Chapter 2

General Structure

This chapter discusses the fundamental principles governing the design of the Unicode
Standard and presents an overview of its main features. It includes discussion of text pro-
cesses, unification principles, allocation of codespace, character properties, and a descrip-
tion of non-spacing marks and how they are employed in Unicode character encoding.
This chapter also discusses the general requirements for creating a text-processing system
that conforms to the Unicode Standard. The formal requirements for conformance are in
Chapter 3, Conformance. Character properties, both normative and informative, are in
Chapter 4, Character Properties. A set of guidelines for implementers is in Chapter 5, Inple-
mentation Guidelines.

2.1 Architectural Context

A character code standard such as the Unicode Standard enables the implementation of
useful processes operating on textual data. The interesting end products are not the charac-
ter codes but the text processes, since these directly serve the needs of a system’s users.
Character codes are like nuts and bolts — minor, but essential and ubiquitous components
used in many different ways in the construction of computer software systems. No single
design of a character set can be optimal for all uses, so the architecture of the Unicode Stan-
dard strikes a balance among several competing requirements.

Basic Text Processes

Most computer systems provide low-level functionality for a small number of basic text
processes from which more sophisticated text-processing capabilities are built. The follow-
ing text processes are supported by most computer systems to some degree:

* Rendering characters visible {(including ligatures, contextual forms, and so on)
* Breaking lines while rendering (including hyphenation)

+ Modifying appearance, such as point size, kerning, underlining, slant, and
weight (light, demi, bold, and so on)

* Determining units such as “word” and “sentence”
* Interacting with users in processes such as selecting and highlighting text

* Modifying keyboard input and editing stored text through insertion and dele-
tion

+ Comparing text in operations such as determining sort order of two strings, or
filtering or matching strings

* Analyzing text content in operations such as spell-checking, hyphenation, and
parsing morphology (that is, determining word roots, stems, and affixes)

1
1
—

The Unicode Standard 2.0

2.1 Architectural Context General Structure

+ Treating text as bulk data for operations such as compressing and decompress-
ing, truncating, transmitting, and receiving

Text Elements, Code Elements, and Text Processes

One of the more profound challenges in designing a world-wide character encoding stems
from the fact that for each text process, written languages differ in what is considered a fun-
damental unit of text, or a text element.

For example, in German, the letter combination “ck” is a text element for the process of
hyphenation (where it appears as “k-k”), but not for the process of sorting; in Spanish, the
combination “lI” may be a text element for the traditional process of sorting (where it is
sorted between “1” and “m”), but not for the process of rendering; and in English, the
objects “A” and “a” are usually distinct text elements for the process of rendering, but gen-
erally not distinct for the process of spell-checking. The text elements in a given language
depend upon the specific text process; a text element for spell checking may have different
boundaries from a text element for sorting.

A character encoding standard provides the fundamental units of encoding, that is, the
code elements or characters, which must exist in a unique relationship to the assigned
numerical code points. These code elements are the smallest addressable units of stored text.

The design of the character encoding must provide precisely the set of code elements that
allow programmers to design applications capable of implementing a variety of text pro-
cesses in the desired languages. These code elements may not map directly to any particular
set of text elements that are used by one of these processes.

Text Processes and Encoding

In the case of English text using an encoding such as ASCII, the relationships between the
encoding and the basic text processes built on it are seemingly straightforward: characters
are generally rendered visible one by one in distinct rectangles from left to right in linear
order. Thus one character code inside the computer corresponds to one logical character in
a process such as simple English rendering,

When designing an international and multilingual text encoding such as the Unicode Stan-
dard, the relationship between the encoding and implementation of basic text processes
must be considered explicitly, for several reasons:

*+ Many assumptions about character rendering that hold true for English fail for
other writing systems. Unlike English, characters in other writing systems are
not necessarily rendered visible one by one in rectangles from left to right. In
many cases, character positioning is quite complex and does not proceed in a
linear fashion. (See the Arabic and Devanagari subsections in Section 6.1, Gen-
eral Scripts Area for detailed examples of this.)

- It is not always obvious that one set of text characters is an optimal enceding
for a given language. For example, there exist two approaches for the encoding
of accented characters commonly used in French or Swedish: ISO/IEC 8859
defines letters such as “4” and “6” as individual characters, whereas ISO/IEC
6937 and ISO/IEC 5426 represent them by composition instead. In the Swedish
language both of these are considered distinct letters of the alphabet, following
the letter “z”. In French, the diaeresis on a vowel merely marks it as being pro-
nounced in isolation. In practice both encodings can be used to implement

either language.

+ No encoding can support all basic text processes equally well. As a result, some

2-2 The Unicode Standard 2.0

General Structure 2.2 Unicode Design Principles

trade-offs are necessary. For example, ASCII defines separate codes for upper-
case and lowercase letters. This causes some text processes, such as rendering,
to be carried out more easily, but other processes, such as comparison, to be
more difficult. A different encoding design for English, such as case-shift con-
trol codes, would have had the opposite effect. In designing a new encoding for
complex scripts, such trade-offs must be evaluated and decisions made explic-
itly, rather than unconsciously.

For these reasons, design of the Unicode Standard is not specific to the design of particular
basic text-processing algorithms. Instead it provides an encoding that can be used with a
wide variety of algorithms.

In particular, sorting and string comparison algorithms cannot assume that the assignment
of Unicode character code numbers provides an alphabetical ordering for lexicographic
string comparison. In general, culturally expected sorting orders require arbitrarily com-
plex sorting algorithms. The expected sort sequence for the same characters differs across
languages; thus, in general, no single acceptable lexicographic ordering exists. (See Section
5.15, Sorting and Searching for implementation guidelines.)

Text processes supporting many languages are often more complex than they are for
English. The character encoding design of the Unicode Standard strives to minimize this
additional complexity, enabling modern computer systems to interchange, render, and
manipulate text in a user’s own script and language—and possibly in other languages as
well.

