
Chapter 3

Conformance 3

This chapter defines conformance to the Unicode Standard in terms of the principles and
encoding architecture it embodies. The first section consists of the conformance clauses,
followed by sections that define more precisely the technical terms used in those clauses.
The remaining sections contain the formal algorithms that are part of conformance and
referred to by the conformance clause. These algorithms specify the required results rather
than the specific implementation; all implementations that produce results identical to the
results of the formal algorithms are conformant.

In this chapter, conformance subclauses are identified with a letter C. Definitions are iden-
tified with the letter D. Bulleted items are explanatory comments regarding definitions or
subclauses.

Except for Section 3.12, Bidirectional Behavior, the numbering of rules and definitions
matches that of The Unicode Standard, Version 2.0. Where new rules and definitions were
added, letters are used with numbers—for example, D7a.

3.1 Conformance Requirements
This section specifies the formal conformance requirements for processes implementing
Version 3.0 of the Unicode Standard. Note that this clause has been revised from the previ-
ous versions of the Unicode Standard. These revisions do not change the substance of the
conformance requirements previously set forth, but rather are formalized and extended to
allow for the use of transformation formats. Implementations that satisfied the confor-
mance clause of the previous versions of the Unicode Standard will satisfy this revised clause.

Byte Ordering

C1 A process shall interpret Unicode code values as 16-bit quantities.

• Unicode values can be stored in native 16-bit machine words.

• For information on use of wchar_t or other programming language types to rep-
resent Unicode values, see Section 5.2, ANSI/ISO C wchar_t.

C2 The Unicode Standard does not specify any order of bytes inside a Unicode value.

• Machine architectures differ in ordering in terms of whether the most significant
byte or the least significant byte comes first. These sequences are known as “big-
endian” and “little-endian” orders, respectively.

C3 A process shall interpret a Unicode value that has been serialized into a sequence of
bytes by most significant byte first, in the absence of higher-level protocols.

• The majority of all interchange occurs with processes running on the same or a sim-
ilar configuration. As a result, intradomain interchange of Unicode text in the
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 37

3.1 Conformance Requirements Conformance
domain-specific byte order is fully conformant and limits the role of the canonical
byte order to interchange of Unicode text across domain, or where the nature of the
originating domain is unknown. (For a discussion of the use of byte order mark to
indicate byte orderings, see Section 2.7, Special Character and Noncharacter Values.)

Invalid Code Values

C4 A process shall not interpret an unpaired high- or low-surrogate as an abstract
character.

C5 A process shall not interpret either U+FFFE or U+FFFF as an abstract character.

C6 A process shall not interpret any unassigned code value as an abstract character.

• These clauses do not preclude the assignment of certain generic semantics (for
example, rendering with a glyph to indicate the character block) that allow for
graceful behavior in the presence of code values that are outside a supported subset
or code values that are unpaired surrogates.

• Private-use code values are assigned, but can be given any interpretation by confor-
mant processes.

Interpretation

C7 A process shall interpret a coded character representation according to the character
semantics established by this standard, if that process does interpret that coded charac-
ter representation.

• This restriction does not preclude internal transformations that are never visible
external to the process.

C8 A process shall not assume that it is required to interpret any particular coded character
representation.

• Any means for specifying a subset of characters that a process can interpret is out-
side the scope of this standard.

• The semantics of a code value in the Private Use Area is outside the scope of this
standard.

• Although these clauses are not intended to preclude enumerations or specifications
of the characters that a process or system is able to interpret, they do separate sup-
ported subset enumerations from the question of conformance. In real life, any sys-
tem may occasionally receive an unfamiliar character code that it is unable to
interpret.

C9 A process shall not assume that the interpretations of two canonical-equivalent charac-
ter sequences are distinct.

• Ideally, an implementation would always interpret two canonical-equivalent char-
acter sequences identically. There are practical circumstances under which imple-
mentations may reasonably distinguish them.

• Even processes that normally do not distinguish between canonical-equivalent
character sequences can have reasonable exception behavior. Some examples of this
behavior include graceful fallback processing by processes unable to support correct
positioning of nonspacing marks; “Show Hidden Text” modes that reveal memory
representation structure; and the choice of ignoring collating behavior of
38 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.1 Conformance Requirements
combining sequences that are not part of the repertoire of a specified language (see
Section 5.13, Strategies for Handling Nonspacing Marks).

Modification

C10 A process shall make no change in a valid coded character representation other than the
possible replacement of character sequences by their canonical-equivalent sequences, if
that process purports not to modify the interpretation of that coded character represen-
tation.

• Replacement of a character sequence by a compatibility-equivalent sequence does
modify the interpretation of the text.

• Replacement or deletion of a character sequence that the process cannot or does not
interpret does modify the interpretation of the text.

• Changing the bit or byte ordering when transforming between different machine
architectures does not modify the interpretation of the text.

• Transforming to a different encoding form does not modify the interpretation of
the text.

Transformations

C11 When a process interprets a byte sequence in a Unicode Transformation Format, it shall
interpret that byte sequence in accordance with the character semantics established by
this standard for the corresponding Unicode character sequence.

C12 When a process generates data in a Unicode Transformation Format, it shall not emit
ill-formed byte sequences. When a process interprets data in a Unicode Transformation
Format, it shall treat illegal byte sequences as an error condition.

Bidirectional Text

C13 A process that displays text containing supported right-to-left characters or embedding
codes shall display all visible representations of characters (excluding format characters)
in the same order as if the bidirectional algorithm had been applied to the text, in the
absence of higher-level protocols (see Section 3.12, Bidirectional Behavior).

Unicode Technical Reports

The following technical reports are approved and considered part of Version 3.0 of the Uni-
code Standard. These reports may contain either normative or informative material, or
both. Any reference to Version 3.0 of the standard automatically includes these technical
reports.

• UTR #11: East Asian Width, Version 5.0

• UTR #13: Unicode Newline Guidelines, Version 5.0

• UTR #14: Line Breaking Properties, Version 6.0

• UTR #15: Unicode Normalization Forms, Version 18.0
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 39

3.2 Semantics Conformance
3.2 Semantics
This and the following sections more precisely define the terms that are used in the con-
formance clauses.

D1 Normative properties and behavior: The following are normative character properties
and normative behavior of the Unicode Standard:

1. Simple properties

2. Character combination

3. Canonical decomposition

4. Compatibility decomposition

5. Surrogate property

6. Canonical ordering behavior

7. Bidirectional behavior, as interpreted according to the Unicode bidirectional
algorithm

8. Conjoining jamo behavior, as interpreted according to Section 3.11, Conjoining
Jamo Behavior

D2 Character semantics: The semantics of a character are established by its character
name, representative glyph, and normative properties and behavior.

• A character may have a broader range of use than the most literal interpretation of
its name might indicate; the coded representation, name, and representative glyph
need to be taken in context when establishing the semantics of a character. For
example, U+002E can represent a sentence period, an abbreviation
period, a decimal number separator in English, a thousands number separator in
German, and so on.

• Consistency with the representative glyph does not require that the images be iden-
tical or even graphically similar; rather, it means that both images are generally rec-
ognized to be representations of the same character. Representing the character
U+0061 by the glyph “X” would violate its character iden-
tity.

• Some normative behavior is default behavior; this behavior can be overridden by
higher-level protocols. However, in the absence of such protocols, the behavior
must be observed so as to follow the character semantics.

• The character combination properties and the canonical ordering behavior cannot
be overridden by higher-level protocols.

3.3 Characters and Coded Representations
D3 Abstract character: a unit of information used for the organization, control, or repre-

sentation of textual data.

• When representing data, the nature of that data is generally symbolic as opposed to
some other kind of data (for example, numeric, aural, or visual). Examples of such
symbolic data include letters, ideographs, digits, punctuation, technical symbols,
and dingbats.
40 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.3 Characters and Coded Representations
• An abstract character has no concrete form and should not be confused with a
glyph.

• An abstract character does not necessarily correspond to what a user thinks of as a
“character” and should not be confused with a grapheme.

• The abstract characters encoded by the Unicode Standard are known as Unicode
abstract characters.

• Abstract characters not directly encoded by the Unicode Standard can be repre-
sented by the use of combining character sequences.

D4 Abstract character sequence: an ordered sequence of abstract characters.

Each Unicode abstract character is encoded one or more times. Each encoding, which con-
sists of the relationship between an abstract character and its scalar value (see D28), is
called an encoded character. Each scalar value is represented in either of two ways: as a single
code value or as a sequence of two surrogate code values.

D5 Code value: the minimal bit combination that can represent a unit of encoded text
for processing or interchange.

• Other character encoding standards typically use code values defined as 8-bit units.
The same is true for the UTF-8 transformation format of the Unicode Standard.
However, the code values used in the UTF-16 form of the Unicode Standard are 16-
bit units. These 16-bit code values are also known simply as Unicode values.

• A code value is also referred to as a code unit in the information industry.

• A single abstract character may correspond to more than one code value—for
example, U+00C5 Å and U+212B Å

.

• Multiple code values may be required to represent a single abstract character. For
example, a byte is the code unit in SJIS: characters such as “a” can be represented
with a single code value, whereas ideographs require two code values.

• In some encodings, specific code units cannot be used to represent an encoded
character in isolation. This restriction includes a single surrogate (high or low) in
Unicode, the bytes 80–FF in UTF-8, or the bytes 81–9F, E0–EF in SJIS.

D6 Coded character representation: an ordered sequence of one or more code values that
is associated with an abstract character in a given character repertoire.

• A Unicode abstract character is generally encoded by a single Unicode code value;
the only exception involves surrogate pairs (which are provided for future exten-
sion, but are not currently used to represent any abstract characters).

D7 Coded character sequence: an ordered sequence of coded character representations.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term character
alone generally designates a coded character representation. Similarly, the term character
sequence alone generally designates a coded character sequence.

D7a Deprecated character: a coded character whose use is strongly discouraged. Such
characters are retained in the standard, but should not be used.

• Deprecated characters are retained in the standard so that previously conforming
data stay conformant in future versions of the standard. Deprecated characters are
to be distinguished from obsolete characters.

• Obsolete characters are historical. They do not occur in modern text, but they are
not deprecated; their use is not discouraged.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 41

3.4 Simple Properties Conformance
D8 Higher-level protocol: any agreement on the interpretation of Unicode characters
that extends beyond the scope of this standard. Such an agreement need not be for-
mally announced in data; it may be implicit in the context.

3.4 Simple Properties
The Unicode Standard, Version 3.0, defines the normative simple character properties of
case, numeric value, directionality, and mirrored. Chapter 4, Character Properties, contains
explicit mappings of characters to character properties. These mappings represent the
default properties for conformant processes in the absence of explicit, overriding, higher-
level protocols. Additional properties that are specific to particular characters (such as the
definition and use of the right-to-left override character or zero-width spaces) are discussed
in the relevant sections of this standard.

• The Unicode Character Database contains additional properties, such as category
and case mappings, that are informative rather than normative.

