
40

41

42

44
45
45
45
45
45
46
47
48

49

50

52
53

54
54
54
56
56
57
58

59
59
59

OpenShift Container Platform 4.13 Registry

2

Table of Contents

3

CHAPTER 1. OPENSHIFT IMAGE REGISTRY OVERVIEW
OpenShift Container Platform can build images from your source code, deploy them, and manage their
lifecycle. It provides an internal, integrated container image registry that can be deployed in your
OpenShift Container Platform environment to locally manage images. This overview contains reference
information and links for registries commonly used with OpenShift Container Platform, with a focus on
the OpenShift image registry.

1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT IMAGE
REGISTRY

This glossary defines the common terms that are used in the registry content.

container

Lightweight and executable images that consist software and all its dependencies. Because
containers virtualize the operating system, you can run containers in data center, a public or private
cloud, or your local host.

Image Registry Operator

The Image Registry Operator runs in the openshift-image-registry namespace, and manages the
registry instance in that location.

image repository

An image repository is a collection of related container images and tags identifying images.

mirror registry

The mirror registry is a registry that holds the mirror of OpenShift Container Platform images.

namespace

A namespace isolates groups of resources within a single cluster.

pod

The pod is the smallest logical unit in Kubernetes. A pod is comprised of one or more containers to
run in a worker node.

private registry

A registry is a server that implements the container image registry API. A private registry is a registry
that requires authentication to allow users access its contents.

public registry

A registry is a server that implements the container image registry API. A public registry is a registry
that serves its contently publicly.

Quay.io

A public Red Hat Quay Container Registry instance provided and maintained by Red Hat, that serves
most of the container images and Operators to OpenShift Container Platform clusters.

OpenShift image registry

OpenShift image registry is the registry provided by OpenShift Container Platform to manage
images.

registry authentication

To push and pull images to and from private image repositories, the registry needs to authenticate
its users with credentials.

route

Exposes a service to allow for network access to pods from users and applications outside the
OpenShift Container Platform instance.

OpenShift Container Platform 4.13 Registry

4

scale down

To decrease the number of replicas.

scale up

To increase the number of replicas.

service

A service exposes a running application on a set of pods.

1.2. INTEGRATED OPENSHIFT IMAGE REGISTRY

OpenShift Container Platform provides a built-in container image registry that runs as a standard
workload on the cluster. The registry is configured and managed by an infrastructure Operator. It
provides an out-of-the-box solution for users to manage the images that run their workloads, and runs
on top of the existing cluster infrastructure. This registry can be scaled up or down like any other cluster
workload and does not require specific infrastructure provisioning. In addition, it is integrated into the
cluster user authentication and authorization system, which means that access to create and retrieve
images is controlled by defining user permissions on the image resources.

The registry is typically used as a publication target for images built on the cluster, as well as being a
source of images for workloads running on the cluster. When a new image is pushed to the registry, the
cluster is notified of the new image and other components can react to and consume the updated
image.

Image data is stored in two locations. The actual image data is stored in a configurable storage location,
such as cloud storage or a filesystem volume. The image metadata, which is exposed by the standard
cluster APIs and is used to perform access control, is stored as standard API resources, specifically
images and imagestreams.

Additional resources

Image Registry Operator in OpenShift Container Platform

1.3. THIRD-PARTY REGISTRIES

OpenShift Container Platform can create containers using images from third-party registries, but it is
unlikely that these registries offer the same image notification support as the integrated OpenShift
image registry. In this situation, OpenShift Container Platform will fetch tags from the remote registry
upon imagestream creation. To refresh the fetched tags, run oc import-image <stream>. When new
images are detected, the previously described build and deployment reactions occur.

1.3.1. Authentication

OpenShift Container Platform can communicate with registries to access private image repositories
using credentials supplied by the user. This allows OpenShift Container Platform to push and pull
images to and from private repositories.

1.3.1.1. Registry authentication with Podman

Some container image registries require access authorization. Podman is an open source tool for
managing containers and container images and interacting with image registries. You can use Podman
to authenticate your credentials, pull the registry image, and store local images in a local file system. The
following is a generic example of authenticating the registry with Podman.

CHAPTER 1. OPENSHIFT IMAGE REGISTRY OVERVIEW

5

Procedure

1. Use the Red Hat Ecosystem Catalog to search for specific container images from the Red Hat
Repository and select the required image.

2. Click Get this image to find the command for your container image.

3. Log in by running the following command and entering your username and password to
authenticate:

4. Download the image and save it locally by running the following command:

1.4. RED HAT QUAY REGISTRIES

If you need an enterprise-quality container image registry, Red Hat Quay is available both as a hosted
service and as software you can install in your own data center or cloud environment. Advanced features
in Red Hat Quay include geo-replication, image scanning, and the ability to roll back images.

Visit the Quay.io site to set up your own hosted Quay registry account. After that, follow the Quay
Tutorial to log in to the Quay registry and start managing your images.

You can access your Red Hat Quay registry from OpenShift Container Platform like any remote
container image registry.

Additional resources

Red Hat Quay product documentation

1.5. AUTHENTICATION ENABLED RED HAT REGISTRY

All container images available through the Container images section of the Red Hat Ecosystem Catalog
are hosted on an image registry, registry.redhat.io.

The registry, registry.redhat.io, requires authentication for access to images and hosted content on
OpenShift Container Platform. Following the move to the new registry, the existing registry will be
available for a period of time.

NOTE

OpenShift Container Platform pulls images from registry.redhat.io, so you must
configure your cluster to use it.

The new registry uses standard OAuth mechanisms for authentication, with the following methods:

Authentication token. Tokens, which are generated by administrators, are service accounts
that give systems the ability to authenticate against the container image registry. Service
accounts are not affected by changes in user accounts, so the token authentication method is
reliable and resilient. This is the only supported authentication option for production clusters.

$ podman login registry.redhat.io
 Username:<your_registry_account_username>
 Password:<your_registry_account_password>

$ podman pull registry.redhat.io/<repository_name>

OpenShift Container Platform 4.13 Registry

6

https://catalog.redhat.com/software/containers/explore
https://quay.io
https://access.redhat.com/documentation/en-us/red_hat_quay/

Web username and password. This is the standard set of credentials you use to log in to
resources such as access.redhat.com. While it is possible to use this authentication method
with OpenShift Container Platform, it is not supported for production deployments. Restrict this
authentication method to stand-alone projects outside OpenShift Container Platform.

You can use podman login with your credentials, either username and password or authentication
token, to access content on the new registry.

All imagestreams point to the new registry, which uses the installation pull secret to authenticate.

You must place your credentials in either of the following places:

openshift namespace. Your credentials must exist in the openshift namespace so that the
imagestreams in the openshift namespace can import.

Your host. Your credentials must exist on your host because Kubernetes uses the credentials
from your host when it goes to pull images.

Additional resources

Registry service accounts

CHAPTER 1. OPENSHIFT IMAGE REGISTRY OVERVIEW

7

https://access.redhat.com/terms-based-registry/

CHAPTER 2. IMAGE REGISTRY OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

2.1. IMAGE REGISTRY ON CLOUD PLATFORMS AND OPENSTACK

The Image Registry Operator installs a single instance of the OpenShift image registry, and manages all
registry configuration, including setting up registry storage.

NOTE

Storage is only automatically configured when you install an installer-provisioned
infrastructure cluster on AWS, Azure, GCP, IBM, or OpenStack.

When you install or upgrade an installer-provisioned infrastructure cluster on AWS, Azure,
GCP, IBM, or OpenStack, the Image Registry Operator sets the
spec.storage.managementState parameter to Managed. If the
spec.storage.managementState parameter is set to Unmanaged, the Image Registry
Operator takes no action related to storage.

After the control plane deploys, the Operator creates a default
configs.imageregistry.operator.openshift.io resource instance based on configuration detected in
the cluster.

If insufficient information is available to define a complete
configs.imageregistry.operator.openshift.io resource, the incomplete resource is defined and the
Operator updates the resource status with information about what is missing.

The Image Registry Operator runs in the openshift-image-registry namespace, and manages the
registry instance in that location as well. All configuration and workload resources for the registry reside
in that namespace.

IMPORTANT

The Image Registry Operator’s behavior for managing the pruner is orthogonal to the
managementState specified on the ClusterOperator object for the Image Registry
Operator. If the Image Registry Operator is not in the Managed state, the image pruner
can still be configured and managed by the Pruning custom resource.

However, the managementState of the Image Registry Operator alters the behavior of
the deployed image pruner job:

Managed: the --prune-registry flag for the image pruner is set to true.

Removed: the --prune-registry flag for the image pruner is set to false, meaning
it only prunes image metadata in etcd.

2.2. IMAGE REGISTRY ON BARE METAL, NUTANIX, AND VSPHERE

2.2.1. Image registry removed during installation

On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator
bootstraps itself as Removed. This allows openshift-installer to complete installations on these
platform types.

OpenShift Container Platform 4.13 Registry

8

After installation, you must edit the Image Registry Operator configuration to switch the
managementState from Removed to Managed.

2.3. IMAGE REGISTRY OPERATOR DISTRIBUTION ACROSS
AVAILABILITY ZONES

The default configuration of the Image Registry Operator spreads image registry pods across topology
zones to prevent delayed recovery times in case of a complete zone failure where all pods are impacted.

