
HTTPOS: Sealing Information Leaks with Browser-side Obfuscation of
Encrypted Flows

Xiapu Luo§∗, Peng Zhou§, Edmond W. W. Chan§, Wenke Lee†, Rocky K. C. Chang§, Roberto Perdisci‡

The Hong Kong Polytechnic University§, Georgia Institute of Technology†, University of Georgia‡

{csxluo,cspzhouroc,cswwchan,csrchang }@comp.polyu.edu.hk , wenke@cc.gatech.edu , perdisci@cs.uga.edu

Abstract

Leakage of private information from web applications—
even when the traffic is encrypted—is a major security
threat to many applications that use HTTP for data deliv-
ery. This paper considers the problem of inferring from en-
crypted HTTP traffic the web sites or web pages visited by
a user. Existing browser-side approaches to this problem
cannot defend against more advanced attacks, and server-
side approaches usually require modifications to web enti-
ties, such as browsers, servers, or web objects. In this paper,
we propose a novel browser-side system, namely HTTPOS,
to prevent information leaks and offer much better scalabil-
ity and flexibility. HTTPOS provides a comprehensive and
configurable suite of traffic transformation techniques for
a browser to defeat traffic analysis without requiring any
server-side modifications. Extensive evaluation of HTTPOS
on live web traffic shows that it can successfully prevent the
state-of-the-art attacks from inferring private information
from encrypted HTTP flows.

1 Introduction

Leakage of private information from web applications
is a major security threat to many applications that use
HTTP for data delivery. Cloud computing and other similar
service-oriented platforms will only exacerbate this prob-
lem, because these services are usually delivered through
web browsers. Moreover, it is well known that data encryp-
tion alone is insufficient for preventing information leaks.
For instance, traffic-analysis attacks can identify the web
sites visited by a user from encrypted traffic [7, 22, 23, 26]
and anonymized NetFlows records [14]. Chen et al. have
further showed that sensitive personal information, such as
medical records and financial data, could also be inferred
through traffic analysis [13]. Besides, a user’s browser
could be fingerprinted [39], and her browsing patterns could

∗Most of the work by this author was performed while at GeorgiaTech.

be profiled from traffic features [29]. A common approach
to preventing leaks is to obfuscate the encrypted traffic by
changing the statistical features of the traffic, such as the
packet size and packet timing information [13,23,35,38].

Existing methods for defending against information
leaks, however, suffer from quite a few problems. A major
problem is that, as server-side solutions, they require modi-
fications of web entities, such as browsers, servers, and even
web objects [13,38]. Modifying the web entities is not fea-
sible in many circumstances and cannot easily satisfy differ-
ent applications’ requirements on information leak preven-
tion. A second fundamental problem with these methods
is that they are still vulnerable to some advanced traffic-
analysis attacks. For example, although Sun et al. [35] pro-
posed twelve approaches to defeat their traffic-analysis at-
tack based on web object size, new attacks based on the
tuple of packet size and direction [26] could still identify
the web sites visited by a user. Finally, the efficacy of these
methods has not been validated thoroughly based on actual
implementations and live HTTP traffic. An exception is the
work from Chen et al. [13] that is implemented as an IIS
extension and a Firefox add-on.

In this paper we explore a browser-side approach to pre-
vent information leaks from encrypted web traffic. Com-
pared with the server-side approach, the browser-side ap-
proach has the scalability advantage, because only the traf-
fic between the browser and the visited servers needs to be
obfuscated. Moreover, it is possible for users to choose
which encrypted flows to be obfuscated in order to con-
serve resources and to reduce impacts on performance, but
this flexibility advantage is very difficult to obtain from a
server-side approach. However, designing a browser-side
method is very challenging, because the server’s behavior
cannot be directly modified to evade traffic analysis. That
is, we cannot apply the previously proposed methods that
assume the capability of modifying the server’s behavior to
the browser-side approach.

We show in this paper that it is possible to devise a
browser-side method to defeat traffic analysis by presenting
HTTPOS (which stands for HTTP or HTTPS with Obfus-

cation), our proposed browser-side method. In addition to
the advantages discussed above, HTTPOS has several other
important advantages, such as supporting a wider scope of
application scenarios than the previous approaches (see the
threat model in Section 2). HTTPOS is a user-level pro-
gram and does not need to modify any web entity. It obfus-
cates encrypted web traffic by modifying four fundamen-
tal network flow features on the TCP and the HTTP layers,
namely, packet size, timing of packets, web object size, and
flow size. These features, as shown in the evaluation, are
sufficient for diffusing and confusing the existing traffic-
analysis attacks. To modify the traffic from web servers,
HTTPOS exploits a number of basic features in TCP (e.g.,
Maximal Segment Size (MSS) negotiation and advertising
window) and HTTP (e.g., HTTP Range and HTTP Pipelin-
ing).

We have implemented HTTPOS and conducted exten-
sive experiments on live HTTP traffic to evaluate its per-
formance in terms of evading traffic-analysis attacks and
impacts on the performance of network flows. The re-
sults show that HTTPOS can effectively prevent the state-
of-the-art attacks from inferring private information from
encrypted HTTP flows. As will be shown in Section 5.2,
without HTTPOS an attacker can achieve high accuracy
of inferring the web sites visited by a user. For example,
some attacks can achieve 94% accuracy on inferring the
100 web sites we tested by selecting the one with the high-
est confidence based on their classification algorithm. With
HTTPOSall attacks’ accuracy drops to zero for at least 98
web sites. Even if an attacker chooses the top five web sites
as her inference, the accuracy for at least 94 web sites re-
mains zero forall attacks. Moreover, some traffic-analysis
attack can easily infer a user’s input to the Google search
box. But when HTTPOS is applied, the output of such at-
tack is reduced to a random guess.

Section 2 first presents the threat model, and Section 3
describes our strategies for evading traffic-analysis attacks
and methods for manipulating network flow features. After
that, we introduce HTTPOS’s design and implementation
in Section 4, followed by extensive experiment results in
Section 5. We finally introduce the related work in Section
6 before concluding this paper in Section 7.

2 Threat models

Unlike previous works, we consider in this paperboth
(1) the problem of inferring the web sites visited by users
and (2) the problem of inferring the web pages browsed
by users. The three attack scenarios illustrated in Fig-
ures 1(a)-1(c) concern problem (1), whereas the one in Fig-
ure 1(d) concerns problem (2). We summarize the threat
models for the four scenarios in Table 1 based on the attack
goals, visibility of the packet information to the attacker,

and HTTPOS’s location. There are five entities in the threat
models: a victim user (i.e., client in Figure 1), an attacker,
an encrypted tunnel, HTTPOS, and remote web sites/pages.
The threat models for scenarios (a)-(c) were adopted in pre-
vious works, including Sun et al. [35], Liberatore et al. [26]
and Wright et al. [38], and the threat model for scenario (d)
was adopted by Chen et al. [13].

In scenarios (a)-(c), a client visits a web site through an
encrypted tunnel at different layers, for example, wireless
channel with WEP/WPA [21], IPSec-based IP tunnel [37],
and SSH-based TCP tunnel [6], and the attacker attempts to
find out that web site. In scenario (d), a client visits different
web pages at a certain web site. This attack model assumes
that the attacker knows the web site, and she attempts to
discover the web pages visited by the client. Note that an
updated web page due to the client’s interactions with the
web site is considered as a new web page from an attacker’s
viewpoint. For example, some web sites (e.g., Google) may
return auto-suggested words upon receiving a user input.
These dynamically updated web pages are regarded as dif-
ferent web pages.

In all four scenarios, the attacker eavesdrops the en-
crypted tunnel to obtain the encrypted packets sent between
the victim and web servers, but she cannot decrypt these
packets. To infer the visited web sites/pages from these
encrypted packets, the attacker first profiles the character-
istics of the traffic between the victim and each candidate
web site/page. The traffic profiling depends on the traffic
analysis methods [7, 13, 22, 23, 26]. She can easily build
such profiles by visiting those web sites/pages via the en-
crypted tunnels herself. Equipped with the set of traffic pro-
files, the attacker then performs the inference by classifying
the captured traffic trace into the traffic profiles prepared
beforehand. From the viewpoint of pattern classification,
the traffic profiling step is known as conducting supervised
learning to train a classifier, whose feature set is the traffic
profile, and the class label is the web site/page. Moreover,
the inference step corresponds to labeling a traffic trace ac-
cording to the trained classifier [18].

HTTPOS obfuscates the encrypted traffic by exploiting
the protocol features in TCP and HTTP. Since the TCP con-
nection (and therefore the HTTP connection) is end-to-end
in scenarios (a), (b), and (d), HTTPOS can be deployed at
the browsers. On the other hand, the browser’s TCP connec-
tion is terminated at the tunnel entry in scenario (c). There-
fore, when HTTPOS is deployed at the browsers for TCP
tunnels, only the HTTP methods can be used for traffic ob-
fuscation. Furthermore, HTTPOS can be deployed at the
tunnel entry in scenarios (b) and (c). Since we implement
HTTPOS as an HTTP proxy (which will be discussed in
Section 4), the same HTTPOS can be placed at the browser
or the tunnel entry for both scenarios. However, placing
HTTPOS at the TCP tunnel’s entry maximizes HTTPOS’s

2

Client

Web Sites

Wireless

Access Point

Encrypted Wireless

Channel

Attacker
HTTPOS

(a) Wireless (e.g., WEP/WPA).

Client

Web Sites

Encrypted IP

Tunnel

Attacker

HTTPOS

(b) IP tunnel (e.g., IPSec).

Client

Web Sites

Encrypted TCP

Tunnel

Attacker

HTTPOS

(c) TCP tunnel (e.g., SSH).

Client

Web Pages

Encrypted HTTP

Tunnel

Attacker
HTTPOS

(d) HTTPS (SSL/TLS).

Figure 1: The four attack scenarios considered in this paper.

Table 1: Threat models for the four attack scenarios.

Wireless (e.g., WEP/WPA) IP tunnel (e.g., IPSec) TCP tunnel(e.g., SSH) HTTPS (SSL/TLS)

Attacker’s goal Identify web site Identify web site Identify web site Identify web page

Visibility of HTTP header No No No No

Visibility of TCP header No No Yes Yes

Visibility of Destination IP No No No Yes

HTTPOS’s location Client Client/tunnel entry Client/tunnel entry Client

obfuscation power, because, as mentioned earlier, HTTPOS
at the browser cannot use TCP’s protocol features to obfus-
cate encrypted traffic.

