
OpenShift Container Platform 4.13

Images

Creating and managing images and imagestreams in OpenShift Container Platform

Last Updated: 2024-06-06

OpenShift Container Platform 4.13 Images

Creating and managing images and imagestreams in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for creating and managing images and imagestreams in
OpenShift Container Platform. It also provides instructions on using templates.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF IMAGES
1.1. UNDERSTANDING CONTAINERS, IMAGES, AND IMAGE STREAMS
1.2. IMAGES
1.3. IMAGE REGISTRY
1.4. IMAGE REPOSITORY
1.5. IMAGE TAGS
1.6. IMAGE IDS
1.7. CONTAINERS
1.8. WHY USE IMAGESTREAMS
1.9. IMAGE STREAM TAGS
1.10. IMAGE STREAM IMAGES
1.11. IMAGE STREAM TRIGGERS
1.12. HOW YOU CAN USE THE CLUSTER SAMPLES OPERATOR
1.13. ABOUT TEMPLATES
1.14. HOW YOU CAN USE RUBY ON RAILS

CHAPTER 2. CONFIGURING THE CLUSTER SAMPLES OPERATOR
2.1. UNDERSTANDING THE CLUSTER SAMPLES OPERATOR

2.1.1. Cluster Samples Operator’s use of management state
2.1.1.1. Restricted network installation
2.1.1.2. Restricted network installation with initial network access

2.1.2. Cluster Samples Operator’s tracking and error recovery of image stream imports
Additional resources
2.1.3. Cluster Samples Operator assistance for mirroring

2.2. CLUSTER SAMPLES OPERATOR CONFIGURATION PARAMETERS
2.2.1. Configuration restrictions
2.2.2. Conditions

2.3. ACCESSING THE CLUSTER SAMPLES OPERATOR CONFIGURATION
2.4. REMOVING DEPRECATED IMAGE STREAM TAGS FROM THE CLUSTER SAMPLES OPERATOR

Additional resources

CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR WITH AN ALTERNATE REGISTRY
3.1. ABOUT THE MIRROR REGISTRY

3.1.1. Preparing the mirror host
3.1.2. Installing the OpenShift CLI by downloading the binary

Installing the OpenShift CLI on Linux
Installing the OpenShift CLI on Windows
Installing the OpenShift CLI on macOS

3.2. CONFIGURING CREDENTIALS THAT ALLOW IMAGES TO BE MIRRORED
3.3. MIRRORING THE OPENSHIFT CONTAINER PLATFORM IMAGE REPOSITORY
3.4. USING CLUSTER SAMPLES OPERATOR IMAGE STREAMS WITH ALTERNATE OR MIRRORED REGISTRIES

3.4.1. Cluster Samples Operator assistance for mirroring

CHAPTER 4. CREATING IMAGES
4.1. LEARNING CONTAINER BEST PRACTICES

4.1.1. General container image guidelines
Reuse images
Maintain compatibility within tags
Avoid multiple processes
Use exec in wrapper scripts
Clean temporary files

6
6
6
6
6
6
7
7
7
8
9
9
9
9
9

10
10
11

12
12
12
13
13
14
15
15
16
16
17

18
18
19
19
19
19

20
20
22

26
27

29
29
29
29
29
29
29
30

Table of Contents

1

. .

. .

Place instructions in the proper order
Mark important ports
Set environment variables
Avoid default passwords
Avoid sshd
Use volumes for persistent data

4.1.2. OpenShift Container Platform-specific guidelines
4.1.2.1. Enable images for source-to-image (S2I)
4.1.2.2. Support arbitrary user ids
4.1.2.3. Use services for inter-image communication
4.1.2.4. Provide common libraries
4.1.2.5. Use environment variables for configuration
4.1.2.6. Set image metadata
4.1.2.7. Clustering
4.1.2.8. Logging
4.1.2.9. Liveness and readiness probes
4.1.2.10. Templates

4.2. INCLUDING METADATA IN IMAGES
4.2.1. Defining image metadata

4.3. CREATING IMAGES FROM SOURCE CODE WITH SOURCE-TO-IMAGE
4.3.1. Understanding the source-to-image build process
4.3.2. How to write source-to-image scripts

4.4. ABOUT TESTING SOURCE-TO-IMAGE IMAGES
4.4.1. Understanding testing requirements
4.4.2. Generating scripts and tools
4.4.3. Testing locally
4.4.4. Basic testing workflow
4.4.5. Using OpenShift Container Platform for building the image

CHAPTER 5. MANAGING IMAGES
5.1. MANAGING IMAGES OVERVIEW

5.1.1. Images overview
5.2. TAGGING IMAGES

5.2.1. Image tags
5.2.2. Image tag conventions
5.2.3. Adding tags to image streams
5.2.4. Removing tags from image streams
5.2.5. Referencing images in imagestreams

5.3. IMAGE PULL POLICY
5.3.1. Image pull policy overview

5.4. USING IMAGE PULL SECRETS
5.4.1. Allowing pods to reference images across projects
5.4.2. Allowing pods to reference images from other secured registries

5.4.2.1. Pulling from private registries with delegated authentication
5.4.3. Updating the global cluster pull secret

CHAPTER 6. MANAGING IMAGE STREAMS
6.1. WHY USE IMAGESTREAMS
6.2. CONFIGURING IMAGE STREAMS
6.3. IMAGE STREAM IMAGES
6.4. IMAGE STREAM TAGS
6.5. IMAGE STREAM CHANGE TRIGGERS
6.6. IMAGE STREAM MAPPING

30
31
31
31
31
31
32
32
32
33
33
33
34
34
34
35
35
35
35
36
36
37
39
39
39
40
40
41

42
42
42
42
42
42
43
44
44
45
45
46
46
47
48
49

51
51
52
53
53
54
54

OpenShift Container Platform 4.13 Images

2

. .

. .

. .

. .

6.7. WORKING WITH IMAGE STREAMS
6.7.1. Getting information about image streams
6.7.2. Adding tags to an image stream
6.7.3. Adding tags for an external image
6.7.4. Updating image stream tags
6.7.5. Removing image stream tags
6.7.6. Configuring periodic importing of image stream tags

6.8. IMPORTING AND WORKING WITH IMAGES AND IMAGE STREAMS
6.8.1. Importing images and image streams from private registries

6.8.1.1. Allowing pods to reference images from other secured registries
6.8.2. Working with manifest lists

Limitations
6.8.2.1. Configuring periodic importing of manifest lists
6.8.2.2. Configuring SSL/TSL when importing manifest lists

6.8.3. Specifying architecture for --import-mode
6.8.4. Configuration fields for --import-mode

CHAPTER 7. USING IMAGE STREAMS WITH KUBERNETES RESOURCES
7.1. ENABLING IMAGE STREAMS WITH KUBERNETES RESOURCES

CHAPTER 8. TRIGGERING UPDATES ON IMAGE STREAM CHANGES
8.1. OPENSHIFT CONTAINER PLATFORM RESOURCES
8.2. TRIGGERING KUBERNETES RESOURCES
8.3. SETTING THE IMAGE TRIGGER ON KUBERNETES RESOURCES

CHAPTER 9. IMAGE CONFIGURATION RESOURCES
9.1. IMAGE CONTROLLER CONFIGURATION PARAMETERS
9.2. CONFIGURING IMAGE REGISTRY SETTINGS

9.2.1. Adding specific registries
9.2.2. Blocking specific registries

9.2.2.1. Blocking a payload registry
9.2.3. Allowing insecure registries
9.2.4. Adding registries that allow image short names
9.2.5. Configuring additional trust stores for image registry access

9.3. UNDERSTANDING IMAGE REGISTRY REPOSITORY MIRRORING
9.3.1. Configuring image registry repository mirroring
9.3.2. Converting ImageContentSourcePolicy (ICSP) files for image registry repository mirroring

CHAPTER 10. USING TEMPLATES
10.1. UNDERSTANDING TEMPLATES
10.2. UPLOADING A TEMPLATE
10.3. CREATING AN APPLICATION BY USING THE WEB CONSOLE
10.4. CREATING OBJECTS FROM TEMPLATES BY USING THE CLI

10.4.1. Adding labels
10.4.2. Listing parameters
10.4.3. Generating a list of objects

10.5. MODIFYING UPLOADED TEMPLATES
10.6. USING INSTANT APP AND QUICK START TEMPLATES

10.6.1. Quick start templates
10.6.1.1. Web framework quick start templates

10.7. WRITING TEMPLATES
10.7.1. Writing the template description
10.7.2. Writing template labels
10.7.3. Writing template parameters

57
57
59
59
60
60
61
61
61

62
63
64
64
65
65
65

66
66

68
68
68
69

70
70
72
74
78
80
81

83
85
86
88
93

95
95
95
95
96
96
96
97
99
99
99

100
100
101
105
105

Table of Contents

3

. .

. .

10.7.4. Writing the template object list
10.7.5. Marking a template as bindable
10.7.6. Exposing template object fields
10.7.7. Waiting for template readiness
10.7.8. Creating a template from existing objects

CHAPTER 11. USING RUBY ON RAILS
11.1. PREREQUISITES
11.2. SETTING UP THE DATABASE
11.3. WRITING YOUR APPLICATION

11.3.1. Creating a welcome page
11.3.2. Configuring application for OpenShift Container Platform
11.3.3. Storing your application in Git

11.4. DEPLOYING YOUR APPLICATION TO OPENSHIFT CONTAINER PLATFORM
11.4.1. Creating the database service
11.4.2. Creating the frontend service
11.4.3. Creating a route for your application

CHAPTER 12. USING IMAGES
12.1. USING IMAGES OVERVIEW
12.2. SOURCE-TO-IMAGE

12.2.1. Source-to-image build process overview
12.2.2. Additional resources

12.3. CUSTOMIZING SOURCE-TO-IMAGE IMAGES
12.3.1. Invoking scripts embedded in an image

108
109
109

111
113

114
114
114
115
116
116
117
118
118
119

120

122
122
122
123
123
123
123

OpenShift Container Platform 4.13 Images

4

Table of Contents

5

CHAPTER 1. OVERVIEW OF IMAGES

1.1. UNDERSTANDING CONTAINERS, IMAGES, AND IMAGE STREAMS

Containers, images, and image streams are important concepts to understand when you set out to
create and manage containerized software. An image holds a set of software that is ready to run, while a
container is a running instance of a container image. An image stream provides a way of storing different
versions of the same basic image. Those different versions are represented by different tags on the
same image name.

1.2. IMAGES

Containers in OpenShift Container Platform are based on OCI- or Docker-formatted container images.
An image is a binary that includes all of the requirements for running a single container, as well as
metadata describing its needs and capabilities.

You can think of it as a packaging technology. Containers only have access to resources defined in the
image unless you give the container additional access when creating it. By deploying the same image in
multiple containers across multiple hosts and load balancing between them, OpenShift Container
Platform can provide redundancy and horizontal scaling for a service packaged into an image.

You can use the podman or docker CLI directly to build images, but OpenShift Container Platform also
supplies builder images that assist with creating new images by adding your code or configuration to
existing images.

Because applications develop over time, a single image name can actually refer to many different
versions of the same image. Each different image is referred to uniquely by its hash, a long hexadecimal
number such as fd44297e2ddb050ec4f… , which is usually shortened to 12 characters, such as
fd44297e2ddb.

You can create, manage, and use container images.

1.3. IMAGE REGISTRY

An image registry is a content server that can store and serve container images. For example:

A registry contains a collection of one or more image repositories, which contain one or more tagged
images. Red Hat provides a registry at registry.redhat.io for subscribers. OpenShift Container Platform
can also supply its own OpenShift image registry for managing custom container images.

1.4. IMAGE REPOSITORY

An image repository is a collection of related container images and tags identifying them. For example,
the OpenShift Container Platform Jenkins images are in the repository:

1.5. IMAGE TAGS

An image tag is a label applied to a container image in a repository that distinguishes a specific image

registry.redhat.io

docker.io/openshift/jenkins-2-centos7

OpenShift Container Platform 4.13 Images

6

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#using_podman_to_work_with_containers

An image tag is a label applied to a container image in a repository that distinguishes a specific image
from other images in an image stream. Typically, the tag represents a version number of some sort. For
example, here :v3.11.59-2 is the tag:

You can add additional tags to an image. For example, an image might be assigned the tags :v3.11.59-2
and :latest.

OpenShift Container Platform provides the oc tag command, which is similar to the docker tag
command, but operates on image streams instead of directly on images.

1.6. IMAGE IDS

An image ID is a SHA (Secure Hash Algorithm) code that can be used to pull an image. A SHA image ID
cannot change. A specific SHA identifier always references the exact same container image content.
For example:

1.7. CONTAINERS

The basic units of OpenShift Container Platform applications are called containers. Linux container
technologies are lightweight mechanisms for isolating running processes so that they are limited to
interacting with only their designated resources. The word container is defined as a specific running or
paused instance of a container image.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service, often
called a micro-service, such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. The Docker
project developed a convenient management interface for Linux containers on a host. More recently,
the Open Container Initiative has developed open standards for container formats and container
runtimes. OpenShift Container Platform and Kubernetes add the ability to orchestrate OCI- and
Docker-formatted containers across multi-host installations.

Though you do not directly interact with container runtimes when using OpenShift Container Platform,
understanding their capabilities and terminology is important for understanding their role in OpenShift
Container Platform and how your applications function inside of containers.

Tools such as podman can be used to replace docker command-line tools for running and managing
containers directly. Using podman, you can experiment with containers separately from OpenShift
Container Platform.

1.8. WHY USE IMAGESTREAMS

An image stream and its associated tags provide an abstraction for referencing container images from
within OpenShift Container Platform. The image stream and its tags allow you to see what images are
available and ensure that you are using the specific image you need even if the image in the repository
changes.

Image streams do not contain actual image data, but present a single virtual view of related images,

registry.access.redhat.com/openshift3/jenkins-2-rhel7:v3.11.59-2

docker.io/openshift/jenkins-2-centos7@sha256:ab312bda324

CHAPTER 1. OVERVIEW OF IMAGES

7

https://www.redhat.com/en/topics/containers#overview
https://github.com/opencontainers/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/managing_containers/#using_podman_to_work_with_containers

Image streams do not contain actual image data, but present a single virtual view of related images,
similar to an image repository.

You can configure builds and deployments to watch an image stream for notifications when new images
are added and react by performing a build or deployment, respectively.

For example, if a deployment is using a certain image and a new version of that image is created, a
deployment could be automatically performed to pick up the new version of the image.

However, if the image stream tag used by the deployment or build is not updated, then even if the
container image in the container image registry is updated, the build or deployment continues using the
previous, presumably known good image.

The source images can be stored in any of the following:

OpenShift Container Platform’s integrated registry.

An external registry, for example registry.redhat.io or quay.io.

Other image streams in the OpenShift Container Platform cluster.

When you define an object that references an image stream tag, such as a build or deployment
configuration, you point to an image stream tag and not the repository. When you build or deploy your
application, OpenShift Container Platform queries the repository using the image stream tag to locate
the associated ID of the image and uses that exact image.

The image stream metadata is stored in the etcd instance along with other cluster information.

Using image streams has several significant benefits:

You can tag, rollback a tag, and quickly deal with images, without having to re-push using the
command line.

You can trigger builds and deployments when a new image is pushed to the registry. Also,
OpenShift Container Platform has generic triggers for other resources, such as Kubernetes
objects.

You can mark a tag for periodic re-import. If the source image has changed, that change is
picked up and reflected in the image stream, which triggers the build or deployment flow,
depending upon the build or deployment configuration.

You can share images using fine-grained access control and quickly distribute images across
your teams.

If the source image changes, the image stream tag still points to a known-good version of the
image, ensuring that your application does not break unexpectedly.

You can configure security around who can view and use the images through permissions on the
image stream objects.

Users that lack permission to read or list images on the cluster level can still retrieve the images
tagged in a project using image streams.

You can manage image streams, use image streams with Kubernetes resources , and trigger updates on
image stream updates.

1.9. IMAGE STREAM TAGS

OpenShift Container Platform 4.13 Images

8

An image stream tag is a named pointer to an image in an image stream. An image stream tag is similar
to a container image tag.

1.10. IMAGE STREAM IMAGES

An image stream image allows you to retrieve a specific container image from a particular image stream
where it is tagged. An image stream image is an API resource object that pulls together some metadata
about a particular image SHA identifier.

1.11. IMAGE STREAM TRIGGERS

An image stream trigger causes a specific action when an image stream tag changes. For example,
importing can cause the value of the tag to change, which causes a trigger to fire when there are
deployments, builds, or other resources listening for those.

1.12. HOW YOU CAN USE THE CLUSTER SAMPLES OPERATOR

During the initial startup, the Operator creates the default samples resource to initiate the creation of
the image streams and templates. You can use the Cluster Samples Operator to manage the sample
image streams and templates stored in the openshift namespace.

As a cluster administrator, you can use the Cluster Samples Operator to:

Configure the Operator.

Use the Operator with an alternate registry.

1.13. ABOUT TEMPLATES

A template is a definition of an object to be replicated. You can use templates to build and deploy
configurations.

1.14. HOW YOU CAN USE RUBY ON RAILS

As a developer, you can use Ruby on Rails to:

Write your application:

Set up a database.

Create a welcome page.

Configure your application for OpenShift Container Platform.

Store your application in Git.

Deploy your application in OpenShift Container Platform:

Create the database service.

Create the frontend service.

Create a route for your application.

CHAPTER 1. OVERVIEW OF IMAGES

9

CHAPTER 2. CONFIGURING THE CLUSTER SAMPLES
OPERATOR

The Cluster Samples Operator, which operates in the openshift namespace, installs and updates the
Red Hat Enterprise Linux (RHEL)-based OpenShift Container Platform image streams and OpenShift
Container Platform templates.

CLUSTER SAMPLES OPERATOR IS BEING DOWNSIZED

Starting from OpenShift Container Platform 4.13, Cluster Samples Operator is
downsized. Cluster Samples Operator will stop providing the following updates
for non-Source-to-Image (Non-S2I) image streams and templates:

new image streams and templates

updates to the existing image streams and templates unless it is a CVE
update

Cluster Samples Operator will provide support for Non-S2I image streams and
templates as per the OpenShift Container Platform lifecycle policy dates and
support guidelines.

Cluster Samples Operator will continue to support the S2I builder image streams
and templates and accept the updates. S2I image streams and templates include:

Ruby

Python

Node.js

Perl

PHP

HTTPD

Nginx

EAP

Java

Webserver

.NET

Go

Starting from OpenShift Container Platform 4.16, Cluster Samples Operator will
stop managing non-S2I image streams and templates. You can contact the
image stream or template owner for any requirements and future plans. In
addition, refer to the list of the repositories hosting the image stream or
templates.

2.1. UNDERSTANDING THE CLUSTER SAMPLES OPERATOR

OpenShift Container Platform 4.13 Images

10

https://access.redhat.com/support/policy/updates/openshift#dates
https://github.com/openshift/library/blob/master/official.yaml

During installation, the Operator creates the default configuration object for itself and then creates the
sample image streams and templates, including quick start templates.

NOTE

To facilitate image stream imports from other registries that require credentials, a cluster
administrator can create any additional secrets that contain the content of a Docker
config.json file in the openshift namespace needed for image import.

The Cluster Samples Operator configuration is a cluster-wide resource, and the deployment is
contained within the openshift-cluster-samples-operator namespace.

The image for the Cluster Samples Operator contains image stream and template definitions for the
associated OpenShift Container Platform release. When each sample is created or updated, the Cluster
Samples Operator includes an annotation that denotes the version of OpenShift Container Platform.
The Operator uses this annotation to ensure that each sample matches the release version. Samples
outside of its inventory are ignored, as are skipped samples. Modifications to any samples that are
managed by the Operator, where that version annotation is modified or deleted, are reverted
automatically.

NOTE

The Jenkins images are part of the image payload from installation and are tagged into
the image streams directly.

The Cluster Samples Operator configuration resource includes a finalizer which cleans up the following
upon deletion:

Operator managed image streams.

Operator managed templates.

Operator generated configuration resources.

Cluster status resources.

Upon deletion of the samples resource, the Cluster Samples Operator recreates the resource using the
default configuration.

2.1.1. Cluster Samples Operator’s use of management state

The Cluster Samples Operator is bootstrapped as Managed by default or if global proxy is configured. In
the Managed state, the Cluster Samples Operator is actively managing its resources and keeping the
component active in order to pull sample image streams and images from the registry and ensure that
the requisite sample templates are installed.

Certain circumstances result in the Cluster Samples Operator bootstrapping itself as Removed
including:

If the Cluster Samples Operator cannot reach registry.redhat.io after three minutes on initial
startup after a clean installation.

If the Cluster Samples Operator detects it is on an IPv6 network.

If the image controller configuration parameters prevent the creation of image streams by using

CHAPTER 2. CONFIGURING THE CLUSTER SAMPLES OPERATOR

11

https://registry.redhat.io

If the image controller configuration parameters prevent the creation of image streams by using
the default image registry, or by using the image registry specified by the samplesRegistry
setting.

NOTE

For OpenShift Container Platform, the default image registry is registry.redhat.io.

However, if the Cluster Samples Operator detects that it is on an IPv6 network and an OpenShift
Container Platform global proxy is configured, then IPv6 check supersedes all the checks. As a result,
the Cluster Samples Operator bootstraps itself as Removed.

IMPORTANT

IPv6 installations are not currently supported by registry.redhat.io. The Cluster Samples
Operator pulls most of the sample image streams and images from registry.redhat.io.

2.1.1.1. Restricted network installation

Boostrapping as Removed when unable to access registry.redhat.io facilitates restricted network
installations when the network restriction is already in place. Bootstrapping as Removed when network
access is restricted allows the cluster administrator more time to decide if samples are desired, because
the Cluster Samples Operator does not submit alerts that sample image stream imports are failing when
the management state is set to Removed. When the Cluster Samples Operator comes up as Managed
and attempts to install sample image streams, it starts alerting two hours after initial installation if there
are failing imports.

2.1.1.2. Restricted network installation with initial network access

Conversely, if a cluster that is intended to be a restricted network or disconnected cluster is first
installed while network access exists, the Cluster Samples Operator installs the content from
registry.redhat.io since it can access it. If you want the Cluster Samples Operator to still bootstrap as
Removed in order to defer samples installation until you have decided which samples are desired, set up
image mirrors, and so on, then follow the instructions for using the Samples Operator with an alternate
registry and customizing nodes, both linked in the additional resources section, to override the Cluster
Samples Operator default configuration and initially come up as Removed.

You must put the following additional YAML file in the openshift directory created by openshift-install
create manifest:

Example Cluster Samples Operator YAML file with managementState: Removed

2.1.2. Cluster Samples Operator’s tracking and error recovery of image stream
imports

apiVersion: samples.operator.openshift.io/v1
kind: Config
metadata:
 name: cluster
spec:
 architectures:
 - x86_64
 managementState: Removed

OpenShift Container Platform 4.13 Images

12

https://registry.redhat.io
https://registry.redhat.io

After creation or update of a samples image stream, the Cluster Samples Operator monitors the
progress of each image stream tag’s image import.

If an import fails, the Cluster Samples Operator retries the import through the image stream image
import API, which is the same API used by the oc import-image command, approximately every 15
minutes until it sees the import succeed, or if the Cluster Samples Operator’s configuration is changed
such that either the image stream is added to the skippedImagestreams list, or the management state
is changed to Removed.

Additional resources

If the Cluster Samples Operator is removed during installation, you can use the Cluster Samples
Operator with an alternate registry so content can be imported, and then set the Cluster
Samples Operator to Managed to get the samples.

To ensure the Cluster Samples Operator bootstraps as Removed in a restricted network
installation with initial network access to defer samples installation until you have decided which
samples are desired, follow the instructions for customizing nodes to override the Cluster
Samples Operator default configuration and initially come up as Removed.

To host samples in your disconnected environment, follow the instructions for using the
Cluster Samples Operator with an alternate registry.

2.1.3. Cluster Samples Operator assistance for mirroring

During installation, OpenShift Container Platform creates a config map named imagestreamtag-to-
image in the openshift-cluster-samples-operator namespace. The imagestreamtag-to-image config
map contains an entry, the populating image, for each image stream tag.

The format of the key for each entry in the data field in the config map is
<image_stream_name>_<image_stream_tag_name>.

During a disconnected installation of OpenShift Container Platform, the status of the Cluster Samples
Operator is set to Removed. If you choose to change it to Managed, it installs samples.

NOTE

The use of samples in a network-restricted or discontinued environment may require
access to services external to your network. Some example services include: Github,
Maven Central, npm, RubyGems, PyPi and others. There might be additional steps to
take that allow the cluster samples operators’s objects to reach the services they require.

You can use this config map as a reference for which images need to be mirrored for your image
streams to import.

While the Cluster Samples Operator is set to Removed, you can create your mirrored registry, or
determine which existing mirrored registry you want to use.

Mirror the samples you want to the mirrored registry using the new config map as your guide.

Add any of the image streams you did not mirror to the skippedImagestreams list of the
Cluster Samples Operator configuration object.