The interpretation of some properties (such as the case of a character) is independent of
context, whereas the interpretation of others (such as directionality) is applicable to a char-
acter sequence as a whole, rather than to the individual characters that compose the
sequence.

D9 Directionality property: a property of every graphic character that determines its
horizontal ordering as specified in Section 3.12, Bidirectional Behavior.

• Interpretation of directional properties according to the Unicode bidirectional algo-
rithm is needed for layout of right-to-left scripts such as Arabic and Hebrew.

D10 Mirrored property: the property of characters whose images are mirrored horizon-
tally in text that is laid out from right to left (versus left to right). (See Section 4.7,
Mirrored—Normative.)

• In other words, U+0028 is interpreted as an opening parenthesis;
in a left-to-right context, this character will appear as “(”; in a right-to-left context,
it will be mirrored and appear as “)”.

• This is the default behavior in Unicode text. (For more information, see the
“Semantics of Paired Punctuation” subsection in Section 6.1, General Punctuation.)

D10a Case property: a property of characters in certain alphabets whereby certain charac-
ters are considered variants of a single letter. (See Section 4.1, Case—Normative.)

D10b Numeric value property: a property of characters used to represent numbers. (See
Section 4.6, Numeric Value—Normative.)

D11 Special character properties: The behavior of most characters does not require special
attention in this standard. However, certain characters exhibit special behavior,
which is described in the character block descriptions. These characters are listed in
Section 3.9, Special Character Properties.

D12 Private use: Unicode values from U+E000 to U+F8FF and surrogate pairs (see
Section 3.7, Surrogates) whose high-surrogate is from U+DB80 to U+DBFF are
available for private use.
42 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.5 Combination
3.5 Combination
D13 Base character: a character that does not graphically combine with preceding charac-

ters, and that is neither a control nor a format character.

• Most Unicode characters are base characters. This sense of graphic combination
does not preclude the presentation of base characters from adopting different con-
textual forms or participating in ligatures.

D14 Combining character: a character that graphically combines with a preceding base
character. The combining character is said to apply to that base character.

• These characters are not used in isolation (unless they are being described). They
include such characters as accents, diacritics, Hebrew points, Arabic vowel signs,
and Indic matras.

• Even though a combining character is intended to be presented in graphical combi-
nation with a base character, circumstances may arise where either (1) no base char-
acter precedes the combining character or (2) a process is unable to perform
graphical combination. In both cases, a process may present a combining character
without graphical combination; that is, it may present it as if it were a base
character.

• The representative images of combining characters are depicted with a dotted circle
in the code charts; when presented in graphical combination with a preceding base
character, that base character is intended to appear in the position occupied by the
dotted circle.

• Combining characters generally take on the properties of their base character, while
retaining their combining property.

• Control and format characters, such as tab or right-left mark, are not base charac-
ters. Combining characters do not apply to them.

D15 Nonspacing mark: a combining character whose positioning in presentation is
dependent on its base character. It generally does not consume space along the
visual baseline in and of itself.

• Such characters may be large enough to affect the placement of their base character
relative to preceding and succeeding base characters. For example, a circumflex
applied to an “i” may affect spacing (“î”), as might the character U+20DD -

 .

D16 Spacing mark: a combining character that is not a nonspacing mark.

• Examples include U+093F . In general, the behavior of
spacing marks does not differ greatly from that of base characters.

D17 Combining character sequence: a character sequence consisting of either a base char-
acter followed by a sequence of one or more combining characters, or a sequence of
one or more combining characters.

• A combining character sequence is also referred to as a composite character sequence.

D17a Defective combining character sequence: a combining character sequence that does
not start with a base character.

• Defective combining character sequences occur when a sequence of combining
characters appears at the start of a string or follows a control or format character.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 43

3.6 Decomposition Conformance
3.6 Decomposition
D18 Decomposable character: a character that is equivalent to a sequence of one or more

other characters, according to the decomposition mappings found in the names list
of Section 14.1, Character Names List. It may also be known as a precomposed charac-
ter or composite character.

D19 Decomposition: a sequence of one or more characters that is equivalent to a decom-
posable character. A full decomposition of a character sequence results from decom-
posing each of the characters in the sequence until no characters can be further
decomposed.

Compatibility Decomposition

D20 Compatibility decomposition: the decomposition of a character that results from
recursively applying both the compatibility mappings and the canonical mappings
found in the names list of Section 14.1, Character Names List, and those described in
Section 3.11, Conjoining Jamo Behavior, until no characters can be further decom-
posed, and then reordering nonspacing marks according to Section 3.10, Canonical
Ordering Behavior.

• A compatibility decomposition may remove formatting information.

D21 Compatibility character: a character that has a compatibility decomposition.

• Compatibility characters are included in the Unicode Standard to represent distinc-
tions in other base standards. They support transmission and processing of legacy
data. Their use is discouraged other than for legacy data.

• Replacing a compatibility character by its decomposition may lose round-trip con-
vertibility with a base standard.

D22 Compatibility equivalent: Two character sequences are said to be compatibility
equivalents if their full compatibility decompositions are identical.

Canonical Decomposition

D23 Canonical decomposition: the decomposition of a character that results from recur-
sively applying the canonical mappings found in the names list of Section 14.1,
Character Names List, and those described in Section 3.11, Conjoining Jamo Behavior,
until no characters can be further decomposed, and then reordering nonspacing
marks according to Section 3.10, Canonical Ordering Behavior.

• The canonical mappings are a subset of the compatibility mappings; however, a
canonical decomposition does not remove formatting information.

D24 Canonical equivalent: Two character sequences are said to be canonical equivalents if
their full canonical decompositions are identical.

• For example, the sequences <o, combining-diaeresis> and <ö> are canonical equiva-
lents. Canonical equivalence is a Unicode property. It should not be confused with
language-specific collation or matching, which may add additional equivalencies.
For example, in Swedish, ö is treated as a completely different letter from o, collated
after z. In German, ö is weakly equivalent to oe and collated with oe. In English, ö is
just an o with a diacritic that indicates that it is pronounced separately from the pre-
vious letter (as in coöperate) and is collated with o.
44 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.7 Surrogates
Note: For definitions of canonical composition and compatibility composition, see Unicode
Technical Report #15, “Unicode Normalization Forms,” on the CD-ROM or the up-to-date
version on the Unicode Web site.

3.7 Surrogates
D25 High-surrogate: a Unicode code value in the range U+D800 through U+DBFF.

D26 Low-surrogate: a Unicode code value in the range U+DC00 through U+DFFF.

D27 Surrogate pair: a coded character representation for a single abstract character that
consists of a sequence of two Unicode values, where the first value of the pair is a
high-surrogate and the second is a low-surrogate.

• Unlike combining characters, which have independent semantics and properties,
high- and low-surrogates have no interpretation when they do not appear as part of
a surrogate pair.

• Surrogate pairs are designed to allow representation of characters in future exten-
sions of the Unicode Standard. There are no such currently assigned characters in
this version of the standard, but it is widely expected that such characters will be
added in the not too distant future. For more information, see Section 13.4, Surro-
gates Area, and Section 5.4, Handling Surrogate Pairs.

D28 Unicode scalar value: a number N from 0 to 10FFFF16 defined by applying the fol-
lowing algorithm to a character sequence S:

• Unicode scalar values are defined for use by standards such as SGML, XML, and
HTML, which require a scalar value associated with abstract characters.

• This algorithm is identical with the ISO/IEC 10646 algorithm used to transform
UTF-16 into UCS-4 (for more information, see Appendix C, Relationship to ISO/
IEC 10646).

• The reverse mapping from the Unicode scalar value to a surrogate pair is given by

H = (S – 1000016) / 40016 + D80016

L = (S – 1000016) % 40016 + DC0016

The operators “/” and “%” are as defined in Section 0.2, Notational Conventions.

• A Unicode scalar value is also referred to as a code position or a code point in the
information industry.

3.8 Transformations
More than one representation of Unicode data can be conformant to the Unicode Stan-
dard. Chief among them is UTF-8, discussed in Section 2.3, Encoding Forms, and
Appendix C.3, UCS Transformation Formats. In addition, there are compression transfor-
mations such as the one described in the Unicode Technical Report #6, “A Standard

N = U If S is a single, nonsurrogate value <U>

N = (H – D80016) * 40016 +
(L – DC0016) + 1000016

If S is a surrogate pair <H, L>
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 45

3.8 Transformations Conformance
Compression Scheme for Unicode” on the CD-ROM or the up-to-date version on the Uni-
code Web site.

D29 A Unicode (or UCS) transformation format (UTF) transforms each Unicode scalar
value into a unique sequence of code values. A UTF may specify a byte order for the
serialization of the code values into bytes. A UTF may also specify the use of a byte
order mark.

• Code values are particular units of computer storage specified by the transforma-
tion format—for example, 16-bit integers or bytes. In the latter case, a code value
sequence can be referred to as a byte sequence.

• Any sequence of code values that would correspond to a scalar value greater than
10FFFF16 is illegal.

Because every Unicode coded character sequence maps to a unique sequence of code values
in a given UTF, a reverse mapping can be derived. Thus every UTF supports lossless round-
trip transcoding: mapping from any Unicode coded character sequence S to a sequence of
code values and back will produce S again. To ensure that round-trip transcoding is possi-
ble, a UTF mapping must also map invalid Unicode scalar values to unique code value
sequences. These invalid scalar values include FFFE16, FFFF16, and unpaired surrogates.

D30 For a given UTF, a code value sequence that cannot be produced from any sequence
of Unicode scalar values is called an ill-formed code value sequence.

D31 For a given UTF, a code value sequence that cannot be mapped back to a sequence of
Unicode scalar values is called an illegal code value sequence.

• For example, in UTF-8 every code value of the form 110xxxxx2 must be followed
with a code value of the form 10xxxxxx2. A sequence such as 110xxxxx2 0xxxxxx2 is
illegal and must never be generated. When faced with this illegal code value
sequence while transforming or interpreting, a UTF-8 conformant process must
treat the first code value 110xxxxx2 as an illegal termination error—for example, by
signaling an error, filtering the code value out, or representing the code value with a
marker such as U+FFFD . In the latter two cases, it will
continue processing at the second code value 0xxxxxx2.

D32 For a given UTF, an ill-formed code value sequence that is not illegal is called an
irregular code value sequence.

• To make implementations simpler and faster, some transformation formats may
allow irregular code value sequences without requiring error handling. For exam-
ple, UTF-8 allows nonshortest code value sequences to be interpreted: a UTF-8 con-
formant process may map the code value sequence C0 80 (110000002 100000002) to
the Unicode value U+0000, even though a UTF-8 conformant process shall never
generate that code value sequence—it shall generate the sequence 00 (000000002)
instead. A conformant process shall not use irregular code value sequences to
encode out-of-band information.

D33 UTF-16BE is the Unicode Transformation Format that serializes a Unicode value as
a sequence of two bytes, in big-endian format. An initial sequence corresponding to
U+FEFF is interpreted as a - .

