
The Unicode® Standard
Version 11.0 – Core Specification

To learn about the latest version of the Unicode Standard, see http://www.unicode.org/versions/latest/.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and
other countries.
The authors and publisher have taken care in the preparation of this specification, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.
The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied.
The recipient agrees to determine applicability of information provided.
© 2018 Unicode, Inc.
All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction. For information regarding permissions, inquire
at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please
see http://www.unicode.org/copyright.html.
The Unicode Standard / the Unicode Consortium; edited by the Unicode Consortium. — Version
11.0.
 Includes index.
 ISBN 978-1-936213-19-1 (http://www.unicode.org/versions/Unicode11.0.0/)
 1. Unicode (Computer character set) I. Unicode Consortium.
 QA268.U545 2018

ISBN 978-1-936213-19-1
Published in Mountain View, CA
June 2018

855
Chapter 23

Special Areas and Format
Characters 23

This chapter describes several kinds of characters that have special properties as well as
areas of the codespace that are set aside for special purposes:

The Unicode Standard contains code positions for the 64 control characters and the DEL
character found in ISO standards and many vendor character sets. The choice of control
function associated with a given character code is outside the scope of the Unicode Stan-
dard, with the exception of those control characters specified in this chapter.

Layout controls are not themselves rendered visibly, but influence the behavior of algo-
rithms for line breaking, word breaking, glyph selection, and bidirectional ordering.

Surrogate code points are restricted use. The numeric values for surrogates are used in
pairs in UTF-16 to access 1,048,576 supplementary code points in the range
U+10000..U+10FFFF.

Variation selectors allow the specification of standardized variants of characters. This abil-
ity is particularly useful where the majority of implementations would treat the two vari-
ants as two forms of the same character, but where some implementations need to
differentiate between the two. By using a variation selector, such differentiation can be
made explicit.

Private-use characters are reserved for private use. Their meaning is defined by private
agreement.

Noncharacters are code points that are permanently reserved and will never have charac-
ters assigned to them.

The Specials block contains characters that are neither graphic characters nor traditional
controls.

Tag characters were intended to support a general scheme for the internal tagging of text
streams in the absence of other mechanisms, such as markup languages. The use of tag
characters for language tagging is deprecated.

Control codes Surrogates area Private-use characters
Layout controls Variation selectors Deprecated format characters
Specials Noncharacters Tag characters

Special Areas and Format Characters 856 23.1 Control Codes
23.1 Control Codes
There are 65 code points set aside in the Unicode Standard for compatibility with the C0
and C1 control codes defined in the ISO/IEC 2022 framework. The ranges of these code
points are U+0000..U+001F, U+007F, and U+0080..U+009F, which correspond to the 8-
bit controls 0016 to 1F16 (C0 controls), 7F16 (delete), and 8016 to 9F16 (C1 controls),
respectively. For example, the 8-bit legacy control code character tabulation (or tab) is the
byte value 0916; the Unicode Standard encodes the corresponding control code at U+0009.

The Unicode Standard provides for the intact interchange of these code points, neither
adding to nor subtracting from their semantics. The semantics of the control codes are
generally determined by the application with which they are used. However, in the absence
of specific application uses, they may be interpreted according to the control function
semantics specified in ISO/IEC 6429:1992.

In general, the use of control codes constitutes a higher-level protocol and is beyond the
scope of the Unicode Standard. For example, the use of ISO/IEC 6429 control sequences
for controlling bidirectional formatting would be a legitimate higher-level protocol layered
on top of the plain text of the Unicode Standard. Higher-level protocols are not specified
by the Unicode Standard; their existence cannot be assumed without a separate agreement
between the parties interchanging such data.

Representing Control Sequences
There is a simple, one-to-one mapping between 7-bit (and 8-bit) control codes and the
Unicode control codes: every 7-bit (or 8-bit) control code is numerically equal to its corre-
sponding Unicode code point. For example, if the ASCII line feed control code (0A16) is to
be used for line break control, then the text “WX<LF>YZ” would be transmitted in Uni-
code plain text as the following coded character sequence: <0057, 0058, 000A, 0059, 005A>.