Set samplesRegistry of the Cluster Samples Operator configuration object to the mirrored
registry.

Then set the Cluster Samples Operator to Managed to install the image streams you have

CHAPTER 2. CONFIGURING THE CLUSTER SAMPLES OPERATOR

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#installing-customizing

Then set the Cluster Samples Operator to Managed to install the image streams you have
mirrored.

See Using Cluster Samples Operator image streams with alternate or mirrored registries for a detailed
procedure.

2.2. CLUSTER SAMPLES OPERATOR CONFIGURATION PARAMETERS

The samples resource offers the following configuration fields:

Parameter Description

managementState Managed: The Cluster Samples Operator updates the samples as the
configuration dictates.

Unmanaged: The Cluster Samples Operator ignores updates to its
configuration resource object and any image streams or templates in the
openshift namespace.

Removed: The Cluster Samples Operator removes the set of Managed
image streams and templates in the openshift namespace. It ignores new
samples created by the cluster administrator or any samples in the skipped lists.
After the removals are complete, the Cluster Samples Operator works like it is
in the Unmanaged state and ignores any watch events on the sample
resources, image streams, or templates.

samplesRegistry Allows you to specify which registry is accessed by image streams for their
image content. samplesRegistry defaults to registry.redhat.io for
OpenShift Container Platform.

NOTE

Creation or update of RHEL content does not commence if the
secret for pull access is not in place when either Samples
Registry is not explicitly set, leaving an empty string, or when
it is set to registry.redhat.io. In both cases, image imports work
off of registry.redhat.io, which requires credentials.

Creation or update of RHEL content is not gated by the
existence of the pull secret if the Samples Registry is
overridden to a value other than the empty string or
registry.redhat.io.

architectures Placeholder to choose an architecture type.

skippedImagestreams Image streams that are in the Cluster Samples Operator’s inventory but that
the cluster administrator wants the Operator to ignore or not manage. You can
add a list of image stream names to this parameter. For example,
["httpd","perl"].

skippedTemplates Templates that are in the Cluster Samples Operator’s inventory, but that the
cluster administrator wants the Operator to ignore or not manage.

OpenShift Container Platform 4.13 Images

14

Secret, image stream, and template watch events can come in before the initial samples resource
object is created, the Cluster Samples Operator detects and re-queues the event.

2.2.1. Configuration restrictions

When the Cluster Samples Operator starts supporting multiple architectures, the architecture list is not
allowed to be changed while in the Managed state.

To change the architectures values, a cluster administrator must:

Mark the Management State as Removed, saving the change.

In a subsequent change, edit the architecture and change the Management State back to
Managed.

The Cluster Samples Operator still processes secrets while in Removed state. You can create the secret
before switching to Removed, while in Removed before switching to Managed, or after switching to
Managed state. There are delays in creating the samples until the secret event is processed if you
create the secret after switching to Managed. This helps facilitate the changing of the registry, where
you choose to remove all the samples before switching to insure a clean slate. Removing all samples
before switching is not required.

2.2.2. Conditions

The samples resource maintains the following conditions in its status:

Condition Description

SamplesExists Indicates the samples are created in the openshift namespace.

ImageChangesInProgr
ess

True when image streams are created or updated, but not all of the tag spec
generations and tag status generations match.

False when all of the generations match, or unrecoverable errors occurred
during import, the last seen error is in the message field. The list of pending
image streams is in the reason field.

This condition is deprecated in OpenShift Container Platform.

ConfigurationValid True or False based on whether any of the restricted changes noted
previously are submitted.

RemovePending Indicator that there is a Management State: Removed setting pending, but
the Cluster Samples Operator is waiting for the deletions to complete.

ImportImageErrorsExis
t

Indicator of which image streams had errors during the image import phase for
one of their tags.

True when an error has occurred. The list of image streams with an error is in
the reason field. The details of each error reported are in the message field.

CHAPTER 2. CONFIGURING THE CLUSTER SAMPLES OPERATOR

15

MigrationInProgress True when the Cluster Samples Operator detects that the version is different
than the Cluster Samples Operator version with which the current samples set
are installed.

This condition is deprecated in OpenShift Container Platform.

Condition Description

2.3. ACCESSING THE CLUSTER SAMPLES OPERATOR
CONFIGURATION

You can configure the Cluster Samples Operator by editing the file with the provided parameters.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

Access the Cluster Samples Operator configuration:

The Cluster Samples Operator configuration resembles the following example:

2.4. REMOVING DEPRECATED IMAGE STREAM TAGS FROM THE
CLUSTER SAMPLES OPERATOR

The Cluster Samples Operator leaves deprecated image stream tags in an image stream because users
can have deployments that use the deprecated image stream tags.

You can remove deprecated image stream tags by editing the image stream with the oc tag command.

NOTE

Deprecated image stream tags that the samples providers have removed from their
image streams are not included on initial installations.

Prerequisites

You installed the oc CLI.

Procedure

Remove deprecated image stream tags by editing the image stream with the oc tag command.

$ oc edit configs.samples.operator.openshift.io/cluster -o yaml

apiVersion: samples.operator.openshift.io/v1
kind: Config
...

$ oc tag -d <image_stream_name:tag>

OpenShift Container Platform 4.13 Images

16

Example output

Additional resources

For more information about configuring credentials, see Using image pull secrets .

Deleted tag default/<image_stream_name:tag>.

CHAPTER 2. CONFIGURING THE CLUSTER SAMPLES OPERATOR

17

CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR
WITH AN ALTERNATE REGISTRY

You can use the Cluster Samples Operator with an alternate registry by first creating a mirror registry.

IMPORTANT

You must have access to the internet to obtain the necessary container images. In this
procedure, you place the mirror registry on a mirror host that has access to both your
network and the internet.

3.1. ABOUT THE MIRROR REGISTRY

You can mirror the images that are required for OpenShift Container Platform installation and
subsequent product updates to a container mirror registry such as Red Hat Quay, JFrog Artifactory,
Sonatype Nexus Repository, or Harbor. If you do not have access to a large-scale container registry, you
can use the mirror registry for Red Hat OpenShift , a small-scale container registry included with
OpenShift Container Platform subscriptions.

You can use any container registry that supports Docker v2-2, such as Red Hat Quay, the mirror registry
for Red Hat OpenShift, Artifactory, Sonatype Nexus Repository, or Harbor. Regardless of your chosen
registry, the procedure to mirror content from Red Hat hosted sites on the internet to an isolated image
registry is the same. After you mirror the content, you configure each cluster to retrieve this content
from your mirror registry.

IMPORTANT

The OpenShift image registry cannot be used as the target registry because it does not
support pushing without a tag, which is required during the mirroring process.

If choosing a container registry that is not the mirror registry for Red Hat OpenShift , it must be reachable
by every machine in the clusters that you provision. If the registry is unreachable, installation, updating,
or normal operations such as workload relocation might fail. For that reason, you must run mirror
registries in a highly available way, and the mirror registries must at least match the production
availability of your OpenShift Container Platform clusters.

When you populate your mirror registry with OpenShift Container Platform images, you can follow two
scenarios. If you have a host that can access both the internet and your mirror registry, but not your
cluster nodes, you can directly mirror the content from that machine. This process is referred to as
connected mirroring. If you have no such host, you must mirror the images to a file system and then bring
that host or removable media into your restricted environment. This process is referred to as
disconnected mirroring .

For mirrored registries, to view the source of pulled images, you must review the Trying to access log
entry in the CRI-O logs. Other methods to view the image pull source, such as using the crictl images
command on a node, show the non-mirrored image name, even though the image is pulled from the
mirrored location.

NOTE

Red Hat does not test third party registries with OpenShift Container Platform.

Additional information

OpenShift Container Platform 4.13 Images

18

https://docs.docker.com/registry/spec/manifest-v2-2

For information on viewing the CRI-O logs to view the image source, see Viewing the image pull source.

3.1.1. Preparing the mirror host

Before you create the mirror registry, you must prepare the mirror host.

3.1.2. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-
line interface. You can install oc on Linux, Windows, or macOS.

IMPORTANT

If you installed an earlier version of oc, you cannot use it to complete all of the commands
in OpenShift Container Platform 4.13. Download and install the new version of oc.

Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer
Portal.

2. Select the architecture from the Product Variant drop-down list.

3. Select the appropriate version from the Version drop-down list.

4. Click Download Now next to the OpenShift v4.13 Linux Client entry and save the file.

5. Unpack the archive:

6. Place the oc binary in a directory that is on your PATH.
To check your PATH, execute the following command:

Verification

After you install the OpenShift CLI, it is available using the oc command:

Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer
Portal.

$ tar xvf <file>

$ echo $PATH

$ oc <command>

CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR WITH AN ALTERNATE REGISTRY

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/installing/#viewing-the-image-pull-source_validating-an-installation
https://access.redhat.com/downloads/content/290
https://access.redhat.com/downloads/content/290

2. Select the appropriate version from the Version drop-down list.

3. Click Download Now next to the OpenShift v4.13 Windows Client entry and save the file.

4. Unzip the archive with a ZIP program.

5. Move the oc binary to a directory that is on your PATH.
To check your PATH, open the command prompt and execute the following command:

Verification

After you install the OpenShift CLI, it is available using the oc command:

Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer
Portal.

2. Select the appropriate version from the Version drop-down list.

3. Click Download Now next to the OpenShift v4.13 macOS Client entry and save the file.

NOTE

For macOS arm64, choose the OpenShift v4.13 macOS arm64 Client entry.

4. Unpack and unzip the archive.

5. Move the oc binary to a directory on your PATH.
To check your PATH, open a terminal and execute the following command:

Verification

After you install the OpenShift CLI, it is available using the oc command:

3.2. CONFIGURING CREDENTIALS THAT ALLOW IMAGES TO BE
MIRRORED

Create a container image registry credentials file that allows mirroring images from Red Hat to your
mirror.

C:\> path

C:\> oc <command>

$ echo $PATH

$ oc <command>

OpenShift Container Platform 4.13 Images

20

https://access.redhat.com/downloads/content/290

1

1

Prerequisites

You configured a mirror registry to use in your disconnected environment.

Procedure

Complete the following steps on the installation host:

1. Download your registry.redhat.io pull secret from the Red Hat OpenShift Cluster Manager .

2. Make a copy of your pull secret in JSON format:

Specify the path to the folder to store the pull secret in and a name for the JSON file that
you create.

The contents of the file resemble the following example:

3. Generate the base64-encoded user name and password or token for your mirror registry:

For <user_name> and <password>, specify the user name and password that you
configured for your registry.

4. Edit the JSON file and add a section that describes your registry to it:

$ cat ./pull-secret | jq . > <path>/<pull_secret_file_in_json> 1

{
 "auths": {
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

$ echo -n '<user_name>:<password>' | base64 -w0 1
BGVtbYk3ZHAtqXs=

 "auths": {
 "<mirror_registry>": { 1
 "auth": "<credentials>", 2

CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR WITH AN ALTERNATE REGISTRY

21

https://console.redhat.com/openshift/install/pull-secret

1

2

For <mirror_registry>, specify the registry domain name, and optionally the port, that
your mirror registry uses to serve content. For example, registry.example.com or
registry.example.com:8443

For <credentials>, specify the base64-encoded user name and password for the mirror
registry.

The file resembles the following example:

3.3. MIRRORING THE OPENSHIFT CONTAINER PLATFORM IMAGE
REPOSITORY

Mirror the OpenShift Container Platform image repository to your registry to use during cluster
installation or upgrade.

Prerequisites

Your mirror host has access to the internet.

You configured a mirror registry to use in your restricted network and can access the certificate
and credentials that you configured.

You downloaded the pull secret from the Red Hat OpenShift Cluster Manager and modified it
to include authentication to your mirror repository.

If you use self-signed certificates, you have specified a Subject Alternative Name in the

 "email": "you@example.com"
 }
 },

{
 "auths": {
 "registry.example.com": {
 "auth": "BGVtbYk3ZHAtqXs=",
 "email": "you@example.com"
 },
 "cloud.openshift.com": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "quay.io": {
 "auth": "b3BlbnNo...",
 "email": "you@example.com"
 },
 "registry.connect.redhat.com": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 },
 "registry.redhat.io": {
 "auth": "NTE3Njg5Nj...",
 "email": "you@example.com"
 }
 }
}

OpenShift Container Platform 4.13 Images

22

https://console.redhat.com/openshift/install/pull-secret

If you use self-signed certificates, you have specified a Subject Alternative Name in the
certificates.

Procedure

Complete the following steps on the mirror host:

1. Review the OpenShift Container Platform downloads page to determine the version of
OpenShift Container Platform that you want to install and determine the corresponding tag on
the Repository Tags page.

2. Set the required environment variables:

a. Export the release version:

For <release_version>, specify the tag that corresponds to the version of OpenShift
Container Platform to install, such as 4.5.4.

b. Export the local registry name and host port:

For <local_registry_host_name>, specify the registry domain name for your mirror
repository, and for <local_registry_host_port>, specify the port that it serves content on.

c. Export the local repository name:

For <local_repository_name>, specify the name of the repository to create in your
registry, such as ocp4/openshift4.

d. Export the name of the repository to mirror:

For a production release, you must specify openshift-release-dev.

e. Export the path to your registry pull secret:

For <path_to_pull_secret>, specify the absolute path to and file name of the pull secret
for your mirror registry that you created.

f. Export the release mirror:

For a production release, you must specify ocp-release.

g. Export the type of architecture for your cluster:

$ OCP_RELEASE=<release_version>

$ LOCAL_REGISTRY='<local_registry_host_name>:<local_registry_host_port>'

$ LOCAL_REPOSITORY='<local_repository_name>'

$ PRODUCT_REPO='openshift-release-dev'

$ LOCAL_SECRET_JSON='<path_to_pull_secret>'

$ RELEASE_NAME="ocp-release"

CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR WITH AN ALTERNATE REGISTRY

23

https://access.redhat.com/downloads/content/290/
https://quay.io/repository/openshift-release-dev/ocp-release?tab=tags

1

1

1

Specify the architecture of the cluster, such as x86_64, aarch64, s390x, or ppc64le.

h. Export the path to the directory to host the mirrored images:

Specify the full path, including the initial forward slash (/) character.

3. Mirror the version images to the mirror registry:

If your mirror host does not have internet access, take the following actions:

i. Connect the removable media to a system that is connected to the internet.

ii. Review the images and configuration manifests to mirror:

iii. Record the entire imageContentSources section from the output of the previous
command. The information about your mirrors is unique to your mirrored repository, and
you must add the imageContentSources section to the install-config.yaml file during
installation.

iv. Mirror the images to a directory on the removable media:

v. Take the media to the restricted network environment and upload the images to the
local container registry.

For REMOVABLE_MEDIA_PATH, you must use the same path that you specified
when you mirrored the images.

IMPORTANT

$ ARCHITECTURE=<cluster_architecture> 1

$ REMOVABLE_MEDIA_PATH=<path> 1

$ oc adm release mirror -a ${LOCAL_SECRET_JSON} \
 --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE} \
 --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
 --to-release-
image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE} --dry-run

$ oc adm release mirror -a ${LOCAL_SECRET_JSON} --to-
dir=${REMOVABLE_MEDIA_PATH}/mirror
quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE}

$ oc image mirror -a ${LOCAL_SECRET_JSON} --from-
dir=${REMOVABLE_MEDIA_PATH}/mirror
"file://openshift/release:${OCP_RELEASE}*"
${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} 1

OpenShift Container Platform 4.13 Images

24

IMPORTANT

Running oc image mirror might result in the following error: error:
unable to retrieve source image. This error occurs when image indexes
include references to images that no longer exist on the image registry.
Image indexes might retain older references to allow users running those
images an upgrade path to newer points on the upgrade graph. As a
temporary workaround, you can use the --skip-missing option to bypass
the error and continue downloading the image index. For more
information, see Service Mesh Operator mirroring failed .

If the local container registry is connected to the mirror host, take the following actions:

i. Directly push the release images to the local registry by using following command:

This command pulls the release information as a digest, and its output includes the
imageContentSources data that you require when you install your cluster.

ii. Record the entire imageContentSources section from the output of the previous
command. The information about your mirrors is unique to your mirrored repository, and
you must add the imageContentSources section to the install-config.yaml file during
installation.

NOTE

The image name gets patched to Quay.io during the mirroring process,
and the podman images will show Quay.io in the registry on the
bootstrap virtual machine.

4. To create the installation program that is based on the content that you mirrored, extract it and
pin it to the release:

If your mirror host does not have internet access, run the following command:

If the local container registry is connected to the mirror host, run the following command:

IMPORTANT

$ oc adm release mirror -a ${LOCAL_SECRET_JSON} \
 --from=quay.io/${PRODUCT_REPO}/${RELEASE_NAME}:${OCP_RELEASE}-
${ARCHITECTURE} \
 --to=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY} \
 --to-release-
image=${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE}

$ oc adm release extract -a ${LOCAL_SECRET_JSON} --icsp-file=<file> \ --
command=openshift-install
"${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}"

$ oc adm release extract -a ${LOCAL_SECRET_JSON} --command=openshift-install
"${LOCAL_REGISTRY}/${LOCAL_REPOSITORY}:${OCP_RELEASE}-
${ARCHITECTURE}"

CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR WITH AN ALTERNATE REGISTRY

25

https://access.redhat.com/solutions/6975305

IMPORTANT

To ensure that you use the correct images for the version of OpenShift
Container Platform that you selected, you must extract the installation
program from the mirrored content.

You must perform this step on a machine with an active internet connection.

5. For clusters using installer-provisioned infrastructure, run the following command:

3.4. USING CLUSTER SAMPLES OPERATOR IMAGE STREAMS WITH
ALTERNATE OR MIRRORED REGISTRIES

Most image streams in the openshift namespace managed by the Cluster Samples Operator point to
images located in the Red Hat registry at registry.redhat.io.

NOTE

The cli, installer, must-gather, and tests image streams, while part of the install payload,
are not managed by the Cluster Samples Operator. These are not addressed in this
procedure.

IMPORTANT

The Cluster Samples Operator must be set to Managed in a disconnected environment.
To install the image streams, you have a mirrored registry.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Create a pull secret for your mirror registry.

Procedure

1. Access the images of a specific image stream to mirror, for example:

2. Mirror images from registry.redhat.io associated with any image streams you need

3. Create the cluster’s image configuration object:

$ openshift-install

$ oc get is <imagestream> -n openshift -o json | jq .spec.tags[].from.name | grep
registry.redhat.io

$ oc image mirror registry.redhat.io/rhscl/ruby-25-rhel7:latest ${MIRROR_ADDR}/rhscl/ruby-
25-rhel7:latest

$ oc create configmap registry-config --from-
file=${MIRROR_ADDR_HOSTNAME}..5000=$path/ca.crt -n openshift-config

OpenShift Container Platform 4.13 Images

26

https://registry.redhat.io
https://registry.redhat.io

4. Add the required trusted CAs for the mirror in the cluster’s image configuration object:

5. Update the samplesRegistry field in the Cluster Samples Operator configuration object to
contain the hostname portion of the mirror location defined in the mirror configuration:

NOTE

This is required because the image stream import process does not use the
mirror or search mechanism at this time.

6. Add any image streams that are not mirrored into the skippedImagestreams field of the
Cluster Samples Operator configuration object. Or if you do not want to support any of the
sample image streams, set the Cluster Samples Operator to Removed in the Cluster Samples
Operator configuration object.

NOTE

The Cluster Samples Operator issues alerts if image stream imports are failing
but the Cluster Samples Operator is either periodically retrying or does not
appear to be retrying them.

Many of the templates in the openshift namespace reference the image streams. So using
Removed to purge both the image streams and templates will eliminate the possibility of
attempts to use them if they are not functional because of any missing image streams.

3.4.1. Cluster Samples Operator assistance for mirroring

During installation, OpenShift Container Platform creates a config map named imagestreamtag-to-
image in the openshift-cluster-samples-operator namespace. The imagestreamtag-to-image config
map contains an entry, the populating image, for each image stream tag.

The format of the key for each entry in the data field in the config map is
<image_stream_name>_<image_stream_tag_name>.

During a disconnected installation of OpenShift Container Platform, the status of the Cluster Samples
Operator is set to Removed. If you choose to change it to Managed, it installs samples.

NOTE

The use of samples in a network-restricted or discontinued environment may require
access to services external to your network. Some example services include: Github,
Maven Central, npm, RubyGems, PyPi and others. There might be additional steps to
take that allow the cluster samples operators’s objects to reach the services they require.

You can use this config map as a reference for which images need to be mirrored for your image
streams to import.

While the Cluster Samples Operator is set to Removed, you can create your mirrored registry, or

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-config"}}}' --type=merge

$ oc edit configs.samples.operator.openshift.io -n openshift-cluster-samples-operator

CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR WITH AN ALTERNATE REGISTRY

27

While the Cluster Samples Operator is set to Removed, you can create your mirrored registry, or
determine which existing mirrored registry you want to use.

Mirror the samples you want to the mirrored registry using the new config map as your guide.

Add any of the image streams you did not mirror to the skippedImagestreams list of the
Cluster Samples Operator configuration object.

Set samplesRegistry of the Cluster Samples Operator configuration object to the mirrored
registry.

Then set the Cluster Samples Operator to Managed to install the image streams you have
mirrored.

See Using Cluster Samples Operator image streams with alternate or mirrored registries for a detailed
procedure.

OpenShift Container Platform 4.13 Images

28

CHAPTER 4. CREATING IMAGES
Learn how to create your own container images, based on pre-built images that are ready to help you.
The process includes learning best practices for writing images, defining metadata for images, testing
images, and using a custom builder workflow to create images to use with OpenShift Container Platform.
After you create an image, you can push it to the OpenShift image registry.

4.1. LEARNING CONTAINER BEST PRACTICES

When creating container images to run on OpenShift Container Platform there are a number of best
practices to consider as an image author to ensure a good experience for consumers of those images.
Because images are intended to be immutable and used as-is, the following guidelines help ensure that
your images are highly consumable and easy to use on OpenShift Container Platform.

4.1.1. General container image guidelines

The following guidelines apply when creating a container image in general, and are independent of
whether the images are used on OpenShift Container Platform.

Reuse images
Wherever possible, base your image on an appropriate upstream image using the FROM statement. This
ensures your image can easily pick up security fixes from an upstream image when it is updated, rather
than you having to update your dependencies directly.

In addition, use tags in the FROM instruction, for example, rhel:rhel7, to make it clear to users exactly
which version of an image your image is based on. Using a tag other than latest ensures your image is
not subjected to breaking changes that might go into the latest version of an upstream image.

Maintain compatibility within tags
When tagging your own images, try to maintain backwards compatibility within a tag. For example, if you
provide an image named image and it currently includes version 1.0, you might provide a tag of
image:v1. When you update the image, as long as it continues to be compatible with the original image,
you can continue to tag the new image image:v1, and downstream consumers of this tag are able to get
updates without being broken.

If you later release an incompatible update, then switch to a new tag, for example image:v2. This allows
downstream consumers to move up to the new version at will, but not be inadvertently broken by the
new incompatible image. Any downstream consumer using image:latest takes on the risk of any
incompatible changes being introduced.

Avoid multiple processes
Do not start multiple services, such as a database and SSHD, inside one container. This is not necessary
because containers are lightweight and can be easily linked together for orchestrating multiple
processes. OpenShift Container Platform allows you to easily colocate and co-manage related images
by grouping them into a single pod.

This colocation ensures the containers share a network namespace and storage for communication.
Updates are also less disruptive as each image can be updated less frequently and independently. Signal
handling flows are also clearer with a single process as you do not have to manage routing signals to
spawned processes.

Use exec in wrapper scripts
Many images use wrapper scripts to do some setup before starting a process for the software being run.
If your image uses such a script, that script uses exec so that the script’s process is replaced by your
software. If you do not use exec, then signals sent by your container runtime go to your wrapper script

CHAPTER 4. CREATING IMAGES

29

instead of your software’s process. This is not what you want.

If you have a wrapper script that starts a process for some server. You start your container, for example,
using podman run -i, which runs the wrapper script, which in turn starts your process. If you want to
close your container with CTRL+C. If your wrapper script used exec to start the server process, podman
sends SIGINT to the server process, and everything works as you expect. If you did not use exec in your
wrapper script, podman sends SIGINT to the process for the wrapper script and your process keeps
running like nothing happened.

Also note that your process runs as PID 1 when running in a container. This means that if your main
process terminates, the entire container is stopped, canceling any child processes you launched from
your PID 1 process.

Clean temporary files
Remove all temporary files you create during the build process. This also includes any files added with
the ADD command. For example, run the yum clean command after performing yum install
operations.

You can prevent the yum cache from ending up in an image layer by creating your RUN statement as
follows:

Note that if you instead write:

Then the first yum invocation leaves extra files in that layer, and these files cannot be removed when
the yum clean operation is run later. The extra files are not visible in the final image, but they are
present in the underlying layers.

