
Aggregate Join Pushdown

Zhong Yu

March 25, 2018

A SQL aggregate over a join may be transformed such that some aggregation work is pushed down under
the join, possibly reducing execution cost.

This article demonstrates and proves a way to do it for any type of aggregate, grouping, join condition,
and join type (semi, anti, inner, outer). It is based on the fact that joins can be expressed as unions and
products, and aggregations can be pushed down over unions and products.

1 Basic Notations and Formulas

1.1 set and duplicate rows

In this article, we’ll use set notations to represent tables and operations on tables. It’s understood that
every row has an invisible marker that distinguish itself from any other row, even if they have the same
values in all columns. No “deduplication” is done unless explicitly specified.

1.2 distinct and non-distinct

In this article, when comparing column values, we never invoke the concept of ‘equality’. Instead, we
only use ‘distinct’, ‘not-distinct’ as defined in SQL Standard, and only among values in the same type.
When we use the terms ‘=’, ‘same’, ‘match’, ‘contain’, we mean it in the sense of ‘not-distinct’.

Row r1 contains row r2, if r1 has all the columns of r2, and their values are the same in these columns.

Filter δr selects rows that contain r.

1.3 special tables

Ø is an empty table whose schema depends on the context.

ø is used to represent empty set of other stuff, depending on the context.

Ir := {r} is a table with one row, r .

NC is the table of columns C with exactly one row filled with null values in all columns. This is used in
outer joins.

ΓC is the table of columns C, containing all possible distinct values (including nulls). For example, if C
consists of two boolean columns, ΓC will have 3 ∗ 3 rows; each row is a distinct combination of nullable
values of C. For an empty set of columns, Γø consists of 1 row of zero columns.

In places that expects a column set, we may also put in a table or an operator to imply the columns of.
For example, NT implies columns of table T , ΓA implies columns of result of aggregate A.

1



1.4 aggregate and group-by

An aggregate A applied on a table T , as AT , produces a table with exactly one row. This corresponds
to SQL aggregation without a group-by clause.

Define Ã as the same as A, except, when applied on an empty table, it produces zero rows:

ÃØ = Ø; ÃT = AT when T 6= Ø

An aggregate A applied on a table T partitioned by a set of columns G , as AGT , is defined as

AGT :=
⋃
g∈ΓG

Ig × ÃδgT (1)

When G is not empty, this definition corresponds to SQL’s concept of group-by, that is, for every g
contained by one or more rows in T , apply A on these rows; and then, g is attached to the result.

When G is empty, G = ø, there is only one g in ΓG, and δg = σtrue, therefore AøT = ÃT . This has no
direct correspondence in SQL Standard; in particular, it does not correspond to ‘group by ()’, which
always produces one group, even if the table is empty; same as the case without a group-by clause.

1.4.1) Later, we will prove formulas in the form of AGT1 = A+GT2 , true for any G. We can deduce
that AøT1 = A+øT2 → ÃT1 = Ã+T2 → AT1 = A+T2 (see section 1.5). Therefore, we are proving the
case of group by any set of columns, including ‘group by ()’ . However, that’s only on the outside;
inside T2 there may be A3øT3 which we have to beware.

Interestingly, in Oracle and MS SQL, the behavior of ‘group by ()’ follows our definition
of AøT , and is different from the case of without group-by. Our proofs also cover all grouping
cases in their dialect.

1.4.2) While AøT has no direct correspondence in standard SQL, it can be easily simulated; one way
is to translate it to group by a constant value, for example, ‘group by (x-x)’ , which seems to work
consistently across major databases.

1.5 aggregate over union

Every aggregate A over unions can be expressed as

A
⋃
i

Ti = A+
⋃
i

A′Ti (2)

This can always be done; in the worst case, A′ can retain all the rows.

Note that AØ = A+Ø, which is needed to prove (1.4.1).