3 Defending against traffic-analysis attacks

In Section 3.1, we first elaborate on the classification al-
gorithms used in the state-of-the-art traffic-analysis attacks.
Then we propose strategies with formal analysis to deceive
those classification algorithms in Section 3.2. In particu-
lar, we identify four basic features that can affect the infor-
mation used by those traffic-analysis attacks: packet size,
timing of packets, web object size, and flow size. We then
propose methods in Section 3.3 to manipulate these features
to evade these traffic-analysis attacks.

3.1 The state-of-the-art attacks

We consider the five traffic-analysis attacks on encrypted
HTTP flows [7, 13, 26, 35] in Table 2. We name them by
concatenating the first letters of the authors’ names. Sun

et al. proposed the SSWRPQ attack, which is the first at-
tack that can identify web sites through the number and size
of web objects [35]. Later on, Bissias et al. proposed us-
ing the inter-arrival time between packets and packet size
to profile a web site in their BLJL attack [7]. Liberatore et
al. exploited the tuple (flow direction, packet size) for traffic
analysis and proposed two classification algorithms:Jac-
card coefficient(JC) andnaive Bayesian classifier(NBC)
that are referred to as LL-JC attack and LL-NBC attack,
respectively [26]. Most recently, Chen et al. employed a
sequence of (flow direction, packet size) to infer the web
pages visited by a victim in their CWWZ attack [13].
The SSWRPQ attackemploys the number and size of web
objects as features. Since all HTTP traffic is encrypted, an
attacker cannot obtain the exact values of such features. As
suggested in [24, 35], the amount of bytes from the server
between two consecutive requests from the client is used to
approximate the sizes of web objects. After obtaining the
number of web objects and their sizes, the attack uses the
Jaccard coefficient to quantify the similarity between a new
trace and an existing profile.
The BLJL attack employs both inter-arrival time (IAT) be-

3

Table 2: Traffic-analysis attacks studied in this paper.

Attacks Features Classification algorithms

SSWRPQ [35] The number and size of web objects Jaccard coefficient

BLJL [7] Inter-arrival time between packets and packet size Cross correlation

LL-JC [26] Tuples of (flow direction, packet size) Jaccard coefficient

LL-NBC [26] Tuples of (flow direction, packet size) Naive Bayesian classifier

CWWZ [13] Sequence of tuple (flow direction, packet size) Sequence comparison

tween packets and packet size to profile a web site and uses
cross-correlation to measure the similarity between a new
trace and an existing profile. To compare a new trace’s fea-
tures to an existing profile, the BLJL attack computes the
cross correlation of its IAT sequences and packet size se-
quences by:

R =

∑n
i=1[(τi − τ̄)(si − s̄)]

√

∑n

i=1(τi − τ̄)
√

∑n

i=1(si − s̄)
, (1)

whereτ ands denote the new trace’s IAT values and packet
sizes, respectively, whereasτ̄ ands̄ are the respective mean
values of an existing profile’s IAT and packet size.
The LL-JC attack employs tuples of (flow direction,
packet size) as features. LetD = {d1, d2, . . .} be a set
of tuples in a trace. The JC is defined as

S(Dnew, Di) =
|Dnew

⋂

Di|

|Dnew

⋃

Di|
, (2)

whereDnew andDi denote the set of tuples in a new trace
and that in the profile of theith web site, respectively. The
normalizedS (i.e.,S) is used to determine to which class a
given trace belongs:

S(Dnew , Di) =
S(Dnew, Di)

∑

j∈U S(Dnew, Dj)
, (3)

whereU is the set of all existing profiles.
The LL-NBC attack only considers the existence of cer-
tain tuples without examining the number of tuples in a
flow. This attack employs the Kernel Density Estimation
(KDE) to estimate the probability density function of each
tuple (i.e., considering the value of each feature) and then
employs a naive Bayesian classifier to reach a decision. We
useV to denote the features used in an LL-NBC attack.

The relationship betweenV andD is that for a given
feature inV , its value is equal to zero if the corresponding
tuple is not inD and KDE is not used. After using KDE,
although such features may have values larger than zero,
their values may be very small, depending on the parameters
used in the kernel function and the location of tuples that are
in D. NBC classifiesVnew into a classVi if and only if

P (Vnew|Vi)P (Vi) > P (Vnew |Vj)P (Vj), ∀j 6= i. (4)

Based on the assumption that all attributes are independent,

P (Vnew |Vi) =

n
∏

k=1

P (dk|Vi), (5)

wheredk denotes a feature inVi.
The CWWZ attack , unlike the LL-JC and LL-NBC attacks
that only inspect individual packets, considers a sequenceof
packets [13] to infer user inputs to a web page. A sequence
of directional packet sizes is referred to as aflow vector, de-
noted byC = {ct, ct+1, . . . , ct+n−1}, wherect+n−1 repre-
sents the directional packet size observed at timet+ n− 1,
andn is the sequence length. Letk be the number of all
available characters andkt be the number of possible char-
acter sequences at timet, and these possible characters con-
stitute anambiguity set. After observingct, the attacker
may know that onlykt/αt possible inputs from the ambi-
guity set can producect, whereαt ∈ [1, kt) is defined as
a reduction factor. In the next observation, the ambiguity
set’s sizekt+1 is reduced fromk · kt to k · (kt/αt). After
receiving{ct, ct+1, . . . , ct+n−1}, the size of ambiguity set
is reduced fromkn to kn

Πn

i=1
(αt+i−1)

, whereΠn
i=1(αt+i−1)

is referred to asreduction power. A victim’s input can be
easily recovered if an attack has large reduction power.

3.2 Two defense strategies

We propose two general strategies to deceive an attack’s
classification algorithm. The first one is inducing the clas-
sification algorithm to make a random guess by introducing
features that have not been involved in training the algo-
rithm. The second strategy is to confuse the classification
algorithm to misclassify a trace.

3.2.1 The diffusion strategy

The SSWRPQ, LL-JC, and LL-NBC attacks implicitly as-
sume that packet sizes (or web object sizes) observed in the
training data set will appear in the testing data set (i.e., a
new trace to be classified). If all packet sizes or web object
sizes in a new trace never appear in the training data set,
these algorithms will be forced to make a random guess.

4

Lemma 1 details how to evade algorithms based on the JC
and NBC.

Lemma 1. If a flow comprises a set of tuples, denoted as
Dnew, which never exist in any training set, then the LL-
JC and LL-NBC attacks cannot classify this flow correctly.
Similarly, if a web object size of a flow never appears in
any training set, then the SSWRPQ attack cannot identify
the class of this flow.

Proof. In the LL-JC attack,S(Dnew, Di) = 0, because
Dnew does not appear in any training set. Similarly, if
the sizes of web objects does not exist in any training
set, the SSWRPQ’s JC becomes zero. In the LL-NBC at-
tack, if Dnew is totally new to the classification algorithm,
P (Vnew|Vi) = 0 (∀i, i ∈ U). Although using KDE may
allow P (Vnew |Vi) > 0 due to the kernel function, we can
selectDnew whose tuples are not close to any tuples in the
training set, so thatP (Vnew |Vi)→ 0.

Defense mechanisms based on Lemma 1 are feasible in
practice, because the packet size is dominated by a rela-
tively small number of values [34]. In other words, we can
easily find packet sizes that never appear in any training set.
Figure 2 plots the CDF of the number of unique packet sizes
in a flow from two data sets. The UMass data set con-
tains packet header traces collected four times a day from
February 2006 to April 2006, and the size of compressed
pcap files is around 2.6GB [26]. This data set is used
for testing the traffic-analysis attacks in [26]. The WIDE
traces, on the other hand, containall traffic going through
the samplepoint-F of the WIDE backbone networks from
30 March 2009 to 2 April 2009, and the size of thepcap
traces is around 433GB [10]. Since the WIDE data set con-
tains various kinds of traffic, we extract HTTP flows that
have at least five packets. We regard the packets sent to a
web server as request packets, and those sent from a web
server as response packets. Both figures show that in the
majority of flows the number of unique packet sizes is less
than 100. Moreover, the request packets usually have fewer
number of unique packet sizes than the response packets.

For the CWWZ attack, if a flow vector does not occur
in any training set, the attacker cannot exclude any possible
input and has to consider all the ambiguity set in the next
flow vector. Therefore, the reduction power is fixed to one,
and the final decision is the same as a random guess. For
the BLJL attack, since it uses a cross-correlation based al-
gorithm, it makes an implicit assumption that the number of
packets (i.e.,n) should be the same in the training data set
and the testing data set. If this assumption does not hold,
R could not be computed. Thus, it is possible to defeat this
attack by changing the number of packets.

3.2.2 The confusion strategy

To confuse an attack’s classification algorithm, we could
manipulate a flow to make its features similar to another
flow’s features. For instance, Lemma 2 first presents an ap-
proach to confuse the LL-JC, LL-NBC, and SSWRPQ at-
tacks.

Lemma 2. LetDi andDj be the respective sets of tuples in
the profiles of sitesi andj, andVi andVj be the respective
feature sets of sitesi andj used by the LL-NBC attack. If the
tuples for a flow of sitei become (Dj −Di) (i.e., the tuples
that are inDj but not inDi) after changing the packet sizes
in the flow, the LL-JC and the LL-NBC attacks will regard
the transformed flow as a flow of sitej. Similarly, after
changing the sizes of web objects in a flow of sitei to the
one in the profile of sitej, the SSWRPQ attack will regard
the transformed flow as a flow of sitej.

Proof. Let Dnew be the tuples in the transformed flow.
SinceS(Dnew, Dj) > S(Dnew , Di) = 0, the LL-JC at-
tack regards the transformed flow as a flow of sitej rather
than a flow of sitei. Let V new be the feature set in the
transformed flow. According to the relationship betweenD
andV , we know thatP (V new|Vj) > P (V new |Vi) = 0 (or
P (V new|Vi) → 0 if the KDE is used). Thus the LL-NBC
attack will consider the transformed flow as a flow of site
j. Similarly, if the transformed flow’s web object size only
exists in sitej’s profile, the SSWRPQ attack will find that
the transformed flow is more similar to flows of sitej than
flows of sitei.

For the CWWZ attack, if we introduce other flow vec-
tors (e.g., by entering some useless inputs) in addition to
the flow vectors induced by the real inputs, the attacker has
to consider all inputs that may result in these flow vectors
for the following two reasons. First, the attacker could not
differentiate between flow vectors caused by useless inputs
and those induced by real inputs. Second, the attacker could
not know the start and the end of real inputs. As a result, the
reduction power can be reduced.

Lemma 3 presents a sufficient condition to induce the
BLJL attack to reach an incorrect decision.

Lemma 3. By letting all packets in a flow have the same
sizesc and their IATs have the same valueτc, R in Eq. (1)
is then determined bysc andτc, instead of the transformed
flow’s original feature.