The current container build process does not allow a command run in a later layer to shrink the space
used by the image when something was removed in an earlier layer. However, this may change in the
future. This means that if you perform an rm command in a later layer, although the files are hidden it
does not reduce the overall size of the image to be downloaded. Therefore, as with the yum clean
example, it is best to remove files in the same command that created them, where possible, so they do
not end up written to a layer.

In addition, performing multiple commands in a single RUN statement reduces the number of layers in
your image, which improves download and extraction time.

Place instructions in the proper order
The container builder reads the Dockerfile and runs the instructions from top to bottom. Every
instruction that is successfully executed creates a layer which can be reused the next time this or
another image is built. It is very important to place instructions that rarely change at the top of your
Dockerfile. Doing so ensures the next builds of the same image are very fast because the cache is not
invalidated by upper layer changes.

For example, if you are working on a Dockerfile that contains an ADD command to install a file you are
iterating on, and a RUN command to yum install a package, it is best to put the ADD command last:

This way each time you edit myfile and rerun podman build or docker build, the system reuses the

RUN yum -y install mypackage && yum -y install myotherpackage && yum clean all -y

RUN yum -y install mypackage
RUN yum -y install myotherpackage && yum clean all -y

FROM foo
RUN yum -y install mypackage && yum clean all -y
ADD myfile /test/myfile

OpenShift Container Platform 4.13 Images

30

This way each time you edit myfile and rerun podman build or docker build, the system reuses the
cached layer for the yum command and only generates the new layer for the ADD operation.

If instead you wrote the Dockerfile as:

Then each time you changed myfile and reran podman build or docker build, the ADD operation
would invalidate the RUN layer cache, so the yum operation must be rerun as well.

Mark important ports
The EXPOSE instruction makes a port in the container available to the host system and other containers.
While it is possible to specify that a port should be exposed with a podman run invocation, using the
EXPOSE instruction in a Dockerfile makes it easier for both humans and software to use your image by
explicitly declaring the ports your software needs to run:

Exposed ports show up under podman ps associated with containers created from your image.

Exposed ports are present in the metadata for your image returned by podman inspect.

Exposed ports are linked when you link one container to another.

Set environment variables
It is good practice to set environment variables with the ENV instruction. One example is to set the
version of your project. This makes it easy for people to find the version without looking at the
Dockerfile. Another example is advertising a path on the system that could be used by another process,
such as JAVA_HOME.

Avoid default passwords
Avoid setting default passwords. Many people extend the image and forget to remove or change the
default password. This can lead to security issues if a user in production is assigned a well-known
password. Passwords are configurable using an environment variable instead.

If you do choose to set a default password, ensure that an appropriate warning message is displayed
when the container is started. The message should inform the user of the value of the default password
and explain how to change it, such as what environment variable to set.

Avoid sshd
It is best to avoid running sshd in your image. You can use the podman exec or docker exec command
to access containers that are running on the local host. Alternatively, you can use the oc exec command
or the oc rsh command to access containers that are running on the OpenShift Container Platform
cluster. Installing and running sshd in your image opens up additional vectors for attack and
requirements for security patching.

Use volumes for persistent data
Images use a volume for persistent data. This way OpenShift Container Platform mounts the network
storage to the node running the container, and if the container moves to a new node the storage is
reattached to that node. By using the volume for all persistent storage needs, the content is preserved
even if the container is restarted or moved. If your image writes data to arbitrary locations within the
container, that content could not be preserved.

All data that needs to be preserved even after the container is destroyed must be written to a volume.
Container engines support a readonly flag for containers, which can be used to strictly enforce good
practices about not writing data to ephemeral storage in a container. Designing your image around that
capability now makes it easier to take advantage of it later.

FROM foo
ADD myfile /test/myfile
RUN yum -y install mypackage && yum clean all -y

CHAPTER 4. CREATING IMAGES

31

https://docs.docker.com/reference/builder/#volume

Explicitly defining volumes in your Dockerfile makes it easy for consumers of the image to understand
what volumes they must define when running your image.

See the Kubernetes documentation for more information on how volumes are used in OpenShift
Container Platform.

NOTE

Even with persistent volumes, each instance of your image has its own volume, and the
filesystem is not shared between instances. This means the volume cannot be used to
share state in a cluster.

4.1.2. OpenShift Container Platform-specific guidelines

The following are guidelines that apply when creating container images specifically for use on OpenShift
Container Platform.

4.1.2.1. Enable images for source-to-image (S2I)

For images that are intended to run application code provided by a third party, such as a Ruby image
designed to run Ruby code provided by a developer, you can enable your image to work with the
Source-to-Image (S2I) build tool. S2I is a framework that makes it easy to write images that take
application source code as an input and produce a new image that runs the assembled application as
output.

4.1.2.2. Support arbitrary user ids

By default, OpenShift Container Platform runs containers using an arbitrarily assigned user ID. This
provides additional security against processes escaping the container due to a container engine
vulnerability and thereby achieving escalated permissions on the host node.

For an image to support running as an arbitrary user, directories and files that are written to by
processes in the image must be owned by the root group and be read/writable by that group. Files to be
executed must also have group execute permissions.

Adding the following to your Dockerfile sets the directory and file permissions to allow users in the root
group to access them in the built image:

Because the container user is always a member of the root group, the container user can read and write
these files.

RUN chgrp -R 0 /some/directory && \
 chmod -R g=u /some/directory

OpenShift Container Platform 4.13 Images

32

https://kubernetes.io/docs/concepts/storage/volumes/
https://github.com/openshift/source-to-image

WARNING

Care must be taken when altering the directories and file permissions of the
sensitive areas of a container. If applied to sensitive areas, such as the /etc/passwd
file, such changes can allow the modification of these files by unintended users,
potentially exposing the container or host. CRI-O supports the insertion of arbitrary
user IDs into a container’s /etc/passwd file. As such, changing permissions is never
required.

Additionally, the /etc/passwd file should not exist in any container image. If it does,
the CRI-O container runtime will fail to inject a random UID into the /etc/passwd
file. In such cases, the container might face challenges in resolving the active UID.
Failing to meet this requirement could impact the functionality of certain
containerized applications.

In addition, the processes running in the container must not listen on privileged ports, ports below 1024,
since they are not running as a privileged user.

IMPORTANT

If your S2I image does not include a USER declaration with a numeric user, your builds fail
by default. To allow images that use either named users or the root 0 user to build in
OpenShift Container Platform, you can add the project’s builder service account,
system:serviceaccount:<your-project>:builder, to the anyuid security context
constraint (SCC). Alternatively, you can allow all images to run as any user.

4.1.2.3. Use services for inter-image communication

For cases where your image needs to communicate with a service provided by another image, such as a
web front end image that needs to access a database image to store and retrieve data, your image
consumes an OpenShift Container Platform service. Services provide a static endpoint for access which
does not change as containers are stopped, started, or moved. In addition, services provide load
balancing for requests.

4.1.2.4. Provide common libraries

For images that are intended to run application code provided by a third party, ensure that your image
contains commonly used libraries for your platform. In particular, provide database drivers for common
databases used with your platform. For example, provide JDBC drivers for MySQL and PostgreSQL if
you are creating a Java framework image. Doing so prevents the need for common dependencies to be
downloaded during application assembly time, speeding up application image builds. It also simplifies the
work required by application developers to ensure all of their dependencies are met.

4.1.2.5. Use environment variables for configuration

Users of your image are able to configure it without having to create a downstream image based on your
image. This means that the runtime configuration is handled using environment variables. For a simple
configuration, the running process can consume the environment variables directly. For a more
complicated configuration or for runtimes which do not support this, configure the runtime by defining a

CHAPTER 4. CREATING IMAGES

33

template configuration file that is processed during startup. During this processing, values supplied using
environment variables can be substituted into the configuration file or used to make decisions about
what options to set in the configuration file.

It is also possible and recommended to pass secrets such as certificates and keys into the container
using environment variables. This ensures that the secret values do not end up committed in an image
and leaked into a container image registry.

Providing environment variables allows consumers of your image to customize behavior, such as
database settings, passwords, and performance tuning, without having to introduce a new layer on top
of your image. Instead, they can simply define environment variable values when defining a pod and
change those settings without rebuilding the image.

For extremely complex scenarios, configuration can also be supplied using volumes that would be
mounted into the container at runtime. However, if you elect to do it this way you must ensure that your
image provides clear error messages on startup when the necessary volume or configuration is not
present.

This topic is related to the Using Services for Inter-image Communication topic in that configuration like
datasources are defined in terms of environment variables that provide the service endpoint
information. This allows an application to dynamically consume a datasource service that is defined in
the OpenShift Container Platform environment without modifying the application image.

In addition, tuning is done by inspecting the cgroups settings for the container. This allows the image to
tune itself to the available memory, CPU, and other resources. For example, Java-based images tune
their heap based on the cgroup maximum memory parameter to ensure they do not exceed the limits
and get an out-of-memory error.

4.1.2.6. Set image metadata

Defining image metadata helps OpenShift Container Platform better consume your container images,
allowing OpenShift Container Platform to create a better experience for developers using your image.
For example, you can add metadata to provide helpful descriptions of your image, or offer suggestions
on other images that are needed.

4.1.2.7. Clustering

You must fully understand what it means to run multiple instances of your image. In the simplest case,
the load balancing function of a service handles routing traffic to all instances of your image. However,
many frameworks must share information to perform leader election or failover state; for example, in
session replication.

Consider how your instances accomplish this communication when running in OpenShift Container
Platform. Although pods can communicate directly with each other, their IP addresses change anytime
the pod starts, stops, or is moved. Therefore, it is important for your clustering scheme to be dynamic.

4.1.2.8. Logging

It is best to send all logging to standard out. OpenShift Container Platform collects standard out from
containers and sends it to the centralized logging service where it can be viewed. If you must separate
log content, prefix the output with an appropriate keyword, which makes it possible to filter the
messages.

If your image logs to a file, users must use manual operations to enter the running container and retrieve
or view the log file.

OpenShift Container Platform 4.13 Images

34

4.1.2.9. Liveness and readiness probes

Document example liveness and readiness probes that can be used with your image. These probes allow
users to deploy your image with confidence that traffic is not be routed to the container until it is
prepared to handle it, and that the container is restarted if the process gets into an unhealthy state.

4.1.2.10. Templates

Consider providing an example template with your image. A template gives users an easy way to quickly
get your image deployed with a working configuration. Your template must include the liveness and
readiness probes you documented with the image, for completeness.

4.2. INCLUDING METADATA IN IMAGES

Defining image metadata helps OpenShift Container Platform better consume your container images,
allowing OpenShift Container Platform to create a better experience for developers using your image.
For example, you can add metadata to provide helpful descriptions of your image, or offer suggestions
on other images that may also be needed.

This topic only defines the metadata needed by the current set of use cases. Additional metadata or use
cases may be added in the future.

4.2.1. Defining image metadata

You can use the LABEL instruction in a Dockerfile to define image metadata. Labels are similar to
environment variables in that they are key value pairs attached to an image or a container. Labels are
different from environment variable in that they are not visible to the running application and they can
also be used for fast look-up of images and containers.

Docker documentation for more information on the LABEL instruction.

The label names are typically namespaced. The namespace is set accordingly to reflect the project that
is going to pick up the labels and use them. For OpenShift Container Platform the namespace is set to
io.openshift and for Kubernetes the namespace is io.k8s.

See the Docker custom metadata documentation for details about the format.

Table 4.1. Supported Metadata

Variable Description

io.openshift.tags This label contains a list of tags represented as a list of comma-separated
string values. The tags are the way to categorize the container images into
broad areas of functionality. Tags help UI and generation tools to suggest
relevant container images during the application creation process.

LABEL io.openshift.tags mongodb,mongodb24,nosql

CHAPTER 4. CREATING IMAGES

35

https://docs.docker.com/engine/reference/builder/#label
https://docs.docker.com/engine/userguide/labels-custom-metadata

io.openshift.wants Specifies a list of tags that the generation tools and the UI uses to provide
relevant suggestions if you do not have the container images with specified
tags already. For example, if the container image wants mysql and redis and
you do not have the container image with redis tag, then UI can suggest you to
add this image into your deployment.

LABEL io.openshift.wants mongodb,redis

io.k8s.description This label can be used to give the container image consumers more detailed
information about the service or functionality this image provides. The UI can
then use this description together with the container image name to provide
more human friendly information to end users.

LABEL io.k8s.description The MySQL 5.5 Server with master-slave
replication support

io.openshift.non-
scalable

An image can use this variable to suggest that it does not support scaling. The
UI then communicates this to consumers of that image. Being not-scalable
means that the value of replicas should initially not be set higher than 1.

LABEL io.openshift.non-scalable true

io.openshift.min-
memory and
io.openshift.min-cpu

This label suggests how much resources the container image needs to work
properly. The UI can warn the user that deploying this container image may
exceed their user quota. The values must be compatible with Kubernetes
quantity.

LABEL io.openshift.min-memory 16Gi
LABEL io.openshift.min-cpu 4

Variable Description

4.3. CREATING IMAGES FROM SOURCE CODE WITH SOURCE-TO-
IMAGE

Source-to-image (S2I) is a framework that makes it easy to write images that take application source
code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for
developers. As a builder image author, you must understand two basic concepts in order for your images
to provide the best S2I performance, the build process and S2I scripts.

4.3.1. Understanding the source-to-image build process

The build process consists of the following three fundamental elements, which are combined into a final
container image:

Sources

Source-to-image (S2I) scripts

OpenShift Container Platform 4.13 Images

36

Builder image

S2I generates a Dockerfile with the builder image as the first FROM instruction. The Dockerfile
generated by S2I is then passed to Buildah.

4.3.2. How to write source-to-image scripts

You can write source-to-image (S2I) scripts in any programming language, as long as the scripts are
executable inside the builder image. S2I supports multiple options providing assemble/run/save-
artifacts scripts. All of these locations are checked on each build in the following order:

1. A script specified in the build configuration.

2. A script found in the application source .s2i/bin directory.

3. A script found at the default image URL with the io.openshift.s2i.scripts-url label.

Both the io.openshift.s2i.scripts-url label specified in the image and the script specified in a build
configuration can take one of the following forms:

image:///path_to_scripts_dir: absolute path inside the image to a directory where the S2I
scripts are located.

file:///path_to_scripts_dir: relative or absolute path to a directory on the host where the S2I
scripts are located.

http(s)://path_to_scripts_dir: URL to a directory where the S2I scripts are located.

Table 4.2. S2I scripts

Script Description

assemble The assemble script builds the application artifacts from a source and places
them into appropriate directories inside the image. This script is required. The
workflow for this script is:

1. Optional: Restore build artifacts. If you want to support incremental
builds, make sure to define save-artifacts as well.

2. Place the application source in the desired location.

3. Build the application artifacts.

4. Install the artifacts into locations appropriate for them to run.

run The run script executes your application. This script is required.

save-artifacts The save-artifacts script gathers all dependencies that can speed up the
build processes that follow. This script is optional. For example:

For Ruby, gems installed by Bundler.

For Java, .m2 contents.

These dependencies are gathered into a tar file and streamed to the standard
output.

CHAPTER 4. CREATING IMAGES

37

usage The usage script allows you to inform the user how to properly use your image.
This script is optional.

test/run The test/run script allows you to create a process to check if the image is
working correctly. This script is optional. The proposed flow of that process is:

1. Build the image.

2. Run the image to verify the usage script.

3. Run s2i build to verify the assemble script.

4. Optional: Run s2i build again to verify the save-artifacts and
assemble scripts save and restore artifacts functionality.

5. Run the image to verify the test application is working.

NOTE

The suggested location to put the test application built by your
test/run script is the test/test-app directory in your image
repository.

Script Description

Example S2I scripts

The following example S2I scripts are written in Bash. Each example assumes its tar contents are
unpacked into the /tmp/s2i directory.

assemble script:

run script:

#!/bin/bash

restore build artifacts
if ["$(ls /tmp/s2i/artifacts/ 2>/dev/null)"]; then
 mv /tmp/s2i/artifacts/* $HOME/.
fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}
make all

install the artifacts
make install
popd

#!/bin/bash

OpenShift Container Platform 4.13 Images

38

save-artifacts script:

usage script:

Additional resources

S2I Image Creation Tutorial

4.4. ABOUT TESTING SOURCE-TO-IMAGE IMAGES

As an Source-to-Image (S2I) builder image author, you can test your S2I image locally and use the
OpenShift Container Platform build system for automated testing and continuous integration.

S2I requires the assemble and run scripts to be present to successfully run the S2I build. Providing the
save-artifacts script reuses the build artifacts, and providing the usage script ensures that usage
information is printed to console when someone runs the container image outside of the S2I.

The goal of testing an S2I image is to make sure that all of these described commands work properly,
even if the base container image has changed or the tooling used by the commands was updated.

4.4.1. Understanding testing requirements

The standard location for the test script is test/run. This script is invoked by the OpenShift Container
Platform S2I image builder and it could be a simple Bash script or a static Go binary.

The test/run script performs the S2I build, so you must have the S2I binary available in your $PATH. If
required, follow the installation instructions in the S2I README.

S2I combines the application source code and builder image, so to test it you need a sample application
source to verify that the source successfully transforms into a runnable container image. The sample
application should be simple, but it should exercise the crucial steps of assemble and run scripts.

4.4.2. Generating scripts and tools

run the application
/opt/application/run.sh

#!/bin/bash

pushd ${HOME}
if [-d deps]; then
 # all deps contents to tar stream
 tar cf - deps
fi
popd

#!/bin/bash

inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

CHAPTER 4. CREATING IMAGES

39

https://blog.openshift.com/create-s2i-builder-image/
https://github.com/openshift/source-to-image/blob/master/README.md#installation

The S2I tooling comes with powerful generation tools to speed up the process of creating a new S2I
image. The s2i create command produces all the necessary S2I scripts and testing tools along with the
Makefile:

The generated test/run script must be adjusted to be useful, but it provides a good starting point to
begin developing.

NOTE

The test/run script produced by the s2i create command requires that the sample
application sources are inside the test/test-app directory.

4.4.3. Testing locally

The easiest way to run the S2I image tests locally is to use the generated Makefile.

If you did not use the s2i create command, you can copy the following Makefile template and replace
the IMAGE_NAME parameter with your image name.

Sample Makefile

IMAGE_NAME = openshift/ruby-20-centos7
CONTAINER_ENGINE := $(shell command -v podman 2> /dev/null | echo docker)

build:
 ${CONTAINER_ENGINE} build -t $(IMAGE_NAME) .

.PHONY: test
test:
 ${CONTAINER_ENGINE} build -t $(IMAGE_NAME)-candidate .
 IMAGE_NAME=$(IMAGE_NAME)-candidate test/run

4.4.4. Basic testing workflow

The test script assumes you have already built the image you want to test. If required, first build the S2I
image. Run one of the following commands:

If you use Podman, run the following command:

If you use Docker, run the following command:

The following steps describe the default workflow to test S2I image builders:

1. Verify the usage script is working:

If you use Podman, run the following command:

$ s2i create _<image name>_ _<destination directory>_

$ podman build -t <builder_image_name>

$ docker build -t <builder_image_name>

OpenShift Container Platform 4.13 Images

40

If you use Docker, run the following command:

2. Build the image:

3. Optional: if you support save-artifacts, run step 2 once again to verify that saving and restoring
artifacts works properly.

4. Run the container:

If you use Podman, run the following command:

If you use Docker, run the following command:

5. Verify the container is running and the application is responding.

Running these steps is generally enough to tell if the builder image is working as expected.

4.4.5. Using OpenShift Container Platform for building the image

Once you have a Dockerfile and the other artifacts that make up your new S2I builder image, you can
put them in a git repository and use OpenShift Container Platform to build and push the image. Define a
Docker build that points to your repository.

If your OpenShift Container Platform instance is hosted on a public IP address, the build can be
triggered each time you push into your S2I builder image GitHub repository.

You can also use the ImageChangeTrigger to trigger a rebuild of your applications that are based on
the S2I builder image you updated.

$ podman run <builder_image_name> .

$ docker run <builder_image_name> .

$ s2i build file:///path-to-sample-app _<BUILDER_IMAGE_NAME>_
_<OUTPUT_APPLICATION_IMAGE_NAME>_

$ podman run <output_application_image_name>

$ docker run <output_application_image_name>

CHAPTER 4. CREATING IMAGES

41

CHAPTER 5. MANAGING IMAGES

5.1. MANAGING IMAGES OVERVIEW

With OpenShift Container Platform you can interact with images and set up image streams, depending
on where the registries of the images are located, any authentication requirements around those
registries, and how you want your builds and deployments to behave.

5.1.1. Images overview

An image stream comprises any number of container images identified by tags. It presents a single
virtual view of related images, similar to a container image repository.

By watching an image stream, builds and deployments can receive notifications when new images are
added or modified and react by performing a build or deployment, respectively.

5.2. TAGGING IMAGES

The following sections provide an overview and instructions for using image tags in the context of
container images for working with OpenShift Container Platform image streams and their tags.

5.2.1. Image tags

An image tag is a label applied to a container image in a repository that distinguishes a specific image
from other images in an image stream. Typically, the tag represents a version number of some sort. For
example, here :v3.11.59-2 is the tag:

You can add additional tags to an image. For example, an image might be assigned the tags :v3.11.59-2
and :latest.

OpenShift Container Platform provides the oc tag command, which is similar to the docker tag
command, but operates on image streams instead of directly on images.

5.2.2. Image tag conventions

Images evolve over time and their tags reflect this. Generally, an image tag always points to the latest
image built.

If there is too much information embedded in a tag name, like v2.0.1-may-2019, the tag points to just
one revision of an image and is never updated. Using default image pruning options, such an image is
never removed. In very large clusters, the schema of creating new tags for every revised image could
eventually fill up the etcd datastore with excess tag metadata for images that are long outdated.

If the tag is named v2.0, image revisions are more likely. This results in longer tag history and, therefore,
the image pruner is more likely to remove old and unused images.

Although tag naming convention is up to you, here are a few examples in the format <image_name>:
<image_tag>:

Table 5.1. Image tag naming conventions

registry.access.redhat.com/openshift3/jenkins-2-rhel7:v3.11.59-2

OpenShift Container Platform 4.13 Images

42

Description Example

Revision myimage:v2.0.1

Architecture myimage:v2.0-x86_64

Base image myimage:v1.2-centos7

Latest (potentially unstable) myimage:latest

Latest stable myimage:stable

If you require dates in tag names, periodically inspect old and unsupported images and istags and
remove them. Otherwise, you can experience increasing resource usage caused by retaining old images.

5.2.3. Adding tags to image streams

An image stream in OpenShift Container Platform comprises zero or more container images identified
by tags.

There are different types of tags available. The default behavior uses a permanent tag, which points to
a specific image in time. If the permanent tag is in use and the source changes, the tag does not change
for the destination.

A tracking tag means the destination tag’s metadata is updated during the import of the source tag.

Procedure

You can add tags to an image stream using the oc tag command:

For example, to configure the ruby image stream static-2.0 tag to always refer to the current
image for the ruby image stream 2.0 tag:

This creates a new image stream tag named static-2.0 in the ruby image stream. The new tag
directly references the image id that the ruby:2.0 image stream tag pointed to at the time oc
tag was run, and the image it points to never changes.

To ensure the destination tag is updated when the source tag changes, use the --alias=true
flag:

NOTE

Use a tracking tag for creating permanent aliases, for example, latest or stable. The tag
only works correctly within a single image stream. Trying to create a cross-image stream
alias produces an error.

$ oc tag <source> <destination>

$ oc tag ruby:2.0 ruby:static-2.0

$ oc tag --alias=true <source> <destination>

CHAPTER 5. MANAGING IMAGES

43

You can also add the --scheduled=true flag to have the destination tag be refreshed, or re-
imported, periodically. The period is configured globally at the system level.

The --reference flag creates an image stream tag that is not imported. The tag points to the
source location, permanently.
If you want to instruct OpenShift Container Platform to always fetch the tagged image from the
integrated registry, use --reference-policy=local. The registry uses the pull-through feature to
serve the image to the client. By default, the image blobs are mirrored locally by the registry. As
a result, they can be pulled more quickly the next time they are needed. The flag also allows for
pulling from insecure registries without a need to supply --insecure-registry to the container
runtime as long as the image stream has an insecure annotation or the tag has an insecure
import policy.

5.2.4. Removing tags from image streams

You can remove tags from an image stream.

Procedure

To remove a tag completely from an image stream run:

or:

5.2.5. Referencing images in imagestreams

You can use tags to reference images in image streams using the following reference types.

Table 5.2. Imagestream reference types

Reference type Description

ImageStreamTag An ImageStreamTag is used to reference or
retrieve an image for a given image stream and tag.

ImageStreamImage An ImageStreamImage is used to reference or
retrieve an image for a given image stream and
image sha ID.

DockerImage A DockerImage is used to reference or retrieve an
image for a given external registry. It uses standard
Docker pull specification for its name.

When viewing example image stream definitions you may notice they contain definitions of
ImageStreamTag and references to DockerImage, but nothing related to ImageStreamImage.

