Appendix A

Transformation
Formats

Existing software and practices in information technology frequently depend on character
data being represented as a sequence of bytes. Older, but still prevalent practices often
assume that only 7 bits of each byte are significant for the purpose of interchanging charac-
ter data. To make use of Unicode character data in such systems, it is necessary to transform
individual Unicode character values and pairs of surrogates into a sequence of one or more
bytes that represent the same information, but which are restricted in their numerical
range, so they can be interchanged with or transmitted through such systems. Typically, a
transformation format allows a certain number of code values in the ASCII range to be
transmitted as-is (except for truncation of the leading zero byte), a property known as
transparency—while other code values are represented through an escape mechanism. This
approach typically makes use of a variable-length encoding to achieve greater efficiency
when invoking the escape mechanism.

Two transformation formats have been developed to meet the needs just described. There
are two transformation formats instead of just one due to differences in the transparency
requirements of the expected transmission channels. These are known as UTFs (Universal
Character Set Transformation Formats); specifically UTE-7 and UTF-8. Both UTF-7 and
UTF-8 can be used with MIME; UTF-8 is often used as a file code in X/Open environ-
ments, UTF-8 is included as Amendment Number 2 of ISO/IEC 10646. UTF-7 is not part
of ISO/IEC 10646 as of this writing.

A.l UTF-7

The term UTE-7 stands for UCS Transformation Format, 7-bit form.

Many existing character transmission media support only 7 bits of significant data within
individual bytes; furthermore, in the majority of these cases, only a subset of the integral
values 0...127 may be interchanged transparently. Typically, CO (0...31) and DEL (127)
and certain other values are not transparent in these media. Examples of such media
include the most common mail transport agents employed in the Internet, particularly
those based on the Simple Mail Transport Protocol (SMTP).

To address the needs of such transmission media and, in particular, to address the needs of
the developing Multimedia Internet Mail Extensions (MIME) standard, a transformation
format was devised which supports the necessary transparency to facilitate effective inter-
change of Unicode (UCS-2) character data in such environments. This format is known as
UTE-7. UTF-7 is described in Internet Network Working Group RFC-1642 and is available
in electronic form via the unicode.org World Wide Web Page and from the uni-
code.org FTP archive (see Section 1.6, Resources, for addresses).

The Unicode Standard 2.0 A-1

A.l1 UTF-7 Transformation Formats

The following discussion is a summary of the RFC. Character set UTF-7 is safe for Internet
mail transmission and therefore may be used with any content transfer encoding in MIME
(except where line length and line break restrictions are violated). Specifically, the 7-bit
encoding for bodies and the Q encoding for headers are both acceptable. The MIME char-
acter set identifier is UNICODE-1-1-UTEF-7,

Specification of UTF-7 depends on some definitions of US-ASCII character subsets.

Set D (directly encoded characters, derived from RFC 1521, Appendix B) consists of the
upper and lower case letters A through Z and a through z, the 10 digits 0-9, and nine special
characters listed in Table A-1 (note that "+" and "=" are omitted).

Table A-1. UTF-7 Set D Special Characters

Character ASCII & Unicode Value (decimal)
] 39

{ 40
) 41
i 44
- 45
i 46
/ 47
- 58
? 63

Set O (optional direct characters) consists of the characters listed in Table A-2 (note that "\"
and "~" are omitted because they are often redefined in variants of ASCII).

Table A-2. UTF-7 Set O

Character ASCII & Unicode Value (decimal)
! 33
34
35
36
37
38
42
59
60
61
62
64
91
93
94
95
96

{ 123
| 124
} 125

Pt @Y A s % B ogR U =

Set B (Modified Base 64) is the set of characters in the Base64 alphabet defined in Internet
RFC 1521, excluding the pad character "=" (decimal value 61). The pad character "=" is
excluded because UTE-7 is designed for use within header fields as set forth in RFC 1522.
Since the only readable encoding in RFC 1522 is "Q" (based on RFC 1521's Quoted-Print-

able), the "=" character is not available for use (without a lot of escape sequences).

A UTEF-7 stream represents 16-bit Unicode characters in 7-bit US-ASCII as follows.