Proof. If τi = τc and si = sc, then R =
√

(τc − τ̄)(sc − s̄). By adjustingsc andτc, we can there-
fore make a flow similar to any other flows. As a result, the
BLJL attack cannot identify the original flow.

5

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Number of unique packet sizes

C
D

F

Request flow
Response flow

(a) The UMass data set.

10
0

10
1

10
2

10
30

0.2

0.4

0.6

0.8

1

Number of unique packet sizes

C
D

F

Request flow
Response flow

(b) The WIDE data set.

Figure 2: The distributions of unique packet sizes in two HTTP data sets.

3.3 Manipulating the features

To defeat the traffic-analysis attacks listed in Table 2 and
possibly new traffic-analysis attacks, we manipulate four
fundamental network flow features, including packet size,
web object size, flow size, and timing of packets. Under
our threat models, these features can be measured from an
encrypted HTTP flow and exploited to differentiate network
flows by an attacker. We describe our basic approaches for
manipulating these features in HTTPOS below. Since the
flow size is determined by the web object size, we discuss
the flow size together with the web object size.

3.3.1 Packet size

HTTPOS alters the size of outgoing packets on the HTTP
and TCP layers. On the HTTP layer, HTTPOS increases
the packet size by adding additional bytes to the HTTP
header, for example, adding additional fields, appending
characters to theReferer field, or using specific media
types to replace the asterisk in theAccept field. On the
TCP layer, HTTPOS decreases the packet size by splitting
a TCP packet into several smaller TCP packets. If an at-
tacker could not observe the TCP header (i.e., scenarios (a)
and (b)), HTTPOS increases the packet size by extending
the TCP option fields (e.g., by adding the TCP No Opera-
tion option that is usually used to pad the option list). How-
ever, it is more challenging to control the size of incoming
packets from a web server, because it is usually determined
by the server application and the server’s TCP/IP stack.
HTTPOS exploits the HTTP Range option, TCP maximum
segment size (MSS) negotiation, and TCP advertising win-
dow to manipulate the packet size.
HTTP Range HTTP/1.1 provides a Range option to fetch
portion of a web object to avoid downloading the same con-
tent already received by a client [20]. RFC 2616 refers
to a request having aRange header as apartial GET.
To fetch a web object, HTTPOS sends a request with a

Range header, such as “Range: bytes=0-0 .” If
the server supports HTTP Range, it will reply with “206
Partial Content ” and a Content-range header,
such as “Content-range: bytes 0-0/L ,” where
L is the actual length of the requested web object. After
that, HTTPOS sendsNU requests to the web server, each
of which only asks forui (i = 1, . . . , NU) bytes, where
∑NU

i=1 ui = L.
TCP MSS negotiationA TCP packet’s payload length is
limited by the TCP MSS. TCP allows sender and receiver
to negotiate the MSS through the MSS option in the TCP
SYN and TCP SYN/ACK packets. By exploiting this fea-
ture, HTTPOS can constrain the packet size by announcing
a small MSS.
TCP advertising window Since the advertising window
controls the number of bytes a sending TCP could dispatch,
the size of the incoming packet can be manipulated by ad-
justing the advertising window if it is not larger than the
MSS.

3.3.2 Web object size and flow size

It is nontrivial for a browser-side approach to affect the
web object size. A possible method is to adjust the con-
tent codings [20]. For example, if a web object is com-
pressed before being sent to the client, HTTPOS modifies
theAccept-Encoding header to force the server to send
an uncompressed web object. A similar method is to ad-
just the quality value [20]. Although these two methods are
quite general, we find that most servers do not support them.

To disguise the size of web objects, we therefore adopt
the following methods based on the observation that an at-
tacker could only estimate the size of a web object from en-
crypted traffic using the amount of bytes received between
two requests [24,35].
TCP retransmissionsIf the client is using IP tunnel or en-
crypted wireless channel that prevents an attacker from see-
ing the TCP header, HTTPOS affects the web object size

6

and enlarges the flow size by causing TCP retransmissions.
More precisely, since an ACK number informs a sending
TCP how many bytes have been successfully received by a
TCP receiver, by acknowledging only part of the received
bytes, HTTPOS could force the server to re-send the unac-
knowledged portion along with the new portion if the packet
size permits [28]. In this case, the attacker will overesti-
mate both web object size and flow size. If the attacker
can observe the TCP header, she may ignore the retransmit-
ted packets. In this case, HTTPOS employs the following
HTTP-based approaches, because an attacker cannot ob-
serve the content of encrypted packets.

HTTP Pipelining Using HTTP Pipelining to send several
requests together without waiting for the corresponding re-
sponses makes it difficult for an attacker to infer the size of
a web object [20], because an attacker may regard the total
bytes from the server as the size of a web object. To achieve
this, HTTPOS either merges several requests from the client
or attaches a useless request with the original request before
sending the packet to the server. In both cases, the attacker
will overestimate the HTTP request’s size, web object size,
and flow size. When using the latter approach, HTTPOS
does not forward the response to the useless request to the
client.

HTTP RangeEmploying HTTP Range to request data that
have been downloaded can enlarge the flow size and dis-
guise the web object size. Its basic idea is similar to the
method using retransmitted TCP packet. The difference is
that the latter method operates on TCP and therefore re-
quires TCP header being invisible to the attacker, whereas
the HTTP header in the encrypted traffic is already invisible
to the attacker. Although Sun et al. [35] also suggested us-
ing HTTP Pipelining and HTTP Range, they did not imple-
ment and evaluate them. We implement these approaches
and carefully evaluate them using live HTTP traffic. We
also measure the popularity of supporting HTTP Range and
HTTP Pipelining (Section 4.4). Moreover, we combine the
method based on HTTP Pipelining and that based on TCP
advertising window to evade an advanced CWWZ attack
(see Section 5.2.2).

Injecting useless requestsInjecting a useless request be-
tween two requests sent by a client can disguise the web
object size. More precisely, after a client sends one request,
HTTPOS decreases the advertising window to a small value
(say 10 bytes), so that the server cannot return all the re-
quested content in one packet. Once a response packet is
received, HTTPOS injects a random request. In this case,
the attacker will underestimate the web object size, because
she may observe many small responses to different HTTP
requests. There is no restriction on the requests injected by
HTTPOS. Its usage is to mislead an attacker into obtaining
wrong web object size and flow size.

3.3.3 Timing of packets

Since the outgoing packets sent from the client go through
HTTPOS, it is easy to control their timing by delaying the
transmissions. To manage the timing of packets from the
server, HTTPOS operates on two levels. The first level is
to manipulate the timing of request packets, because the re-
sponse packets are triggered by request packets. The sec-
ond level is to manipulate the timing of response packets
through delaying ACK packets. The rational behind this
method is that without receiving ACK packets the sending
TCP may not send out new data packets due to TCP’s ACK-
based self-clocking feature. Note that the flow sequence can
also be changed by reordering the sequence of TCP SYN
packets or delaying the corresponding HTTP request pack-
ets. By doing so, HTTPOS can help a user evade the traffic-
analysis attack in [14].

4 HTTPOS

4.1 Design

HTTPOS acts as a proxy through which a client visits a
web site. It accepts HTTP requests from the client and mod-
ifies them as needed before sending them out. Figure 3 il-
lustrates the HTTPOS operations. When HTTPOS receives
a URL, it checks whether information related to this URL
is in the cache, which includes whether the URL can be
fetched through HTTP Range, whether the server supports
HTTP Pipelining, and the web object size. This informa-
tion determines which module will be used. Each module
realizes a method described in Section 4.2.

If it is the first time for HTTPOS to handle a URL,
HTTPOS uses the method based on TCP advertising win-
dow (Section 4.2.1). It manipulates the advertising win-
dow in outgoing packets to control the size of response
packets. To test whether the URL can be fetched through
HTTP Range, HTTPOS inserts “Range: bytes=0-0 ”
to the outgoing HTTP request. To verify whether the server
supports HTTP Pipelining, HTTPOS duplicates the HTTP
request and adds “Range: bytes=1-1 ” to it and then
sends these two HTTP requests to the server at the same
time. After receiving the responses, the feature information
and the web object size are saved in the cache.

If the information is found in the cache, HTTPOS selects
the proper method based on its effectiveness on evading
traffic-analysis attacks and mitigating performance degra-
dation. If the URL could not be fetched through HTTP
Range, HTTPOS uses the method based on TCP MSS
+ TCP advertising window (Section 4.2.2). Otherwise,
HTTPOS selects the method based on multiple TCP con-
nection + HTTP Range (Section 4.2.3) if the server does
not support HTTP Pipelining, or the method based on HTTP

7

URL in cache?

Yes

No

Support Pipelining?

URL

Get URL information Support Range?

Store URL

information into cache

Method based on

Advertising window
Inject Useless Request

Method based on MSS

+Advertising Window

Method based on

Pipelining + Range

End

Yes Yes

No

Method based on

multiple TCP

connections + Range

No

Figure 3: The HTTPOS operations.

Pipelining + HTTP Range (Section 4.2.4) if the server does.
Since TCP-based methods (i.e., methods based on TCP

MSS and TCP advertising window) cannot change the size
of web objects, HTTPOS injects a useless HTTP request
between two requests as described in Section 3.3.2 to mis-
lead the attacks that exploit the characteristics of web ob-
jects. It is worth noting that if an attacker cannot observe the
TCP header, HTTPOS can also use retransmitted packets to
mislead those attacks. Table 3 summarizes all methods in
HTTPOS and the corresponding attacks that can be evaded.

4.2 Modules

4.2.1 Method based on TCP advertising window

Since a TCP sender cannot send more data than the advertis-
ing window permits, HTTPOS controls the size of incoming
response packets by manipulating the advertising window
in each outgoing packet. More precisely, given a web object
of S bytes, HTTPOS selectsNv integers{v1, v2, . . . , vNv

},
wherevi is the advertising window in theith outgoing TCP
packet and

∑Nv

i=1 vi = S. HTTPOS sends a new TCP
packet only after receiving a TCP data packet from the
server to prevent the server from combining the advertising
windows in several TCP packets and then sending a large
packet that may be recognized by a traffic analysis.