This is because the ImageStreamImage objects are automatically created in OpenShift Container
Platform when you import or tag an image into the image stream. You should never have to explicitly
define an ImageStreamImage object in any image stream definition that you use to create image

$ oc delete istag/ruby:latest

$ oc tag -d ruby:latest

OpenShift Container Platform 4.13 Images

44

streams.

Procedure

To reference an image for a given image stream and tag, use ImageStreamTag:

<image_stream_name>:<tag>

To reference an image for a given image stream and image sha ID, use ImageStreamImage:

<image_stream_name>@<id>

The <id> is an immutable identifier for a specific image, also called a digest.

To reference or retrieve an image for a given external registry, use DockerImage:

openshift/ruby-20-centos7:2.0

NOTE

When no tag is specified, it is assumed the latest tag is used.

You can also reference a third-party registry:

registry.redhat.io/rhel7:latest

Or an image with a digest:

centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b2
8e

5.3. IMAGE PULL POLICY

Each container in a pod has a container image. After you have created an image and pushed it to a
registry, you can then refer to it in the pod.

5.3.1. Image pull policy overview

When OpenShift Container Platform creates containers, it uses the container imagePullPolicy to
determine if the image should be pulled prior to starting the container. There are three possible values
for imagePullPolicy:

Table 5.3. imagePullPolicy values

Value Description

Always Always pull the image.

IfNotPresent Only pull the image if it does not already exist on the
node.

CHAPTER 5. MANAGING IMAGES

45

Never Never pull the image.

Value Description

If a container imagePullPolicy parameter is not specified, OpenShift Container Platform sets it based
on the image tag:

1. If the tag is latest, OpenShift Container Platform defaults imagePullPolicy to Always.

2. Otherwise, OpenShift Container Platform defaults imagePullPolicy to IfNotPresent.

5.4. USING IMAGE PULL SECRETS

If you are using the OpenShift image registry and are pulling from image streams located in the same
project, then your pod service account should already have the correct permissions and no additional
action should be required.

However, for other scenarios, such as referencing images across OpenShift Container Platform projects
or from secured registries, additional configuration steps are required.

You can obtain the image pull secret from the Red Hat OpenShift Cluster Manager . This pull secret is
called pullSecret.

You use this pull secret to authenticate with the services that are provided by the included authorities,
Quay.io and registry.redhat.io, which serve the container images for OpenShift Container Platform
components.

5.4.1. Allowing pods to reference images across projects

When using the OpenShift image registry, to allow pods in project-a to reference images in project-b, a
service account in project-a must be bound to the system:image-puller role in project-b.

NOTE

When you create a pod service account or a namespace, wait until the service account is
provisioned with a docker pull secret; if you create a pod before its service account is fully
provisioned, the pod fails to access the OpenShift image registry.

Procedure

1. To allow pods in project-a to reference images in project-b, bind a service account in project-a
to the system:image-puller role in project-b:

After adding that role, the pods in project-a that reference the default service account are able
to pull images from project-b.

$ oc policy add-role-to-user \
 system:image-puller system:serviceaccount:project-a:default \
 --namespace=project-b

OpenShift Container Platform 4.13 Images

46

https://console.redhat.com/openshift/install/pull-secret
https://quay.io/
https://registry.redhat.io

2. To allow access for any service account in project-a, use the group:

5.4.2. Allowing pods to reference images from other secured registries

The .dockercfg $HOME/.docker/config.json file for Docker clients is a Docker credentials file that
stores your authentication information if you have previously logged into a secured or insecure registry.

To pull a secured container image that is not from OpenShift image registry, you must create a pull
secret from your Docker credentials and add it to your service account.

The Docker credentials file and the associated pull secret can contain multiple references to the same
registry, each with its own set of credentials.

Example config.json file

Example pull secret

Procedure

If you already have a .dockercfg file for the secured registry, you can create a secret from that

$ oc policy add-role-to-group \
 system:image-puller system:serviceaccounts:project-a \
 --namespace=project-b

{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io/repository-main":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

apiVersion: v1
data:
 .dockerconfigjson:
ewogICAiYXV0aHMiOnsKICAgICAgIm0iOnsKICAgICAgIsKICAgICAgICAgImF1dGgiOiJiM0JsYj0iLAogI
CAgICAgICAiZW1haWwiOiJ5b3VAZXhhbXBsZS5jb20iCiAgICAgIH0KICAgfQp9Cg==
kind: Secret
metadata:
 creationTimestamp: "2021-09-09T19:10:11Z"
 name: pull-secret
 namespace: default
 resourceVersion: "37676"
 uid: e2851531-01bc-48ba-878c-de96cfe31020
type: Opaque

CHAPTER 5. MANAGING IMAGES

47

If you already have a .dockercfg file for the secured registry, you can create a secret from that
file by running:

Or if you have a $HOME/.docker/config.json file:

If you do not already have a Docker credentials file for the secured registry, you can create a
secret by running:

To use a secret for pulling images for pods, you must add the secret to your service account.
The name of the service account in this example should match the name of the service account
the pod uses. The default service account is default:

5.4.2.1. Pulling from private registries with delegated authentication

A private registry can delegate authentication to a separate service. In these cases, image pull secrets
must be defined for both the authentication and registry endpoints.

Procedure

1. Create a secret for the delegated authentication server:

2. Create a secret for the private registry:

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockercfg=<path/to/.dockercfg> \
 --type=kubernetes.io/dockercfg

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

$ oc create secret docker-registry <pull_secret_name> \
 --docker-server=<registry_server> \
 --docker-username=<user_name> \
 --docker-password=<password> \
 --docker-email=<email>

$ oc secrets link default <pull_secret_name> --for=pull

$ oc create secret docker-registry \
 --docker-server=sso.redhat.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \
 redhat-connect-sso

secret/redhat-connect-sso

$ oc create secret docker-registry \
 --docker-server=privateregistry.example.com \
 --docker-username=developer@example.com \
 --docker-password=******** \
 --docker-email=unused \

OpenShift Container Platform 4.13 Images

48

1

1

2

3

5.4.3. Updating the global cluster pull secret

You can update the global pull secret for your cluster by either replacing the current pull secret or
appending a new pull secret.

IMPORTANT

To transfer your cluster to another owner, you must first initiate the transfer in OpenShift
Cluster Manager Hybrid Cloud Console, and then update the pull secret on the cluster.
Updating a cluster’s pull secret without initiating the transfer in OpenShift Cluster
Manager causes the cluster to stop reporting Telemetry metrics in OpenShift Cluster
Manager.

For more information about transferring cluster ownership , see "Transferring cluster
ownership" in the Red Hat OpenShift Cluster Manager documentation.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To append a new pull secret to the existing pull secret, complete the following steps:

a. Enter the following command to download the pull secret:

Provide the path to the pull secret file.

b. Enter the following command to add the new pull secret:

Provide the new registry. You can include multiple repositories within the same
registry, for example: --registry="<registry/my-namespace/my-repository>".

Provide the credentials of the new registry.

Provide the path to the pull secret file.

Alternatively, you can perform a manual update to the pull secret file.

2. Enter the following command to update the global pull secret for your cluster:

 private-registry

secret/private-registry

$ oc get secret/pull-secret -n openshift-config --template='{{index .data
".dockerconfigjson" | base64decode}}' ><pull_secret_location> 1

$ oc registry login --registry="<registry>" \ 1
--auth-basic="<username>:<password>" \ 2
--to=<pull_secret_location> 3

CHAPTER 5. MANAGING IMAGES

49

https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/openshift_cluster_manager/2023/html-single/managing_clusters/index#transferring-cluster-ownership_downloading-and-updating-pull-secrets

1 Provide the path to the new pull secret file.

This update is rolled out to all nodes, which can take some time depending on the size of your
cluster.

NOTE

As of OpenShift Container Platform 4.7.4, changes to the global pull secret no
longer trigger a node drain or reboot.

$ oc set data secret/pull-secret -n openshift-config --from-file=.dockerconfigjson=
<pull_secret_location> 1

OpenShift Container Platform 4.13 Images

50

CHAPTER 6. MANAGING IMAGE STREAMS
Image streams provide a means of creating and updating container images in an on-going way. As
improvements are made to an image, tags can be used to assign new version numbers and keep track of
changes. This document describes how image streams are managed.

6.1. WHY USE IMAGESTREAMS

An image stream and its associated tags provide an abstraction for referencing container images from
within OpenShift Container Platform. The image stream and its tags allow you to see what images are
available and ensure that you are using the specific image you need even if the image in the repository
changes.

Image streams do not contain actual image data, but present a single virtual view of related images,
similar to an image repository.

You can configure builds and deployments to watch an image stream for notifications when new images
are added and react by performing a build or deployment, respectively.

For example, if a deployment is using a certain image and a new version of that image is created, a
deployment could be automatically performed to pick up the new version of the image.

However, if the image stream tag used by the deployment or build is not updated, then even if the
container image in the container image registry is updated, the build or deployment continues using the
previous, presumably known good image.

The source images can be stored in any of the following:

OpenShift Container Platform’s integrated registry.

An external registry, for example registry.redhat.io or quay.io.

Other image streams in the OpenShift Container Platform cluster.

When you define an object that references an image stream tag, such as a build or deployment
configuration, you point to an image stream tag and not the repository. When you build or deploy your
application, OpenShift Container Platform queries the repository using the image stream tag to locate
the associated ID of the image and uses that exact image.

The image stream metadata is stored in the etcd instance along with other cluster information.

Using image streams has several significant benefits:

You can tag, rollback a tag, and quickly deal with images, without having to re-push using the
command line.

You can trigger builds and deployments when a new image is pushed to the registry. Also,
OpenShift Container Platform has generic triggers for other resources, such as Kubernetes
objects.

You can mark a tag for periodic re-import. If the source image has changed, that change is
picked up and reflected in the image stream, which triggers the build or deployment flow,
depending upon the build or deployment configuration.

You can share images using fine-grained access control and quickly distribute images across
your teams.

CHAPTER 6. MANAGING IMAGE STREAMS

51

1

2

3

4

5

If the source image changes, the image stream tag still points to a known-good version of the
image, ensuring that your application does not break unexpectedly.

You can configure security around who can view and use the images through permissions on the
image stream objects.

Users that lack permission to read or list images on the cluster level can still retrieve the images
tagged in a project using image streams.

6.2. CONFIGURING IMAGE STREAMS

An ImageStream object file contains the following elements.

Imagestream object definition

The name of the image stream.

Docker repository path where new images can be pushed to add or update them in this image
stream.

The SHA identifier that this image stream tag currently references. Resources that reference this
image stream tag use this identifier.

The SHA identifier that this image stream tag previously referenced. Can be used to rollback to an
older image.

The image stream tag name.

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 annotations:
 openshift.io/generated-by: OpenShiftNewApp
 labels:
 app: ruby-sample-build
 template: application-template-stibuild
 name: origin-ruby-sample 1
 namespace: test
spec: {}
status:
 dockerImageRepository: 172.30.56.218:5000/test/origin-ruby-sample 2
 tags:
 - items:
 - created: 2017-09-02T10:15:09Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d 3
 generation: 2
 image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5 4
 - created: 2017-09-01T13:40:11Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 generation: 1
 image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 tag: latest 5

OpenShift Container Platform 4.13 Images

52

6.3. IMAGE STREAM IMAGES

An image stream image points from within an image stream to a particular image ID.

Image stream images allow you to retrieve metadata about an image from a particular image stream
where it is tagged.

Image stream image objects are automatically created in OpenShift Container Platform whenever you
import or tag an image into the image stream. You should never have to explicitly define an image
stream image object in any image stream definition that you use to create image streams.

The image stream image consists of the image stream name and image ID from the repository,
delimited by an @ sign:

<image-stream-name>@<image-id>

To refer to the image in the ImageStream object example, the image stream image looks like:

origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

6.4. IMAGE STREAM TAGS

An image stream tag is a named pointer to an image in an image stream. It is abbreviated as istag. An
image stream tag is used to reference or retrieve an image for a given image stream and tag.

Image stream tags can reference any local or externally managed image. It contains a history of images
represented as a stack of all images the tag ever pointed to. Whenever a new or existing image is tagged
under particular image stream tag, it is placed at the first position in the history stack. The image
previously occupying the top position is available at the second position. This allows for easy rollbacks to
make tags point to historical images again.

The following image stream tag is from an ImageStream object:

Image stream tag with two images in its history

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:
 name: my-image-stream
...
 tags:
 - items:
 - created: 2017-09-02T10:15:09Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 generation: 2
 image: sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 - created: 2017-09-01T13:40:11Z
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:909de62d1f609a717ec433cc25ca5cf00941545c83a01fb31527771e1fab3fc5
 generation: 1

CHAPTER 6. MANAGING IMAGE STREAMS

53

Image stream tags can be permanent tags or tracking tags.

Permanent tags are version-specific tags that point to a particular version of an image, such as
Python 3.5.

Tracking tags are reference tags that follow another image stream tag and can be updated to
change which image they follow, like a symlink. These new levels are not guaranteed to be
backwards-compatible.
For example, the latest image stream tags that ship with OpenShift Container Platform are
tracking tags. This means consumers of the latest image stream tag are updated to the newest
level of the framework provided by the image when a new level becomes available. A latest
image stream tag to v3.10 can be changed to v3.11 at any time. It is important to be aware that
these latest image stream tags behave differently than the Docker latest tag. The latest image
stream tag, in this case, does not point to the latest image in the Docker repository. It points to
another image stream tag, which might not be the latest version of an image. For example, if the
latest image stream tag points to v3.10 of an image, when the 3.11 version is released, the
latest tag is not automatically updated to v3.11, and remains at v3.10 until it is manually
updated to point to a v3.11 image stream tag.

NOTE

Tracking tags are limited to a single image stream and cannot reference other
image streams.

You can create your own image stream tags for your own needs.

The image stream tag is composed of the name of the image stream and a tag, separated by a colon:

<imagestream name>:<tag>

For example, to refer to the
sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d image in the
ImageStream object example earlier, the image stream tag would be:

origin-ruby-sample:latest

6.5. IMAGE STREAM CHANGE TRIGGERS

Image stream triggers allow your builds and deployments to be automatically invoked when a new
version of an upstream image is available.

For example, builds and deployments can be automatically started when an image stream tag is
modified. This is achieved by monitoring that particular image stream tag and notifying the build or
deployment when a change is detected.

6.6. IMAGE STREAM MAPPING

When the integrated registry receives a new image, it creates and sends an image stream mapping to
OpenShift Container Platform, providing the image’s project, name, tag, and image metadata.

 image: sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d
 tag: latest
...

OpenShift Container Platform 4.13 Images

54

NOTE

Configuring image stream mappings is an advanced feature.

This information is used to create a new image, if it does not already exist, and to tag the image into the
image stream. OpenShift Container Platform stores complete metadata about each image, such as
commands, entry point, and environment variables. Images in OpenShift Container Platform are
immutable and the maximum name length is 63 characters.

The following image stream mapping example results in an image being tagged as test/origin-ruby-
sample:latest:

Image stream mapping object definition

apiVersion: image.openshift.io/v1
kind: ImageStreamMapping
metadata:
 creationTimestamp: null
 name: origin-ruby-sample
 namespace: test
tag: latest
image:
 dockerImageLayers:
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:ee1dd2cb6df21971f4af6de0f1d7782b81fb63156801cfde2bb47b4247c23c29
 size: 196634330
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:5f70bf18a086007016e948b04aed3b82103a36bea41755b6cddfaf10ace3c6ef
 size: 0
 - name: sha256:ca062656bff07f18bff46be00f40cfbb069687ec124ac0aa038fd676cfaea092
 size: 177723024
 - name: sha256:63d529c59c92843c395befd065de516ee9ed4995549f8218eac6ff088bfa6b6e
 size: 55679776
 - name: sha256:92114219a04977b5563d7dff71ec4caa3a37a15b266ce42ee8f43dba9798c966
 size: 11939149
 dockerImageMetadata:
 Architecture: amd64
 Config:
 Cmd:
 - /usr/libexec/s2i/run
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
 - EXAMPLE=sample-app
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable

CHAPTER 6. MANAGING IMAGE STREAMS

55

 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Labels:
 build-date: 2015-12-23
 io.k8s.description: Platform for building and running Ruby 2.2 applications
 io.k8s.display-name: 172.30.56.218:5000/test/origin-ruby-sample:latest
 io.openshift.build.commit.author: Ben Parees <bparees@users.noreply.github.com>
 io.openshift.build.commit.date: Wed Jan 20 10:14:27 2016 -0500
 io.openshift.build.commit.id: 00cadc392d39d5ef9117cbc8a31db0889eedd442
 io.openshift.build.commit.message: 'Merge pull request #51 from php-coder/fix_url_and_sti'
 io.openshift.build.commit.ref: master
 io.openshift.build.image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e
 io.openshift.build.source-location: https://github.com/openshift/ruby-hello-world.git
 io.openshift.builder-base-version: 8d95148
 io.openshift.builder-version: 8847438ba06307f86ac877465eadc835201241df
 io.openshift.s2i.scripts-url: image:///usr/libexec/s2i
 io.openshift.tags: builder,ruby,ruby22
 io.s2i.scripts-url: image:///usr/libexec/s2i
 license: GPLv2
 name: CentOS Base Image
 vendor: CentOS
 User: "1001"
 WorkingDir: /opt/app-root/src
 Container: 86e9a4a3c760271671ab913616c51c9f3cea846ca524bf07c04a6f6c9e103a76
 ContainerConfig:
 AttachStdout: true
 Cmd:
 - /bin/sh
 - -c
 - tar -C /tmp -xf - && /usr/libexec/s2i/assemble
 Entrypoint:
 - container-entrypoint
 Env:
 - RACK_ENV=production
 - OPENSHIFT_BUILD_NAME=ruby-sample-build-1
 - OPENSHIFT_BUILD_NAMESPACE=test
 - OPENSHIFT_BUILD_SOURCE=https://github.com/openshift/ruby-hello-world.git
 - EXAMPLE=sample-app
 - PATH=/opt/app-root/src/bin:/opt/app-
root/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
 - STI_SCRIPTS_URL=image:///usr/libexec/s2i
 - STI_SCRIPTS_PATH=/usr/libexec/s2i
 - HOME=/opt/app-root/src
 - BASH_ENV=/opt/app-root/etc/scl_enable
 - ENV=/opt/app-root/etc/scl_enable
 - PROMPT_COMMAND=. /opt/app-root/etc/scl_enable
 - RUBY_VERSION=2.2
 ExposedPorts:
 8080/tcp: {}
 Hostname: ruby-sample-build-1-build
 Image: centos/ruby-22-
centos7@sha256:3a335d7d8a452970c5b4054ad7118ff134b3a6b50a2bb6d0c07c746e8986b28e

OpenShift Container Platform 4.13 Images

56

6.7. WORKING WITH IMAGE STREAMS

The following sections describe how to use image streams and image stream tags.

6.7.1. Getting information about image streams

You can get general information about the image stream and detailed information about all the tags it is
pointing to.

Procedure

To get general information about the image stream and detailed information about all the tags it
is pointing to, enter the following command:

For example:

Example output

To get all of the information available about a particular image stream tag, enter the following

 OpenStdin: true
 StdinOnce: true
 User: "1001"
 WorkingDir: /opt/app-root/src
 Created: 2016-01-29T13:40:00Z
 DockerVersion: 1.8.2.fc21
 Id: 9d7fd5e2d15495802028c569d544329f4286dcd1c9c085ff5699218dbaa69b43
 Parent: 57b08d979c86f4500dc8cad639c9518744c8dd39447c055a3517dc9c18d6fccd
 Size: 441976279
 apiVersion: "1.0"
 kind: DockerImage
 dockerImageMetadataVersion: "1.0"
 dockerImageReference: 172.30.56.218:5000/test/origin-ruby-
sample@sha256:47463d94eb5c049b2d23b03a9530bf944f8f967a0fe79147dd6b9135bf7dd13d

$ oc describe is/<image-name>

$ oc describe is/python

Name: python
Namespace: default
Created: About a minute ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z
Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup: local=false
Unique Images: 1
Tags: 1

3.5
 tagged from centos/python-35-centos7

 * centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 About a minute ago

CHAPTER 6. MANAGING IMAGE STREAMS

57

To get all of the information available about a particular image stream tag, enter the following
command:

For example:

Example output

NOTE

More information is output than shown.

Enter the following command to discover which architecture or operating system that an image
stream tag supports:

For example:

Example output

$ oc describe istag/<image-stream>:<tag-name>

$ oc describe istag/python:latest

Image Name: sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Docker Image: centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Name: sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
Created: 2 minutes ago
Image Size: 251.2 MB (first layer 2.898 MB, last binary layer 72.26 MB)
Image Created: 2 weeks ago
Author: <none>
Arch: amd64
Entrypoint: container-entrypoint
Command: /bin/sh -c $STI_SCRIPTS_PATH/usage
Working Dir: /opt/app-root/src
User: 1001
Exposes Ports: 8080/tcp
Docker Labels: build-date=20170801

$ oc get istag <image-stream-tag> -ojsonpath="{range .image.dockerImageManifests[*]}
{.os}/{.architecture}{'\n'}{end}"

$ oc get istag busybox:latest -ojsonpath="{range .image.dockerImageManifests[*]}
{.os}/{.architecture}{'\n'}{end}"

linux/amd64
linux/arm
linux/arm64
linux/386
linux/mips64le
linux/ppc64le
linux/riscv64
linux/s390x

OpenShift Container Platform 4.13 Images

58

6.7.2. Adding tags to an image stream

You can add additional tags to image streams.

Procedure

Add a tag that points to one of the existing tags by using the `oc tag`command:

For example:

Example output

Confirm the image stream has two tags, one, 3.5, pointing at the external container image and
another tag, latest, pointing to the same image because it was created based on the first tag.

Example output

6.7.3. Adding tags for an external image

$ oc tag <image-name:tag1> <image-name:tag2>

$ oc tag python:3.5 python:latest

Tag python:latest set to
python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25.

$ oc describe is/python

Name: python
Namespace: default
Created: 5 minutes ago
Labels: <none>
Annotations: openshift.io/image.dockerRepositoryCheck=2017-10-02T17:05:11Z
Docker Pull Spec: docker-registry.default.svc:5000/default/python
Image Lookup: local=false
Unique Images: 1
Tags: 2

latest
 tagged from
python@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25

 * centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 About a minute ago

3.5
 tagged from centos/python-35-centos7

 * centos/python-35-
centos7@sha256:49c18358df82f4577386404991c51a9559f243e0b1bdc366df25
 5 minutes ago

CHAPTER 6. MANAGING IMAGE STREAMS

59

You can add tags for external images.

Procedure

Add tags pointing to internal or external images, by using the oc tag command for all tag-
related operations:

For example, this command maps the docker.io/python:3.6.0 image to the 3.6 tag in the
python image stream.

Example output

If the external image is secured, you must create a secret with credentials for accessing that
registry.

6.7.4. Updating image stream tags

You can update a tag to reflect another tag in an image stream.

Procedure

Update a tag:

For example, the following updates the latest tag to reflect the 3.6 tag in an image stream:

Example output

6.7.5. Removing image stream tags

You can remove old tags from an image stream.

Procedure

Remove old tags from an image stream:

For example:

$ oc tag <repository/image> <image-name:tag>

$ oc tag docker.io/python:3.6.0 python:3.6

Tag python:3.6 set to docker.io/python:3.6.0.

$ oc tag <image-name:tag> <image-name:latest>

$ oc tag python:3.6 python:latest

Tag python:latest set to
python@sha256:438208801c4806548460b27bd1fbcb7bb188273d13871ab43f.

$ oc tag -d <image-name:tag>

OpenShift Container Platform 4.13 Images

60

Example output

See Removing deprecated image stream tags from the Cluster Samples Operator for more information
on how the Cluster Samples Operator handles deprecated image stream tags.

6.7.6. Configuring periodic importing of image stream tags

When working with an external container image registry, to periodically re-import an image, for example
to get latest security updates, you can use the --scheduled flag.

Procedure

1. Schedule importing images:

For example:

Example output

This command causes OpenShift Container Platform to periodically update this particular image
stream tag. This period is a cluster-wide setting set to 15 minutes by default.

2. Remove the periodic check, re-run above command but omit the --scheduled flag. This will
reset its behavior to default.

6.8. IMPORTING AND WORKING WITH IMAGES AND IMAGE STREAMS

The following sections describe how to import, and work with, image streams.

6.8.1. Importing images and image streams from private registries

An image stream can be configured to import tag and image metadata from private image registries
requiring authentication. This procedures applies if you change the registry that the Cluster Samples
Operator uses to pull content from to something other than registry.redhat.io.

NOTE

When importing from insecure or secure registries, the registry URL defined in the secret
must include the :80 port suffix or the secret is not used when attempting to import from
the registry.

$ oc tag -d python:3.6

Deleted tag default/python:3.6

$ oc tag <repository/image> <image-name:tag> --scheduled

$ oc tag docker.io/python:3.6.0 python:3.6 --scheduled

Tag python:3.6 set to import docker.io/python:3.6.0 periodically.

