
Are Databases Fit for Hybrid Workloads on GPUs?
A Storage Engine’s Perspective

Marcus Pinnecke, David Broneske, Gabriel Campero Durand1 and Gunter Saake
University of Magdeburg

Email: {firstname.lastname}@ovgu.de & 1campero@ovgu.de

Abstract—Employing special-purpose processors (e.g., GPUs)
in database systems has been studied throughout the last decade.
Research on heterogeneous database systems that use both
general- and special-purpose processors has addressed either
transaction- or analytic processing, but not the combination of
them. Support for hybrid transaction- and analytic processing
(HTAP) has been studied exclusively for CPU-only systems. In
this paper we ask the question whether current systems are
ready for HTAP workload management with cooperating general-
and special-purpose processors. For this, we take the perspective
of the backbone of database systems: the storage engine. We
propose a unified terminology and a comprehensive taxonomy to
compare state-of-the-art engines from both domains. We show
similarities and differences, and determine a necessary set of
features for engines supporting HTAP workload on CPUs and
GPUs. Answering our research question, our findings yield a
resolute: not yet.

I. INTRODUCTION

Two challenges are being set today for database systems:
continuous physical record layout organization and continuous
compute device assignment in the face of mixed workload
types (cf. Figure 1). On the one hand, database systems need to
combine simultaneous support for analytical and transactional
processing [1], [2], [3], [4]. Merging both processing types into
one single system promises a larger business value by mini-
mizing analytic latency and data synchronization effort [5]. On
the other hand, database systems must make an optimal use
of a wide range of heterogeneous processors types, such as
Graphics Processing Units (GPUs), Multiple Integrated Cores
(MICs), or Field Programmable Gate Arrays (FPGAs). Build-
ing on these heterogeneous compute platforms is necessary to
overcome limitations such as the power wall [6]. The research
on heterogeneous systems introduces design considerations
into single-machine system architectures [7], [8], [9], [10], [11]
that has similarities to distributed computing [12] and federated
systems [13], [14]. These design considerations are driven by
the following challenges: (a.i) expensive data transfer to and
from the device memory, (a.ii) different memory types per
compute platform, and (a.iii) strict limitations regarding the
device memory capacity. Consequently, heterogeneous systems
demand special locality-aware approaches able to support
column-based placement of certain data stored in a relation [7],
[10], and tailored strategies for data placement to avoid degen-
eration of query performance by cache thrashing and other
side-effects during query processing [15], [16]. Database sys-
tems supporting Hybrid Transactional/Analytical Processing
workloads (HTAP) [5] also demand special design considera-
tions. HTAP database systems, such as HyPer [1], Peloton [2],

Relation R

a1
a2
a3

a4

b1
b2
b3

b4

c1
c2
c3

c4

d1
d2
d3

d4

e1
e2
e3

e4

Layout 1 for R
(weak flexible)

a1
a2
a3

a4

b1
b2
b3

b4

c1
c2
c3

c4

d1
d2
d3

d4

e1
e2
e3

e4

Layout 2 for R
(strong flexible)

a1
a2
a3

a4

b1
b2
b3

b4

c1
c2
c3

c4

d1
d2
d3

d4

e1
e2
e3

e4

Fragment (Thin)

Tuplet

Sub-Relation

Tuple

Schema

B CA B C D E A B C D ED EA

a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4NSM-Fixed

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4DSM-Fixed

Linearization

Fragment
(Fat)

d1 d2 d3 d4DSM-Emulated e1 e2 e3 e4

DirectLinearization

a1 b1 c1 a2 b2 c3 NSM-Emulated

Linearization

SubG. A B C D

Group

Special

OLAPOLTP

ANALYTICAL
WORKLOADS

OLTP
Optimized

OLAP
Optimized

TRANSACTIONAL
WORKLOADS

Main Processor
Only

Co-Processor
Only

Physical Record Layout
Re-Organization

Compute Device
Re-Assignment

HTAP
Optimized

Co-Processor
Accelerated

Fig. 1. Physical record layout re-organization and compute device re-
assignment in database systems that manage HTAP workloads efficiently.

and SAP HANA [17], address particular challenges implied by
the hybridization of both analytical and transactional workload
processing into one system. These challenges are: (b.i) different
data access patterns implied by different workload types,
(b.ii), continuous physical optimization in consideration of
contradicting optimization goals, and (b.iii) efficient processing
of both workload types without interferences between long-
running ad-hoc analytic queries and massive short-living write-
intensive transactional queries. Consequently, HTAP-workload
systems demand special concepts for physical storage layout
handling [18] including the capability to adapt to changes
in the workload during runtime [2], [3], [19] and advanced
techniques to detach analytic query execution from mission-
critical transactional data [1], [20].

A storage engine is highly tailored to challenges that
a database system faces and is fundamental for the entire
system. In this paper we argue that currently proposed design
decisions to face these challenges (a.i – iii & b.i – iii) might
be complementary to each other, especially when considered
from the perspective of a storage engine. We proceed with
our paper as follows: We first provide background to the field
of physical record organization including our experimental
findings (Section II). We then contribute the following to
bridge the gap between the design solutions from both fields:

• A novel storage engine design taxonomy (Section III).
• A survey and classification of state-of-the-art systems

from both fields (Sections IV-A and IV-B).
• An identification of characteristics for HTAP work-

loads on CPU / GPU systems (Section IV-C).

Author Copy of: Marcus Pinnecke, David Broneske, Gabriel Campero Durand and Gunter Saake. Are Databases Fit for Hybrid Workloads on GPUs? A Storage Engine’s Perspective.
IEEE 33rd International Conference on Data Engineering (ICDE), 2017, pp 1599-1606, DOI 10.1109/ICDE.2017.237

While several approaches exist for supporting HTAP work-
loads in CPU DBMSs and for using GPUs as database co-
processors, we’ve found that they are being treated as inde-
pendent from each other. There are no uniform concepts that
allow to compare the advanced design choices tailoring storage
engines for both types of approaches. We end this paper with
our summary in Section V.

II. BACKGROUND

For a better understanding of our paper, we first introduce
essential background on storage models to cover challenges
regarding physical record layouts. Afterwards, we present
our quantitative evaluation showing performance effects of
contradicting optimizations (storage model, threading policy,
and compute platform) within HTAP database systems on
heterogeneous compute platforms.

A. Classic Physical Record Organization for OLTP & OLAP

Database systems that implement the relational model (e.g.,
Ingres [21] or System R/DB2 [22], [23] to name the earliest)
are based on a physical manifestation of the concept of
relations as suggested by Codd [24]. However, due to the
2-dimensional concept of a relation, the content has to be
serialized to a format that can be stored in a linear stream
of memory. The serialization of a relation encompasses the
serialization of meta data and records. In fact, the way in
which a relation is serialized and accessed determines the CPU
cache utilization; as a result, serialization and access patterns
are of special importance for optimizing query performance in
hybrid-workload systems [25].