• In UTF-16BE, <004D 0061 0072 006B> is serialized as <00 4D 00 61 00 72 00 6B>.

D34 UTF-16LE is the Unicode Transformation Format that serializes a Unicode value as
a sequence of two bytes, in little-endian format. An initial sequence corresponding
to U+FEFF is interpreted as a - .

• In UTF-16LE, <004D 0061 0072 006B> is serialized as <4D 00 61 00 72 00 6B 00>.
46 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.9 Special Character Properties
D35 UTF-16 is the Unicode Transformation Format that serializes a Unicode value as a
sequence of two bytes, in either big-endian or little-endian format. An initial byte
sequence corresponding to U+FEFF is interpreted as a byte order mark: it is used to
distinguish between the two byte orders. The byte order mark is not considered part
of the content of the text. A serialization of Unicode values into UTF-16 may or may
not begin with a byte order mark.

• In UTF-16, <004D 0061 0072 006B> is serialized as <FF FE 4D 00 61 00 72 00 6B
00>, <FE FF 00 4D 00 61 00 72 00 6B>, or <00 4D 00 61 00 72 00 6B>.

• The term UTF-16 can be used ambiguously. When referring to the encoding of Uni-
code in memory, there is no associated byte orientation and a BOM is never used.
When referring to a serialization of Unicode into bytes, it may have a BOM and can
have either byte orientation.

D36 UTF-8 is the Unicode Transformation Format that serializes a Unicode scalar value
as a sequence of one to four bytes, as specified in Table 3-1.

• In UTF-8, <004D 0061 0072 006B> is serialized as <4D 61 72 6B>.

Table 3-1 specifies the bit distribution from a Unicode character (or surrogate pair) into the
one- to four-byte values of the corresponding UTF-8 sequence. Note that the four-byte
form for surrogate pairs involves an addition of 1000016, to account for the starting offset
to the encoded values referenced by surrogates. The definition of UTF-8 in Amendment 2
to ISO/IEC 10646 also allows for the use of five- and six-byte sequences to encode charac-
ters that are outside the range of the Unicode character set; those five- and six-byte
sequences are illegal for the use of UTF-8 as a transformation of Unicode characters.

When converting a Unicode scalar value to UTF-8, the shortest form that can represent
those values shall be used. This practice preserves uniqueness of encoding. For example,
the Unicode binary value <0000000000000001> is encoded as <00000001>, not as
<11000000 10000001>. The latter is an example of an irregular UTF-8 byte sequence. Irreg-
ular UTF-8 sequences shall not be used for encoding any other information.

When converting from UTF-8 to a Unicode scalar value, implementations do not need to
check that the shortest encoding is being used. This simplifies the conversion algorithm.

3.9 Special Character Properties
The behavior of most characters does not require special attention in this standard. How-
ever, the following characters exhibit special behavior, as described in Chapter 13, Special
Areas and Format Characters, and in Chapter 4, Character Properties.

Table 3-1. UTF-8 Bit Distribution

Scalar Value UTF-16 1st Byte 2nd Byte 3rd Byte 4th Byte

000000000xxxxxxx 000000000xxxxxxx 0xxxxxxx

00000yyyyyxxxxxx 00000yyyyyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyyyyxxxxxx zzzzyyyyyyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

uuuuuzzzzyyyyyyxxxxxx 110110wwwwzzzzyy+
110111yyyyxxxxxx

11110uuua

a. Where uuuuu = wwww + 1 (to account for addition of 1000016 as in Section 3.7, Sur-
rogates).

10uuzzzz 10yyyyyy 10xxxxxx
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 47

3.9 Special Character Properties Conformance
• Line boundary control
0009 HORIZONTAL TAB
000A LINE FEED
000C FORM FEED
000D CARRIAGE RETURN
0020 SPACE
00A0 NO-BREAK SPACE
0F0B TIBETAN MARK INTERSYLLABIC TSHEG
0F0C TIBETAN MARK DELIMITER TSHEG BSTAR
2000 EN QUAD
2002 EN SPACE
2003 EM SPACE
2004 THREE-PER-EM SPACE
2005 FOUR-PER-EM SPACE
2006 SIX-PER-EM SPACE
2007 FIGURE SPACE
2008 PUNCTUATION SPACE
2009 THIN SPACE
200A HAIR SPACE
200B ZERO WIDTH SPACE
2011 NON-BREAKING HYPHEN
2028 LINE SEPARATOR
2029 PARAGRAPH SEPARATOR
202F NARROW NO-BREAK SPACE
FEFF ZERO WIDTH NO-BREAK SPACE

• Hyphenation control
002D HYPHEN-MINUS
00AD SOFT HYPHEN
058A ARMENIAN HYPHEN
1806 MONGOLIAN TODO SOFT HYPHEN
2010 HYPHEN
2011 NON-BREAKING HYPHEN
2027 HYPHENATION POINT

• Fraction formatting
2044 FRACTION SLASH

• Special behavior with nonspacing marks
0020 SPACE
0069 LATIN SMALL LETTER I
006A LATIN SMALL LETTER J
00A0 NO-BREAK SPACE
0131 LATIN SMALL LETTER DOTLESS I

• Double nonspacing marks
0360 COMBINING DOUBLE TILDE
0361 COMBINING DOUBLE INVERTED BREVE
0362 COMBINING DOUBLE RIGHTWARDS ARROW BELOW

• Joining
200C ZERO WIDTH NON-JOINER
200D ZERO WIDTH JOINER

• Bidirectional ordering
200E LEFT-TO-RIGHT MARK
200F RIGHT-TO-LEFT MARK
202A LEFT-TO-RIGHT EMBEDDING
202B RIGHT-TO-LEFT EMBEDDING
202C POP DIRECTIONAL FORMATTING
202D LEFT-TO-RIGHT OVERRIDE
48 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.9 Special Character Properties
202E RIGHT-TO-LEFT OVERRIDE

• Alternate formatting
206A INHIBIT SYMMETRIC SWAPPING
206B ACTIVATE SYMMETRIC SWAPPING
206C INHIBIT ARABIC FORM SHAPING
206D ACTIVATE ARABIC FORM SHAPING
206E NATIONAL DIGIT SHAPES
206F NOMINAL DIGIT SHAPES

• Syriac abbreviation
070F SYRIAC ABBREVIATION MARK

• Indic dead-character formation
094D DEVANAGARI SIGN VIRAMA
09CD BENGALI SIGN VIRAMA
0A4D GURMUKHI SIGN VIRAMA
0ACD GUJARATI SIGN VIRAMA
0B4D ORIYA SIGN VIRAMA
0BCD TAMIL SIGN VIRAMA
0C4D TELUGU SIGN VIRAMA
0CCD KANNADA SIGN VIRAMA
0D4D MALAYALAM SIGN VIRAMA
0DCA SINHALA SIGN AL-LAKUNA
0F84 TIBETAN SIGN HALANTA
1039 MYANMAR SIGN VIRAMA
17D2 KHMER SIGN COENG

• Mongolian variant selectors
180B MONGOLIAN FREE VARIATION SELECTOR ONE
180C MONGOLIAN FREE VARIATION SELECTOR TWO
180D MONGOLIAN FREE VARIATION SELECTOR THREE
180E MONGOLIAN VOWEL SEPARATOR

• Ideographic variation indication
303E IDEOGRAPHIC VARIATION INDICATOR

• Ideographic description
2FF0 IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO

RIGHT
2FF1 IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO

BELOW
2FF2 IDEOGRAPHIC DESCRIPTION CHARACTER LEFT TO

MIDDLE AND RIGHT
2FF3 IDEOGRAPHIC DESCRIPTION CHARACTER ABOVE TO

MIDDLE AND BELOW
2FF4 IDEOGRAPHIC DESCRIPTION CHARACTER FULL SUR-

ROUND
2FF5 IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND

FROM ABOVE
2FF6 IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND

FROM BELOW
2FF7 IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND

FROM LEFT
2FF8 IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND

FROM UPPER LEFT
2FF9 IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND

FROM UPPER RIGHT
2FFA IDEOGRAPHIC DESCRIPTION CHARACTER SURROUND

FROM LOWER LEFT
2FFB IDEOGRAPHIC DESCRIPTION CHARACTER OVERLAID
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 49

3.10 Canonical Ordering Behavior Conformance
• Interlinear annotation
FFF9 INTERLINEAR ANNOTATION ANCHOR
FFFA INTERLINEAR ANNOTATION SEPARATOR
FFFB INTERLINEAR ANNOTATION TERMINATOR

• Object replacement
FFFC OBJECT REPLACEMENT CHARACTER

• Code conversion fallback
FFFD REPLACEMENT CHARACTER

• Byte order signature
FEFF ZERO WIDTH NO-BREAK SPACE

3.10 Canonical Ordering Behavior
The purpose of this section is to provide unambiguous interpretation of a combining char-
acter sequence. In the Unicode Standard, the order of characters in a combining character
sequence is interpreted according to the following principles:

• In the Unicode Standard, all combining characters are encoded following the base
characters to which they apply. Thus the Unicode sequence U+0061 “a”

 + U+0308 “��” + U+0075 “u”

 is unambiguously interpreted (and displayed) as “äu”, not “aü”.

• Enclosing nonspacing marks surround all previous characters up to and including
the base character (see Figure 3-1). They thus successively surround previous
enclosing nonspacing marks.

• Double diacritics always bind more loosely than other nonspacing marks. When
rendering, the double diacritic will float above other diacritics, excluding enclosing
diacritics (see Figure 3-2).

• Combining marks with the same combining class are generally positioned graphi-
cally outward from the base character they modify. Some specific nonspacing marks
override the default stacking behavior by being positioned side-by-side rather than
stacking or by ligaturing with an adjacent nonspacing mark. When positioned side-
by-side, the order of codes is reflected by positioning in the dominant order of the
script with which they are used.

Figure 3-1. Enclosing Marks

Figure 3-2. Positioning of Double Diacritics

a + + ¨ + ➠ @ @ ä@

o + + ˆ + o + ¨ ➠ ôö@ @@

@ ➠ ôö
~

@

~

@
~

~

o + ˆ + + o + ¨
50 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.10 Canonical Ordering Behavior
• If combining characters have different combining classes—for example, when one
nonspacing mark is above a base character form and another is below it—then no
distinction of graphic form or semantic will result.

The following subsections formalize these principles in terms of a normative list of com-
bining classes and an algorithmic statement of how to use those combining classes to
unambiguously interpret a combining character sequence.

Combining Classes

The Unicode Standard treats sequences of nonspacing marks as equivalent if they do not
typographically interact. The canonical ordering algorithm defines a method for determin-
ing which sequences interact and gives a canonical ordering of these sequences for use in
equivalence comparisons.

D37 Combining class: a numeric value given to each combining Unicode character that
determines with which other combining characters it typographically interacts.

• See Section 4.2, Combining Classes—Normative, for a list of the combining classes
for Unicode characters.