Control sequences that are part of Unicode text must be represented in terms of the Uni-
code encoding forms. For example, suppose that an application allows embedded font
information to be transmitted by means of markup using plain text and control codes. A
font tag specified as “^ATimes^B”, where ^A refers to the C0 control code 0116 and ^B
refers to the C0 control code 0216, would then be expressed by the following coded charac-
ter sequence: <0001, 0054, 0069, 006D, 0065, 0073, 0002>. The representation of the con-
trol codes in the three Unicode encoding forms simply follows the rules for any other code
points in the standard:

UTF-8: <01 54 69 6D 65 73 02>

UTF-16: <0001 0054 0069 006D 0065 0073 0002>

UTF-32: <00000001 00000054 00000069 0000006D

00000065 00000073 00000002>

Escape Sequences. Escape sequences are a particular type of protocol that consists of the
use of some set of ASCII characters introduced by the escape control code, 1B16, to convey

Special Areas and Format Characters 857 23.1 Control Codes
extra-textual information. When converting escape sequences into and out of Unicode text,
they should be converted on a character-by-character basis. For instance, “ESC-A” <1B
41> would be converted into the Unicode coded character sequence <001B, 0041>. Inter-
pretation of U+0041 as part of the escape sequence, rather than as latin capital letter a, is
the responsibility of the higher-level protocol that makes use of such escape sequences.
This approach allows for low-level conversion processes to conformantly convert escape
sequences into and out of the Unicode Standard without needing to actually recognize the
escape sequences as such.

If a process uses escape sequences or other configurations of control code sequences to
embed additional information about text (such as formatting attributes or structure), then
such sequences constitute a higher-level protocol that is outside the scope of the Unicode
Standard.

Specification of Control Code Semantics
Several control codes are commonly used in plain text, particularly those involved in line
and paragraph formatting. The use of these control codes is widespread and important to
interoperability. Therefore, the Unicode Standard specifies semantics for their use with the
rest of the encoded characters in the standard. Table 23-1 lists those control codes.

The control codes in Table 23-1 have the Bidi_Class property values of S, B, or WS, rather
than the default of BN used for other control codes. (See Unicode Standard Annex #9,
“Unicode Bidirectional Algorithm.”) In particular, U+001C..U+001E and U+001F have the
Bidi_Class property values B and S, respectively, so that the Bidirectional Algorithm recog-
nizes their separator semantics.

The control codes U+0009..U+000D and U+0085 have the White_Space property. They
also have line breaking property values that differ from the default CM value for other con-
trol codes. (See Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.”)

Table 23-1. Control Codes Specified in the Unicode Standard

Code
Point Abbreviation ISO/IEC 6429 Name

U+0009 HT character tabulation (tab)
U+000A LF line feed
U+000B VT line tabulation (vertical tab)
U+000C FF form feed
U+000D CR carriage return
U+001C FS information separator four
U+001D GS information separator three
U+001E RS information separator two
U+001F US information separator one
U+0085 NEL next line

Special Areas and Format Characters 858 23.1 Control Codes
U+0000 null may be used as a Unicode string terminator, as in the C language. Such usage
is outside the scope of the Unicode Standard, which does not require any particular formal
language representation of a string or any particular usage of null.

Newline Function. In particular, one or more of the control codes U+000A line feed,
U+000D carriage return, and the Unicode equivalent of the EBCDIC next line can encode
a newline function. A newline function can act like a line separator or a paragraph separator,
depending on the application. See Section 23.2, Layout Controls, for information on how to
interpret a line or paragraph separator. The exact encoding of a newline function depends
on the application domain. For information on how to identify a newline function, see
Section 5.8, Newline Guidelines.

Special Areas and Format Characters 859 23.2 Layout Controls
23.2 Layout Controls
The effect of layout controls is specific to particular text processes. As much as possible,
layout controls are transparent to those text processes for which they were not intended. In
other words, their effects are mutually orthogonal.

Line and Word Breaking
This subsection summarizes the intended behavior of certain layout controls which affect
line and word breaking. Line breaking and word breaking are distinct text processes.
Although a candidate position for a line break in text often coincides with a candidate posi-
tion for a word break, there are also many situations where candidate break positions of
different types do not coincide. The implications for the interaction of layout controls with
text segmentation processes are complex. For a full description of line breaking, see Uni-
code Standard Annex #14, “Unicode Line Breaking Algorithm.” For a full description of
other text segmentation processes, including word breaking, see Unicode Standard Annex
#29, “Unicode Text Segmentation.”