The data in a relation can be serialized following an N -ary
storage model1 (NSM) [26] or a Decomposed storage model
(DSM) [18]. In NSM, data is formatted as a sequence of
records, i.e., all fields of a record r

x

are stored sequentially
before the process is repeated with the successor r

x+1. NSM
is the foundation of row-oriented storage engines. In contrast
in DSM, data is formatted as a sequence of columns, i.e., all
fields of a certain column c

x

are stored in a sequence, before
this process is repeated with the next column c

x+1. DSM is the
foundation of column-oriented storage engines. Data inside a
relation R can be formatted following a certain physical record
layout, i.e., NSM or DSM. The physical record layout satisfies
the question on how data is stored. Another question is, where
the data is stored, e.g., on main-memory or on hard drive.
Whether NSM or DSM is the more suitable format to store
data in R depends on how the data in R is accessed rather
than where it is actually stored [2].

Historically, NSM was the first format employed for (trans-
actional) relational databases, because the main application
areas for database systems (e.g., communication, finance,
travel, manufacturing, and process control [27]) had a record-
centric data access pattern: each read / update operation in a
transaction accesses a small subset of the records of a relation,
and it also accesses a large subset of fields per record. For a
better understanding, consider the following query Q1:

Q1 : SELECT ⇤ FROM R WHERE pk = c;

1The concept of NSM is also termed slotted pages in the literature.

The query Q1 asks for all fields of all records in a relation
R whose field pk equals a certain constant value c. Assuming
the attribute pk is a (non-compound) primary key, the database
system can efficiently identify exactly one record without
scanning the entire relation. Once the record is found, all fields
are materialized for the result. This extreme case is an example
of a record-centric data access pattern. NSM combined with
the Volcano-style processing model suits well for this access
pattern in case the costs for function calls can be hidden by
data access costs. More specifically, NSM works well for disk-
based systems, but has limited CPU data cache efficiency for
main-memory systems [28], [29].

In contrast, DSM is utilized for database systems which are
issued with an attribute-centric data access pattern: operations
access a large subset of relation’s records, and a small to tiny
subset of fields per record. For a better understanding, consider
the following query Q2:

Q2 : SELECT sum(a) FROM R;

The query Q2 asks for the sum of all record values regarding
the attribute a of a relation R. Typically, the database system
runs an aggregation by accessing all records in R considering
exactly one attribute (i.e., all values for a). This extreme case
is an example of an attribute-centric data access pattern. DSM
is typically employed in analytic processing systems where
mostly aggregations and groupings are executed on read-only
data, while benefiting from late materialization and improved
compression rates [30]. DSM combined with a Bulk-style
processing model is a good match for analytic processing
in main-memory databases due to improved CPU data cache
efficiency [29], [31].

B. Contradicting Optimization Goals within HTAP Workloads

Despite some common beliefs, Plattner et al. showed in
2009 that update-intensive tasks of transaction processing
can be efficiently executed in DSM-powered main-memory
database systems [32]. Today, it is known that neither DSM
nor NSM is always the best choice [2], [3], [19], [29]. The
reason for this is in the contradicting access pattern of HTAP
workloads. The chosen physical record layout has a direct
impact on the query execution performance, since the format
affects which parts of the data are co-located and loaded in
advance by hardware data prefetchers. If data is misplaced,
the penalty is (i) a cache miss that requires to load the desired
data first from main memory to higher cache hierarchies, and
(ii) an unnecessary loading of additional data into the cache
that might force an eviction of useful data [33]. This does not
only apply to CPU caches, but also to the GPU’s counterparts.
Since GPU cache sizes are far more limited and graphics cards
offer on-chip local caches in addition, data placement must be
especially considered for GPU-based systems [10].

To emphasize the impact of (a) different physical storage
layouts, (b) different compute platforms, and (c) different
threading policies on the performance of (1) attribute-centric-
and (2) record-centric queries, we share some findings result-
ing from our latest experiments2. We run both materialization
and summing on records stored in the customer- resp. item

2Source code is public available: https://github.com/PantheonDBMS see
Pantheon-Research/Public/Storage-Engine/20170000D00HTAP/

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●

●●●●
●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
● ●●●

●

●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●

●

●● ●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●

●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●
●
●●●●●

0M

2500M

5000M

7500M

10000M

5M 15M 25M 35M 45M 55M 65M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

]

sum all prices in items table
[transfer costs to device excluded]

●●●●
●
●●●●●●●●●
●●
●●●●
●●●

●
●●
●
●●
●●
●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●

●●
●●● ●●●

●●●●
●●● ●●●●●●●●●●●●

●● ●●● ●●● ●●
●● ●●●●●●●●●●●●●●
● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●500M

1000M

1500M

2000M

5M 15M 25M 35M 45M 55M 65M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] sum all prices in items table

●● ●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●
●
●●●●
●
●
●
●

●●
●●

●●●●●
●
●●●●●●
●
●●

●●●
●
●●

●

●
●●●
●
●●●●●●

●●

●

●
●
●●

●

●
●

●
●
●

●

●●●●●
●
●
●●
●●●●●●●
●
●●●
●●●●●●
●●

●

●
●
●●
●●
●●
●
●
●
●
●●

●●●
●
●

●

●●
●

●
●●
●
●
●
●●●
●●
●●●●●●
●
●●

●

●●●●
●
●
●
●
●●●●●●●●
●
●●
●
●●
●●
●

●●

●●

●●

●●
●●●●
●
●
●
●
●●●
●●

●●●●
●

●●●
●●

●
●●●●●●

●

●●
●●●●●●
●
●
●●
●
●●
●●●●●●●●●●
●●●●
●
●
●●
●●●●
●
●
●●●
●
●●●●●●●●●●●●
●
●●

●
●●●
●
●●●●●

●

●●●●
●●

●
●
●
●
●●

●

●●●●
●●●●
●
●●
●
●●
●●●●●
●●●
●●●
●●●
●●
●
●●●●

●

●
●●●

●●●
●
●●●
●
●●●

●●
●

●

●●

●

●
●●●●
●
●
●●
●
●
●

●

●
●

●
●
●●

●●●
●
●●●
●●●●●
●●

●●
●
●
●●
●
●●
●

●●●
●

●
●
●
●
●●
●

●

●

●●
●●●
●●
●
●

●

●●
●●●
●
●●

●
●
●●
●●

●

●
●

●
●●●●
●●
●●
●●
●●●●●

●●
●
●
●●●●●●●●
●

●

●
●
●
●
●
●●

●

●

●
●
●
●
●●●
●
●●
●
●●●
●
●

●●●●●
●●●●

●

●
●
●●
●●●●

●●
●
●●●●●●●●●●●●●●
●●
●
●●●●●●●
●●●
●●●●●●●●●

●●●
●●●●●●
●●●●●●●●●●
●●
●●●●●●●●●●●●

0M

50M

100M

150M

10M 20M 30M 40M 50M 60M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] sum prices of 150 items