4.2.2 Method based on TCP MSS + TCP advertising
window

Since the method based on TCP advertising window allows
only one TCP packet to be sent in an RTT, it may intro-
duce large delay. To address this problem, we propose a
new method that employs both TCP MSS and TCP advertis-
ing window. This method is motivated by two observations.
First, given a web object ofS bytes and a default MSS ofM
bytes, a successful traffic-analysis attack usually relieson
the last packet whose size is equal toS mod M . Second, a
TCP sender can send several M-byte TCP data packets in an
RTT. HTTPOS therefore can either change the default MSS

or manipulate the last packet’s size by using TCP advertis-
ing window. In the former case, after setting the MSS to
M ′, the last packet’s size becomesS mod M ′. In the lat-
ter case, HTTPOS sets the advertising window to⌊ S

M
⌋M in

order to fetch the firstS−R bytes, whereR = S mod M .
After that, it sets the advertising window toR − r bytes,
wherer is a random positive integer less thanR, to down-
loadR−r bytes and then announces an advertising window
larger thanr to get the remainingr bytes. Therefore, if the
normal operation needs one RTT to download theR bytes,
HTTPOS may use an additional RTT to download it (i.e.,
one RTT forR − r bytes and another RTT forr bytes).
If the server’s TCP stack increases its congestion window
based on the number of valid ACK packets, HTTPOS could
send customized ACK packets to induce the server to in-
crease its congestion window quickly.

4.2.3 Method based on multiple TCP connections +
HTTP Range

If a server supports HTTP Range but does not support
HTTP Pipelining, HTTPOS establishes multiple TCP con-
nections and sends partialGET requests for a web object
in parallel to the server. As explained in Section 3.3.1,
HTTP Range can limit the size of response packets. The
server will process these requests simultaneously if the
server adopts multi-threading and then return the web ob-
ject through several packets. HTTPOS will re-organize the
responses before delivering the content to the client.

4.2.4 Method based on HTTP Pipelining + HTTP
Range

If a server supports both HTTP Pipelining and HTTP
Range, HTTPOS puts several partialGETrequests into one
packet and sends it out. The server will process these re-
quests one by one and send back the responses. Without
the need to wait for the arrival of a response before sending
another partialGETrequest, the additional delay introduced
by HTTPOS will decrease.

8

Table 3: Methods in HTTPOS and the corresponding attacks that can be evaded.

Methods Layers SSWRPQ BLJL LL-JC LL-NBC CWWZ

Method based on Advertising Window TCP
√ √ √ √

Method based on MSS + Advertising Window TCP
√ √ √ √

Method based on Multiple TCP connections + HTTP RangeHTTP
√ √ √ √ √

Method based on HTTP Pipelining + HTTP Range HTTP
√ √ √ √ √

Inject Useless Request HTTP
√ √ √

Inject Packet Delay TCP
√

4.3 Implementations

We implemented HTTPOS in C with 3022 lines
of code (reported byCLOC [31]) and tested it on
Ubuntu 9.04 with 2.6.27 kernel. To manipulate TCP
packets, HTTPOS usesiptables (version 1.4.0) and
the libnetfilter queue library (version 0.0.16) to
hook outgoing TCP packets of interest. HTTPOS adds
rules into iptables ’ INPUT and OUTPUTchains, so
that the packets matching the rules will be queued in
the kernel. HTTPOS acquires a packet through the
libnetfilter queue library and then modifies it (e.g.,
the advertising window and the MSS option) before re-
leasing it. Additional delay is introduced to the outgoing
packets if needed. HTTPOS uses raw socket to inject TCP
packets if necessary and employs thelibpcap 1.0.0 li-
brary to capture TCP packets for verification. Moreover, the
POSIX Threads (pthreads) library was utilized to create
and manage multiple threads for multiple HTTP/TCP con-
nections between clients and HTTPOS, and those between
HTTPOS and web servers.

In our measurement experiments to be discussed in Sec-
tion 5.1, we established an IPSec tunnel as an example of
IP tunnel, built an SSH tunnel as an example of TCP tunnel,
and set up a wireless channel encrypted by WPA. HTTPOS
uses different modules to handle HTTP requests and re-
sponses for different scenarios. When the IPSec tunnel and
the wireless channel are used, HTTPOS acts as an HTTP
proxy. When the SSH tunnel is employed, HTTPOS be-
haves as a SOCKS proxy for users to visit the Internet. At
the same time, HTTPOS communicates with the SSH tun-
nel through SOCKS 4 [25], because the SSH port forward-
ing provides service via SOCKS. For the HTTPS channel,
HTTPOS is implemented as a Firefox add-on to manipulate
HTTP requests before they are sent to the SSL/TLS layer.
In all scenarios, HTTPOS can modify the header of HTTP
requests and insert useless requests if necessary.

We also implemented those traffic-analysis attacks intro-
duced in Section 3.1 using Python and Weka 3.6.1 [36] to
evaluate the effectiveness of HTTPOS. In Section 5, we re-
port their accuracy with and without HTTPOS.

4.4 Measuring the support rates of the TCP and
HTTP based control

HTTPOS exploits the basic protocol features in TCP
and HTTP described in RFC 793 and RFC 2616, respec-
tively. Since not all servers comply with the RFCs, we con-
ducted two sets of measurement to evaluate whether oper-
ating systems and web servers support manipulating packet
size through TCP MSS, TCP advertising window, HTTP
Pipelining, and HTTP Range. In the first set, we tested pop-
ular operating systems and web servers with their default
settings in our test-bed. In particular, we tested Apache
v2.3.6, nignx v0.8.42 and lighttpd v1.4.26 in a Ubuntu ma-
chine (kernel 2.6.28) and IIS v7.5 in a Windows 7 box.
We selected these web servers, because they represent more
than90% market share [30]. Since the Google web server
cannot be downloaded, we cannot test it in the test-bed.

In the second set, we targeted on the top2000 web sites
in the Alexa rankings [1]. We modifiedPagestats [16]
to drive Firefox 3.6.3 to automatically visit these web sites.
Since Firefox downloads all the necessary web objects,
which may be located in different web servers, we man-
aged to collect143, 333 URLs in 8, 845 web servers after
Firefox visited the front pages of the2000 web sites. We
used NetCraft’s service [5] to identify the operating system
and the web server software used by each server. Since
NetCraft resolved the web server software used in only
5884 web servers, we employedhttprecon-7.3 [32] to
further infer the web server software in the remaining2961
servers. There are still1181 servers whose web server soft-
ware cannot be identified byhttprecon-7.3 , and we
refer them to as “others.” Moreover, since NetCraft iden-
tified 4957 web servers’ operating systems, we group the
other3888 servers as “others.” For the Google web server
which has different names [4], we crawled4622 URLs
starting fromhttp://www.google.com.hk/intl/
zh-TW/options/ and extracted the names of the web
server software from theServer field in the response
header. As a result, we obtained a total of231 Google
servers.

9

Table 4: Major operating systems’ support rate of TCP MSS negotiation and TCP advertising window based control.

OSes ADVL = 2000 bytes MSSL = 1460 bytes (the default) ADVL = MSSL bytes
(No. of servers) MSSL=128 MSSL=256 MSSL=536 ADVL=128 ADVL=256 ADVL=536 MSSL=128 MSSL=256 MSSL=536

Windows (388) 88.40% 89.43% 100.00% 95.36% 95.36% 97.42% 99.22% 99.48% 100.00%
Linux (3875) 97.90% 98.63% 100.00% 99.17% 99.32% 99.50% 99.76% 99.94% 100.00%

AIX (19) 84.21% 100.00% 100.00% 94.73% 94.73% 94.73% 100.00% 100.00% 100.00%
Solaris (71) 98.59% 100.00% 100.00% 97.18% 97.18% 98.59% 100.00% 100.00% 100.00%

FreeBSD (224) 25.89% 99.55% 99.55% 99.10% 99.10% 99.10% 99.10% 100.00% 100.00%
BIG-IP (380) 98.68% 99.21% 100.00% 99.47% 99.47% 99.47% 99.73% 100.00% 100.00%
Others (3888) 84.90% 96.38% 99.89% 96.94% 97.38% 97.94% 99.61% 99.76% 99.94%

4.4.1 TCP MSS and TCP advertising window

To test whether a server allows HTTPOS to manipulate the
packet size through TCP MSS, we modify the advertised
MSS values in the TCP option. LetMSSL be the MSS
value announced by us in the TCP SYN packet andMSSR

be the MSS value returned in the server’s TCP SYN/ACK
packet. We letMSSL be less than the typical value for
MSSR (which is 1460 bytes in most cases). Moreover,
MSSL should never appear in the flow between the client
and web server. If indeedMSSR > MSSL, we send an
HTTP request to download a web object larger thanMSSR.
If the payload sizes of all response packets are less than or
equal toMSSL, then the server permits HTTPOS to control
its packet size.

To test whether a server allows HTTPOS to control the
size of response packet through TCP advertising window,
we first disable TCP window scale option and then change
the advertising window, denoted asADVL, of an outgoing
TCP packet to a value smaller than MSS. Similar to the pre-
vious case, if the response packet’s payload size is less than
or equal toADVL, then the server allows HTTPOS to con-
trol its packet size.

Since TCP MSS and TCP advertising window can be
set to arbitrary values, we could not enumerate all possi-
ble combinations. Instead, we investigated three scenarios:
(1) ADVL = 2000 bytes andMSSL = {128, 256, 536}
bytes; (2) use the default MSS announced by the remote
server (i.e.,MSSL = MSSR = 1460 bytes) andADVL =
{128, 256, 536} bytes; and (3)MSSL = ADVL =
{128, 256, 536} bytes. Table 4 summarizes the measure-
ment results. Under most settings, more than85% servers
allow HTTPOS to control their packet size. In particular,
the support rate increases when either the MSS or the ad-
vertising window increases. Moreover, when the MSS and
advertising window use the same value, most servers sup-
port HTTPOS. For example, forMSSL = ADVL = 536
bytes,8843 out of 8845 servers allow HTTPOS to control
their packet size.

ForMSSL = 128 bytes andADVL = 2000 bytes, only
25.89% of the FreeBSD servers allow HTTPOS to control
their packet size. The reason is that FreeBSD sets its default

minimal MSS to 216 bytes to prevent TCP MSS resource
exhaustion attacks [2]. However, this low support rate does
not mean that HTTPOS cannot evade those traffic-analysis
attacks for FreeBSD servers. First, HTTPOS can still con-
trol the packet size by settingMSSL = ADVL = 128
bytes, which has99.10% support rate. Second, Figure 4
shows that the HTTP headers in more than90% of the re-
sponses from our data sets are larger than 256 bytes. There-
fore, it is sufficient for HTTPOS to useMSSL = 256 bytes
for which the support rate for FreeBSD is99.55%. Finally,
even though HTTPOS cannot force the response packets to
be128 bytes or less, the actual payload size already differs
from the one when defaultMSSL is used. As a result, the
new payload size also helps a user evade the traffic-analysis
attacks.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Size of HTTP response header (bytes)

C
D

F

Header size
Size=128 bytes
Size=256 bytes
Size=536 bytes

Figure 4: CDF of the size of HTTP response headers based on
our data sets of143, 333 URL responses obtained from8845

web servers.

