HTTPOS: Sealing Information Leaks with Browser-side Obfusation of
Encrypted Flows

Xiapu Lud*, Peng Zho#, Edmond W. W. Chai) Wenke Leé, Rocky K. C. Chang Roberto Perdiséi
The Hong Kong Polytechnic UniversityGeorgia Institute of TechnologyUniversity of Georgia

{csxluo,cspzhouroc,cswwchan,csrchang }@comp.polyu.edu.hk ,wenke@cc.gatech.edu , perdisci@cs.uga.edu

Abstract be profiled from traffic features [29]. A common approach
to preventing leaks is to obfuscate the encrypted traffic by
Leakage of private information from web applications— changing the statistical features of the traffic, such as the
even when the traffic is encrypted—is a major security packet size and packet timing information [13, 23, 35, 38].
threat to many applications that use HTTP for data deliv- Existing methods for defending against information
ery. This paper considers the problem of inferring from en- leaks, however, suffer from quite a few problems. A major
crypted HTTP traffic the web sites or web pages visited by problem is that, as server-side solutions, they requireimod
a user. Existing browser-side approaches to this problem fications of web entities, such as browsers, servers, and eve
cannot defend against more advanced attacks, and serverweb objects [13, 38]. Modifying the web entities is not fea-
side approaches usually require modifications to web enti- sible in many circumstances and cannot easily satisfyrdiffe
ties, such as browsers, servers, or web objects. In thisippape ent applications’ requirements on information leak preven
we propose a novel browser-side system, namely HTTPOStion. A second fundamental problem with these methods
to prevent information leaks and offer much better scatabil is that they are still vulnerable to some advanced traffic-
ity and flexibility. HTTPOS provides a comprehensive and analysis attacks. For example, although Sun et al. [35] pro-
configurable suite of traffic transformation techniques for posed twelve approaches to defeat their traffic-analysis at
a browser to defeat traffic analysis without requiring any tack based on web object size, new attacks based on the
server-side modifications. Extensive evaluation of HTTPOStuple of packet size and direction [26] could still identify
on live web traffic shows that it can successfully prevent thethe web sites visited by a user. Finally, the efficacy of these
state-of-the-art attacks from inferring private infornuat methods has not been validated thoroughly based on actual
from encrypted HTTP flows. implementations and live HTTP traffic. An exception is the
work from Chen et al. [13] that is implemented as an IS
extension and a Firefox add-on.
1 Introduction In this paper we explore a browser-side approach to pre-
vent information leaks from encrypted web traffic. Com-
pared with the server-side approach, the browser-side ap-
proach has the scalability advantage, because only the traf

HTTP for data delivery. Cloud computing and other similar fic between the browser gn_d the V'.S'ted servers needs to be
obfuscated. Moreover, it is possible for users to choose

service-oriented platforms will only exacerbate this prob which encrypted flows to be obfuscated in order to con-

lem, because these services are usually delivered through :
o serve resources and to reduce impacts on performance, but
web browsers. Moreover, it is well known that data encryp-

tion alone is insufficient for preventing information leaks this flexibility advantage is very difficult to obtain from a

. : . . . server-side approach. However, designing a browser-side
For instance, traffic-analysis attacks can identify the web method is verv challendina. because the server's behavior
sites visited by a user from encrypted traffic [7,22, 23, 26] y ging,

and anonymized NetFlows records [14]. Chen et al. havef:annot be directly modified to evade traffic analysis. That

further showed that sensitive personal information, such a IS, we cannot appl_y the prewpu;ly proposed'method§ that
. i) ; assume the capability of modifying the server’s behavior to
medical records and financial data, could also be inferred

through traffic analysis [13]. Besides, a user’s browser the browser-side approach.

) : . We show in this paper that it is possible to devise a
could be fingerprinted [39], and her browsing patterns could browser-side method to defeat traffic analysis by presgntin

*Most of the work by this author was performed while at Geofigieh. HTTPOS (which stands for HTTP or HTTPS with Obfus-

Leakage of private information from web applications
is a major security threat to many applications that use

cation), our proposed browser-side method. In addition to and HTTPOS's location. There are five entities in the threat
the advantages discussed above, HTTPOS has several othenodels: a victim user (i.e., client in Figure 1), an attacker
important advantages, such as supporting a wider scope oan encrypted tunnel, HTTPOS, and remote web sites/pages.
application scenarios than the previous approaches (see thThe threat models for scenarios (a)-(c) were adopted in pre-
threat model in Section 2). HTTPOS is a user-level pro- vious works, including Sun et al. [35], Liberatore et al.]26
gram and does not need to modify any web entity. It obfus- and Wright et al. [38], and the threat model for scenario (d)
cates encrypted web traffic by modifying four fundamen- was adopted by Chen et al. [13].

tal network flow features on the TCP and the HTTP |ayerS, In scenarios (a)_(c)’ a client visits a web site through an

namely, packet size, timing of packets, web object size, andencrypted tunnel at different layers, for example, wirgles
flow size. These features, as shown in the evaluation, areshannel with WEP/WPA [21], IPSec-based IP tunnel [37],
sufficient for diffusing and confusing the existing traffic- and SSH-based TCP tunnel [6], and the attacker attempts to
analysis attacks. To modify the traffic from web servers, find out that web site. In scenario (d), a client visits diéfer
HTTPOS exploits a number of basic features in TCP (e.g.,web pages at a certain web site. This attack model assumes
Maximal Segment Size (MSS) negotiation and advertising that the attacker knows the web site, and she attempts to
window) and HTTP (e.g., HTTP Range and HTTP Pipelin- discover the web pages visited by the client. Note that an
ing). updated web page due to the client’s interactions with the
We have implemented HTTPOS and conducted exten-wep site is considered as a new web page from an attacker’s
sive experiments on live HTTP traffic to evaluate its per- viewpoint. For example, some web sites (e.g., Google) may
formance in terms of evading traffic-analysis attacks and return auto-suggested words upon receiving a user input.
impacts on the performance of network flows. The re- These dynamically updated web pages are regarded as dif-
sults show that HTTPOS can effectively prevent the state-ferent web pages.
of-the-art attacks from inferring private information ifino In all four scenarios, the attacker eavesdrops the en-

er_u;lrypted HTTP flows. ASkWi" be Sh%_Nn inhSer::tion 52, crypted tunnel to obtain the encrypted packets sent between
without HTTPOS an attacker can achieve hig accuracyqe yvictim and web servers, but she cannot decrypt these

of inferring the web sites visited by a user. For example, packets. To infer the visited web sites/pages from these

some attacks can achieve 94% accuracy on inferring the . :
) .) .~ ~encrypted packets, the attacker first profiles the character
100 web sites we tested by selecting the one with the high- ypied p b

fid based heir classificati laorithm. With istics of the traffic between the victim and each candidate
est confidence based on their classification algorithm. With, o, site/page. The traffic profiling depends on the traffic

HTTPOSall attacks’ accuracy drops to zero for at least 98 analysis methods [7, 13, 22, 23, 26]. She can easily build

web sites. Even if an attacker chooses the top five web sites; | ., profiles by visiting those web sites/pages via the en-

as her inference, the accuracy for at least 94 web sites re—Crypted tunnels herself. Equipped with the set of traffic-pro

mains zero fogll qttacks. Mor,eqver, some traffic-analysis files, the attacker then performs the inference by classifyi
attack can easily infer a users input to the Google searchy,, captured traffic trace into the traffic profiles prepared
box. _BUt when HTTPOS is applied, the output of such at- beforehand. From the viewpoint of pattern classification,
tack is r.educe.d to arandom guess.) the traffic profiling step is known as conducting supervised
Seg:tlon 2 first pres_ents the thr_eat mo‘?'e'* and _Sect|on 3Iearning to train a classifier, whose feature set is the ¢raffi
describes our strategies for evading traffic-analysickita profile, and the class label is the web site/page. Moreover,

and methods for manipulating netV_/ork flow_features. Af'Fer the inference step corresponds to labeling a traffic trace ac
that, we introduce HTTPOS’s design and implementation cording to the trained classifier [18].

in Section 4, followed by extensive experiment results in . .
Section 5. We finally introduce the related work in Section ther-I;Zth))(c)oSI le;ild?ggtiis'rtgg g:grm-t?dp t;‘:'; ?Kee_)r(gg'ggg
6 before concluding this paper in Section 7. nection (and therefore the HTTP connection) is end-to-end
in scenarios (a), (b), and (d), HTTPOS can be deployed at
2 Threat models the browsers. On the other hand, the browser’s TCP connec-
tion is terminated at the tunnel entry in scenario (c). There
Unlike previous works, we consider in this papmth fore, when HTTPOS is deployed at the browsers for TCP
(1) the problem of inferring the web sites visited by users tunnels, only the HTTP methods can be used for traffic ob-
and (2) the problem of inferring the web pages browsed fuscation. Furthermore, HTTPOS can be deployed at the
by users. The three attack scenarios illustrated in Fig-tunnel entry in scenarios (b) and (c). Since we implement
ures 1(a)-1(c) concern problem (1), whereas the one in Fig-HTTPOS as an HTTP proxy (which will be discussed in
ure 1(d) concerns problem (2). We summarize the threatSection 4), the same HTTPOS can be placed at the browser
models for the four scenarios in Table 1 based on the attackor the tunnel entry for both scenarios. However, placing
goals, visibility of the packet information to the attacker HTTPOS at the TCP tunnel’s entry maximizes HTTPOS's

Client

_

HTTPOS

Encrypted Wireless -
Channel

Wireless

Attacker Access Point

Attacker

HTTPOS

(c) TCP tunnel (e.g., SSH).

HTTPOS
(b) IP tunnel (e.g., IPSec).
Client Encrypted HTTP
@ Tunnel
W é
HTTPOS Attacker

(d) HTTPS (SSL/TLS).

Figure 1: The four attack scenarios considered in this paper

Table 1: Threat models for the four attack scenarios.

Wireless (e.g., WEP/WPA) IP tunnel (e.g., IPSec) TCP tufmel., SSH) HTTPS (SSL/TLS)
Attacker’s goal Identify web site Identify web site Identify web site Idefgtiveb page
Visibility of HTTP header No No No No
Visibility of TCP header No No Yes Yes
Visibility of Destination IP No No No Yes
HTTPOS's location Client Client/tunnel entry Client/tunnel entry Client

obfuscation power, because, as mentioned earlier, H-TTPOSt al. proposed the SSWRPQ attack, which is the first at-
at the browser cannot use TCP'’s protocol features to obfus-tack that can identify web sites through the number and size

cate encrypted traffic.

3 Defending against traffic-analysis attacks

In Section 3.1, we first elaborate on the classification al-
gorithms used in the state-of-the-art traffic-analysisckts.