A-2 The Unicode Standard 2.0

Transformation Formats A.l UTF-7

Rule 1: Direct Encoding

Unicode characters in Set D may be encoded directly as their ASCII equivalents. Unicode
characters in Set O may optionally be encoded directly as their ASCII equivalents; bear in
mind that many of these characters are illegal in header fields, or may not pass correctly
through some mail gateways.

Rule 2: Unicode Shifted Encoding

Any Unicode character sequence may be encoded using a sequence of characters in set B,
when preceded by the shift character "+" (US-ASCII character value decimal 43). The "+"
signals that subsequent bytes are to be interpreted as elements of the Modified Base64
alphabet until a character not in that alphabet is encountered. Such characters include con-
trol characters such as carriage returns and line feeds; thus, a Unicode shifted sequence
always terminates at the end of a line. As a special case, if the sequence terminates with the
character "-" (US-ASCII decimal 45) then that character is absorbed; other terminating
characters are not absorbed and are processed normally. A terminating character is neces-
sary when the next character after the Modified Base64 sequence is part of character set B.
The sequence "+-" may be used to encode the character "+". A "+" character followed
immediately by any character other than members of set B or "-" is an ill-formed sequence.

Unicode data is encoded using Modified Base64 by first converting Unicode 16-bit quanti-
ties to a byte stream (with the most significant byte first). Text with an odd number of bytes
is ill-formed.

The byte stream is then encoded by applying the Base64 content transfer encoding algo-
rithm as defined in REC 1521, modified to omit the "=" pad character. Instead, when
encoding, zero bits are added to pad to a Base64 character boundary. When decoding, any
bits at the end of the Modified Base64 sequence that do not constitute a complete 16-bit
Unicode character are discarded. If such discarded bits are non-zero the sequence is ill-
formed. The pad character "=" is not used when encoding Modified Base64 because that
conflicts with its use as an escape character for the Q content transfer encoding in RFC
1522 header fields.

Rule 3: ASCII Equivalents

The space (decimal 32), tab (decimal 9), carriage return (decimal 13), and line feed (deci-
mal 10) characters may be directly represented by their ASCII equivalents. However, note
that MIME content transfer encodings have rules concerning the use of such characters.
Usage that does not conform to the restrictions of RFC 822, for example, would have to be
encoded using MIME content transfer encodings other than 7-bit or 8-bit, such as quoted-
printable, binary, or base64.

Given this set of rules, Unicode characters that may be encoded via rules 1 or 3 take one
byte per character, and other Unicode characters are encoded on average with 2 2/3 bytes
per character plus one byte to switch into Modified Base64 and an optional byte to switch
out.

Sample Implementation of the UTF-7 Conversions

/\\(___________ t”
% The following definiticns are campiler-specific.

I would use wchar £ for UniChar, except that the C standard

does not guarantee that it has at least 16 bits, so wchar t is

no more portable than unsigned short!

*/
typedef unsigned short UniChar;

The Unicode Standard 2.0 A-3

Al UTF-7 Transformation Formats

/* 1/

I* Each of these routines converts the text between *sourceStart and
sourceEnd, putting the result into the buffer between *targetStart and
targetEnd. Note: the end pointers are *after* the last item: e.g.
*{sourcefnd - 1) is the last iteam.

The return result indicates whether the conversion was successful,
and 1f not, whether the problen was in the source or target buffers.

After the conversion, *sourceStart and *targetStart are both
updated to point to the end of last text successfully converted in
the respective buffers,

In ConvertlUniChartoUTF7, cpticnal indicates whether UTF-7 cpticnal
characters should be directly encoded, and verbose controls whether the

shift-out character, "-", is always emitted at the end of a shifted

sequence.