4.4.2 HTTP Range and HTTP Pipelining

We discover that some web applications may ignore HTTP
Range requests even if the underlying web server supports
HTTP Range. Therefore, we measure the support rate of
HTTP Range on both the URL level and the web server
level. To test whether a URL supports HTTP Range, we
send partialGET requests to the server and then inspect
the response ofAccept-Ranges . If the server replies

10

Table 5: The support rates of HTTP Range and HTTP Pipelin-
ing in terms of the number of servers.

Web servers HTTP HTTP HTTP
(No. of servers) Range Pipelining Range+Pipelining

Apache (4249) 84.00% 63.90% 58.80%
IIS (1738) 76.06% 77.00% 65.88%

nginx (1103) 80.15% 75.16% 70.35%
lighttpd (367) 84.47% 74.70% 68.94%
Others (1388) 73.34% 65.13% 55.55%

Table 6: The support rates of HTTP Range and HTTP Pipelin-
ing in terms of the number of URLs.

Web servers HTTP HTTP HTTP
(No. of URLs) Range Pipelining Range+Pipelining

Apache (59698) 89.02% 79.71% 68.80%
IIS (22485) 85.03% 88.24% 73.38%

nginx (18714) 83.16% 87.58% 70.74%
lighttpd (5506) 82.64% 84.87% 67.51%
Others (36930) 66.74% 69.31% 53.98%

Table 7: The Google web servers’ support rates of HTTP
Range and HTTP Pipelining in terms of the number of servers.

Google web servers HTTP HTTP HTTP
(No. of servers) Range Pipelining Range+Pipelining

sffe (38) 100% 100% 100%
DFE/largefile (109) 100% 100% 100%

GSE (24) 58.33% 100% 58.33%
codesite (2) 0% 100% 0%
Others (58) 0% 100% 0%

Table 8: The Google web servers’ support rates of HTTP
Range and HTTP Pipelining in terms of the number of URLs.

The Google web servers HTTP HTTP HTTP
(No. of URLs) Range Pipelining Range+Pipelining

sffe (2580) 99.88% 100% 99.88%
DFE/largefile (906) 100% 100% 100%

GSE (461) 48.59% 100% 48.59%
codesite (335) 0% 100% 0%
Others (340) 0% 100% 0%

with “Accept-Ranges: bytes ,” it supports HTTP
Range; otherwise, it may send back “Accept-Ranges:
none ” or nothing. On the web server level, we regard a
server as supporting HTTP Range if one URL on that server
supports HTTP Range.

We also discover that if a web server supports HTTP
Pipelining, all web applications running on that web
server also support HTTP Pipelining. To test whether

a server supports HTTP Pipelining, we send out sev-
eral HTTP requests together, each of which carries
“Connection: keep-alive ,” without waiting for the
corresponding responses. If the server responds to all these
requests, it is considered supporting HTTP Pipelining. Oth-
erwise, the server may just respond to the first request and
then close the connection.

According to our first set of experiments, all those ma-
jor web servers with default settings support both HTTP
Range and HTTP Pipelining. Besides, Tables 5 and 6
show the measured support rates of the HTTP features
from 143, 333 URLs located in8845 servers. In particu-
lar, we find that117, 025 URLs (81.6%) from7103 servers
(80.3%) support HTTP Range,114, 087 URLs (79.6%)
from 6060 servers (68.5%) support HTTP Pipelining, and
94, 458 URLs (65.9%) from5545 servers (62.7%) support
both HTTP Range and HTTP Pipelining.

Tables 7 and 8 show the Google web servers’ support
rates of HTTP Range and HTTP Pipelining in terms of the
number of servers and URLs, respectively. We find that
all the Google web servers support HTTP Pipelining, but
only “sffe,” “DFE/largefile,” and a partial of “GSE” support
HTTP Range.

5 Evaluation

In this section, we present the results of evaluating
HTTPOS in terms of its effectiveness on defeating the
traffic-analysis attacks and its impact on the goodput of
fetching web objects.

5.1 Experiment settings

We first downloaded the front pages from the top 100
web sites ranked by Alexa [1]. For web sites that belong
to the same company and have similar web page layouts,
we tested only the site having the highest rank. For ex-
ample, Google owns several sites having high ranks (such
asgoogle.com , google.com.hk , andgoogle.de),
and we just testedgoogle.com . Moreover, we replaced
porn sites with other top web sites. We used Firefox 3.6.3
equipped with Flash plugin 10 to visit the web sites. To au-
tomate the experiments, we prepared a Python script to in-
voke modifiedPagestats [16] to visit each web site and
used TCPDump to capture the trace. We refer to the process
of visiting all the web sites once as around, and we per-
formed a total of 100 rounds of measurement experiment.
The traces in odd-numbered rounds were used to train clas-
sification algorithms, and the trained models were tested on
traces in even-numbered rounds. Based onPagestats ’s
results, we computed the goodput as the ratio of total bytes
fetched to the download time.

11

We examined two deployment scenarios for HTTPOS:
on the browser side when IP tunnel, encrypted wireless
channel, or HTTPS channel is used and at a TCP tunnel’s
entry point. To establish an IP tunnel, we employed L2TP
v1.2.0 and OpenSwan v2.6.24 to build an IPSec tunnel be-
tween two endpoints. To set up the wireless channel, we
used a laptop with Intel PRO/Wireless 2200BG Mini-PCI
Adapter to connect to an Access Point with WPA1 encryp-
tion enabled in our laboratory and employed AirPcap [12]
to capture wireless frames. For TCP tunnels, we used SSH
port forwarding to create a TCP-based tunnel between two
endpoints following the configuration in [26].

It is important to point out that our experiment settings
are actually favorable to an attacker for the following rea-
sons.

1. Koukis et al. [24] showed that parsing mixed web ses-
sions in packet traces obtained from an encrypted tun-
nel is very difficult. However, in our case we saved all
the packets belonging to a web session into a separate
pcap file, thus removing this obstacle for the attacker.

2. Coulls et al. [14] pointed out that a web browser’s
caching may significantly affect the accuracy of an at-
tack, because the browser does not need to download
web objects in the cache, thus affecting the flow size.
This problem, however, does not occur to our case, be-
causePagestats [16] always clears Firefox’s cache
after visiting a web site/page.

3. Liberatore et al. [26] reported that a large delay be-
tween the training data set and the test data set may
cause lower accuracy. In particular, they observed a
decrease from 73% to 63% for a delay of four weeks.
The delay in our case, however, is small (i.e., around
30 mins), and the 100 rounds of experiments were car-
ried out continuously.

4. By using the traces from every other round of mea-
surement, we provide the attacker with a much more
accurate view of the traffic. In a realistic attack sce-
nario, an attacker normally spends some time to learn
from the captured traffic. Therefore, the traffic pattern
may not be the same as those she has observed before
when the attack is finally launched.

5.2 Evasion evaluation

5.2.1 Defeating the SSWRPQ, BLJL, LL-JC and LL-
NBC attacks

To evaluate the effectiveness of HTTPOS against the four
attacks targeting on identifying web sites (i.e., the SS-
WRPQ, BLJL, LL-JC, and LL-NBC attacks), our approach

is to compare the attack accuracy with and without apply-
ing HTTPOS to the encrypted traffic. To compute the attack
accuracy for a given web site, we first compute the simi-
larity between the trace obtained for the web site and the
available profiles based on the attack methods introduced in
Section 3.1. For each attack, we then sort the similarity and
select the topK web sites as our inference. The attack is
considered successful if the actual web site is one of theK
web sites selected by the attack. Clearly, the likelihood of
making a correct decision increases withK. The attack ac-
curacy for the web site is then given by the percentage of
successful attacks obtained from the 50 rounds of measure-
ment.

Figure 5 shows the CDF of the attack accuracy for the
four attacks with and without applying HTTPOS to the traf-
fic flowing through an IPSec tunnel. Similarly, Figure 6
reports their accuracy for SSH tunnel. The two solid curves
show the attack accuracy without HTTPOS, whereas the
two dashed curves are the results when HTTPOS is used.
The figures show that without using HTTPOS the attacks
can identify the visited web sites with high fidelity. For
K = 1, the LL-JC attack on IPSec traffic achieves at
least 70% accuracy for guessing the 100 web sites, where
around 70% of the web sites are correctly identified from
all 50 rounds (i.e., 100% accuracy). The LL-NBC attack
achieves similar performance, where at least 80% accuracy
is achieved for each site, and more than 60% of the web
sites are identified with 100% accuracy. When targeting
on SSH traffic, the LL-JC (LL-NBC) attack achieves 100%
accuracy for more than 75% (90%) of the web sites with
more than 60% (90%) accuracy for each site. We also ob-
serve that the LL-JC and LL-NBC attacks have better per-
formance than the SSWRPQ and BLJL attacks, and all the
four attacks achieve a better accuracy forK = 5.

With HTTPOS, the accuracy of the four attacks drop sig-
nificantly. Figures 5 and 6 show that, forK = 1, noneof
the attacks can achieve 100% accuracy for any web site. For
IPSec traffic, the accuracy of these attacks drops to 0% for
at least 98% of the web sites, because they fail to make a
single correct decision for the majority of those web sites.
ForK = 5, the SSWRPQ, BLJL, LL-JC, and LL-NBC at-
tacks still suffer from 0% accuracy for 100%, 98%, 96%,
and 94% of the web sites, respectively. The “better” per-
formance achieved by the LL-NBC attack is possibly due
to the KDE which considers some packet sizes that never
appear but are close to the sizes in the training data set. We
also observe similar (poor) performance for SSH traffic, for
which these attacks achieve 0% accuracy for at least 98%
(95%) of the web sites forK = 1 (K = 5).

12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 SSWRPQ+HTTPOS
K=5 SSWRPQ+HTTPOS
K=1 SSWRPQ
K=5 SSWRPQ

SSWRPQ (K=5)

SSWRPQ+
HTTPOS (K=1)

SSWRPQ+
HTTPOS (K=5)

SSWRPQ (K=1)

(a) The SSWRPQ attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 BLJL+HTTPOS
K=5 BLJL+HTTPOS
K=1 BLJL
K=5 BLJL

BLJL+HTTPOS (K=5)

BLJL+HTTPOS (K=1)

BLJL (K=5)

BLJL (K=1)

(b) The BLJL attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 LL−JC+HTTPOS
K=5 LL−JC+HTTPOS
K=1 LL−JC
K=5 LL−JC

LL−JC+HTTPOS (K=5)

LL−JC+HTTPOS (K=1)

LL−JC (K=1)

LL−JC (K=5)

(c) The LL-JC attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 LL−NBC+HTTPOS
K=5 LL−NBC+HTTPOS
K=1 LL−NBC
K=5 LL−NBC

LL−NBC+HTTPOS (K=1) LL−NBC+HTTPOS (K=5)

LL−NBC (K=1)

LL−NBC (K=5)

(d) The LL-NBC attack.