$ oc tag <repositiory/image> <image-name:tag>

CHAPTER 6. MANAGING IMAGE STREAMS

61

https://registry.redhat.io

Procedure

1. You must create a secret object that is used to store your credentials by entering the following
command:

2. After the secret is configured, create the new image stream or enter the oc import-image
command:

During the import process, OpenShift Container Platform picks up the secrets and provides
them to the remote party.

6.8.1.1. Allowing pods to reference images from other secured registries

The .dockercfg $HOME/.docker/config.json file for Docker clients is a Docker credentials file that
stores your authentication information if you have previously logged into a secured or insecure registry.

To pull a secured container image that is not from OpenShift image registry, you must create a pull
secret from your Docker credentials and add it to your service account.

The Docker credentials file and the associated pull secret can contain multiple references to the same
registry, each with its own set of credentials.

Example config.json file

Example pull secret

$ oc create secret generic <secret_name> --from-file=.dockerconfigjson=
<file_absolute_path> --type=kubernetes.io/dockerconfigjson

$ oc import-image <imagestreamtag> --from=<image> --confirm

{
 "auths":{
 "cloud.openshift.com":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 },
 "quay.io/repository-main":{
 "auth":"b3Blb=",
 "email":"you@example.com"
 }
 }
}

apiVersion: v1
data:
 .dockerconfigjson:
ewogICAiYXV0aHMiOnsKICAgICAgIm0iOnsKICAgICAgIsKICAgICAgICAgImF1dGgiOiJiM0JsYj0iLAogI
CAgICAgICAiZW1haWwiOiJ5b3VAZXhhbXBsZS5jb20iCiAgICAgIH0KICAgfQp9Cg==
kind: Secret

OpenShift Container Platform 4.13 Images

62

Procedure

If you already have a .dockercfg file for the secured registry, you can create a secret from that
file by running:

Or if you have a $HOME/.docker/config.json file:

If you do not already have a Docker credentials file for the secured registry, you can create a
secret by running:

To use a secret for pulling images for pods, you must add the secret to your service account.
The name of the service account in this example should match the name of the service account
the pod uses. The default service account is default:

6.8.2. Working with manifest lists

You can import a single sub-manifest, or all manifests, of a manifest list when using oc import-image or
oc tag CLI commands by adding the --import-mode flag.

Refer to the commands below to create an image stream that includes a single sub-manifest or multi-
architecture images.

Procedure

Create an image stream that includes multi-architecture images, and sets the import mode to
PreserveOriginal, by entering the following command:

metadata:
 creationTimestamp: "2021-09-09T19:10:11Z"
 name: pull-secret
 namespace: default
 resourceVersion: "37676"
 uid: e2851531-01bc-48ba-878c-de96cfe31020
type: Opaque

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockercfg=<path/to/.dockercfg> \
 --type=kubernetes.io/dockercfg

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

$ oc create secret docker-registry <pull_secret_name> \
 --docker-server=<registry_server> \
 --docker-username=<user_name> \
 --docker-password=<password> \
 --docker-email=<email>

$ oc secrets link default <pull_secret_name> --for=pull

CHAPTER 6. MANAGING IMAGE STREAMS

63

Example output

Alternatively, enter the following command to import an image with the Legacy import mode,
which discards manifest lists and imports a single sub-manifest:

NOTE

The --import-mode= default value is Legacy. Excluding this value, or failing to
specify either Legacy or PreserveOriginal, imports a single sub-manifest. An
invalid import mode returns the following error: error: valid ImportMode values
are Legacy or PreserveOriginal.

Limitations
Working with manifest lists has the following limitations:

In some cases, users might want to use sub-manifests directly. When oc adm prune images is
run, or the CronJob pruner runs, they cannot detect when a sub-manifest list is used. As a
result, an administrator using oc adm prune images, or the CronJob pruner, might delete
entire manifest lists, including sub-manifests.
To avoid this limitation, you can use the manifest list by tag or by digest instead.

6.8.2.1. Configuring periodic importing of manifest lists

To periodically re-import a manifest list, you can use the --scheduled flag.

Procedure

Set the image stream to periodically update the manifest list by entering the following
command:

$ oc import-image <multiarch-image-stream-tag> --from=
<registry>/<project_name>/<image-name> \
--import-mode='PreserveOriginal' --reference-policy=local --confirm

Arch: <none>
Manifests: linux/amd64
sha256:6e325b86566fafd3c4683a05a219c30c421fbccbf8d87ab9d20d4ec1131c3451
 linux/arm64
sha256:d8fad562ffa75b96212c4a6dc81faf327d67714ed85475bf642729703a2b5bf6
 linux/ppc64le
sha256:7b7e25338e40d8bdeb1b28e37fef5e64f0afd412530b257f5b02b30851f416e1

$ oc import-image <multiarch-image-stream-tag> --from=
<registry>/<project_name>/<image-name> \
--import-mode='Legacy' --confirm

$ oc import-image <multiarch-image-stream-tag> --from=
<registry>/<project_name>/<image-name> \
--import-mode='PreserveOriginal' --scheduled=true

OpenShift Container Platform 4.13 Images

64

6.8.2.2. Configuring SSL/TSL when importing manifest lists

To configure SSL/TSL when importing a manifest list, you can use the --insecure flag.

Procedure

Set --insecure=true so that importing a manifest list skips SSL/TSL verification. For example:

6.8.3. Specifying architecture for --import-mode

You can swap your imported image stream between multi-architecture and single architecture by
excluding or including the --import-mode= flag

Procedure

Run the following command to update your image stream from multi-architecture to single
architecture by excluding the --import-mode= flag:

Run the following command to update your image stream from single-architecture to multi-
architecture:

6.8.4. Configuration fields for --import-mode

The following table describes the options available for the --import-mode= flag:

Parameter Description

Legacy The default option for --import-mode. When specified, the manifest list is
discarded, and a single sub-manifest is imported. The platform is chosen in the
following order of priority:

1. Tag annotations

2. Control plane architecture

3. Linux/AMD64

4. The first manifest in the list

PreserveOriginal When specified, the original manifest is preserved. For manifest lists, the
manifest list and all of its sub-manifests are imported.

$ oc import-image <multiarch-image-stream-tag> --from=<registry>/<project_name>/<image-
name> \
--import-mode='PreserveOriginal' --insecure=true

$ oc import-image <multiarch-image-stream-tag> --from=<registry>/<project_name>/<image-
name>

$ oc import-image <multiarch-image-stream-tag> --from=
<registry>/<project_name>/<image-name> \
--import-mode='PreserveOriginal'

CHAPTER 6. MANAGING IMAGE STREAMS

65

CHAPTER 7. USING IMAGE STREAMS WITH KUBERNETES
RESOURCES

Image streams, being OpenShift Container Platform native resources, work with all native resources
available in OpenShift Container Platform, such as Build or DeploymentConfigs resources. It is also
possible to make them work with native Kubernetes resources, such as Job, ReplicationController,
ReplicaSet or Kubernetes Deployment resources.

7.1. ENABLING IMAGE STREAMS WITH KUBERNETES RESOURCES

When using image streams with Kubernetes resources, you can only reference image streams that
reside in the same project as the resource. The image stream reference must consist of a single
segment value, for example ruby:2.5, where ruby is the name of an image stream that has a tag named
2.5 and resides in the same project as the resource making the reference.

NOTE

This feature can not be used in the default namespace, nor in any openshift- or kube-
namespace.

There are two ways to enable image streams with Kubernetes resources:

Enabling image stream resolution on a specific resource. This allows only this resource to use
the image stream name in the image field.

Enabling image stream resolution on an image stream. This allows all resources pointing to this
image stream to use it in the image field.

Procedure

You can use oc set image-lookup to enable image stream resolution on a specific resource or image
stream resolution on an image stream.

1. To allow all resources to reference the image stream named mysql, enter the following
command:

This sets the Imagestream.spec.lookupPolicy.local field to true.

Imagestream with image lookup enabled

When enabled, the behavior is enabled for all tags within the image stream.

$ oc set image-lookup mysql

apiVersion: image.openshift.io/v1
kind: ImageStream
metadata:
 annotations:
 openshift.io/display-name: mysql
 name: mysql
 namespace: myproject
spec:
 lookupPolicy:
 local: true

OpenShift Container Platform 4.13 Images

66

2. Then you can query the image streams and see if the option is set:

You can enable image lookup on a specific resource.

To allow the Kubernetes deployment named mysql to use image streams, run the following
command:

This sets the alpha.image.policy.openshift.io/resolve-names annotation on the deployment.

Deployment with image lookup enabled

You can disable image lookup.

To disable image lookup, pass --enabled=false:

$ oc set image-lookup imagestream --list

$ oc set image-lookup deploy/mysql

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mysql
 namespace: myproject
spec:
 replicas: 1
 template:
 metadata:
 annotations:
 alpha.image.policy.openshift.io/resolve-names: '*'
 spec:
 containers:
 - image: mysql:latest
 imagePullPolicy: Always
 name: mysql

$ oc set image-lookup deploy/mysql --enabled=false

CHAPTER 7. USING IMAGE STREAMS WITH KUBERNETES RESOURCES

67

1

2

3

4

5

CHAPTER 8. TRIGGERING UPDATES ON IMAGE STREAM
CHANGES

When an image stream tag is updated to point to a new image, OpenShift Container Platform can
automatically take action to roll the new image out to resources that were using the old image. You
configure this behavior in different ways depending on the type of resource that references the image
stream tag.

8.1. OPENSHIFT CONTAINER PLATFORM RESOURCES

OpenShift Container Platform deployment configurations and build configurations can be automatically
triggered by changes to image stream tags. The triggered action can be run using the new value of the
image referenced by the updated image stream tag.

8.2. TRIGGERING KUBERNETES RESOURCES

Kubernetes resources do not have fields for triggering, unlike deployment and build configurations,
which include as part of their API definition a set of fields for controlling triggers. Instead, you can use
annotations in OpenShift Container Platform to request triggering.

The annotation is defined as follows:

Required: kind is the resource to trigger from must be ImageStreamTag.

Required: name must be the name of an image stream tag.

Optional: namespace defaults to the namespace of the object.

Required: fieldPath is the JSON path to change. This field is limited and accepts only a JSON path
expression that precisely matches a container by ID or index. For pods, the JSON path is
spec.containers[?(@.name='web')].image.

Optional: paused is whether or not the trigger is paused, and the default value is false. Set paused
to true to temporarily disable this trigger.

apiVersion: v1
kind: Pod
metadata:
 annotations:
 image.openshift.io/triggers:
 [
 {
 "from": {
 "kind": "ImageStreamTag", 1
 "name": "example:latest", 2
 "namespace": "myapp" 3
 },
 "fieldPath": "spec.template.spec.containers[?(@.name==\"web\")].image", 4
 "paused": false 5
 },
 # ...
]
...

OpenShift Container Platform 4.13 Images

68

When one of the core Kubernetes resources contains both a pod template and this annotation,
OpenShift Container Platform attempts to update the object by using the image currently associated
with the image stream tag that is referenced by trigger. The update is performed against the fieldPath
specified.

Examples of core Kubernetes resources that can contain both a pod template and annotation include:

CronJobs

Deployments

StatefulSets

DaemonSets

Jobs

ReplicationControllers

Pods

8.3. SETTING THE IMAGE TRIGGER ON KUBERNETES RESOURCES

When adding an image trigger to deployments, you can use the oc set triggers command. For example,
the sample command in this procedure adds an image change trigger to the deployment named
example so that when the example:latest image stream tag is updated, the web container inside the
deployment updates with the new image value. This command sets the correct
image.openshift.io/triggers annotation on the deployment resource.

Procedure

Trigger Kubernetes resources by entering the oc set triggers command:

Example deployment with trigger annotation

Unless the deployment is paused, this pod template update automatically causes a deployment
to occur with the new image value.

$ oc set triggers deploy/example --from-image=example:latest -c web

apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 image.openshift.io/triggers: '[{"from":
{"kind":"ImageStreamTag","name":"example:latest"},"fieldPath":"spec.template.spec.containers[
?(@.name==\"container\")].image"}]'
...

CHAPTER 8. TRIGGERING UPDATES ON IMAGE STREAM CHANGES

69

CHAPTER 9. IMAGE CONFIGURATION RESOURCES
Use the following procedure to configure image registries.

9.1. IMAGE CONTROLLER CONFIGURATION PARAMETERS

The image.config.openshift.io/cluster resource holds cluster-wide information about how to handle
images. The canonical, and only valid name is cluster. Its spec offers the following configuration
parameters.

NOTE

Parameters such as DisableScheduledImport,
MaxImagesBulkImportedPerRepository, MaxScheduledImportsPerMinute,
ScheduledImageImportMinimumIntervalSeconds, InternalRegistryHostname are not
configurable.

Parameter Description

allowedRegistriesForI
mport

Limits the container image registries from which normal users can import
images. Set this list to the registries that you trust to contain valid images, and
that you want applications to be able to import from. Users with permission to
create images or ImageStreamMappings from the API are not affected by
this policy. Typically only cluster administrators have the appropriate
permissions.

Every element of this list contains a location of the registry specified by the
registry domain name.

domainName: Specifies a domain name for the registry. If the registry uses a
non-standard 80 or 443 port, the port should be included in the domain name
as well.

insecure: Insecure indicates whether the registry is secure or insecure. By
default, if not otherwise specified, the registry is assumed to be secure.

additionalTrustedCA A reference to a config map containing additional CAs that should be trusted
during image stream import, pod image pull, openshift-image-registry
pullthrough, and builds.

The namespace for this config map is openshift-config. The format of the
config map is to use the registry hostname as the key, and the PEM-encoded
certificate as the value, for each additional registry CA to trust.

externalRegistryHostn
ames

Provides the hostnames for the default external image registry. The external
hostname should be set only when the image registry is exposed externally. The
first value is used in publicDockerImageRepository field in image streams.
The value must be in hostname[:port] format.

OpenShift Container Platform 4.13 Images

70

registrySources Contains configuration that determines how the container runtime should treat
individual registries when accessing images for builds and pods. For instance,
whether or not to allow insecure access. It does not contain configuration for
the internal cluster registry.

insecureRegistries: Registries which do not have a valid TLS certificate or
only support HTTP connections. To specify all subdomains, add the asterisk (*)
wildcard character as a prefix to the domain name. For example,
*.example.com. You can specify an individual repository within a registry. For
example: reg1.io/myrepo/myapp:latest.

blockedRegistries: Registries for which image pull and push actions are
denied. To specify all subdomains, add the asterisk (*) wildcard character as a
prefix to the domain name. For example, *.example.com. You can specify an
individual repository within a registry. For example:
reg1.io/myrepo/myapp:latest. All other registries are allowed.

allowedRegistries: Registries for which image pull and push actions are
allowed. To specify all subdomains, add the asterisk (*) wildcard character as a
prefix to the domain name. For example, *.example.com. You can specify an
individual repository within a registry. For example:
reg1.io/myrepo/myapp:latest. All other registries are blocked.

containerRuntimeSearchRegistries: Registries for which image pull and
push actions are allowed using image short names. All other registries are
blocked.

Either blockedRegistries or allowedRegistries can be set, but not both.

Parameter Description

WARNING

When the allowedRegistries parameter is defined, all registries, including
registry.redhat.io and quay.io registries and the default OpenShift image registry,
are blocked unless explicitly listed. When using the parameter, to prevent pod
failure, add all registries including the registry.redhat.io and quay.io registries and
the internalRegistryHostname to the allowedRegistries list, as they are required
by payload images within your environment. For disconnected clusters, mirror
registries should also be added.

The status field of the image.config.openshift.io/cluster resource holds observed values from the
cluster.

Parameter Description

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

71

internalRegistryHostna
me

Set by the Image Registry Operator, which controls the
internalRegistryHostname. It sets the hostname for the default OpenShift
image registry. The value must be in hostname[:port] format. For backward
compatibility, you can still use the OPENSHIFT_DEFAULT_REGISTRY
environment variable, but this setting overrides the environment variable.

externalRegistryHostn
ames

Set by the Image Registry Operator, provides the external hostnames for the
image registry when it is exposed externally. The first value is used in
publicDockerImageRepository field in image streams. The values must be
in hostname[:port] format.

Parameter Description

9.2. CONFIGURING IMAGE REGISTRY SETTINGS

You can configure image registry settings by editing the image.config.openshift.io/cluster custom
resource (CR). When changes to the registry are applied to the image.config.openshift.io/cluster CR,
the Machine Config Operator (MCO) performs the following sequential actions:

1. Cordons the node

2. Applies changes by restarting CRI-O

3. Uncordons the node

NOTE

The MCO does not restart nodes when it detects changes.

Procedure

1. Edit the image.config.openshift.io/cluster custom resource:

The following is an example image.config.openshift.io/cluster CR:

$ oc edit image.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Image 1
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 1
 name: cluster
 resourceVersion: "8302"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
 allowedRegistriesForImport: 2
 - domainName: quay.io
 insecure: false

OpenShift Container Platform 4.13 Images

72

1

2

3

4

Image: Holds cluster-wide information about how to handle images. The canonical, and
only valid name is cluster.

allowedRegistriesForImport: Limits the container image registries from which normal
users may import images. Set this list to the registries that you trust to contain valid
images, and that you want applications to be able to import from. Users with permission to
create images or ImageStreamMappings from the API are not affected by this policy.
Typically only cluster administrators have the appropriate permissions.

additionalTrustedCA: A reference to a config map containing additional certificate
authorities (CA) that are trusted during image stream import, pod image pull, openshift-
image-registry pullthrough, and builds. The namespace for this config map is openshift-
config. The format of the config map is to use the registry hostname as the key, and the
PEM certificate as the value, for each additional registry CA to trust.

registrySources: Contains configuration that determines whether the container runtime
allows or blocks individual registries when accessing images for builds and pods. Either the
allowedRegistries parameter or the blockedRegistries parameter can be set, but not
both. You can also define whether or not to allow access to insecure registries or registries
that allow registries that use image short names. This example uses the allowedRegistries
parameter, which defines the registries that are allowed to be used. The insecure registry
insecure.com is also allowed. The registrySources parameter does not contain
configuration for the internal cluster registry.

NOTE

When the allowedRegistries parameter is defined, all registries, including the
registry.redhat.io and quay.io registries and the default OpenShift image registry,
are blocked unless explicitly listed. If you use the parameter, to prevent pod
failure, you must add the registry.redhat.io and quay.io registries and the
internalRegistryHostname to the allowedRegistries list, as they are required by
payload images within your environment. Do not add the registry.redhat.io and
quay.io registries to the blockedRegistries list.

When using the allowedRegistries, blockedRegistries, or insecureRegistries
parameter, you can specify an individual repository within a registry. For example:
reg1.io/myrepo/myapp:latest.

Insecure external registries should be avoided to reduce possible security risks.

 additionalTrustedCA: 3
 name: myconfigmap
 registrySources: 4
 allowedRegistries:
 - example.com
 - quay.io
 - registry.redhat.io
 - image-registry.openshift-image-registry.svc:5000
 - reg1.io/myrepo/myapp:latest
 insecureRegistries:
 - insecure.com
status:
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

73

2. To check that the changes are applied, list your nodes:

Example output

9.2.1. Adding specific registries

You can add a list of registries, and optionally an individual repository within a registry, that are
permitted for image pull and push actions by editing the image.config.openshift.io/cluster custom
resource (CR). OpenShift Container Platform applies the changes to this CR to all nodes in the cluster.

When pulling or pushing images, the container runtime searches the registries listed under the
registrySources parameter in the image.config.openshift.io/cluster CR. If you created a list of
registries under the allowedRegistries parameter, the container runtime searches only those registries.
Registries not in the list are blocked.

WARNING

When the allowedRegistries parameter is defined, all registries, including the
registry.redhat.io and quay.io registries and the default OpenShift image registry,
are blocked unless explicitly listed. If you use the parameter, to prevent pod failure,
add the registry.redhat.io and quay.io registries and the
internalRegistryHostname to the allowedRegistries list, as they are required by
payload images within your environment. For disconnected clusters, mirror
registries should also be added.

Procedure

Edit the image.config.openshift.io/cluster custom resource:

The following is an example image.config.openshift.io/cluster CR with an allowed list:

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-137-182.us-east-2.compute.internal Ready,SchedulingDisabled worker
65m v1.26.0
ip-10-0-139-120.us-east-2.compute.internal Ready,SchedulingDisabled control-plane
74m v1.26.0
ip-10-0-176-102.us-east-2.compute.internal Ready control-plane 75m
v1.26.0
ip-10-0-188-96.us-east-2.compute.internal Ready worker 65m
v1.26.0
ip-10-0-200-59.us-east-2.compute.internal Ready worker 63m
v1.26.0
ip-10-0-223-123.us-east-2.compute.internal Ready control-plane 73m
v1.26.0

$ oc edit image.config.openshift.io/cluster

OpenShift Container Platform 4.13 Images

74

1

2

Contains configurations that determine how the container runtime should treat individual
registries when accessing images for builds and pods. It does not contain configuration for
the internal cluster registry.

Specify registries, and optionally a repository in that registry, to use for image pull and
push actions. All other registries are blocked.

NOTE

Either the allowedRegistries parameter or the blockedRegistries parameter
can be set, but not both.

The Machine Config Operator (MCO) watches the image.config.openshift.io/cluster resource
for any changes to the registries. When the MCO detects a change, it drains the nodes, applies
the change, and uncordons the nodes. After the nodes return to the Ready state, the allowed
registries list is used to update the image signature policy in the /etc/containers/policy.json file
on each node.

Verification

Enter the following command to obtain a list of your nodes:

Example output

1. Run the following command to enter debug mode on the node:

apiVersion: config.openshift.io/v1
kind: Image
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 1
 name: cluster
 resourceVersion: "8302"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
 registrySources: 1
 allowedRegistries: 2
 - example.com
 - quay.io
 - registry.redhat.io
 - reg1.io/myrepo/myapp:latest
 - image-registry.openshift-image-registry.svc:5000
status:
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

$ oc get nodes

NAME STATUS ROLES AGE VERSION
<node_name> Ready control-plane,master 37m v1.27.8+4fab27b

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

75

2. When prompted, enter chroot /host into the terminal:

3. Enter the following command to check that the registries have been added to the policy file:

The following policy indicates that only images from the example.com, quay.io, and
registry.redhat.io registries are permitted for image pulls and pushes:

Example 9.1. Example image signature policy file

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-5.1# cat /etc/containers/policy.json | jq '.'

{
 "default":[
 {
 "type":"reject"
 }
],
 "transports":{
 "atomic":{
 "example.com":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "image-registry.openshift-image-registry.svc:5000":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "insecure.com":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "quay.io":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "reg4.io/myrepo/myapp:latest":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "registry.redhat.io":[
 {
 "type":"insecureAcceptAnything"
 }
]
 },

OpenShift Container Platform 4.13 Images

76

NOTE

 "docker":{
 "example.com":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "image-registry.openshift-image-registry.svc:5000":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "insecure.com":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "quay.io":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "reg4.io/myrepo/myapp:latest":[
 {
 "type":"insecureAcceptAnything"
 }
],
 "registry.redhat.io":[
 {
 "type":"insecureAcceptAnything"
 }
]
 },
 "docker-daemon":{
 "":[
 {
 "type":"insecureAcceptAnything"
 }
]
 }
 }
}

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

77

NOTE

If your cluster uses the registrySources.insecureRegistries parameter, ensure that any
insecure registries are included in the allowed list.

For example:

9.2.2. Blocking specific registries

You can block any registry, and optionally an individual repository within a registry, by editing the
image.config.openshift.io/cluster custom resource (CR). OpenShift Container Platform applies the
changes to this CR to all nodes in the cluster.

When pulling or pushing images, the container runtime searches the registries listed under the
registrySources parameter in the image.config.openshift.io/cluster CR. If you created a list of
registries under the blockedRegistries parameter, the container runtime does not search those
registries. All other registries are allowed.

WARNING

To prevent pod failure, do not add the registry.redhat.io and quay.io registries to
the blockedRegistries list, as they are required by payload images within your
environment.

Procedure

Edit the image.config.openshift.io/cluster custom resource:

The following is an example image.config.openshift.io/cluster CR with a blocked list:

spec:
 registrySources:
 insecureRegistries:
 - insecure.com
 allowedRegistries:
 - example.com
 - quay.io
 - registry.redhat.io
 - insecure.com
 - image-registry.openshift-image-registry.svc:5000

$ oc edit image.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Image
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 1

OpenShift Container Platform 4.13 Images

78

1

2

Contains configurations that determine how the container runtime should treat individual
registries when accessing images for builds and pods. It does not contain configuration for
the internal cluster registry.

Specify registries, and optionally a repository in that registry, that should not be used for
image pull and push actions. All other registries are allowed.

NOTE

Either the blockedRegistries registry or the allowedRegistries registry can be
set, but not both.

The Machine Config Operator (MCO) watches the image.config.openshift.io/cluster resource
for any changes to the registries. When the MCO detects a change, it drains the nodes, applies
the change, and uncordons the nodes. After the nodes return to the Ready state, changes to
the blocked registries appear in the /etc/containers/registries.conf file on each node.