2.2 Unicode Design Principles

The design of the Unicode Standard reflects the following ten fundamental principles (see
Table 2-1). Not all of these principles can be satisfied simultaneously. The design strikes a
balance between maintaining consistency for the sake of simplicity and efficiency, and
maintaining compatibility for interchange with existing standards.

Table 2-1. The Ten Unicode Design Principles

Principle Statement

Sixteen-bit characters Unicode character codes have a uniform width of 16 bits.

Full encoding The full 16-bit codespace is available to encode characters.

Characters, not glyphs The Unicode Standard encodes characters, not glyphs.

Semantics Characters have well-defined semantics.

Plain text The Unicode Standard encodes plain text.

Logical order The default for memory representation is logical order.

Unification The Unicode Standard unifies duplicate characters within scripts
across languages.

Dynamic composition The Unicode Standard allows for the dynamic composition of
accented forms.

Equivalent sequence For static precomposed forms, the Unicode Standard provides a map-
ping to the equivalent dynamically composed sequence of characters.

Convertibility Accurate convertibility is guaranteed between the Unicode Standard
and other widely accepted standards.

Sixteen-Bit Characters

Unicode character codes have a uniform width of 16 bits. Plain Unicode text consists of
pure 16-bit Unicode character sequences. For compatibility with existing environments,

The Unicode Standard 2.0 2-3

2.2 Unicode Design Principles General Structure

two lossless transformations for converting 16-bit Unicode values into forms appropriate
for 8- or 7-bit environments have been defined:

« UTF-8 (UCS Transformation Format-8) is the standard method for transform-
ing Unicode values into a sequence of 8-bit codes. UTF-8 is not intended to
replace the base 16-bit form of Unicode encoding but may be used where
needed; for example, when transmitting data through 8-bit oriented protocols.

+ UTF-7 (UCS Transformation Format-7) is the standard interchange format
available for use in environments that strip the eighth bit, principally 7-bit
Internet exchange. See Internet Working Group RFC-1642.

The UTEF-8 and UTF-7 transformations are fully described in Appendix A, Transformation
Formats.

Full Encoding

The full 16-bit codespace (over 65,000 code positions) is available to represent characters.
(See Section 2.3, Unicode Allocation, on how these characters are allocated in this standard.)
There are over 18,000 unassigned code positions that are available for future allocation.
This number far exceeds anticipated character encoding requirements for modern and
most archaic characters.

One million additional characters are accessible through the surrogate extension mecha-
nism, where two 16-bit code values represent a single character. This number far exceeds
anticipated character encoding requirements for all world characters and symbols.

This extension mechanism will allow implementations access to rare characters in the
future. Two groups, each consisting of 1,024 code positions, are reserved for this purpose
and are used in pairs to represent over 1 million additional characters. These code positions
are called surrogates. In this version of the Unicode Standard, none of the these additional
surrogates has been assigned.

The surrogate mechanism is designed to coexist well with the basic form of 16-bit encod-
ing. (See Section 3.7, Surrogates, for the definition of this mechanism and Section 5.5, Han-
dling Surrogate Characters, for implementation guidelines.)

Characters, Not Glyphs

The Unicode Standard draws a distinction between characters, which are the smallest com-
ponents of written language that have semantic value, and glyphs, which represent the
shapes that characters can have when they are rendered or displayed. There are various
relationships between character and glyph: a single glyph may correspond to a single char-
acter, or to a number of characters, or multiple glyphs may result from a single character.
The distinction between characters and glyphs is illustrated in Figure 2-1.

Unicodecharactersrepresentprimarily,butnotexclusively, theletters,punctuation,and

other signs that comprise natural language text and technical notation. Characters are rep-
resented by code values that reside only in a memory representation, as strings in memory,
or on disk. The Unicode Standard deals only with character codes.

In contrast to characters, glyphs appear on the screen or paper as particular representations
of one or more characters. A repertoire of glyphs comprises a font, Glyph shape and meth-
ods of identifying and selecting glyphs are the responsibility of individual font vendors and
of appropriate standards and are not part of the Unicode Standard.

2-4 The Unicode Standard 2.0

General Structure 2.2 Unicode Design Principles

Figure 2-1. Characters Versus Glyphs

Glyph Unicode Character(s)
AAAAA@ AA| U+0041 LATIN CAPITAL LETTER A

aaaadadaaa U+0061 LATIN SMALL LETTER A

el U+0066 LATIN SMALL LETTER F
+ U+0069 LATIN SMALL LETTER I

&6 4. '6‘ U+0647 ARABIC LETTER HEH

For certain scripts, such as Arabic and the various Indic scripts, the number of glyphs
needed to display a given script may be significantly larger than the number of characters
encoding the basic units of that script. The number of glyphs may also depend on the
orthographic style supported by the font. For example, an Arabic font intended to support
the Nastaliq style of Arabic script may possess many thousands of glyphs. However, the
character encoding employs the same few dozen letters regardless of the font style used to
depict the character data in context.

A font and its associated rendering process define an arbitrary mapping from Unicode val-
ues to glyphs. Some of the glyphs in a font may be independent forms for individual char-
acters, while others may be rendering forms that do not directly correspond to any one
character.

The process of mapping from characters in the memory representation to glyphs is one
aspect of text rendering. The final appearance of rendered text may depend on context
(neighboring characters in the memory representation), variations in typographic design
of the fonts used, and formatting information (point size, superscript, subscript, and so
on). The results on screen or paper can differ considerably from the prototypical shape of a
letter or character (see Figure 2-2).

For all scripts there is an archetypical relation between character code sequences and result-
ing glyphic appearance. For the Latin script this is simple and well known; for several other
scripts it is documented in this standard. However, in all cases, fine typography requires a
more elaborated set of rules than given here. The Unicode Standard documents the default
relation between character sequences and glyphic appearance solely for the purpose of
ensuring that the same text content is always stored with the same, and therefore inter-
changeable, sequence of character codes.