●●
●●
●

●

●●●
●

●
●
●
●
●
●
●●●

●
●●●●●
●●●
●
●●

●

●●●

●

●
●●

●

●
●●
●
●●●
●
●
●
●●

●

●
●●●●

●
●●
●
●
●●●●

●
●

●
●
●●●●

●
●

●

●
●
●●
●●

●
●
●
●●
●●●
●
●●●●●
●

●

●●

●

●●

●

●

●

●●
●
●●
●
●
●●●●●●
●
●
●
●

●

●
●
●●●●

●

●
●

●
●●●
●●
●●

●
●●
●
●

●

●●●●
●●●
●
●
●
●●●●●

●
●●
●●
●
●
●
●●●●
●●
●●
●
●●

●
●
●●
●
●●

●

●●●
●
●●

●

●●

●
●

●●●●●●
●●●●

●

●●●

●

●●●●●
●●
●

●●●

●
●●
●
●
●
●

●
●●
●●●

●
●●●●

●

●
●●●
●

●

●
●

●●
●●●●●●●●

●
●●●●●●
●●●●

●

●●

●

●

●●●●

●

●●●
●●
●

●
●●
●●
●

●

●

●

●
●●

●

●●
●

●

●●

●

●●

●

●●●●●

●

●●

●

●
●
●●
●
●●●
●

●

●
●●
●●
●
●●●
●
●
●●
●●

●

●

●

●

●

●

●●
●●
●
●●●●
●●●
●●●●
●●●●

●●●
●
●

●
●
●

●
●
●
●

●

●●

●

●
●●

●●

●
●

●
●

●●

●

●●
●
●

●●●
●
●
●●
●
●●

●

●
●●●●

●

●●●●
●
●●●●●

●

●●
●
●●●●●●●
●
●
●●●
●●
●●
●●●●
●

●

●●
●

●

●●

●
●

●●●

●

●
●●
●
●●●●●

●

●

●●●●
●●

●

●
●
●
●●
●●●
●
●
●

●
●●

●

●●●●
●

●●
●●
●
●

●

●●
●

●

●
●

●

●

●

●
●●
●
●●

●
●
●●

●

●

●
●●

●●

●●

●●●

●

●
●

●

●
●●

●

●●

●

●●●●●●●●
●
●
●
●
●
●●
●●●●●
●
●●●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●

●
●
●
●

●

●●●●●●●●●●●
●●●●
●

●

●●●●
●●
●
●●●●●

●●●●●●●●●
●●●
●●●●●●
●●●●●●●●●●
●●●●●
●●
●
●●●
●
●●
●●●●
●●
●
●●●●●●●●

●

●●●
●●
●●●

●

●●
●
●●●●●●
●
●●
●●●●●●
●●●●
●
●●●

●

●
●●
●●●
●●
●●●●●●
●
●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●
●●●
●●●●●●●●●●●
●●●●●●●●●
●
●●
●●●●●●●
●●●
●
●
●
●
●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●
●●
●
●●
●●●●●●●●●●●●
●
●
●
●●
●●●
●
●●
●

●●
●●●●
●●●●

●
●●●●●●●
●●●●●●
●●●
●●
●●●●●●●●●●

●
●

●

●
●●●●●
●●●●●●●
●●●●●●●●●●
●
●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●
●
●●●●●●●●●
●●●●●●●●
●●

●

●●●●●●●●●●●●
●●●●
●●●●
●
●●●●●●●●●
●●●
●
●
●●●
●

●●●●
●●●●●●●
●●
●
●
●●●●●
●
●●
●●●●●●●
●●●●●●
●●●●●●
●
●
●●●●●●●●●

0M

0.03M

0.06M

0.09M

0.12M

5M 25M 45M 65M 85M
#records in customer table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] materialize 150 customers

●●●●
●
●●●●●●●●●
●●
●●●●
●●●

●
●●
●
●●
●●
●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●

●●
●●● ●●●

●●●●
●●● ●●●●●●●●●●●●

●● ●●● ●●● ●●
●● ●●●●●●●●●●●●●●
● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●500M

1000M

1500M

2000M

5M 15M 25M 35M 45M 55M 65M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] sum all prices in items table

●●●●
●
●●●●●●●●●
●●
●●●●
●●●

●
●●
●
●●
●●
●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●

●●
●●● ●●●

●●●●
●●● ●●●●●●●●●●●●

●● ●●● ●●● ●●
●● ●●●●●●●●●●●●●●
● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●500M

1000M

1500M

2000M

5M 15M 25M 35M 45M 55M 65M
#records in item table

th
ro

ug
hp

ut
 [r

ec
or

ds
/s

] sum all prices in items table

row-store / host & multi-threadedcolumn-store / host & multi-threaded column-store / host & single-threaded row-store / host & single-threadedcolumn-store / device

Fig. 2. Different attribute- and record-centric operations executed on the same tables of the TCP-C bechmark dataset. None of the solutions is optimal for
HTAP workloads w.r.t. the storage layout, the threading policy or the data placement. The consequence is a space of choices that must be considered by the
storage- and execution engine.

table of the popular TCP-C benchmark, and consider record-
centric resp. attribute-centric data access pattern. In our setting,
a customer record has a size of 96 bytes for 21 fields, and an
item record has a size of 20 bytes for 4 fields + 8 bytes for
the price field. We assume that the entire database can be
kept in main memory. We vary the storage model, threading
policy and compute platform. Operator execution follows the
bulk-style processing model with late materialization. For the
host platform, in case of multi-threaded execution, we fix to
8 threads with blockwise partitioning of the input data (i.e.,
each thread operates on one exclusive and subsequent list of
input positions where each position refers to a certain tuplet
in the corresponding input table). In case of single-threaded
execution, there is no thread management involved at all. Thus,
single-threaded execution runs sequentially on the main thread.
On the device platform, we executed an optimized parallel
reduction kernel3 to calculate the sum of price fields. We
configured the kernel to run with at least 1024 blocks (each
having 512 threads). The final reduction was performed with 1
block and 1024 threads on the device, too. Although required
to compute the answers to our test queries, we exclude the
effort for join processing in our reports since these costs are
orthogonal to our purposes. More in detail, we consider costs
starting right after the output (i.e., sorted position lists) of the
last directly preceding join operator is available.