Characters have the same class if they interact typographically, and different classes if they
do not.

• Enclosing characters and spacing combining characters have the class of their base
characters.

• The particular numeric value of the combining class does not have any special sig-
nificance; the intent of providing the numeric values is only to distinguish the com-
bining classes as being different, for use in equivalence comparisons.

Canonical Ordering

The canonical ordering of a decomposed character sequence results from a sorting process
that acts on each sequence of combining characters according to their combining class.
Characters with combining class zero never sort relative to other characters, so the amount
of work in the algorithm depends on the number of non-class-zero characters in a row. An
implementation of this algorithm will be extremely fast for typical text.

The algorithm described here represents a logical description of the process. Optimized
algorithms can be used in implementations as long as they are equivalent—that is, as long
as they produce the same result.

More explicitly, the canonical ordering of a decomposed character sequence D results from
the following algorithm.

R1 For each character x in D, let p(x) be the combining class of x.

R2 Whenever any pair (A, B) of adjacent characters in D is such that
p(B) ��0 & p(A) > p(B), exchange those characters.

R3 Repeat step R2 until no exchanges can be made among any of the characters in D.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 51

3.11 Conjoining Jamo Behavior Conformance
Examples of this ordering appear in Table 3-2.

a + underdot + diaeresis � a + underdot + diaeresis

a + diaeresis + underdot � a + underdot + diaeresis

Because underdot has a lower combining class than diaeresis, the algorithm will return the
a, then the underdot, then the diaeresis. However, because diaeresis and breve have the same
combining class (because they interact typographically), they do not rearrange.

a + breve + diaeresis � a + diaeresis + breve

a + diaeresis + breve � a + breve + diaeresis

Applying the algorithm gives the results shown in Table 3-3.

Use with Collation

When collation processes do not require correct sorting outside of a given domain, they are
not required to invoke the canonical ordering algorithm for excluded characters. For exam-
ple, a Greek collation process may not need to sort Cyrillic letters properly; in that case, it
does not have to maximally decompose and reorder Cyrillic letters and may just choose to
sort them according to Unicode order. For the complete treatment of collation, see Unicode
Technical Report #10, “Unicode Collation Algorithm,” on the CD-ROM or the up-to-date
version on the Unicode Web site.

3.11 Conjoining Jamo Behavior
The Unicode Standard contains both a large set of precomposed modern Hangul syllables
and a set of conjoining Hangul jamo, which can be used to encode archaic syllable blocks as
well as modern syllable blocks. This section describes how to

Table 3-2. Sample Combining Classes

Combining
Class

Abbreviation Code Unicode Name

0 a 0061

220 underdot 0323

230 diaeresis 0308

230 breve 0306

0 a-underdot 1EA1

0 a-diaeresis 00E4

0 a-breve 0103

Table 3-3. Canonical Ordering Results

Original Decompose Sort Result

a-diaeresis + underdot a + diaeresis + underdot a + underdot + diaeresis a + underdot + diaeresis

a + diaeresis + underdot a + underdot + diaeresis a + underdot + diaeresis

a + underdot + diaeresis a + underdot + diaeresis

a-underdot + diaeresis a + underdot + diaeresis a + underdot + diaeresis

a-diaeresis + breve a + diaeresis + breve a + diaeresis + breve

a + diaeresis + breve a + diaeresis + breve

a + breve + diaeresis a + breve + diaeresis

a-breve + diaeresis a + breve + diaeresis a + breve + diaeresis
52 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.11 Conjoining Jamo Behavior
• Determine the syllable boundaries in a sequence of conjoining jamo characters

• Compose jamo characters into Hangul syllables

• Determine the canonical decomposition of Hangul syllables

• Algorithmically determine the names of the Hangul syllable characters

(For more information, see the “Hangul Syllables” and “Hangul Jamo” subsections in
Section 10.4, Hangul.)

The jamo characters can be classified into three sets of characters: choseong (leading conso-
nants, or syllable-initial characters), jungseong (vowels, or syllable-peak characters), and
jongseong (trailing consonants, or syllable-final characters). In the following discussion,
these jamo are abbreviated as L (leading consonant), V (vowel), and T (trailing conso-
nant); syllable breaks are shown by middle dots “·”; and non-jamo are shown by X.

Syllable Boundaries

In rendering, a sequence of jamos is displayed as a series of syllable blocks. The following
rules specify how to divide up an arbitrary sequence of jamos (including nonstandard
sequences) into these syllable blocks. In these rules, a choseong filler (L

f
) is treated as a cho-

seong character, and a jungseong filler (V
f
) is treated as a jungseong.

Within any sequence of characters, a syllable break occurs between the pairs of characters
shown in Table 3-4. All other sequences of Hangul jamos are considered to be part of the
same syllable. Note that like other non-jamo characters, any combining mark between two
conjoining jamos prevents the jamos from forming a syllable.

Standard Syllables

A standard syllable block is composed of a sequence of choseong followed by a sequence of
jungseong and optionally a sequence of jongseong (for example, S = LV or LVT) . A
sequence of nonstandard syllable blocks can be transformed into a sequence of standard
syllable blocks by inserting choseong fillers and jungseong fillers.

Examples. In Table 3-5, row (1) shows syllable breaks in a standard sequence, row (2)
shows syllable breaks in a nonstandard sequence, and row (3) shows how the sequence in
(2) could be transformed into standard form by inserting fillers into each syllable.

Table 3-4. Hangul Syllable Break Rules

Condition Example

Any conjoining jamo and any non-jamo L·X, V·X, T·X, X·L, X·V, X·T

A jongseong (trailing) and choseong (leading) T·L

A jungseong (vowel) and a choseong (leading) V·L

A jongseong (trailing) and jungseong (vowel) T·V

Table 3-5. Syllable Break Examples

No. Sequence Sequence with Syllable Breaks Marked

1 LVTLVLVLV
f
L

f
VL

f
V

f
T → LVT · LV · LV · LV

f
 · L

f
V · L

f
V

f
T

2 LLTVLTLTVVLL → LLT · V · LT · LT · VV · LL

3 LLTVLTLTVVLL → LLV
f
T · L

f
V · LV

f
T · LV

f
T · L

f
VV · LLV

f

The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 53

3.11 Conjoining Jamo Behavior Conformance
Hangul Syllable Composition

The following algorithm describes how to take a sequence of canonically decomposed char-
acters D and compose Hangul syllables. Hangul composition and decomposition are sum-
marized here, but for a more complete description, implementers must consult Unicode
Technical Report #15, “Unicode Normalization Forms,” on the CD-ROM or the up-to-date
version on the Unicode Web site. Note that, like other non-jamo characters, any combining
mark between two conjoining jamos prevents the jamos from composing.

First, define the following constants:
SBase = AC0016
LBase = 110016
VBase = 116116
TBase = 11A716
SCount = 11172
LCount = 19
VCount = 21
TCount = 28
NCount = VCount * TCount

1. Process D by composing the conjoining jamo wherever possible, according to
the compatibility decomposition rules in Chapter 14, Code Charts. (Typical
interchange of conjoining jamo will be in precomposed forms. In such cases,
this step may not be necessary. Raw keyboard data, on the other hand, may be
in the form of a compatibility decomposition.)

2. Let i represent the current position in the sequence D. Compute the following
indices, which represent the ordinal number (zero-based) for each of the com-
ponents of a syllable, and the index j, which represents the index of the last
character in the syllable.
LIndex = D[i] - LBase
VIndex = D[i+1] - VBase
TIndex = D[i+2] - TBase
j = i + 2

3. If either of the first two characters is out of bounds (LIndex < 0 OR LIndex >=
LCount OR VIndex < 0 OR VIndex >= VCount), then increment i, return to
step 2, and continue from there.

4. If the third character is out of bounds (TIndex <= 0 or TIndex >= TCount),
then it is not part of the syllable. Reset the following:
TIndex = 0
j = i + 1

5. Replace the characters D[i] through D[j] by the Hangul syllable S, and set i to
be j+1.
S = (LIndex * VCount + VIndex) * TCount + TIndex + SBase.

Example. The first three characters are

U+1111 �

U+1171 �

U+11B6 � -

Compute the following indices,
LIndex = 17
VIndex = 16
TIndex = 15
54 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
and replace the three characters by
S = [(17 * 21) + 16] * 28 + 15 + SBase

= D4DB16

= �

Hangul Syllable Decomposition

The following describes the reverse mapping—how to take Hangul syllable S and derive the
canonical decomposition D. This normative mapping for these characters is equivalent to
the canonical mapping in the character charts for other characters.

1. Compute the index of the syllable:
SIndex = S - SBase

2. If SIndex is in the range (0 <= SIndex < SCount), then compute the compo-
nents as follows:
L = LBase + SIndex / NCount
V = VBase + (SIndex % NCount) / TCount
T = TBase + SIndex % TCount

The operators “/” and “%” are as defined in Section 0.2, Notational Conventions.

3. If T = TBase, then there is no trailing character, so replace S by the sequence
<L, V>. Otherwise, there is a trailing character, so replace S by the sequence
<L, V, T>.

Example
L = LBase + 17
V = VBase + 16
T = TBase + 15
D4DB16 → 111116, 117116, 11B616

Hangul Syllable Names

The character names for Hangul syllables are derived from the decomposition by starting
with the string , and appending the short name of each decomposition
component in order. (See Section 4.4, Jamo Short Names—Normative.) For example, for
U+D4DB, derive the decomposition, as shown in the preceding example. It produces the
following three-character sequence:

U+1111

U+1171

U+11B6 -

The character name for U+D4DB is then generated as . This
character name is a normative property of the character.

3.12 Bidirectional Behavior
The Unicode Standard prescribes a memory representation order known as logical order.
When text is presented in horizontal lines, most scripts display characters from left to right.
However, in several scripts (such as Arabic or Hebrew), the natural ordering of horizontal
text in display is from right to left. If all of the text has the same horizontal direction, then
the ordering of the display text is unambiguous. However, when bidirectional text (a mix-
ture of left-to-right and right-to-left horizontal text) is present, some ambiguities can arise
in determining the ordering of the displayed characters.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 55

3.12 Bidirectional Behavior Conformance
This section describes the algorithm used to determine the directionality for bidirectional
Unicode text. The algorithm extends the implicit model currently employed by a number
of existing implementations and adds explicit format codes for special circumstances. In
most cases, there is no need to include additional information with the text to obtain cor-
rect display ordering.

In the case of bidirectional text, there are circumstances where an implicit bidirectional
ordering will not suffice to produce comprehensible text. To deal with these cases, a mini-
mal set of directional formatting codes is defined to control the ordering of characters
when rendered. This allows for exact control of the display ordering for legible interchange
and also ensures that plain text used for simple items like file names or labels can always be
correctly ordered for display.

The directional formatting codes are used only to influence the display ordering of text. In
all other respects, they should be ignored—they have no effect on the comparison of text,
word breaks, parsing, or numeric analysis.