*/

typedef emum {
ck, /* conversion successful */
sourceCorrupt, /* source contains invalid UTF-7 */
rargetExhausted /* insuff. room in target for conversion */

} ConversionResult;

extern ConversicnResult ConvertUniChartolUTF7

UniChar** sourceStart, UniChar* sourcefnd,
char** targetStart, char* targetEnd,
int cpticnal, int verbose);

extern ConversionResult ConvertUTF7tolniChar (
char** gourceStart, char* sourceknd,
UniChar** targetStart, UniChar* t:argetEhd}

il)

#include "ConvertUTF7.h"

static char basefd([]
" ARCDFEFGHTIKI MNOPORSTUVWEY Zabedefghi jklmopgrstuvangyz0123456789+ /" ;
st:at:Lc short invbases4[128];

static char direct[] =

AB:DEEGHIMNOPQRSIUWJ}{YZabcdef hijklm stmwz0123456789 (= e
static char opticnall] = "!\"#5%&*; <->@[f “{l
static char spaces[] = " \011\015\012"-/* Space, tab return, line feed */

static char mustshiftsafe[128];
static char mustshiftopt[128];

static int needtables = 1:

#define SHIFT IN '+'
#define SHIFT CQUT '-'

static woid
%abi_nit ()

int i, limit;
for (i =0; i< 128; ++1)

mustshiftept[i] = mustshiftsafe(i] = 1;
invbasefd [1] = -1;

}
limit = strlen(direct);
for (i = 0; i < limit; ++i)

mst:shlftopt[dlrect[ll] = mustshiftsafe(direct[i]] = 0;
limit = strlerl{s?a
for (@2 0 ad.< :.rm.t, ++J.}

m:stshlftopt[spaces[l]] = mustshiftesafe(spaces([i]] = 0;

limit = strlen{ ticnall;

for {i = hlf]. < limit; ++11[} 1 =
mists ol optlona AL

limit = strl D%as

for (i =0; i < lmut ++1}
mvhenseszl[baseﬁd[l = 1i:

needtables = 0;
}

#define DECLERF, BIT BUFFER)\ 3
register unsigned long BIThuffer = 0, bufferteam = 0; int bufferbits = 0
#define BITS_TN_BUFFER h:lffe}:blts
#define WRITE N BITS(x, n) ;
({(BITbuffer |= (((%) & -{ ll<<(n)}} << (32-(n)-bufferbits) }), \
bufferbits += (n))
#def:me READ N BITS(n) \
((buffert = (BIThuffer >> (32-(n)))), \
. (BITbuffer <<= (n)), (bufferbits -= (n)), bufferterp)
#define TARGEICHECK (if (target »= targetEnd) {result = targetBExhausted; break;}}

A-4 The Unicode Standard 2.0

Transformation Formats Al UTE-7

CorversionResult ConvertUniChartoUTET (
UniChar** sourceStart, UniChar* sourceEnd,
char** targetStart, char* targetEnd,
int opticnmal, int verbose)

ConversicnResult result = ok;

DECLARE BIT BUFFER;

int shifted = 0, needshift = 0, done = 0;
register Unlchar *source = *sourcestart
register char *target = *targetStart;
char *mustshift;

if (needtables)
tabinit ();

if ({optional) ;
mustshift = mustshiftont;
else
mustshift = mustshiftsafe;

e
register UniChar r;

f (!{done = (source >= sourcebnd)))
r = *source++;
needshift = (!done && {((r > O0x7f) || mustshift(z]));

if (needshift && !shifted)
{
TARGETCHECK ;
*target++ = SHIFT IN
/* Bpecial case handlmg of the SHIFT IN character */
if (¥ == (UniChar)SHIFT_IN) {
TARGETCHETK;
*target++ = SHIFT OUT;

else
} shifted = 1;
E{Lf (shifted)

/* Either write the character to the bit buffer, or pad
t}/le bit buffer out to a full base6d character.

if (needshift)
WRITE M BITS(r, 16):
else
WRITE M _BITS(0, (6 - (BITS IN BUFFER % 6))%6);

/* Flush out as full base6d characters as possible
fram the bit buffer.
*

/
while ((target < targetEnd) && BITS IN BUFFER >= 6)
*target++ = base64 [READ N BITS(6)];
if (BITS_IN BUFFER >= 6)
TARGETCHECK;
if (!needshift)
/* Write the explicit shift out character if
1) The caller has r OﬁJested we always do it, or
2} The directly encoded character is in the
E:e/isesd set.
:}.f (verbose || ({!done) && imvbasebd[r] == 0})

TARGETCHECK;
*target++ = SHIFT OUT;