In Figure 2, we depict the results from executing our
experiments on commodity hardware4. The physical storage
layout, the threading policy and the compute platform all affect
the query performance; and there is no clear winner: (i) on a
tiny number of records (i.e., OLTP-style queries), sequential
execution outperforms multi-threaded execution since thread-
management costs dominate, (ii) for record-centric operations,
the NSM format outperforms the DSM format since NSM is
more cache friendly here, (iii) for attribute-centric operations
(OLAP-style), the DSM format outperforms the NSM with an
argument similar as for (ii), and (iv) once the price-column is
stored in device memory, a GPU outperforms a CPU (both with
columnar storage), since a GPU exposes massive parallelism
and higher throughput.

3The kernel based on a great tutorial by Mark Harris (chief technologist for
GPU computing software at NVIDIA), see https://github.com/parallel-forall.

4x86 64 host w/ Intel Core i7-6700HQ CPU2.60GHz, 4 cores on sin-
gle socket, L1/L2/L3 cache size: 32K/256K/6144K. 2x 8GB SODIMM
synchronous main memory, running UBUNTU 16.04.1 LTS, host-compiler:
CLANG++ 3.8 w/ O3 enabled; device: CUDA 8.0, capability 5.0, 4044
MBytes global memory, 5 multiproc. w/ 128 Cores/MP, L2: 2MB, max 1024
threads/block, no shared memory w/ host, compiler NVCC 8.0.44 w/ O3
enabled targeting 5.0 virtual GPU architecture

We outline two challenges for both employed compute
platforms for HTAP workloads: (i) physical storage layout
on the host, and (ii) under-utilization of the device. To
overcome some limitations of contradicting access patterns
by bridging between DSM and NSM for CPU-platforms, a
storage model called Partially Decomposed Storage Model
(PDSM) was proposed in 2010 [3]. In PDSM, a relation is
(disjointly) partitioned into a set of sub-relations by using
vertical partitioning [34]. PDSM is implemented within the
HYRISE storage engine to achieve good performance for
mixed-workloads. However, pure-PDSM aims to use bulk-style
processing of partitions for improving data-cache efficiency
compared to NSM. As shown by Arulraj et al. in 2016, PDSM
is less efficient than DSM for several cases [2]. For GPU-
platforms, it is important to understand that the GPU must
always be kept busy to avoid under-utilization in face of its
massive parallelism capabilities. Although He et al. suggested a
bulk-processing model for transactions without user interaction
(cf., [35]), it is currently unclear whether a fallback to the
host platform is reasonable for general-purpose transaction
processing.

III. CLASSIFICATION PROPERTIES AND TAXONOMY

While the definition of a flexible storage model (FSM, [2])
is sufficient to understand that an FSM format is somewhere
between the NSM and the DSM approach; we argue it is
too general for building a taxonomy of existing storage en-
gines. Consequently, we propose a series of more fine-grained
concepts. In concrete, we advance a system to consider the
capability of HTAP-workload storage engines regarding their
layout and fragment management.

To enable a uniform classification, we suggest both con-
cepts, layouts and fragments, as a generalization from a
magnitude of terms presented in the literature (e.g., cf. ”column
group” in [19] and ”container” in [3]). We define a relation
similar to common understanding with the following exten-
sions: relations can have multiple alternative layouts; a layout
is a complete relation divided into a set of possibly overlapping
fragments. A fragment spans a ”gapless” region of data in a
relation. The per-tuple portion that falls inside a given fragment
is called a tuplet. A sub-relation is a fragment of a relation
R where all layouts in R are exclusively managed by vertical
fragmentation.

We present a visualization of our terminology in Figure 3.
In Figure 4 on Page 5 we depict an overview of the taxonomy
we define using our terminology. We proceed with a more

SubG. A B C

D

Group

Special

OLAPOLTP

Relation R

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e2

e3

e4

Layout 1 for R (weak flexible)

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e1

e2

e3

e4

Layout 2 for R (strong flexible)

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e1

e2

e4

Fragment (Thin)

Tuplet

Sub-RelationSchema

A B C D E A B C DD E

a1

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4

Linearization d1 d2 d3 d4DSM-Emulated e1 e2 e3 e4

DirectLinearization

NSM-Emulated

Linearization

Fragment
(Fat)

Relation R

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

e1

e2

e3

e4

TupletTuple

Schema

A B C D E

Linearization

Linearization

Fragment
(Fat)

NSM-Fixed

DSM-Fixed

Tuple

B CA E

e1 a1

e3

a2 b2 c2 a3 b3 c3

b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

b3 c3a3

NSM-Fixed

DSM-Fixed

Fig. 3. Terminology used in this paper. A relation R can have multiple
layouts each describing R in terms of several fragments (thin or fat). Pure-
vertically partitioned layouts are called sub-relations. A tuple fragment in a
fragment is called tuplet. Depending on the fragment type, the linearization
type varies for NSM and DSM.

detailed introduction of properties to classify storage engines
based on the concepts of layouts and fragments:

Layout handling. If a storage engine limits a relation
R to have exactly one layout, then R has a single layout.
Otherwise R is multi-layout. Storage engines can emulate a
multi-layout property for a relation R by holding relations
R1, R2, ..., Rk

under the same name, but relations in R have
pair-wise different fragments (e.g., different storage models, or
data locations) following a data replication strategy.

Layout flexibility. A storage engine is inflexible if it
supports only one fragment per layout. Otherwise the storage
engine is called flexible. A flexible storage engine is weak
if all layouts apply the same partitioning technique to define
fragments (either horizontal or vertical fragmentation). A weak
storage engine always satisfies that its fragments are either
in a vertical fragmentation or in a horizontal fragmentation.
A flexible storage engine is strong if it supports layouts
that combine vertical and horizontal partitioning to define
fragments. If the definition of a fragment has side-effects to
adjacent fragments (e.g., forcing a certain partitioning) in the
context of a strong flexible layout, or if the order of the
partitioning is pre-defined, then the layout flexibility is called
constrained. Otherwise it is called unconstrained.

Layout adaptability. During runtime, a flexible storage
engine might react to changes in the workload and adapt
fragments of a certain layout. If a storage engine supports this
dynamic re-organization of layouts, the storage engine’s layout
adaptability is responsive. Otherwise (or in case the storage
engine is inflexible), it is called static.

Data location. Tuplets are stored on a certain storage
medium, such as main-memory, device-memory, or flash drive.
If all tuplets are stored exclusively in the main memory,
then the fragment’s data locality is called host-memory-only,
conversely it is device-memory-only (or secondary-memory-
only) if all tuplets are not stored in the main memory (e.g.,
they are stored exclusively in a compute platform’s memory, or

on disk). If the data location is host-memory-only or device-
memory-only, the data locality is centralized. If the storage
engine supports data locations that are neither host-memory-
only nor device-memory-only, the data location is called mixed
and the data locality is distributed.