When working with bidirectional text, the characters are still interpreted in logical order—
only the display is affected. The display ordering of bidirectional text depends upon the
directional properties of the characters in the text.

Directional Formatting Codes

Two types of explicit codes are used to modify the standard implicit Unicode bidirectional
algorithm. In addition, there are implicit ordering codes, the right-to-left and left-to-right
marks. All of these codes are limited to the current paragraph; thus their effects are termi-
nated by a paragraph separator. The directional types left-to-right and right-to-left are
called strong types, and characters of those types are called strong directional characters.
The directional types associated with numbers are called weak types, and characters of
those types are called weak directional characters.

Although the term embedding is used for some explicit codes, the text within the scope of
the codes is not independent of the surrounding text. Characters within an embedding can
affect the ordering of characters outside the embedding, and vice versa. The algorithm is
designed so that the use of explicit codes can be equivalently represented by out-of-line
information, such as stylesheet information. However, any alternative representation will
be defined by reference to the behavior of the explicit codes in this algorithm.

Explicit Directional Embedding. The following codes signal that a piece of text is to be
treated as embedded. For example, an English quotation in the middle of an Arabic sen-
tence could be marked as being embedded left-to-right text. If a Hebrew phrase occurred in
the middle of the English quotation, then that phrase could be marked as being embedded
right-to-left. These codes allow for nested embeddings.

RLE Right-to-Left Embedding Treat the following text as embedded right-
to-left.

LRE Left-to-Right Embedding Treat the following text as embedded left-to-
right.

The precise meaning of these codes will be made clear in the discussion of the algorithm.
The effect of right-left line direction, for example, can be accomplished by simply embed-
ding the text with RLE...PDF.

Explicit Directional Overrides. The following codes allow the bidirectional character types
to be overridden when required for special cases, such as for part numbers. These codes
allow for nested directional overrides.
56 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
RLO Right-to-Left Override Force following characters to be treated as
strong right-to-left characters.

LRO Left-to-Right Override Force following characters to be treated as
strong left-to-right characters.

The precise meanings of these codes will be made clear in the discussion of the algorithm.
The right-to-left override, for example, can be used to force a part number made of mixed
English, digits, and Hebrew letters to be written from right to left.

Terminating Explicit Directional Code. The following code terminates the effects of the
last explicit code (either embedding or override) and restores the bidirectional state to what
it was before that code was encountered.

PDF Pop Directional Format Restore the bidirectional state to what it was
before the last LRE, RLE, RLO, or LRO.

Implicit Directional Marks. These characters are very lightweight codes. They act exactly
like right-to-left or left-to-right characters, except that they are not displayed and do not
have any other semantic effect. Their use is generally more convenient than the explicit
embeddings or overrides because their scope is much more local.

RLM Right-to-Left Mark Right-to-left zero-width character

LRM Left-to-Right Mark Left-to-right zero-width character

There is no special mention of the implicit directional marks in the following algorithm.
That omission occurs because their effect on bidirectional ordering is exactly the same as a
corresponding strong directional character; the only difference is that they do not appear in
the display.

Basic Display Algorithm

The bidirectional algorithm takes a stream of text as input and proceeds in three main
phases:

• Separation of the input text into paragraphs. The rest of the algorithm affects only
the text between paragraph separators.

• Resolution of the embedding levels of the text. In this phase, the directional charac-
ter types, plus the explicit format codes, are used to produce resolved embedding
levels.

• Reordering the text for display on a line-by-line basis using the resolved embedding
levels, once the text has been broken into lines.

The algorithm reorders text only within a paragraph; characters in one paragraph have no
effect on characters in a different paragraph. Paragraphs are divided by U+2029 -

 or the appropriate Newline Function (see Section 4.3, Directionality—
Normative and Unicode Technical Report #13, “Unicode Newline Guidelines,” found on
the CD-ROM or the up-to-date version on the Unicode Web site for information on the
handling of CR, LF, and CRLF). Paragraphs may also be determined by higher-level proto-
cols; for example, the text in two different cells of a table will be in different paragraphs.

Combining characters are always attached to the preceding base character in the memory
representation. Even after reordering for display and performing character shaping, the
glyph representing a combining character will be attached to the glyph representing its base
character in memory. Depending on the line orientation and the placement direction of
base letterform glyphs, it may, for example, become attached to the glyph on the left, or on
the right, or above.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 57

3.12 Bidirectional Behavior Conformance
In the following subsections, the normative definitions and rules are distinguished by the
numbering given in Table 3-6.

Definitions

BD1 The bidirectional character types are values assigned to each Unicode character,
including unassigned characters.

BD2 Embedding levels are numbers that indicate how deeply the text is nested, and the
default direction of text on that level. The minimum embedding level of text is zero,
and the maximum explicit depth is level 61.

• Embedding levels are explicitly set by both override format codes and embedding
format codes; higher numbers mean the text is more deeply nested. The reason for
having a limitation is to provide a precise stack limit for implementations to guar-
antee the same results. Sixty-one levels is far more than sufficient for ordering, even
with mechanically generated formatting; the display becomes rather muddied with
more than a small number of embeddings.

BD3 The default direction of the current embedding level (for a character in question) is
called the embedding direction. It is L if the embedding level is even, and R if the
embedding level is odd.

• For example, in a particular piece of text, level 0 is plain English text, level 1 is plain
Arabic text, possibly embedded within English level 0 text. Level 2 is English text,
possibly embedded within Arabic level 1 text, and so on. Unless their direction is
overridden, English text and numbers will always be an even level; Arabic text
(excluding numbers) will always be an odd level. The exact meaning of the embed-
ding level will become clear when the reordering algorithm is discussed, but this
section provides an example of how the algorithm works.

BD4 The paragraph embedding level is the embedding level that determines the default
bidirectional orientation of the text in that paragraph.

BD5 The direction of the paragraph embedding level is called the paragraph direction.

• In some contexts, the paragraph direction is also known as the base direction.

BD6 The directional override status determines whether the bidirectional type of charac-
ters is reset with explicit directional controls. This status has three states, shown in
Table 3-7.

BD7 A level run is a maximal substring of characters that have the same embedding level.
It is maximal in that no character immediately before or after the substring has the
same level.

Table 3-6. Normative Definitions and Rules

Numbering Section

BDn Definitions

Pn Paragraph levels

Xn Explicit levels and directions

Wn Weak types

Nn Neutral types

In Implicit levels

Ln Resolved levels
58 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
Example. In this and the following examples, case is used to indicate different implicit
character types for those unfamiliar with right-to-left letters. Uppercase letters stand for
right-to-left characters (such as Arabic or Hebrew), whereas lowercase letters stand for left-
to-right characters (such as English or Russian).

Memory: car is THE CAR in arabic
Character types: LLL-LL-RRR-RRR-LL-LLLLLL
Resolved levels: 000000011111110000000000

Notice that the neutral character (space) between THE and CAR gets the level of the sur-
rounding characters. In this way, the implicit directional marks have an effect. By inserting
appropriate directional marks around neutral characters, the level of the neutral characters
can be changed.

Bidirectional Character Types. The normative bidirectional character types for each char-
acter are specified in the Unicode Character Database and summarized in Table 3-8.

Table 3-7. Directional Override Status

Status Interpretation

Neutral No override is currently active

Right-to-left Characters are to be reset to R
Left-to-right Characters are to be reset to L

Table 3-8. Bidirectional Character Types

Category Type Description Scope

Strong

L Left-to-Right LRM, most alphabetic, syllabic, Han ideo-
graphic characters, digits that are neither
European nor Arabic, all unassigned charac-
ters except in the ranges (0590–05FF, FB1D–
FB4F) and (0600–07BF, FB50–FDFF, FE70–
FEFF)

LRE Left-to-Right Embedding LRE

LRO Left-to-Right Override LRO

R Right-to-Left RLM, Hebrew alphabet, most punctuation
specific to that script, all unassigned charac-
ters in the ranges (0590–05FF, FB1D–FB4F)

AL Right-to-Left Arabic Arabic, Thaana, and Syriac alphabets, most
punctuation specific to those scripts, all
unassigned characters in the ranges (0600–
07BF, FB50–FDFF, FE70–FEFF)

RLE Right-to-Left Embedding RLE

RLO Right-to-Left Override RLO
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 59

3.12 Bidirectional Behavior Conformance
• The term European digits is used to refer to decimal forms common in Europe and
elsewhere, and the term Arabic-Indic digits refers to the native Arabic forms. (See
Section 8.2, Arabic, for more details on naming digits.)

• Unassigned characters are given strong types in the algorithm. This convention is an
explicit exception to the general Unicode conformance requirements with respect to
unassigned characters. As characters become assigned in the future, these bidirec-
tional types may change.

• Private-use characters can be assigned different values by a conformant implemen-
tation.

• For the purpose of the bidirectional algorithm, inline objects (such as graphics) are
treated as if they are an (U+FFFC).

Table 3-9 lists additional abbreviations used in the examples and internal character types
used in the algorithm.

Weak

PDF Pop Directional Format PDF

EN European Number European digits, Eastern Arabic-Indic digits,
...

ES European Number Separator Solidus (slash)

ET European Number Terminator Plus sign, minus sign, degree, currency sym-
bols, ...

AN Arabic Number Arabic-Indic digits, Arabic decimal and thou-
sands separators, ...

CS Common Number Separator Colon, comma, full stop (period), -
, ...

NSM Nonspacing Mark Characters marked Mn (nonspacing mark)
and Me (enclosing mark) in the Unicode
Character Database

BN Boundary Neutral Formatting and control characters, other than
those explicitly given types above (to be
ignored in processing bidirectional text)

Neutral

B Paragraph Separator Paragraph separator, appropriate newline
functions, higher-protocol paragraph deter-
mination

S Segment Separator Tab

WS Whitespace Space, figure space, line separator, form feed,
general punctuation spaces, ...

ON Other Neutrals All other characters, including

Table 3-9. Abbreviations for Examples and Internal Types

Symbol Description

N Neutral or separator (B, S, WS, ON).

e The text ordering type (L or R) that matches the embedding level direction
(even or odd) for the current run. Cf. X10 below.

sor The text ordering type (L or R) assigned to the position before a level run.

eor The text ordering type (L or R) assigned to the position after a level run.

Table 3-8. Bidirectional Character Types (Continued)

Category Type Description Scope
60 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
Resolving Embedding Levels

The body of the bidirectional algorithm uses character types and explicit codes to produce
a list of resolved levels. This resolution process consists of five steps: (1) determining the
paragraph level; (2) determining explicit embedding levels and directions; (3) resolving
weak types; (4) resolving neutral types; and (5) resolving implicit embedding levels.

Paragraph Level. The bidirectional algorithm applies to paragraphs.

P1. Split the text into separate paragraphs. A paragraph separator is kept with the previous
paragraph. Within each paragraph, apply all other rules of this algorithm.

P2. In each paragraph, find the first character that is a strong directional type (L, AL, R).