Semantics

Characters have well-defined semantics. Character property tables are provided for use in
parsing, sorting, and other algorithms requiring semantic knowledge about the code
points. See Section 5.13, Locating Text Element Boundaries, Section 5.14, Identifiers, and Sec-
tion 5.15, Sorting and Searching for suggested implementations. The properties identified
by the Unicode Standard include numeric, spacing, combination, and directionality prop-
erties (see Chapter 4, Character Properties). Additional properties may be defined as needed
from time to time. In general, neither the character name nor its location in the code table
designates its properties (but see also Section 4.1, Case).

Plain Text

Plain text is a pure sequence of character codes; plain Unicode-encoded text is a sequence
of Unicode character codes. In contrast, fancy text, also known as rich text, is any text rep-

The Unicode Standard 2.0 2-5

2.2 Unicode Design Principles General Structure

Figure 2-2. Unicode Character Code to Rendered Glyph

Text Character Sequence

0000 1001 0010 1010
0000 1001 0100 0010
0000 1001 0011 0000
0000 1001 0100 1101
0000 1001 0010 0100
0000 1001 0011 0100

£l

Font
(Glyph Source)

Clelclelele
BailolHlo

Text
Rendering
Process

@@

@ ®lﬁ%

il

N B
@

resentation consisting of plain text plus added information such as language identifier, font
size, color, hypertext links, and so on. For example, the text of this book, a multifont text as
formatted by a desktop publishing system, is fancy text.

There are many kinds of data structures that can be built into fancy text. To give but one
example, in fancy text containing ideographs an application may store the phonetic read-
ings of ideographs somewhere in the fancy text structure.

The simplicity of plain text gives it a natural role as a major structural element of fancy text.
SGML, HTML, or TgX are examples of fancy text fully represented as plain text streams,
interspersing plain text data with sequences of characters that represent the additional data
structures. Many popular word processing packages rely on a buffer of plain text to repre-
sent the content and implement links to a parallel store of formatting data.

The relative functional roles of both plain and fancy text are well established:
+ Plain text is public, standardized, and universally readable.
+ Fancy text representation may be implementation-specific or proprietary.
« Plain text is the underlying content stream to which formatting can be applied.

While there are fancy text formats that have been standardized or made public, the major-
ity of fancy text designs are vehicles for particular implementations and are not necessarily

2-6 The Unicode Standard 2.0

General Structure 2.2 Unicode Design Principles

readable by other implementations. Since fancy text equals plain text plus added informa-
tion, the extra information in fancy text can always be stripped away to reveal the “pure”
text underneath. This operation is familiar, for example, in word processing systems that
use both their own private fancy format and plain ASCII text file format as a universal, if
limited, means of exchange. Thus, by default, plain text represents the basic, interchangeable
content of text.

Since plain text represents character content, it has no inherent appearance. It requires a
rendering process to make it visible. If the same plain text sequence is given to disparate
rendering processes, there is no expectation that rendered text in each instance should have
the same appearance. All that is required from disparate rendering processes is to make the
text legible according to the intended reading. Therefore, the relationship between appear-
ance and content of plain text may be stated as follows:

Plain text must contain enough information to permit the text to be rendered legibly,
and nothing more.

The Unicode Standard encodes plain text. The distinction between data encoded in the
Unicode Standard and other forms of data in the same data stream is the function of a
higher-level protocol and is not specified by the Unicode Standard itself. The 64 control
code positions of ISO/IEC 2022 (commonly used with ISO/IEC 646 and ISO/IEC 8859) are
retained for compatibility and may be used to implement such protocols. (See Section 2.6,
Controls and Control Sequences.)

Logical Order

For all scripts Unicode text is stored in logical order in the memory representation, corre-
sponding to the order in which text is typed on the keyboard. In some circumstances the
order of characters is different from this logical order when the text is displayed or printed.
Where needed to ensure legibility, the Unicode Standard defines the conversion of Unicode
text from the memory representation to readable (displayed) text. The distinction between
logical order and display order for reading is shown in Figure 2-3.

Figure 2-3. Bidirectional Ordering
Gi|d|i|_|s|a]i|d]_|“N[al_IX] [} Lkl 5) 2R L2

- el

Gidi said 2 >n 2 *IX X OR[).

When text in this example is ordered for display, the glyph that represents the first charac-
ter of the English text is at the left. The logical start character of the Hebrew text, however,
is represented by the Hebrew glyph closest to the right margin. The succeeding Hebrew
glyphs are laid out to the left.

Logical order applies even when characters of different dominant direction are mixed: left-
to-right (Greek, Cyrillic, Latin) with right-to-left (Arabic, Hebrew), or with vertical script.
Properties of directionality inherent in characters generally determine the correct display
order of text. This inherent directionality is occasionally insufficient to render plain text
legibly. This situation can arise when scripts of different directionality are mixed. The Uni-
code Standard includes characters to specify changes in direction. Chapter 3, Conformance
provides rules for the correct presentation of text containing left-to-right and right-to-left
scripts.

The Unicode Standard 2.0 2-7

2.2 Unicode Design Principles General Structure

For the most part, logical order corresponds to the phonetic order. The only current excep-
tions are the Thai and Lao scripts, which employ visual ordering; in these two scripts, users
traditionally type in visual order rather than phonetic order.

Characters such as the short i in Devanagari are displayed before the characters that they
logically follow in the memory representation. (See the Devanagari subsection in Section
6.1, General Scripts Area for further explanation.)

Combining marks (accent marks in the Greek, Cyrillic and Latm scripts, vowel marks in
Arabic and Devanagari, and so on) do not appear linearly in the final rendered text. In a
Unicode character code string, all such characters follow the base character that they mod-
ify (for example, Roman “d” is stored as “a” followed by combining “~” when not stored in
a precomposed form). The combining marks are generally articulated in phonetic order
after their base character.

Unification

The Unicode Standard avoids duplicate encoding of characters by unifying them within
scripts across languages; characters that are equivalent in form are given a single code.
Common letters, punctuation marks, symbols, and diacritics are given one code each,
regardless of language, as are common Chinese/Japanese/Korean (CJK) ideographs. (See
Section 6.4, CJK Ideographs Area).

