
Chapter 13

Special Areas and
Format Characters 13

This chapter describes several kinds of characters that have special properties as well as
areas of codespace that are set aside for special purposes:

• Control Codes

• Layout Controls

• Deprecated Format Characters

• Surrogates

• Private Use Area

• Special Characters

In addition to regular characters, the Unicode Standard contains a number of characters
that are not normally rendered directly, but that influence the layout of text or otherwise
affect the operation of text processes. They are called format characters.

The Unicode Standard contains code positions for the 64 control characters and the DEL
character found in ISO standards and many vendor character sets. The choice of control
function associated with a given character code is outside the scope of the Unicode Stan-
dard, with the exception of those control characters specified in this chapter.

Layout controls are not themselves rendered visibly, but influence the behavior of algo-
rithms for line breaking, word breaking, glyph selection, and bidirectional ordering.

Surrogate characters are reserved and are to be used in pairs to access 1,048,544 characters.

Private use characters are reserved for private use. Their meaning is defined by private
agreement.

The Specials block contains characters that are neither graphic characters nor traditional
controls.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 313

13.1 Control Codes Special Areas and Format Characters
13.1 Control Codes

C0 Control Codes: U+0000–U+001F
ASCII C0 Control Codes and Delete. The Unicode Standard makes no specific use of these
control codes, but it provides for the passage of the numeric code values intact, neither
adding to nor subtracting from their semantics. The semantics of the C0 controls
(U+0000..U+001F) and delete (U+007F) are generally determined by the application with
which they are used. However, in the absence of specific application uses, they may be
interpreted according to the semantics specified in ISO/IEC 6429. U+0009 

 is widely used with a consistent set of semantics; therefore these semantics are recog-
nized in the Unicode Standard. (For more information on control codes, see Section 2.8,
Controls and Control Sequences.)

There is a simple one-to-one mapping between 7-bit (and 8-bit) control codes and Uni-
code control codes: every 7-bit (or 8-bit) control code is simply zero-extended to a 16-bit
code. For example, if   (0A) is to be used for terminal control, then the text
“WX<LF>YZ” would be transmitted in plain Unicode text as the following 16-bit values:
“0057 0058 000A 0059 005A.” Any interpretation of these control codes is outside the scope
of the Unicode Standard; programmers should refer to a relevant standard (for example,
ISO/IEC 6429) that specifies control code interpretations.

Newline Function. One or more of the control codes U+000A  , U+000D -

 , or the Unicode Equivalent of EBCDIC NL encode a newline function. A
newline function can act like a line separator or a paragraph separator, depending on the
application. See Section 13.2, Layout Controls, for information on how to interpret a line or
paragraph separator. The exact encoding of a newline function depends on the application
domain. For information on how to identify a newline function, see Unicode Technical
Report #13, “Unicode Newline Guidelines,” on the CD-ROM or the up-to-date version on
the Unicode Web site.

C1 Control Codes: U+0080–U+009F
In extending the 7-bit encoding system of ASCII to an 8-bit system, ISO/IEC 4873 (on
which the 8859 family of character standards are based) introduced 32 additional control
codes in the range 80–9F hex. Like the C0 control codes, the Unicode Standard makes no
specific use of these C1 control codes, but provides for the passage of their numeric code
values intact, neither adding to nor subtracting from their semantics. The semantics of the
C1 controls (U+0080..U+009F) are generally determined by the application with which
they are used. However, in the absence of specific application uses, they may be interpreted
according to the semantics specified in ISO/IEC 6429.
314 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Special Areas and Format Characters 13.2 Layout Controls
13.2 Layout Controls

Layout Controls
The effect of layout controls is specific to particular text processes. As much as possible, lay-
out controls are transparent to those text processes for which they were not intended. In
other words, their effects are mutually orthogonal.

Line and Word Breaking

U+00A0 -  has the same width as U+0020 , but the - 

indicates that, under normal circumstances, no line-breaks are permitted between it and
surrounding characters, unless the preceding or following character is a line or paragraph
separator. U+00A0 -  behaves like the following coded character sequence:
U+FEFF   -  + U+0020  + U+FEFF   -

 . For a complete list of space characters in the Unicode Standard, see Table 6-1.