The Image Registry Operator defaults to the following when deployed with a zone-related topology
constraint:

Image Registry Operator deployed with a zone related topology constraint

The Image Registry Operator defaults to the following when deployed without a zone-related topology
constraint, which applies to bare metal and vSphere instances:

Image Registry Operator deployed without a zone related topology constraint

A cluster administrator can override the default topologySpreadConstraints by configuring the

 topologySpreadConstraints:
 - labelSelector:
 matchLabels:
 docker-registry: default
 maxSkew: 1
 topologyKey: kubernetes.io/hostname
 whenUnsatisfiable: DoNotSchedule
 - labelSelector:
 matchLabels:
 docker-registry: default
 maxSkew: 1
 topologyKey: node-role.kubernetes.io/worker
 whenUnsatisfiable: DoNotSchedule
 - labelSelector:
 matchLabels:
 docker-registry: default
 maxSkew: 1
 topologyKey: topology.kubernetes.io/zone
 whenUnsatisfiable: DoNotSchedule

 topologySpreadConstraints:
 - labelSelector:
 matchLabels:
 docker-registry: default
 maxSkew: 1
 topologyKey: kubernetes.io/hostname
 whenUnsatisfiable: DoNotSchedule
 - labelSelector:
 matchLabels:
 docker-registry: default
 maxSkew: 1
 topologyKey: node-role.kubernetes.io/worker
 whenUnsatisfiable: DoNotSchedule

CHAPTER 2. IMAGE REGISTRY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

9

A cluster administrator can override the default topologySpreadConstraints by configuring the
configs.imageregistry.operator.openshift.io/cluster spec file. In that case, only the constraints you
provide apply.

2.4. ADDITIONAL RESOURCES

Configuring pod topology spread constraints

2.5. IMAGE REGISTRY OPERATOR CONFIGURATION PARAMETERS

The configs.imageregistry.operator.openshift.io resource offers the following configuration
parameters.

Parameter Description

managementState Managed: The Operator updates the registry as configuration resources are
updated.

Unmanaged: The Operator ignores changes to the configuration resources.

Removed: The Operator removes the registry instance and tear down any
storage that the Operator provisioned.

logLevel Sets logLevel of the registry instance. Defaults to Normal.

The following values for logLevel are supported:

Normal

Debug

Trace

TraceAll

httpSecret Value needed by the registry to secure uploads, generated by default.

operatorLogLevel The operatorLogLevel configuration parameter provides intent-based
logging for the Operator itself and a simple way to manage coarse-grained
logging choices that Operators must interpret for themselves. This
configuration parameter defaults to Normal. It does not provide fine-grained
control.

The following values for operatorLogLevel are supported:

Normal

Debug

Trace

TraceAll

OpenShift Container Platform 4.13 Registry

10

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/nodes/#nodes-scheduler-pod-topology-spread-constraints

proxy Defines the Proxy to be used when calling master API and upstream registries.

storage Storagetype: Details for configuring registry storage, for example S3 bucket
coordinates. Normally configured by default.

readOnly Indicates whether the registry instance should reject attempts to push new
images or delete existing ones.

requests API Request Limit details. Controls how many parallel requests a given registry
instance will handle before queuing additional requests.

defaultRoute Determines whether or not an external route is defined using the default
hostname. If enabled, the route uses re-encrypt encryption. Defaults to false.

routes Array of additional routes to create. You provide the hostname and certificate
for the route.

rolloutStrategy Defines rollout strategy for the image registry deployment. Defaults to
RollingUpdate.

replicas Replica count for the registry.

disableRedirect Controls whether to route all data through the registry, rather than redirecting
to the back end. Defaults to false.

spec.storage.manage
mentState

The Image Registry Operator sets the spec.storage.managementState
parameter to Managed on new installations or upgrades of clusters using
installer-provisioned infrastructure on AWS or Azure.

Managed: Determines that the Image Registry Operator manages
underlying storage. If the Image Registry Operator’s
managementState is set to Removed, then the storage is deleted.

If the managementState is set to Managed, the Image
Registry Operator attempts to apply some default configuration
on the underlying storage unit. For example, if set to Managed,
the Operator tries to enable encryption on the S3 bucket before
making it available to the registry. If you do not want the default
settings to be applied on the storage you are providing, make
sure the managementState is set to Unmanaged.

Unmanaged: Determines that the Image Registry Operator ignores
the storage settings. If the Image Registry Operator’s
managementState is set to Removed, then the storage is not
deleted. If you provided an underlying storage unit configuration, such
as a bucket or container name, and the
spec.storage.managementState is not yet set to any value, then
the Image Registry Operator configures it to Unmanaged.

Parameter Description

2.6. ENABLE THE IMAGE REGISTRY DEFAULT ROUTE WITH THE

CHAPTER 2. IMAGE REGISTRY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

11

1

2.6. ENABLE THE IMAGE REGISTRY DEFAULT ROUTE WITH THE
CUSTOM RESOURCE DEFINITION

In OpenShift Container Platform, the Registry Operator controls the OpenShift image registry feature.
The Operator is defined by the configs.imageregistry.operator.openshift.io Custom Resource
Definition (CRD).

If you need to automatically enable the Image Registry default route, patch the Image Registry
Operator CRD.

Procedure

Patch the Image Registry Operator CRD:

2.7. CONFIGURING ADDITIONAL TRUST STORES FOR IMAGE
REGISTRY ACCESS

The image.config.openshift.io/cluster custom resource can contain a reference to a config map that
contains additional certificate authorities to be trusted during image registry access.

Prerequisites

The certificate authorities (CA) must be PEM-encoded.

Procedure

You can create a config map in the openshift-config namespace and use its name in
AdditionalTrustedCA in the image.config.openshift.io custom resource to provide additional CAs
that should be trusted when contacting external registries.

The config map key is the hostname of a registry with the port for which this CA is to be trusted, and the
PEM certificate content is the value, for each additional registry CA to trust.

Image registry CA config map example

If the registry has the port, such as registry-with-port.example.com:5000, : should be replaced
with ...

$ oc patch configs.imageregistry.operator.openshift.io/cluster --type merge -p '{"spec":
{"defaultRoute":true}}'

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-registry-ca
data:
 registry.example.com: |
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 registry-with-port.example.com..5000: | 1
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----

OpenShift Container Platform 4.13 Registry

12

You can configure additional CAs with the following procedure.

To configure an additional CA:

2.8. CONFIGURING STORAGE CREDENTIALS FOR THE IMAGE
REGISTRY OPERATOR

In addition to the configs.imageregistry.operator.openshift.io and ConfigMap resources, storage
credential configuration is provided to the Operator by a separate secret resource located within the
openshift-image-registry namespace.

The image-registry-private-configuration-user secret provides credentials needed for storage access
and management. It overrides the default credentials used by the Operator, if default credentials were
found.

Procedure

Create an OpenShift Container Platform secret that contains the required keys.

2.9. ADDITIONAL RESOURCES

Configuring the registry for AWS user-provisioned infrastructure

Configuring the registry for GCP user-provisioned infrastructure

Configuring the registry for Azure user-provisioned infrastructure

Configuring the registry for bare metal

Configuring the registry for vSphere

$ oc create configmap registry-config --from-file=<external_registry_address>=ca.crt -n
openshift-config

$ oc edit image.config.openshift.io cluster

spec:
 additionalTrustedCA:
 name: registry-config

$ oc create secret generic image-registry-private-configuration-user --from-
literal=KEY1=value1 --from-literal=KEY2=value2 --namespace openshift-image-registry

CHAPTER 2. IMAGE REGISTRY OPERATOR IN OPENSHIFT CONTAINER PLATFORM

13

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

3.1. CONFIGURING THE REGISTRY FOR AWS USER-PROVISIONED
INFRASTRUCTURE

3.1.1. Configuring a secret for the Image Registry Operator

In addition to the configs.imageregistry.operator.openshift.io and ConfigMap resources,
configuration is provided to the Operator by a separate secret resource located within the openshift-
image-registry namespace.

The image-registry-private-configuration-user secret provides credentials needed for storage access
and management. It overrides the default credentials used by the Operator, if default credentials were
found.

For S3 on AWS storage, the secret is expected to contain two keys:

REGISTRY_STORAGE_S3_ACCESSKEY

REGISTRY_STORAGE_S3_SECRETKEY

Procedure

Create an OpenShift Container Platform secret that contains the required keys.

3.1.2. Configuring registry storage for AWS with user-provisioned infrastructure

During installation, your cloud credentials are sufficient to create an Amazon S3 bucket and the Registry
Operator will automatically configure storage.

If the Registry Operator cannot create an S3 bucket and automatically configure storage, you can
create an S3 bucket and configure storage with the following procedure.

Prerequisites

You have a cluster on AWS with user-provisioned infrastructure.

For Amazon S3 storage, the secret is expected to contain two keys:

REGISTRY_STORAGE_S3_ACCESSKEY

REGISTRY_STORAGE_S3_SECRETKEY

Procedure

Use the following procedure if the Registry Operator cannot create an S3 bucket and automatically
configure storage.

1. Set up a Bucket Lifecycle Policy to abort incomplete multipart uploads that are one day old.

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=myaccesskey --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=mysecretkey --namespace openshift-
image-registry

OpenShift Container Platform 4.13 Registry

14

https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html#mpu-abort-incomplete-mpu-lifecycle-config

2. Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

Example configuration

WARNING

To secure your registry images in AWS, block public access to the S3 bucket.

3.1.3. Image Registry Operator configuration parameters for AWS S3

The following configuration parameters are available for AWS S3 registry storage.

The image registry spec.storage.s3 configuration parameter holds the information to configure the
registry to use the AWS S3 service for back-end storage. See the S3 storage driver documentation for
more information.

Parameter Description

bucket Bucket is the bucket name in which you want to store the registry’s data. It is
optional and is generated if not provided.

region Region is the AWS region in which your bucket exists. It is optional and is set
based on the installed AWS Region.

regionEndpoint RegionEndpoint is the endpoint for S3 compatible storage services. It is
optional and defaults based on the Region that is provided.

virtualHostedStyle VirtualHostedStyle enables using S3 virtual hosted style bucket paths with a
custom RegionEndpoint. It is optional and defaults to false.

Set this parameter to deploy OpenShift Container Platform to hidden regions.

encrypt Encrypt specifies whether or not the registry stores the image in encrypted
format. It is optional and defaults to false.

keyID KeyID is the KMS key ID to use for encryption. It is optional. Encrypt must be
true, or this parameter is ignored.

$ oc edit configs.imageregistry.operator.openshift.io/cluster

storage:
 s3:
 bucket: <bucket-name>
 region: <region-name>

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

15

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-s3-bucket-publicaccessblockconfiguration.html
https://docs.docker.com/registry/storage-drivers/s3/

cloudFront CloudFront configures Amazon Cloudfront as the storage middleware in a
registry. It is optional.

trustedCA The namespace for the config map referenced by trustedCA is openshift-
config. The key for the bundle in the config map is ca-bundle.crt. It is
optional.