No-Break Space. U+00A0 no-break space has the same width as U+0020 space, but the
no-break space indicates that, under normal circumstances, no line breaks are permitted
between it and surrounding characters, unless the preceding or following character is a line
or paragraph separator or space or zero width space. For a complete list of space characters
in the Unicode Standard, see Table 6-2.

Word Joiner. U+2060 word joiner behaves like U+00A0 no-break space in that it indi-
cates the absence of line breaks; however, the word joiner has no width. The function of the
character is to indicate that line breaks are not allowed between the adjoining characters,
except next to hard line breaks. For example, the word joiner can be inserted after the
fourth character in the text “base+delta” to indicate that there should be no line break
between the “e” and the “+”. The word joiner can be used to prevent line breaking with
other characters that do not have nonbreaking variants, such as U+2009 thin space or
U+2015 horizontal bar, by bracketing the character.

The word joiner must not be confused with the zero width joiner or the combining graph-
eme joiner, which have very different functions. In particular, inserting a word joiner
between two characters has no effect on their ligating and cursive joining behavior. The
word joiner should be ignored in contexts other than line breaking. Note in particular that
the word joiner is ignored for word segmentation. (See Unicode Standard Annex #29, “Uni-
code Text Segmentation.”)

Zero Width No-Break Space. In addition to its primary meaning of byte order mark (see
“Byte Order Mark” in Section 23.8, Specials), the code point U+FEFF possesses the seman-
tics of zero width no-break space, which matches that of word joiner. Until Unicode 3.2,
U+FEFF was the only code point with word joining semantics, but because it is more com-
monly used as byte order mark, the use of U+2060 word joiner to indicate word joining is
strongly preferred for any new text. Implementations should continue to support the word
joining semantics of U+FEFF for backward compatibility.

Special Areas and Format Characters 860 23.2 Layout Controls
Zero Width Space. The U+200B zero width space indicates a word break or line break
opportunity, even though there is no intrinsic width associated with this character. Zero-
width space characters are intended to be used in languages that have no visible word spac-
ing to represent word break or line break opportunities, such as Thai, Myanmar, Khmer,
and Japanese.

The “zero width” in the character name for ZWSP should not be understood too literally.
While this character ordinarily does not result in a visible space between characters, text
justification algorithms may add inter-character spacing (letter spacing) between charac-
ters separated by a ZWSP. For example, in Table 23-2, the row labeled “Display 4” illus-
trates incorrect suppression of inter-character spacing in the context of a ZWSP.

This behavior for ZWSP contrasts with that for fixed-width space characters, such as
U+2002 en space. Such spaces have a specified width that is typically unaffected by justifi-
cation and which should not be increased (or reduced) by inter-character spacing (see
Section 6.2, General Punctuation).

In some languages such as German and Russian, increased letter spacing is used to indicate
emphasis. Implementers should be aware of this issue.

Zero-Width Spaces and Joiner Characters. The zero-width spaces are not to be confused
with the zero-width joiner characters. U+200C zero width non-joiner and U+200D
zero width joiner have no effect on word or line break boundaries, and zero width no-

break space and zero width space have no effect on joining or linking behavior. The
zero-width joiner characters should be ignored when determining word or line break
boundaries. See “Cursive Connection” later in this section.

Hyphenation. U+00AD soft hyphen (SHY) indicates an intraword break point, where a
line break is preferred if a word must be hyphenated or otherwise broken across lines. Such
break points are generally determined by an automatic hyphenator. SHY can be used with
any script, but its use is generally limited to situations where users need to override the
behavior of such a hyphenator. The visible rendering of a line break at an intraword break
point, whether automatically determined or indicated by a SHY, depends on the surround-

Table 23-2. Letter Spacing

Type Justification Examples Comment

Memory the ISP® Charts The is inserted to allow
line break after ®

Display 1

Display 2

Display 3

Display 4

the ISP®Charts
the ISP®Charts
t h e I S P ® C h a r t s

the ISP ®Char ts

Without letter spacing

Increased letter spacing

“Thai-style” letter spacing

 incorrectly inhibiting
letter spacing (after ®)

Special Areas and Format Characters 861 23.2 Layout Controls
ing characters, the rules governing the script and language used, and, at times, the meaning
of the word. The precise rules are outside the scope of this standard, but see Unicode Stan-
dard Annex #14, “Unicode Line Breaking Algorithm,” for additional information. A com-
mon default rendering is to insert a hyphen before the line break, but this is insufficient or
even incorrect in many situations.