Fragment linearization properties. A fragment of a rela-
tion can be fat or thin. A fragment is fat iff it contains at least
two tuplets and at least two attributes in its schema. Since a
fat fragment is two-dimensional, it must be linearized in order
to be stored into one-dimensional memory. Linearization is
sequentially arranging tuplets by either the NSM or DSM for-
mat. If a storage engine supports fat fragments but is restricted
to either NSM or DSM, then the linearization is NSM-fixed or
DSM-fixed. If the storage engine supports NSM or DSM for fat
fragments, the linearization is variable. A fragment is thin iff it
is not fat. Since a thin fragment is one-dimensional it does not
require linearization. In this case, the linearization property is
called direct. Flexible storage engines can emulate NSM-fixed
or DSM-fixed linearization, by either horizontal or vertical
fragmentation of a layout into thin-only fragments, and then
applying direct linearization. This technique is called NSM-
emulated or DSM-emulated. If this emulation does not cover
the entire schema of the relation (i.e., some fragments remain
fat), this technique is called variable DSM-fixed partially NSM-
emulated if remaining fat fragments are DSM-fixed linearized
or variable NSM-fixed partially DSM-emulated if remaining
fat fragments are NSM-fixed linearized.

Please note, the difference between linearization of a fat
fragment with DSM, and linearization of n thin fragments with
DSM-emulated: the first stores all per-column fields of tuplets
in one subsequent block of memory, while the latter stores
column fields of tuplets in n different memory blocks (one
per column). The latter appears for concepts where columns
are equivalent to multiple distinct vectors, while the former
appears for concepts where columns are stored in one single
vector. The same applies for NSM resp. NSM-emulated.

Fragment scheme. In multi-layout relations, there are
more fragments than are actually required to cover the tuples
of a relation. A replication-based approach holds copies of
tuplets (e.g., with different storage model formats) that cannot
be referenced between fragments of multiple layouts (e.g.,
when the format definition of the data storage model is con-
tradictory). A delegation-based approach restricts the access
of certain regions from certain layouts, since some tuplets are
exclusively stored in certain layouts. As a consequence, there
is no data redundancy between layouts for non-shared data
regions. However, storage engines using a delegation-based
approach must manage delegation policies to avoid undefined
behavior.

In the following Section IV, we employ our proposed
taxonomy, to provide an account on storage engines.

IV. SURVEY AND CLASSIFICATION

Several promising storage engines have been proposed in
the last decades. In this section we survey some storage engines
(Section IV-A) and database systems (Section IV-B) to classify
them regarding the properties that we suggest in Section III.
We provide a summary on our classification in Table I. In

Layout Layout Layout Data Fragment Fragment Processor Workload Date /
handling flexibility adaptability location linearization scheme support support Paper

PAX single inflex. static Host + Disc centr. fat, DSM-fixed - CPU HTAP 2002 [25]
FRAC. MIRRORS built-in multi inflex. static Host + Disc distr. fat, NSM+DSM-fixed replication CPU HTAP 2002 [36]
HYRISE single weak flex. respons. Host + Host centr. fat, variable - CPU HTAP 2010 [3]
ES2 built-in mult. strong flex. respons. Host. + distr. fat, DSM-fixed delegated CPU HTAP 2011 [37]
GPUTX single weak flex. static Dev. + Dev. centr. thin, DSM-emulated - GPU OLTP 2011 [35]
H2O single weak flex. respons. Host + Host centr. v. NSM-fixed p. DSM-emul. - CPU HTAP 2014 [19]
HYPER single strong flex. respons. Host + Host centr. thin, DSM-emulated - CPU HTAP 2015 [38]
COGADB built-in multi weak flex. static Mixed + distr. thin, DSM-emulated replication CPU / GPU OLAP 2016 [16]
L-STORE single strong flex. respons. Host + Host centr. DSM-emulated delegated CPU HTAP 2016 [39]
PELOTON DBMS built-in mult. strong flex. respons. Host + Host centr. fat, variable delegated CPU HTAP 2016 [2]

TABLE I. SUMMARY OF SURVEY ORDERED BY DATE (HOST = HOST MEMORY, DEV = DEVICE MEMORY).

St
or

ag
e

En
gi

ne

Layout
Handling

Layout
Flexibility

Layout
Adaptability

Data
Location

Fragment
Linearization

Fragment
Scheme

Built-In

Emulated
Inflexible

Flexible
Weak

Strong
Constrained

Unconstrained
Static

Target

Host-Memory-Only

Device-Memory-Only

Mixed

Locality
Centralized

Distributed

Emulated
Linearization

NSM-Fixed Partially
DSM-Emulated

Replication-Based

Delegation-Based

Thin
Fragments

Fat
Fragments

Responsive

Multi Layout

Single Layout

NSM-Fixed

DSM-Fixed

Direct
Linearization

Variable

NSM

DSM

Variable

DSM-Fixed Partially
NSM-Emulated

Fig. 4. Taxonomy on classification properties of storage engines.

Section IV-C we provide a wrap-up of our findings w.r.t. hybrid
workload management in CPU / GPU database systems.

A. Storage Engines

Next, we survey notable storage engines proposed by early
research (e.g., PAX) and more recent research (e.g., ES2).

1) PAX: With the PAX storage model [25], Ailamaki et
al. proposed a page-level decomposition storage model in the
context of disk-based database systems that try to get the
best of both storage models DSM and NSM. Conceptually,
a relation has one layout that is horizontally split in n fat
fragments where n is determined by the page size. Each fat
fragment is afterwards linearized using a DSM-fixed approach.
Therefore, PAX is a single-layout storage approach based on
horizontal fat fragments using DSM-fixed linearization. PAX
has a static layout adaptability since neither the fragmentation
strategy nor the linearization technique can be changed. PAX
was designed for disk-based systems powered by a database
buffer manager. Consequently, the primary storage is the hard
disk drive. However, the working set is kept in main-memory
and PAX was evaluated on a single machine. Although both
of these properties are not inherently required for PAX, the
original concept relates to a host-only data location with

centralized data locality on the secondary storage.

2) Fractured Mirrors: An early approach from 2002 to
manage conflicting linearizations models (i.e., NSM vs DSM)
in HTAP workloads for disk-based database system is the
replication-based inflexible multi-layout fractured mirrors ap-
proach by Rösch et al. [36]: the idea is to have two logical
copies of a relation with each possessing its own storage model
rather than having two physical copies of the relation on two
disks. In fractured mirrors, a relation has two layouts, with
one fat fragment each that spans the entire schema of the
relation, and which is linearized using the NSM (or DSM)
format. In detail, fractured mirrors hold a number of NSM-
styled pages and n additional DSM-styled pages where n is
the number of attributes in the schema of the relation. Thus, the
relation is physically replicated at page level. Fractured mirrors
considers the data skew on multiple disks while guaranteeing
data mirroring in case of physical failures of a single disk. With
fractured mirrors, the pages of both fragments are distributed
on disks such that each disk holds a copy of the relation
but both fragments are equally represented on all disks. Thus,
fractured mirrors uses an NSM-fixed/DSM-fixed technique.