Verification

Enter the following command to obtain a list of your nodes:

Example output

1. Run the following command to enter debug mode on the node:

2. When prompted, enter chroot /host into the terminal:

3. Enter the following command to check that the registries have been added to the policy file:

The following example indicates that images from the untrusted.com registry are

 name: cluster
 resourceVersion: "8302"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
 registrySources: 1
 blockedRegistries: 2
 - untrusted.com
 - reg1.io/myrepo/myapp:latest
status:
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

$ oc get nodes

NAME STATUS ROLES AGE VERSION
<node_name> Ready control-plane,master 37m v1.27.8+4fab27b

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-5.1# cat etc/containers/registries.conf

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

79

The following example indicates that images from the untrusted.com registry are
prevented for image pulls and pushes:

Example output

9.2.2.1. Blocking a payload registry

In a mirroring configuration, you can block upstream payload registries in a disconnected environment
using a ImageContentSourcePolicy (ICSP) object. The following example procedure demonstrates
how to block the quay.io/openshift-payload payload registry.

Procedure

1. Create the mirror configuration using an ImageContentSourcePolicy (ICSP) object to mirror
the payload to a registry in your instance. The following example ICSP file mirrors the payload
internal-mirror.io/openshift-payload:

2. After the object deploys onto your nodes, verify that the mirror configuration is set by checking
the /etc/containers/registries.conf file:

Example output

3. Use the following command to edit the image.config.openshift.io custom resource file:

4. To block the payload registry, add the following configuration to the image.config.openshift.io
custom resource file:

unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]

[[registry]]
 prefix = ""
 location = "untrusted.com"
 blocked = true

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
 name: my-icsp
spec:
 repositoryDigestMirrors:
 - mirrors:
 - internal-mirror.io/openshift-payload
 source: quay.io/openshift-payload

[[registry]]
 prefix = ""
 location = "quay.io/openshift-payload"
 mirror-by-digest-only = true

[[registry.mirror]]
 location = "internal-mirror.io/openshift-payload"

$ oc edit image.config.openshift.io cluster

OpenShift Container Platform 4.13 Images

80

Verification

Verify that the upstream payload registry is blocked by checking the
/etc/containers/registries.conf file on the node.

Example output

9.2.3. Allowing insecure registries

You can add insecure registries, and optionally an individual repository within a registry, by editing the
image.config.openshift.io/cluster custom resource (CR). OpenShift Container Platform applies the
changes to this CR to all nodes in the cluster.

Registries that do not use valid SSL certificates or do not require HTTPS connections are considered
insecure.

WARNING

Insecure external registries should be avoided to reduce possible security risks.

Procedure

Edit the image.config.openshift.io/cluster custom resource:

The following is an example image.config.openshift.io/cluster CR with an insecure registries
list:

spec:
 registrySource:
 blockedRegistries:
 - quay.io/openshift-payload

[[registry]]
 prefix = ""
 location = "quay.io/openshift-payload"
 blocked = true
 mirror-by-digest-only = true

[[registry.mirror]]
 location = "internal-mirror.io/openshift-payload"

$ oc edit image.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Image
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

81

1

2

3

Contains configurations that determine how the container runtime should treat individual
registries when accessing images for builds and pods. It does not contain configuration for
the internal cluster registry.

Specify an insecure registry. You can specify a repository in that registry.

Ensure that any insecure registries are included in the allowedRegistries list.

NOTE

When the allowedRegistries parameter is defined, all registries, including the
registry.redhat.io and quay.io registries and the default OpenShift image registry,
are blocked unless explicitly listed. If you use the parameter, to prevent pod
failure, add all registries including the registry.redhat.io and quay.io registries
and the internalRegistryHostname to the allowedRegistries list, as they are
required by payload images within your environment. For disconnected clusters,
mirror registries should also be added.

The Machine Config Operator (MCO) watches the image.config.openshift.io/cluster CR for
any changes to the registries, then drains and uncordons the nodes when it detects changes.
After the nodes return to the Ready state, changes to the insecure and blocked registries
appear in the /etc/containers/registries.conf file on each node.

Verification

To check that the registries have been added to the policy file, use the following command on a
node:

The following example indicates that images from the insecure.com registry is insecure and is
allowed for image pulls and pushes.

Example output

 generation: 1
 name: cluster
 resourceVersion: "8302"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
 registrySources: 1
 insecureRegistries: 2
 - insecure.com
 - reg4.io/myrepo/myapp:latest
 allowedRegistries:
 - example.com
 - quay.io
 - registry.redhat.io
 - insecure.com 3
 - reg4.io/myrepo/myapp:latest
 - image-registry.openshift-image-registry.svc:5000
status:
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

$ cat /etc/containers/registries.conf

OpenShift Container Platform 4.13 Images

82

9.2.4. Adding registries that allow image short names

You can add registries to search for an image short name by editing the
image.config.openshift.io/cluster custom resource (CR). OpenShift Container Platform applies the
changes to this CR to all nodes in the cluster.

An image short name enables you to search for images without including the fully qualified domain name
in the pull spec. For example, you could use rhel7/etcd instead of
registry.access.redhat.com/rhe7/etcd.

You might use short names in situations where using the full path is not practical. For example, if your
cluster references multiple internal registries whose DNS changes frequently, you would need to update
the fully qualified domain names in your pull specs with each change. In this case, using an image short
name might be beneficial.

When pulling or pushing images, the container runtime searches the registries listed under the
registrySources parameter in the image.config.openshift.io/cluster CR. If you created a list of
registries under the containerRuntimeSearchRegistries parameter, when pulling an image with a short
name, the container runtime searches those registries.

WARNING

Using image short names with public registries is strongly discouraged because the
image might not deploy if the public registry requires authentication. Use fully-
qualified image names with public registries.

Red Hat internal or private registries typically support the use of image short
names.

If you list public registries under the containerRuntimeSearchRegistries
parameter (including the registry.redhat.io, docker.io, and quay.io registries), you
expose your credentials to all the registries on the list, and you risk network and
registry attacks. Because you can only have one pull secret for pulling images, as
defined by the global pull secret, that secret is used to authenticate against every
registry in that list. Therefore, if you include public registries in the list, you introduce
a security risk.

You cannot list multiple public registries under the
containerRuntimeSearchRegistries parameter if each public registry requires
different credentials and a cluster does not list the public registry in the global pull
secret.

For a public registry that requires authentication, you can use an image short name
only if the registry has its credentials stored in the global pull secret.

unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]

[[registry]]
 prefix = ""
 location = "insecure.com"
 insecure = true

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

83

1

The Machine Config Operator (MCO) watches the image.config.openshift.io/cluster resource for any
changes to the registries. When the MCO detects a change, it drains the nodes, applies the change, and
uncordons the nodes. After the nodes return to the Ready state, if the
containerRuntimeSearchRegistries parameter is added, the MCO creates a file in the
/etc/containers/registries.conf.d directory on each node with the listed registries. The file overrides
the default list of unqualified search registries in the /etc/containers/registries.conf file. There is no
way to fall back to the default list of unqualified search registries.

The containerRuntimeSearchRegistries parameter works only with the Podman and CRI-O container
engines. The registries in the list can be used only in pod specs, not in builds and image streams.

Procedure

Edit the image.config.openshift.io/cluster custom resource:

The following is an example image.config.openshift.io/cluster CR:

Specify registries to use with image short names. You should use image short names with
only internal or private registries to reduce possible security risks.

$ oc edit image.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Image
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: "2019-05-17T13:44:26Z"
 generation: 1
 name: cluster
 resourceVersion: "8302"
 selfLink: /apis/config.openshift.io/v1/images/cluster
 uid: e34555da-78a9-11e9-b92b-06d6c7da38dc
spec:
 allowedRegistriesForImport:
 - domainName: quay.io
 insecure: false
 additionalTrustedCA:
 name: myconfigmap
 registrySources:
 containerRuntimeSearchRegistries: 1
 - reg1.io
 - reg2.io
 - reg3.io
 allowedRegistries: 2
 - example.com
 - quay.io
 - registry.redhat.io
 - reg1.io
 - reg2.io
 - reg3.io
 - image-registry.openshift-image-registry.svc:5000
...
status:
 internalRegistryHostname: image-registry.openshift-image-registry.svc:5000

OpenShift Container Platform 4.13 Images

84

2 Ensure that any registries listed under containerRuntimeSearchRegistries are included in
the allowedRegistries list.

NOTE

When the allowedRegistries parameter is defined, all registries, including the
registry.redhat.io and quay.io registries and the default OpenShift image
registry, are blocked unless explicitly listed. If you use this parameter, to prevent
pod failure, add all registries including the registry.redhat.io and quay.io
registries and the internalRegistryHostname to the allowedRegistries list, as
they are required by payload images within your environment. For disconnected
clusters, mirror registries should also be added.

Verification

Enter the following command to obtain a list of your nodes:

Example output

1. Run the following command to enter debug mode on the node:

2. When prompted, enter chroot /host into the terminal:

3. Enter the following command to check that the registries have been added to the policy file:

Example output

9.2.5. Configuring additional trust stores for image registry access

The image.config.openshift.io/cluster custom resource can contain a reference to a config map that
contains additional certificate authorities to be trusted during image registry access.

Prerequisites

The certificate authorities (CA) must be PEM-encoded.

Procedure

You can create a config map in the openshift-config namespace and use its name in

$ oc get nodes

NAME STATUS ROLES AGE VERSION
<node_name> Ready control-plane,master 37m v1.27.8+4fab27b

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-5.1# cat /etc/containers/registries.conf.d/01-image-searchRegistries.conf

unqualified-search-registries = ['reg1.io', 'reg2.io', 'reg3.io']

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

85

1

You can create a config map in the openshift-config namespace and use its name in
AdditionalTrustedCA in the image.config.openshift.io custom resource to provide additional CAs
that should be trusted when contacting external registries.

The config map key is the hostname of a registry with the port for which this CA is to be trusted, and the
PEM certificate content is the value, for each additional registry CA to trust.

Image registry CA config map example

If the registry has the port, such as registry-with-port.example.com:5000, : should be replaced
with ...

You can configure additional CAs with the following procedure.

To configure an additional CA:

9.3. UNDERSTANDING IMAGE REGISTRY REPOSITORY MIRRORING

Setting up container registry repository mirroring enables you to perform the following tasks:

Configure your OpenShift Container Platform cluster to redirect requests to pull images from a
repository on a source image registry and have it resolved by a repository on a mirrored image
registry.

Identify multiple mirrored repositories for each target repository, to make sure that if one mirror
is down, another can be used.

Repository mirroring in OpenShift Container Platform includes the following attributes:

Image pulls are resilient to registry downtimes.

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-registry-ca
data:
 registry.example.com: |
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----
 registry-with-port.example.com..5000: | 1
 -----BEGIN CERTIFICATE-----
 ...
 -----END CERTIFICATE-----

$ oc create configmap registry-config --from-file=<external_registry_address>=ca.crt -n
openshift-config

$ oc edit image.config.openshift.io cluster

spec:
 additionalTrustedCA:
 name: registry-config

OpenShift Container Platform 4.13 Images

86

Clusters in disconnected environments can pull images from critical locations, such as quay.io,
and have registries behind a company firewall provide the requested images.

A particular order of registries is tried when an image pull request is made, with the permanent
registry typically being the last one tried.

The mirror information you enter is added to the /etc/containers/registries.conf file on every
node in the OpenShift Container Platform cluster.

When a node makes a request for an image from the source repository, it tries each mirrored
repository in turn until it finds the requested content. If all mirrors fail, the cluster tries the
source repository. If successful, the image is pulled to the node.

Setting up repository mirroring can be done in the following ways:

At OpenShift Container Platform installation:
By pulling container images needed by OpenShift Container Platform and then bringing those
images behind your company’s firewall, you can install OpenShift Container Platform into a
datacenter that is in a disconnected environment.

After OpenShift Container Platform installation:
If you did not configure mirroring during OpenShift Container Platform installation, you can do
so postinstallation by using any of the following custom resource (CR) objects:

ImageDigestMirrorSet (IDMS). This object allows you to pull images from a mirrored
registry by using digest specifications. The IDMS CR enables you to set a fall back policy
that allows or stops continued attempts to pull from the source registry if the image pull
fails.

ImageTagMirrorSet (ITMS). This object allows you to pull images from a mirrored registry
by using image tags. The ITMS CR enables you to set a fall back policy that allows or stops
continued attempts to pull from the source registry if the image pull fails.

ImageContentSourcePolicy (ICSP). This object allows you to pull images from a mirrored
registry by using digest specifications. The ICSP CR always falls back to the source registry
if the mirrors do not work.

IMPORTANT

Using an ImageContentSourcePolicy (ICSP) object to configure repository
mirroring is a deprecated feature. Deprecated functionality is still included in
OpenShift Container Platform and continues to be supported; however, it will be
removed in a future release of this product and is not recommended for new
deployments. If you have existing YAML files that you used to create
ImageContentSourcePolicy objects, you can use the oc adm migrate icsp
command to convert those files to an ImageDigestMirrorSet YAML file. For
more information, see "Converting ImageContentSourcePolicy (ICSP) files for
image registry repository mirroring" in the following section.

Each of these custom resource objects identify the following information:

The source of the container image repository you want to mirror.

A separate entry for each mirror repository you want to offer the content requested from the
source repository.

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

87

For new clusters, you can use IDMS, ITMS, and ICSP CRs objects as desired. However, using IDMS and
ITMS is recommended.

If you upgraded a cluster, any existing ICSP objects remain stable, and both IDMS and ICSP objects are
supported. Workloads using ICSP objects continue to function as expected. However, if you want to take
advantage of the fallback policies introduced in the IDMS CRs, you can migrate current workloads to
IDMS objects by using the oc adm migrate icsp command as shown in the Converting
ImageContentSourcePolicy (ICSP) files for image registry repository mirroring section that follows.
Migrating to IDMS objects does not require a cluster reboot.

NOTE

If your cluster uses an ImageDigestMirrorSet, ImageTagMirrorSet, or
ImageContentSourcePolicy object to configure repository mirroring, you can use only
global pull secrets for mirrored registries. You cannot add a pull secret to a project.

Additional resources

For more information about global pull secrets, see Updating the global cluster pull secret .

9.3.1. Configuring image registry repository mirroring

You can create postinstallation mirror configuration custom resources (CR) to redirect image pull
requests from a source image registry to a mirrored image registry.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Configure mirrored repositories, by either:

Setting up a mirrored repository with Red Hat Quay, as described in Red Hat Quay
Repository Mirroring. Using Red Hat Quay allows you to copy images from one repository to
another and also automatically sync those repositories repeatedly over time.

Using a tool such as skopeo to copy images manually from the source repository to the
mirrored repository.
For example, after installing the skopeo RPM package on a Red Hat Enterprise Linux
(RHEL) 7 or RHEL 8 system, use the skopeo command as shown in this example:

In this example, you have a container image registry that is named example.io with an
image repository named example to which you want to copy the ubi9/ubi-minimal image
from registry.access.redhat.com. After you create the mirrored registry, you can configure
your OpenShift Container Platform cluster to redirect requests made of the source
repository to the mirrored repository.

2. Log in to your OpenShift Container Platform cluster.

3. Create a postinstallation mirror configuration CR, by using one of the following examples:

$ skopeo copy \
docker://registry.access.redhat.com/ubi9/ubi-minimal:latest@sha256:5cf... \
docker://example.io/example/ubi-minimal

OpenShift Container Platform 4.13 Images

88

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/repo-mirroring-in-red-hat-quay

1

2

3

4

5

6

Create an ImageDigestMirrorSet or ImageTagMirrorSet CR, as needed, replacing the
source and mirrors with your own registry and repository pairs and images:

Indicates the API to use with this CR. This must be config.openshift.io/v1.

Indicates the kind of object according to the pull type:

ImageDigestMirrorSet: Pulls a digest reference image.

ImageTagMirrorSet: Pulls a tag reference image.

Indicates the type of image pull method, either:

imageDigestMirrors: Use for an ImageDigestMirrorSet CR.

imageTagMirrors: Use for an ImageTagMirrorSet CR.

Indicates the name of the mirrored image registry and repository.

Optional: Indicates a secondary mirror repository for each target repository. If one
mirror is down, the target repository can use another mirror.

Indicates the registry and repository source, which is the repository that is referred to
in image pull specifications.

apiVersion: config.openshift.io/v1 1
kind: ImageDigestMirrorSet 2
metadata:
 name: ubi9repo
spec:
 imageDigestMirrors: 3
 - mirrors:
 - example.io/example/ubi-minimal 4
 - example.com/example/ubi-minimal 5
 source: registry.access.redhat.com/ubi9/ubi-minimal 6
 mirrorSourcePolicy: AllowContactingSource 7
 - mirrors:
 - mirror.example.com/redhat
 source: registry.redhat.io/openshift4 8
 mirrorSourcePolicy: AllowContactingSource
 - mirrors:
 - mirror.example.com
 source: registry.redhat.io 9
 mirrorSourcePolicy: AllowContactingSource
 - mirrors:
 - mirror.example.net/image
 source: registry.example.com/example/myimage 10
 mirrorSourcePolicy: AllowContactingSource
 - mirrors:
 - mirror.example.net
 source: registry.example.com/example 11
 mirrorSourcePolicy: AllowContactingSource
 - mirrors:
 - mirror.example.net/registry-example-com
 source: registry.example.com 12
 mirrorSourcePolicy: AllowContactingSource

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

89

7

8

9

10

11

12

1

2

in image pull specifications.

Optional: Indicates the fallback policy if the image pull fails:

AllowContactingSource: Allows continued attempts to pull the image from the
source repository. This is the default.

NeverContactSource: Prevents continued attempts to pull the image from the
source repository.

Optional: Indicates a namespace inside a registry, which allows you to use any image in
that namespace. If you use a registry domain as a source, the object is applied to all
repositories from the registry.

Optional: Indicates a registry, which allows you to use any image in that registry. If you
specify a registry name, the object is applied to all repositories from a source registry
to a mirror registry.

Pulls the image registry.example.com/example/myimage@sha256:… from the
mirror mirror.example.net/image@sha256:...

Pulls the image registry.example.com/example/image@sha256:… in the source
registry namespace from the mirror mirror.example.net/image@sha256:… .

Pulls the image registry.example.com/myimage@sha256 from the mirror registry
example.net/registry-example-com/myimage@sha256:… .

Create an ImageContentSourcePolicy custom resource, replacing the source and mirrors
with your own registry and repository pairs and images:

Specifies the name of the mirror image registry and repository.

Specifies the online registry and repository containing the content that is mirrored.

4. Create the new object:

After the object is created, the Machine Config Operator (MCO) drains the nodes for
ImageTagMirrorSet objects only. The MCO does not drain the nodes for
ImageDigestMirrorSet and ImageContentSourcePolicy objects.

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
 name: mirror-ocp
spec:
 repositoryDigestMirrors:
 - mirrors:
 - mirror.registry.com:443/ocp/release 1
 source: quay.io/openshift-release-dev/ocp-release 2
 - mirrors:
 - mirror.registry.com:443/ocp/release
 source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

$ oc create -f registryrepomirror.yaml

OpenShift Container Platform 4.13 Images

90

5. To check that the mirrored configuration settings are applied, do the following on one of the
nodes.

a. List your nodes:

Example output

b. Start the debugging process to access the node:

Example output

c. Change your root directory to /host:

d. Check the /etc/containers/registries.conf file to make sure the changes were made:

The following output represents a registries.conf file where postinstallation mirror
configuration CRs were applied. The final two entries are marked digest-only and tag-only
respectively.

Example output

$ oc get node

NAME STATUS ROLES AGE VERSION
ip-10-0-137-44.ec2.internal Ready worker 7m v1.28.5
ip-10-0-138-148.ec2.internal Ready master 11m v1.28.5
ip-10-0-139-122.ec2.internal Ready master 11m v1.28.5
ip-10-0-147-35.ec2.internal Ready worker 7m v1.28.5
ip-10-0-153-12.ec2.internal Ready worker 7m v1.28.5
ip-10-0-154-10.ec2.internal Ready master 11m v1.28.5

$ oc debug node/ip-10-0-147-35.ec2.internal

Starting pod/ip-10-0-147-35ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# chroot /host

sh-4.2# cat /etc/containers/registries.conf

unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]
short-name-mode = ""

[[registry]]
 prefix = ""
 location = "registry.access.redhat.com/ubi9/ubi-minimal" 1

 [[registry.mirror]]
 location = "example.io/example/ubi-minimal" 2
 pull-from-mirror = "digest-only" 3

 [[registry.mirror]]
 location = "example.com/example/ubi-minimal"

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

91

1

2

3

Indicates the repository that is referred to in a pull spec.

Indicates the mirror for that repository.

Indicates that the image pull from the mirror is a digest reference image.

 pull-from-mirror = "digest-only"

[[registry]]
 prefix = ""
 location = "registry.example.com"

 [[registry.mirror]]
 location = "mirror.example.net/registry-example-com"
 pull-from-mirror = "digest-only"

[[registry]]
 prefix = ""
 location = "registry.example.com/example"

 [[registry.mirror]]
 location = "mirror.example.net"
 pull-from-mirror = "digest-only"

[[registry]]
 prefix = ""
 location = "registry.example.com/example/myimage"

 [[registry.mirror]]
 location = "mirror.example.net/image"
 pull-from-mirror = "digest-only"

[[registry]]
 prefix = ""
 location = "registry.redhat.io"

 [[registry.mirror]]
 location = "mirror.example.com"
 pull-from-mirror = "digest-only"

[[registry]]
 prefix = ""
 location = "registry.redhat.io/openshift4"

 [[registry.mirror]]
 location = "mirror.example.com/redhat"
 pull-from-mirror = "digest-only"
[[registry]]
 prefix = ""
 location = "registry.access.redhat.com/ubi9/ubi-minimal"
 blocked = true 4

 [[registry.mirror]]
 location = "example.io/example/ubi-minimal-tag"
 pull-from-mirror = "tag-only" 5

OpenShift Container Platform 4.13 Images

92

4

5

Indicates that the NeverContactSource parameter is set for this repository.

Indicates that the image pull from the mirror is a tag reference image.

e. Pull an image to the node from the source and check if it is resolved by the mirror.

Troubleshooting repository mirroring

If the repository mirroring procedure does not work as described, use the following information about
how repository mirroring works to help troubleshoot the problem.

The first working mirror is used to supply the pulled image.

The main registry is only used if no other mirror works.

From the system context, the Insecure flags are used as fallback.

The format of the /etc/containers/registries.conf file has changed recently. It is now version 2
and in TOML format.

9.3.2. Converting ImageContentSourcePolicy (ICSP) files for image registry
repository mirroring

Using an ImageContentSourcePolicy (ICSP) object to configure repository mirroring is a deprecated
feature. This functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not recommended for
new deployments.

ICSP objects are being replaced by ImageDigestMirrorSet and ImageTagMirrorSet objects to
configure repository mirroring. If you have existing YAML files that you used to create
ImageContentSourcePolicy objects, you can use the oc adm migrate icsp command to convert those
files to an ImageDigestMirrorSet YAML file. The command updates the API to the current version,
changes the kind value to ImageDigestMirrorSet, and changes spec.repositoryDigestMirrors to
spec.imageDigestMirrors. The rest of the file is not changed.

Because the migration does not change the registries.conf file, the cluster does not need to reboot.

For more information about ImageDigestMirrorSet or ImageTagMirrorSet objects, see "Configuring
image registry repository mirroring" in the previous section.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Ensure that you have ImageContentSourcePolicy objects on your cluster.

Procedure

1. Use the following command to convert one or more ImageContentSourcePolicy YAML files to
an ImageDigestMirrorSet YAML file:

sh-4.2# podman pull --log-level=debug registry.access.redhat.com/ubi9/ubi-
minimal@sha256:5cf...

CHAPTER 9. IMAGE CONFIGURATION RESOURCES

93

where:

<file_name>

Specifies the name of the source ImageContentSourcePolicy YAML. You can list multiple
file names.

--dest-dir

Optional: Specifies a directory for the output ImageDigestMirrorSet YAML. If unset, the file
is written to the current directory.

For example, the following command converts the icsp.yaml and icsp-2.yaml file and saves the
new YAML files to the idms-files directory.

Example output

2. Create the CR object by running the following command:

where:

<path_to_the_directory>

Specifies the path to the directory, if you used the --dest-dir flag.

<file_name>

Specifies the name of the ImageDigestMirrorSet YAML.

3. Remove the ICSP objects after the IDMS objects are rolled out.

$ oc adm migrate icsp <file_name>.yaml <file_name>.yaml <file_name>.yaml --dest-dir
<path_to_the_directory>

$ oc adm migrate icsp icsp.yaml icsp-2.yaml --dest-dir idms-files

wrote ImageDigestMirrorSet to idms-
files/imagedigestmirrorset_ubi8repo.5911620242173376087.yaml
wrote ImageDigestMirrorSet to idms-
files/imagedigestmirrorset_ubi9repo.6456931852378115011.yaml

$ oc create -f <path_to_the_directory>/<file-name>.yaml

OpenShift Container Platform 4.13 Images

94

CHAPTER 10. USING TEMPLATES
The following sections provide an overview of templates, as well as how to use and create them.