U+00AD   indicates a hyphenation point, where a line-break is preferred
when a word is to be hyphenated. Depending on the script, the visible rendering of this
character when a line-break occurs may differ (for example, in some scripts it is rendered as
a hyphen -, while in others it may be invisible). Contrast this usage with U+2027 -

 , which is used for a visible indication of the place of hyphenation in dictio-
naries. For a complete list of dash characters, including all the hyphens, in the Unicode
Standard, see Table 6-2.

There are two nonbreaking hyphen characters in the Unicode Standard: U+2011 -

  and U+0F0C     . See Section 9.13,
Tibetan, for more discussion of the Tibetan-specific line-breaking behavior.

Zero Width No-Break Space. In addition to the meaning of byte order mark, the code value
U+FEFF possesses the semantics of   - .

As   - , U+FEFF behaves like U+00A0 -  in that it
indicates the absence of word boundaries; however, the former has no width. For example,
this character can be inserted after the fourth character in the text “base+delta” to indicate
that there should be no line-break between the “e” and the “+”. The   -

 can be used to prevent line breaking with other characters that do not have non-
breaking variants, such as U+2009   or U+2015  , by bracketing
the character.

Zero Width Space. The U+200B    indicates a word boundary, except that
it has no width. Zero-width space characters are intended to be used in languages that have
no visible word spacing to represent word breaks, such as in Thai or Japanese. When text is
justified, ZWSP has no effect on letter spacing—for example, in English or Japanese usage.

There may be circumstances with other scripts, such as Thai, where extra space is applied
around ZWSP as a result of justification, as shown in Figure 13-1. This approach is unlike
the use of fixed-width space characters, such as U+2002  , that have specified width
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 315

13.2 Layout Controls Special Areas and Format Characters
and should not be automatically expanded during justification (see Section 6.1, General
Punctuation).

Zero-Width Spaces and Joiner Characters. The zero-width spaces are not to be confused
with zero-width joiner characters. U+200C   - and U+200D 

  have no effect on word boundaries, and   -  and
   have no effect on joining or linking behavior. In other words, the zero-
width joiner characters should be ignored when determining word boundaries; 

  should be ignored when determining cursive joining behavior. See Cursive
Connection below.

Line and Paragraph Separator. The Unicode Standard provides two unambiguous charac-
ters, U+2028   and U+2029  , to separate lines and
paragraphs. They are considered the canonical form of denoting line and paragraph
boundaries in Unicode plain text. A new line is begun after each  . A new
paragraph is begun after each  . As these characters are separator
codes, it is not necessary either to start the first line or paragraph or to end the last line or
paragraph with them. Doing so would indicate that there was an empty paragraph or line
following. The   can be inserted between paragraphs of text. Its use
allows the creation of plain text files, which can be laid out on a different line width at the
receiving end. The   can be used to indicate an unconditional end of line.

A paragraph separator indicates where a new paragraph should start. Any interparagraph
formatting would be applied. This formatting could cause, for example, the line to be bro-
ken, any interparagraph line spacing to be applied, and the first line to be indented. A line
separator indicates that a line-break should occur at this point; although the text continues
on the next line, it does not start a new paragraph: no interparagraph line spacing or para-
graphic indentation is applied.

Cursive Connection

The Non-joiner and Joiner. In some fonts for some scripts, consecutive characters in a text
stream may be rendered via adjacent glyphs that cursively join to each other, so as to emu-
late connected handwriting. For example, cursive joining is implemented in nearly all fonts
for the Arabic scripts and in a few handwriting-like fonts for the Latin script.

Cursive rendering is implemented by joining glyphs in the font, plus using a process that
selects the particular joining glyph to represent each individual character occurrence, based
on the joining nature of its neighboring characters. This glyph selection is implemented in
some combination between the rendering engine and the font itself.