Parameter Description

NOTE

When the value of the regionEndpoint parameter is configured to a URL of a Rados
Gateway, an explicit port must not be specified. For example:

3.2. CONFIGURING THE REGISTRY FOR GCP USER-PROVISIONED
INFRASTRUCTURE

3.2.1. Configuring a secret for the Image Registry Operator

In addition to the configs.imageregistry.operator.openshift.io and ConfigMap resources,
configuration is provided to the Operator by a separate secret resource located within the openshift-
image-registry namespace.

The image-registry-private-configuration-user secret provides credentials needed for storage access
and management. It overrides the default credentials used by the Operator, if default credentials were
found.

For GCS on GCP storage, the secret is expected to contain one key whose value is the contents of a
credentials file provided by GCP:

REGISTRY_STORAGE_GCS_KEYFILE

Procedure

Create an OpenShift Container Platform secret that contains the required keys.

3.2.2. Configuring the registry storage for GCP with user-provisioned infrastructure

If the Registry Operator cannot create a Google Cloud Platform (GCP) bucket, you must set up the
storage medium manually and configure the settings in the registry custom resource (CR).

Prerequisites

regionEndpoint: http://rook-ceph-rgw-ocs-storagecluster-cephobjectstore.openshift-
storage.svc.cluster.local

$ oc create secret generic image-registry-private-configuration-user --from-
file=REGISTRY_STORAGE_GCS_KEYFILE=<path_to_keyfile> --namespace openshift-
image-registry

OpenShift Container Platform 4.13 Registry

16

A cluster on GCP with user-provisioned infrastructure.

To configure registry storage for GCP, you need to provide Registry Operator cloud credentials.

For GCS on GCP storage, the secret is expected to contain one key whose value is the contents
of a credentials file provided by GCP:

REGISTRY_STORAGE_GCS_KEYFILE

Procedure

1. Set up an Object Lifecycle Management policy to abort incomplete multipart uploads that are
one day old.

2. Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

Example configuration

WARNING

You can secure your registry images that use a Google Cloud Storage bucket by
setting public access prevention.

3.2.3. Image Registry Operator configuration parameters for GCP GCS

The following configuration parameters are available for GCP GCS registry storage.

Parameter Description

bucket Bucket is the bucket name in which you want to store the registry’s data. It is
optional and is generated if not provided.

region Region is the GCS location in which your bucket exists. It is optional and is set
based on the installed GCS Region.

projectID ProjectID is the Project ID of the GCP project that this bucket should be
associated with. It is optional.

$ oc edit configs.imageregistry.operator.openshift.io/cluster

...
storage:
 gcs:
 bucket: <bucket-name>
 projectID: <project-id>
 region: <region-name>
...

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

17

https://cloud.google.com/storage/docs/lifecycle
https://cloud.google.com/storage/docs/using-public-access-prevention

keyID KeyID is the KMS key ID to use for encryption. It is optional because buckets are
encrypted by default on GCP. This allows for the use of a custom encryption
key.

Parameter Description

3.3. CONFIGURING THE REGISTRY FOR OPENSTACK USER-
PROVISIONED INFRASTRUCTURE

You can configure the registry of a cluster that runs on your own Red Hat OpenStack Platform
(RHOSP) infrastructure.

3.3.1. Configuring the Image Registry Operator to trust Swift storage

You must configure the Image Registry Operator to trust Red Hat OpenStack Platform (RHOSP) Swift
storage.

Procedure

From a command line, enter the following command to change the value of the
spec.disableRedirect field in the config.imageregistry object to true:

3.3.2. Configuring a secret for the Image Registry Operator

In addition to the configs.imageregistry.operator.openshift.io and ConfigMap resources,
configuration is provided to the Operator by a separate secret resource located within the openshift-
image-registry namespace.

The image-registry-private-configuration-user secret provides credentials needed for storage access
and management. It overrides the default credentials used by the Operator, if default credentials were
found.

For Swift on Red Hat OpenStack Platform (RHOSP) storage, the secret is expected to contain the
following two keys:

REGISTRY_STORAGE_SWIFT_USERNAME

REGISTRY_STORAGE_SWIFT_PASSWORD

Procedure

Create an OpenShift Container Platform secret that contains the required keys.

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"disableRedirect":true}}'

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_SWIFT_USERNAME=<username> --from-
literal=REGISTRY_STORAGE_SWIFT_PASSWORD=<password> -n openshift-image-
registry

OpenShift Container Platform 4.13 Registry

18

3.3.3. Registry storage for RHOSP with user-provisioned infrastructure

If the Registry Operator cannot create a Swift bucket, you must set up the storage medium manually
and configure the settings in the registry custom resource (CR).

Prerequisites

A cluster on Red Hat OpenStack Platform (RHOSP) with user-provisioned infrastructure.

To configure registry storage for RHOSP, you need to provide Registry Operator cloud
credentials.

For Swift on RHOSP storage, the secret is expected to contain the following two keys:

REGISTRY_STORAGE_SWIFT_USERNAME

REGISTRY_STORAGE_SWIFT_PASSWORD

Procedure

Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

Example configuration

3.3.4. Image Registry Operator configuration parameters for RHOSP Swift

The following configuration parameters are available for Red Hat OpenStack Platform (RHOSP) Swift
registry storage.

Parameter Description

authURL Defines the URL for obtaining the authentication token. This value is optional.

authVersion Specifies the Auth version of RHOSP, for example, authVersion: "3". This
value is optional.

container Defines the name of a Swift container for storing registry data. This value is
optional.

domain Specifies the RHOSP domain name for the Identity v3 API. This value is
optional.

domainID Specifies the RHOSP domain ID for the Identity v3 API. This value is optional.

$ oc edit configs.imageregistry.operator.openshift.io/cluster

...
storage:
 swift:
 container: <container-id>
...

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

19

tenant Defines the RHOSP tenant name to be used by the registry. This value is
optional.

tenantID Defines the RHOSP tenant ID to be used by the registry. This value is optional.

regionName Defines the RHOSP region in which the container exists. This value is optional.

Parameter Description

3.4. CONFIGURING THE REGISTRY FOR AZURE USER-PROVISIONED
INFRASTRUCTURE

3.4.1. Configuring a secret for the Image Registry Operator

In addition to the configs.imageregistry.operator.openshift.io and ConfigMap resources,
configuration is provided to the Operator by a separate secret resource located within the openshift-
image-registry namespace.

The image-registry-private-configuration-user secret provides credentials needed for storage access
and management. It overrides the default credentials used by the Operator, if default credentials were
found.

For Azure registry storage, the secret is expected to contain one key whose value is the contents of a
credentials file provided by Azure:

REGISTRY_STORAGE_AZURE_ACCOUNTKEY

Procedure

Create an OpenShift Container Platform secret that contains the required key.

3.4.2. Configuring registry storage for Azure

During installation, your cloud credentials are sufficient to create Azure Blob Storage, and the Registry
Operator automatically configures storage.

Prerequisites

A cluster on Azure with user-provisioned infrastructure.

To configure registry storage for Azure, provide Registry Operator cloud credentials.

For Azure storage the secret is expected to contain one key:

REGISTRY_STORAGE_AZURE_ACCOUNTKEY

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_AZURE_ACCOUNTKEY=<accountkey> --namespace
openshift-image-registry

OpenShift Container Platform 4.13 Registry

20

1

Procedure

1. Create an Azure storage container.

2. Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

Example configuration

3.4.3. Configuring registry storage for Azure Government

During installation, your cloud credentials are sufficient to create Azure Blob Storage, and the Registry
Operator automatically configures storage.

Prerequisites

A cluster on Azure with user-provisioned infrastructure in a government region.

To configure registry storage for Azure, provide Registry Operator cloud credentials.

For Azure storage, the secret is expected to contain one key:

REGISTRY_STORAGE_AZURE_ACCOUNTKEY

Procedure

1. Create an Azure storage container.

2. Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

Example configuration

cloudName is the name of the Azure cloud environment, which can be used to configure
the Azure SDK with the appropriate Azure API endpoints. Defaults to AzurePublicCloud.
You can also set cloudName to AzureUSGovernmentCloud, AzureChinaCloud, or
AzureGermanCloud with sufficient credentials.

3.5. CONFIGURING THE REGISTRY FOR RHOSP

$ oc edit configs.imageregistry.operator.openshift.io/cluster

storage:
 azure:
 accountName: <storage-account-name>
 container: <container-name>

$ oc edit configs.imageregistry.operator.openshift.io/cluster

storage:
 azure:
 accountName: <storage-account-name>
 container: <container-name>
 cloudName: AzureUSGovernmentCloud 1

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

21

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

3.5.1. Configuring an image registry with custom storage on clusters that run on
RHOSP

After you install a cluster on Red Hat OpenStack Platform (RHOSP), you can use a Cinder volume that is
in a specific availability zone for registry storage.

Procedure

1. Create a YAML file that specifies the storage class and availability zone to use. For example:

NOTE

OpenShift Container Platform does not verify the existence of the availability
zone you choose. Verify the name of the availability zone before you apply the
configuration.

2. From a command line, apply the configuration:

Example output

3. Create a YAML file that specifies a persistent volume claim (PVC) that uses your storage class
and the openshift-image-registry namespace. For example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: custom-csi-storageclass
provisioner: cinder.csi.openstack.org
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
parameters:
 availability: <availability_zone_name>

$ oc apply -f <storage_class_file_name>

storageclass.storage.k8s.io/custom-csi-storageclass created

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: csi-pvc-imageregistry
 namespace: openshift-image-registry 1
 annotations:
 imageregistry.openshift.io: "true"
spec:
 accessModes:
 - ReadWriteOnce
 volumeMode: Filesystem
 resources:
 requests:
 storage: 100Gi 2
 storageClassName: <your_custom_storage_class> 3

OpenShift Container Platform 4.13 Registry

22

1

2

3

Enter the namespace openshift-image-registry. This namespace allows the Cluster Image
Registry Operator to consume the PVC.