Because paragraph separators delimit text in this algorithm, they will generally be the first
strong character after a paragraph separator or at the very beginning of the text.

P3. If a character is found in rule P2 and it is of type AL or R, then set the paragraph
embedding level to 1; otherwise, set it to zero.

Note that when a higher-level protocol specifies the paragraph level, it is not necessary to
apply rules P2 and P3.

Explicit Levels and Directions. All explicit embedding levels are determined from the
embedding and override codes, by applying the explicit level rules X1 through X9. These
rules are applied as part of the same logical pass over the input.

Explicit Embeddings. An explicit embedding code sets the level of the text, but does not
change the directional character type of affected characters.

X1. Begin by setting the current embedding level to the paragraph embedding level. Set the
directional override status to neutral. Process each character iteratively, applying rules
X2 through X9. Only embedding levels from 0 to 61 are valid in this phase.

In the resolution of levels in rules I1 and I2, the maximum embedding level of 62 can be
reached.

X2. With each RLE, compute the least greater odd embedding level.

 a. If this new level would be valid, then this embedding code is valid. Remember (push) the
current embedding level and override status. Reset the current level to this new level,
and reset the override status to neutral.

 b. If the new level would not be valid, then this code is invalid. Don’t change the current level
or override status.

For example, level 0 � 1; levels 1, 2 � 3; levels 3, 4 � 5; ...59, 60 � 61; above 60, no change
(don’t change levels with RLE if the new level would be invalid).

X3. With each LRE, compute the least greater even embedding level.

 a. If this new level would be valid, then this embedding code is valid. Remember (push) the
current embedding level and override status. Reset the current level to this new level,
and reset the override status to neutral.

 b. If the new level would not be valid, then this code is invalid. Don’t change the current level
or override status.

For example, levels 0, 1 � 2; levels 2, 3 � 4; levels 4, 5 � 6; ...58, 59 � 60; above 59, no
change (don’t change levels with LRE if the new level would be invalid).

Explicit Overrides. An explicit directional override sets the embedding level in the same
way that the explicit embedding codes do, but also changes the directional character type of
affected characters to the override direction.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 61

3.12 Bidirectional Behavior Conformance
X4. With each RLO, compute the least greater odd embedding level.

 a. If this new level would be valid, then this embedding code is valid. Remember (push) the
current embedding level and override status. Reset the current level to this new level,
and reset the override status to right-to-left.

 b. If the new level would not be valid, then this code is invalid. Don’t change the current level
or override status.

X5. With each LRO, compute the least greater even embedding level.

 a. If this new level would be valid, then this embedding code is valid. Remember (push) the
current embedding level and override status. Reset the current level to this new level,
and reset the override status to left-to-right.

 b. If the new level would not be valid, then this code is invalid. Don’t change the current level
or override status.

X6. For all types besides RLE, LRE, RLO, LRO, and PDF:

 a. Set the level of the current character to the current embedding level.

 b. Whenever the directional override status is not neutral, reset the current character type to
the directional override status.

If the directional override status is neutral, then characters retain their normal types: Ara-
bic characters stay AL, Latin characters stay L, neutrals stay N, and so on. If the directional
override status is R, then characters become R. If the directional override status is L, then
characters become L.

Terminating Embeddings and Overrides. A single code terminates the scope of the current
explicit code, whether an embedding or a directional override. All codes and pushed states
are completely popped at the end of paragraphs.

X7. With each PDF, determine the matching embedding or override code. If a valid match-
ing code was found, restore (pop) the last remembered (pushed) embedding level and
directional override.

X8. All explicit directional embeddings and overrides are completely terminated at the end
of each paragraph. Paragraph separators are not included in the embedding.

X9. Remove all RLE, LRE, RLO, LRO, PDF, and BN codes.

• Note that an implementation does not have to actually remove the codes, it just has
to behave as though the codes were not present for the remainder of the algorithm.
Conformance does not require any particular placement of these codes as long as all
other characters are ordered correctly.

See “Implementation Notes” later in this section for information on implementing the
algorithm without removing the formatting codes.

X10. The remaining rules are applied to each run of characters at the same level. For each
run, determine the start-of-level-run (sor) and end-of-level-run (eor) type, either L or
R. This determination depends on the higher of the two levels on either side of the
boundary (at the start or end of the paragraph, the level of the “other” run is the base
embedding level). If the higher level is odd, the type is R; otherwise, it is L.

For example:

Levels: 0 0 0 1 1 1 2

Runs: � 1 � � 2 � <3>
62 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
Run 1 is at level 0, sor is L, eor is R.

Run 2 is at level 1, sor is R, eor is L.

Run 3 is at level 2, sor is L, eor is L.

For two adjacent runs, the eor of the first run is the same as the sor of the second.

Resolving Weak Types. Weak types are now resolved one level run at a time. At level run
boundaries where the type of the character on the other side of the boundary is required,
the type assigned to sor or eor is used.

Nonspacing marks are now resolved based on the previous characters.

W1. Examine each nonspacing mark (NSM) in the level run, and change the type of the
NSM to the type of the previous character. If the NSM is at the start of the level run, it
will get the type of sor.

Assume in this example that sor is R:
AL NSM NSM � AL AL AL
sor NSM � sor R

The text is next parsed for numbers. This pass will change the directional types European
Number Separator, European Number Terminator, and Common Number Separator to be
European Number text, Arabic Number text, or Other Neutral text. The text to be scanned
may have already had its type altered by directional overrides. If so, then it will not parse as
numeric.

W2. Search backward from each instance of a European number until the first strong type
(R, L, AL, or sor) is found. If an AL is found, change the type of the European number
to Arabic number.
AL EN � AL AN
AL N EN � AL N AN
sor N EN � sor N EN
L N EN � L N EN
R N EN � R N EN

W3. Change all ALs to R.

W4. A single European separator between two European numbers changes to a European
number. A single common separator between two numbers of the same type changes to
that type:
EN ES EN � EN EN EN
EN CS EN � EN EN EN
AN CS AN � AN AN AN

W5. A sequence of European terminators adjacent to European numbers changes to all Euro-
pean numbers:
ET ET EN � EN EN EN
EN ET ET � EN EN EN
AN ET EN � AN EN EN

W6. Otherwise, separators and terminators change to Other Neutral:
AN ET � AN ON
L ES EN � L ON EN
EN CS AN � EN ON AN
ET AN � ON AN
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 63

3.12 Bidirectional Behavior Conformance
W7. Search backward from each instance of a European number until the first strong type
(R, L, or sor) is found. If an L is found, then change the type of the European number
to L.
L N EN � L N L
R N EN � R N EN

Resolving Neutral Types. Neutral types are now resolved one level run at a time. At level
run boundaries where the type of the character on the other side of the boundary is
required, the type assigned to sor or eor is used.

The next phase resolves the direction of the neutrals. The results of this phase are that all
neutrals become either R or L. Generally, neutrals take on the direction of the surrounding
text. In case of a conflict, they take on the embedding direction.

N1. A sequence of neutrals takes the direction of the surrounding strong text if the text on
both sides has the same direction. European and Arabic numbers are treated as though
they were R. Start-of-level-run (sor) and end-of-level-run (eor) are used at level run
boundaries.
R N R � R R R
L N L � L L L
R N AN � R R AN
AN N R � AN R R
R N EN � R R EN
EN N R � EN R R
EN N AN � EN R AN

• Any European numbers after an L have already been turned into L by this time, so
only the European numbers after R are treated as R.

N2. Any remaining neutrals take the embedding direction.
N � e

Assume in this example that eor is L, and sor is R:
L N eor � L L eor
R N eor � R e eor
sor N L � sor e L
sor N R � sor R R

Examples. A list of numbers separated by neutrals and embedded in a directional run will
come out in the run’s order.

Storage: he said “THE VALUES ARE 123, 456, 789, OK”.

Display: he said “KO ,789 ,456 ,123 ERA SEULAV EHT”.

In this case, both the comma and the space between the numbers take on the direction of
the surrounding text (uppercase = right-to-left), ignoring the numbers. The commas are
not considered part of the number because they are not surrounded on both sides. If an
adjacent left-to-right sequence is present, then European numbers will adopt that direc-
tion.

Storage: he said “IT IS A bmw 500, OK.”

Display: he said “.KO ,bmw 500 A SI TI”

Resolving Implicit Levels. In the final phase, the embedding level of text may be increased,
based upon the resolved character type. Right-to-left text will always end up with an odd
level, and left-to-right and numeric text will always end up with an even level. In addition,
numeric text will always end up with a higher level than the paragraph level. (Note that it is
64 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
possible for text to end up at levels higher than 61 as a result of this process.) This situation
results in the following rules:

I1. For all characters with an even (left-to-right) embedding direction, those of type R go
up one level and those of type AN or EN go up two levels.

I2. For all characters with an odd (right-to-left) embedding direction, those of type L, EN,
or AN go up one level.

Table 3-10 summarizes the results of the implicit algorithm.

Reordering Resolved Levels

The following algorithm describes the logical process of finding the correct display order.
As noted earlier, this logical process is not necessarily the actual implementation, which
may diverge for efficiency as long as it produces the same results. As opposed to resolution
phases, this algorithm acts on a per-line basis, and is applied after any line wrapping is
applied to the paragraph.

The process of breaking a paragraph into one or more lines that fit within particular
bounds is outside the scope of the bidirectional algorithm. Where character shaping is
involved, it can be somewhat more complicated (see Section 8.2, Arabic). Logically, there
are the following steps:

• The levels of the text are determined according to the bidirectional algorithm.

• The characters are shaped into glyphs according to their context (taking the embed-
ding levels into account for mirroring!).

• The accumulated widths of those glyphs (in logical order) are used to determine line
breaks.

• For each line, rules L1–L4 are used to reorder the characters on that line.

• The glyphs corresponding to the characters on the line are displayed in that order.

L1. On each line, reset the embedding level of the following characters to the paragraph
embedding level:

1. segment separators,

2. paragraph separators,

3. any sequence of whitespace characters preceding a segment separator or paragraph
separator, and

4. any sequence of whitespace characters at the end of the line.

• The types of characters used here are the original types, not those modified by the
previous phase.

Table 3-10. Resolving Implicit Levels

Type
Embedding Level

Even Odd

L EL EL+1

R EL+1 EL

AN EL+2 EL+1

EN EL+2 EL+1
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 65

3.12 Bidirectional Behavior Conformance
• Because a paragraph separator breaks lines, there will be at most one per line, at the
end of that line.

In combination with the following rule, this requirement means that trailing whitespace
will appear at the visual end of the line (in the paragraph direction). Tabulation will always
have a consistent direction within a paragraph.

L2. From the highest level found in the text to the lowest odd level on each line, reverse any
contiguous sequence of characters that is at that level or higher.

This process reverses a progressively larger series of substrings. The following four exam-
ples illustrate this rule.

Memory: car means CAR.
Resolved levels: 00000000001110
Reverse level 1: car means RAC.