Figure 13-1. Letter Spacing

Type

Justification Examples

Explanation

 Display 1 the ISP¨Charts Without letter spacing

 Display 2 t h e I S P ¨ C h a r t s Normal letter spacing

¨ “Thai-Display 3 t h e I S P C h a r t s style” letter spacing

¨Display 4 t h e I S P C h a r t s � incorrectly inhibiting
letter spacing

Memory the ISP¨ The� is inserted to allow
linebreak after ¨

�Charts
316 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Special Areas and Format Characters 13.2 Layout Controls
In cases where cursive joining is implemented, on occasion an author may wish to override
the normal automatic selection of joining glyphs. Typically, this choice is made to achieve
one of the following effects:

• Cause nondefault joining appearance (for example, as is sometimes required in
writing Persian using the Arabic script).

• Exhibit the joining-variant glyphs themselves in isolation.

The Unicode Standard provides a means to influence joining glyph selection, by means of
the two characters U+200C   - and U+200D   .
Logically, these characters do not modify the contextual selection process itself, but rather
they change the context of a particular character occurrence. By providing a non-joining
neighbor character where otherwise the neighbor would be joining, or vice versa, they
deceive the rendering process into selecting a different joining glyph. This process can be
used in two ways:

1. Prevent joining appearance. For example,

� U+0635   

U+200C   -

� U+0644   

would be rendered as �� (that is, the normal cursive joining of the interior sad and

lam is overridden). Without the   -, it would be rendered as

��

2. Exhibit joining glyphs in isolation. For example,

U+200D   

� U+063A   

U+200D   

would be rendered as � (that is, the medial glyph form of the ghain appears in isola-

tion). Without the    before and after, it would be rendered as �

The preceding examples are adapted from the Iranian national coded character set stan-
dard, ISIRI 3342, which defines these characters as “pseudo space” and “pseudo connec-
tion,” respectively.

The    does have specific interpretations in certain scripts as specified in
this standard. For example, in Indic scripts it provides an invisible neighbor to which a
dead consonant may join to induce a half-consonant form (see Section 9.1, Devanagari). It
is not to be used for arbitrary “glueing” of textual elements together, such as for ligatures or
marking index items.

  - or    are format control characters. As with
other such characters, they should be ignored by processes that analyze text content. For
example, a spelling-checker or find/replace operation should filter them out. (See
Section 2.7, Special Character and Noncharacter Values, for a general discussion of format
control characters.)

The effect of these characters in display depends on the context in which they are found.
Adding a    between characters that are already cursively connected will

Z
NJ
W

Z
J
W

Z
J
W

The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 317

13.2 Layout Controls Special Areas and Format Characters
have no effect. Adding a   - between characters that are unconnected
will also have no effect. For example, any number of   - or 

  characters sprinkled into an English text stream will have no effect on its
appearance when rendered in a typical noncursive Latin font.

Controlling Ligatures

Although    and   - should not affect ligating
behavior, in some systems they may break up ligatures by interrupting the character
sequence required to form the ligature. For example, a cursive Latin font would produce
the results shown in Figure 13-2.

Usage of optional ligatures such as fi is not currently controlled by any codes within the
Unicode Standard but is determined by protocols or resources external to the text sequence
where hyphens indicate cursive joining.

Bidirectional Ordering Codes

These codes are used in the bidirectional algorithm, described in Chapter 3, Conformance.
Systems that handle bidirectional scripts (Arabic and Hebrew) should be sensitive to these
codes. The codes appear in Table 13-1.

As with the other zero-width character codes, except for their effect on the layout of the text
in which they are contained, the bidirectional ordering characters can be ignored by the
processing software. For nonlayout text processing, such as sorting, searching, and so on,
the zero-width layout characters may be ignored. However, operations that modify text
must maintain these characters correctly, because the matching pairs of zero-width format-
ting characters must be coordinated (see Chapter 3, Conformance).

Figure 13-2. Ligature Example

Memory Representation Rendering
f i s h f- -i- -s- -h

fi- -s- -h optionally using a ligature

f i s h f- -i- -s- -h

fi- -s- -h optionally using a ligature

f i s h f i- -s- -h

f i s h f- i- -s- -h

f i s h f -i- -s- -h

Table 13-1. Bidirectional Ordering Codes

Code Name Abbrev.