Care has been taken not to make artificial distinctions among characters. Thus, for exam-
ple, IPA characters are unified with the Latin alphabet. Users may become confused when
they see an A on the screen but their search dialog does not find it. The reason this occurs
is that what they see on the screen is not an A (A-ring)—it is an A (Angstrom). It is quite
normal for many characters to have different usages, such as comma " for either thou-
sands-separator (English) or decimal-separator (French). The Unicode Standard avoids
duplication of characters due to specific usage in different languages, duplicating charac-
ters only to support compatibility with base standards.

The Unicode Standard does not attempt to encode features such as language, font, size,
positioning, glyphs, and so forth. For example, it does not preserve language as a part of
character encoding; just as French i grecque, German ypsilon, and English wye are all repre-
sented by the same character code, “Y” U+0057, so too are Chinese zi, Japanese ji, and
Korean ja all represented as the same character code, Z& U+5B57.

In determining whether or not to unify variant ideograph forms across standards, the Uni-
code Standard follows the principles described in Section 6.4, CJK Ideographs Area. Where
these principles determine that two forms constitute a trivial (wazukana) difference, the
Unicode Standard assigns a single code. Otherwise, separate codes are assigned.

Compatibility characters. Compatibility characters are those that would not have been
encoded (except for compatibility) because they are in some sense variants of characters
that have already been coded. The prime examples are the glyph variants in the Compati-
bility Area: half-width characters, Arabic contextual form glyphs, Arabic ligatures, and so
on.

The Compatibility Area contains a large number of compatibility characters, but the Uni-
code Standard also contains many compatibility characters that are not in the Compatibil-
ity Area. Examples of these include Roman numerals, such as the IV “character.” By the
time a distinct area for such characters was created, it was impractical to move those char-
acters to that area. Nevertheless, it is important to be able to identify which characters are
compatibility characters so that Unicode-based systems can treat them in a uniform way.

Identifying a character A as a compatibility variant of another character B implies that gen-
erally A can be remapped to B without loss of information other than formatting. Such

2-8 The Unicode Standard 2.0

General Structure 2.2 Unicode Design Principles

remapping cannot always take place because many of the compatibility characters are in
place just to allow systems to maintain one-to-one mappings to existing code sets. In such
cases, a remapping would lose information that is felt to be important in the original set.
Compatibility mappings are called out in Section 7.1, Character Names List. Because replac-
ing a character by its compatibly equivalent character or character sequence may change
the information in the text, implementation has to proceed with due caution. A good use of
these mappings may not be in transcoding, but in providing the correct equivalence for
searching and sorting.

Dynamic Composition

The Unicode Standard allows for the dynamic composition of accented forms. Combining
characters used to create composite forms are productive. Because the process of character
composition is open-ended, new forms with modifying marks may be created from a com-
bination of base characters followed by combining characters. For example, the diaeresis,
e dd

, may be combined with all vowels and a number of consonants in languages using the
Latin script or any other script.

In the Unicode Standard, all combining characters are encoded following the base charac-
ters to which they apply. The sequence of Unicode characters U+0061 LATIN SMALL LETTER
A “a” + U+0308 cCOMBINING DIAERESIS “"” + U+0075 LATIN SMALL LETTER U “u” unambig-
uously encodes “4u” not “aii.”

Equivalent Sequence

Some text elements can be encoded either as static precomposed forms or by dynamic
composition. Common precomposed forms such as U+00DC LATIN CAPITAL LETTER U
wiTH DIAERESIs “U” are included for compatibility with current standards. For static pre-
composed forms the standard provides a mapping to the canonically equivalent dynami-
cally composed sequence of characters.

In many cases different sequences of Unicode characters are considered equivalent, For
example, a precomposed character may be represented as a composed character sequence
(see Figure 2-4).

Figure 2-4. Equivalent Sequences
B+A—>B+A+"

LI+A—->L+J+A

In such cases the Unicode Standard does not prescribe one particular sequence; each of the
sequences in the examples are equivalent. Systems may choose to normalize Unicode text to
one particular sequence, such as normalizing composed character sequences into precom-
posed characters or vice-versa. Therefore, any distinctions made by applications or users
are not guaranteed to be interchangeable. (For implementation guidelines see Section 5.9,
Normalization).

Convertibility

Character identity is preserved for interchange with a number of different base standards,
which included national, international, and vendor standards. Where variant forms (or
even the same form) are given separate codes within one base standard, they are also kept

The Unicode Standard 2.0 2-9

2.3 Unicode Allocation General Structure

separate within the Unicode Standard. This guarantees that there will always be a mapping
between the Unicode Standard and base standards.

Accurate convertibility is guaranteed between the Unicode Standard and other standards in
wide usage as of May 1993. In general, a single code value in another standard will corre-
spond to a single code value in the Unicode Standard. However, sometimes a single code
value in another standard corresponds to a sequence of code values in the Unicode Stan-
dard, or vice versa. Conversion between Unicode text and text in other character codes
must in general be done by explicit table-mapping processes. (See also Section 5.7,
Transcoding to Other Standards.)

2.3 Unicode Allocation

All codes in the Unicode Standard are equally accessible electronically; the exact assign-
ment of character codes is of minor consequence for information processing. But, for the
convenience of people who will use them, the codes are grouped by linguistic and func-
tional categories.

Allocation Areas

Figure 2-5 provides an overview of the Unicode code space allocation. The Unicode Stan-
dard code space is divided into several areas, which are themselves divided into character
blocks.