Optional: Adjust the volume size.

Enter the name of the storage class that you created.

4. From a command line, apply the configuration:

Example output

5. Replace the original persistent volume claim in the image registry configuration with the new
claim:

Example output

Over the next several minutes, the configuration is updated.

Verification

To confirm that the registry is using the resources that you defined:

1. Verify that the PVC claim value is identical to the name that you provided in your PVC definition:

Example output

2. Verify that the status of the PVC is Bound:

Example output

$ oc apply -f <pvc_file_name>

persistentvolumeclaim/csi-pvc-imageregistry created

$ oc patch configs.imageregistry.operator.openshift.io/cluster --type 'json' -p='[{"op":
"replace", "path": "/spec/storage/pvc/claim", "value": "csi-pvc-imageregistry"}]'

config.imageregistry.operator.openshift.io/cluster patched

$ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

...
status:
 ...
 managementState: Managed
 pvc:
 claim: csi-pvc-imageregistry
...

$ oc get pvc -n openshift-image-registry csi-pvc-imageregistry

NAME STATUS VOLUME CAPACITY ACCESS MODES

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

23

3.6. CONFIGURING THE REGISTRY FOR BARE METAL

3.6.1. Image registry removed during installation

On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator
bootstraps itself as Removed. This allows openshift-installer to complete installations on these
platform types.

After installation, you must edit the Image Registry Operator configuration to switch the
managementState from Removed to Managed.

3.6.2. Changing the image registry’s management state

To start the image registry, you must change the Image Registry Operator configuration’s
managementState from Removed to Managed.

Procedure

Change managementState Image Registry Operator configuration from Removed to
Managed. For example:

3.6.3. Image registry storage configuration

The Image Registry Operator is not initially available for platforms that do not provide default storage.
After installation, you must configure your registry to use storage so that the Registry Operator is made
available.

Instructions are shown for configuring a persistent volume, which is required for production clusters.
Where applicable, instructions are shown for configuring an empty directory as the storage location,
which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using
the Recreate rollout strategy during upgrades.

3.6.3.1. Configuring registry storage for bare metal and other manual installations

As a cluster administrator, following installation you must configure your registry to use storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a cluster that uses manually-provisioned Red Hat Enterprise Linux CoreOS (RHCOS)
nodes, such as bare metal.

You have provisioned persistent storage for your cluster, such as Red Hat OpenShift Data

STORAGECLASS AGE
csi-pvc-imageregistry Bound pvc-72a8f9c9-f462-11e8-b6b6-fa163e18b7b5 100Gi
RWO custom-csi-storageclass 11m

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"managementState":"Managed"}}'

OpenShift Container Platform 4.13 Registry

24

You have provisioned persistent storage for your cluster, such as Red Hat OpenShift Data
Foundation.

IMPORTANT

OpenShift Container Platform supports ReadWriteOnce access for image
registry storage when you have only one replica. ReadWriteOnce access also
requires that the registry uses the Recreate rollout strategy. To deploy an image
registry that supports high availability with two or more replicas, ReadWriteMany
access is required.

Must have 100Gi capacity.

Procedure

1. To configure your registry to use storage, change the spec.storage.pvc in the
configs.imageregistry/cluster resource.

NOTE

When you use shared storage, review your security settings to prevent outside
access.

2. Verify that you do not have a registry pod:

Example output

NOTE

If you do have a registry pod in your output, you do not need to continue with this
procedure.

3. Check the registry configuration:

Example output

Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.

4. Check the clusteroperator status:

$ oc get pod -n openshift-image-registry -l docker-registry=default

No resources found in openshift-image-registry namespace

$ oc edit configs.imageregistry.operator.openshift.io

storage:
 pvc:
 claim:

$ oc get clusteroperator image-registry

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

25

Example output

5. Ensure that your registry is set to managed to enable building and pushing of images.

Run:

$ oc edit configs.imageregistry/cluster

Then, change the line

managementState: Removed

to

managementState: Managed

3.6.3.2. Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set
the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure

To set the image registry storage to an empty directory:

WARNING

Configure this option for only non-production clusters.

If you run this command before the Image Registry Operator initializes its components, the oc
patch command fails with the following error:

Wait a few minutes and run the command again.

3.6.3.3. Configuring block registry storage for bare metal

To allow the image registry to use block storage types during upgrades as a cluster administrator, you
can use the Recreate rollout strategy.

IMPORTANT

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
MESSAGE
image-registry 4.13 True False False 6h50m

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'

Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

OpenShift Container Platform 4.13 Registry

26

1

2

3

4

IMPORTANT

Block storage volumes, or block persistent volumes, are supported but not recommended
for use with the image registry on production clusters. An installation where the registry is
configured on block storage is not highly available because the registry cannot have more
than one replica.

If you choose to use a block storage volume with the image registry, you must use a
filesystem persistent volume claim (PVC).

Procedure

1. Enter the following command to set the image registry storage as a block storage type, patch
the registry so that it uses the Recreate rollout strategy, and runs with only one (1) replica:

2. Provision the PV for the block storage device, and create a PVC for that volume. The requested
block volume uses the ReadWriteOnce (RWO) access mode.

a. Create a pvc.yaml file with the following contents to define a VMware vSphere
PersistentVolumeClaim object:

A unique name that represents the PersistentVolumeClaim object.

The namespace for the PersistentVolumeClaim object, which is openshift-image-
registry.

The access mode of the persistent volume claim. With ReadWriteOnce, the volume
can be mounted with read and write permissions by a single node.

The size of the persistent volume claim.

b. Enter the following command to create the PersistentVolumeClaim object from the file:

3. Enter the following command to edit the registry configuration so that it references the correct
PVC:

$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":
{"rolloutStrategy":"Recreate","replicas":1}}'

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage 1
 namespace: openshift-image-registry 2
spec:
 accessModes:
 - ReadWriteOnce 3
 resources:
 requests:
 storage: 100Gi 4

$ oc create -f pvc.yaml -n openshift-image-registry

$ oc edit config.imageregistry.operator.openshift.io -o yaml

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

27

1

1

Example output

By creating a custom PVC, you can leave the claim field blank for the default automatic
creation of an image-registry-storage PVC.

3.6.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Ceph RGW storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Ceph
RGW object storage.

Procedure

1. Create the object bucket claim using the ocs-storagecluster-ceph-rgw storage class. For
example:

Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

storage:
 pvc:
 claim: 1

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: rgwbucket
 namespace: openshift-storage 1
spec:
 storageClassName: ocs-storagecluster-ceph-rgw
 generateBucketName: rgwbucket
EOF

OpenShift Container Platform 4.13 Registry

28

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

3. Get the AWS credentials by entering the following commands:

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

5. Get the route host by entering the following command:

6. Create a config map that uses an ingress certificate by entering the following commands:

7. Configure the image registry to use the Ceph RGW object storage by entering the following
command:

3.6.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Noobaa storage.

Prerequisites

$ bucket_name=$(oc get obc -n openshift-storage rgwbucket -o
jsonpath='{.spec.bucketName}')

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_ACCESS_KEY_ID}' | base64 --decode)

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_SECRET_ACCESS_KEY}' | base64 --decode)

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route ocs-storagecluster-cephobjectstore -n openshift-storage --
template='{{ .spec.host }}')

$ oc extract secret/router-certs-default -n openshift-ingress --confirm

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

29

1

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Noobaa
object storage.

Procedure

1. Create the object bucket claim using the openshift-storage.noobaa.io storage class. For
example:

Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

3. Get the AWS credentials by entering the following commands:

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

5. Get the route host by entering the following command:

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: noobaatest
 namespace: openshift-storage 1
spec:
 storageClassName: openshift-storage.noobaa.io
 generateBucketName: noobaatest
EOF

$ bucket_name=$(oc get obc -n openshift-storage noobaatest -o
jsonpath='{.spec.bucketName}')

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage noobaatest -o yaml | grep -w
"AWS_ACCESS_KEY_ID:" | head -n1 | awk '{print $2}' | base64 --decode)

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage noobaatest -o yaml |
grep -w "AWS_SECRET_ACCESS_KEY:" | head -n1 | awk '{print $2}' | base64 --decode)

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route s3 -n openshift-storage -o=jsonpath='{.spec.host}')

OpenShift Container Platform 4.13 Registry

30

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

6. Create a config map that uses an ingress certificate by entering the following commands:

7. Configure the image registry to use the Nooba object storage by entering the following
command:

3.6.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use CephFS storage.

NOTE

CephFS uses persistent volume claim (PVC) storage. It is not recommended to use PVCs
for image registry storage if there are other options are available, such as Ceph RGW or
Noobaa.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and CephFS
file storage.

Procedure

1. Create a PVC to use the cephfs storage class. For example:

$ oc extract secret/$(oc get ingresscontroller -n openshift-ingress-operator default -o json | jq
'.spec.defaultCertificate.name // "router-certs-default"' -r) -n openshift-ingress --confirm

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

cat <<EOF | oc apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

31

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

2. Configure the image registry to use the CephFS file system storage by entering the following
command:

3.6.5. Additional resources

Recommended configurable storage technology

Configuring Image Registry to use OpenShift Data Foundation

3.7. CONFIGURING THE REGISTRY FOR VSPHERE

3.7.1. Image registry removed during installation

On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator
bootstraps itself as Removed. This allows openshift-installer to complete installations on these
platform types.

After installation, you must edit the Image Registry Operator configuration to switch the
managementState from Removed to Managed.

3.7.2. Changing the image registry’s management state

To start the image registry, you must change the Image Registry Operator configuration’s
managementState from Removed to Managed.

Procedure

Change managementState Image Registry Operator configuration from Removed to
Managed. For example:

3.7.3. Image registry storage configuration

The Image Registry Operator is not initially available for platforms that do not provide default storage.
After installation, you must configure your registry to use storage so that the Registry Operator is made
available.

 name: registry-storage-pvc
 namespace: openshift-image-registry
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 storageClassName: ocs-storagecluster-cephfs
EOF

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","pvc":{"claim":"registry-storage-pvc"}}}}' --type=merge

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"managementState":"Managed"}}'

OpenShift Container Platform 4.13 Registry

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/scalability_and_performance/#optimizing-storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10/html-single/managing_and_allocating_storage_resources/index#configuring-image-registry-to-use-openshift-data-foundation_rhodf

Instructions are shown for configuring a persistent volume, which is required for production clusters.
Where applicable, instructions are shown for configuring an empty directory as the storage location,
which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using
the Recreate rollout strategy during upgrades.