3) HYRISE: In 2010, Grund et al. proposed a weak
flexible storage engine in the context of host-only data with
centralized storage [3]. A relation in HYRISE is laid out by
n sub-relations which are called containers. Each container in
HYRISE is formatted as a list of continuous memory blocks.
A sub-relation can vary regarding the number of attributes the
sub-relation schema contains. In addition, each sub-relation
can be formatted using NSM or DSM. Since HYRISE manages
fat fragments, it can apply NSM or DSM linearization for
tuplets. HYRISE supports both linearization techniques for all
fragment types, and variable linearization on fat fragments.
With the aim of improving co-location of data and cache
efficiency for HTAP workloads, HYRISE supports an automatic
re-adapting of per-sub-partition widths. Therefore, the storage
engine in HYRISE is responsive to workload changes. How-
ever, HYRISE follows a single layout approach since a relation
has a certain layout at a time.

4) ES2: The system EPIC is an elastic power-aware cloud
platform for data-intensive applications in the context of dis-
tributed computing. The motivation behind this platform is to
enable efficient management of HTAP workloads for cloud
computing. One notable property of EPIC is its intentional
use of the relational data model instead of the dominating
key-value data model for transactional cloud platforms. This
design decision is driven by the requirements for analytic

processing (as part of HTAP processing) in the cloud. In
2011, Cao et al. provided insights into EPIC’s elastic storage
engine that is designed for large cluster of shared-nothing
commodity machines, ES2 [37]. ES2 supports relations to
be fragmented via both vertical and horizontal partitioning.
Fragment re-adaption is continuously executed based on query
workload traces. The fragmentation strategy is built-in and
consists of two steps. First (but optional), if columns are
frequently accessed together, then these columns are moved
into one new physical sub-relation. This strategy allows to
hide less-frequently accessed columns, which improves cache-
efficiency resp. reduces I/O costs for attribute-centric data ac-
cess. Second, each such sub-relation is automatically split into
further fragments (called partitions) by horizontal partitioning.
The latter step allows to minimize the number of workers that
access multiple compute nodes by placing certain partitions
intentionally at a certain node. Record-centric data access
is managed with distributed secondary indexes. Thus, EPIC
is powered by a constrained strong flexible storage engine.
Since ES2 distributes both indexes and partitions to nodes in
the cluster, it exploits a delegation-based fragment scheme.
However, for load balancing and fault tolerance, data can also
be replicated. The backbone for data storage in ES2 is a
slightly modified Hadoop distributed file system (DFS) that
is used as a raw-byte device to which PAX-formatted tuplets
are written. Hence, the storage engine of EPIC exposes a
distributed location of data that is stored on the host’s compute
platform memory or disk, and which inherits the fragmentation
linearization property of PAX.

5) H2O: With H2O, Alagiannis et al. present a weak
flexible storage engine that is capable of managing DSM
and NSM for a single relation, responding to changes in the
workload. Relations in H2O are organized by n sub-relations
created using a horizontal (i.e., weak-flexible) partitioning.
Each fragment is per default a fat fragment linearized using
NSM-fixed. However, if the number of attributes of a sub-
relation is set to one, the fragment becomes a thin fragment that
is directly linearized. In fact, if a relation with m attributes is
split into m sub-relations, the DSM storage is emulated. There-
fore, H2O uses a variable NSM-fixed partially DSM-emulated
linearization. Layouts in H2O are responsive to changes in
the workload during runtime by lazily applying a new layout
after evaluating alternative layouts from a pool. However, since
H2O does neither support overlapping partitions nor multiple
layouts for a single relation at a fixed time, H2O is a single
layout approach. As originally proposed by Alagiannis et al.,
H2O is a storage engine for data stored in centralized host-only
memory.

B. Database Systems

Next, we survey systems focusing on host/device memory.

1) GPUTX: A single transaction is a small and simple
task that might underutilize the parallelism available in modern
graphics cards. With GPUTX [35], He et al. propose an in-
memory relational database prototype for transaction workload
processing on graphics cards that addresses this issue by bulk-
processing of transactions. GPUTX is powered by a storage
engine that is tailored to the characteristics of graphics cards,
e.g., the transfer costs from host to device memory and vice
versa. A relation in GPUTx is organized by n thin fragment

sub-relations. Since GPUTX is a proof-of-concept of GPU-
based transaction processing, its weak-flexible storage manager
does not consider multiple layouts. Since the storage engine
of GPUTX addresses a sub-relation approach only, it cannot
change the layout of a relation. Thus, the layout adaptability
of GPUTX is static. GPUTX manages a result pool in host-
memory that retrieves copies from the device-memory. Since
the use of host-memory is required to deliver processing results
to users but relations are stored and processed in device-
memory, GPUTX uses a secondary-only data location.

2) HYPER: The key motivation behind the engineering
of HYPER was to build an HTAP-workload database system
with a competitive performance compared to dedicated systems
specialized for a single workload-type [1]. The storage engine
of HYPER was re-newed in 2012 by Funke et al. to support
combined horizontal and vertical partitioning, i.e., contributing
a flexible storage engine [38]. In HyPer, a relation is physically
organized by a hierarchy of partitions, chunks and vectors. A
partition in HYPER is a sub-relation, i.e., HYPER applies first
vertical partitioning to a relation. A resulting sub-relation is
further split into horizontal (inner) fragments (called chunks).
Therefore, HYPER applies a constrained strong flexible layout
to relations, since a relation is compound of multiple fragments
having side-effects to each other. One such side-effect is the
dictation of boundaries of chunks. However, a chunk in a
sub-relation is organized as a set of vectors. Each vector
represents exactly one attribute of the sub-relation’s schema.
Thus, a vector in HYPER is a thin fragment. Since the entire
relation is organized that way, there are no fat fragments
left. Consequently, HYPER applies a DSM-emulated fragment
linearization approach. To the best of our knowledge, HYPER
applies dynamic re-organization of fragments in the layout of
relations but does not manage non-emulated multiple layouts.
Hence, HYPER is powered by a single-layout storage engine.
In addition, HYPER’s storage engine is responsive to changes
in an HTAP workload [38].