Then we propose strategies with formal analysis to deceive

those classification algorithms in Section 3.2. In particu-
lar, we identify four basic features that can affect thetinfo

mation used by those traffic-analysis attacks: packet size
timing of packets, web object size, and flow size. We then

of web objects [35]. Later on, Bissias et al. proposed us-
ing the inter-arrival time between packets and packet size
to profile a web site in their BLJIL attack [7]. Liberatore et
al. exploited the tuple (flow direction, packet size) foffica
analysis and proposed two classification algorithrdesc-
card coefficien{JC) andnaive Bayesian classifigiNBC)

that are referred to as LL-JC attack and LL-NBC attack,
respectively [26]. Most recently, Chen et al. employed a
sequence of (flow direction, packet size) to infer the web
pages visited by a victim in their CWWZ attack [13].

The SSWRPQ attackemploys the number and size of web
objects as features. Since all HTTP traffic is encrypted, an

propose methods in Section 3.3 to manipulate these featurega cker cannot obtain the exact values of such features. As

to evade these traffic-analysis attacks.

3.1 The state-of-the-art attacks

suggested in [24, 35], the amount of bytes from the server
between two consecutive requests from the client is used to
approximate the sizes of web objects. After obtaining the

number of web objects and their sizes, the attack uses the

We consider the five traffic-analysis attacks on encrypted Jaccard coefficient to quantify the similarity between a new

HTTP flows [7, 13, 26, 35] in Table 2. We name them by

trace and an existing profile.

concatenating the first letters of the authors’ names. SunThe BLJL attack employs both inter-arrival time (IAT) be-

Table 2: Traffic-analysis attacks studied in this paper.

Attacks | Features Classification algorithms
SSWRPQ [35] The number and size of web objects Jaccard coefficient
BLJL [7] Inter-arrival time between packets and packet size Crasslation
LL-JC [26] Tuples of (flow direction, packet size) Jaccard coefficient
LL-NBC [26] Tuples of (flow direction, packet size) Naive Bayesian ¢faegs
CWWZ[13] Sequence of tuple (flow direction, packet size) Sequenceanson

tween packets and packet size to profile a web site and useBased on the assumption that all attributes are independent
cross-correlation to measure the similarity between a new
trace and an existing profile. To compare a new trace’s fea-
tures to an existing profile, the BLJIL attack computes the
cross correlation of its IAT sequences and packet size se-

P(Voew| V) = T P(di|V2), (5)
k=1

quences by: whered;, denotes a feature ivj;.
S (7 — 7)(si — 5)] The CWW?Z attack, unlike the LL-JC and LL-NBC attacks
R = - (1) that only inspectindividual packets, considers a sequehce

BN N Y O

wherer ands denote the new trace’s IAT values and packet
sizes, respectively, whereasands are the respective mean
values of an existing profile’s IAT and packet size.

The LL-JC attack employs tuples of (flow direction,
packet size) as features. L&t = {d;,ds,...} be a set
of tuples in a trace. The JC is defined as

_ |Dnew m Dz|
|Dnew U D1| ’

whereD,,.,, and D; denote the set of tuples in a new trace
and that in the profile of théth web site, respectively. The
normalizeds (i.e., S) is used to determine to which class a
given trace belongs:

S(Dpew, D;) (2)

S(DnewaDi) _ S(DnewaDi)

ZjeU S(DnewaDj)’

whereU is the set of all existing profiles.

The LL-NBC attack only considers the existence of cer-
tain tuples without examining the number of tuples in a
flow. This attack employs the Kernel Density Estimation
(KDE) to estimate the probability density function of each

®3)

tuple (i.e., considering the value of each feature) and then

packets [13] to infer user inputs to a web page. A sequence
of directional packet sizes is referred to dtoav vector de-
noted byC = {¢t, ¢t41, - - -, Ct4n—1}, Wherecy 1 repre-
sents the directional packet size observed at time: — 1,
andn is the sequence length. Létbe the number of all
available characters arig be the number of possible char-
acter sequences at timeand these possible characters con-
stitute anambiguity set After observinge;, the attacker
may know that onlyk, /«; possible inputs from the ambi-
guity set can produce;, wherea; € [1,k;) is defined as
areduction factor In the next observation, the ambiguity
set’s sizek; 1 is reduced fronk - k; to k - (k:/c:). After
receiving{cs, ¢t41,- - ., ct+n—1}, the size of ambiguity set
is reduced fromk™ to % wherell? , (a¢4i—1)

is referred to aseduction power A victim’s input can be
easily recovered if an attack has large reduction power.

3.2 Two defense strategies

We propose two general strategies to deceive an attack’s
classification algorithm. The first one is inducing the clas-
sification algorithm to make a random guess by introducing
features that have not been involved in training the algo-

employs a naive Bayesian classifier to reach a decision. Werlthm. The second strategy is to confuse the classification

useV to denote the features used in an LL-NBC attack.
The relationship betweel and D is that for a given

feature inV/, its value is equal to zero if the corresponding

tuple is not inD and KDE is not used. After using KDE,

algorithm to misclassify a trace.

3.2.1 The diffusion strategy

although such features may have values larger than zero] "€ SSWRPQ, LL-JC, and LL-NBC attacks implicitly as-
their values may be very small, depending on the parameter$UMe that packet sizes (or web object sizes) observed in the

used in the kernel function and the location of tuples that ar
in D. NBC classified/,,.., into a class/; if and only if

P(Vaew| Vi) P(Vi) > P(Voew|V;)P(V;), Vi #i. (4)

training data set will appear in the testing data set (i.e., a
new trace to be classified). If all packet sizes or web object
sizes in a new trace never appear in the training data set,
these algorithms will be forced to make a random guess.

Lemma 1 details how to evade algorithms based on the JC3.2.2 The confusion strategy

and NBC. -)
To confuse an attack’s classification algorithm, we could

manipulate a flow to make its features similar to another
flow’s features. For instance, Lemma 2 first presents an ap-
proach to confuse the LL-JC, LL-NBC, and SSWRPQ at-

tacks.

Lemma 1. If a flow comprises a set of tuples, denoted as
Dyew, Which never exist in any training set, then the LL-
JC and LL-NBC attacks cannot classify this flow correctly.
Similarly, if a web object size of a flow never appears in
any training set, then the SSWRPQ attack cannot identify

the class of this flow. Lemma 2. Let D; and D; be the respective sets of tuples in

the profiles of sitesandj, andV; andV; be the respective
¢ h c kS B b feature sets of sitesand; used by the LL-NBC attack. Ifthe
Proo .(;n the LL-J atta_c ’ (D"ew_’,Di) =0, _ec_:laulse i tuples for a flow of sité become D; — D;) (i.e., the tuples
Dnew. oes not appear in any training set. Similar Y. T that are inD; but not inD;) after changing the packet sizes
the sizes of web objects does not exist in any training in the flow, the LL-JC and the LL-NBC attacks will regard
set, the SSWRPQ's JC becomes zero. In _the LL-NBC at-y,o transformed flow as a flow of sife Similarly, after
tack, if D, is totally new to the classification algorithm, changing the sizes of web objects in a flow of site the

P”(Vnewlm = 0 (vi, "de U). ﬁ'thlfughl‘fing_KDE MaY e in the profile of sitg, the SSWRPQ attack will regard
allow P(V,e|Vi) > 0 due to the kernel function, we can the transformed flow as a flow of site

selectD,,.,, whose tuples are not close to any tuples in the

training set, so thab (V,ew|Vi) — 0. O Proof. Let D,.,, be the tuples in the transformed flow.

Since S(Dpew, Dj) > S(Dypew, Di) = 0, the LL-JC at-
) .. tack regards the transformed flow as a flow of gitather
Defense mechanisms based on Lemma 1 are feasible iRhan a flow of sitei. LetV,., be the feature set in the

practice, because the packet size is dominated by a relagansformed flow. According to the relationship betwéen
tively small number of values [34]. In other words, we can 4,417 we know thatP(V pew|V;) > P(Vpew|Vi) = 0 (or
1 new J new K3 -

easily find packet sizes that never appear in any training SetP(V Vi) — 0 if the KDE is used). Thus the LL-NBC
Figure 2 plots the CDF of the number of unique packet sizes a4y will consider the transformed flow as a flow of site

in a flow from two data sets. The UMass data set con- ; gjimilarly, if the transformed flow’s web object size only

tains packet header tr_aces collected fou_r times a day fromgyisis in sitej's profile, the SSWRPQ attack will find that
February 2006 to April 2006, and the size of compressed g ransformed flow is more similar to flows of sji¢han
pcap files is around 2.6GB [26]. This data set is used f,s of sitei. 0

for testing the traffic-analysis attacks in [26]. The WIDE

traces, on the other hand, contailh traffic going through

the samplepoint-F of the WIDE backbone networks from For the CWW?Z attack, if we introduce other flow vec-
30 March 2009 to 2 April 2009, and the size of theap tors (e.g., by entering some useless inputs) in addition to
traces is around 433GB [10]. Since the WIDE data set con-the flow vectors induced by the real inputs, the attacker has
tains various kinds of traffic, we extract HTTP flows that to consider all inputs that may result in these flow vectors
have at least five packets. We regard the packets sent to or the following two reasons. First, the attacker could not
web server as request packets, and those sent from a wedifferentiate between flow vectors caused by useless inputs
server as response packets. Both figures show that in thénd those induced by real inputs. Second, the attacker could
majority of flows the number of unique packet sizes is less not know the start and the end of real inputs. As a result, the
than 100. Moreover, the request packets usually have fewerreduction power can be reduced.

number of unique packet sizes than the response packets. Lemma 3 presents a sufficient condition to induce the

For the CWW?Z attack, if a flow vector does not occur BLJL attack to reach an incorrect decision.
in any training set, the attacker cannot exclude any passibl
input and has to consider all the ambiguity set in the next Lemma 3. By letting all packets in a flow have the same
flow vector. Therefore, the reduction power is fixed to one, Sizes. and their IATs have the same valte R in Eq. (1)
and the final decision is the same as a random guess. Fols then determined by, and., instead of the transformed
the BLJL attack, since it uses a cross-correlation based alflow’s original feature.
gorithm, it makes an implicit assumption that the number of
packets (i.e.n) should be the same in the training data set Proof. If - = 7. and s; = s., then R =
and the testing data set. If this assumption does not hold,/(Tc — 7)(sc — 5). By adjustings. andr., we can there-
R could not be computed. Thus, it is possible to defeat this fore make a flow similar to any other flows. As a result, the
attack by Changing the number of packets' BLJL attack cannot identify the original flow. O

1
- 08, -
. 7 0.6 7
L LL
a [a)
(®)]
- 04, -
- 02, -
—Request flow —Request flow
<Response flow j— ~<Response flow
d 0 ‘ 1 ‘ 2 3 O 0 ‘ 1 ‘ 2 3
10 10 . 10" 10 10 10 . 10" 10
Number of unique packet sizes Number of unique packet sizes
(a) The UMass data set. (b) The WIDE data set.

Figure 2: The distributions of unique packet sizes in two HTTP data sets.