U+200E --  

U+200F --  

U+202A --  

U+202B --  

U+202C    

U+202D --  

U+202E --  

Z
J
W

Z
NJ
W

Z
J
W Z

NJ
W

Z
NJ
W Z

J
W

318 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Special Areas and Format Characters 13.2 Layout Controls
U+200E --  and U+200F --  have the semantics of an
invisible character of zero width, except that these characters have strong directionality.
They are intended to be used to resolve cases of ambiguous directionality in the context of
bidirectional texts. Unlike U+200B   , these characters carry no word-
break semantics. (See Section 3.12, Bidirectional Behavior, for more information.)
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 319

13.3 Deprecated Format Characters Special Areas and Format Characters
13.3 Deprecated Format Characters

Deprecated Format Characters: U+206A–U+206F
Three pairs of deprecated format characters are encoded in this block:

• Symmetric swapping format characters used to control the glyphs that depict
characters such as “(”. (The default state is activated.)

• Character shaping selectors used to control the shaping behavior of the Arabic
compatibility characters. (The default state is inhibited.)

• Numeric shape selectors used to override the normal shapes of the Western
Digits. (The default state is nominal.)

The use of these character shaping selectors and codes for digit shapes is strongly discour-
aged in the Unicode Standard. Instead, the appropriate character codes should be used with
the default state. For example, if contextual forms for Arabic characters are desired, then
the nominal characters should be used, and not the presentation forms with the shaping
selectors. Similarly, if the Arabic digit forms are desired, then the explicit characters should
be used, such as U+0660 -  .

Symmetric Swapping. The symmetric swapping format characters are used in conjunction
with the class of left- and right-handed pairs of characters (symmetric characters), such as
parentheses. The characters thus affected are listed in Section 4.7, Mirrored—Normative.
They indicate whether the interpretation of the term  or  in the character names
should be interpreted as meaning opening or closing, respectively. They do not nest. The
default state of symmetric swapping may be set by a higher-level protocol or standard, such
as ISO 6429. In the absence of such a protocol, the default state is activated.

From the point of encountering U+206A    format character
up to a subsequent U+206B    (if any), the symmetric char-
acters will be interpreted and rendered as left and right.

From the point of encountering U+206B    format character
up to a subsequent U+206A    (if any), the symmetric charac-
ters will be interpreted and rendered as opening and closing. This state (activated) is the
default state in the absence of any symmetric swapping code or a higher-level protocol.

Character Shaping Selectors. The character shaping selector format characters are used in
conjunction with Arabic presentation forms. During the presentation process, certain let-
terforms may be joined together in cursive connection or ligatures. The shaping selector
codes indicate that the character shape determination (glyph selection) process used to
achieve this presentation effect is to be either activated or inhibited. The shaping selector
codes do not nest.

From the point of encountering a U+206C     format charac-
ter up to a subsequent U+206D     (if any), the character
shaping determination process should be inhibited. If the backing store contains Arabic
presentation forms (for example, U+FE80..U+FEFC), then these forms should be pre-
sented without shape modification. This state (inhibited) is the default state in the absence
of any character shaping selector or a higher-level protocol.

From the point of encountering a U+206D     format char-
acter up to a subsequent U+206C     (if any), any Arabic
320 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Special Areas and Format Characters 13.3 Deprecated Format Characters
presentation forms that appear in the backing store should be presented with shape modi-
fication by means of the character shaping (glyph selection) process.

The shaping selectors have no effect on nominal Arabic characters (U+0660..U+06FF),
which are always subject to character shaping (glyph selection) and which are unaffected by
these formatting codes.

Numeric Shape Selectors. The numeric shape selector format characters allow the selec-
tion of the shapes in which the digits U+0030..U+0039 are to be rendered. These format
characters do not nest.

From the point of encountering a U+206E    format character up to
a subsequent U+206F    (if any), the European digits (U+0030..
U+0039) should be depicted using the appropriate national digit shapes as specified by
means of appropriate agreements. For example, they could be displayed with shapes such
as the -  (U+0660..U+0669). The actual character shapes (glyphs) used
to display national digit shapes are not specified by the Unicode Standard.