* The General Scripts Area, consisting of alphabetic and syllabic scripts that have
relatively small character sets, such as Latin, Cyrillic, Greek, Hebrew, Arabic,
Devanagari, and Thai

+ The Symbols Area, including a large variety of symbols and dingbats, for punc-
tuation, mathematics, chemistry, technical, and other specialized usage

* The CJK Phonetics and Symbols Area, including punctuation, symbols, and
phonetics for Chinese, Japanese, and Korean

+ The CJK Ideographs Area, consisting of 20,902 unified CJK ideographs

+ The Hangul Syllables Area, consisting of 11,172 precomposed Korean Hangul
syllables

+ The Surrogates Area, consisting of 1024 low-half surrogates and 1024 high-half
surrogates that are used in the surrogate extension method to access over one
million codes for future expansion

* The Private Use Area, containing 6,400 code positions used for defining user- or
vendor-specific characters

+ The Compatibility and Specials Area, containing characters from widely used
corporate and national standards that have other representations in Unicode
encoding, and several special-use characters

The allocation of characters into areas reflects the evolution of the Unicode Standard and is
not intended to define the usage of characters in implementations. For example, there are
many characters included in the standard solely for reasons of compatibility with other
standards but not coded in the Compatibility Area; there are many general-purpose sym-
bols and punctuation in the CJK Auxiliary Area, while the Hangul conjoining jamo are in
the General Scripts Area.

2-10 The Unicode Standard 2.0

General Structure 2.3 Unicode Allocation

Figure 2-5. Unicode Allocation

0000 2
1000 Generdl
Scripts
2000 <
""" Symbols

3000 S CJK Misc

4000
5000
6000

7000

CJK
Ideographs
8000
9000
2000 =
B00O ~
c000
Hangul
D000
E000 j Surrogate
Key
Bl Frimary ;
_ St F000 Private Use
i1 Private Use

[_] Reserved

- I) Compatibility

The Unicode Standard 2.0 2-11

2.3 Unicode Allocation

A Private Use Area gives the Unicode Standard the necessary flexibility and matches wide-
spread practice in existing standards; successful interchange requires agreement between

sender and receiver regarding interpretation of private use codes.

Code Space Assignment for Graphic Characters

The predominant characteristics of code space assignment in the Unicode Standard are as

follows:

Where there is a single accepted standard for a script, the Unicode Standard
generally follows it for the relative order of characters within that script.

The first 256 codes follow precisely the arrangement of ISO/IEC 8859-1 (Latin
1), of which 7-bit ASCII (ISO/IEC 646) comprises the first 128 code positions.

Characters with common characteristics are located together contiguously. For
example, the primary Arabic character block was modeled after ISO/IEC 8859-
6. The Arabic script characters used in Persian, Urdu, and other languages, but
not included in ISO/IEC 8859-6, are allocated after the primary Arabic charac-
ter block. Right-to-left scripts are grouped together.

Codes that represent letters, punctuation, symbols, and diacritics that are gen-
erally shared by multiple languages or scripts are grouped together in several
locations.

The Unicode Standard makes no pretense to correlate character code allocation
with language-dependent collation or case.

Unified CJK ideographs are arranged according to the Unified Repertoire and
Ordering (URO) Version 2.0 published by the ISO JTC1/SC2/WG2 Ideographic
Rapporteur Group. This ordering is roughly based on a radical and stroke
count order.

Non-Graphic Characters, Reserved and Unassigned Codes

All code points except those mentioned below are reserved for graphic characters. Code
points unassigned in this version of the Unicode Standard are available for assignment in
later versions of the Unicode Standard to characters of any script. Existing characters will

not be reassigned or removed except in extreme circumstances.

Sixty-five codes (U+0000—>U+001F and U+007F—>U+009F) are reserved
specifically as control codes. Of the control codes, null (U+0000) can be used as
a string terminator as in the C language, tab (U+0009) retains its customary
meaning, and the others may be interpreted according to ISO/IEC 6429. (See
Section 2.6, Controls and Control Sequences.)

Two codes are not used to encode characters: U+FFFF is reserved for internal
use (as a sentinel) and should not be transmitted or stored as part of plain text.
U+FFFE is also reserved. Its presence may indicate byte-swapped Unicode data.

A contiguous area of codes has been set aside for private use. Characters in this
area will never be defined by the Unicode Standard. These codes can be freely
used for characters of any purpose, but successful interchange requires an

1. Removal or movement of characters requires approval by a supermajority of Unicode

2-12

Consortium members. The only cases where this has happened were in the process of
merging with ISO/IEC 10646 and in accommodating the addition of the full repertoire of
Korean characters.

The Unicode Standard 2.0

General Structure

General Structure 2.4 Special Character and Non-Character Values

agreement between sender and receiver on their interpretation.

+ 2K codes have been allocated for use in the extension mechanism surrogates.
There are no escape sequences to access other code spaces, as it is not necessary
to maintain state or check for escape sequences.

2.4 Special Character and Non-Character Values

Byte Order Mark

The canonical encoding form of Unicode plain text as a sequence of 16-bit codes is sensitive
to the byte ordering that is used when serializing text into a sequence of bytes, such as when
writing to a file or transferring across a network. Some processors place the least significant
byte in the initial position, while others place the most significant byte in the initial posi-
tion. Ideally, all implementations of the Unicode Standard would follow only one set of
byte order rules, but this would force one class of processors to swap the byte order on
reading and writing plain text files, even when the file never leaves the system on which it
was created.

To have an efficient way to indicate which byte order is used in a text, the Unicode Standard
contains two code values, U+FEFF ZERO WIDTH NO-BREAK SPACE (byte order mark) and
U+FFFE (not a character code), which are the byte-ordered mirror images of each other.
The byte order mark is not a control character that selects the byte order of the text; rather
its function is to notify recipients which byte ordering is used in a file.

Unicode Signature. The sequence FE ¢, FF |, may serve as an implicit marker to identify a
file as containing Unicode text. This sequence is exceedingly rare at the outset of text files
using other character encodings, single- or multiple-byte.

For example, in systems that employ ISO Latin 1 (ISO/IEC 8859-1) or the Microsoft Win-
dows ANSI Code Page 1252, this sequence constitutes the string thorn + y umlaut “py”; in
systems that employ the Apple Macintosh™ Roman character set or the Adobe Standard
Encoding, this sequence represents ogonek + hacek “,””; in systems that employ other com-
mon IBM PC Code Pages (e.g., CP 437, 850, etc.), this sequence represents black square +

no-break space“W”.