Figure 5: Attack accuracy for the SSWRPQ, BLJL, LL-JC, and LL -NBC attacks with and without applying HTTPOS to the traffic
in an IPSec tunnel.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 SSWRPQ+HTTPOS
K=5 SSWRPQ+HTTPOS
K=1 SSWRPQ
K=5 SSWRPQ

SSWRPQ+HTTPOS (K=1) SSWRPQ+HTTPOS (K=5)

SSWRPQ (K=5)

SSWRPQ (K=1)

(a) The SSWRPQ attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 BLJL+HTTPOS
K=5 BLJL+HTTPOS
K=1 BLJL
K=5 BLJL

BLJL (K=5)

BLJL (K=1)

BLJL+HTTPOS (K=1)

BLJL+HTTPOS (K=5)

(b) The BLJL attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 LL−JC+HTTPOS
K=5 LL−JC+HTTPOS
K=1 LL−JC
K=5 LL−JC

LL−JC+HTTPOS (K=1)

LL−JC+HTTPOS (K=5)

LL−JC (K=1)

LL−JC (K=5)

(c) The LL-JC attack.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

C
D

F

K=1 LL−NBC+HTTPOS
K=5 LL−NBC+HTTPOS
K=1 LL−NBC
K=5 LL−NBC

LL−NBC+HTTPOS (K=1) LL−NBC+HTTPOS (K=5)

LL−NBC (K=1)

LL−NBC (K=5)

(d) The LL-NBC attack.

Figure 6: Attack accuracy for the SSWRPQ, BLJL, LL-JC, and LL -NBC attacks with and without applying HTTPOS to the traffic
in a SSH tunnel.

5.2.2 Evading the CWWZ attack

We use only the Google search engine to evaluate HTTPOS
against the CWWZ attack for two main reasons. The first is
that the search engine example in Section IV.D of [13] pro-

vides all the key features of the CWWZ attack. The second
is that the actual URLs for the web sites (i.e., OnlineHealth,
OnlineTax and OnlineBank) reported in Chen et al.’s paper
[13] have not been revealed. Since the Google search engine
provides both HTTP and HTTPS services, we conducted

13

experiments for both services to evaluate HTTPOS’s effec-
tiveness. Since the Google search engine runs on the GWS
web server and does not support HTTP Range, HTTPOS
uses the TCP-based methods and injects useless requests to
evade the CWWZ attack.

We first consider the scenario of communicating with the
Google search engine through an encrypted wireless chan-
nel. The experiment setting is the same as the one in Sec-
tion IV.D of [13]. Before showing the experiment results
with various inputs, we use an example to illustrate how
HTTPOS can evade the CWWZ attack. In this example, the
values in a vector sequence are the payload sizes of wireless
frames. We entered the word “hi” in the Google search input
box and the vector sequence of directional packet sizes [13]
is (556 →, 451 ←, 557 →, 463 ←), where the request
packets carrying “h” and “hi” are of556 bytes and557
bytes, respectively, and the corresponding response packets
are of451 bytes and463 bytes. If HTTPOS pads the HTTP
request headers with useless fields to the same size, sets
MSSL = 200 bytes, and disables the TCP window-scaling
bit, then we get a new vector sequence(572 →, 260 ←,
260 ←, 75 ←, 572 →, 260 ←, 260 ←, 87 ←). Since
the CWWZ attack cannot not infer the user input from this
sequence, its reduction power is dampened to one.

However, a smart attacker might group several packets
together and rebuild a correct vector sequence. For exam-
ple, by subtracting72 bytes—the payload size of a wireless
frame carrying a TCP ACK packet—from the size of the
first response packet in the original vector sequence, an at-
tacker may infer the size of TCP payload as451−72 = 379
bytes. Similarly, by subtracting72 bytes from the sizes
of the first three response packets in the new vector se-
quence and then summing the remainder, the attacker ob-
tains260 − 72 + 260 − 72 + 75 − 72 = 451 − 72 = 379
bytes, therefore recovering the original vector sequence.To
defeat this attack, we inject a useless request between two
requests as described in Section 3.3.2 and therefore obtain
another vector sequence(572 →, 260 ←, 572 →, 260 ←,
75 ←, 260 ←, 260 ←, 82 ←, 572 →, 260 ←, 260 ←,
572 →, 87 ←, 260 ←, 260 ←, 103 ←). Since HTTPOS
can inject various requests from the ambiguity set, the at-
tacker cannot restore the original vector sequence from this
new sequence.

Yet an even more advanced attacker may still be able to
infer a set of keywords sent by the user from some special
packet sizes (e.g., 75 bytes and 87 bytes in the above ex-
ample). We propose the following method to address this
challenge. Since the Google server supports HTTP Pipelin-
ing, HTTPOS sends out the request for a user input and a
useless request in one or more successive packets with a
zeroadvertising window. The server will process both re-
quests and store the responses in its TCP/IP stack, because
the zero advertising window forbids it to send back the re-

sponses immediately. After a short period (e.g., 30 ms ac-
cording to our evaluation with the Google server), HTTPOS
sends an ACK packet with a large advertising window (e.g.,
2000 bytes), and the server is induced to pack the responses
into blocks of MSS-byte packets. For the above example,
the vector sequence becomes(1072 →, 837 ←, 1072 →,
870 ←), which is completely different from the original
one.

We also evaluated HTTPOS using the Google HTTPS-
based search service (i.e.,https://www.google.
com). In this setting, the values in a vector sequence are
the sizes of the TCP packet payload. When we entered
“hi” in the search input box, we observed a vector sequence
(539 ± 20 →, 679 ←, 540 ± 20 →, 658 ←)1. With
HTTPOS, the vector sequence becomes(1065→, 1323←,
1065 →, 1304 ←). Consequently, the attacker can neither
find a similar vector from her training data set nor recover
the original vector, thus diminishing the CWWZ attack’s re-
duction power to one.

Figures 7 and 8 plot the CDFs of the CWWZ attack’s re-
duction power with and without HTTPOS. A larger reduc-
tion power indicates that the CWWZ attack has a stronger
capability to infer the visited web pages. Note that the min-
imal reduction power is one, meaning that the CWWZ at-
tack cannot infer any useful information from each observed
flow vector. In this experiment, we follow the steps in [13]
and randomly choose1000 popular search key words from
Google Trend [3]. Since these key words contain only char-
acters{a, b, ..., z, 0, 1, ..., 9, dot, space}, the size of the am-
biguity set isk = 38.

Figures 7(a)-7(d) plot the results when the CWWZ at-
tack is applied to the HTTP traffic between HTTPOS and
the Google search engine through an encrypted wireless
channel. We only consider the first four characters (i.e.,
n ≤ 4), because they are sufficient for showing HTTPOS’s
effectiveness. That is, only the first four flow vectors are
examined. Obviously, without HTTPOS, the CWWZ at-
tack achieves large reduction power asn increases. The
attacker can then determine the words sent to the search en-
gine. However, with HTTPOS, the reduction power is fixed
to one and does not change along withn. Therefore, the at-
tacker cannot gain any information from the observed flow.

Figures 8(a)-8(d) plot the results for the HTTPS traffic.
Without HTTPOS, the reduction power increases withn.
Whenn reaches4, more than50% of the key words have
the reduction power around106, which can reduce the huge
original ambiguity set (whose size is384) to a small set
(whose size is384/106 ≃ 2). However, even forn = 4,
HTTPOS can force the reduction power for all the1000 key
words to one. In other words, the attacker must guess the
key word based on the ambiguity set with384 possibilities.

1The parameter “gsgbg” in the queries to the Google HTTPS-based
search engine introduces±20 random bytes to each request.

14

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(a) Reduction power in the first flow vector.

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(b) Reduction power in the first two flow vectors.

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(c) Reduction power in the first three flow vectors.

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(d) Reduction power in the first four flow vectors.

Figure 7: Reduction power of the CWWZ attack on the HTTP traffi c between HTTPOS and the Google search engine through an
encrypted wireless channel.

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(a) Reduction power in the first flow vector.

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(b) Reduction power in the first two flow vectors.

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(c) Reduction power in the first three flow vectors.

10
−2

10
0

10
2

10
4

10
6

10
80

0.2

0.4

0.6

0.8

1

Reduction power

C
D

F

With HTTPOS
Without HTTPOS

(d) Reduction power in the first four flow vectors.

Figure 8: Reduction power of the CWWZ attack on the HTTPS traffic between HTTPOS and the Google search engine.

5.3 Performance evaluation

5.3.1 Evaluation of individual methods

To evaluate the effect of each HTTPOS method on the per-
formance, we randomly selected 1000 URLs that support all

methods. We setADVL = 200 bytes for the method based
on TCP advertising window, letMSSL = 200 bytes for
the method based on TCP MSS, and used three TCP con-
nections for the multiple connections method. Moreover,

15

we splitted each web object into three parts for the HTTP
Range method. Note that the following results do not rep-
resent the best performance that HTTPOS can achieve.

10
−2

10
−1

10
0

10
10

0.2

0.4

0.6

0.8

1

Goodput with HTTPOS / Goodput without HTTPOS

C
D

F

MSS
MultiCon
Pipelining
Range
AdvWin

Figure 9: The ratio of the resultant goodput for each
HTTPOS method to that without HTTPOS.

10
−2

10
0

10
2

10
40

0.2

0.4

0.6

0.8

1

Additional delay (ms)

C
D

F

MSS
MultiCon
Pipelining
Range
AdvWin

Figure 10: Additional delay introduced by each HTTPOS
method.

Figure 9 plots the ratio of the resultant goodput for
each HTTPOS method to that without using HTTPOS. For
brevity, we useMSSto denote the method based on TCP
MSS + TCP advertising Window,MultiCon the method
based on Multiple TCP Connections + HTTP Range,
Pipelining the method based on HTTP Pipelining + HTTP
Range,Rangethe method based on pure HTTP Range, and
AdvWinthe method based on TCP advertising window. As
shown, HTTPOS can achieve at least80% goodput for75%
of the URLs when the MSS method or the MultiCon method
is applied, and90% goodput for 50% of the URLs when the
Pipelining method is applied.

The performance degradation introduced by the MSS
method is not significant, because, as discussed in Section
4.2.2, it only needs an additional RTT to finish the trans-
mission. On the other hand, we notice that unlike an IP
tunnel, a TCP tunnel may multiplex multiple TCP connec-
tions into a single TCP tunnel which could become the per-
formance bottleneck. To tackle this problem, we establish
several TCP tunnels in advance and divert TCP connections
into different TCP tunnels to achieve parallel transmissions.
Moreover, as expected, the AdvWin method gives the worst

performance, because it allows only a single packet trans-
mission from the server in an RTT. Moreover, we use a very
smallADVL (i.e., 200 bytes) for this evaluation.