It’s easy to prove that,

Ã
⋃
i

Ti = Ã+
⋃
i

Ã′Ti (3)

1.6 aggregate over product

Every aggregate A′ over a product can be expressed as

A′(L×R) = a∗(ALL×ARR) (4)

2



where a∗ is a generalized projection.

This can always be done; in the worst case, AL and AR can retain all the rows.

It’s easy to see that

Ã′(L×R) = a∗(ÃLL× ÃRR) (5)

1.6.1 on null row

For outer joins, we need to have the property of

ALNL = NAL , ARNR = NAR (1.6)

that is, AL, AR applying on an all-null row produces an all-null row. For many aggregates, this is
naturally true, e.g. sum(x) . It is not always true though, e.g. count(*) .

Fortunately, we have the freedom of choice of a∗, AL, AR; and we can always find such operators that
satisfies (4) and (1.6). If we already have A′(L×R) = b∗(BLL×BRR), define a permutation function fL
on ΓB

L

such that fLB
LNL = NBL ; define ALL := fLB

LL ; define a∗(aL × aR) := b∗(f−1
L aL × f−1

R aR) .
We can verify that a∗, AL, AR satisfies (4) and (1.6).

2 Inner Join

Every inner join with condition θ that references columns K can be expanded as

L ./θ R =
⋃

k∈σθΓK

δk(L×R) (6)

that is, we enumerate every k that satisfies θ, and pick out rows in L×R that match k.

Every k consists of kL and kR, and δk(L×R) = δkLL× δkRR , thus,

L ./θ R =
⋃
k

δkLL× δkRR (7)

We want to prove that the following two expressions are equivalent

E1 :=AG(L ./θ R) (8)

E2 :=A+Ga∗(ALPLL ./θ ARPRR) (9)

where PL ⊇ GL ∪KL, i.e. PL contains L-side columns of G and K .

Let’s expand E2 first. Every g in ΓG consists of gL and gR, and

δg(L×R) = δgLL× δgRR (10)

Apply (7, 1, 10) to E2 (9)

E2 =
⋃
g

Ig × Ã+a∗
⋃

k,pL,pR

(δgLδkLIpL × ÃLδpLL)× (...R) (11)

3



For E1, we need to expand L with PL to match the form of (11).

L =
⋃

pL∈ΓPL

δpLL (12)

Apply (1, 7, 12, 10) to E1 (8)

E1 =
⋃
g

Ig × Ã
⋃

k,pL,pR

(δgLδkLδpLL)× (...R) (13)

Apply (3, 5)

E1 =
⋃
g

Ig × Ã+a∗
⋃

k,pL,pR

(ÃLδgLδkLδpLL)× (...R) (14)

Compare (14) to (11), we are missing a term IpL . Since a∗ only operates on columns of AL, AR, it is
harmless to introduce more columns to a∗’s operands with any value, e.g. pL .

E1 =
⋃
g

Ig × Ã+a∗
⋃

k,pL,pR

(IpL × ÃLδgLδkLδpLL)× (...R) (15)

Compare (15) to (11), we need to prove that

δgLδkLIpL × ÃLδpLL = IpL × ÃLδgLδkLδpLL (16)

If pL contains both gL and kL, both sides become IpL × ÃLδpLL ; otherwise, both sides become Ø .

Therefore, we proved that E1 = E2

AG(L ./θ R) = A+Ga∗(ALPLL ./θ ARPRR) (17)

Refer to (1.4.1), this also implies that (with GL = GR = ø)

A(L ./θ R) = A+a∗(ALPLL ./θ ARPRR) (18)

2.1 in SQL

Translate the finding to SQL,

select A from L inner join R on θ(K) group by G

is equivalent to

select A+a∗ from L′ inner join R′ on θ(K) group by G

with

L′ := select AL, PL from L group by PL

as long as PL and PR are not empty.