Strictly speaking, however, employment as a signature constitutes a particular use of a Uni-
code character, and there is nothing in this standard itself that requires or endorses this
usage. Systems that employ the Unicode character encoding as their interchange code
should consider prepending the U+FEFF byte order mark to each plain text file and remov-
ing initial byte order marks during processing. The byte order mark has legitimate use as
zero width no-break space in the middle of text streams; it should not be filtered there. See
the Specials subsection of Section 6.8, Compatibility Area and Specials for more information
on the use of byte order mark.

Special Non-Character Values

U+FFFF and U+FFFE. These code values are not used to represent Unicode characters.
U+FFFF is reserved for private program use as a sentinel or other signal. (Notice that
U+FFFF is a 16-bit representation of -1 in two’s-complement notation.) Programs receiv-
ing this code are not required to interpret it in any way. It is good practice, however, to rec-
ognize this code as a non-character value and to take appropriate action, such as indicating
possible corruption of the text, U+FFFE is similar in all respects to U+FFFF, except that it is

The Unicode Standard 2.0 2-13

2.5 Combining Characters General Structure

also the mirror image of U+FEFF zero WIDTH NO-BREAK SPACE (byte order tnark). The
presence of a U+FFFE constitutes a strong hint that the text in question is byte-reversed.

Separators

Line and Paragraph Separator. The Unicode Standard provides two unambiguous char-
acters, U+2028 LINE SEPARATOR and U+2029 PARAGRAPH SEPARATOR, to separate lines and
paragraphs. A new line is begun after each line separator. A new paragraph is begun after
each paragraph separator. Since these are separator codes, it is not necessary either to start
the first line or paragraph or to end the last line or paragraph with them. Doing so would
indicate that there was an empty paragraph or line following. The paragraph separator can
be inserted between paragraphs of text. Its use allows the creation of plain text files, which
can be laid out on a different line width at the receiving end. The line separator can be used
to indicate an unconditional end of line. These are considered the canonical form of denot-
ing line and paragraph boundaries in Unicode plain text.

Interaction with CR/LF. The Unicode Standard does not prescribe specific semantics for
U+000D cARRIAGE RETURN (CR) and U+000A LiNe FEED (LF). These codes are provided
to represent any CR or LF characters employed by a higher-level protocol or retained in text
translated from other standards. It is left to each application to interpret these codes, to
decide whether to require their use, and to determine whether CR/LF pairs or single codes
are needed.

Layout and Format Control Characters

The Unicode Standard defines several characters, which are used to control joining behav-
ior, bidirectional ordering control, and alternate formats for display. These characters are
explicitly defined as not affecting line breaking behavior. Unlike space characters or other
delimiters, they do not serve to indicate word, line, or other unit boundaries. Their specific
use in layout and formatting is described in the General Punctuation section of Chapter 6,
Character Block Descriptions.

The Replacement Character

U+FFFD REPLACEMENT CHARACTER is the general substitute character in the Unicode
Standard. It can be substituted for any “unknown” character in another encoding that can-
not be mapped in terms of known Unicode values (see Section 5.4, Unknown and Missing
Characters).

2.5 Combining Characters

Combining Characters. Characters intended to be positioned relative to an associated
base character are depicted in the character code charts above, below, or through a dotted
circle. They are also annotated in the names list or in the character property lists as “com-
bining,” as “diacritic,” or as “non-spacing” characters. When rendered, the glyphs that
depict these characters are intended to be positioned relative to the glyph depicting the pre-
ceding base character in some combination and not to occupy a spacing position by them-
selves. This is the motivation for the terms “combining” and “non-spacing.” The spacing or
non-spacing properties of a combining character are really properties of the glyph used to
depict a combining character, since, in certain scripts (for example, Tamil) a combining
character may be depicted with either depending on the context.

2-14 The Unicode Standard 2.0

General Structure 2.5 Combining Characters

Diacritics. Diacritics are the principal class of combining characters used with European
alphabets. In the Unicode Standard, the term “diacritic” is defined very broadly to include
accents as well as other non-spacing marks.

All diacritics can be applied to any base character and are available for use with any script.
There is a separate block for symbol diacritics, generally intended to be used with symbol
base characters. There are additional combining characters in the blocks for particular
scripts with which they are primarily used. As with other characters, the allocation of a
combining character to ane block or another identifies only its primary usage; it is not
intended to define or limit the range of characters to which it may be applied. I'n the Uni-
code Standard, all sequences of character codes are permitted.

Other Combining Characters. Some scripts, such as Hebrew, Arabic, and the scripts of
India and Southeast Asia, also have combining characters indicated in the charts in relation
to dotted circles to show their position relative to the base character. Many of these non-
spacing marks encode vowel letters; as such they are not generally referred to as “diacritics.”

Sequence of Base Characters and Diacritics

In the Unicode Standard, all combining characters are to be used in sequence following the
base characters to which they apply. The sequence of Unicode characters U+0061 LATIN

SMALL LETTER A “a” + U+0308 COMBINING DIAERESIS “” + U+0075 LATIN SMALL LETTER U

“©__»

u” unambiguously encodes “4u” not “aii.”

The ordering convention used by the Unicode Standard is consistent with the logical order
of combining characters in Semitic and Indic scripts, the great majority of which (logically
or phonetically) follow the base characters with respect to which they are positioned. To
avoid the complication of defining and implementing combining characters on both sides
of base characters, the Unicode Standard specifies that all combining characters must fol-
low their base characters. This convention conforms to the way modern font technology
handles the rendering of non-spacing graphical forms (glyphs) so that mapping from char-
acter memory representation order to font rendering order is simplified. It is different from
the convention used in ISO/IEC 6937 and the bibliographic standard ISO/IEC 5426.

A sequence of base character plus one or more combining characters generally has the same
properties as the base character, except for the case of enclosing diacritics that convey a
symbol property. For example U+2460 circLED DIGIT ONE has the same property as
U+0031 pigit oNE followed by U+20DD coMBINING ENCLOSING CIRCLE.