Although some methods may cause certain URLs to ex-
perience a low goodput, we find that the additional delay
introduced by these methods is not significant under our pa-
rameter settings. Figure 10 reveals the additional delay in-
troduced by each HTTPOS method. As shown, the MSS,
MultiCon, and Pipelining methods introduce less than 100
ms delay for more than 90% of the URLs. The Range
method, on the other hand, introduces less than 200 ms de-
lay for more than 80% of the URLs.

5.3.2 Impacts on the performance of Internet browsing

To evaluate the overall performance of HTTPOS, we vis-
ited each of the top 100 web sites 10 times with and with-
out applying the HTTPOS operations depicted in Figure
3. We recorded the download time based on the output
of Pagestats for each site. Figure 11(a) and Figure
11(b) show the CDFs of the ratio for the download time
without and with HTTPOS when using IPSec tunnel and
SSH tunnel, respectively. The figures show clearly that the
first-time visit to each site via HTTPOS needs more time
than the normal visits (i.e., all values less than one), be-
cause HTTPOS uses the method based on advertising win-
dow. When HTTPOS is applied, the time for visiting 60
sites through IPSec is at most 1.6 times of the time without
HTTPOS.

However, once the URL information is cached, the time
required for the following visits is close to the time for the
normal visits (i.e., value close to one). The time for visiting
60 sites through IPSec is at most 1.1 times of the time with-
out HTTPOS. Furthermore, the time for visiting more than
90 sites through IPSec is at most 1.4 times of the time with-
out HTTPOS. The reason is that for each URL, HTTPOS
will select the method with the least impact on the perfor-
mance while not compromising the protection capability ac-
cording to Figure 3. It is also interesting to note that as
a result of employing multiple TCP connections, HTTPOS
may even enjoy better performance than the normal visits
(i.e., values larger than one) in some cases. As shown in
Figure 11(a), visiting around 40 out of the 100 sites through
IPSec requires less time than the normal visits.

5.3.3 Impacts on the performance of Google search

To evaluate the impacts of HTTPOS on the performance of
using Google search, we measured the RTT from the epoch
when the user sends a query to the epoch when the user
receives the response with and without HTTPOS. Figure
12(a) illustrates the RTTs obtained from the scenario where
a user in Hong Kong visited the Google search service (i.e.,

16

10
−1

10
00

0.2

0.4

0.6

0.8

1

Time spent without HTTPOS/Time spent with HTTPOS

C
D

F

First−time visit
Following visit

(a) IPSec tunnel.

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.10

0.2

0.4

0.6

0.8

1

Time spent without HTTPOS/Time spent with HTTPOS

C
D

F

First−time visit
Following visit

(b) SSH tunnel.

Figure 11: The effect of HTTPOS on the performance of Internet browsing.

0 200 400 600 800 1000

0.26

0.28

0.3

0.32

0.34

0.36

Index of keywords

R
ou

nd
−t

rip
 T

im
e

(s
ec

on
d)

Normal Wireless Traffic
HTTPOS on Wireless Traffic

(a) HTTPOS on wireless traffic.

0 200 400 600 800 1000

0.26

0.28

0.3

0.32

0.34

0.36

Index of keywords

R
ou

nd
−t

rip
 T

im
e

(s
ec

on
d)

Normal HTTPS Traffic
HTTPOS on HTTPS Traffic

(b) HTTPOS on HTTPS traffic.

Figure 12: The effect of HTTPOS on the performance of using Google search.

74.125.47.147) through a 802.11g wireless link. Fig-
ure 12(b) shows the RTTs obtained from the scenario where
the user accessed the same search service through HTTPS.
In both experiments, the user entered 1000 popular search
keywords from Google Trend [3] for 30 times, and the re-
spective median RTTs for each keyword is shown in Figure
12(a) and Figure 12(b).

In this experiment, HTTPOS employs the technique de-
scribed in Section 5.2.2 to evade the CWWZ attack. More
precisely, HTTPOS puts the real request and a useless re-
quest in one packet, and setsADVL = 0 before dispatching
the packet to the server. After a small delay, HTTPOS sends
an ACK packet to announce a large advertising window and
induce the server to send back responses. The delay is 120
ms for wireless traffic and 100 ms for HTTPS traffic, re-
spectively. Figure 12 shows that the additional delay intro-
duced by HTTPOS is small, because the server can send
back the responses immediately upon receiving the ACK
packet. The additional delay is less than 80 ms in Figure
12(a) and less than 60 ms in Figure 12(b).

5.4 Discussion

We believe that HTTPOS significantly raises the bar and
makes future traffic-analysis attacks much harder to de-

sign. Moreover, as HTTPOS provides fundamental defense
strategies and basic methods to modify flow features, new
evasion methods may be developed based on them. More-
over, we report below our additional findings on web bugs,
another attack model for the CWWZ attacks and our solu-
tions to defending against it, and our measurement results
for the support rate of HTTP Range.

5.4.1 Web bugs

In the course of conducting the measurement experiments,
we observed some cases where the size of packets carrying
certain web objects cannot be adjusted. These web objects
are usually1 ∗ 1 pixel web bugsbelonging to online adver-
tisement companies that customize their web servers, and
none of our methods works for them. Since these web bugs
are usually used to track users, a user may just filter them
to protect privacy. Moreover, since they may exist in many
web pages, their sizes could increase an attack’s false posi-
tive rate instead of facilitating the attack.

5.4.2 The CWWZ attack

We also note that if an advanced CWWZ attacker can ob-
serve the payload of HTTPS packets, she may still be able

17

to infer the size of a web object even after changing the
packet size. More precisely, an attacker can first identify
packets carrying SSL/TLS application data from the type
field in the SSL/TLS header and then use the field of ap-
plication data length to assemble consecutive TCP packets.
However, such attack does not work if the SSL/TLS packets
go through an IPSec tunnel or a wireless channel.

HTTPOS tackles this attack through two approaches.
The first approach is for the servers that support HTTP
Range. We measured the support rate of HTTP Range by
HTTPS servers and found that more than80% URLs in the
measured servers support HTTP Range. Further details are
given in Section 5.4.3. In this case, HTTPOS first divides
the web object into a random number of portions and makes
these portions to overlap a random part with one another. In
this way, the web object sizes reported by the field of ap-
plication data length in the SSL/TLS header are incorrect.
The following is an example of downloading a web object
from Twitter through HTTPS. In the normal case, the packet
size sequence is(476→, 1460←, 1460←, 1171←), and
the SSL/TLS record size sequence is(471 →, 4086 ←).
Although we can use TCP-based methods to split packets,
the attacker may still infer the response size from the se-
quence of the SSL/TLS records’ sizes. After HTTPOS ap-
plies HTTP Range, the sequence of packet sizes is modified
to (497 →, 1460 ←, 245 ←, 500 →, 1460 ←, 258 ←,
500→, 1460←, 254←), and the sequence of the SSL/TLS
records’ sizes becomes(492→, 1700←, 495→, 1713←,
495 →, 1709 ←). As a result, the attacker is prevented
from recovering the response packet size.

The second approach is for the servers that do not sup-
port HTTP Range (e.g., the Google HTTPS-based search
service). In this case, HTTPOS can still inject a number
of useless requests from the ambiguity set and set each re-
quest message to the same size. This strategy is motivated
by the observation that an attacker could not know the exact
length of the word typed by a user, and the inserted requests
result in many possible words. For example, if a user types
“hi,” an attacker can observe the following packet size se-
quence(539 ± 20 →, 679 ←, 540 ± 20 →, 658 ←) and
the SSL/TLS record sequence(534±20→, 291←, 378←
, 535 ± 20 →, 291 ←, 357 ←), where291 is the length
of the HTTP response header. Once HTTPOS inserts use-
less requests sequence “card” through HTTP pipelining, the
packet size sequence and SSL/TLS record sequence become
(1418 →, 165 →, 1418 ←, 578 ←, 1418 →, 165 →,
1418 ←, 530 ←) and(1578 →, 291 ←, 378 ←, 291 ←,
355 ←, 291 ←, 361 ←, 1578 →, 291 ←, 352 ←, 291 ←,
357 ←, 291 ←, 336 ←). Based on the packet size se-
quence, the CWWZ attack’s reduction power is reduced to
one, because the sequence has been totally changed.

Although the reduction power of an advanced CWWZ
attack exploiting the SSL/TLS record sequence could not be

reduced to one, the attacker still could not know the user’s
input, because there are at least six possible words, includ-
ing “h,” “hi,” “c,” “ca,” “car,” and “card.” Note that any word
that can result in the same SSL/TLS record sequence as any
one of the six words is also a possible candidate. For exam-
ple, if word “x” and “y” induce the same SSL/TLS record
size as word “h,” both “x” and “y” will be considered as
possible inputs by the attack. Therefore, when more useless
requests are injected, it becomes harder for such attacks to
recover the original sequence.

Since injecting useless requests may introduce much
overhead, another approach for evading the CWWZ attack
targeting auto-suggestion is to send only one request with
all inputs. For example, if a user inputs “hi” in the search
box, the auto-suggestion function may send the first request
packet with “h” and then the second packet with “hi.” To
evade the CWWZ attack, HTTPOS may just transmit the re-
quest carrying “hi” but drop the request carrying “h.” How-
ever, this approach may affect web usability.

5.4.3 Support rate of HTTP Range by HTTPS servers

We measured the support rate of HTTP Range for HTTPS
servers from two sets of web sites. The first one contains
the web sites of the50 largest banks in America2. By using
Pagestats to visit these web sites’ front pages or login
pages (if their front pages do not support HTTPS) through
HTTPS, we collected1585 valid URLs from104 HTTPS
servers, and1323 URLs support HTTP Range (i.e., the sup-
port rate is83.47%). The second data set is based on web
sites ranked by Alexa [1]. We first connected to the 443 port
(i.e., the default HTTPS service port) of top 1M web sites
and stopped when we obtained3000 web sites, to which
the SSL/TLS connections were successfully established.
Since not all web sites that open 443 port provide web ser-
vice through HTTPS, we found only1245 sites that offer
HTTPS-based web service. By crawling their front pages,
we gathered45, 401 URLs from2448 HTTPS servers, and
85.09% (i.e.,38, 632) of the URLs support HTTP Range.

6 Related work

Most of the existing proposals on defeating against
traffic-analysis attacks on encrypted HTTP traffic require
modifications to web servers, browsers and/or web objects.
In contrast, our HTTPOS is a browser-side solution that
does not need such modifications. Moreover, since none
of the existing techniques changes all four basic flow fea-
tures, they could be defeated by the traffic-analysis attacks
detailed in Section 3.1. On the other hand, our techniques
can successfully evade all of these attacks.