Contrast this usage with U+2027 hyphenation point, which is used for a visible indica-
tion of the place of hyphenation in dictionaries. For a complete list of dash characters in
the Unicode Standard, including all the hyphens, see Table 6-3.

The Unicode Standard includes two nonbreaking hyphen characters: U+2011 non-

breaking hyphen and U+0F0C tibetan mark delimiter tsheg bstar. See Section 13.4,
Tibetan, for more discussion of the Tibetan-specific line breaking behavior.

Line and Paragraph Separator. The Unicode Standard provides two unambiguous char-
acters, U+2028 line separator and U+2029 paragraph separator, to separate lines and
paragraphs. They are considered the default form of denoting line and paragraph boundar-
ies in Unicode plain text. A new line is begun after each line separator. A new paragraph
is begun after each paragraph separator. As these characters are separator codes, it is not
necessary either to start the first line or paragraph or to end the last line or paragraph with
them. Doing so would indicate that there was an empty paragraph or line following. The
paragraph separator can be inserted between paragraphs of text. Its use allows the cre-
ation of plain text files, which can be laid out on a different line width at the receiving end.
The line separator can be used to indicate an unconditional end of line.

A paragraph separator indicates where a new paragraph should start. Any interparagraph
formatting would be applied. This formatting could cause, for example, the line to be bro-
ken, any interparagraph line spacing to be applied, and the first line to be indented. A line
separator indicates that a line break should occur at this point; although the text continues
on the next line, it does not start a new paragraph—no interparagraph line spacing or para-
graphic indentation is applied. For more information on line separators, see Section 5.8,
Newline Guidelines.

Cursive Connection and Ligatures
In some fonts for some scripts, consecutive characters in a text stream may be rendered via
adjacent glyphs that cursively join to each other, so as to emulate connected handwriting.
For example, cursive joining is implemented in nearly all fonts for the Arabic scripts and in
a few handwriting-like fonts for the Latin script.

Cursive rendering is implemented by joining glyphs in the font and by using a process that
selects the particular joining glyph to represent each individual character occurrence,
based on the joining nature of its neighboring characters. This glyph selection is imple-
mented in the rendering engine, typically using information in the font.

In many cases there is an even closer binding, where a sequence of characters is repre-
sented by a single glyph, called a ligature. Ligatures can occur in both cursive and noncur-
sive fonts. Where ligatures are available, it is the task of the rendering system to select a

Special Areas and Format Characters 862 23.2 Layout Controls
ligature to create the most appropriate line layout. However, the rendering system cannot
define the locations where ligatures are possible because there are many languages in
which ligature formation requires more information. For example, in some languages, lig-
atures are never formed across syllable boundaries.

On occasion, an author may wish to override the normal automatic selection of connecting
glyphs or ligatures. Typically, this choice is made to achieve one of the following effects:

• Cause nondefault joining appearance (for example, as is sometimes required in
writing Persian using the Arabic script)

• Exhibit the joining-variant glyphs themselves in isolation

• Request a ligature to be formed where it normally would not be

• Request a ligature not to be formed where it normally would be

The Unicode Standard provides two characters that influence joining and ligature glyph
selection: U+200C zero width non-joiner and U+200D zero width joiner. The zero
width joiner and non-joiner request a rendering system to have more or less of a connec-
tion between characters than they would otherwise have. Such a connection may be a sim-
ple cursive link, or it may include control of ligatures.

The zero width joiner and non-joiner characters are designed for use in plain text; they
should not be used where higher-level ligation and cursive control is available. (See the
W3C specification, “Unicode in XML and Other Markup Languages,” for more informa-
tion.) Moreover, they are essentially requests for the rendering system to take into account
when laying out the text; while a rendering system should consider them, it is perfectly
acceptable for the system to disregard these requests.