Figure 2-6. Indic Vowel Signs

%+ > &

In the charts for Indian scripts, some vowels are depicted to the left of dotted circles (see
Figure 2.6). This is a special case to be carefully distinguished from that of general combin-
ing diacritical mark characters. Such vowel signs are rendered to the left of a consonant let-
ter or consonant cluster, even though their logical order in the Unicode encoding follows
the consonant letter. The decision to code these in pronunciation order and not in visual
order is also consistent with the ISCII standard.

Multiple Combining Characters

There are instances where more than one diacritical mark is applied to a single base charac-
ter (see Figure 2-7). The Unicode Standard does not restrict the number of combining

The Unicode Standard 2.0 2-15

2.5 Combining Characters General Structure

characters that may follow a base character. The following discussion summarizes the treat-
ment of multiple combining characters. (For the formal algorithm, see Chapter 3, Con-
formance.)

Figure 2-7. Stacking Sequences
Characters

a

1. If the combining characters can interact typographically—for example, a
U+0304 coMBINING MACRON and a U+0308 coMBINING DIAERESIS—then the
order of graphic display is determined by the order of coded characters (see
Figure 2-8). The diacritics or other combining characters are positioned from
the base character’s glyph outward. Combining characters placed above a base
character will be stacked vertically, starting with the first encountered in the
logical store and continuing for as many marks above as are required by the
character codes following the base character. For combining characters placed
below a base character, the situation is reversed, with the combining characters
starting from the base character and stacking downward.

Figure 2-8. Interacting Combining Characters

LATIN SMALL LETTER A WITH TILDE
LATIN SMALL LETTER A + COMBINING TILDE

an

LATIN SMALL LETTER A + COMBINING DOT ABOVE

oo

LATIN SMALL LETTER A WITH TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING TILDE <+ COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING TILDE

Roo))

LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING DOT ABOVE
LATIN SMALL LETTER A + COMBINING DOT ABOVE + COMBINING DOT BELOW

LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE
LATIN SMALL LETTER A WITH CIRCUMFLEX + COMBINING ACUTE
LATIN SMALL LETTER A + COMBINING CIRCUMFLEX + COMBINING ACUTE

gj>\ .QJ.

LATIN SMALL LETTER A ACUTE + COMBINING CIRCUMFLEX
LATIN SMALL LETTER A + COMBINING ACUTE + COMBINING CIRCUMFLEX

QoD

An example of multiple combining characters above the base character is found in Thai,
where a consonant letter can have above it one of the vowels U+0E34 through U+0E37 and,
above that, one of four tone marks U+0E48 through U+0E4B. The order of character codes
that produces this graphic display is base consonant character, vowel character, then tone
mark character. '

2. Some specific combining characters override the default stacking behavior by
being positioned horizontally rather than stacking, or by ligaturing with an

2-16 The Unicode Standard 2.0

General Structure 2.5 Combining Characters

adjacent non-spacing mark (see Figure 2-9). When positioned horizontally, the
order of codes is reflected by positioning in the dominant order of the script
with which they are used. For example, in a left-to-right script, horizontal
accents would be coded left-to-right.

Figure 2-9. Overriding Behavior

) GREEK SMALL LETTER ALPHA
a + COMBINING COMMA ABOVE (psili)
+ COMBINING ACUTE ACCENT (oxia)

p) GREEK SMALL LETTER ALPHA
(x + COMBINING ACUTE ACCENT (oxia)
+ COMBINING COMMA ABOVE (psili)

Prominent characters that show such override behavior are associated with specific scripts
or alphabets. For example, when used with the Greek script, the “breathing marks”
U+0313 coMBINING coMMA ABOVE (psili) and U+0314 COMBINING REVERSED COMMA
ABOVE (dasia) require that, when used together withi a following acute or grave accent, they
be rendered side-by-side above their base letter rather than the accent marks being stacked
above the breathing marks. The order of codes here is base character code + breathing mark
code + accent mark code. This is one example of the language-dependent nature of render-
ing combining diacritical marks.

Multiple Base Characters

When the glyphs representing two base characters merge to form a ligature, then the com-
bining characters must be rendered correctly in relation to the ligated glyph (see Figure 2-
10). Internally, the software has to distinguish between the non-spacing marks that apply to
positions relative to the first part of the ligature glyph and those that apply to the second.
(For a discussion of general methods of positioning non-spacing marks, see Section 5.11,
Stategies for Handling Non-Spacing Marks.)

Figure 2-10. Multiple Base Characters
folio—fi

Multiple base characters do not commonly occur in most scripts. However, in some scripts,
such as Arabic, this situation occurs quite often when vowel marks are used. This is because
of the large number of ligatures in Arabic, where each element of a ligature is a consonant,
which in turn can have a vowel mark attached to it. Ligatures can even occur with three or
more characters merging; vowel marks may be attached to each part.

Spacing Clones of European Diacritical Marks

By convention, diacritical marks used by the Unicode Standard may be exhibited in (appar-
ent) isolation by applying them to U+0020 space or to U+00A0 No BREAK SPACE. This
might be done, for example, when talking about the diacritical mark itself as a mark, rather
than using it in its normal way in text. The Unicode Standard separately encodes clones of
many common European diacritical marks that are spacing characters, largely to provide
compatibility with existing character set standards. These related characters are cross-refer-
enced in the names list in Chapter 7, Code Charts.

The Unicode Standard 2.0 2-17

2.6 Controls and Control Sequences General Structure

2.6 Controls and Control Sequences

Control Characters

The Unicode Standard provides 65 code values for the representation of control characters.
These ranges are U+0000— U+001F and U+007F — U+009F, which correspond to the 8-
bit controls 00, to 1F¢ (C0 controls) and 7F ;4 to 9F,¢ (delete and C1 controls). For exam-
ple, the 8-bit version of horizontal tab (HT) is at 09, ; the Unicode Standard encodes tab at
U+0009. When converting control codes from existing 8-bit text, they are merely zero
extended to the full 16 bits of Unicode characters.