}
shifted = 0;
}

/* The character can be directly encoded as ASCII. */
£ (ineedshift && !done)

TARGETCHECK ;
*target++ = (char) r;

1
while (!done);

*sourceStart
*targetStart
return result;

source;
target;

The Unicode Standard 2.0 A-5

A.l UTF-7 Transformation Formats

ConversionResult ConvertUTF7tolniChar(
char** sourceStart, char* sourcefnd,
UniChar** targetStart, UniChar* targetEnd)

ConversicnResult result = ok
DECLARE_BIT |

FUFFER;
int shifted = 0, first = 0, wrotecne = 0, base64BOF, basefdvalue, done;
unsigned int ¢, Dreve;

unsigned long J
register char *source = *spourceStart;
register UniChar *target = *targetStart;

if {needcables)
tabinit();

do
{
/* read an ASCII character c */
if ((one = (source >= sourceEnd))}
= *Source+t+;

%ﬁ {sh:.fted)

/* We're done with a basefd string if we hit EOF, it's not a valid
ASCII character, or it's not in the basefd set.

I;HSEGQEDF =done || {c > 0x7f) || (basebdvalue = invbasebd[c]) < 0;
J{.f (base64E0F)

shifted = 0;

/* If the character causing us to drop out was SHIFT_IN or
SHIFT_OUT, it may be a special escape for SHIFT_IN. The
test for SHIET IN is not necessary, but allows an alternate

form of UTF-7 where SHIFT IN is escaped by SHIFT IN. This
only works for same values of SHIFT_IN

if (!done && (c == SHIFT_IN || ¢ == SHIFT CUT}}

{

/* get anol:her character c */
revc =

I{dc.ne = (source »= sourcekEnd)))

C = *source++;
/* If no base6d characters were encountered, and the

character ten'nmatmg the shift sequence was

S}/IIET ' OUT, then it's a special escape for SHIFT_IN.
if (first && prevc == SHIFT_CUT)

/* write SHIFT IN unicode */

ARGETCHECK ;

target++ = (UniChar}SHIFT_ TN;

else if (!wrotecne)

result = sourceCorrupt;

}
else if (!wrotecne)

result = sourceCorrupt;

else

/* rAd another 6 bits of basefd to the bit uffer. */
WRITE N BITS (hasebfdvalue, 6});
: first = 0;

/* Extract as mary full 16 bit characters as possible fram the
bit buffer.

\?'hile (BITS_IM BUFFER »= 16 && (target < targetEnd))
/* write a unicode */
*target++ = READ N BITS(16);
wrotecne = 1:

}

if (BITS_IN BUFFER »>= 16)
TARGETCHECK;

if (base6dEOF)
{

ju.nk = READ N BITS (BITS I EUFFER) ;
1f (jurk)

result = sourceCorrupt;

The Unicode Standard 2.0

Transformation Formats A.2 UTF-8

if (!shifted && !done)
if (¢ == SHIFT_IN)

shifted = 1;

first = 1;

wroteone = 0;
}

else

/* It must be a directly encoded character. */
%f (c > 0x7E)

result = sourceCorrupt;
}] ,
/* write a unicode */
TARGETCHECK;
*target++ = C;
}
) }
while (!done);
*sourceStart = source;

*targetStart = target;
return result;

A.2 UTF-8

The term UTF-8 stands for UCS Transformation Format, 8-bit form.

To address the use of Unicode character data in 8-bit UNIX environments, X/Open devel-
oped and promulgated a transformation format known as File System Safe UTF (FSS-UTF,
also known as UTE-2). Since that time, this UTF has been accepted as a normative adden-
dum to ISO/IEC 10646 and has been renamed UTF-8, for UCS Transformation Format, 8-
bit form.UTE-8 is described in ISO/IEC 10646 AM1. It is available in electronic form via
the unicode. org World Wide Web Page and the unicode. org FTP archive (see Sec-
tion 1.6, Resources, for addresses).

The UTF-8 transformation form maintains transparency for all of the ASCII code values
(0...127). Furthermore, the values 0...127 do not appear in any byte of a transformed
result except as the direct representation of these ASCII values. Each code value (non-sur-
rogates) is represented in UTF-8 by 1, 2, or 3 bytes, depending on the code value. Pairs of
surrogates take 4 bytes.