The ZWJ and ZWNJ are designed for marking the unusual cases where ligatures or cursive
connections are required or prohibited. These characters are not to be used in all cases
where ligatures or cursive connections are desired; instead, they are meant only for over-
riding the normal behavior of the text.

Joiner. U+200D zero width joiner is intended to produce a more connected rendering
of adjacent characters than would otherwise be the case, if possible. In particular:

• If the two characters could form a ligature but do not normally, ZWJ requests
that the ligature be used.

• Otherwise, if either of the characters could cursively connect but do not nor-
mally, ZWJ requests that each of the characters take a cursive-connection form
where possible.

In a sequence like <X, ZWJ, Y>, where a cursive form exists for X but not for Y, the presence
of ZWJ requests a cursive form for X. Otherwise, where neither a ligature nor a cursive con-
nection is available, the ZWJ has no effect. In other words, given the three broad categories
below, ZWJ requests that glyphs in the highest available category (for the given font) be
used:

Special Areas and Format Characters 863 23.2 Layout Controls
1. Ligated

2. Cursively connected

3. Unconnected

Non-joiner. U+200C zero width non-joiner is intended to break both cursive connec-
tions and ligatures in rendering.

ZWNJ requests that glyphs in the lowest available category (for the given font) be used.

For those unusual circumstances where someone wants to forbid ligatures in a sequence
XY but promote cursive connection, the sequence <X, ZWJ, ZWNJ, ZWJ, Y> can be used.
The ZWNJ breaks ligatures, while the two adjacent joiners cause the X and Y to take adja-
cent cursive forms (where they exist). Similarly, if someone wanted to have X take a cursive
form but Y be isolated, then the sequence <X, ZWJ, ZWNJ, Y> could be used (as in previous
versions of the Unicode Standard). Examples are shown in Figure 23-3.

Cursive Connection. For cursive connection, the joiner and non-joiner characters typically
do not modify the contextual selection process itself, but instead change the context of a
particular character occurrence. By providing a non-joining adjacent character where the
adjacent character otherwise would be joining, or vice versa, they indicate that the render-
ing process should select a different joining glyph. This process can be used in two ways: to
prevent a cursive joining or to exhibit joining glyphs in isolation.

In Figure 23-1, the insertion of the ZWNJ overrides the normal cursive joining of sad and
lam.

In Figure 23-2, the normal display of ghain without ZWJ before or after it uses the nominal
(isolated) glyph form. When preceded and followed by ZWJ characters, however, the ghain
is rendered with its medial form glyph in isolation.

Figure 23-1. Prevention of Joining

Figure 23-2. Exhibition of Joining Glyphs in Isolation

fiª

π

0644

200C

0635

0635 0644
›πÃ ›

π › →

→

+

+ +

Ä

Õ

–
063A200D 200D

063A
Õ

Õ Ä →

→

+ +

Special Areas and Format Characters 864 23.2 Layout Controls
The examples in Figure 23-1 and Figure 23-2 are adapted from the Iranian national coded
character set standard, ISIRI 3342, which defines ZWNJ and ZWJ as “pseudo space” and
“pseudo connection,” respectively.

Examples. Figure 23-3 provides samples of desired renderings when the joiner or non-
joiner is inserted between two characters. The examples presume that all of the glyphs are
available in the font. If, for example, the ligatures are not available, the display would fall
back to the unligated forms. Each of the entries in the first column of Figure 23-3 shows
two characters in visual display order. The column headings show characters to be inserted
between those two characters. The cells below show the respective display when the joiners
in the heading row are inserted between the original two characters.

For backward compatibility, between Arabic characters a ZWJ acts just like the sequence
<ZWJ, ZWNJ, ZWJ>, preventing a ligature from forming instead of requesting the use of a
ligature that would not normally be used. As a result, there is no plain text mechanism for
requesting the use of a ligature in Arabic text.