3.3 Manipulating the features Range header, such asRange: bytes=0-0 " |If
the server supports HTTP Range, it will reply witB06
To defeat the traffic-analysis attacks listed in Table 2 and Partial Content " and aContent-range header,
possibly new traffic-analysis attacks, we manipulate four such as Content-range: bytes 0-0/L ” where

fundamental network flow features, including packet size, L is the actual length of the requested web object. After
web object size, flow size, and timing of packets. Under that, HTTPOS sendd/y requests to the web server, each
our threat models, these features can be measured from anf which only asks foru; (i = 1,..., Ny) bytes, where
encrypted HTTP flow and exploited to differentiate network Zf\;”l u; = L.

flows by an attacker. We describe our basic approaches folTCP MSS negotiationA TCP packet’'s payload length is
manipulating these features in HTTPOS below. Since thelimited by the TCP MSS. TCP allows sender and receiver
flow size is determined by the web object size, we discussto negotiate the MSS through the MSS option in the TCP

the flow size together with the web object size. SYN and TCP SYN/ACK packets. By exploiting this fea-
ture, HTTPOS can constrain the packet size by announcing
3.3.1 Packet size a small MSS.

]] TCP advertising window Since the advertising window
HTTPOS alters the size of outgoing packets on the HTTP ¢onrols the number of bytes a sending TCP could dispatch,
and TCP layers. On the HTTP layer, HTTPOS increasesine size of the incoming packet can be manipulated by ad-

the packet size by adding additional bytes to the HTTP j,sting the advertising window if it is not larger than the
header, for example, adding additional fields, appendingpss.

characters to th®eferer field, or using specific media
types to replace the asterisk in thecept field. On the
TCP layer, HTTPOS decreases the packet size by splitting
a TCP packet into several smaller TCP packets. If an at-It is nontrivial for a browser-side approach to affect the
tacker could not observe the TCP header (i.e., scenarios (ajveb object size. A possible method is to adjust the con-
and (b)), HTTPOS increases the packet size by extendingtent codings [20]. For example, if a web object is com-
the TCP option fields (e.g., by adding the TCP No Opera- pressed before being sent to the client, HTTPOS modifies
tion option that is usually used to pad the option list). How- theAccept-Encoding header to force the server to send
ever, it is more challenging to control the size of incoming an uncompressed web object. A similar method is to ad-
packets from a web server, because it is usually determinedust the quality value [20]. Although these two methods are
by the server application and the server's TCP/IP stack.quite general, we find that most servers do not support them.
HTTPOS exploits the HTTP Range option, TCP maximum To disguise the size of web objects, we therefore adopt
segment size (MSS) negotiation, and TCP advertising win- the following methods based on the observation that an at-
dow to manipulate the packet size. tacker could only estimate the size of a web object from en-
HTTP Range HTTP/1.1 provides a Range option to fetch crypted traffic using the amount of bytes received between
portion of a web object to avoid downloading the same con- two requests [24, 35].

tent already received by a client [20]. RFC 2616 refers TCP retransmissionslf the client is using IP tunnel or en-

to a request having &ange header as gartial GET. crypted wireless channel that prevents an attacker from see
To fetch a web object, HTTPOS sends a request with aing the TCP header, HTTPOS affects the web object size

3.3.2 Web object size and flow size

and enlarges the flow size by causing TCP retransmissions3.3.3 Timing of packets
More precisely, since an ACK number informs a sending

TCP how many bytes have been successfully received by goince the qqtgoing packets sent from Fhe client go.through
TCP receiver, by acknowledging only part of the received HTTPOS, it is easy to control their timing by delaying the

bytes, HTTPOS could force the server to re-send the unac_transmissions. To manage the timing of packets from the

knowledged portion along with the new portion if the packet server,_H'II'TPOhS qurate? on two Ievell(s. Trge first Ievhel IS
size permits [28]. In this case, the attacker will overesti- [© Manipulate the timing of request packets, because the re-

mate both web object size and flow size. If the attacker sponse pa}ckets are triggered bY rgquest packets. The sec-
can observe the TCP header, she may ignore the retransmitc-md level is to manipulate the timing of response packets

ted packets. In this case, HTTPOS employs the following through _delaying ACK packgts. The rational behind this

HTTP-based approaches, because an attacker cannot OLr;jethod is that without receiving ACK packets the s?ndlng

serve the content of encrypted packets. TCP may not ser_1d out new data packets due to TCP’s ACK-
based self-clocking feature. Note that the flow sequence can

HTTP Pipelining Using HTTP Pipelining to send several also be changed by reordering the sequence of TCP SYN

requests together without waiting for the corresponding re packets or delaying the corresponding HTTP request pack-

sponses makes it difficult for an attacker to infer the size of ets. By doing so, HTTPOS can help a user evade the traffic-

aweb object [20], because an attacker may regard the totahnalysis attack in [14].

bytes from the server as the size of a web object. To achieve

this, HTTPOS either merges several requests from the client

or attaches a useless request with the original requestbefo 4 HTTPOS

sending the packet to the server. In both cases, the attacker)

will overestimate the HTTP request's size, web object size, 4.1 Design

and flow size. When using the latter approach, HTTPOS

does not forward the response to the useless request to the HTTPOS acts as a proxy through which a client visits a

client. web site. Itaccepts HTTP requests from the client and mod-

. ifies them as needed before sending them out. Figure 3 il-

HTTP Range Employing HTTP Range to request data that lustrates the HTTPOS operations. When HTTPOS receives

haye been downlgadeq can enIarg_e t_he flpw size and d's'a URL, it checks whether information related to this URL
guise the web object size. Its basic idea is similar to the

. . : ._is in the cache, which includes whether the URL can be
method using retransmitted TCP packet. The difference is
fetched through HTTP Range, whether the server supports
that the latter method operates on TCP and therefore e TTP Pinelining. and the web obiect size. This informa-
quires TCP header being invisible to the attacker, whereas.. peining, ar o)]
. e .~ = tion determines which module will be used. Each module
the HTTP header in the encrypted traffic is already invisible realizes a method described in Section 4.2
FO the attacl_<er._A_Ithough Sun et al. [35] also s_uggested US* 1t it is the first time for HTTPOS to .hr;mdle a URL
ing HTTP Pipelining and HTTP_ Range, they did notimple- HTTPOS uses the method based on TCP advertising v;/in-
;nnednt::peollcue”vagjvzgﬁg:r&egeu;rir;plelssn;;qesfrggigromgeaow (Section 4.2.1). It manipulates the advertising win-
y) g Ive ’ dow in outgoing packets to control the size of response
also measure the popularity of supporting HTTP Range andpackets To test whether the URL can be fetched through
HTTP Pipelining (Section 4.4). Moreover, we combine the X

method based on HTTP Pipelining and that based on TCP::;:;E Oz?ngii’ HH-[F-S'F;?S Il;]:setrtfoa\r/]gr?f: \?V)QZtsh:eor_t?\e server
advertising window to evade an advanced CWWZ attack going q : Y

) supports HTTP Pipelining, HTTPOS duplicates the HTTP
(see Section 5.2.2). request and addsRange: bytes=1-1 " to it and then
Injecting useless requestdnjecting a useless request be- sends these two HTTP requests to the server at the same
tween two requests sent by a client can disguise the wektime. After receiving the responses, the feature inforamati
object size. More precisely, after a client sends one reques and the web object size are saved in the cache.
HTTPOS decreases the advertising window to a small value If the information is found in the cache, HTTPOS selects
(say 10 bytes), so that the server cannot return all the re-the proper method based on its effectiveness on evading
quested content in one packet. Once a response packet igaffic-analysis attacks and mitigating performance degra
received, HTTPOS injects a random request. In this casedation. If the URL could not be fetched through HTTP
the attacker will underestimate the web object size, becaus Range, HTTPOS uses the method based on TCP MSS
she may observe many small responses to different HTTP+ TCP advertising window (Section 4.2.2). Otherwise,
requests. There is no restriction on the requests injegted b HTTPOS selects the method based on multiple TCP con-
HTTPOS. Its usage is to mislead an attacker into obtainingnection + HTTP Range (Section 4.2.3) if the server does
wrong web object size and flow size. not support HTTP Pipelining, or the method based on HTTP

Store URL le] Method based on |, |
information into cache| [Advertising window

Inject Useless Request

v
Method based on MSS Method based on ol End

+Advertising Window multiple TCP

connections + Range
No
Y
Support Range?

Method based on

|Get URL information Pipelining + Range

No
Y
Support Pipelining?

Figure 3: The HTTPOS operations.

Pipelining + HTTP Range (Section 4.2.4) if the server does. or manipulate the last packet’s size by using TCP advertis-
Since TCP-based methods (i.e., methods based on TCPng window. In the former case, after setting the MSS to
MSS and TCP advertising window) cannot change the size M, the last packet’s size becom&smod M’. In the lat-
of web objects, HTTPOS injects a useless HTTP requestter case, HTTPOS sets the advertising windowp| M in
between two requests as described in Section 3.3.2 to misorder to fetch the first — R bytes, whereR = S mod M.
lead the attacks that exploit the characteristics of web ob-After that, it sets the advertising window #® — r bytes,
jects. Itis worth noting that if an attacker cannotobseineet wherer is a random positive integer less th&nto down-
TCP header, HTTPOS can also use retransmitted packets t¢oad 2 —r bytes and then announces an advertising window
mislead those attacks. Table 3 summarizes all methods irarger than- to get the remaining bytes. Therefore, if the
HTTPOS and the corresponding attacks that can be evadediormal operation needs one RTT to download thbytes,
HTTPOS may use an additional RTT to download it (i.e.,
4.2 Modules one RTT forR — r bytes and another RTT for bytes).
If the server's TCP stack increases its congestion window
o) based on the number of valid ACK packets, HTTPOS could
4.2.1 Method based on TCP advertising window send customized ACK packets to induce the server to in-

Since a TCP sender cannot send more data than the adverti&'2S€ Its congestion window quickly.

ing window permits, HTTPOS controls the size of incoming

response packets by manipulating the advertising windowg 2 3 Method based on multiple TCP connections +

in each outgoing packet. More precisely, given a web object HTTP Range

of S bytes, HTTPOS selecfs, integers{vy, va, ..., vn, },

wherev; is the advertising window in thi&h outgoing TCP If a server supports HTTP Range but does not support

packet andzf.\[:”1 v; = S. HTTPOS sends a new TCP HTTP Pipelining, HTTPOS establishes multiple TCP con-

packet only after receiving a TCP data packet from the nections and sends parti@®ET requests for a web object

server to prevent the server from combining the advertisingin parallel to the server. As explained in Section 3.3.1,

windows in several TCP packets and then sending a largeHTTP Range can limit the size of response packets. The

packet that may be recognized by a traffic analysis. server will process these requests simultaneously if the
server adopts multi-threading and then return the web ob-
ject through several packets. HTTPOS will re-organize the

4.2.2 Method based on TCP MSS + TCP advertising egnonses before delivering the content to the client.

window

Since the method based on TCP advertising window allows 4 5 4 Method based on HTTP Pipelining + HTTP

only one TCP packet to be sent in an RTT, it may intro- Range

duce large delay. To address this problem, we propose a

new method that employs both TCP MSS and TCP advertis-If a server supports both HTTP Pipelining and HTTP
ing window. This method is motivated by two observations. Range, HTTPOS puts several part&zt Trequests into one
First, given a web object &f bytes and a default MSS aff packet and sends it out. The server will process these re-
bytes, a successful traffic-analysis attack usually redies quests one by one and send back the responses. Without
the last packet whose size is equabtomod M. Second,a the need to wait for the arrival of a response before sending
TCP sender can send several M-byte TCP data packets in aanother partiaGETrequest, the additional delay introduced
RTT. HTTPOS therefore can either change the default MSSby HTTPOS will decrease.