UTE-8 is a variable length encoding of the Unicode Standard using 8-bit sequences, where
the high bits indicate which part of the sequence a byte belongs to. Table A-3 shows how the
bits in a Unicode value (or surrogate pair) are distributed among the bytes in the UTF-8
encoding.

Table A-3. UTE-8 Bit Distribution

Unicode value 1st Byte 2nd Byte 3rd Byte 4th Byte
00000000 Oxztoexxx DR HAHKK

00000y yyyysooissx 110vyvvy 10xeonox

ZZZZYY YV VY KKK 1110zzzz 10yyvyvyvyy 1 0xcooox
111011 0wwwwzz22yy + 11110uuu @ [10uuzzzz 10vyvvyyy 10000
| 11011 lyyyysoaooo

a. where unuuu = wwww + 1
(to account for addition of 100004 as in Section 3.7, Surrogates)

The Unicode Standard 2.0 A-7

A.2 UTF-8 Transformation Formats

Thus the ASCII range (U+0000 — U+007F) can be expressed as single bytes; most non-
ideographics (U+0080 — U+07FF) can be expressed as 2 bytes; the remaining Unicode
values can be expressed as 3 bytes, and surrogate pairs can be expressed as 4 bytes.

When converting Unicode values to UTEF-8, always use the shortest form that can represent
those values. This preserves uniqueness of encoding. For example, the Unicode value
<0000000000000001> is encoded as <00000001>>, not as <11000000 10000001>. The latter
is an example of an unused UTF-8 byte sequence. Do not make use of these unused byte
sequences for encoding any other information.

When converting from UTF-8 to Unicode values, however, implementations do not need
to check that the shortest encoding is being used, which simplifies the conversion algo-
rithm.

Some of the important characteristics of UTF-8 are

+ Unicode characters from U+0000 to U+007E (ASCII repertoire) map to UTF-8
bytes 00 to 7E (ASCII values).

+ ASCII values do not otherwise occur in a UTF-8 transformation. This provides
compatibility with historical file systems and other systems which parse for
ASCII bytes.

+ Itis very simple and efficient to convert to and from Unicode text.

+ The first byte indicates the number of bytes to follow in a multi-byte sequence.
This allows for efficient forward parsing.

« Itis efficient to find the start of a character starting from an arbitrary location in
an byte stream. You need to search at most four bytes backwards, and it is sim-
ple to recognize an initial byte. For example, in C
isInitialByte = ({(byte & 0OxCO0} != 0x80);

« UTF-8 is reasonably compact in terms of number of bytes used for encoding.

Sample Implementation of the UTF-8 Conversions

The following is provided as a sample implementation. For brevity, it does not deal with all
possible error conditions.
£+ */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

* *I/

/
/ ; The following 4 definitions are campiler-specific.
4

typedef unsigned longUCs4;

typedef unsigned ShOItS].ITDlF‘.UﬂlChﬁI
typedef unsigned shortUniChar;
typedef unsigned charUTF8;

typedef emum {false, true} Boolean;

const UCS4 kReplacementCharacter =0x0000FFFDUL;
const UCS4 JMaximumSimpleUniChar =0x0000FFFFUL;
const UCS4 kMaximumihiChar =0x0010FFFFUL;

const UCS4 kMesimumidos4 =0x7FFFFFFFUL;

r* *y.
/* Each of these routines converts the text between *sourceStart and
sourceind, putting the result into the kuffer between *targetStart and
t;argetEhd Note: the end pointers are *after* the last item: e.g.

* (sourceEnd - 1) is the last item.

The return result indicates whether the conversion was successful,
and if not, whether the problem was in the source or target buffers.