Programs that conform to the Unicode Standard may treat these 16-bit control codes in
exactly the same way as they treat their 7- and 8-bit equivalents in other protocols, such as
ISO/IEC 2022 and ISO/IEC 6429. Such usage constitutes a higher-level protocol and is
beyond the scope of the Unicode Standard. Similarly, the use of ISO/IEC 6429:1992 control
sequences (extended te 16-bits) for controlling bidirectional formatting is a legitimate
higher-level protocol layered on top of the plain text of the Unicode Standard. As with all
higher-level protocols, sender and receiver must agree upon a common protocol before-
hand.

Escape Characters. In converting text containing escape sequences to the Unicode charac-
terencoding,textmustbeconvertedtotheequivalentUnicodecharacters.Converting

escape sequences into Unicode characters on a character-by-character basis (for instance,
ESC-A turns into U+001B escapg, U+0041 LATIN cAPITAL LETTER A) allows the reverse
conversion to be performed without forcing the conversion program to recognize the
escape sequence as such,

Control Code Sequences Encoding Additional Information about Text. If a system does
use sequences beginning with control codes to embed additional information about text
(such as formatting attributes or structure), then such sequences form a higher-level proto-
col outside the scope of the Unicode Standard. Such higher-level protocols are not specified
by the Unicode Standard; their existence cannot be assumed without a separate agreement
between the parties interchanging such data.

Representing Control Sequences

Control sequences can be represented in the Unicode encoding but must then be repre-
sented in terms of 16-bit characters. For example, suppose that an application allows
embedded font information to be transmitted by means of an 8-bit sequence, In the fol-
lowing, the notation AA refers to the CO control code 01,4, AB refers to the C0 control code
02,4, and so on:

AATimesAB = 01,54,69,6D,65,73,02
Then the corresponding sequence of Unicode character codes would be
AATimesAB = 0001,0054,0069,006D,0065,0073,0002

That is, each Unicode character code is a 16-bit zero-extended code value of the corre-
sponding 8-bit code value,

Where the embedded data is not interpreted as a sequence of characters by the protocol, it
could be encoded as:

AATimesAB = 0001,5469,6D65,7300,0002

The data could never be encoded as

2-18 The Unicode Standard 2.0

General Structure 2.7 Conforming to the Unicode Standard

AATimesAB = 0154,696D,6573,0200

because in the Unicode character encoding this sequence represents four characters—
LATIN CAPITAL LETTER R AcUTE (U+0154), two Han characters (U+696D and U+6573
respectively), and LATIN CAPITAL LETTER A WITH DOUBLE GRAVE (U+0200). None of these
is a control character. If a control sequence contains embedded binary data, then the data
bytes do not necessarily need to be zero-extended as the control sequence constitutes a
higher protocol. However, doing so allows code conversion algorithms to succeed even in
the absence of explicit knowledge of employed control sequences.

2.7 Conforming to the Unicode Standard

Chapter 3, Conformance, specifies the set of unambiguous criteria to which a Unicode-
conformant implementation must adhere so that it can interoperate with other conform-
ant implementations. The following section gives examples of conformance and non-
conformance to complement the formal statement of conformance.

An implementation that conforms to the Unicode Standard has the following characteris-
tics:

« [t treats characters as 16-bit units.

U+2020 (that is, 2020,;) is the single Unicode character pacGer ‘f), not
two ASCII spaces.

» Itinterprets characters according to the identities, properties, and rules defined
for them in this standard.

U+2423 1s ‘)’ OPEN BOX, not ‘" hiragana small i (which is the meaning
of the bytes 2423 ¢ in JIS).

U+00D4 ‘¢’ is equivalent to U+004F ‘o’ followed by U+0302 *, but not
equivalent to U+0302 followed by U+004F

U+05D0 ‘N’ followed by U+05D1 “2’ looks like ‘AR, not ‘N3’ when dis-
played.

« It does not use unassigned codes.

U+2073 is unassigned and not usable for > (superscript 3) or any other
character.

+ It does not corrupt unknown characters.

U+2029 is PARAGRAPH SEPARATOR and should not be dropped by appli-
cations that do not yet support it.

U+03A1 “P” GREEK CAPITAL LETTER RHO should not be changed to
U+00A1 (first byte dropped), U+0050 (mapped to Latin letter P),
U+A103 (bytes reversed), nor to anything but U+03A1.

However, it is acceptable for that implementation:
* To support only a subset of the Unicode characters

An application may not provide mathematical symbols, or the Thai
script.

+ To transform data knowingly

Uppercase conversion: ‘a’ transformed to ‘A’

The Unicode Standard 2.0 2-19

2.7 Conforming to the Unicode Standard General Structure

Romaji to kana: ‘kyo’ transformed to ¥4
247D “(10)” decomposed to 0028 0031 0030 0029
* To build higher-level protocols on the character set
Compression of characters
Use of rich text file formats
+ To define characters in the Private Use Area

Examples of characters that might be encoded in the Private Use Area
are supplementary ideographic characters (gaiji) or existing corporate
logo characters.

Code conversion from other standards to the Unicode Standard will be considered confor-
mant if the matching table produces accurate conversions in both directions.

Characters Not Used in a Subset

The Unicode Standard does not require that an application be capable of interpreting and
rendering all of the Unicode characters in order to be conformant. Many systems will have
fonts only for some scripts, but not for others; sorting and other text-processing rules may
be implemented only for a limited set of languages. As a result, there is a subset of charac-
ters which an implementation is able to interpret.

The Unicode Standard provides no formalized method for identifying this subset. Further-
more, this subset is typically different for different aspects of an implementation. For
example, an application may be able to read, write, and store any 16-bit character, be able
to sort one subset according to the rules of one or more languages (and the rest arbitrarily),
but only have access to fonts for a single script. The same implementation may be able to
render additional scripts as soon as additional fonts are installed in its environment. There-
fore, the subset of interpretable characters is typically not a static concept.

Conformance to the Unicode Standard implies that whenever text purports to be unmodi-
fied, uninterpretable characters must not be removed or altered. (See also Section 3.1, Con-
formance Requirements.)

2-20 The Unicode Standard 2.0