Table 3: Methods in HTTPOS and the corresponding attacks thacan be evaded.

Methods | Layers| SSWRPQ BLJL LL-JC LL-NBC CWWZ
Method based on Advertising Window TCP N4 vV 4 N4

Method based on MSS + Advertising Window TCP N4 vV 4 N4

Method based on Multiple TCP connections + HTTP RangelTTP V4 V4 vV vV V4

Method based on HTTP Pipelining + HTTP Range HTTP V4 V4 vV vV V4

Inject Useless Request HTTP N4 N4 Vv

Inject Packet Delay TCP N4

4.3 Implementations 4.4 Measuring the support rates of the TCP and

HTTP based control

We implemented HTTPOS in C with 3022 lines
of code (reported byCLOC [31]) and tested it on
Ubuntu 9.04 with 2.6.27 kernel. To manipulate TCP ~ HTTPOS exploits the basic protocol features in TCP
packets, HTTPOS useiptables (version 1.4.0) and and HTTP described in RFC 793 and RFC 2616, respec-

the libnetfilter _queue library (version 0.0.16) to tively. Since not all servers comply with the RFCs, we con-
hook outgoing TCP packets of interest. HTTPOS adds ducted two sets of measurement to evaluate whether oper-
rules intoiptables ’ INPUT and OUTPUTchains, so ating systems and web servers support manipulating packet

that the packets matching the rules will be queued in Size through TCP MSS, TCP advertising window, HTTP
the kernel. HTTPOS acquires a packet through the Pipelining, and HTTP Range. In the first set, we tested pop-
libnetfilter _queue library and then modifiesit (e.g., ular operating systems and web servers with their default
the advertising window and the MSS option) before re- settings in our test-bed. In particular, we tested Apache
leasing it. Additional delay is introduced to the outgoing V2.3.6, nignx v0.8.42 and lighttpd v1.4.26 in a Ubuntu ma-
packets if needed. HTTPOS uses raw socket to inject TCPchine (kernel 2.6.28) and 1IS v7.5 in a Windows 7 box.
packets if necessary and employs thpcap 1.0.0 Ii- We selected these web servers, because they represent more
brary to capture TCP packets for verification. Moreover, the than90% market share [30]. Since the Google web server
POSIX Threadsgthreads) library was utilized to create ~ cannot be downloaded, we cannot test it in the test-bed.
and manage muItipIg threads for multiple HTTP/TCP con- |, the second set, we targeted on the 26p0 web sites
nections between clients and HTTPOS, and those between, the Alexa rankings [1]. We modifieBagestats [16]
HTTPOS and web servers. to drive Firefox 3.6.3 to automatically visit these web site

In our measurement experiments to be discussed in SecSince Firefox downloads all the necessary web objects,
tion 5.1, we established an IPSec tunnel as an example ofvhich may be located in different web servers, we man-
IP tunnel, builtan SSH tunnel as an example of TCP tunnel, aged to collecti43, 333 URLs in 8, 845 web servers after
and set up a wireless channel encrypted by WPA. HTTPOSFirefox visited the front pages of tH®00 web sites. We
uses different modules to handle HTTP requests and re-used NetCraft’s service [5] to identify the operating syste
sponses for different scenarios. When the IPSec tunnel ancind the web server software used by each server. Since
the wireless channel are used, HTTPOS acts as an HTTR\etCraft resolved the web server software used in only
proxy. When the SSH tunnel is employed, HTTPOS be- 5884 web servers, we employdutprecon-7.3 [32] to

haves as a SOCKS proxy for users to visit the Internet. At further infer the web server software in the remain9g1
the same time, HTTPOS communicates with the SSH tun-servers. There are stilll81 servers whose web server soft-

nel through SOCKS 4 [25], because the SSH port forward- ware cannot be identified biyttprecon-7.3 , and we
ing provides service via SOCKS. For the HTTPS channel, refer them to as “others.” Moreover, since NetCraft iden-
HTTPOS is implemented as a Firefox add-on to manipulate tified 4957 web servers’ operating systems, we group the
HTTP requests before they are sent to the SSL/TLS layer.other3888 servers as “others.” For the Google web server
In all scenarios, HTTPOS can modify the header of HTTP which has different names [4], we crawleid22 URLs
requests and insert useless requests if necessary. starting fromhttp://www.google.com.hk/intl/

We also implemented those traffic-analysis attacks intro- zh-TW/options/ and extracted the names of the web
duced in Section 3.1 using Python and Weka 3.6.1 [36] to server software from th&erver field in the response
evaluate the effectiveness of HTTPOS. In Section 5, we re-header. As a result, we obtained a total28fi Google
port their accuracy with and without HTTPOS. servers.

Table 4: Major operating systems’ support rate of TCP MSS negtiation and TCP advertising window based control.

OSes ADVy, = 2000 bytes M S Sy, = 1460 bytes (the default) ADVy, = MSSy, bytes
(No. of servers) [MSS;=128 MSS;=256 MSS.=536 | ADV, =128 ADV.=256 ADV.=536 | MSS;=128 MS5S;,=256 MSS;,=536
Windows (388) | 88.40% 89.43% 100.00% 95.36% 95.36% 97.42% 99.22% 99.48% 100.00%
Linux (3875) 97.90% 98.63% 100.00% 99.17% 99.32% 99.50% 99.76% 99.94% 100.00%
AIX (19) 84.21% 100.00% 100.00% 94.73% 94.73% 94.73% 100.00% 100.00% 100.00%
Solaris (71) 98.59% 100.00% 100.00% 97.18% 97.18% 98.59% 100.00% 100.00% 100.00%
FreeBSD (224) 25.89% 99.55% 99.55% 99.10% 99.10% 99.10% 99.10% 100.00% 100.00%
BIG-IP (380) 98.68% 99.21% 100.00% 99.47% 99.47% 99.47% 99.73% 100.00% 100.00%
Others (3888) 84.90% 96.38% 99.89% 96.94% 97.38% 97.94% 99.61% 99.76% 99.94%
4,41 TCP MSS and TCP advertising window minimal MSS to 216 bytes to prevent TCP MSS resource

exhaustion attacks [2]. However, this low support rate does
To test whether a server allows HTTPOS to manipulate thenot mean that HTTPOS cannot evade those traffic-analysis
packet size through TCP MSS, we modify the advertised attacks for FreeBSD servers. First, HTTPOS can still con-
MSS values in the TCP option. Let/SS., be the MSS trol the packet size by setting/ S5, = ADV, = 128
value announced by us in the TCP SYN packet ah8Sr bytes, which ha®9.10% support rate. Second, Figure 4
be the MSS value returned in the server's TCP SYN/ACK shows that the HTTP headers in more ti9af; of the re-
packet. We letM SSy, be less than the typical value for sponses from our data sets are larger than 256 bytes. There-
MSSgk (which is 1460 bytes in most cases). Moreover, fore, it is sufficient for HTTPOS to usk/ 5.5, = 256 bytes
MSSy, should never appear in the flow between the client for which the support rate for FreeBSDY8.55%. Finally,
and web server. If indeed/ SSr > MSSy, we send an even though HTTPOS cannot force the response packets to
HTTP request to download a web object larger thaf Sr. be 128 bytes or less, the actual payload size already differs
If the payload sizes of all response packets are less than ofrom the one when default/ S:S;, is used. As a result, the
equaltoM 5SSy, then the server permits HTTPOS to control new payload size also helps a user evade the traffic-analysis
its packet size. attacks.

To test whether a server allows HTTPOS to control the
size of response packet through TCP advertising window,
we first disable TCP window scale option and then change
the advertising window, denoted a9V, of an outgoing
TCP packet to a value smaller than MSS. Similar to the pre-
vious case, if the response packet’s payload size is less tha

O

o8t |-ifi]

o6 | i 1

or equal toADVy, then the server allows HTTPOS tocon- © | | 1
trol its packet size. ~Header size
Since TCP MSS and TCP advertising window can be o2 | —Size=128 bytes
set to arbitrary values, we could not enumerate all possi- [g:izzggg m::
ble combinations. Instead, we investigated three scesiario 5= 5(‘)_6 1000 1500 2000 2500
(1) ADV;, = 2000 bytes andM SS;, = {128,256,536} Size of HTTP response header (bytes)
bytes; (2) use the default MSS announced by the remote .
server (i.e.MSS; = MSSr = 1460 bytes) andADV;, = Figure 4: CDF of the size of HTTP response headers based on
our data sets of143, 333 URL responses obtained from8845

{128,256,536} bytes; and (3)MSS;, = ADV, =
{128,256, 536} bytes. Table 4 summarizes the measure-
ment results. Under most settings, more tRaf servers
allow HTTPOS to control their packet size. In particular,
the support rate increases when either the MSS or the ad- L
vertising window increases. Moreover, when the MSS and4'4'2 HTTP Range and HTTP Pipelining
advertising window use the same value, most servers sup\We discover that some web applications may ignore HTTP
port HTTPOS. For example, faV/ SS;, = ADVL, = 536 Range requests even if the underlying web server supports
bytes,8843 out of 8845 servers allow HTTPOS to control HTTP Range. Therefore, we measure the support rate of
their packet size. HTTP Range on both the URL level and the web server
For M SSp = 128 bytes andd DV;, = 2000 bytes, only level. To test whether a URL supports HTTP Range, we
25.89% of the FreeBSD servers allow HTTPOS to control send partialGET requests to the server and then inspect
their packet size. The reason is that FreeBSD sets its defaulthe response of\ccept-Ranges . If the server replies

web servers.

10

Table 5: The supportrates of HTTP Range and HTTP Pipelin-
ing in terms of the number of servers.

Web servers HTTP HTTP HTTP
(No. of servers)| Range Pipelining Range+Pipelining
Apache (4249) | 84.00% 63.90% 58.80%

IS (1738) 76.06% 77.00% 65.88%
nginx (1103) | 80.15% 75.16% 70.35%
lighttpd (367) | 84.47% 74.70% 68.94%
Others (1388) | 73.34% 65.13% 55.55%

Table 6: The support rates of HTTP Range and HTTP Pipelin-
ing in terms of the number of URLSs.

Web servers HTTP HTTP HTTP

(No. of URLSs) Range Pipelining Range+Pipelining
Apache (59698)| 89.02% 79.71% 68.80%

IIS (22485) 85.03% 88.24% 73.38%
nginx (18714) | 83.16% 87.58% 70.74%
lighttpd (5506) | 82.64% 84.87% 67.51%
Others (36930) | 66.74% 69.31% 53.98%

Table 7: The Google web servers’ support rates of HTTP
Range and HTTP Pipelining in terms of the number of servers.