From the point of encountering a U+206F    format character up to
a subsequent U+206E    (if any), the European digits (U+0030..
U+0039) should be depicted using glyphs that represent the nominal digit shapes shown in
the code tables for these digits. This state (nominal) is the default state in the absence of any
numeric shape selector or a higher-level protocol.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 321

13.4 Surrogates Area Special Areas and Format Characters
13.4 Surrogates Area

Surrogates Area: U+D800–U+DFFF
The Surrogates Area consists of 1,024 low-half surrogate code values and 1,024 high-half
surrogate code values, which are interpreted in pairs to access more than 1 million code
points. Except for private use, there are no such characters currently assigned in this version of
this standard. For the formal definition of a surrogate pair and the role of surrogate pairs in
the Unicode Conformance Clause, see Section 3.7, Surrogates, and Section 5.4, Handling
Surrogate Pairs.

The use of surrogate pairs in the Unicode Standard is formally equivalent to the Universal
Transformation Format-16 (UTF-16) defined in ISO 10646. (For a complete statement of
the UTF-16 extension mechanism, see Appendix C, Relationship to ISO/IEC 10646.)

High-Surrogate. The high-surrogate code values are assigned to the range U+D800..
U+DBFF. The high-surrogate code value is always the first element of a surrogate pair.

Low-Surrogate. The low-surrogate code values are assigned to the range U+DC00..
U+DFFF. The low-surrogate code value is always the second element of a surrogate pair.

Private-Use High-Surrogates. The high-surrogate code values from U+DB80..U+DBFF
are private-use high-surrogate code values (a total of 128 code values). Characters repre-
sented by means of a surrogate pair, where the high-surrogate code value is a private-use
high-surrogate, are private-use characters. This mechanism allows for a total of 131,068
(= 128 × 1024 – 4) private-use characters representable by means of surrogate pairs. (For
more information on private-use characters, see the discussion of the Private Use Area.)

The code tables do not have charts or name list entries for the range D800..DFFF because
individual, unpaired surrogates merely have code values.
322 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Special Areas and Format Characters 13.5 Private Use Area
13.5 Private Use Area

Private Use Area: U+E000–U+F8FF
The Private Use Area is reserved for use by software developers and end users who need a
special set of characters for their application programs. The code points in this area are
reserved for private use and do not have defined, interpretable semantics except by private
agreement.

There are no charts for this area, as any character encoded in this area is privately defined.

There are also private-use characters defined by means of surrogate pairs. (See the Surro-
gates Area description for a specification of how those private-use characters are encoded.)

Encoding Structure. By convention, the Private Use Area is divided into a Corporate Use
subarea, starting at U+F8FF and extending downward in values, and an End User subarea,
starting at U+E000 and extending upward.

Corporate Use Subarea. Systems vendors and/or software developers may need to reserve
some private-use characters for internal use by their software. The Corporate Use subarea
is the preferred area for such reservations. Assignments of character semantics in this sub-
area could be completely internal, hidden from the end users, and used only for vendor-
specific application support, or they could be published as vendor-specific character
assignments available to applications and end users. An example of the former case would
be the assignment of a character code to a system support operation such as <MOVE> or
<COPY>; an example of the latter case would be the assignment of a character code to a
vendor-specific logo character such as Apple’s apple character.

End User Subarea. The End User subarea is intended for private-use character definitions
by end users or for scratch allocations of character space by end-user applications.

Allocation of Subareas. Vendors may choose to reserve private-use codes in the Corporate
Use subarea and make some defined portion of the End User subarea available for com-
pletely free end-user definition. This convention is for the convenience of system vendors
and software developers. No firm dividing line between the two subareas is defined, as dif-
ferent users may have different requirements. No provision is made in the Unicode Stan-
dard for avoiding a “stack-heap collision” between the two subareas in the Private Use
Area.

Promotion of Private-Use Characters. In future versions of the Unicode Standard, some
characters that have been defined by one vendor or another in the Corporate Use subarea
may be encoded elsewhere as regular Unicode characters if their usage is widespread
enough that they become candidates for general use. The code positions in the Private Use
Area are permanently reserved for private use—no assignment to a particular set of charac-
ters will ever be endorsed by the Unicode Consortium.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 323

13.6 Specials Special Areas and Format Characters
13.6 Specials

Specials: U+FEFF, U+FFF0–U+FFFF
The Specials block contains code values that are interpreted neither as control nor graphic
characters but that are provided to facilitate current software practices. The 14 Unicode
values from U+FFF0..U+FFFD are reserved for special character definitions. In addition to
these 14 positions, 2 code values are specified here for use not as characters but as special
signaling devices (described below).