Memory: car MEANS CAR.
Resolved levels: 22211111111111
Reverse level 2: rac MEANS CAR.
Reverse levels 1, 2: .RAC SNAEM car

Memory: he said “car MEANS CAR.”
Resolved levels: 000000000222111111111100
Reverse level 2: he said “rac MEANS CAR.”
Reverse levels 1, 2: he said “RAC SNAEM car.”

Memory: DID YOU SAY ‘he said “car MEANS CAR”’?
Resolved levels: 11111111111112222222224443333333333211
Reverse level 4: DID YOU SAY ‘he said “rac MEANS CAR”’?
Reverse levels 3, 4: DID YOU SAY ‘he said “RAC SNAEM car”’?
Reverse levels 2–4: DID YOU SAY ’”rac MEANS CAR“ dias eh‘?
Reverse levels 1–4: ?‘he said “RAC SNAEM car”’ YAS UOY DID

L3. Combining marks applied to a right-to-left base character will at this point precede
their base character. If the rendering engine expects them to follow the base characters in
the final display process, then the ordering of the marks and the base character must be
reversed.

Many font designers provide default metrics for combining marks that support rendering
by simple overhang. Because of the reordering for right-to-left characters, it is common
practice to make the glyphs for most combining characters overhang to the left (thereby
assuming the characters will be applied to left-to-right base characters) and make the
glyphs for combining characters in right-to-left scripts overhang to the right (thereby
assuming that the characters will be applied to right-to-left base characters). With such
fonts, the display ordering of the marks and base glyphs may need to be adjusted when
combining marks are applied to “unmatching” base characters. See Section 5.14, Rendering
Nonspacing Marks, for more information.

L4. A character that possesses the mirrored property as specified by Section 4.7, Mirrored—
Normative, must be depicted by a mirrored glyph if the resolved directionality of that
character is R.

For example, U+0028 —which is interpreted in the Unicode Standard as
an opening parenthesis—appears as “(” when its resolved level is even, and as the mirrored
glyph “)” when its resolved level is odd.
66 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
Bidirectional Conformance

The bidirectional algorithm specifies part of the intrinsic semantics of right-to-left charac-
ters. In the absence of a higher-level protocol that specifically supersedes the interpretation
of directionality, systems that interpret these characters must achieve results identical to the
implicit bidirectional algorithm when rendering.

Boundary Neutrals. The goal in marking a format or control character as BN is to ensure
that it has no effect on the rest of the algorithm. Because the precise ordering of format
characters with respect to others is not required for conformance, implementations are free
to handle them in different ways for efficiency as long as the ordering of the other charac-
ters is preserved.

Explicit Formatting Codes. As with any Unicode characters, systems do not have to sup-
port any particular explicit directional formatting code (although it is not generally useful
to include a terminating code without including the initiator). Generally, conforming sys-
tems will fall into three classes:

• No bidirectional formatting. This choice implies that the system does not visually
interpret characters from right-to-left scripts.

• Implicit bidirectionality. The implicit bidirectional algorithm and the directional
marks RLM and LRM are supported.

• Full bidirectionality. The implicit bidirectional algorithm, the implicit directional
marks, and the explicit directional embedding codes are supported: RLM, LRM,
LRE, RLE, LRO, RLO, PDF.

Higher-Level Protocols. The following are permissible ways for systems to apply higher-
level protocols to the ordering of bidirectional text:

• Override the paragraph embedding level. A higher-level protocol should provide for
overriding the paragraph embedding level, such as on a table cell, paragraph, docu-
ment, or system level.

• Override the number handling to use information provided by a broader context. For
example, information from other paragraphs in a document could be used to con-
clude that the document was fundamentally Arabic and that EN should generally be
converted to AN.

• Replace, supplement, or override the directional overrides or embedding codes. This
task is accomplished by providing information via additional stylesheet or markup
information about the embedding level or character direction. The interpretation of
such information must always be defined by reference to the behavior of the equiva-
lent explicit codes as given in the algorithm.

• Override the bidirectional character types assigned to control codes to match the inter-
pretation of the control codes within the protocol. (See also Section 13.1, Control
Codes.)

• Remap the number shapes to match those of another set. For example, remap the Ara-
bic number shapes to have the same appearance as the European numbers.

When text using a higher-level protocol is to be converted to Unicode plain text, formatting
codes should be inserted to ensure that the order matches that of the higher-level protocol
or that (as in the last example) the appropriate characters can be substituted.
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 67

3.12 Bidirectional Behavior Conformance
Implementation Notes

Reference Implementations. Source code for two reference implementations of the bidi-
rectional algorithm is provided as part of Unicode Technical Report #9, “The Bidirectional
Algorithm,” on the CD-ROM or the up-to-date version on the Unicode Web site. Imple-
menters are encouraged to use this resource to test their implementations.

Retaining Format Codes. Some implementations may wish to retain the format codes
when running the algorithm. This goal may be accomplished in the following manner:

• In rule X9, instead of removing the format codes, set all format codes to BN. For
each sequence of BN codes, set the levels of the codes to the level of the preceding
non-BN code (or if the sequence is at the beginning of the paragraph, to the para-
graph level).

• In rule W1, search backward from each NSM to the first character in the level run
whose type is not BN, and set the NSM to its type.

• In rule W4, scan past BN types that are adjacent to ES or CS.

• In rule W5, change all appropriate sequences of ET and BN, not just ET.

• In rule W6, change all BN types to ON as well.

• In rule L1, include format codes and BN together with whitespace characters in the
sequences whose levels are reset before a separator or line break.

Implementations that display visible representations of format characters will want to
adjust this mechanism so as to position the format characters optimally for editing.

Vertical Text. In the case of vertical line orientation, the bidirectional algorithm is still used
to determine the levels of the text. However, these levels are not used to reorder the text, as
the characters are usually ordered uniformly from top to bottom. Instead, the levels are
used to determine the rotation of the text. Sometimes vertical lines follow a vertical base-
line in which each character is oriented as normal (with no rotation), with characters
ordered from top to bottom whether they are Hebrew, numbers, or Latin. When setting
text using the Arabic script in vertical lines, it is more common to employ a horizontal
baseline that is rotated by 90 degrees counterclockwise so that the characters are ordered
from top to bottom. Latin text and numbers may be rotated 90 degrees clockwise so that
the characters become ordered from top to bottom as well.

The bidirectional algorithm also comes into play when some characters are ordered from
bottom to top. For example, this situation arises with a mixture of Arabic and Latin glyphs
when all of the glyphs are rotated uniformly 90 degrees clockwise. (The choice of whether
text is to be presented horizontally or vertically, or whether text is to be rotated, is not spec-
ified by the Unicode Standard, and is left to higher-level protocols.)

Usage. Because of the implicit character types and the heuristics for resolving neutral and
numeric directional behavior, the implicit bidirectional ordering will generally produce the
correct display without any further work. However, problematic cases may occur when a
right-to-left paragraph begins with left-to-right characters, or nested segments of
different-direction text are present, or there are weak characters on directional boundaries.
In these cases, embeddings or directional marks may be required to get the correct display.
Part numbers may also require directional overrides.

The most common problematic case involves neutrals on the boundary of an embedded
language. This issue can be addressed by setting the level of the embedded text correctly.
For example, with all text at level 0, the following occurs:
68 Copyright © 1991-2000 by Unicode, Inc. The Unicode Standard

Conformance 3.12 Bidirectional Behavior
Memory: he said "I NEED WATER!", and expired.

Display: he said "RETAW DEEN I!", and expired.

If the exclamation mark is to be part of the Arabic quotation, then the user can select the
text I NEED WATER! and explicitly mark it as embedded Arabic, which produces the fol-
lowing result:

Memory: he said "<RLE>I NEED WATER!<PDF>", and expired.

Display: he said "!RETAW DEEN I", and expired.

A simpler method is to place a right directional mark (RLM) after the exclamation mark.
Because the exclamation mark is no longer on a directional boundary, this produces the
correct result.

Memory: he said "I NEED WATER!<RLM>", and expired.

Display: he said "!RETAW DEEN I", and expired.

This latter approach is preferred because it does not use the stateful format codes, which
can easily get out of sync if not fully supported by editors and other string manipulation.
The stateful format codes are generally needed only for more complex (and rare) cases such
as double embeddings, as in the following:

Memory: DID YOU SAY ‘<LRE>he said "I NEED WATER!<RLM>",
and expired.<PDF>’?

Display: ?‘he said "!RETAW DEEN I", and expired.’ YAS UOY
DID

Migrating from 2.0 to 3.0. In the Unicode Character Database for Version 3.0, new bidirec-
tional character types are introduced to make the body of the algorithm depend only on the
types of characters, and not on the character values. The changes from the Version 2.0 bidi-
rectional types are listed in Table 3-11.

Implementations that use older property tables can be adjusted to the modifications in the
bidirectional algorithm by algorithmically remapping the characters listed in Table 3-11 to
the new types.

Table 3-11. New Bidirectional Types

Characters New Bidirectional Type

All characters with General Category Me, Mn NSM

All characters of type R in the Arabic ranges (0600..06FF,
FB50..FDFF, FE70..FEFE)

(Letters in the Thaana and Syriac ranges also have this value.)

AL

The explicit embedding characters: LRO, RLO, LRE, RLE, PDF LRO, RLO, LRE, RLE, PDF,
respectively

Formatting characters and controls (General Category Cf and
Cc) that were of bidirectional type ON

BN

Zero Width Space BN
The Unicode Standard 3.0 Copyright © 1991-2000 by Unicode, Inc. 69

This PDF file is an excerpt from The Unicode Standard, Version 3.0, issued by the Unicode Consor-
tium and published by Addison-Wesley. The material has been modified slightly for this online edi-
tion, however the PDF files have not been modified to reflect the corrections found on the Updates
and Errata page (see http://www.unicode.org/unicode/uni2errata/UnicodeErrata.html). More recent
versions of the Unicode standard exist (see http://www.unicode.org/unicode/standard/versions/).

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial capital letters. However, not all words
in initial capital letters are trademark designations.

The authors and publisher have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode®, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided.

Dai Kan-Wa Jiten used as the source of reference Kanji codes was written by Tetsuji Morohashi and
published by Taishukan Shoten.

ISBN 0-201-61633-5

Copyright © 1991-2000 by Unicode, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or other-
wise, without the prior written permission of the publisher or Unicode, Inc.

This book is set in Minion, designed by Rob Slimbach at Adobe Systems, Inc. It was typeset using
FrameMaker 5.5 running under Windows NT. ASMUS, Inc. created custom software for chart layout.
The Han radical-stroke index was typeset by Apple Computer, Inc. The following companies and
organizations supplied fonts:

Apple Computer, Inc.
Atelier Fluxus Virus
Beijing Zhong Yi (Zheng Code) Electronics Company
DecoType, Inc.
IBM Corporation
Monotype Typography, Inc.
Microsoft Corporation
Peking University Founder Group Corporation
Production First Software

Additional fonts were supplied by individuals as listed in the Acknowledgments.