Google web serverg HTTP HTTP HTTP
(No. of servers) T Range Pipelining Range+Pipelining
sffe (38) 100% 100% 100%
DFE/largefile (109) | 100% 100% 100%
GSE (24) 58.33% 100% 58.33%
codesite (2) 0% 100% 0%
Others (58) 0% 100% 0%

Table 8: The Google web servers’ support rates of HTTP
Range and HTTP Pipelining in terms of the number of URLs.

The Google web servers HTTP HTTP HTTP
(No. of URLSs) T Range Pipelining Range+Pipelining
sffe (2580) 99.88% 100% 99.88%
DFE/largefile (906) 100% 100% 100%
GSE (461) 48.59% 100% 48.59%
codesite (335) 0% 100% 0%
Others (340) 0% 100% 0%

with “Accept-Ranges: bytes /it supports HTTP
Range; otherwise, it may send badkctept-Ranges:

a server supports HTTP Pipelining, we send out sev-
eral HTTP requests together, each of which carries
“Connection: keep-alive . without waiting for the
corresponding responses. If the server responds to a# thes
requests, it is considered supporting HTTP Pipelining.-Oth
erwise, the server may just respond to the first request and
then close the connection.

According to our first set of experiments, all those ma-
jor web servers with default settings support both HTTP
Range and HTTP Pipelining. Besides, Tables 5 and 6
show the measured support rates of the HTTP features
from 143,333 URLs located in8845 servers. In particu-
lar, we find thatl 17,025 URLs (81.6%) from7103 servers
(80.3%) support HTTP Rangd,14,087 URLs (79.6%)
from 6060 servers (68.5%) support HTTP Pipelining, and
94,458 URLs (65.9%) fromb545 servers (62.7%) support
both HTTP Range and HTTP Pipelining.

Tables 7 and 8 show the Google web servers’ support
rates of HTTP Range and HTTP Pipelining in terms of the
number of servers and URLSs, respectively. We find that
all the Google web servers support HTTP Pipelining, but
only “sffe,” “DFE/largefile,” and a partial of “GSE” support
HTTP Range.

5 Evaluation

In this section, we present the results of evaluating
HTTPOS in terms of its effectiveness on defeating the
traffic-analysis attacks and its impact on the goodput of
fetching web objects.

5.1 Experiment settings

We first downloaded the front pages from the top 100
web sites ranked by Alexa [1]. For web sites that belong
to the same company and have similar web page layouts,
we tested only the site having the highest rank. For ex-
ample, Google owns several sites having high ranks (such
asgoogle.com , google.com.hk , andgoogle.de),
and we just testegoogle.com . Moreover, we replaced
porn sites with other top web sites. We used Firefox 3.6.3
equipped with Flash plugin 10 to visit the web sites. To au-
tomate the experiments, we prepared a Python script to in-
voke modifiedPagestats [16] to visit each web site and
used TCPDump to capture the trace. We refer to the process
of visiting all the web sites once asraund, and we per-

none” or nothing. On the web server level, we regard a formed a total of 100 rounds of measurement experiment.
server as supporting HTTP Range if one URL on that serverThe traces in odd-numbered rounds were used to train clas-

supports HTTP Range.

sification algorithms, and the trained models were tested on

We also discover that if a web server supports HTTP traces in even-numbered rounds. BasedPagestats 's
Pipelining, all web applications running on that web results, we computed the goodput as the ratio of total bytes
server also support HTTP Pipelining. To test whether fetched to the download time.

11

We examined two deployment scenarios for HTTPOS: is to compare the attack accuracy with and without apply-
on the browser side when IP tunnel, encrypted wirelessing HTTPOS to the encrypted traffic. To compute the attack
channel, or HTTPS channel is used and at a TCP tunnel'saccuracy for a given web site, we first compute the simi-
entry point. To establish an IP tunnel, we employed L2TP larity between the trace obtained for the web site and the
v1.2.0 and OpenSwan v2.6.24 to build an IPSec tunnel be-available profiles based on the attack methods introduced in
tween two endpoints. To set up the wireless channel, weSection 3.1. For each attack, we then sort the similarity and
used a laptop with Intel PRO/Wireless 2200BG Mini-PCl select the topk web sites as our inference. The attack is
Adapter to connect to an Access Point with WPA1 encryp- considered successful if the actual web site is one of¢he
tion enabled in our laboratory and employed AirPcap [12] web sites selected by the attack. Clearly, the likelihood of
to capture wireless frames. For TCP tunnels, we used SSHmaking a correct decision increases with The attack ac-
port forwarding to create a TCP-based tunnel between twocuracy for the web site is then given by the percentage of
endpoints following the configuration in [26]. successful attacks obtained from the 50 rounds of measure-

It is important to point out that our experiment settings ment.
are actually favorable to an attacker for the following rea-
sons.

Figure 5 shows the CDF of the attack accuracy for the
four attacks with and without applying HTTPOS to the traf-
fic flowing through an IPSec tunnel. Similarly, Figure 6
reports their accuracy for SSH tunnel. The two solid curves
%how the attack accuracy without HTTPOS, whereas the
two dashed curves are the results when HTTPOS is used.
The figures show that without using HTTPOS the attacks

caching may significantly affect the accuracy of an at- can identify the visited web sites with high fidelity. For

tack, because the browser does not need to downloaciK - 1(’) the LL-JC attack oh IPSec traffic achleves at
web objects in the cache, thus affecting the flow size. east 70% accuracy for guessing the 100 web sites, where
This problem, however d(’)es not occur to our case be_around 70% of the web sites are correctly identified from

causePagestats [16] always clears Firefox’s cache al 50 rounds_ (ie., 100% accuracy). The LL-NBC attack
after visiting a web site/page. §Ch|e\{es similar performance, where at least 80% accuracy
is achieved for each site, and more than 60% of the web
3. Liberatore et al. [26] reported that a large delay be- sites are idqntified with 100% accuracy. Wh_en targeting
tween the training data set and the test data set mayP" SSH traffic, the LL-JC (LL-NBC) attack achieves 100%
cause lower accuracy. In particular, they observed a&ccuracy for more than 75% (90%) of the web sites with
decrease from 73% to 63% for a delay of four weeks. MOre than 60% (90%) accuracy for each site. We also ob-
The delay in our case, however, is small (i.e., around S€Tve that the LL-JC and LL-NBC attacks have better per-
30 mins), and the 100 rounds of experiments were car-formance than the SSWRPQ and BLJL attacks, and all the
ried out continuously. four attacks achieve a better accuracyfoe= 5.

1. Koukis et al. [24] showed that parsing mixed web ses-
sions in packet traces obtained from an encrypted tun-
nel is very difficult. However, in our case we saved all
the packets belonging to a web session into a separat
pcap file, thus removing this obstacle for the attacker.

2. Coulls et al. [14] pointed out that a web browser’s

4. By using the traces from every other round of mea-
surement, we provide the attacker with a much more Wwith HTTPOS, the accuracy of the four attacks drop sig-
accurate view of the traffic. In a realistic attack sce- nificantly. Figures 5 and 6 show that, féf = 1, noneof
nario, an attacker normally spends some time to learnthe attacks can achieve 100% accuracy for any web site. For
from the captured traffic. Therefore, the traffic pattern |PSec traffic, the accuracy of these attacks drops to 0% for
may not be the same as those she has observed beforgt least 98% of the web sites, because they fail to make a

when the attack is finally launched. single correct decision for the majority of those web sites.
For K = 5, the SSWRPQ, BLJL, LL-JC, and LL-NBC at-
5.2 Evasion evaluation tacks still suffer from 0% accuracy for 100%, 98%, 96%,

and 94% of the web sites, respectively. The “better” per-
5.2.1 Defeating the SSWRPQ, BLJL, LL-JC and LL- formance achieved by the LL-NBC attack is possibly due
NBC attacks to the KDE which considers some packet sizes that never
appear but are close to the sizes in the training data set. We
To evaluate the effectiveness of HTTPOS against the fouralso observe similar (poor) performance for SSH traffic, for
attacks targeting on identifying web sites (i.e., the SS- which these attacks achieve 0% accuracy for at least 98%
WRPQ, BLJL, LL-JC, and LL-NBC attacks), our approach (95%) of the web sites fokK' = 1 (K = 5).

12

1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N
sswrrg. | K=1 SSWRPQ+HTTPOS . T TBLILIHTIPOS (<)
0.8" wrrPOs (k=5)| = K=5 SSWRPQ+HTTPOS 0.8f BWLHHTTPOS (K=1) 1
—K=1 SSWRPQ 1 3 |
i 06r ~K=5 SSWRPQ w06 B
O 0.4F SSWRPQ+ Q 0.4+ BLJL (K=1) -K=1 BLIL+HTTPOS
A wmros (e : =K=5 BLIL+HTTPOS
0.2} sswrpPQ (K=1) 1 0.2¢ o8 |_ s —K=1BLJL
o ‘ o | 0 K ~K=5 BLJL
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Accuracy Accuracy
(a) The SSWRPQ attack. (b) The BLJL attack.
L . r—— reregerererereres S— et sse—— —_— S
0.8 LL-JC+HTTPOS (K=1) 1 0.8 LL-NBC+HTTPOS (K=1) LL-NBC+HTTPOS (K=5)
LL-JC+HTTPOS (K=5)
w 0.6} w 0.6f
g 0.4l 7K=L LL=JC+HTTPOS 8 0.4 "K=L LL-NBC+HTTPOS |
“tl+K=5 LL-JC+HTTPOS) “t--K=5 LL-NBC+HTTPOS LL-NBC (K=1)
0.2t—K=1 LL-JC HLAICK=9) 0.2{—K=1 LL-NBC 1
~K=5LL-JC LL=3C (K=D) =K=5 LL-NBC LL-NBC (K=5)
% 0.2 0.4 0.6 0.8 1 % 0.2 0.4 0.6 0.8 1
Accuracy Accuracy

(c) The LL-JC attack.

(d) The LL-NBC attack.

Figure 5: Attack accuracy for the SSWRPQ, BLJL, LL-JC, and LL -NBC attacks with and without applying HTTPOS to the traffic

in an IPSec tunnel.

i e 1 *SBLIL+HTTPOS (K=5)
0.8+ SSWRPQ+HTTPOS (K=1) SSWRPQ+HTTPOS (K=5) 0.8+ BLIL+HTTPOS (K=1) il
~K=1 SSWRPQ+HTTPOS
0.6/ |- K=5 SSWRPQ+HTTPOS W O.6F Lot =)]
O g4l [—K=1SSWRPQ Oo.at =K=1 BLIL+HTTPOS
' -K=5 SSWRPQ SSWRPQ (K=5) ' =-K=5 BLIL+HTTPOS
0.2F sswreo k=) . | 0.2¢ BLIL (K=5) :té Etjt
00 0.2 A4 0.6 0.8 1 00 0.2 4 0.6 0.8 1
Accuracy Accuracy
(a) The SSWRPQ attack. (b) The BLJL attack.
lzy ,,,,,,,,,,,,,,,, B L N M 1(=Yy D T T T T T T e
0.8 LL-JC+HTTPOS (K=5) 0.8f LL-NBCHHTTPOS (K=1) || _NBC+HTTPOS (K=5)
LL-JC+HTTPOS (K=1)
w 0.6} w 0.6}
g 0.4l "K=1 LL=JC+HTTPOS O g4l K=1 LL-NBC+HTTPOS
“t=K=5 LL-JC+HTTPOS “t=K=5 LL-NBC+HTTPOS
0.2f—K=1LL-JC LL=JC (K=5) 1 0.2}{—K=1 LL-NBC LL-NBC (K=1) 1
0 ~K=5LL-JC LL-JC (K=1) 0 ~K=5 LL-NBC ‘ LL-NBC (K=5)
0 0.2 0.4 0. 0.8 1 0 0.2 4 0.6 0.8 1
Accuracy Accuracy

(c) The LL-JC attack.