Byte Order Mark (BOM)

There are two circumstances where the character U+FEFF can have a special interpretation
that is different from the normal semantics of a zero width no-break space (see Section 13.2,
Layout Controls):

1. Unmarked Byte Order. Some machine architectures use the so-called big-
endian byte order, while others use the little-endian byte order. When Unicode
text is serialized into bytes, the bytes can go in either order, depending on the
architecture. However, sometimes this byte order is not externally marked,
which causes problems in interchange between different systems.

2. Unmarked Character Set. In some circumstances, the character set information
for a stream of coded characters (such as a file) is not available. The only infor-
mation available is that the stream contains text, but the precise character set is
not known.

In these two cases, the character U+FEFF can be used as a signature to indicate the byte
order and the character set by using the UTF-16 serialization described in Section 3.8,
Transformations. Because the byte-swapped version U+FFFE is always an illegal Unicode
value, when an interpreting process finds U+FFFE as the first character, it signals either
that the process has encountered text that is of the incorrect byte order or that the file is not
valid Unicode text.

In the UTF-16 serialization, U+FEFF at the very beginning of a file or stream explicitly sig-
nals the byte order.

The byte sequence FE16 FF16 may serve as a signature to identify a file as containing Uni-
code text. This sequence is exceedingly rare at the outset of text files using other character
encodings, whether single- or multiple-byte, and therefore not likely to be confused with
real text data. For example, in systems that employ ISO Latin 1 (ISO/IEC 8859-1) or the
Microsoft Windows ANSI Code Page 1252, the byte sequence FE16 FF16 constitutes the
string thorn, y diaeresis “þÿ”; in systems that employ the Apple Macintosh Roman character
set or the Adobe Standard Encoding, this sequence represents the sequence ogonek, hacek
“��”; in systems that employ other common IBM PC Code Pages (for example, CP 437,
850), this sequence represents black square, no-break space “��”.

In UTF-8, the BOM corresponds to the byte sequence EF16 BB16 BF16. Although there are
never any questions of byte order with UTF-8 text, this sequence can serve as signature for
UTF-8 encoded text where the character set is unmarked. As with a BOM in UTF-16, this
sequence of bytes will be extremely rare at the beginning of text files in other character
encodings. For example, in systems that employ Microsoft Windows ANSI Code Page 1252,
EF16 FF16 BF16 corresponds to the sequence i diaeresis, guillemet, inverted question mark
“ï » ¿”.
324 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Special Areas and Format Characters 13.6 Specials
Where the character set information is explicitly marked, such as in UTF-16BE or UTF-
16LE, then all U+FEFF characters, even at the very beginning of the text, are to be inter-
preted as zero width no-break spaces. Similarly, where Unicode text has known byte order,
initial U+FEFF characters are also not required and are to be interpreted as zero width no-
break spaces. For example, for strings in an API, the memory architecture of the processor
provides the explicit byte order. For databases and similar structures, it is much more effi-
cient and robust to use a uniform byte order for the same field (if not the entire database),
thereby avoiding use of the byte order mark.

Systems that use the byte order mark must recognize that an initial U+FEFF signals the byte
order; it is not part of the textual content. It should be removed before processing, because
otherwise it may be mistaken for a legitimate zero width no-break space. To represent an ini-
tial U+FEFF   -  in a UTF-16 file, use U+FEFF twice in a row.
The first one is a byte order mark; the second one is the initial zero width no-break space. See
Table 13-2 for a summary of encoding form signatures.

Annotation Characters

An interlinear annotation consists of annotating text that is related to a sequence of anno-
tated characters. For all regular editing and text-processing algorithms, the annotated char-
acters are treated as part of the text stream. The annotating text is also part of the content,
but for all or some text processing, it does not form part of the main text stream. However,
within the annotating text, characters are accessible to the same kind of layout, text-pro-
cessing, and editing algorithms as the base text. The annotation characters delimit the
annotating and the annotated text, and identify them as part of an annotation. See
Figure 13-3.