2http://nyjobsource.com/banks.html

18

Sun et al. [35] proposed twelve countermeasures and dis-
cussed the related costs. Most of them require the sup-
port of the web server and/or some modifications to the
web objects. One exception is to use HTTP Range to in-
crease the size of web objects. However, since these meth-
ods camouflage just the number and the length of web ob-
jects, they may not evade the traffic-analysis attacks based
on packet size distribution and packet timing information
[7,26]. Moreover, except for padding and pipelining, Sun et
al. listed the properties of each method but without imple-
menting and evaluating them. On the other hand, HTTPOS
exploits protocol features in both TCP and HTTP to change
the four basic HTTP flow features. Moreover, we im-
plemented HTTPOS and carefully evaluated the HTTPOS
methods on live HTTP traffic.

Hintz [23] and Danezis [15] suggested a number of
approaches to evade traffic-analysis attacks, for instance,
adding useless data to the flow and removing some web
objects in a web page. However, such approaches may
not evade new attacks [13, 26], because they do not change
the distributions of packet size and timing among packets.
Modifying a browser’s setting to force all web objects to
be transferred through one connection may evade the attack
proposed by Coulls et al. [14] that is based on the number
of TCP connections belonging to the same web session and
the amount of bytes delivered by individual TCP connec-
tions. However, the volume of packets from a web server
between two requests may still be exploited to identify web
sites, because web browsers usually send HTTP requests
one after the other, and web servers usually process these
HTTP requests in sequence [24].

Wright et al. proposed traffic morphing to evade the
traffic-analysis attacks based on packet size and direction
[38]. Their system aims at incurring less additional data
to a flow while enabling a flow to evade traffic-analysis at-
tacks. Their system first profiles the packet size distribution
for each web site and prepares a transformation matrix that
maps a packet size in one flow to a packet size in another
flow. Before sending a packet, traffic morphing changes the
packet size according to the transformation matrix by either
splitting or padding the packet. By doing so, the distribu-
tion of packet size observed by an attacker will not be the
same as the distribution of original packets. Due to padding,
traffic morphing may also change the flow size and pack-
ets’ timing information. However, traffic morphing requires
modifications to both web server and web browser, because
it needs to pad or split packets on the server side and remove
padded stuff on the client side. Moreover, transforming all
packets at the server site in real time will affect the perfor-
mance of the web service. Unfortunately, the authors did
not provide the evaluation results. In contrast, HTTPOS
doesnot modify both web server and web browser. In
fact, a server may not even know whether a client is using

HTTPOS. Moreover, we adopt many approaches to mitigate
possible performance degradation caused by HTTPOS.

Although anonymity networks (e.g., Tor [17]) also pro-
vide anonymous surfing, there are two major differences be-
tween HTTPOS and an anonymity network. First, HTTPOS
prevents an attacker from inferring the web site a user is vis-
iting, whereas an anonymity network prevents a web server
from knowing who is visiting it. Moreover, as pointed out
by Sun et al. [35], although multiple proxies are used in
anonymity networks, the first link between a client and the
first proxy is still vulnerable to those traffic-analysis attacks.
Second, anonymity networks are usually provided by a third
party, but HTTPOS is a browser-side solution under a user’s
control.

Information leaks through HTTP covert channels and
the corresponding detection mechanisms have been exam-
ined recently. Feamster et al. [19] employed sequences of
HTTP requests to transmit covert information. Burnett et
al. [11] embedded stealthy information into user-generated
content. We proposed WebShare [27] to leak information
through the value of prevalent web counters. On the defense
side, Borders and Prakash designed WebTap [8] to detect
HTTP covert channels that convey information through the
content and the timing of HTTP requests, and proposed a
framework to quantify such information leaks [9]. Schear
et al. devised Glavlit [33] to throttle content-based HTTP
covert channels. Zhang et al. invented Sidebuster [40] to au-
tomatically detect and quantify possible side-channel leaks
in web applications.

7 Conclusions

In this paper, we proposed a suite of new browser-side
techniques to prevent an attacker from inferring web sites
or web pages visited by a user. These techniques exploit
the basic protocol features in TCP and HTTP to manipulate
four fundamental characteristics in encrypted HTTP flows.
We implemented these techniques into a browser-side sys-
tem called HTTPOS that does not need to modify or control
any web entity. An extensive evaluation of HTTPOS on
live HTTP traffic shows that it can evade the state-of-the-
art attacks with low overhead. Future works include further
mitigating the impact of HTTPOS on the performance and
sealing other privacy leakages in web browsers.

Acknowledgments

We thank the anonymous reviewers for their quality re-
views and David Evans, in particular, for shepherding our
paper, and Paul Royal for his suggestions and help. This
work is partially supported by a grant (H-ZL17) from The
Hong Kong Polytechnic University. This material is based

19

upon work supported in part by the National Science Foun-
dation under grant no. 0831300, the Department of Home-
land Security under contract no. FA8750-08-2-0141, the
Office of Naval Research under grants no. N000140710907
and no. N000140911042. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation, the Department
of Homeland Security, or the Office of Naval Research.

References

[1] Alexa Internet, Inc.http://www.alexa.com .
[2] Freebsd/i386 5.2.1-release release notes. http:

//www.freebsd.org/releases/5.2.1R/
relnotes-i386.html .

[3] Google trends.http://www.google.com/trends .
[4] Google’s server names. http://

googlesystem.blogspot.com/2007/09/
googles-server-names.html .

[5] NetCraft Ltd. http://www.netcraft.com .
[6] D. Barrett, R. Silverman, and R. Byrnes.SSH, The Secure

Shell: The Definitive Guide. O’Reilly Media, 2005.
[7] G. Bissias, M. Liberatore, D. Jensen, and B. Levine. Privacy

vulnerabilities in encrypted HTTP streams. InProc. Privacy
Enhancing Technologies Workshop, 2005.

[8] K. Borders and A. Prakash. Web Tap: Detecting covert web
traffic. In Proc. ACM CCS, 2004.

[9] K. Borders and A. Prakash. Quantifying information leaks
in outbound web traffic. InProc. IEEE Symp. Security and
Privacy, 2009.

[10] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho.
Seven years and one day: Sketching the evolution of Internet
traffic. In Proc. IEEE INFOCOM, 2009.

[11] S. Burnett, N. Feamster, and S. Vempala. Chipping away at
censorship with user-generated content. InProc. USENIX
Security, 2010.

[12] CACE Technologies, Inc. AirPcap. http://www.
cacetech.com .

[13] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel
leaks in web applications: a reality today, a challenge to-
morrow. InProc. IEEE Symp. Security and Privacy, 2010.

[14] S. Coulls, C. Wright, F. Monrose, M. Collins, and M. Reiter.
On web browsing privacy in anonymized NetFlows. InProc.
USENIX Security, 2007.

[15] G. Danezis. Traffic analysis of the HTTP protocol over
TLS. http://research.microsoft.com/en-us/
um/people/gdane/papers/TLSanon.pdf , 2007.

[16] S. Dedeo. Pagestats.http://web.cs.wpi.edu/

˜ cew/pagestats/ .
[17] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The

second-generation onion router. InProc. USENIX Security,
2004.

[18] R. Duda, P. Hart, and D. Stork.Pattern Classification.
Wiley-Interscience, 2nd edition, 2000.

[19] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and
D. Karger. Infranet: Circumventing censorship and surveil-
lance. InProc. USENIX Security, 2002.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext transfer protocol –
HTTP/1.1. RFC 2616, June 1999.

[21] M. Gast. 802.11 Wireless Networks: The Definitive Guide.
O’Reilly Media, 2005.

[22] D. Herrmann, R. Wendolsky, and H. Federrath. Website fin-
gerprinting: attacking popular privacy enhancing technolo-
gies with the multinomial naive-Bayes classifier. InProc.
ACM Workshop on Cloud Computing Security, 2009.

[23] A. Hintz. Fingerprinting websites using traffic analysis. In
Proc. Privacy Enhancing Technologies Workshop, 2002.

[24] D. Koukis, S. Antonatos, and K. Anagnostakis. On the pri-
vacy risks of publishing anonymized IP network traces. In
Proc. IFIP Communications and Multimedia Security, 2006.

[25] Y. Lee. SOCKS: A protocol for TCP proxy across
firewalls. http://ftp.icm.edu.pl/packages/
socks/socks4/SOCKS4.protocol .

[26] M. Liberatore and B. Levine. Inferring the source of en-
crypted HTTP connections. InProc. ACM CCS, 2006.

[27] X. Luo, E. Chan, and R. Chang. Crafting web counters into
covert channels. InProc. IFIP SEC, 2007.

[28] X. Luo, E. Chan, and R. Chang. CLACK: A network covert
channel based on partial acknowledgment encoding. In
Proc. IEEE ICC, 2009.

[29] G. Macia, Y. Wang, R. Rodriguez, and A. Kuzmanovic. ISP-
enabled behavioral ad targeting without deep packet inspec-
tion. In Proc. IEEE INFOCOM, 2010.

[30] NetCraft Ltd. November 2010 web server survey.http:
//news.netcraft.com/archives/2010/11/
05/november-2010-web-server-survey.html .

[31] Northrop Grumman Corp. Cloc. http://cloc.
sourceforge.net/ .

[32] M. Ruef. httprecon. http://www.computec.ch/
projekte/httprecon/ .

[33] N. Schear, C. Kintana, Q. Zhang, and A. Vahdat. Glavlit:
Preventing exfiltration at wire speed. InProc. HotNets-V,
2006.

[34] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet
packet size distributions: Some observations. Technical Re-
port ISI-TR-2007-643, USC/Information Sciences Institute,
2007.

[35] Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanab-
han, and L. Qiu. Statistical identification of encrypted web
browsing traffic. InProc. IEEE Symp. Security and Privacy,
2002.

[36] The University of Waikato. Weka.http://www.cs.
waikato.ac.nz/ ˜ ml/weka/ .

[37] P. Wouters and K. Bantoft.Openswan: Building and Inte-
grating Virtual Private Networks. Packt Publishing, 2006.

[38] C. Wright, S. Coull, and F. Monrose. Traffic morphing: An
efficient defense against statistical traffic analysis. InProc.
ISOC NDSS, 2009.

[39] T. Yen, X. Huang, F. Monrose, and M. Reiter. Browser fin-
gerprinting from coarse traffic summaries: Techniques and
implications. InProc. DIMVA, 2009.

[40] K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. Side-
buster: Automated detection and quantification of side-
channel leaks in web application development. InProc.
ACM CCS, 2010.

20