3.7.3.1. Configuring registry storage for VMware vSphere

As a cluster administrator, following installation you must configure your registry to use storage.

Prerequisites

Cluster administrator permissions.

A cluster on VMware vSphere.

Persistent storage provisioned for your cluster, such as Red Hat OpenShift Data Foundation.

IMPORTANT

OpenShift Container Platform supports ReadWriteOnce access for image
registry storage when you have only one replica. ReadWriteOnce access also
requires that the registry uses the Recreate rollout strategy. To deploy an image
registry that supports high availability with two or more replicas, ReadWriteMany
access is required.

Must have "100Gi" capacity.

IMPORTANT

Testing shows issues with using the NFS server on RHEL as storage backend for core
services. This includes the OpenShift Container Registry and Quay, Prometheus for
monitoring storage, and Elasticsearch for logging storage. Therefore, using RHEL NFS to
back PVs used by core services is not recommended.

Other NFS implementations on the marketplace might not have these issues. Contact
the individual NFS implementation vendor for more information on any testing that was
possibly completed against these OpenShift Container Platform core components.

Procedure

1. To configure your registry to use storage, change the spec.storage.pvc in the
configs.imageregistry/cluster resource.

NOTE

When you use shared storage, review your security settings to prevent outside
access.

2. Verify that you do not have a registry pod:

$ oc get pod -n openshift-image-registry -l docker-registry=default

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

33

1

Example output

NOTE

If you do have a registry pod in your output, you do not need to continue with this
procedure.

3. Check the registry configuration:

Example output

Leave the claim field blank to allow the automatic creation of an image-registry-storage
persistent volume claim (PVC). The PVC is generated based on the default storage class.
However, be aware that the default storage class might provide ReadWriteOnce (RWO)
volumes, such as a RADOS Block Device (RBD), which can cause issues when you replicate
to more than one replica.

4. Check the clusteroperator status:

Example output

3.7.3.2. Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set
the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure

To set the image registry storage to an empty directory:

No resourses found in openshift-image-registry namespace

$ oc edit configs.imageregistry.operator.openshift.io

storage:
 pvc:
 claim: 1

$ oc get clusteroperator image-registry

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE MESSAGE
image-registry 4.7 True False False 6h50m

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'

OpenShift Container Platform 4.13 Registry

34

1

WARNING

Configure this option for only non-production clusters.

If you run this command before the Image Registry Operator initializes its components, the oc
patch command fails with the following error:

Wait a few minutes and run the command again.

3.7.3.3. Configuring block registry storage for VMware vSphere

To allow the image registry to use block storage types such as vSphere Virtual Machine Disk (VMDK)
during upgrades as a cluster administrator, you can use the Recreate rollout strategy.

IMPORTANT

Block storage volumes are supported but not recommended for use with image registry
on production clusters. An installation where the registry is configured on block storage is
not highly available because the registry cannot have more than one replica.

Procedure

1. Enter the following command to set the image registry storage as a block storage type, patch
the registry so that it uses the Recreate rollout strategy, and runs with only 1 replica:

2. Provision the PV for the block storage device, and create a PVC for that volume. The requested
block volume uses the ReadWriteOnce (RWO) access mode.

a. Create a pvc.yaml file with the following contents to define a VMware vSphere
PersistentVolumeClaim object:

A unique name that represents the PersistentVolumeClaim object.

Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":
{"rolloutStrategy":"Recreate","replicas":1}}'

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage 1
 namespace: openshift-image-registry 2
spec:
 accessModes:
 - ReadWriteOnce 3
 resources:
 requests:
 storage: 100Gi 4

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

35

2

3

4

1

The namespace for the PersistentVolumeClaim object, which is openshift-image-
registry.

The access mode of the persistent volume claim. With ReadWriteOnce, the volume
can be mounted with read and write permissions by a single node.

The size of the persistent volume claim.

b. Enter the following command to create the PersistentVolumeClaim object from the file:

3. Enter the following command to edit the registry configuration so that it references the correct
PVC:

Example output

By creating a custom PVC, you can leave the claim field blank for the default automatic
creation of an image-registry-storage PVC.

For instructions about configuring registry storage so that it references the correct PVC, see
Configuring the registry for vSphere.

3.7.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Ceph RGW storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Ceph
RGW object storage.

$ oc create -f pvc.yaml -n openshift-image-registry

$ oc edit config.imageregistry.operator.openshift.io -o yaml

storage:
 pvc:
 claim: 1

OpenShift Container Platform 4.13 Registry

36

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

1

Procedure

1. Create the object bucket claim using the ocs-storagecluster-ceph-rgw storage class. For
example:

Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

3. Get the AWS credentials by entering the following commands:

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

5. Get the route host by entering the following command:

6. Create a config map that uses an ingress certificate by entering the following commands:

7. Configure the image registry to use the Ceph RGW object storage by entering the following

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: rgwbucket
 namespace: openshift-storage 1
spec:
 storageClassName: ocs-storagecluster-ceph-rgw
 generateBucketName: rgwbucket
EOF

$ bucket_name=$(oc get obc -n openshift-storage rgwbucket -o
jsonpath='{.spec.bucketName}')

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_ACCESS_KEY_ID}' | base64 --decode)

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_SECRET_ACCESS_KEY}' | base64 --decode)

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route ocs-storagecluster-cephobjectstore -n openshift-storage --
template='{{ .spec.host }}')

$ oc extract secret/router-certs-default -n openshift-ingress --confirm

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

37

1

7. Configure the image registry to use the Ceph RGW object storage by entering the following
command:

3.7.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Noobaa storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Noobaa
object storage.

Procedure

1. Create the object bucket claim using the openshift-storage.noobaa.io storage class. For
example:

Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: noobaatest
 namespace: openshift-storage 1
spec:
 storageClassName: openshift-storage.noobaa.io
 generateBucketName: noobaatest
EOF

$ bucket_name=$(oc get obc -n openshift-storage noobaatest -o
jsonpath='{.spec.bucketName}')

OpenShift Container Platform 4.13 Registry

38

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

3. Get the AWS credentials by entering the following commands:

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

5. Get the route host by entering the following command:

6. Create a config map that uses an ingress certificate by entering the following commands:

7. Configure the image registry to use the Nooba object storage by entering the following
command:

3.7.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use CephFS storage.

NOTE

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage noobaatest -o yaml | grep -w
"AWS_ACCESS_KEY_ID:" | head -n1 | awk '{print $2}' | base64 --decode)

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage noobaatest -o yaml |
grep -w "AWS_SECRET_ACCESS_KEY:" | head -n1 | awk '{print $2}' | base64 --decode)

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route s3 -n openshift-storage -o=jsonpath='{.spec.host}')

$ oc extract secret/$(oc get ingresscontroller -n openshift-ingress-operator default -o json | jq
'.spec.defaultCertificate.name // "router-certs-default"' -r) -n openshift-ingress --confirm

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

39

NOTE

CephFS uses persistent volume claim (PVC) storage. It is not recommended to use PVCs
for image registry storage if there are other options are available, such as Ceph RGW or
Noobaa.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and CephFS
file storage.

Procedure

1. Create a PVC to use the cephfs storage class. For example:

2. Configure the image registry to use the CephFS file system storage by entering the following
command:

3.7.5. Additional resources

Recommended configurable storage technology

Configuring Image Registry to use OpenShift Data Foundation

3.8. CONFIGURING THE REGISTRY FOR RED HAT OPENSHIFT DATA
FOUNDATION

To configure the OpenShift image registry on bare metal and vSphere to use Red Hat OpenShift Data

cat <<EOF | oc apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: registry-storage-pvc
 namespace: openshift-image-registry
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 storageClassName: ocs-storagecluster-cephfs
EOF

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","pvc":{"claim":"registry-storage-pvc"}}}}' --type=merge

OpenShift Container Platform 4.13 Registry

40

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/scalability_and_performance/#optimizing-storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10/html-single/managing_and_allocating_storage_resources/index#configuring-image-registry-to-use-openshift-data-foundation_rhodf

1

To configure the OpenShift image registry on bare metal and vSphere to use Red Hat OpenShift Data
Foundation storage, you must install OpenShift Data Foundation and then configure image registry
using Ceph or Noobaa.

3.8.1. Configuring the Image Registry Operator to use Ceph RGW storage with Red
Hat OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Ceph RGW storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Ceph
RGW object storage.

Procedure

1. Create the object bucket claim using the ocs-storagecluster-ceph-rgw storage class. For
example:

Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

3. Get the AWS credentials by entering the following commands:

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: rgwbucket
 namespace: openshift-storage 1
spec:
 storageClassName: ocs-storagecluster-ceph-rgw
 generateBucketName: rgwbucket
EOF

$ bucket_name=$(oc get obc -n openshift-storage rgwbucket -o
jsonpath='{.spec.bucketName}')

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_ACCESS_KEY_ID}' | base64 --decode)

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

41

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

5. Get the route host by entering the following command:

6. Create a config map that uses an ingress certificate by entering the following commands:

7. Configure the image registry to use the Ceph RGW object storage by entering the following
command:

3.8.2. Configuring the Image Registry Operator to use Noobaa storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Noobaa storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Noobaa

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_SECRET_ACCESS_KEY}' | base64 --decode)

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route ocs-storagecluster-cephobjectstore -n openshift-storage --
template='{{ .spec.host }}')

$ oc extract secret/router-certs-default -n openshift-ingress --confirm

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

OpenShift Container Platform 4.13 Registry

42

1

You installed the OpenShift Data Foundation Operator to provide object storage and Noobaa
object storage.