3) COGADB: With COGADB, Breß et al. proposed a
cross-device CPU / GPU database system for analytic pro-
cessing, featuring a weak flexible storage engine which is
similar to GPUTX [7]. In contrast to GPUTX, COGADB
addresses the problem of query plan generation in heteroge-
neous architectures following a hardware-oblivious paradigm.
COGADB features a self-adapting query optimizer (HYPE)
that learns cost models and balances the workload between
all compute devices [8]. Since data movement to and from
device memory is a notable bottleneck, COGADB allows
thin fragment sub-relations of a relation to be kept on host-
memory, device-memory, or on both memory locations using
a replication-based approach. As a result, COGADB’s storage
engine supports mixed data locations with distributed data
locality. COGADB follows an ”all or nothing” approach for
moving a thin fragment (i.e., the i-th column of a relation)
from host to device memory: either there is enough space
for the column in the device memory, or not. If there is
enough space, the column is placed in the device memory.
Otherwise a fallback operation is scheduled that leaves the
column in host memory. If the column fits into device memory,
COGADB applies several strategies to handle side-effects (e.g.,
cache trashing or heap contention) during query processing on
graphics cards [16]. In its current version, COGADB’s storage
engine exposes multiple layouts on a relation but applies

exclusively vertical fragmentation to a set of columns.

4) L-STORE: In early 2016, Sadoghi et al. present the
main-memory database system L-STORE that was designed
to manage HTAP workloads with the capability of historic
querying [39]. The underlying strong flexible layout respon-
sive storage engine features demand-driven changes of the
physical storage layout of tuples, optimizing either for write
or for read operations. In L-STORE, a relation is encoded by
three components: a set of base pages, a set of tail pages
and a page dictionary. Base and tail pages are the primary
data container for tuple fields. A pair of base and tail pages
form a single attribute column of a relation. Both together,
the base and tail pages in such a pair, contain all field data
for the corresponding attribute for all contained tuples. Thus,
L-STORE manages a relation by a set of sub-relations where
each attribute in the relation’s schema corresponds to a single
vertical fragment. Since the mapping between attribute and
vertical fragment cannot be changed, L-STORE exposes a
single layout architecture. However, each fragment is further
split individually into two parts: the upper read-only (and
compressed) base page part and the lower append-only tail
page part. An attribute field of a tuple is a reference to a value
in the corresponding base page part of the relation to which the
tuple belongs, rather than a concrete value. This design enables
a fine-grained control of attribute values. When the value of a
field for a certain tuple (called base record) is modified, a new
tuple (called tail record) is appended to the relation. This tail
record shares the same references to base page values as its
out-dated counterpart (i.e., its base record) with one exception:
the modified field. The modified field points to a newly added
value in the tail page part. The book-keeping between pages
and records is in the responsibility of the page dictionary. The
page dictionary also hides the information from its clients
whether a certain record is made of base or tail pages. L-
STORE applies DSM-emulated fragment linearization to satisfy
attribute-centric query performance requirements. For record-
centric queries, L-STORE requires to dereference values that
are spread between multiple fragments. This might cause
additional cache misses in direct comparison to records that
are formatted using plain NSM. However, the deep integration
of historic data handling is a notable feature of the L-STORE
storage engine.

5) PELOTON: Recently, Arulraj et al. suggest a multi-
layout storage engine with a tile-based architecture in the
context of main-memory database systems issued with HTAP
workloads. Their proposal is implemented in the PELOTON
database [2]. In a tile-based architecture, a relation is repre-
sented in terms of tile groups. A tile group is a horizontal
fragment. Each fragment in a tile group is further vertically
fragmented into (inner) fragments called logical tiles. Similar
to HYPER, this design is a constrained strong flexible layout
approach with the same argument as for HYPER. The dif-
ference to HYPER is the order of vertical resp. horizontal
fragmentation at the logical-tile level. However, in the tile-
based architecture, logical tiles contain references to values
stored in several physical tiles. The authors argue for this
concept, which they call layout transparency (LT). LT enables
to abstract from tuplets in a logical tile. This means, fragment
linearization is done in a physical tile rather than in a logical
one. A physical tile is a fat fragment incorporating tuplets from
several layouts from different relations. Tuplets in physical tiles

can be physically formatted using NSM or DSM. Thus, the tile-
based architecture exposes a variable fragment linearization.
Unfortunately, the authors do not explicitly state how the
data in logical tiles is actually linearized. However, their
presented storage engine was evaluated in PELOTON which is a
main-memory-focused database system. Thus, their approach
is primary-only centralized regarding the data location. The
tile-based architecture exposes a delegation-based fragment
scheme, i.e., tuplets between several layouts of several rela-
tions can be shared due to the logical tiles abstraction and
sharing of tuplet values in terms of physical tiles.

C. Wrap-Up & Consequences

Based on our in-depth examination of storage engines,
we can conclude that none of today’s database systems are
ready to process HTAP workloads employing both CPU and
GPU. This holds on both directions: latest research on flexible
storage approaches w.r.t. HTAP-workloads in main-memory
fails to consider graphics cards as storage medium (and GPUs
as processing unit). Conversely, none of today’s GPU-powered
database systems combine analytic- and transaction processing
with HTAP workload processing. This distinction is reflected
in the design and capabilities of storage engines for these
systems. Clearly, none of the HTAP-workload main-memory
database systems are aware of characteristics of graphics cards;
especially they cannot consider operator or data placement to
graphic cards for query processing. Likewise, no CPU / GPU
database system has a storage engine capable to fulfill the
needs of HTAP-workload processing (e.g., layout flexibility, or
more advanced concurrency control). To contribute to bridging
this gap, we next present our suggestion for a reference storage
engine design: (1) at least constrained strong flexible layout
support, (2) layout responsive to changes in workloads, (3)
mixed data location and distributed data locality, (4) frag-
mentation linearization that cover NSM and DSM, (5) built-in
multi layout handling for relations, and (6) fragment scheme
supports delegation.

V. SUMMARY

In this paper we ask the question whether current database
systems are ready for HTAP workloads on CPU and GPU.
Our question is driven by two facts and one observation. First,
recent research on GPU processing in databases has shown
potentials to increase the overall query execution performance,
constituting a promising solution to address technical limita-
tions, such as the power wall. Second, the hybridization of
analytic and transaction processing database systems is an in-
creasing need in modern data management, and much has been
done to provide advanced storage engines that dynamically
solve the physical optimization contradictions from combining
both workload types. Our observation is that both research
areas are to-date distinct from each other. This is critical
since it prevents support for HTAP workloads on database
systems powered by both CPU and GPU. By considering the
latest concepts for storage management from both domains,
we can answer our question with a resolute not yet. Since a
storage engine is one of the most fundamental components in
any database system, it is only natural that to move research
forward, one must first appraise what has been done so far in
both research areas and what can be expected when merging

the concerns of both to enable HTAP workloads on CPU and
GPU. For this, we introduced a terminology based on layout-
and fragment-management which generalizes techniques pre-
sented in the literature, and enables a conceptual comparison
of diverse storage engines presented in the literature. On top of
this terminology, we introduced relationships and hierarchies
for terms of this taxonomy. We use both, the presented
terminology and taxonomy, to examine state-of-the-art storage
engines and database systems from a conceptual perspective.
We conclude that none of today’s storage engines are capable
to process HTAP workloads on CPU and GPU, achieving the
same benefits that one dedicated system for a single domain
could do. Finally, we present a reference storage engine design
that covers the ideal storage engine capabilities drawn from
both, HTAP workloads on CPU and OLTP or OLAP processing
on GPU. These design characteristics must be considered for
competitive HTAP workload processing on CPU and GPU.