10.1. UNDERSTANDING TEMPLATES

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Container Platform. A template can be processed to create anything
you have permission to create within a project, for example services, build configurations, and
deployment configurations. A template can also define a set of labels to apply to every object defined in
the template.

You can create a list of objects from a template using the CLI or, if a template has been uploaded to
your project or the global template library, using the web console.

10.2. UPLOADING A TEMPLATE

If you have a JSON or YAML file that defines a template, you can upload the template to projects using
the CLI. This saves the template to the project for repeated use by any user with appropriate access to
that project. Instructions about writing your own templates are provided later in this topic.

Procedure

Upload a template using one of the following methods:

Upload a template to your current project’s template library, pass the JSON or YAML file
with the following command:

Upload a template to a different project using the -n option with the name of the project:

The template is now available for selection using the web console or the CLI.

10.3. CREATING AN APPLICATION BY USING THE WEB CONSOLE

You can use the web console to create an application from a template.

Procedure

1. Select Developer from the context selector at the top of the web console navigation menu.

2. While in the desired project, click +Add

3. Click All services in the Developer Catalog tile.

4. Click Builder Images under Type to see the available builder images.

NOTE

$ oc create -f <filename>

$ oc create -f <filename> -n <project>

CHAPTER 10. USING TEMPLATES

95

1

NOTE

Only image stream tags that have the builder tag listed in their annotations
appear in this list, as demonstrated here:

Including builder here ensures this image stream tag appears in the web console as a
builder.

5. Modify the settings in the new application screen to configure the objects to support your
application.

10.4. CREATING OBJECTS FROM TEMPLATES BY USING THE CLI

You can use the CLI to process templates and use the configuration that is generated to create objects.

10.4.1. Adding labels

Labels are used to manage and organize generated objects, such as pods. The labels specified in the
template are applied to every object that is generated from the template.

Procedure

Add labels in the template from the command line:

10.4.2. Listing parameters

The list of parameters that you can override are listed in the parameters section of the template.

Procedure

1. You can list parameters with the CLI by using the following command and specifying the file to
be used:

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby"
 creationTimestamp: null
spec:
...
 tags:
 - name: "2.6"
 annotations:
 description: "Build and run Ruby 2.6 applications"
 iconClass: "icon-ruby"
 tags: "builder,ruby" 1
 supports: "ruby:2.6,ruby"
 version: "2.6"
...

$ oc process -f <filename> -l name=otherLabel

OpenShift Container Platform 4.13 Images

96

Alternatively, if the template is already uploaded:

For example, the following shows the output when listing the parameters for one of the quick
start templates in the default openshift project:

Example output

The output identifies several parameters that are generated with a regular expression-like
generator when the template is processed.

10.4.3. Generating a list of objects

Using the CLI, you can process a file defining a template to return the list of objects to standard output.

Procedure

$ oc process --parameters -f <filename>

$ oc process --parameters -n <project> <template_name>

$ oc process --parameters -n openshift rails-postgresql-example

NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your application source
code https://github.com/sclorg/rails-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or other ref of your
repository if you are not using the default branch
CONTEXT_DIR Set this to the relative path to your project if it is not in the root of
your repository
APPLICATION_DOMAIN The exposed hostname that will route to the Rails service
rails-postgresql-example.openshiftapps.com
GITHUB_WEBHOOK_SECRET A secret string used to configure the GitHub webhook
expression [a-zA-Z0-9]{40}
SECRET_KEY_BASE Your secret key for verifying the integrity of signed cookies
expression [a-z0-9]{127}
APPLICATION_USER The application user that is used within the sample application
to authorize access on pages openshift
APPLICATION_PASSWORD The application password that is used within the sample
application to authorize access on pages secret
DATABASE_SERVICE_NAME Database service name
postgresql
POSTGRESQL_USER database username
expression user[A-Z0-9]{3}
POSTGRESQL_PASSWORD database password
expression [a-zA-Z0-9]{8}
POSTGRESQL_DATABASE database name
root
POSTGRESQL_MAX_CONNECTIONS database max connections
10
POSTGRESQL_SHARED_BUFFERS database shared buffers
12MB

CHAPTER 10. USING TEMPLATES

97

1. Process a file defining a template to return the list of objects to standard output:

Alternatively, if the template has already been uploaded to the current project:

2. Create objects from a template by processing the template and piping the output to oc create:

Alternatively, if the template has already been uploaded to the current project:

3. You can override any parameter values defined in the file by adding the -p option for each
<name>=<value> pair you want to override. A parameter reference appears in any text field
inside the template items.
For example, in the following the POSTGRESQL_USER and POSTGRESQL_DATABASE
parameters of a template are overridden to output a configuration with customized
environment variables:

a. Creating a List of objects from a template

b. The JSON file can either be redirected to a file or applied directly without uploading the
template by piping the processed output to the oc create command:

c. If you have large number of parameters, you can store them in a file and then pass this file to
oc process:

d. You can also read the environment from standard input by using "-" as the argument to --
param-file:

$ oc process -f <filename>

$ oc process <template_name>

$ oc process -f <filename> | oc create -f -

$ oc process <template> | oc create -f -

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase

$ oc process -f my-rails-postgresql \
 -p POSTGRESQL_USER=bob \
 -p POSTGRESQL_DATABASE=mydatabase \
 | oc create -f -

$ cat postgres.env
POSTGRESQL_USER=bob
POSTGRESQL_DATABASE=mydatabase

$ oc process -f my-rails-postgresql --param-file=postgres.env

$ sed s/bob/alice/ postgres.env | oc process -f my-rails-postgresql --param-file=-

OpenShift Container Platform 4.13 Images

98

10.5. MODIFYING UPLOADED TEMPLATES

You can edit a template that has already been uploaded to your project.

Procedure

Modify a template that has already been uploaded:

10.6. USING INSTANT APP AND QUICK START TEMPLATES

OpenShift Container Platform provides a number of default instant app and quick start templates to
make it easy to quickly get started creating a new application for different languages. Templates are
provided for Rails (Ruby), Django (Python), Node.js, CakePHP (PHP), and Dancer (Perl). Your cluster
administrator must create these templates in the default, global openshift project so you have access
to them.

By default, the templates build using a public source repository on GitHub that contains the necessary
application code.

Procedure

1. You can list the available default instant app and quick start templates with:

2. To modify the source and build your own version of the application:

a. Fork the repository referenced by the template’s default SOURCE_REPOSITORY_URL
parameter.

b. Override the value of the SOURCE_REPOSITORY_URL parameter when creating from the
template, specifying your fork instead of the default value.
By doing this, the build configuration created by the template now points to your fork of the
application code, and you can modify the code and rebuild the application at will.

NOTE

Some of the instant app and quick start templates define a database deployment
configuration. The configuration they define uses ephemeral storage for the database
content. These templates should be used for demonstration purposes only as all
database data is lost if the database pod restarts for any reason.

10.6.1. Quick start templates

A quick start template is a basic example of an application running on OpenShift Container Platform.
Quick starts come in a variety of languages and frameworks, and are defined in a template, which is
constructed from a set of services, build configurations, and deployment configurations. This template
references the necessary images and source repositories to build and deploy the application.

To explore a quick start, create an application from a template. Your administrator must have already
installed these templates in your OpenShift Container Platform cluster, in which case you can simply
select it from the web console.

$ oc edit template <template>

$ oc get templates -n openshift

CHAPTER 10. USING TEMPLATES

99

Quick starts refer to a source repository that contains the application source code. To customize the
quick start, fork the repository and, when creating an application from the template, substitute the
default source repository name with your forked repository. This results in builds that are performed
using your source code instead of the provided example source. You can then update the code in your
source repository and launch a new build to see the changes reflected in the deployed application.

10.6.1.1. Web framework quick start templates

These quick start templates provide a basic application of the indicated framework and language:

CakePHP: a PHP web framework that includes a MySQL database

Dancer: a Perl web framework that includes a MySQL database

Django: a Python web framework that includes a PostgreSQL database

NodeJS: a NodeJS web application that includes a MongoDB database

Rails: a Ruby web framework that includes a PostgreSQL database

10.7. WRITING TEMPLATES

You can define new templates to make it easy to recreate all the objects of your application. The
template defines the objects it creates along with some metadata to guide the creation of those
objects.

The following is an example of a simple template object definition (YAML):

apiVersion: template.openshift.io/v1
kind: Template
metadata:
 name: redis-template
 annotations:
 description: "Description"
 iconClass: "icon-redis"
 tags: "database,nosql"
objects:
- apiVersion: v1
 kind: Pod
 metadata:
 name: redis-master
 spec:
 containers:
 - env:
 - name: REDIS_PASSWORD
 value: ${REDIS_PASSWORD}
 image: dockerfile/redis
 name: master
 ports:
 - containerPort: 6379
 protocol: TCP
parameters:
- description: Password used for Redis authentication
 from: '[A-Z0-9]{8}'
 generate: expression

OpenShift Container Platform 4.13 Images

100

1

2

3

4

5

10.7.1. Writing the template description

The template description informs you what the template does and helps you find it when searching in
the web console. Additional metadata beyond the template name is optional, but useful to have. In
addition to general descriptive information, the metadata also includes a set of tags. Useful tags include
the name of the language the template is related to for example, Java, PHP, Ruby, and so on.

The following is an example of template description metadata:

The unique name of the template.

A brief, user-friendly name, which can be employed by user interfaces.

A description of the template. Include enough detail that users understand what is being deployed
and any caveats they must know before deploying. It should also provide links to additional
information, such as a README file. Newlines can be included to create paragraphs.

Additional template description. This may be displayed by the service catalog, for example.

Tags to be associated with the template for searching and grouping. Add tags that include it into
one of the provided catalog categories. Refer to the id and categoryAliases in
CATALOG_CATEGORIES in the console constants file. The categories can also be customized for
the whole cluster.

 name: REDIS_PASSWORD
labels:
 redis: master

kind: Template
apiVersion: template.openshift.io/v1
metadata:
 name: cakephp-mysql-example 1
 annotations:
 openshift.io/display-name: "CakePHP MySQL Example (Ephemeral)" 2
 description: >-
 An example CakePHP application with a MySQL database. For more information
 about using this template, including OpenShift considerations, see
 https://github.com/sclorg/cakephp-ex/blob/master/README.md.

 WARNING: Any data stored will be lost upon pod destruction. Only use this
 template for testing." 3
 openshift.io/long-description: >-
 This template defines resources needed to develop a CakePHP application,
 including a build configuration, application DeploymentConfig, and
 database DeploymentConfig. The database is stored in
 non-persistent storage, so this configuration should be used for
 experimental purposes only. 4
 tags: "quickstart,php,cakephp" 5
 iconClass: icon-php 6
 openshift.io/provider-display-name: "Red Hat, Inc." 7
 openshift.io/documentation-url: "https://github.com/sclorg/cakephp-ex" 8
 openshift.io/support-url: "https://access.redhat.com" 9
message: "Your admin credentials are ${ADMIN_USERNAME}:${ADMIN_PASSWORD}" 10

CHAPTER 10. USING TEMPLATES

101

6 An icon to be displayed with your template in the web console.

Example 10.1. Available icons

icon-3scale

icon-aerogear

icon-amq

icon-angularjs

icon-ansible

icon-apache

icon-beaker

icon-camel

icon-capedwarf

icon-cassandra

icon-catalog-icon

icon-clojure

icon-codeigniter

icon-cordova

icon-datagrid

icon-datavirt

icon-debian

icon-decisionserver

icon-django

icon-dotnet

icon-drupal

icon-eap

icon-elastic

icon-erlang

icon-fedora

icon-freebsd

icon-git

OpenShift Container Platform 4.13 Images

102

icon-github

icon-gitlab

icon-glassfish

icon-go-gopher

icon-golang

icon-grails

icon-hadoop

icon-haproxy

icon-helm

icon-infinispan

icon-jboss

icon-jenkins

icon-jetty

icon-joomla

icon-jruby

icon-js

icon-knative

icon-kubevirt

icon-laravel

icon-load-balancer

icon-mariadb

icon-mediawiki

icon-memcached

icon-mongodb

icon-mssql

icon-mysql-database

icon-nginx

icon-nodejs

icon-openjdk

CHAPTER 10. USING TEMPLATES

103

icon-openliberty

icon-openshift

icon-openstack

icon-other-linux

icon-other-unknown

icon-perl

icon-phalcon

icon-php

icon-play

iconpostgresql

icon-processserver

icon-python

icon-quarkus

icon-rabbitmq

icon-rails

icon-redhat

icon-redis

icon-rh-integration

icon-rh-spring-boot

icon-rh-tomcat

icon-ruby

icon-scala

icon-serverlessfx

icon-shadowman

icon-spring-boot

icon-spring

icon-sso

icon-stackoverflow

icon-suse

OpenShift Container Platform 4.13 Images

104

7

8

9

10

1

2

icon-symfony

icon-tomcat

icon-ubuntu

icon-vertx

icon-wildfly

icon-windows

icon-wordpress

icon-xamarin

icon-zend

The name of the person or organization providing the template.

A URL referencing further documentation for the template.

A URL where support can be obtained for the template.

An instructional message that is displayed when this template is instantiated. This field should
inform the user how to use the newly created resources. Parameter substitution is performed on
the message before being displayed so that generated credentials and other parameters can be
included in the output. Include links to any next-steps documentation that users should follow.

10.7.2. Writing template labels

Templates can include a set of labels. These labels are added to each object created when the template
is instantiated. Defining a label in this way makes it easy for users to find and manage all the objects
created from a particular template.

The following is an example of template object labels:

A label that is applied to all objects created from this template.

A parameterized label that is also applied to all objects created from this template. Parameter
expansion is carried out on both label keys and values.

10.7.3. Writing template parameters

Parameters allow a value to be supplied by you or generated when the template is instantiated. Then,
that value is substituted wherever the parameter is referenced. References can be defined in any field in

kind: "Template"
apiVersion: "v1"
...
labels:
 template: "cakephp-mysql-example" 1
 app: "${NAME}" 2

CHAPTER 10. USING TEMPLATES

105

the objects list field. This is useful for generating random passwords or allowing you to supply a
hostname or other user-specific value that is required to customize the template. Parameters can be
referenced in two ways:

As a string value by placing values in the form ${PARAMETER_NAME} in any string field in the
template.

As a JSON or YAML value by placing values in the form ${{PARAMETER_NAME}} in place of
any field in the template.

When using the ${PARAMETER_NAME} syntax, multiple parameter references can be combined in a
single field and the reference can be embedded within fixed data, such as
"http://${PARAMETER_1}${PARAMETER_2}". Both parameter values are substituted and the
resulting value is a quoted string.

When using the ${{PARAMETER_NAME}} syntax only a single parameter reference is allowed and
leading and trailing characters are not permitted. The resulting value is unquoted unless, after
substitution is performed, the result is not a valid JSON object. If the result is not a valid JSON value, the
resulting value is quoted and treated as a standard string.

A single parameter can be referenced multiple times within a template and it can be referenced using
both substitution syntaxes within a single template.

A default value can be provided, which is used if you do not supply a different value:

The following is an example of setting an explicit value as the default value:

Parameter values can also be generated based on rules specified in the parameter definition, for
example generating a parameter value:

In the previous example, processing generates a random password 12 characters long consisting of all
upper and lowercase alphabet letters and numbers.

The syntax available is not a full regular expression syntax. However, you can use \w, \d, \a, and \A
modifiers:

[\w]{10} produces 10 alphabet characters, numbers, and underscores. This follows the PCRE
standard and is equal to [a-zA-Z0-9_]{10}.

[\d]{10} produces 10 numbers. This is equal to [0-9]{10}.

[\a]{10} produces 10 alphabetical characters. This is equal to [a-zA-Z]{10}.

[\A]{10} produces 10 punctuation or symbol characters. This is equal to [~!@#$%\^&*()\-_+={}\
[\]\\|<,>.?/"';:`]{10}.

parameters:
 - name: USERNAME
 description: "The user name for Joe"
 value: joe

parameters:
 - name: PASSWORD
 description: "The random user password"
 generate: expression
 from: "[a-zA-Z0-9]{12}"

OpenShift Container Platform 4.13 Images

106

NOTE

Depending on if the template is written in YAML or JSON, and the type of string that the
modifier is embedded within, you might need to escape the backslash with a second
backslash. The following examples are equivalent:

Example YAML template with a modifier

Example JSON template with a modifier

Here is an example of a full template with parameter definitions and references:

 parameters:
 - name: singlequoted_example
 generate: expression
 from: '[\A]{10}'
 - name: doublequoted_example
 generate: expression
 from: "[\\A]{10}"

{
 "parameters": [
 {
 "name": "json_example",
 "generate": "expression",
 "from": "[\\A]{10}"
 }
]
}

kind: Template
apiVersion: template.openshift.io/v1
metadata:
 name: my-template
objects:
 - kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: cakephp-mysql-example
 annotations:
 description: Defines how to build the application
 spec:
 source:
 type: Git
 git:
 uri: "${SOURCE_REPOSITORY_URL}" 1
 ref: "${SOURCE_REPOSITORY_REF}"
 contextDir: "${CONTEXT_DIR}"
 - kind: DeploymentConfig
 apiVersion: apps.openshift.io/v1
 metadata:
 name: frontend
 spec:
 replicas: "${{REPLICA_COUNT}}" 2

CHAPTER 10. USING TEMPLATES

107

1

2

3

4

5

6

7

8

9

10

This value is replaced with the value of the SOURCE_REPOSITORY_URL parameter when the
template is instantiated.

This value is replaced with the unquoted value of the REPLICA_COUNT parameter when the
template is instantiated.

The name of the parameter. This value is used to reference the parameter within the template.

The user-friendly name for the parameter. This is displayed to users.

A description of the parameter. Provide more detailed information for the purpose of the
parameter, including any constraints on the expected value. Descriptions should use complete
sentences to follow the console’s text standards. Do not make this a duplicate of the display name.

A default value for the parameter which is used if you do not override the value when instantiating
the template. Avoid using default values for things like passwords, instead use generated
parameters in combination with secrets.

Indicates this parameter is required, meaning you cannot override it with an empty value. If the
parameter does not provide a default or generated value, you must supply a value.

A parameter which has its value generated.

The input to the generator. In this case, the generator produces a 40 character alphanumeric value
including upper and lowercase characters.

Parameters can be included in the template message. This informs you about generated values.

10.7.4. Writing the template object list

The main portion of the template is the list of objects which is created when the template is instantiated.
This can be any valid API object, such as a build configuration, deployment configuration, or service. The
object is created exactly as defined here, with any parameter values substituted in prior to creation. The
definition of these objects can reference parameters defined earlier.

The following is an example of an object list:

parameters:
 - name: SOURCE_REPOSITORY_URL 3
 displayName: Source Repository URL 4
 description: The URL of the repository with your application source code 5
 value: https://github.com/sclorg/cakephp-ex.git 6
 required: true 7
 - name: GITHUB_WEBHOOK_SECRET
 description: A secret string used to configure the GitHub webhook
 generate: expression 8
 from: "[a-zA-Z0-9]{40}" 9
 - name: REPLICA_COUNT
 description: Number of replicas to run
 value: "2"
 required: true
message: "... The GitHub webhook secret is ${GITHUB_WEBHOOK_SECRET} ..." 10

kind: "Template"

OpenShift Container Platform 4.13 Images

108

1 The definition of a service, which is created by this template.

NOTE

If an object definition metadata includes a fixed namespace field value, the field is
stripped out of the definition during template instantiation. If the namespace field
contains a parameter reference, normal parameter substitution is performed and the
object is created in whatever namespace the parameter substitution resolved the value
to, assuming the user has permission to create objects in that namespace.

10.7.5. Marking a template as bindable

The Template Service Broker advertises one service in its catalog for each template object of which it is
aware. By default, each of these services is advertised as being bindable, meaning an end user is
permitted to bind against the provisioned service.

Procedure

Template authors can prevent end users from binding against services provisioned from a given
template.

Prevent end user from binding against services provisioned from a given template by adding the
annotation template.openshift.io/bindable: "false" to the template.

10.7.6. Exposing template object fields

Template authors can indicate that fields of particular objects in a template should be exposed. The
Template Service Broker recognizes exposed fields on ConfigMap, Secret, Service, and Route objects,
and returns the values of the exposed fields when a user binds a service backed by the broker.

To expose one or more fields of an object, add annotations prefixed by template.openshift.io/expose-
or template.openshift.io/base64-expose- to the object in the template.

Each annotation key, with its prefix removed, is passed through to become a key in a bind response.

Each annotation value is a Kubernetes JSONPath expression, which is resolved at bind time to indicate
the object field whose value should be returned in the bind response.

apiVersion: "v1"
metadata:
 name: my-template
objects:
 - kind: "Service" 1
 apiVersion: "v1"
 metadata:
 name: "cakephp-mysql-example"
 annotations:
 description: "Exposes and load balances the application pods"
 spec:
 ports:
 - name: "web"
 port: 8080
 targetPort: 8080
 selector:
 name: "cakephp-mysql-example"

CHAPTER 10. USING TEMPLATES

109

NOTE

Bind response key-value pairs can be used in other parts of the system as environment
variables. Therefore, it is recommended that every annotation key with its prefix removed
should be a valid environment variable name — beginning with a character A-Z, a-z, or _,
and being followed by zero or more characters A-Z, a-z, 0-9, or _.

NOTE

Unless escaped with a backslash, Kubernetes' JSONPath implementation interprets
characters such as ., @, and others as metacharacters, regardless of their position in the
expression. Therefore, for example, to refer to a ConfigMap datum named my.key, the
required JSONPath expression would be {.data['my\.key']}. Depending on how the
JSONPath expression is then written in YAML, an additional backslash might be required,
for example "{.data['my\\.key']}".

The following is an example of different objects' fields being exposed:

kind: Template
apiVersion: template.openshift.io/v1
metadata:
 name: my-template
objects:
- kind: ConfigMap
 apiVersion: v1
 metadata:
 name: my-template-config
 annotations:
 template.openshift.io/expose-username: "{.data['my\\.username']}"
 data:
 my.username: foo
- kind: Secret
 apiVersion: v1
 metadata:
 name: my-template-config-secret
 annotations:
 template.openshift.io/base64-expose-password: "{.data['password']}"
 stringData:
 password: <password>
- kind: Service
 apiVersion: v1
 metadata:
 name: my-template-service
 annotations:
 template.openshift.io/expose-service_ip_port: "{.spec.clusterIP}:{.spec.ports[?
(.name==\"web\")].port}"
 spec:
 ports:
 - name: "web"
 port: 8080
- kind: Route
 apiVersion: route.openshift.io/v1
 metadata:
 name: my-template-route
 annotations:

OpenShift Container Platform 4.13 Images

110

An example response to a bind operation given the above partial template follows:

Procedure

Use the template.openshift.io/expose- annotation to return the field value as a string. This is
convenient, although it does not handle arbitrary binary data.

If you want to return binary data, use the template.openshift.io/base64-expose- annotation
instead to base64 encode the data before it is returned.

10.7.7. Waiting for template readiness

Template authors can indicate that certain objects within a template should be waited for before a
template instantiation by the service catalog, Template Service Broker, or TemplateInstance API is
considered complete.

To use this feature, mark one or more objects of kind Build, BuildConfig, Deployment,
DeploymentConfig, Job, or StatefulSet in a template with the following annotation:

Template instantiation is not complete until all objects marked with the annotation report ready.
Similarly, if any of the annotated objects report failed, or if the template fails to become ready within a
fixed timeout of one hour, the template instantiation fails.

For the purposes of instantiation, readiness and failure of each object kind are defined as follows:

Kind Readiness Failure

Build Object reports phase complete. Object reports phase canceled, error, or
failed.

BuildConfig Latest associated build object reports
phase complete.

Latest associated build object reports
phase canceled, error, or failed.

Deployment Object reports new replica set and
deployment available. This honors
readiness probes defined on the object.

Object reports progressing condition as
false.

 template.openshift.io/expose-uri: "http://{.spec.host}{.spec.path}"
 spec:
 path: mypath

{
 "credentials": {
 "username": "foo",
 "password": "YmFy",
 "service_ip_port": "172.30.12.34:8080",
 "uri": "http://route-test.router.default.svc.cluster.local/mypath"
 }
}

"template.alpha.openshift.io/wait-for-ready": "true"

CHAPTER 10. USING TEMPLATES

111

DeploymentCon
fig

Object reports new replication controller
and deployment available. This honors
readiness probes defined on the object.

Object reports progressing condition as
false.

Job Object reports completion. Object reports that one or more failures
have occurred.

StatefulSet Object reports all replicas ready. This
honors readiness probes defined on the
object.

Not applicable.

Kind Readiness Failure

The following is an example template extract, which uses the wait-for-ready annotation. Further
examples can be found in the OpenShift Container Platform quick start templates.

Additional recommendations

Set memory, CPU, and storage default sizes to make sure your application is given enough
resources to run smoothly.