Procedure

1. Create the object bucket claim using the openshift-storage.noobaa.io storage class. For
example:

Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

3. Get the AWS credentials by entering the following commands:

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

5. Get the route host by entering the following command:

6. Create a config map that uses an ingress certificate by entering the following commands:

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: noobaatest
 namespace: openshift-storage 1
spec:
 storageClassName: openshift-storage.noobaa.io
 generateBucketName: noobaatest
EOF

$ bucket_name=$(oc get obc -n openshift-storage noobaatest -o
jsonpath='{.spec.bucketName}')

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage noobaatest -o yaml | grep -w
"AWS_ACCESS_KEY_ID:" | head -n1 | awk '{print $2}' | base64 --decode)

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage noobaatest -o yaml |
grep -w "AWS_SECRET_ACCESS_KEY:" | head -n1 | awk '{print $2}' | base64 --decode)

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route s3 -n openshift-storage -o=jsonpath='{.spec.host}')

$ oc extract secret/$(oc get ingresscontroller -n openshift-ingress-operator default -o json | jq
'.spec.defaultCertificate.name // "router-certs-default"' -r) -n openshift-ingress --confirm

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

43

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

7. Configure the image registry to use the Nooba object storage by entering the following
command:

3.8.3. Configuring the Image Registry Operator to use CephFS storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use CephFS storage.

NOTE

CephFS uses persistent volume claim (PVC) storage. It is not recommended to use PVCs
for image registry storage if there are other options are available, such as Ceph RGW or
Noobaa.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and CephFS
file storage.

Procedure

1. Create a PVC to use the cephfs storage class. For example:

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

cat <<EOF | oc apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: registry-storage-pvc
 namespace: openshift-image-registry
spec:
 accessModes:
 - ReadWriteMany

OpenShift Container Platform 4.13 Registry

44

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

2. Configure the image registry to use the CephFS file system storage by entering the following
command:

3.8.4. Additional resources

Configuring Image Registry to use OpenShift Data Foundation

Performance tuning guide for Multicloud Object Gateway (NooBaa)

3.9. CONFIGURING THE REGISTRY FOR NUTANIX

By following the steps outlined in this documentation, users can optimize container image distribution,
security, and access controls, enabling a robust foundation for Nutanix applications on OpenShift
Container Platform

3.9.1. Image registry removed during installation

On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator
bootstraps itself as Removed. This allows openshift-installer to complete installations on these
platform types.

After installation, you must edit the Image Registry Operator configuration to switch the
managementState from Removed to Managed.

3.9.2. Changing the image registry’s management state

To start the image registry, you must change the Image Registry Operator configuration’s
managementState from Removed to Managed.

Procedure

Change managementState Image Registry Operator configuration from Removed to
Managed. For example:

3.9.3. Image registry storage configuration

The Image Registry Operator is not initially available for platforms that do not provide default storage.
After installation, you must configure your registry to use storage so that the Registry Operator is made
available.

Instructions are shown for configuring a persistent volume, which is required for production clusters.

 resources:
 requests:
 storage: 100Gi
 storageClassName: ocs-storagecluster-cephfs
EOF

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","pvc":{"claim":"registry-storage-pvc"}}}}' --type=merge

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"managementState":"Managed"}}'

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

45

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10/html-single/managing_and_allocating_storage_resources/index#configuring-image-registry-to-use-openshift-data-foundation_rhodf
https://access.redhat.com/solutions/6719951

Instructions are shown for configuring a persistent volume, which is required for production clusters.
Where applicable, instructions are shown for configuring an empty directory as the storage location,
which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using
the Recreate rollout strategy during upgrades.

3.9.3.1. Configuring registry storage for Nutanix

As a cluster administrator, following installation you must configure your registry to use storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a cluster on Nutanix.

You have provisioned persistent storage for your cluster, such as Red Hat OpenShift Data
Foundation.

IMPORTANT

OpenShift Container Platform supports ReadWriteOnce access for image
registry storage when you have only one replica. ReadWriteOnce access also
requires that the registry uses the Recreate rollout strategy. To deploy an image
registry that supports high availability with two or more replicas, ReadWriteMany
access is required.

You must have 100 Gi capacity.

Procedure

1. To configure your registry to use storage, change the spec.storage.pvc in the
configs.imageregistry/cluster resource.

NOTE

When you use shared storage, review your security settings to prevent outside
access.

2. Verify that you do not have a registry pod:

Example output

NOTE

If you do have a registry pod in your output, you do not need to continue with this
procedure.

$ oc get pod -n openshift-image-registry -l docker-registry=default

No resourses found in openshift-image-registry namespace

OpenShift Container Platform 4.13 Registry

46

1

3. Check the registry configuration:

Example output

Leave the claim field blank to allow the automatic creation of an image-registry-storage
persistent volume claim (PVC). The PVC is generated based on the default storage class.
However, be aware that the default storage class might provide ReadWriteOnce (RWO)
volumes, such as a RADOS Block Device (RBD), which can cause issues when you replicate
to more than one replica.

4. Check the clusteroperator status:

Example output

3.9.3.2. Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set
the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure

To set the image registry storage to an empty directory:

WARNING

Configure this option for only non-production clusters.

If you run this command before the Image Registry Operator initializes its components, the oc
patch command fails with the following error:

$ oc edit configs.imageregistry.operator.openshift.io

storage:
 pvc:
 claim: 1

$ oc get clusteroperator image-registry

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE MESSAGE
image-registry 4.13 True False False 6h50m

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"storage":{"emptyDir":{}}}}'

Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

47

1

2

3

4

Wait a few minutes and run the command again.

3.9.3.3. Configuring block registry storage for Nutanix volumes

To allow the image registry to use block storage types such as Nutanix volumes during upgrades as a
cluster administrator, you can use the Recreate rollout strategy.

IMPORTANT

Block storage volumes, or block persistent volumes, are supported but not recommended
for use with the image registry on production clusters. An installation where the registry is
configured on block storage is not highly available because the registry cannot have more
than one replica.

If you choose to use a block storage volume with the image registry, you must use a
filesystem persistent volume claim (PVC).

Procedure

1. Enter the following command to set the image registry storage as a block storage type, patch
the registry so that it uses the Recreate rollout strategy, and runs with only one (1) replica:

2. Provision the PV for the block storage device, and create a PVC for that volume. The requested
block volume uses the ReadWriteOnce (RWO) access mode.

a. Create a pvc.yaml file with the following contents to define a Nutanix
PersistentVolumeClaim object:

A unique name that represents the PersistentVolumeClaim object.

The namespace for the PersistentVolumeClaim object, which is openshift-image-
registry.

The access mode of the persistent volume claim. With ReadWriteOnce, the volume
can be mounted with read and write permissions by a single node.

The size of the persistent volume claim.

b. Enter the following command to create the PersistentVolumeClaim object from the file:

$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":
{"rolloutStrategy":"Recreate","replicas":1}}'

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: image-registry-storage 1
 namespace: openshift-image-registry 2
spec:
 accessModes:
 - ReadWriteOnce 3
 resources:
 requests:
 storage: 100Gi 4

OpenShift Container Platform 4.13 Registry

48

1

3. Enter the following command to edit the registry configuration so that it references the correct
PVC:

Example output

By creating a custom PVC, you can leave the claim field blank for the default automatic
creation of an image-registry-storage PVC.

3.9.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Ceph RGW storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Ceph
RGW object storage.

Procedure

1. Create the object bucket claim using the ocs-storagecluster-ceph-rgw storage class. For
example:

$ oc create -f pvc.yaml -n openshift-image-registry

$ oc edit config.imageregistry.operator.openshift.io -o yaml

storage:
 pvc:
 claim: 1

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: rgwbucket
 namespace: openshift-storage 1
spec:

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

49

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

1 Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

3. Get the AWS credentials by entering the following commands:

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

5. Get the route host by entering the following command:

6. Create a config map that uses an ingress certificate by entering the following commands:

7. Configure the image registry to use the Ceph RGW object storage by entering the following
command:

3.9.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the

 storageClassName: ocs-storagecluster-ceph-rgw
 generateBucketName: rgwbucket
EOF

$ bucket_name=$(oc get obc -n openshift-storage rgwbucket -o
jsonpath='{.spec.bucketName}')

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_ACCESS_KEY_ID}' | base64 --decode)

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage rgwbucket -o
jsonpath='{.data.AWS_SECRET_ACCESS_KEY}' | base64 --decode)

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route ocs-storagecluster-cephobjectstore -n openshift-storage --
template='{{ .spec.host }}')

$ oc extract secret/router-certs-default -n openshift-ingress --confirm

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

OpenShift Container Platform 4.13 Registry

50

1

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use Noobaa storage.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and Noobaa
object storage.

Procedure

1. Create the object bucket claim using the openshift-storage.noobaa.io storage class. For
example:

Alternatively, you can use the openshift-image-registry namespace.

2. Get the bucket name by entering the following command:

3. Get the AWS credentials by entering the following commands:

4. Create the secret image-registry-private-configuration-user with the AWS credentials for the
new bucket under openshift-image-registry project by entering the following command:

cat <<EOF | oc apply -f -
apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: noobaatest
 namespace: openshift-storage 1
spec:
 storageClassName: openshift-storage.noobaa.io
 generateBucketName: noobaatest
EOF

$ bucket_name=$(oc get obc -n openshift-storage noobaatest -o
jsonpath='{.spec.bucketName}')

$ AWS_ACCESS_KEY_ID=$(oc get secret -n openshift-storage noobaatest -o yaml | grep -w
"AWS_ACCESS_KEY_ID:" | head -n1 | awk '{print $2}' | base64 --decode)

$ AWS_SECRET_ACCESS_KEY=$(oc get secret -n openshift-storage noobaatest -o yaml |
grep -w "AWS_SECRET_ACCESS_KEY:" | head -n1 | awk '{print $2}' | base64 --decode)

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

51

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10

5. Get the route host by entering the following command:

6. Create a config map that uses an ingress certificate by entering the following commands:

7. Configure the image registry to use the Nooba object storage by entering the following
command:

3.9.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat
OpenShift Data Foundation

Red Hat OpenShift Data Foundation integrates multiple storage types that you can use with the
OpenShift image registry:

Ceph, a shared and distributed file system and on-premises object storage

NooBaa, providing a Multicloud Object Gateway

This document outlines the procedure to configure the image registry to use CephFS storage.