VI. ACKNOWLEDGMENT

We thank our reviewers for their valuable feedback, and
the DFG for funding (DFG; grant no.: SA 465/50-1).

REFERENCES

[1] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots,” in ICDE.
IEEE Computer Society, 2011, pp. 195–206.

[2] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the archipelago between
row-stores and column-stores for hybrid workloads,” in SIGMOD,
vol. 19, 2016, pp. 57–63.

[3] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudré-Mauroux, and
S. Madden, “HYRISE - a main memory hybrid storage engine,” PVLDB,
vol. 4, no. 2, pp. 105–116, 2010.

[4] P. Rösch, L. Dannecker, G. Hackenbroich, and F. Färber, “A storage
advisor for hybrid-store databases,” PVLDB, vol. 5, no. 12, pp. 1748–
1758, 2012.

[5] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali, “Hybrid transac-
tion/analytical processing will foster opportunities for dramatic business
innovation,” Gartner, 2014.

[6] S. Borkar and A. A. Chien, “The future of microprocessors,” Commu-
nications of the ACM, vol. 54, no. 5, pp. 67–77, 2011.

[7] S. Breß, “The design and implementation of CoGaDB: A column-
oriented GPU-accelerated DBMS,” Datenbank-Spektrum, vol. 14, no. 3,
pp. 199–209, 2014.

[8] S. Breß and G. Saake, “Why it is time for a HyPE: A hybrid query
processing engine for efficient GPU coprocessing in DBMS,” VLDB
PhD Workshop, vol. 6, no. 12, pp. 1398–1403, 2013.

[9] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake, “GPU-
accelerated database systems: Survey and open challenges,” TLDKS,
vol. 15, pp. 1–35, 2014.

[10] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “Relational query coprocessing on graphics processors,” ACM
Trans. Database Syst., vol. 34, no. 4, pp. 1–39, Dec. 2009.

[11] M. Pinnecke, D. Broneske, and G. Saake, “Toward GPU accelerated
data stream processing,” in Proc. GI-Workshop GvDB. GI, 2015, pp.
78–83.

[12] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen
et al., “A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed computing, vol. 61, no. 6, pp. 810–
837, 2001.

[13] A. P. Sheth and J. A. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM Comput-
ing Surveys (CSUR), vol. 22, no. 3, pp. 183–236, 1990.

[14] M. Pinnecke and B. Hoßbach, “Query optimization in heterogenous
event processing federations,” Datenbank-Spektrum, vol. 15, no. 3, pp.
193–202, 2015.

[15] G. Chen, X. Shen, B. Wu, and D. Li, “Optimizing data placement on
GPU memory: A portable approach,” IEEE TC, vol. PP, no. 99, pp.
1–1, 2016.

[16] S. Breß, H. Funke, and J. Teubner, “Robust query processing in co-
processor-accelerated databases,” in SIGMOD. ACM, 2016, pp. 1891–
1906.

[17] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“SAP HANA database: Data management for modern business appli-
cations,” SIGMOD Rec., vol. 40, no. 4, pp. 45–51, 2012.

[18] G. P. Copeland and S. N. Khoshafian, “A decomposition storage model,”
SIGMOD Rec., vol. 14, no. 4, pp. 268–279, 1985.

[19] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2O: A hands-free adaptive
store,” in SIGMOD. ACM, 2014, pp. 1103–1114.

[20] T. Neumann, T. Mühlbauer, and A. Kemper, “Fast serializable multi-
version concurrency control for main-memory database systems,” in
SIGMOD. ACM, 2015, pp. 677–689.

[21] M. Stonebraker, G. Held, E. Wong, and P. Kreps, “The design and
implementation of INGRES,” ACM Trans. Database Syst., vol. 1, no. 3,
pp. 189–222, Sep. 1976.

[22] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N.
Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl,
G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson, “System R:
Relational approach to database management,” TODS, vol. 1, no. 2, pp.
97–137, Jun. 1976.

[23] D. J. Haderle and R. D. Jackson, “IBM database 2 overview,” IBM Syst.
J., vol. 23, no. 2, pp. 112–125, Jun. 1984.

[24] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[25] A. Ailamaki, D. J. DeWitt, and M. D. Hill, “Data page layouts for
relational databases on deep memory hierarchies,” VLDB Jour., vol. 11,
no. 3, pp. 198–215, 2002.

[26] R. Ramakrishnan and J. Gehrke, Database management systems.
McGraw-Hill, 2000.

[27] J. Gray and A. Reuter, Transaction processing: Concepts and tech-
niques, 1st ed. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1992.

[28] G. Graefe, “Volcano – an extensible and parallel query evaluation
system,” TODS, vol. 6, no. 1, pp. 120–135, Feb. 1994.

[29] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold,
A. Kemper, and M. Kersten, “CPU and cache efficient management of
memory-resident databases,” in ICDE. IEEE Computer Society, 2013,
pp. 14–25.

[30] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores: How different are they really?” in SIGMOD. ACM, 2008, pp.
967–980.

[31] M. L. Kersten, S. Plomp, and C. A. van den Berg, “Object storage
management in goblin.” in IWDOM, M. T. Özsu, U. Dayal, and
P. Valduriez, Eds. Morgan Kaufmann, 1992, pp. 100–116.

[32] H. Plattner, “A common database approach for OLTP and OLAP using
an in-memory column database,” in SIGMOD. ACM, 2009, pp. 1–2.

[33] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a
modern processor: Where does time go?” PVLDB, pp. 266–277, 1999.

[34] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
relations for cache performance,” PVLDB, pp. 169–180, 2001.

[35] B. He and J. X. Yu, “High-throughput transaction executions on
graphics processors,” PVLDB, vol. 4, no. 5, pp. 314–325, Feb. 2011.

[36] R. Ramamurthy, D. J. DeWitt, and Q. Su, “A case for fractured mirrors,”
PVLDB, pp. 430–441, 2002.

[37] Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T. Vo, S. Wu,
and Q. Xu, “ES2: A cloud data storage system for supporting both
OLTP and OLAP,” in ICDE. IEEE, 2011, pp. 291–302.

[38] F. Funke, A. Kemper, and T. Neumann, “Compacting transactional data
in hybrid OLTP&OLAP databases,” PVLDB, vol. 5, no. 11, pp. 1424–
1435, Jul. 2012.

[39] M. Sadoghi, S. Bhattacherjee, B. Bhattacharjee, and M. Canim,
“L-Store: A real-time OLTP and OLAP system,” CoRR, vol.
abs/1601.04084, 2016.