(d) The LL-NBC attack.

Figure 6: Attack accuracy for the SSWRPQ, BLJL, LL-JC, and LL -NBC attacks with and without applying HTTPOS to the traffic

in a SSH tunnel.

5.2.2 Evading the CWWZ attack vides

13

all the key features of the CWWZ attack. The second
is that the actual URLSs for the web sites (i.e., OnlineHealth
We use only the Google search engine to evaluate HTTPOSONlineTax and OnlineBank) reported in Chen et al.'s paper
against the CWW?2 attack for two main reasons. The first is [13] have notbeenrevealed. Since the Google search engine
that the search engine example in Section IV.D of [13] pro- Provides both HTTP and HTTPS services, we conducted

experiments for both services to evaluate HTTPOS's effec-sponses immediately. After a short period (e.g., 30 ms ac-
tiveness. Since the Google search engine runs on the GWSording to our evaluation with the Google server), HTTPOS
web server and does not support HTTP Range, HTTPOSsends an ACK packet with a large advertising window (e.g.,
uses the TCP-based methods and injects useless requests 2000 bytes), and the server is induced to pack the responses
evade the CWWZ attack. into blocks of MSS-byte packets. For the above example,

We first consider the scenario of communicating with the the vector sequence beconm(@s72 —, 837 <, 1072 —,
Google search engine through an encrypted wireless chan870 <), which is completely different from the original
nel. The experiment setting is the same as the one in SecOne.
tion IV.D of [13]. Before showing the experiment results ~ We also evaluated HTTPOS using the Google HTTPS-
with various inputs, we use an example to illustrate how based search service (i.ehttps://www.google.

HTTPOS can evade the CWW?Z attack. In this example, the cOm). In this setting, the values in a vector sequence are
values in a vector sequence are the payload sizes of wireleste sizes of the TCP packet payload. When we entered
frames. We entered the word “hi” in the Google search input “hi” in the search input box, we observed a vector sequence
box and the vector sequence of directional packet sizes [13](539 + 20 —, 679 <+, 540 + 20 —, 658 <)% With

is (556 —, 451 «,557 —,463 <), where the request HTTPOS, the vector sequence becorfig$5 —, 1323 <,
packets Carrying “h” and “hi” are o$56 bytes ands57 1065 —, 1304 (—) Consequently, the attacker can neither
bytes' respective|y’ and the Corresponding response 'rsacke find a similar vector from her training data set nor recover
are of451 bytes and63 bytes. If HTTPOS pads the HTTP the original vector, thus diminishing the CWWZ attack’s re-
request headers with useless fields to the same size, sefuction power to one.

MSSy = 200 bytes, and disables the TCP window-scaling ~ Figures 7 and 8 plot the CDFs of the CWWZ attack’s re-
bit, then we get a new vector sequern(6€2 —, 260 <, duction power with and without HTTPOS. A larger reduc-
260 <, 75 «, 572 —, 260 «, 260 «, 87 «). Since tion power indicates that the CWW?Z attack has a stronger
the CWW?Z attack cannot not infer the user input from this capability to infer the visited web pages. Note that the min-
sequence, its reduction power is dampened to one. imal reduction power is one, meaning that the CWWZ at-

However, a smart attacker might group several packetstaCk cannotinfer any useful information from each observed

together and rebuild a correct vector sequence. For exam{lOW vector. In this experiment, we follow the steps in [13]

ple, by subtracting2 bytes—the payload size of a wireless "d randomly choosE)00 popular search key words from
frame carrying a TCP ACK packet—from the size of the Google Trend [3]. Since these key words contain only char-

first response packet in the original vector sequence, an at&cters{a, b, ..., 2,0,1,...,9, dot, space}, the size of the am-
tacker may infer the size of TCP payloadias — 72 = 379 biguity set isk = 38.

bytes. Similarly, by subtracting2 bytes from the sizes Figures 7(a)-7(d) plot the results when the CWWZ at-
of the first three response packets in the new vector se-tack is applied to the HTTP traffic between HTTPOS and

quence and then summing the remainder, the attacker obth® Google search engine through an encrypted wireless
tains260 — 72 + 260 — 72 + 75 — 72 = 451 — 72 = 379 channel. We only consider the first four characters (i.e.,
bytes, therefore recovering the original vector sequefice. " < 4), because they are sufficient for showing HTTPOS's
defeat this attack, we inject a useless request between wwéffectiveness. That is, only the first four flow vectors are

requests as described in Section 3.3.2 and therefore obtai§X@mineéd. Obviously, without HTTPOS, the CWWZ at-
another vector sequenéa2 —, 260 «, 572 —, 260 «, tack achieves large reduction powermasncreases. The
75 <=, 260 <, 260 <, 82 <, 572 —, 260 +, 260 <, attacker can then determine the words sent to the search en-

572 —, 87 +, 260 <, 260 +, 103). Since HTTPOS gine. However, with HTTPOS, the reduction power is fixed

can inject various requests from the ambiguity set, the at- {0 0n€ and does not change along withTherefore, the at-

tacker cannot restore the original vector sequence frosn thi {acker cannot gain any information from the observed flow.
new sequence. Figures 8(a)-8(d) plot the results for the HTTPS traffic.

Without HTTPOS, the reduction power increases with

_ Yet an even more advanced attacker may still be able.toWhenn reachest, more thar60% of the key words have
infer a set of keywords sent by the user from some spemalth duct . which q the h
packet sizes (e.g., 75 bytes and 87 bytes in the above ex- € reduction powerarouni@”, which can reduce the huge

g o) 4
ample). We propose the following method to address this original ambiguity set (whose size 88°) to a small set

H i 4 6 ~ —
challenge. Since the Google server supports HTTP Pipelin—g\frh_?sg;'ze 'S:S /13] - j)' tl_—|owever, (;,\ven”fon O_k4,
ing, HTTPOS sends out the request for a user input and a can force the reduction powertiora ey
ords to one. In other words, the attacker must guess the

useless request in one or more successive packets with o I
zeroadvertising window. The server will process both re- ey word based on the ambiguity set wi possibilities.

quests and stor_e-the responses i_n it§ TCP/IP stack, because 11ne parameter “ggbg” in the queries to the Google HTTPS-based
the zero advertising window forbids it to send back the re- search engine introduceis20 random bytes to each request.

14

1 T 1 T
0.8 7 0.8 7
. 0.6 4 L 06" 1
a a
C o4 1 Coa]
0.2 ~-With HTTPOS 0.2 ~-With HTTPOS
0 i ‘ . [=without HTTPOS 0 i ‘ . [=Without HTTPOS
107 10° 10° 10" 10° 10° 107 10° 100 10" 10° 10°
Reduction power Reduction power
(a) Reduction power in the first flow vector. (b) Reduction power in the first two flow vectors.
1 T ? 1 T -
; ; --With HTTPOS
0.8F 1 0.8F < Without HTTPOS i
0.6 4 L 06F 1
a a
C o4 1 Coa]
0.2- --With HTTPOS 0.27 1
0 i ‘ <Without HTTPOS 0 i ‘ ‘ ‘
107 10° 10° 10" 10° 10° 107 10° 100 10" 10° 10°
Reduction power Reduction power
(c) Reduction power in the first three flow vectors. (d) Reduction power in the first four flow vectors.

Figure 7: Reduction power of the CWW?Z attack on the HTTP traffic between HTTPOS and the Google search engine through an
encrypted wireless channel.

1 : 1 :
0.8F 1 0.8F 1
u 0.6F 1 L 06F 1
a) [a]
© 0.4r 1 © 0.4r i
0.2 ~With HTTPOS 0.2 = With HTTPOS
0 i ‘ . [=Without HTTPOS 0 i ‘ . |=Without HTTPOS
107 10° 10 10* 10° 10° 107 10° 107 10* 10° 10°
Reduction power Reduction power
(a) Reduction power in the first flow vector. (b) Reduction power in the first two flow vectors.
1 T ? 1 T =
H H --With HTTPOS
0.8F 1 0.8F < Without HTTPOS i
u 0.6F 1w 0.6F 1
) o
© 0.4r 1 © 0.4 i
0.2- --With HTTPOS 0.27 1
0 i ‘ ? [=Without HTTPOS 0 i ‘ ‘ ‘
107 10° 10° 10" 10° 10° 107 10° 100 10" 10° 10°
Reduction power Reduction power
(c) Reduction power in the first three flow vectors. (d) Reduction power in the first four flow vectors.
Figure 8: Reduction power of the CWWZ attack on the HTTPS traffic between HTTPOS and the Google search engine.
5.3 Performance evaluation methods. We sett DV}, = 200 bytes for the method based
on TCP advertising window, let/SS;, = 200 bytes for
5.3.1 Evaluation of individual methods the method based on TCP MSS, and used three TCP con-

To evaluate the effect of each HTTPOS method on the Ioer_nectlons for the multiple connections method. Moreover,

formance, we randomly selected 1000 URLSs that support all

15

we splitted each web object into three parts for the HTTP performance, because it allows only a single packet trans-
Range method. Note that the following results do not rep- mission from the server in an RTT. Moreover, we use a very
resent the best performance that HTTPOS can achieve. smallADV7, (i.e., 200 bytes) for this evaluation.

Although some methods may cause certain URLS to ex-

1 perience a low goodput, we find that the additional delay
os introduced by these methods is not significant under our pa-
' rameter settings. Figure 10 reveals the additional delay in
06l troduced by each HTTPOS method. As shown, the MSS,
é MultiCon, and Pipelining methods introduce less than 100
0.41 ~MSS ms delay for more than 90% of the URLs. The Range
.'.'I'F\)".“'“F‘_’” method, on the other hand, introduces less than 200 ms de-
0.2r R:’fg;gmg lay for more than 80% of the URLSs.
—AdvWin
1%‘2 10 10 10" .
Goodput with HTTPOS / Goodput without HTTPOS 5.3.2 Impacts on the performance of Internet browsing
Figure 9: The ratio of the resultant goodput for each To evaluate the overall performance of HTTPOS, we vis-
HTTPOS method to that without HTTPOS. ited each of the top 100 web sites 10 times with and with-
vss ‘ P ‘ out applying the HTTPOS operations depicted in Figure
0gMuliCon 3. We recorded the download time based on the output
*“|+Pipelining of Pagestats for each site. Figure 11(a) and Figure
06 jgc\?\zn 11(b) show the CDFs of the ratio for the download time
LSL without and with HTTPOS when using IPSec tunnel and

SSH tunnel, respectively. The figures show clearly that the
first-time visit to each site via HTTPOS needs more time
than the normal visits (i.e., all values less than one), be-
o ‘ cause HTTPOS uses the method based on advertising win-

1072 10° 10 10* dow. When HTTPOS is applied, the time for visiting 60
Additional delay (ms) sites through IPSec is at most 1.6 times of the time without
HTTPOS.