A-8 The Unicode Standard 2.0

Transformation Formats A.2 UTF-8

After the conversicn, *sourceStart and *targetStart are hoth
ted to point to the end of last text successfully comverted in
t e respective buffers.

i/

typedef emm {
/* conversion successful */
scurceE:xhausted /* partial character in source, but hit end */
targetEbdaausted/* insuff. rcam in target for cenversion */
} ConversicnResult;

ConversionResultConvertUCsdtalniChar |
UCsd** sourcestart, const UCS4* sourceEnd,
UniChar** targetStart, const UniChar* targetBEnd);

ConversionResultConvertUniChartolUCsd (
UniChar** sourceStart, UniChar* scurceEnd,
UCS4** targetStart, const UCS4* taIcetEhd] i

ConversicnResul tConvertUniChartoUTF8 (
UniChar** sourceStart, const UniChar* sourceEnd,
UTF8** targetStart, const UTF8* targstEnd) ;

ConversionResul tConvertUTF8tolniChar |
UTF8** sourceStart, UIF8* scurceknd,
UniChar** targetStart, const UniChar® targetEnd);

P */

#include "ConvertUTF.h"

const int halfshift= 10;

const UCS4 halfBase= 0x0010000UL;

const UCS4 hal fMask= 0x3FFUL;

const UCS4 kSurrogateHighStart= (xDSOOUL;
const UCS4 kSurrogateHighkEnd= OxCEFFUL;
const UCS4 kSurrogatelowStart= DxECOOUL:
const UCS4 kSurrogatelowEnd= OxDFFFUL;

/* =======o== */

ConversionResultConvertUCs4toUniChar |
UCS4** sourceStart, const UCS4* sourcerfnd,
UniChar** target:Star" const UniChar* targetfnd) {
ConversionResult result =
register UCS4* source = *soucestart
register UniChar* target = *ta.rgetsta.rt
while (source < sourceEnd) {
register UCS4 ch;
if (target >= ta.tgetE‘nd} {
result = targetExhausted; break;
!
ch = *source++;
if {ch <= kMaxum.mSn.rrpleUmdaar} {
*target++ = ch;
} else if (ch > kl\ExirmmﬁJniChar} {
*target++ = kReplacementCharacter;
} else {
if {target + 1 »>= targetEnd) (
result = target usted; break;

};

ch -= halfBase;

*target++ (ch >> halfshift) + kSurrogateHighStart;
*target++ = (ch & halfMask) + kSurrogateLowStart;

Ihn

*targetsStart = target
return result;

T
Fiid £/

ConversionResultConvertUniChartolCsd |
UniChar** scurceStart, UniChar* sourceEnd,
UCS4** targetStart, const UCS4* targetEnd) (
ConversionResult result = ok;
register UniChar* source = *sourcesta.rt
register UCS4* target = *targetStart;
while (source < sourceEnd) ({
register UCS4 ch;
ch = *source++;
if (ch »= kSurrogateHighStart && ch <= kSurrogateHighEnd
&& source < gourceEnd) {
register UCS4 ch2 = *source;
if (ch2 >- kSL.erogat.eImvStart && ch2 <= kSurrogatelowEnd) {
CRES kSurrcgateHighStart) << halfshift)
+ (ch.2 kSurrcgatelowStart) + halfBase;
++5CUrce;

Y5
)i
if (target >= targetEnd) {

The Unicode Standard 2.0 A-9

A2

UTF-8

Transformation Formats

result = targetExhausted; break;

}i
*target++ = ch;

}i

*courcesStart
*targetStart
return result;

= source;
= target;

32
/* P

*/

UCS4 offsetsFramUTF8[6] ={0x000000000L, 0x00003080UL, Ox000E2080UL,
0x03CB2080UL, OxFAOS2080UL, 0xB2082080UL};

OIOtOJOFOIOJOFDFDIOIO!G 0 O 0 D

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,9.0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,l.l.l.lal»lfl-lalxlrl L1,
3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5};
0xC0, OxE0, OxF0, 0xF8, OxFC};

*

char bytesFramUTF8[256] = {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
i ey S D 0 e s O 0 W s L 1
2R B R B B2, 2, 2,289,228, 2,2

UTF8 firstByteMark(7] = {0x00, 0x00,

/i

/*

This code is similar in effect to making successive calls on the

mbtowe and wetarb routines in FSS-UTF. However, it is considerably

different in =

constants have been gathered.