The annotation characters are used in internal processing when out-of-band information is
associated with a character stream, very similarly to the usage of the U+FFFC 

 . However, unlike the opaque objects hidden by the latter char-
acter, the annotation itself is textual.

Table 13-2. Unicode Encoding Form Signatures

Encoding Form Signature
UTF-8 EF BB BF
UTF-16 Big-Endian FE FF
UTF-16 Little-Endian FF FE
UCS-4a Big-Endian

a. For UCS-4, see Section C.2, Encoding Forms in
ISO/IEC 10646.

00 00 FE FF
UCS-4 Little-Endian FF FE 00 00

Figure 13-3. Annotation Characters

Felix
Text display

Text stream

Annotated
text

Annotating
text

Annotation
characters

Annotated
text

Annotating
text

Annotation
characters
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 325

13.6 Specials Special Areas and Format Characters
Conformance. A conformant implementation that supports annotation characters inter-
prets the base text as if it were part of an unannotated text stream. Within the annotating
text, it interprets the annotating characters with their regular Unicode semantics.

U+FFF9    is an anchor character, preceding the interlin-
ear annotation. The exact nature and formatting of the annotation is dependent on addi-
tional information that is not part of the plain text stream. This situation is analogous to
that for U+FFFC   .

U+FFFA    separates the base characters in the text
stream from the annotation characters that follow. The exact interpretation of this charac-
ter depends on the nature of the annotation. More than one separator may be present.
Additional separators delimit parts of a multipart annotating text.

U+FFFB    terminates the annotation object (and
returns to the regular text stream).

Use in Plain Text. Usage of the annotation characters in plain text interchange is strongly
discouraged without prior agreement between the sender and the receiver because the con-
tent may be misinterpreted otherwise. Simply filtering out the annotation characters on
input will produce an unreadable result or, even worse, an opposite meaning. On input, a
plain text receiver should either preserve all characters or remove the interlinear annota-
tion characters as well as the annotating text included between the  -

  and the   .

When an output for plain text usage is desired and when the receiver is unknown to the
sender, these interlinear annotation characters should be removed as well as the annotating
text included between the    and the 

 .

This restriction does not preclude the use of annotation characters in plain text inter-
change, but it requires a prior agreement between the sender and the receiver for correct
interpretation of the annotations.

Lexical Restrictions. If an implementation encounters a paragraph break between an
anchor and its corresponding terminator, it shall terminate any open annotations at this
point. Anchor characters must precede their corresponding terminator characters.
Unpaired anchors or terminators shall be ignored. A separator occurring outside a pair of
delimiters, shall be ignored. Annotations may be nested.

Formatting. All formatting information for an annotation is provided by higher-level pro-
tocols. The details of the layout of the annotation are implementation-defined. Correct for-
matting may require additional information not present in the character stream, but
maintained out of band. Therefore, annotation markers serve as placeholders for an imple-
mentation that has access to that information from another source.

Collation. Except for the special case where the annotation is intended to be used as a sort-
key, annotations are typically ignored for collation, or optionally preprocessed to act as tie
breakers only. Importantly, annotation base characters are not ignored, but treated like reg-
ular text.

Replacement Characters

U+FFFC. The U+FFFC    is used as an insertion point for
objects located within a stream of text. All other information about the object is kept out-
side the character data stream. Internally it is a dummy character that acts as an anchor
point for the object’s formatting information. In addition to assuring correct placement of
326 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Special Areas and Format Characters 13.6 Specials
an object in a data stream, the object replacement character allows the use of general
stream-based algorithms for any textual aspects of embedded objects.

U+FFFD. The U+FFFD   is the general substitute character in
the Unicode Standard. That character can be substituted for any “unknown” character in
another encoding that cannot be mapped in terms of known Unicode values (see
Section 5.3, Unknown and Missing Characters).

Noncharacters

U+FFFE. The 16-bit unsigned hexadecimal value U+FFFE is not a Unicode character value.
Its occurrence in a stream of Unicode data strongly suggests that the Unicode characters
should be byte-swapped before interpretation. U+FFFE should be interpreted only as an
incorrectly byte-swapped version of U+FEFF   - , also known as
the byte order mark.