However, once the URL information is cached, the time
required for the following visits is close to the time for the

Figure 9 plots the ratio of the resultant goodput for normalvisits (i.e., value close to one). The time for vigi
each HTTPOS method to that without using HTTPOS. For 60 sites through IPSec is at most 1.1 times of the time with-
brevity, we useMSSto denote the method based on TCP out HTTPOS. Furthermore, the time for visiting more than
MSS + TCP advertising WindowMultiCon the method 90 sites through IPSec is at most 1.4 times of the time with-
based on Mu|t|p|e TCP Connections + HTTP Range, out HTTPOS. The reason is that for each URL, HTTPOS
Pipeliningthe method based on HTTP Pipelining + HTTP Will select the method with the least impact on the perfor-
RangeRangethe method based on pure HTTP Range, and mance while not compromising the protection capability ac-
AdvWinthe method based on TCP advertising window. As cording to Figure 3. It is also interesting to note that as
shown, HTTPOS can achieve at le&8# goodput for75% a result of employing multiple TCP connections, HTTPOS
ofthe URLs when the MSS method or the MultiCon method May even enjoy better performance than the normal visits
is applied, and0% goodput for 50% of the URLs when the (i.€., values larger than one) in some cases. As shown in
Pipelining method is applied. Figure 11(a), visiting around 40 out of the 100 sites through

The performance degradation introduced by the MSS IPSec requires less time than the normal visits.
method is not significant, because, as discussed in Section
422 it only needs an additional RTT to finish the trans- 5 3 3 Impacts on the performance of Google search
mission. On the other hand, we notice that unlike an IP
tunnel, a TCP tunnel may multiplex multiple TCP connec- To evaluate the impacts of HTTPOS on the performance of
tions into a single TCP tunnel which could become the per- using Google search, we measured the RTT from the epoch
formance bottleneck. To tackle this problem, we establish when the user sends a query to the epoch when the user
several TCP tunnels in advance and divert TCP connectiongeceives the response with and without HTTPOS. Figure
into different TCP tunnels to achieve parallel transmissio 12(a) illustrates the RTTs obtained from the scenario where
Moreover, as expected, the AdvWin method gives the worsta user in Hong Kong visited the Google search service (i.e.,

0.47

0.2}

Figure 10: Additional delay introduced by each HTTPOS
method.

16

1 T 1
—First-time visit i —First-time visit
--Following visit ! --Following visit
0.81 0.8r
0.6r 0.6f
L s
[a) a
(@] O
0.4r 0.4r
0.2r 0.2r
0 ; 0= - - R
1 .l A A ‘ 0 10 0.? 10 0‘.7 0.5 . 0.3 . 10 0.1
Time spent without HTTPOS/Time spent with HTTPOS Time spent without HTTPOS/Time spent with HTTPOS
(a) IPSec tunnel. (b) SSH tunnel.

Figure 11: The effect of HTTPOS on the performance of Interné¢ browsing.

0.36 T T T T 0.36 T T T T
HI S e . oo - Normal HTTPS Traffic
= L = L * HTTPOS on HTTPS Traffic ||
T 0.34 T 0.34
s - Normal Wireless Traffic S
3 * HTTPOS on Wireless Traffic 54
£0.32 4 £2032F
[()
£ E
= 0.3r = 0.3
g =)
T T
0.2 ©0.28
=1 " =1 .
o i =}
®0.26- & 0.261
| | | | | | | |
0 200 400 600 800 1000 0 200 400 600 800 1000
Index of keywords Index of keywords
(a) HTTPOS on wireless traffic. (b) HTTPOS on HTTPS traffic.

Figure 12: The effect of HTTPOS on the performance of using Gogle search.

74.125.47.147) through a 802.11g wireless link. Fig- sign. Moreover, as HTTPOS provides fundamental defense
ure 12(b) shows the RTTs obtained from the scenario wherestrategies and basic methods to modify flow features, new
the user accessed the same search service through HTTP8vasion methods may be developed based on them. More-
In both experiments, the user entered 1000 popular searctover, we report below our additional findings on web bugs,
keywords from Google Trend [3] for 30 times, and the re- another attack model for the CWWZ attacks and our solu-
spective median RTTs for each keyword is shown in Figure tions to defending against it, and our measurement results
12(a) and Figure 12(b). for the support rate of HTTP Range.

In this experiment, HTTPOS employs the technique de-
scrib_ed in Section 5.2.2 to evade the CWWZ attack. More 5 4 1 \web bugs
precisely, HTTPOS puts the real request and a useless re-
guestin one packet, and set®V;, = 0 before dispatching In the course of conducting the measurement experiments,
the packet to the server. After a small delay, HTTPOS sendswe observed some cases where the size of packets carrying
an ACK packet to announce a large advertising window and certain web objects cannot be adjusted. These web objects
induce the server to send back responses. The delay is 12@re usuallyl * 1 pixel web bugdelonging to online adver-
ms for wireless traffic and 100 ms for HTTPS traffic, re- tisement companies that customize their web servers, and
spectively. Figure 12 shows that the additional delay intro none of our methods works for them. Since these web bugs
duced by HTTPOS is small, because the server can sendire usually used to track users, a user may just filter them
back the responses immediately upon receiving the ACK to protect privacy. Moreover, since they may exist in many
packet. The additional delay is less than 80 ms in Figure web pages, their sizes could increase an attack’s false posi
12(a) and less than 60 ms in Figure 12(b). tive rate instead of facilitating the attack.

5.4 Discussion 5.4.2 The CWWZ attack

We believe that HTTPOS significantly raises the bar and We also note that if an advanced CWW?Z attacker can ob-
makes future traffic-analysis attacks much harder to de-serve the payload of HTTPS packets, she may still be able

17

to infer the size of a web object even after changing the reduced to one, the attacker still could not know the user’s
packet size. More precisely, an attacker can first identify input, because there are at least six possible words, includ
packets carrying SSL/TLS application data from the type ing “h,”“hi,” “c,” “ca,” “car,” and “card.” Note that any wod

field in the SSL/TLS header and then use the field of ap- that can resultin the same SSL/TLS record sequence as any
plication data length to assemble consecutive TCP packetsone of the six words is also a possible candidate. For exam-
However, such attack does not work if the SSL/TLS packets ple, if word “x” and “y” induce the same SSL/TLS record

go through an IPSec tunnel or a wireless channel. size as word “h,” both “x” and “y” will be considered as

HTTPOS tackles this attack through two approaches.pOSSib|e inputs by the attack. Therefore, when more useless
The first approach is for the servers that support HTTP requests are injected, it becomes harder for such attacks to
Range. We measured the support rate of HTTP Range byecover the original sequence.

HTTPS servers and found that more tt&f¥% URLS in the Since injecting useless requests may introduce much
measured servers support HTTP Range. Further details ar@verhead, another approach for evading the CWWZ attack
given in Section 5.4.3. In this case, HTTPOS first divides targeting auto-suggestion is to send only one request with
the web object into a random number of portions and makesall inputs. For example, if a user inputs “hi” in the search
these portions to overlap a random part with one another. Inbox, the auto-suggestion function may send the first request
this way, the web object sizes reported by the field of ap- packet with “h” and then the second packet with “hi.” To
plication data length in the SSL/TLS header are incorrect. evade the CWWZ attack, HTTPOS may just transmit the re-
The following is an example of downloading a web object quest carrying “hi” but drop the request carrying “h.” How-
from Twitter through HTTPS. In the normal case, the packet €Vver, this approach may affect web usability.

size sequence 8176 —, 1460 <, 1460 <, 1171 +), and

the SSL/TLS record size sequence(451 —, 4086 <-). 543 Support rate of HTTP Range by HTTPS servers
Although we can use TCP-based methods to split packets,

the attacker may still infer the response size from the se-We measured the support rate of HTTP Range for HTTPS
qguence of the SSL/TLS records’ sizes. After HTTPOS ap- servers from two sets of web sites. The first one contains
plies HTTP Range, the sequence of packet sizes is modifie¢he web sites of thg0 largest banks in AmeriaBy using

to (497 —, 1460 <, 245 <+, 500 —, 1460 <, 258 <, Pagestats to visit these web sites’ front pages or login
500 —, 1460 <, 254 <), and the sequence of the SSL/TLS pages (if their front pages do not support HTTPS) through
records’ sizes becomé$92 —, 1700 <—, 495 —, 1713 <, HTTPS, we collected 585 valid URLs from104 HTTPS

495 —, 1709 «). As a result, the attacker is prevented servers, and323 URLs support HTTP Range (i.e., the sup-
from recovering the response packet size. port rate is83.47%). The second data set is based on web

The second approach is for the servers that do not Sup_s.ites ranked by Alexa [1]. We first connected to the 443 port
port HTTP Range (e.g., the Google HTTPS-based searcH(i-€-, the default HTTPS service port) of top 1M web sites
service). In this case, HTTPOS can still inject a number @nd stopped when we obtain8d00 web sites, to which
of useless requests from the ambiguity set and set each reth_e SSL/TLS connections were successfully _estabhshed.
quest message to the same size. This strategy is motivate§ince not all web sites that open 443 port provide web ser-
by the observation that an attacker could not know the exactVice through HTTPS, we found onl}245 sites that offer
length of the word typed by a user, and the inserted requestd1T TPS-based web service. By crawling their front pages,
result in many possible words. For example, if a user typesWe gathereds5, 401 URLs from2448 HTTPS servers, and
“hi,” an attacker can observe the following packet size se- 85-09% (i-€.,38,632) of the URLs support HTTP Range.
quence(539 £+ 20 —, 679 «, 540 + 20 —, 658 «+) and
the SSL/TLS record sequengB4 £20 —, 291 +—, 378 «+ 6 Related work
,b35 £ 20 —, 291 «+, 357 «+), where291 is the length
of the HTTP response header. Once HTTPOS inserts use- - . :

Most of the existing proposals on defeating against

less requests sequence “card” through HT TP pipelining, thetraffic-analysis attacks on encrypted HTTP traffic require

packet size sequence and SSL/TLS record sequence become™ -~ ° .
(1418 —, 165 —, 1418 «, 578 «, 1418 —, 165 —, modifications to web servers, browsers and/or web objects.