The Unicode® Consortium is a registered trademark, and Unicode™ is a trademark of Unicode, Inc.
The Unicode logo is a trademark of Unicode, Inc., and may be registered in some jurisdictions.

All other company and product names are trademarks or registered trademarks of the company or
manufacturer, respectively.

The publisher offers discounts on this book when ordered in quantity for special sales. For more
information please contact:

Corporate, Government, and Special Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867

Visit A-W on the Web: http://www.awl.com/cseng/

First printing, January 2000.

http://www.unicode.org/unicode/uni2errata/UnicodeErrata.html
http://www.unicode.org/unicode/standard/versions/
http://www.awl.com/cseng/

	Chapter 3
	Conformance
	3.1 Conformance Requirements
	Byte Ordering
	C1 A process shall interpret Unicode code values as 16-bit quantities.
	C2 The Unicode Standard does not specify any order of bytes inside a Unicode value.
	C3 A process shall interpret a Unicode value that has been serialized into a sequence of bytes by...

	Invalid Code Values
	C4 A process shall not interpret an unpaired high- or low-surrogate as an abstract character.
	C5 A process shall not interpret either U+FFFE or U+FFFF as an abstract character.
	C6 A process shall not interpret any unassigned code value as an abstract character.

	Interpretation
	C7 A process shall interpret a coded character representation according to the character semantic...
	C8 A process shall not assume that it is required to interpret any particular coded character rep...
	C9 A process shall not assume that the interpretations of two canonical-equivalent character sequ...

	Modification
	C10 A process shall make no change in a valid coded character representation other than the possi...

	Transformations
	C11 When a process interprets a byte sequence in a Unicode Transformation Format, it shall interp...
	C12 When a process generates data in a Unicode Transformation Format, it shall not emit ill-forme...

	Bidirectional Text
	C13 A process that displays text containing supported right-to-left characters or embedding codes...

	Unicode Technical Reports

	3.2 Semantics
	D1 Normative properties and behavior: The following are normative character properties and normat...
	1. Simple properties
	2. Character combination
	3. Canonical decomposition
	4. Compatibility decomposition
	5. Surrogate property
	6. Canonical ordering behavior
	7. Bidirectional behavior, as interpreted according to the Unicode bidirectional algorithm
	8. Conjoining jamo behavior, as interpreted according to Section�3.11, Conjoining Jamo Behavior
	D2 Character semantics: The semantics of a character are established by its character name, repre...

	3.3 Characters and Coded Representations
	D3 Abstract character: a unit of information used for the organization, control, or representatio...
	D4 Abstract character sequence: an ordered sequence of abstract characters.
	D5 Code value: the minimal bit combination that can represent a unit of encoded text for processi...
	D6 Coded character representation: an ordered sequence of one or more code values that is associa...
	D7 Coded character sequence: an ordered sequence of coded character representations.
	D7a Deprecated character: a coded character whose use is strongly discouraged. Such characters ar...
	D8 Higher-level protocol: any agreement on the interpretation of Unicode characters that extends ...

	3.4 Simple Properties
	D9 Directionality property: a property of every graphic character that determines its horizontal ...
	D10 Mirrored property: the property of characters whose images are mirrored horizontally in text ...
	D10a Case property: a property of characters in certain alphabets whereby certain characters are ...
	D10b Numeric value property: a property of characters used to represent numbers. (See Section�4.6...
	D11 Special character properties: The behavior of most characters does not require special attent...
	D12 Private use: Unicode values from U+E000 to U+F8FF and surrogate pairs (see Section�3.7, Surro...

	3.5 Combination
	D13 Base character: a character that does not graphically combine with preceding characters, and ...
	D14 Combining character: a character that graphically combines with a preceding base character. T...
	D15 Nonspacing mark: a combining character whose positioning in presentation is dependent on its ...
	D16 Spacing mark: a combining character that is not a nonspacing mark.
	D17 Combining character sequence: a character sequence consisting of either a base character foll...
	D17a Defective combining character sequence: a combining character sequence that does not start w...

	3.6 Decomposition
	D18 Decomposable character: a character that is equivalent to a sequence of one or more other cha...
	D19 Decomposition: a sequence of one or more characters that is equivalent to a decomposable char...
	Compatibility Decomposition
	D20 Compatibility decomposition: the decomposition of a character that results from recursively a...
	D21 Compatibility character: a character that has a compatibility decomposition.
	D22 Compatibility equivalent: Two character sequences are said to be compatibility equivalents if...

	Canonical Decomposition
	D23 Canonical decomposition: the decomposition of a character that results from recursively apply...
	D24 Canonical equivalent: Two character sequences are said to be canonical equivalents if their f...

	3.7 Surrogates
	D25 High-surrogate: a Unicode code value in the range U+D800 through U+DBFF.
	D26 Low-surrogate: a Unicode code value in the range U+DC00 through U+DFFF.
	D27 Surrogate pair: a coded character representation for a single abstract character that consist...
	D28 Unicode scalar value: a number N from 0 to 10FFFF16 defined by applying the following algorit...

	3.8 Transformations
	D29 A Unicode (or UCS) transformation format (UTF) transforms each Unicode scalar value into a un...
	D30 For a given UTF, a code value sequence that cannot be produced from any sequence of Unicode s...
	D31 For a given UTF, a code value sequence that cannot be mapped back to a sequence of Unicode sc...
	D32 For a given UTF, an ill-formed code value sequence that is not illegal is called an irregular...
	D33 UTF-16BE is the Unicode Transformation Format that serializes a Unicode value as a sequence o...
	D34 UTF-16LE is the Unicode Transformation Format that serializes a Unicode value as a sequence o...
	D35 UTF-16 is the Unicode Transformation Format that serializes a Unicode value as a sequence of ...
	D36 UTF-8 is the Unicode Transformation Format that serializes a Unicode scalar value as a sequen...

	3.9 Special Character Properties
	3.10 Canonical Ordering Behavior
	Figure 3�1. Enclosing Marks
	Figure 3�2. Positioning of Double Diacritics
	Combining Classes
	D37 Combining class: a numeric value given to each combining Unicode character that determines wi...

	Canonical Ordering
	R1 For each character x in D, let p(x) be the combining class of x.
	R2 Whenever any pair (A, B) of adjacent characters in D is such that p(B) ‡ 0 & p(A) > p(B), exch...
	R3 Repeat step R2 until no exchanges can be made among any of the characters in D.

	Use with Collation

	3.11 Conjoining Jamo Behavior
	Syllable Boundaries
	Standard Syllables
	Examples.

	Hangul Syllable Composition
	1. Process D by composing the conjoining jamo wherever possible, according to the compatibility d...
	2. Let i represent the current position in the sequence D. Compute the following indices, which r...
	3. If either of the first two characters is out of bounds (LIndex < 0 OR LIndex >= LCount OR VInd...
	4. If the third character is out of bounds (TIndex <= 0 or TIndex >= TCount), then it is not part...
	5. Replace the characters D[i] through D[j] by the Hangul syllable S, and set i to be j+1.
	Example

	Hangul Syllable Decomposition
	1. Compute the index of the syllable:
	2. If SIndex is in the range (0 <= SIndex < SCount), then compute the components as follows:
	3. If T = TBase, then there is no trailing character, so replace S by the sequence <L,�V>. Otherw...

	Hangul Syllable Names

	3.12 Bidirectional Behavior
	Directional Formatting Codes
	Explicit Directional Embedding
	Explicit Directional Overrides
	Terminating Explicit Directional Code
	Implicit Directional Marks

	Basic Display Algorithm
	Definitions
	BD1 The bidirectional character types are values assigned to each Unicode character, including un...
	BD2 Embedding levels are numbers that indicate how deeply the text is nested, and the default dir...
	BD3 The default direction of the current embedding level (for a character in question) is called ...
	BD4 The paragraph embedding level is the embedding level that determines the default bidirectiona...
	BD5 The direction of the paragraph embedding level is called the paragraph direction.
	BD6 The directional override status determines whether the bidirectional type of characters is re...
	BD7 A level run is a maximal substring of characters that have the same embedding level. It is ma...
	Example
	Bidirectional Character Types

	Resolving Embedding Levels
	Paragraph Level
	P1. Split the text into separate paragraphs. A paragraph separator is kept with the previous para...
	P2. In each paragraph, find the first character that is a strong directional type (L, AL, R).
	P3. If a character is found in rule P2 and it is of type AL or R, then set the paragraph embeddin...

	Explicit Levels and Directions
	Explicit Embeddings
	X1. Begin by setting the current embedding level to the paragraph embedding level. Set the direct...
	X2. With each RLE, compute the least greater odd embedding level.
	X3. With each LRE, compute the least greater even embedding level.

	Explicit Overrides
	X4. With each RLO, compute the least greater odd embedding level.
	X5. With each LRO, compute the least greater even embedding level.
	X6. For all types besides RLE, LRE, RLO, LRO, and PDF:

	Terminating Embeddings and Overrides
	X7. With each PDF, determine the matching embedding or override code. If a valid matching code wa...
	X8. All explicit directional embeddings and overrides are completely terminated at the end of eac...
	X9. Remove all RLE, LRE, RLO, LRO, PDF, and BN codes.
	X10. The remaining rules are applied to each run of characters at the same level. For each run, d...

	Resolving Weak Types
	W1. Examine each nonspacing mark (NSM) in the level run, and change the type of the NSM to the ty...
	W2. Search backward from each instance of a European number until the first strong type (R, L, AL...
	W3. Change all ALs to R.
	W4. A single European separator between two European numbers changes to a European number. A sing...
	W5. A sequence of European terminators adjacent to European numbers changes to all European numbers:
	W6. Otherwise, separators and terminators change to Other Neutral:
	W7. Search backward from each instance of a European number until the first strong type (R, L, or...

	Resolving Neutral Types
	N1. A sequence of neutrals takes the direction of the surrounding strong text if the text on both...
	N2. Any remaining neutrals take the embedding direction.

	Resolving Implicit Levels
	I1. For all characters with an even (left-to-right) embedding direction, those of type R go up on...
	I2. For all characters with an odd (right-to-left) embedding direction, those of type L, EN, or A...

	Reordering Resolved Levels
	L1. On each line, reset the embedding level of the following characters to the paragraph embeddin...
	1. segment separators,
	2. paragraph separators,
	3. any sequence of whitespace characters preceding a segment separator or paragraph separator, and
	4. any sequence of whitespace characters at the end of the line.
	L2. From the highest level found in the text to the lowest odd level on each line, reverse any co...
	L3. Combining marks applied to a right-to-left base character will at this point precede their ba...
	L4. A character that possesses the mirrored property as specified by Section�4.7, Mirrored— Norma...

	Bidirectional Conformance
	Boundary Neutrals
	Explicit Formatting Codes
	Higher-Level Protocols

	Implementation Notes
	Reference Implementations
	Retaining Format Codes
	Vertical Text
	Usage
	Migrating from 2.0 to 3.0