U+FFFF. The 16-bit unsigned hexadecimal value U+FFFF is not a Unicode character value;
it may be used by an application as a error code or other noncharacter value. The specific
interpretation of U+FFFF is not defined by the Unicode Standard, so it can be viewed as a
kind of private-use noncharacter.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 327

This PDF file is an excerpt from The Unicode Standard, Version 3.0, issued by the Unicode Consor-
tium and published by Addison-Wesley. The material has been modified slightly for this online edi-
tion, however the PDF files have not been modified to reflect the corrections found on the Updates
and Errata page (see http://www.unicode.org/unicode/uni2errata/UnicodeErrata.html). More recent
versions of the Unicode standard exist (see http://www.unicode.org/unicode/standard/versions/).

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital letters. However, not all words
in initial capital letters are trademark designations.

The authors and publisher have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode®, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided.

Dai Kan-Wa Jiten used as the source of reference Kanji codes was written by Tetsuji Morohashi and
published by Taishukan Shoten.

ISBN 0-201-61633-5

Copyright © 1991-2000 by Unicode, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or other-
wise, without the prior written permission of the publisher or Unicode, Inc.

This book is set in Minion, designed by Rob Slimbach at Adobe Systems, Inc. It was typeset using
FrameMaker 5.5 running under Windows NT. ASMUS, Inc. created custom software for chart layout.
The Han radical-stroke index was typeset by Apple Computer, Inc. The following companies and
organizations supplied fonts:

Apple Computer, Inc.
Atelier Fluxus Virus
Beijing Zhong Yi (Zheng Code) Electronics Company
DecoType, Inc.
IBM Corporation
Monotype Typography, Inc.
Microsoft Corporation
Peking University Founder Group Corporation
Production First Software

Additional fonts were supplied by individuals as listed in the Acknowledgments.

The Unicode® Consortium is a registered trademark, and Unicode™ is a trademark of Unicode, Inc.
The Unicode logo is a trademark of Unicode, Inc., and may be registered in some jurisdictions.

All other company and product names are trademarks or registered trademarks of the company or
manufacturer, respectively.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information please contact:

Corporate, Government, and Special Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867

Visit A-W on the Web: http://www.awl.com/cseng/

First printing, January 2000.

http://www.unicode.org/unicode/uni2errata/UnicodeErrata.html
http://www.unicode.org/unicode/standard/versions/
http://www.awl.com/cseng/

	Chapter 13
	Special Areas and Format Characters
	13.1 Control Codes
	C0 Control Codes: U+0000–U+001F
	ASCII C0 Control Codes and Delete.
	Newline Function

	C1 Control Codes: U+0080–U+009F

	13.2 Layout Controls
	Layout Controls
	Line and Word Breaking
	Zero Width No-Break Space
	Zero Width Space

	Figure 13�1. Letter Spacing
	Zero-Width Spaces and Joiner Characters
	Line and Paragraph Separator
	Cursive Connection
	The Non-joiner and Joiner

	Controlling Ligatures

	Figure 13�2. Ligature Example
	Bidirectional Ordering Codes

	13.3 Deprecated Format Characters
	Deprecated Format Characters: U+206A–U+206F
	Symmetric Swapping
	Character Shaping Selectors
	Numeric Shape Selectors

	13.4 Surrogates Area
	Surrogates Area: U+D800–U+DFFF
	High-Surrogate
	Low-Surrogate
	Private-Use High-Surrogates

	13.5 Private Use Area
	Private Use Area: U+E000–U+F8FF
	Encoding Structure
	Corporate Use Subarea
	End User Subarea
	Allocation of Subareas
	Promotion of Private-Use Characters

	13.6 Specials
	Specials: U+FEFF, U+FFF0–U+FFFF
	Byte Order Mark (BOM)
	1. Unmarked Byte Order. Some machine architectures use the so-called big- endian byte order, whil...
	2. Unmarked Character Set. In some circumstances, the character set information for a stream of c...

	Annotation Characters
	Figure 13�3. Annotation Characters
	Conformance
	Use in Plain Text
	Lexical Restrictions
	Formatting
	Collation
	Replacement Characters
	U+FFFC
	U+FFFD

	Noncharacters
	U+FFFE
	U+FFFF