*
*
*
*

it is adapted to be consistent with Unicode characters with surrogates,
the interface converts a whole buffer to avoid functicn-call overhead

locps & conditicnals have been removed as much as possible for

efflclen::y in favor of drop-through switch statements.

*

®

/*

ConversionResul tConvertUniChartoUTFs (
UniChar** sourceStart, const UniChar* sourceEnd,
UTFE** targetStart, const UTFB* targetEnd)

CornwversionResult result = ok;
register UniChar* source = *sourceStart:
register UTFB* target = *targetStart;

while (source < sourceEnd) {

register UCS4 ch;

register un51gned short bytesTdarite
IyteMask = OxBF;

regaster const UCs4

0;

register const UCS4 byteMark = 0xB0;

ch = *source++;

if (ch »>= kSurrcgateHighStart && ch <= kSurrogateHighEnd
&& source < sourc 3o

register UCS4 ch2 =

++50Urce;

}i

(ch < 0x80) {
else if (ch < 0x800)
else
else
else
elze
elge {

Fhm=

e b bt et s

}; /* I wish there were a =mart way to avoid this conditional

target += lytesTdirite;
if {target > targetEnd)

*source;
if {ch2 »= kSuHogateImetart k& ch2 <= kSurrogatelowEnd) {
ch = ((ch - kSurrogateHighStart) << halfShlft)
+ (ch2 - kSurrogatelowStart) + halfBase;

esTolWrite = 1;

{bytesTowrite = 2;

if (ch < 0x4000000)
if {ch <= kMaximumlCs4
thes’I‘d*IrCJitlze

{

if (ch < 0x10000) {bytesToWrite
if (ch < 0x200000)

31

esTorite = 4;
esTdirite = 5;
{bytesTdirite = 6;

2;
lacementCharacter;

=/

{
bytesToWrite; result = targetExhausted; break;

target -=
}i
switch (bytesTddrite) {/* note: code falls through cases! */
case 6:*--target = (ch | byteMark) & byteMask; ch >»= 6;
case 5:*——target = (ch | byteMark) & byteMask; ch =»= 6;
case 4: ~—target = (ch | byteMark) & byteMask; ch >>= 6;
case 3:¥-= = (ch | byteMark) & byteMask; ch >>= 6§;
case 2: *——ta.tget = (ch | ?’tebiark] & byteMask: ch »»= 6;
) case l:*--target = ch | rstByteMark [bytesTonrite] ;
target += bytesToWrite;
*sourcestart = source;
*targetStart = target;
} return result;
£ === */

CanversionResul tConvertUTF8talniChar (
UTFB8** sourceStart, UTF8* scurcekEnd,

A-10

The Unicode Standard 2.0

Transformation Formats A2 UTE-8

UniChar** targetStart, const UniChar* targetEnd)

ConversionResult result = ok;
register UTF8* sg:urce = *som:rceStazt,
ister UniChar* target = *targetStart;

ﬁle (source < sourceEnd) (

register UCS4 ch = 0;

register unsigned short extraBytesTddrite = bytesFromUTFS [*source] ;

if" (source + extraBytesToWrite > sourcebnd) {

result = sourcebxhausted; break;

i
switch({extraBytesTdWrite) {/* note: code falls through cases! */
case 5:ch += *source++; ch <<=

{

6
case 4:ch += *source++; ch <<= 6
case 3:ch += *source++; ch <<= 6
case 2:ch += *source++; ch <<= 6
case l:ch += *source++; ch <<= 6
case 0:ch += *source++;

¥i
ch -= offsetsFramUTFS [extraBytesTowrite] ;

if (target >= targetEnd) {
result = targetExhausted; break;

i

if (ch <= kMaximmSimplelnichar) {
i t++ = ch;

} else if (ch > }ﬂvla)unmlhudlar) {
*target++ = kReplacementCharacter;

; el$§ E 1 End)
uk taxget + >= T et
): resul targetang?rﬁusted break;
ch -= halfBase;

*target++ = (ch »> halfshift) + kSurrogateHighStart;
) *target++ = (ch & halfMask) + kSurrcgatelowStart;

}.

*Sourcestart source;
*targetStart = target;
return result;

The Unicode Standard 2.0 A-11