NOTE

CephFS uses persistent volume claim (PVC) storage. It is not recommended to use PVCs
for image registry storage if there are other options are available, such as Ceph RGW or
Noobaa.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have access to the OpenShift Container Platform web console.

You installed the oc CLI.

You installed the OpenShift Data Foundation Operator to provide object storage and CephFS

$ oc create secret generic image-registry-private-configuration-user --from-
literal=REGISTRY_STORAGE_S3_ACCESSKEY=${AWS_ACCESS_KEY_ID} --from-
literal=REGISTRY_STORAGE_S3_SECRETKEY=${AWS_SECRET_ACCESS_KEY} --
namespace openshift-image-registry

$ route_host=$(oc get route s3 -n openshift-storage -o=jsonpath='{.spec.host}')

$ oc extract secret/$(oc get ingresscontroller -n openshift-ingress-operator default -o json | jq
'.spec.defaultCertificate.name // "router-certs-default"' -r) -n openshift-ingress --confirm

$ oc create configmap image-registry-s3-bundle --from-file=ca-bundle.crt=./tls.crt -n
openshift-config

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","s3":{"bucket":'\"${bucket_name}\"',"region":"us-east-
1","regionEndpoint":'\"https://${route_host}\"',"virtualHostedStyle":false,"encrypt":false,"trustedC
A":{"name":"image-registry-s3-bundle"}}}}}' --type=merge

OpenShift Container Platform 4.13 Registry

52

You installed the OpenShift Data Foundation Operator to provide object storage and CephFS
file storage.

Procedure

1. Create a PVC to use the cephfs storage class. For example:

2. Configure the image registry to use the CephFS file system storage by entering the following
command:

3.9.5. Additional resources

Recommended configurable storage technology

Configuring Image Registry to use OpenShift Data Foundation

cat <<EOF | oc apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: registry-storage-pvc
 namespace: openshift-image-registry
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 storageClassName: ocs-storagecluster-cephfs
EOF

$ oc patch config.image/cluster -p '{"spec":
{"managementState":"Managed","replicas":2,"storage":
{"managementState":"Unmanaged","pvc":{"claim":"registry-storage-pvc"}}}}' --type=merge

CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY

53

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/scalability_and_performance/#optimizing-storage
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/4.10/html-single/managing_and_allocating_storage_resources/index#configuring-image-registry-to-use-openshift-data-foundation_rhodf

CHAPTER 4. ACCESSING THE REGISTRY
Use the following sections for instructions on accessing the registry, including viewing logs and metrics,
as well as securing and exposing the registry.

You can access the registry directly to invoke podman commands. This allows you to push images to or
pull them from the integrated registry directly using operations like podman push or podman pull. To
do so, you must be logged in to the registry using the podman login command. The operations you can
perform depend on your user permissions, as described in the following sections.

4.1. PREREQUISITES

You have access to the cluster as a user with the cluster-admin role.

You must have configured an identity provider (IDP).

For pulling images, for example when using the podman pull command, the user must have the
registry-viewer role. To add this role, run the following command:

For writing or pushing images, for example when using the podman push command:

The user must have the registry-editor role. To add this role, run the following command:

Your cluster must have an existing project where the images can be pushed to.

4.2. ACCESSING THE REGISTRY DIRECTLY FROM THE CLUSTER

You can access the registry from inside the cluster.

Procedure

Access the registry from the cluster by using internal routes:

1. Access the node by getting the node’s name:

2. To enable access to tools such as oc and podman on the node, change your root directory to
/host:

3. Log in to the container image registry by using your access token:

$ oc policy add-role-to-user registry-viewer <user_name>

$ oc policy add-role-to-user registry-editor <user_name>

$ oc get nodes

$ oc debug nodes/<node_name>

sh-4.2# chroot /host

sh-4.2# oc login -u kubeadmin -p <password_from_install_log> https://api-int.
<cluster_name>.<base_domain>:6443

OpenShift Container Platform 4.13 Registry

54

You should see a message confirming login, such as:

NOTE

You can pass any value for the user name; the token contains all necessary
information. Passing a user name that contains colons will result in a login failure.

Since the Image Registry Operator creates the route, it will likely be similar to
default-route-openshift-image-registry.<cluster_name>.

4. Perform podman pull and podman push operations against your registry:

IMPORTANT

You can pull arbitrary images, but if you have the system:registry role added, you
can only push images to the registry in your project.

In the following examples, use:

Component Value

<registry_ip> 172.30.124.220

<port> 5000

<project> openshift

<image> image

<tag> omitted (defaults to latest)

a. Pull an arbitrary image:

b. Tag the new image with the form <registry_ip>:<port>/<project>/<image>. The project
name must appear in this pull specification for OpenShift Container Platform to correctly
place and later access the image in the registry:

NOTE

sh-4.2# podman login -u kubeadmin -p $(oc whoami -t) image-registry.openshift-image-
registry.svc:5000

Login Succeeded!

sh-4.2# podman pull <name.io>/<image>

sh-4.2# podman tag <name.io>/<image> image-registry.openshift-image-
registry.svc:5000/openshift/<image>

CHAPTER 4. ACCESSING THE REGISTRY

55

NOTE

You must have the system:image-builder role for the specified project,
which allows the user to write or push an image. Otherwise, the podman
push in the next step will fail. To test, you can create a new project to push
the image.

c. Push the newly tagged image to your registry:

NOTE

When pushing images to the internal registry, the repository name must use
the <project>/<name> format. Using multiple project levels in the repository
name results in an authentication error.

4.3. CHECKING THE STATUS OF THE REGISTRY PODS

As a cluster administrator, you can list the image registry pods running in the openshift-image-registry
project and check their status.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

List the pods in the openshift-image-registry project and view their status:

Example output

4.4. VIEWING REGISTRY LOGS

You can view the logs for the registry by using the oc logs command.

Procedure

Use the oc logs command with deployments to view the logs for the container image registry:

sh-4.2# podman push image-registry.openshift-image-
registry.svc:5000/openshift/<image>

$ oc get pods -n openshift-image-registry

NAME READY STATUS RESTARTS AGE
cluster-image-registry-operator-764bd7f846-qqtpb 1/1 Running 0 78m
image-registry-79fb4469f6-llrln 1/1 Running 0 77m
node-ca-hjksc 1/1 Running 0 73m
node-ca-tftj6 1/1 Running 0 77m
node-ca-wb6ht 1/1 Running 0 77m
node-ca-zvt9q 1/1 Running 0 74m

$ oc logs deployments/image-registry -n openshift-image-registry

OpenShift Container Platform 4.13 Registry

56

Example output

4.5. ACCESSING REGISTRY METRICS

The OpenShift Container Registry provides an endpoint for Prometheus metrics. Prometheus is a
stand-alone, open source systems monitoring and alerting toolkit.

The metrics are exposed at the /extensions/v2/metrics path of the registry endpoint.

Procedure

You can access the metrics by running a metrics query using a cluster role.

Cluster role

1. Create a cluster role if you do not already have one to access the metrics:

2. Add this role to a user, run the following command:

Metrics query

1. Get the user token.

2. Run a metrics query in node or inside a pod, for example:

2015-05-01T19:48:36.300593110Z time="2015-05-01T19:48:36Z" level=info
msg="version=v2.0.0+unknown"
2015-05-01T19:48:36.303294724Z time="2015-05-01T19:48:36Z" level=info msg="redis not
configured" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002
2015-05-01T19:48:36.303422845Z time="2015-05-01T19:48:36Z" level=info msg="using
inmemory layerinfo cache" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002
2015-05-01T19:48:36.303433991Z time="2015-05-01T19:48:36Z" level=info msg="Using
OpenShift Auth handler"
2015-05-01T19:48:36.303439084Z time="2015-05-01T19:48:36Z" level=info msg="listening
on :5000" instance.id=9ed6c43d-23ee-453f-9a4b-031fea646002

$ cat <<EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: prometheus-scraper
rules:
- apiGroups:
 - image.openshift.io
 resources:
 - registry/metrics
 verbs:
 - get
EOF

$ oc adm policy add-cluster-role-to-user prometheus-scraper <username>

openshift:
$ oc whoami -t

CHAPTER 4. ACCESSING THE REGISTRY

57

https://prometheus.io/docs/introduction/overview/

1

Example output

The <user> object can be arbitrary, but <secret> tag must use the user token.

4.6. ADDITIONAL RESOURCES

For more information on allowing pods in a project to reference images in another project, see
Allowing pods to reference images across projects .

A kubeadmin can access the registry until deleted. See Removing the kubeadmin user for more
information.

For more information on configuring an identity provider, see Understanding identity provider
configuration.

$ curl --insecure -s -u <user>:<secret> \ 1
 https://image-registry.openshift-image-registry.svc:5000/extensions/v2/metrics | grep
imageregistry | head -n 20

HELP imageregistry_build_info A metric with a constant '1' value labeled by major, minor,
git commit & git version from which the image registry was built.
TYPE imageregistry_build_info gauge
imageregistry_build_info{gitCommit="9f72191",gitVersion="v3.11.0+9f72191-135-
dirty",major="3",minor="11+"} 1
HELP imageregistry_digest_cache_requests_total Total number of requests without scope
to the digest cache.
TYPE imageregistry_digest_cache_requests_total counter
imageregistry_digest_cache_requests_total{type="Hit"} 5
imageregistry_digest_cache_requests_total{type="Miss"} 24
HELP imageregistry_digest_cache_scoped_requests_total Total number of scoped
requests to the digest cache.
TYPE imageregistry_digest_cache_scoped_requests_total counter
imageregistry_digest_cache_scoped_requests_total{type="Hit"} 33
imageregistry_digest_cache_scoped_requests_total{type="Miss"} 44
HELP imageregistry_http_in_flight_requests A gauge of requests currently being served by
the registry.
TYPE imageregistry_http_in_flight_requests gauge
imageregistry_http_in_flight_requests 1
HELP imageregistry_http_request_duration_seconds A histogram of latencies for requests
to the registry.
TYPE imageregistry_http_request_duration_seconds summary
imageregistry_http_request_duration_seconds{method="get",quantile="0.5"} 0.01296087
imageregistry_http_request_duration_seconds{method="get",quantile="0.9"} 0.014847248
imageregistry_http_request_duration_seconds{method="get",quantile="0.99"} 0.015981195
imageregistry_http_request_duration_seconds_sum{method="get"} 12.260727916000022

OpenShift Container Platform 4.13 Registry

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/images/#images-allow-pods-to-reference-images-across-projects_using-image-pull-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/authentication_and_authorization/#removing-the-kubeadmin-user
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/authentication_and_authorization/#understanding-identity-provider-configuration

CHAPTER 5. EXPOSING THE REGISTRY
By default, the OpenShift image registry is secured during cluster installation so that it serves traffic
through TLS. Unlike previous versions of OpenShift Container Platform, the registry is not exposed
outside of the cluster at the time of installation.