1418 , 530 <) and (1578 —, 201 «, 378 «, 291 « In contrast, our HTTPOS_ ?s a browser-side soll_Jtion that
355 ¢ ’291 361 . 1578 _> 9291 (_ 359 (_" 291 (_: does not_ n_eed such_modlflcanons. Moreover,_smce none
357 «, 291 <, 336 «). Based on the packet size se- of the existing techniques changes all fo_ur basic flow fea-
quence, the CWW?Z attack’s reduction power is reduced to tures., the_zy COUI(.]I be defeated by the traffic-analysis &ack
one, because the sequence has been totally changed. detailed in Section 3.1. On the other hand, our techniques

. can successfully evade all of these attacks.
Although the reduction power of an advanced CWWZ
attack exploiting the SSL/TLS record sequence could notbe 2http:/inyjobsource.com/banks.html

18

Sun et al. [35] proposed twelve countermeasures and disHTTPOS. Moreover, we adopt many approaches to mitigate
cussed the related costs. Most of them require the sup{possible performance degradation caused by HTTPOS.
port of the web server and/or some modifications to the Although anonymity networks (e.g., Tor [17]) also pro-
web objects. One exception is to use HTTP Range to in-vide anonymous surfing, there are two major differences be-
crease the size of web objects. However, since these methtween HTTPOS and an anonymity network. First, HTTPOS
ods camouflage just the number and the length of web ob-prevents an attacker from inferring the web site a user is vis
jects, they may not evade the traffic-analysis attacks basedting, whereas an anonymity network prevents a web server
on packet size distribution and packet timing information from knowing who is visiting it. Moreover, as pointed out
[7,26]. Moreover, except for padding and pipelining, Sun et by Sun et al. [35], although multiple proxies are used in
al. listed the properties of each method but without imple- anonymity networks, the first link between a client and the
menting and evaluating them. On the other hand, HTTPOSfirst proxy is still vulnerable to those traffic-analysisatts.
exploits protocol features in both TCP and HTTP to change Second, anonymity networks are usually provided by a third
the four basic HTTP flow features. Moreover, we im- party, but HTTPOS is a browser-side solution under a user’s
plemented HTTPOS and carefully evaluated the HTTPOS control.
methods on live HTTP traffic. Information leaks through HTTP covert channels and

Hintz [23] and Danezis [15] suggested a number of the corresponding detection mechanisms have been exam-
approaches to evade traffic-analysis attacks, for instancein€d recently. Feamster et al. [19] employed sequences of
adding useless data to the flow and removing some webHTTP requests to transmit covert information. Burnett et
objects in a web page. However, such approaches mayal. [11] embedded stealthy information into user-generate
not evade new attacks [13, 26], because they do not chang&ontent. We proposed WebShare [27] to leak information
the distributions of packet size and timing among packets_throughthe value of prevalent web counters. On the defense
Modifying a browser’s setting to force all web objects to Side, Borders and Prakash designed WebTap [8] to detect
be transferred through one connection may evade the attack!T TP covert channels that convey information through the
proposed by Coulls et al. [14] that is based on the numbercontent and the timing of HTTP requests, and proposed a
of TCP connections belonging to the same web session andramework to quantify such information leaks [9]. Schear
the amount of bytes delivered by individual TCP connec- €t al. devised Glavlit [33] to throttle content-based HTTP
tions. However, the volume of packets from a web server covert channels. Zhang et al. invented Sidebuster [40]+o0 au
between two requests may still be exploited to identify web tomatically detect and quantify possible side-channéldea
sites, because web browsers usually send HTTP requesti) web applications.
one after the other, and web servers usually process these
HTTP requests in sequence [24]. 7 Conclusions

Wright et al. proposed traffic morphing to evade the
traffic-analysis attacks based on packet size and direction | this paper, we proposed a suite of new browser-side
[38]. Their system aims at incurring less additional data techniques to prevent an attacker from inferring web sites
to a flow while enabling a flow to evade traffic-analysis at- or web pages visited by a user. These techniques exploit
tacks. Their system first profiles the packet size distriuti the pasic protocol features in TCP and HTTP to manipulate
for each web site and prepares a transformation matrix thatfoyr fundamental characteristics in encrypted HTTP flows.
maps a packet size in one flow to a packet size in anotherye implemented these techniques into a browser-side sys-
flow. Before sending a packet, traffic morphing changes thetem called HTTPOS that does not need to modify or control
packet size according to the transformation matrix by eithe any web entity. An extensive evaluation of HTTPOS on
splitting or padding the packet. By doing so, the distribu- |iye HTTP traffic shows that it can evade the state-of-the-
tion of packet size observed by an attacker will not be the art attacks with low overhead. Future works include further
same as the distribution of original packets. Due to padding mjtigating the impact of HTTPOS on the performance and

traffic morphing may also change the flow size and pack- sealing other privacy leakages in web browsers.
ets’ timing information. However, traffic morphing requsre

modifications to both web server and web browser, because

it needs to pad or split packets on the server side and remov@‘CknOWIedgments

padded stuff on the client side. Moreover, transforming all

packets at the server site in real time will affect the perfor We thank the anonymous reviewers for their quality re-
mance of the web service. Unfortunately, the authors did views and David Evans, in particular, for shepherding our
not provide the evaluation results. In contrast, HTTPOS paper, and Paul Royal for his suggestions and help. This
doesnot modify both web server and web browser. In work is partially supported by a grant (H-ZL17) from The
fact, a server may not even know whether a client is using Hong Kong Polytechnic University. This material is based

19

upon work supported in part by the National Science Foun- [20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinte

dation under grant no. 0831300, the Department of Home-
land Security under contract no. FA8750-08-2-0141, the

Office of Naval Research under grants no. N000140710907[21]

and no.
conclusions or recommendations expressed in this material

N000140911042. Any opinions, findings, and

[22]

are those of the authors and do not necessarily reflect the

views of the National Science Foundation, the Department

of Homeland Security, or the Office of Naval Research.

References

(1]
(2]

(3]
[4]

[5]
(6]
[7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Alexa Internet, Inc http://www.alexa.com
Freebsd/i386 5.2.1-release release notes. http:
/Iwww.freebsd.org/releases/5.2.1R/
relnotes-i386.html

Google trendshttp://www.google.com/trends
Google’s server names.
googlesystem.blogspot.com/2007/09/
googles-server-names.htmi

NetCraft Ltd. http://www.netcraft.com .
D. Barrett, R. Silverman, and R. Byrne&SH, The Secure
Shell: The Definitive GuideO’Reilly Media, 2005.

G. Bissias, M. Liberatore, D. Jensen, and B. Levine. &y
vulnerabilities in encrypted HTTP streams.Rroc. Privacy
Enhancing Technologies Worksh@&®n05.

K. Borders and A. Prakash. Web Tap: Detecting covert web
traffic. In Proc. ACM CCS2004.

K. Borders and A. Prakash. Quantifying information Isak
in outbound web traffic. IfProc. IEEE Symp. Security and
Privacy, 2009.

P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho.

http:/

(23]

(24]

(25]

(26]
(27]

(28]

(29]

(30]

(31]

(32]

Seven years and one day: Sketching the evolution of Internet [33]

traffic. InProc. IEEE INFOCOM 2009.

S. Burnett, N. Feamster, and S. Vempala. Chipping away a
censorship with user-generated content.Phc. USENIX
Security 2010.

CACE Technologies, Inc.
cacetech.com

S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel
leaks in web applications: a reality today, a challenge to-
morrow. InProc. IEEE Symp. Security and Priva@010.

S. Coulls, C. Wright, F. Monrose, M. Collins, and M. Rait

On web browsing privacy in anonymized NetFlowsPlroc.
USENIX Security2007.

G. Danezis. Traffic analysis of the HTTP protocol over
TLS. http://research.microsoft.com/en-us/
um/people/gdane/papers/TLSanon.pdf

S. Dedeo. Pagestats.http://web.cs.wpi.edu/
~ cew/pagestats/

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. Pnoc. USENIX Security
2004.

R. Duda, P. Hart, and D. Stork.Pattern Classification
Wiley-Interscience, 2nd edition, 2000.

N. Feamster, M. Balazinska, G. Harfst, H. Balakrishreard

D. Karger. Infranet: Circumventing censorship and surveil
lance. InProc. USENIX Security2002.

AirPcap. http://www.

,2007.

20

(34]

(35]

(36]
(37]

(38]

(39]

(40]

P. Leach, and T. Berners-Lee. Hypertext transfer protocol —
HTTP/1.1. RFC 2616, June 1999.

M. Gast. 802.11 Wireless Networks: The Definitive Guide
O’Reilly Media, 2005.

D. Herrmann, R. Wendolsky, and H. Federrath. Website fin
gerprinting: attacking popular privacy enhancing tecbrnol
gies with the multinomial naive-Bayes classifier. Fnoc.
ACM Workshop on Cloud Computing Secur909.

A. Hintz. Fingerprinting websites using traffic anal/sin
Proc. Privacy Enhancing Technologies Worksh?@02.

D. Koukis, S. Antonatos, and K. Anagnostakis. On the pri
vacy risks of publishing anonymized IP network traces. In
Proc. IFIP Communications and Multimedia Secur2@06.

Y. Lee. SOCKS: A protocol for TCP proxy across
firewalls. http://ftp.icm.edu.pl/packages/
socks/socks4/SOCKSA4.protocol

M. Liberatore and B. Levine. Inferring the source of en-
crypted HTTP connections. Froc. ACM CC$2006.

X. Luo, E. Chan, and R. Chang. Crafting web counters into
covert channels. IRroc. IFIP SEG 2007.

X. Luo, E. Chan, and R. Chang. CLACK: A network covert
channel based on partial acknowledgment encoding.
Proc. IEEE ICG 2009.

G. Macia, Y. Wang, R. Rodriguez, and A. Kuzmanovic. ISP-
enabled behavioral ad targeting without deep packet inspec
tion. InProc. IEEE INFOCOM 2010.

NetCraft Ltd. November 2010 web server survéntp:
/Inews.netcraft.com/archives/2010/11/
05/november-2010-web-server-survey.html

Northrop Grumman Corp. Cloc. http://cloc.
sourceforge.net/

M. Ruef. httprecon. http://www.computec.ch/
projekte/httprecon/ .

N. Schear, C. Kintana, Q. Zhang, and A. Vahdat. Glavlit:
Preventing exfiltration at wire speed. Rroc. HotNets-Y
2006.

R. Sinha, C. Papadopoulos, and J. Heidemann. Internet
packet size distributions: Some observations. Technieal R
port ISI-TR-2007-643, USC/Information Sciences Ins#tut
2007.

Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanab-
han, and L. Qiu. Statistical identification of encrypted web
browsing traffic. InProc. IEEE Symp. Security and Privacy
2002.

The University of Waikato. Weka.http://www.cs.
waikato.ac.nz/ ~ml/weka/

P. Wouters and K. BantoftOpenswan: Building and Inte-
grating Virtual Private NetworksPackt Publishing, 2006.

C. Wright, S. Coull, and F. Monrose. Traffic morphing: An
efficient defense against statistical traffic analysisPioc.
ISOC NDS$S2009.

T. Yen, X. Huang, F. Monrose, and M. Reiter. Browser fin-
gerprinting from coarse traffic summaries: Techniques and
implications. InProc. DIMVA 2009.

K. Zhang, Z. Li, R. Wang, X. Wang, and S. Chen. Side-
buster: Automated detection and quantification of side-
channel leaks in web application development. Plroc.
ACM CC$ 2010.

In