Transparency. The property value of Joining_Type=Transparent applies to characters that
should not interfere with cursive connection, even when they occur in sequence between
two characters that are connected cursively. These include all nonspacing marks and most
format control characters, except for ZWJ and ZWNJ themselves. Note, in particular, that
enclosing combining marks are also transparent as regards cursive connection. For exam-
ple, using U+20DD combining enclosing circle to circle an Arabic letter in a sequence
should not cause that Arabic letter to change its cursive connections to neighboring letters.
See Section 9.2, Arabic, for more on joining classes and the details regarding Arabic cursive
joining.

Joiner and Non-joiner in Indic Scripts. In Indic text, the ZWJ and ZWNJ are used to
request particular display forms. A ZWJ after a sequence of consonant plus virama requests
what is called a “half-form” of that consonant. A ZWNJ after a sequence of consonant plus

Figure 23-3. Effect of Intervening Joiners

As IsCharacter
Sequences

f i or fi f i f i fi

062C 0645

062C 0648

0627 0644

f i
0066 0069

Special Areas and Format Characters 865 23.2 Layout Controls
virama requests that conjunct formation be interrupted, usually resulting in an explicit
virama on that consonant. There are a few more specialized uses as well. For more infor-
mation, see the discussions in Chapter 12, South and Central Asia-I.

Implementation Notes. For modern font technologies, such as OpenType or AAT, font
vendors should add ZWJ to their ligature mapping tables as appropriate. Thus, where a
font had a mapping from “f” + “i” to fi, the font designer should add the mapping from “f”
+ ZWJ + “i” to fi. In contrast, ZWNJ will normally have the desired effect naturally for most
fonts without any change, as it simply obstructs the normal ligature/cursive connection
behavior. As with all other alternate format characters, fonts should use an invisible zero-
width glyph for representation of both ZWJ and ZWNJ.

Filtering Joiner and Non-joiner. zero width joiner and zero width non-joiner are
format control characters. As such, and in common with other format control characters,
they are ordinarily ignored by processes that analyze text content. For example, a spell-
checker or a search operation should filter them out when checking for matches. There are
exceptions, however. In particular scripts—most notably the Indic scripts—ZWJ and
ZWNJ have specialized usages that may be of orthographic significance. In those contexts,
blind filtering of all instances of ZWJ or ZWNJ may result in ignoring distinctions relevant
to the user’s notion of text content. Implementers should be aware of these exceptional cir-
cumstances, so that searching and matching operations behave as expected for those
scripts.

Combining Grapheme Joiner
U+034F combining grapheme joiner (CGJ) is used to affect the collation of adjacent
characters for purposes of language-sensitive collation and searching. It is also used to dis-
tinguish sequences that would otherwise be canonically equivalent.

Formally, the combining grapheme joiner is not a format control character, but rather a
combining mark. It has the General_Category value gc=Mn and the canonical combining
class value ccc=0.

As a result of these properties, the presence of a combining grapheme joiner in the midst of
a combining character sequence does not interrupt the combining character sequence; any
process that is accumulating and processing all the characters of a combining character
sequence would include a combining grapheme joiner as part of that sequence. This differs
from the behavior of most format control characters, whose presence would interrupt a
combining character sequence.

In addition, because the combining grapheme joiner has the canonical combining class of
0, canonical reordering will not reorder any adjacent combining marks around a combin-
ing grapheme joiner. (See the discussion of canonical ordering in Section 3.11, Normaliza-
tion Forms.) In turn, this means that insertion of a combining grapheme joiner between
two combining marks will prevent normalization from switching the positions of those two
combining marks, regardless of their own combining classes.

Special Areas and Format Characters 866 23.2 Layout Controls
Blocking Reordering. The CGJ has no visible glyph and no other format effect on neigh-
boring characters but simply blocks reordering of combining marks. It can therefore be
used as a tool to distinguish two alternative orderings of a sequence of combining marks
for some exceptional processing or rendering purpose, whenever normalization would
otherwise eliminate the distinction between the two sequences.