Avoid referencing the latest tag from images if that tag is used across major versions. This can

kind: Template
apiVersion: template.openshift.io/v1
metadata:
 name: my-template
objects:
- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: ...
 annotations:
 # wait-for-ready used on BuildConfig ensures that template instantiation
 # will fail immediately if build fails
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: DeploymentConfig
 apiVersion: apps.openshift.io/v1
 metadata:
 name: ...
 annotations:
 template.alpha.openshift.io/wait-for-ready: "true"
 spec:
 ...
- kind: Service
 apiVersion: v1
 metadata:
 name: ...
 spec:
 ...

OpenShift Container Platform 4.13 Images

112

Avoid referencing the latest tag from images if that tag is used across major versions. This can
cause running applications to break when new images are pushed to that tag.

A good template builds and deploys cleanly without requiring modifications after the template is
deployed.

10.7.8. Creating a template from existing objects

Rather than writing an entire template from scratch, you can export existing objects from your project in
YAML form, and then modify the YAML from there by adding parameters and other customizations as
template form.

Procedure

Export objects in a project in YAML form:

You can also substitute a particular resource type or multiple resources instead of all. Run oc
get -h for more examples.

The object types included in oc get -o yaml all are:

BuildConfig

Build

DeploymentConfig

ImageStream

Pod

ReplicationController

Route

Service

NOTE

Using the all alias is not recommended because the contents might vary across different
clusters and versions. Instead, specify all required resources.

$ oc get -o yaml all > <yaml_filename>

CHAPTER 10. USING TEMPLATES

113

CHAPTER 11. USING RUBY ON RAILS
Ruby on Rails is a web framework written in Ruby. This guide covers using Rails 4 on OpenShift Container
Platform.

WARNING

Go through the whole tutorial to have an overview of all the steps necessary to run
your application on the OpenShift Container Platform. If you experience a problem
try reading through the entire tutorial and then going back to your issue. It can also
be useful to review your previous steps to ensure that all the steps were run
correctly.

11.1. PREREQUISITES

Basic Ruby and Rails knowledge.

Locally installed version of Ruby 2.0.0+, Rubygems, Bundler.

Basic Git knowledge.

Running instance of OpenShift Container Platform 4.

Make sure that an instance of OpenShift Container Platform is running and is available. Also
make sure that your oc CLI client is installed and the command is accessible from your
command shell, so you can use it to log in using your email address and password.

11.2. SETTING UP THE DATABASE

Rails applications are almost always used with a database. For local development use the PostgreSQL
database.

Procedure

1. Install the database:

2. Initialize the database:

This command creates the /var/lib/pgsql/data directory, in which the data is stored.

3. Start the database:

4. When the database is running, create your rails user:

$ sudo yum install -y postgresql postgresql-server postgresql-devel

$ sudo postgresql-setup initdb

$ sudo systemctl start postgresql.service

OpenShift Container Platform 4.13 Images

114

Note that the user created has no password.

11.3. WRITING YOUR APPLICATION

If you are starting your Rails application from scratch, you must install the Rails gem first. Then you can
proceed with writing your application.

Procedure

1. Install the Rails gem:

Example output

2. After you install the Rails gem, create a new application with PostgreSQL as your database:

3. Change into your new application directory:

4. If you already have an application, make sure the pg (postgresql) gem is present in your Gemfile.
If not, edit your Gemfile by adding the gem:

5. Generate a new Gemfile.lock with all your dependencies:

6. In addition to using the postgresql database with the pg gem, you also must ensure that the
config/database.yml is using the postgresql adapter.
Make sure you updated default section in the config/database.yml file, so it looks like this:

7. Create your application’s development and test databases:

$ sudo -u postgres createuser -s rails

$ gem install rails

Successfully installed rails-4.3.0
1 gem installed

$ rails new rails-app --database=postgresql

$ cd rails-app

gem 'pg'

$ bundle install

default: &default
 adapter: postgresql
 encoding: unicode
 pool: 5
 host: localhost
 username: rails
 password: <password>

CHAPTER 11. USING RUBY ON RAILS

115

This creates development and test database in your PostgreSQL server.

11.3.1. Creating a welcome page

Since Rails 4 no longer serves a static public/index.html page in production, you must create a new root
page.

To have a custom welcome page must do following steps:

Create a controller with an index action.

Create a view page for the welcome controller index action.

Create a route that serves applications root page with the created controller and view.

Rails offers a generator that completes all necessary steps for you.

Procedure

1. Run Rails generator:

All the necessary files are created.

2. edit line 2 in config/routes.rb file as follows:

root 'welcome#index'

3. Run the rails server to verify the page is available:

You should see your page by visiting http://localhost:3000 in your browser. If you do not see the
page, check the logs that are output to your server to debug.

11.3.2. Configuring application for OpenShift Container Platform

To have your application communicate with the PostgreSQL database service running in OpenShift
Container Platform you must edit the default section in your config/database.yml to use environment
variables, which you must define later, upon the database service creation.

Procedure

Edit the default section in your config/database.yml with pre-defined variables as follows:

Sample config/database YAML file

$ rake db:create

$ rails generate controller welcome index

$ rails server

<% user = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ? "root" :
ENV["POSTGRESQL_USER"] %>
<% password = ENV.key?("POSTGRESQL_ADMIN_PASSWORD") ?
ENV["POSTGRESQL_ADMIN_PASSWORD"] : ENV["POSTGRESQL_PASSWORD"] %>

OpenShift Container Platform 4.13 Images

116

http://localhost:3000

11.3.3. Storing your application in Git

Building an application in OpenShift Container Platform usually requires that the source code be stored
in a git repository, so you must install git if you do not already have it.

Prerequisites

Install git.

Procedure

1. Make sure you are in your Rails application directory by running the ls -1 command. The output
of the command should look like:

Example output

2. Run the following commands in your Rails app directory to initialize and commit your code to git:

<% db_service = ENV.fetch("DATABASE_SERVICE_NAME","").upcase %>

default: &default
 adapter: postgresql
 encoding: unicode
 # For details on connection pooling, see rails configuration guide
 # http://guides.rubyonrails.org/configuring.html#database-pooling
 pool: <%= ENV["POSTGRESQL_MAX_CONNECTIONS"] || 5 %>
 username: <%= user %>
 password: <%= password %>
 host: <%= ENV["#{db_service}_SERVICE_HOST"] %>
 port: <%= ENV["#{db_service}_SERVICE_PORT"] %>
 database: <%= ENV["POSTGRESQL_DATABASE"] %>

$ ls -1

app
bin
config
config.ru
db
Gemfile
Gemfile.lock
lib
log
public
Rakefile
README.rdoc
test
tmp
vendor

$ git init

$ git add .

CHAPTER 11. USING RUBY ON RAILS

117

After your application is committed you must push it to a remote repository. GitHub account, in
which you create a new repository.

3. Set the remote that points to your git repository:

4. Push your application to your remote git repository.

11.4. DEPLOYING YOUR APPLICATION TO OPENSHIFT CONTAINER
PLATFORM

You can deploy you application to OpenShift Container Platform.

After creating the rails-app project, you are automatically switched to the new project namespace.

Deploying your application in OpenShift Container Platform involves three steps:

Creating a database service from OpenShift Container Platform’s PostgreSQL image.

Creating a frontend service from OpenShift Container Platform’s Ruby 2.0 builder image and
your Ruby on Rails source code, which are wired with the database service.

Creating a route for your application.

Procedure

To deploy your Ruby on Rails application, create a new project for the application:

11.4.1. Creating the database service

Your Rails application expects a running database service. For this service use PostgreSQL database
image.

To create the database service, use the oc new-app command. To this command you must pass some
necessary environment variables which are used inside the database container. These environment
variables are required to set the username, password, and name of the database. You can change the
values of these environment variables to anything you would like. The variables are as follows:

POSTGRESQL_DATABASE

POSTGRESQL_USER

POSTGRESQL_PASSWORD

Setting these variables ensures:

$ git commit -m "initial commit"

$ git remote add origin git@github.com:<namespace/repository-name>.git

$ git push

$ oc new-project rails-app --description="My Rails application" --display-name="Rails
Application"

OpenShift Container Platform 4.13 Images

118

A database exists with the specified name.

A user exists with the specified name.

The user can access the specified database with the specified password.

Procedure

1. Create the database service:

To also set the password for the database administrator, append to the previous command with:

2. Watch the progress:

11.4.2. Creating the frontend service

To bring your application to OpenShift Container Platform, you must specify a repository in which your
application lives.

Procedure

1. Create the frontend service and specify database related environment variables that were
setup when creating the database service:

With this command, OpenShift Container Platform fetches the source code, sets up the builder,
builds your application image, and deploys the newly created image together with the specified
environment variables. The application is named rails-app.

2. Verify the environment variables have been added by viewing the JSON document of the rails-
app deployment config:

You should see the following section:

Example output

$ oc new-app postgresql -e POSTGRESQL_DATABASE=db_name -e
POSTGRESQL_USER=username -e POSTGRESQL_PASSWORD=password

-e POSTGRESQL_ADMIN_PASSWORD=admin_pw

$ oc get pods --watch

$ oc new-app path/to/source/code --name=rails-app -e POSTGRESQL_USER=username -e
POSTGRESQL_PASSWORD=password -e POSTGRESQL_DATABASE=db_name -e
DATABASE_SERVICE_NAME=postgresql

$ oc get dc rails-app -o json

env": [
 {
 "name": "POSTGRESQL_USER",
 "value": "username"
 },

CHAPTER 11. USING RUBY ON RAILS

119

3. Check the build process:

4. After the build is complete, look at the running pods in OpenShift Container Platform:

You should see a line starting with myapp-<number>-<hash>, and that is your application
running in OpenShift Container Platform.

5. Before your application is functional, you must initialize the database by running the database
migration script. There are two ways you can do this:

Manually from the running frontend container:

Exec into frontend container with rsh command:

Run the migration from inside the container:

If you are running your Rails application in a development or test environment you do
not have to specify the RAILS_ENV environment variable.

By adding pre-deployment lifecycle hooks in your template.

11.4.3. Creating a route for your application

You can expose a service to create a route for your application.

Procedure

To expose a service by giving it an externally-reachable hostname like www.example.com use
OpenShift Container Platform route. In your case you need to expose the frontend service by
typing:

 {
 "name": "POSTGRESQL_PASSWORD",
 "value": "password"
 },
 {
 "name": "POSTGRESQL_DATABASE",
 "value": "db_name"
 },
 {
 "name": "DATABASE_SERVICE_NAME",
 "value": "postgresql"
 }

],

$ oc logs -f build/rails-app-1

$ oc get pods

$ oc rsh <frontend_pod_id>

$ RAILS_ENV=production bundle exec rake db:migrate

OpenShift Container Platform 4.13 Images

120

WARNING

Ensure the hostname you specify resolves into the IP address of the router.

$ oc expose service rails-app --hostname=www.example.com

CHAPTER 11. USING RUBY ON RAILS

121

CHAPTER 12. USING IMAGES

12.1. USING IMAGES OVERVIEW

Use the following topics to discover the different Source-to-Image (S2I), database, and other container
images that are available for OpenShift Container Platform users.

Red Hat official container images are provided in the Red Hat Registry at registry.redhat.io. OpenShift
Container Platform’s supported S2I, database, and Jenkins images are provided in the openshift4
repository in the Red Hat Quay Registry. For example, quay.io/openshift-release-dev/ocp-v4.0-
<address> is the name of the OpenShift Application Platform image.

The xPaaS middleware images are provided in their respective product repositories on the Red Hat
Registry but suffixed with a -openshift. For example, registry.redhat.io/jboss-eap-6/eap64-openshift
is the name of the JBoss EAP image.

All Red Hat supported images covered in this section are described in the Container images section of
the Red Hat Ecosystem Catalog. For every version of each image, you can find details on its contents
and usage. Browse or search for the image that interests you.

IMPORTANT

The newer versions of container images are not compatible with earlier versions of
OpenShift Container Platform. Verify and use the correct version of container images,
based on your version of OpenShift Container Platform.

12.2. SOURCE-TO-IMAGE

You can use the Red Hat Software Collections images as a foundation for applications that rely on
specific runtime environments such as Node.js, Perl, or Python. You can use the Red Hat Java Source-
to-Image for OpenShift documentation as a reference for runtime environments that use Java. Special
versions of some of these runtime base images are referred to as Source-to-Image (S2I) images. With
S2I images, you can insert your code into a base image environment that is ready to run that code.

S2I images include:

.NET

Java

Go

Node.js

Perl

PHP

Python

Ruby

S2I images are available for you to use directly from the OpenShift Container Platform web console by
following procedure:

OpenShift Container Platform 4.13 Images

122

https://registry.redhat.io
https://catalog.redhat.com/software/containers/explore
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/index
https://access.redhat.com/documentation/en-us/openjdk/11/html/using_openjdk_11_source-to-image_for_openshift/index

1. Log in to the OpenShift Container Platform web console using your login credentials. The
default view for the OpenShift Container Platform web console is the Administrator
perspective.

2. Use the perspective switcher to switch to the Developer perspective.

3. In the +Add view, use the Project drop-down list to select an existing project or create a new
project.

4. Click All services in the Developer Catalog tile.

5. Click Builder Images under Type to see the available S2I images.

S2I images are also available though the Cluster Samples Operator.

12.2.1. Source-to-image build process overview

Source-to-image (S2I) produces ready-to-run images by injecting source code into a container that
prepares that source code to be run. It performs the following steps:

1. Runs the FROM <builder image> command

2. Copies the source code to a defined location in the builder image

3. Runs the assemble script in the builder image

4. Sets the run script in the builder image as the default command

Buildah then creates the container image.

12.2.2. Additional resources

Configuring the Cluster Samples Operator

Using build strategies

Troubleshooting the Source-to-Image process

Creating images from source code with source-to-image

About testing source-to-image images

Creating images from source code with source-to-image

12.3. CUSTOMIZING SOURCE-TO-IMAGE IMAGES

Source-to-image (S2I) builder images include assemble and run scripts, but the default behavior of
those scripts is not suitable for all users. You can customize the behavior of an S2I builder that includes
default scripts.

12.3.1. Invoking scripts embedded in an image

Builder images provide their own version of the source-to-image (S2I) scripts that cover the most
common use-cases. If these scripts do not fulfill your needs, S2I provides a way of overriding them by
adding custom ones in the .s2i/bin directory. However, by doing this, you are completely replacing the
standard scripts. In some cases, replacing the scripts is acceptable, but, in other scenarios, you can run a

CHAPTER 12. USING IMAGES

123

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/builds/#builds-strategy-s2i-build_build-strategies
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html-single/support/#troubleshooting-s2i

few commands before or after the scripts while retaining the logic of the script provided in the image.
To reuse the standard scripts, you can create a wrapper script that runs custom logic and delegates
further work to the default scripts in the image.

Procedure

1. Look at the value of the io.openshift.s2i.scripts-url label to determine the location of the
scripts inside of the builder image:

Example output

You inspected the wildfly/wildfly-centos7 builder image and found out that the scripts are in
the /usr/libexec/s2i directory.

2. Create a script that includes an invocation of one of the standard scripts wrapped in other
commands:

.s2i/bin/assemble script

This example shows a custom assemble script that prints the message, runs the standard
assemble script from the image, and prints another message depending on the exit code of the
assemble script.

IMPORTANT

When wrapping the run script, you must use exec for invoking it to ensure signals
are handled properly. The use of exec also precludes the ability to run additional
commands after invoking the default image run script.

.s2i/bin/run script

$ podman inspect --format='{{ index .Config.Labels "io.openshift.s2i.scripts-url" }}'
wildfly/wildfly-centos7

image:///usr/libexec/s2i

#!/bin/bash
echo "Before assembling"

/usr/libexec/s2i/assemble
rc=$?

if [$rc -eq 0]; then
 echo "After successful assembling"
else
 echo "After failed assembling"
fi

exit $rc

#!/bin/bash
echo "Before running application"
exec /usr/libexec/s2i/run

OpenShift Container Platform 4.13 Images

124

CHAPTER 12. USING IMAGES

125

	Table of Contents
	CHAPTER 1. OVERVIEW OF IMAGES
	1.1. UNDERSTANDING CONTAINERS, IMAGES, AND IMAGE STREAMS
	1.2. IMAGES
	1.3. IMAGE REGISTRY
	1.4. IMAGE REPOSITORY
	1.5. IMAGE TAGS
	1.6. IMAGE IDS
	1.7. CONTAINERS
	1.8. WHY USE IMAGESTREAMS
	1.9. IMAGE STREAM TAGS
	1.10. IMAGE STREAM IMAGES
	1.11. IMAGE STREAM TRIGGERS
	1.12. HOW YOU CAN USE THE CLUSTER SAMPLES OPERATOR
	1.13. ABOUT TEMPLATES
	1.14. HOW YOU CAN USE RUBY ON RAILS

	CHAPTER 2. CONFIGURING THE CLUSTER SAMPLES OPERATOR
	2.1. UNDERSTANDING THE CLUSTER SAMPLES OPERATOR
	2.1.1. Cluster Samples Operator’s use of management state
	2.1.1.1. Restricted network installation
	2.1.1.2. Restricted network installation with initial network access

	2.1.2. Cluster Samples Operator’s tracking and error recovery of image stream imports
	Additional resources
	2.1.3. Cluster Samples Operator assistance for mirroring

	2.2. CLUSTER SAMPLES OPERATOR CONFIGURATION PARAMETERS
	2.2.1. Configuration restrictions
	2.2.2. Conditions

	2.3. ACCESSING THE CLUSTER SAMPLES OPERATOR CONFIGURATION
	2.4. REMOVING DEPRECATED IMAGE STREAM TAGS FROM THE CLUSTER SAMPLES OPERATOR
	Additional resources

	CHAPTER 3. USING THE CLUSTER SAMPLES OPERATOR WITH AN ALTERNATE REGISTRY
	3.1. ABOUT THE MIRROR REGISTRY
	3.1.1. Preparing the mirror host
	3.1.2. Installing the OpenShift CLI by downloading the binary
	Installing the OpenShift CLI on Linux
	Installing the OpenShift CLI on Windows
	Installing the OpenShift CLI on macOS

	3.2. CONFIGURING CREDENTIALS THAT ALLOW IMAGES TO BE MIRRORED
	3.3. MIRRORING THE OPENSHIFT CONTAINER PLATFORM IMAGE REPOSITORY
	3.4. USING CLUSTER SAMPLES OPERATOR IMAGE STREAMS WITH ALTERNATE OR MIRRORED REGISTRIES
	3.4.1. Cluster Samples Operator assistance for mirroring

	CHAPTER 4. CREATING IMAGES
	4.1. LEARNING CONTAINER BEST PRACTICES
	4.1.1. General container image guidelines
	Reuse images
	Maintain compatibility within tags
	Avoid multiple processes
	Use exec in wrapper scripts
	Clean temporary files
	Place instructions in the proper order
	Mark important ports
	Set environment variables
	Avoid default passwords
	Avoid sshd
	Use volumes for persistent data

	4.1.2. OpenShift Container Platform-specific guidelines
	4.1.2.1. Enable images for source-to-image (S2I)
	4.1.2.2. Support arbitrary user ids
	4.1.2.3. Use services for inter-image communication
	4.1.2.4. Provide common libraries
	4.1.2.5. Use environment variables for configuration
	4.1.2.6. Set image metadata
	4.1.2.7. Clustering
	4.1.2.8. Logging
	4.1.2.9. Liveness and readiness probes
	4.1.2.10. Templates

	4.2. INCLUDING METADATA IN IMAGES
	4.2.1. Defining image metadata

	4.3. CREATING IMAGES FROM SOURCE CODE WITH SOURCE-TO-IMAGE
	4.3.1. Understanding the source-to-image build process
	4.3.2. How to write source-to-image scripts

	4.4. ABOUT TESTING SOURCE-TO-IMAGE IMAGES
	4.4.1. Understanding testing requirements
	4.4.2. Generating scripts and tools
	4.4.3. Testing locally
	4.4.4. Basic testing workflow
	4.4.5. Using OpenShift Container Platform for building the image

	CHAPTER 5. MANAGING IMAGES
	5.1. MANAGING IMAGES OVERVIEW
	5.1.1. Images overview

	5.2. TAGGING IMAGES
	5.2.1. Image tags
	5.2.2. Image tag conventions
	5.2.3. Adding tags to image streams
	5.2.4. Removing tags from image streams
	5.2.5. Referencing images in imagestreams

	5.3. IMAGE PULL POLICY
	5.3.1. Image pull policy overview

	5.4. USING IMAGE PULL SECRETS
	5.4.1. Allowing pods to reference images across projects
	5.4.2. Allowing pods to reference images from other secured registries
	5.4.2.1. Pulling from private registries with delegated authentication

	5.4.3. Updating the global cluster pull secret

	CHAPTER 6. MANAGING IMAGE STREAMS
	6.1. WHY USE IMAGESTREAMS
	6.2. CONFIGURING IMAGE STREAMS
	6.3. IMAGE STREAM IMAGES
	6.4. IMAGE STREAM TAGS
	6.5. IMAGE STREAM CHANGE TRIGGERS
	6.6. IMAGE STREAM MAPPING
	6.7. WORKING WITH IMAGE STREAMS
	6.7.1. Getting information about image streams
	6.7.2. Adding tags to an image stream
	6.7.3. Adding tags for an external image
	6.7.4. Updating image stream tags
	6.7.5. Removing image stream tags
	6.7.6. Configuring periodic importing of image stream tags

	6.8. IMPORTING AND WORKING WITH IMAGES AND IMAGE STREAMS
	6.8.1. Importing images and image streams from private registries
	6.8.1.1. Allowing pods to reference images from other secured registries

	6.8.2. Working with manifest lists
	Limitations
	6.8.2.1. Configuring periodic importing of manifest lists
	6.8.2.2. Configuring SSL/TSL when importing manifest lists

	6.8.3. Specifying architecture for --import-mode
	6.8.4. Configuration fields for --import-mode

	CHAPTER 7. USING IMAGE STREAMS WITH KUBERNETES RESOURCES
	7.1. ENABLING IMAGE STREAMS WITH KUBERNETES RESOURCES

	CHAPTER 8. TRIGGERING UPDATES ON IMAGE STREAM CHANGES
	8.1. OPENSHIFT CONTAINER PLATFORM RESOURCES
	8.2. TRIGGERING KUBERNETES RESOURCES
	8.3. SETTING THE IMAGE TRIGGER ON KUBERNETES RESOURCES

	CHAPTER 9. IMAGE CONFIGURATION RESOURCES
	9.1. IMAGE CONTROLLER CONFIGURATION PARAMETERS
	9.2. CONFIGURING IMAGE REGISTRY SETTINGS
	9.2.1. Adding specific registries
	9.2.2. Blocking specific registries
	9.2.2.1. Blocking a payload registry

	9.2.3. Allowing insecure registries
	9.2.4. Adding registries that allow image short names
	9.2.5. Configuring additional trust stores for image registry access

	9.3. UNDERSTANDING IMAGE REGISTRY REPOSITORY MIRRORING
	9.3.1. Configuring image registry repository mirroring
	9.3.2. Converting ImageContentSourcePolicy (ICSP) files for image registry repository mirroring

	CHAPTER 10. USING TEMPLATES
	10.1. UNDERSTANDING TEMPLATES
	10.2. UPLOADING A TEMPLATE
	10.3. CREATING AN APPLICATION BY USING THE WEB CONSOLE
	10.4. CREATING OBJECTS FROM TEMPLATES BY USING THE CLI
	10.4.1. Adding labels
	10.4.2. Listing parameters
	10.4.3. Generating a list of objects

	10.5. MODIFYING UPLOADED TEMPLATES
	10.6. USING INSTANT APP AND QUICK START TEMPLATES
	10.6.1. Quick start templates
	10.6.1.1. Web framework quick start templates

	10.7. WRITING TEMPLATES
	10.7.1. Writing the template description
	10.7.2. Writing template labels
	10.7.3. Writing template parameters
	10.7.4. Writing the template object list
	10.7.5. Marking a template as bindable
	10.7.6. Exposing template object fields
	10.7.7. Waiting for template readiness
	10.7.8. Creating a template from existing objects

	CHAPTER 11. USING RUBY ON RAILS
	11.1. PREREQUISITES
	11.2. SETTING UP THE DATABASE
	11.3. WRITING YOUR APPLICATION
	11.3.1. Creating a welcome page
	11.3.2. Configuring application for OpenShift Container Platform
	11.3.3. Storing your application in Git

	11.4. DEPLOYING YOUR APPLICATION TO OPENSHIFT CONTAINER PLATFORM
	11.4.1. Creating the database service
	11.4.2. Creating the frontend service
	11.4.3. Creating a route for your application

	CHAPTER 12. USING IMAGES
	12.1. USING IMAGES OVERVIEW
	12.2. SOURCE-TO-IMAGE
	12.2.1. Source-to-image build process overview
	12.2.2. Additional resources

	12.3. CUSTOMIZING SOURCE-TO-IMAGE IMAGES
	12.3.1. Invoking scripts embedded in an image