If PL is empty, KL is empty too; this is a pathological join, rare in practice. In this case, we cannot
translate ALPL to SQL’s ‘group by ()’ ; but it could be implemented in SQL as mentioned in (1.4.2)

4



3 Semi Join and Anti Join

Every semi join with condition θ can be expressed as

Lnθ R =
⋃

k∈Υ(θ,R)

δkL (19)

where Υ(θ,R) := ΓK
L nθ R. Note that it depends on θ and values in R, but not on values in L. We

enumerate every k of KL that satisfies θ with a row in R, and pick out rows in L that match k.

Anti join Bθ is very similar to semi join; the only difference is the set of k; the rest of the deductions
are exactly the same, therefore same conclusions apply.

We want to prove that the following two expressions are equivalent

E1 :=AG(Lnθ R) (20)

E2 :=A+G(A′PLnθ R) (21)

where P ⊇ G ∪KL . Note that aggregation and grouping is done on L side only.

The proof is similar to, and simpler than, the inner join case.

Apply (19, 12, 1) to E2 (21)

E2 =
⋃
g

Ig × Ã+
⋃
k,p

δgδkIp × Ã′δpL (22)

Apply (19, 12, 1) to E1 (20),

E1 =
⋃
g

Ig × Ã
⋃
k,p

δgδkδpL (23)

Apply (3),

E1 =
⋃
g

Ig × Ã+
⋃
k,p

Ã′δgδkδpL (24)

Compare (24) to (22), we are missing a term Ip . Since A+ only operates on columns of A′, it is harmless
to introduce more columns to A+’s operand with any value, e.g. p .

E1 =
⋃
g

Ig × Ã+
⋃
k,p

Ip × Ã′δgδkδpL (25)

Compare (25) to (22), similar to the inner join case, it’s true that

δgδkIp × Ã′δpL = Ip × Ã′δgδkδpL (26)

Therefore E1 = E2,

AG(Lnθ R) = A+G(A′PLnθ R) (27)

5



4 Outer Join

We can think of outer join as combination of inner join and anti join. For left-outer join,

L ./θ R = L ./θ R ∪ (LBθ R)×NR (28)

We want to prove that the following two expressions are equivalent

E1 :=AG(L ./θ R) (29)

E2 :=A+Ga∗(ALPLL ./θ ARPRR) (30)

Using the same tactics as before, the join is expanded to unions of products, and aggregation is pushed
down under unions and products, through which we can prove that E1 = E2. There might be better
methods, but here is the ugly expansion:

E1 =
⋃
g

Ig × Ã+a∗

 ⋃
j1,pL

(IpL × ÃLδgLδj1δpLL)× (NPR × ÃRδgRN
R) ∪

⋃
k,pL,pR

(IpL × ÃLδgLδkLδpLL)× (...R)



E2 =
⋃
g

Ig × Ã+a∗

 ⋃
j2,pL

(δgLδj2IpL × ÃLδRLL)× (δgRN
ARPR) ∪

⋃
k,pL,pR

(δgLδkLIpL × ÃLδpLL)× (...R)


where

j1 ∈ Γk
L

Bθ R, j2 ∈ Γk
L

Bθ ARPRR

It’s intuitive that j1, j2 range over the same set.

Based on (1.6), the two terms involving N also match. At this point, we reached E1 = E2 .

The case of full-outer join can be proven in the same way.

Actually, all types of joins – inner, semi/anti, left/right/full-outer – can be handled in a unified way.
However, proving it in a unified framework is even more complex, therefore we break it down to individual
types for “easier” grasp. An attempt was made to prove it for binary operators of a more abstract
structure, but it is also full of deltas, partitions, crosses, and unions.

5 Conclusion

Given any aggregate A, we can find A′, a∗, AL, AR that satisfies (2), (4) and (1.6) . When A is applied
on any join with any condition with any grouping, it can be transformed to an equivalent expression
where A′, AL, AR are pushed down under the join.

Whether such transformation is profitable is left to practical concerns.

6