5.1. EXPOSING A DEFAULT REGISTRY MANUALLY

Instead of logging in to the default OpenShift image registry from within the cluster, you can gain
external access to it by exposing it with a route. This external access enables you to log in to the registry
from outside the cluster using the route address and to tag and push images to an existing project by
using the route host.

Prerequisites:

The following prerequisites are automatically performed:

Deploy the Registry Operator.

Deploy the Ingress Operator.

You have access to the cluster as a user with the cluster-admin role.

Procedure

You can expose the route by using the defaultRoute parameter in the
configs.imageregistry.operator.openshift.io resource.

To expose the registry using the defaultRoute:

1. Set defaultRoute to true:

2. Get the default registry route:

3. Get the certificate of the Ingress Operator:

4. Enable the cluster’s default certificate to trust the route using the following commands:

5. Log in with podman using the default route:

5.2. EXPOSING A SECURE REGISTRY MANUALLY

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

$ HOST=$(oc get route default-route -n openshift-image-registry --template='{{ .spec.host }}')

$ oc get secret -n openshift-ingress router-certs-default -o go-template='{{index .data
"tls.crt"}}' | base64 -d | sudo tee /etc/pki/ca-trust/source/anchors/${HOST}.crt > /dev/null

$ sudo update-ca-trust enable

$ sudo podman login -u kubeadmin -p $(oc whoami -t) $HOST

CHAPTER 5. EXPOSING THE REGISTRY

59

1

Instead of logging in to the OpenShift image registry from within the cluster, you can gain external
access to it by exposing it with a route. This allows you to log in to the registry from outside the cluster
using the route address, and to tag and push images to an existing project by using the route host.

Prerequisites:

The following prerequisites are automatically performed:

Deploy the Registry Operator.

Deploy the Ingress Operator.

You have access to the cluster as a user with the cluster-admin role.

Procedure

You can expose the route by using DefaultRoute parameter in the
configs.imageregistry.operator.openshift.io resource or by using custom routes.

To expose the registry using DefaultRoute:

1. Set DefaultRoute to True:

2. Log in with podman:

--tls-verify=false is needed if the cluster’s default certificate for routes is untrusted. You
can set a custom, trusted certificate as the default certificate with the Ingress Operator.

To expose the registry using custom routes:

1. Create a secret with your route’s TLS keys:

This step is optional. If you do not create a secret, the route uses the default TLS configuration
from the Ingress Operator.

2. On the Registry Operator:

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

$ HOST=$(oc get route default-route -n openshift-image-registry --template='{{ .spec.host }}')

$ podman login -u kubeadmin -p $(oc whoami -t) --tls-verify=false $HOST 1

$ oc create secret tls public-route-tls \
 -n openshift-image-registry \
 --cert=</path/to/tls.crt> \
 --key=</path/to/tls.key>

$ oc edit configs.imageregistry.operator.openshift.io/cluster

spec:
 routes:
 - name: public-routes

OpenShift Container Platform 4.13 Registry

60

NOTE

Only set secretName if you are providing a custom TLS configuration for the
registry’s route.

Troubleshooting

Error creating TLS secret

 hostname: myregistry.mycorp.organization
 secretName: public-route-tls
...

CHAPTER 5. EXPOSING THE REGISTRY

61

https://access.redhat.com/solutions/5419501

	Table of Contents
	CHAPTER 1. OPENSHIFT IMAGE REGISTRY OVERVIEW
	1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT IMAGE REGISTRY
	1.2. INTEGRATED OPENSHIFT IMAGE REGISTRY
	1.3. THIRD-PARTY REGISTRIES
	1.3.1. Authentication
	1.3.1.1. Registry authentication with Podman

	1.4. RED HAT QUAY REGISTRIES
	1.5. AUTHENTICATION ENABLED RED HAT REGISTRY

	CHAPTER 2. IMAGE REGISTRY OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	2.1. IMAGE REGISTRY ON CLOUD PLATFORMS AND OPENSTACK
	2.2. IMAGE REGISTRY ON BARE METAL, NUTANIX, AND VSPHERE
	2.2.1. Image registry removed during installation

	2.3. IMAGE REGISTRY OPERATOR DISTRIBUTION ACROSS AVAILABILITY ZONES
	2.4. ADDITIONAL RESOURCES
	2.5. IMAGE REGISTRY OPERATOR CONFIGURATION PARAMETERS
	2.6. ENABLE THE IMAGE REGISTRY DEFAULT ROUTE WITH THE CUSTOM RESOURCE DEFINITION
	2.7. CONFIGURING ADDITIONAL TRUST STORES FOR IMAGE REGISTRY ACCESS
	2.8. CONFIGURING STORAGE CREDENTIALS FOR THE IMAGE REGISTRY OPERATOR
	2.9. ADDITIONAL RESOURCES

	CHAPTER 3. SETTING UP AND CONFIGURING THE REGISTRY
	3.1. CONFIGURING THE REGISTRY FOR AWS USER-PROVISIONED INFRASTRUCTURE
	3.1.1. Configuring a secret for the Image Registry Operator
	3.1.2. Configuring registry storage for AWS with user-provisioned infrastructure
	3.1.3. Image Registry Operator configuration parameters for AWS S3

	3.2. CONFIGURING THE REGISTRY FOR GCP USER-PROVISIONED INFRASTRUCTURE
	3.2.1. Configuring a secret for the Image Registry Operator
	3.2.2. Configuring the registry storage for GCP with user-provisioned infrastructure
	3.2.3. Image Registry Operator configuration parameters for GCP GCS

	3.3. CONFIGURING THE REGISTRY FOR OPENSTACK USER-PROVISIONED INFRASTRUCTURE
	3.3.1. Configuring the Image Registry Operator to trust Swift storage
	3.3.2. Configuring a secret for the Image Registry Operator
	3.3.3. Registry storage for RHOSP with user-provisioned infrastructure
	3.3.4. Image Registry Operator configuration parameters for RHOSP Swift

	3.4. CONFIGURING THE REGISTRY FOR AZURE USER-PROVISIONED INFRASTRUCTURE
	3.4.1. Configuring a secret for the Image Registry Operator
	3.4.2. Configuring registry storage for Azure
	3.4.3. Configuring registry storage for Azure Government

	3.5. CONFIGURING THE REGISTRY FOR RHOSP
	3.5.1. Configuring an image registry with custom storage on clusters that run on RHOSP

	3.6. CONFIGURING THE REGISTRY FOR BARE METAL
	3.6.1. Image registry removed during installation
	3.6.2. Changing the image registry’s management state
	3.6.3. Image registry storage configuration
	3.6.3.1. Configuring registry storage for bare metal and other manual installations
	3.6.3.2. Configuring storage for the image registry in non-production clusters
	3.6.3.3. Configuring block registry storage for bare metal
	3.6.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data Foundation
	3.6.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data Foundation

	3.6.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data Foundation
	3.6.5. Additional resources

	3.7. CONFIGURING THE REGISTRY FOR VSPHERE
	3.7.1. Image registry removed during installation
	3.7.2. Changing the image registry’s management state
	3.7.3. Image registry storage configuration
	3.7.3.1. Configuring registry storage for VMware vSphere
	3.7.3.2. Configuring storage for the image registry in non-production clusters
	3.7.3.3. Configuring block registry storage for VMware vSphere
	3.7.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data Foundation
	3.7.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data Foundation

	3.7.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data Foundation
	3.7.5. Additional resources

	3.8. CONFIGURING THE REGISTRY FOR RED HAT OPENSHIFT DATA FOUNDATION
	3.8.1. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data Foundation
	3.8.2. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data Foundation
	3.8.3. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data Foundation
	3.8.4. Additional resources

	3.9. CONFIGURING THE REGISTRY FOR NUTANIX
	3.9.1. Image registry removed during installation
	3.9.2. Changing the image registry’s management state
	3.9.3. Image registry storage configuration
	3.9.3.1. Configuring registry storage for Nutanix
	3.9.3.2. Configuring storage for the image registry in non-production clusters
	3.9.3.3. Configuring block registry storage for Nutanix volumes
	3.9.3.4. Configuring the Image Registry Operator to use Ceph RGW storage with Red Hat OpenShift Data Foundation
	3.9.3.5. Configuring the Image Registry Operator to use Noobaa storage with Red Hat OpenShift Data Foundation

	3.9.4. Configuring the Image Registry Operator to use CephFS storage with Red Hat OpenShift Data Foundation
	3.9.5. Additional resources

	CHAPTER 4. ACCESSING THE REGISTRY
	4.1. PREREQUISITES
	4.2. ACCESSING THE REGISTRY DIRECTLY FROM THE CLUSTER
	4.3. CHECKING THE STATUS OF THE REGISTRY PODS
	4.4. VIEWING REGISTRY LOGS
	4.5. ACCESSING REGISTRY METRICS
	4.6. ADDITIONAL RESOURCES

	CHAPTER 5. EXPOSING THE REGISTRY
	5.1. EXPOSING A DEFAULT REGISTRY MANUALLY
	5.2. EXPOSING A SECURE REGISTRY MANUALLY