For example, using CGJ to block reordering is one way to maintain distinction between
differently ordered sequences of certain Hebrew accents and marks. These distinctions are
necessary for analytic and text representational purposes. However, these characters were
assigned fixed-position combining classes despite the fact that they interact typographi-
cally. As a result, normalization treats differently ordered sequences as equivalent. In par-
ticular, the sequence

<lamed, patah, hiriq, finalmem>

is canonically equivalent to

<lamed, hiriq, patah, finalmem>

because the canonical combining classes of U+05B4 hebrew point hiriq and U+05B7
hebrew point patah are distinct. However, the sequence

<lamed, patah, CGJ, hiriq, finalmem>

is not canonically equivalent to the other two. The presence of the combining grapheme
joiner, which has ccc=0, blocks the reordering of hiriq before patah by canonical reorder-
ing and thus allows a patah following a hiriq and a patah preceding a hiriq to be reliably
distinguished, whether for display or for other processing.

The use of CGJ with double diacritics is discussed in Section 7.9, Combining Marks; see
Figure 7-11.

CGJ and Collation. The Unicode Collation Algorithm normalizes Unicode text strings
before applying collation weighting. The combining grapheme joiner is ordinarily ignored
in collation key weighting in the UCA. However, whenever it blocks the reordering of com-
bining marks in a string, it affects the order of secondary key weights associated with those
combining marks, giving the two strings distinct keys. That makes it possible to treat them
distinctly in searching and sorting without having to tailor the weights for either the com-
bining grapheme joiner or the combining marks.

The CGJ can also be used to prevent the formation of contractions in the Unicode Colla-
tion Algorithm. For example, while “ch” is sorted as a single unit in a tailored Slovak colla-
tion, the sequence <c, CGJ, h> will sort as a “c” followed by an “h”. The CGJ can also be
used in German, for example, to distinguish in sorting between “ü” in the meaning of u-
umlaut, which is the more common case and often sorted like <u,e>, and “ü” in the mean-
ing u-diaeresis, which is comparatively rare and sorted like “u” with a secondary key
weight. This also requires no tailoring of either the combining grapheme joiner or the
sequence. Because CGJ is invisible and has the Default_Ignorable_Code_Point property,
data that are marked up with a CGJ should not cause problems for other processes.

Special Areas and Format Characters 867 23.2 Layout Controls
It is possible to give sequences of characters that include the combining grapheme joiner
special tailored weights. Thus the sequence <c, CGJ, h> could be weighted completely dif-
ferently from the contraction “ch” or from the way “c” and “h” would have sorted without
the contraction. However, such an application of CGJ is not recommended. For more
information on the use of CGJ with sorting, matching, and searching, see Unicode Techni-
cal Report #10, “Unicode Collation Algorithm.”

Rendering. For rendering, the combining grapheme joiner is invisible. However, some
older implementations may treat a sequence of grapheme clusters linked by combining
grapheme joiners as a single unit for the application of enclosing combining marks. For
more information on grapheme clusters, see Unicode Technical Report #29, “Unicode
Text Segmentation.” For more information on enclosing combining marks, see
Section 3.11, Normalization Forms.

CGJ and Joiner Characters. The combining grapheme joiner must not be confused with
the zero width joiner or the word joiner, which have very different functions. In particular,
inserting a combining grapheme joiner between two characters should have no effect on
their ligation or cursive joining behavior. Where the prevention of line breaking is the
desired effect, the word joiner should be used. For more information on the behavior of
these characters in line breaking, see Unicode Standard Annex #14, “Unicode Line Break-
ing Algorithm.”

Bidirectional Ordering Controls
Bidirectional ordering controls are used in the Bidirectional Algorithm, described in Uni-
code Standard Annex #9, “Unicode Bidirectional Algorithm.” Systems that handle right-to-
left scripts such as Arabic, Syriac, and Hebrew, for example, should interpret these format
control characters. The bidirectional ordering controls are shown in Table 23-3.

Table 23-3. Bidirectional Ordering Controls

Code Name Abbreviation
U+061C arabic letter mark alm

U+200E left-to-right mark lrm

U+200F right-to-left mark rlm

U+202A left-to-right embedding lre

U+202B right-to-left embedding rle

U+202C pop directional formatting pdf

U+202D left-to-right override lro

U+202E right-to-left override rlo

U+2066 left-to-right isolate lri

U+2067 right-to-left isolate rli

U+2068 first strong isolate fsi

U+2069 pop directional isolate pdi

Special Areas and Format Characters 868 23.2 Layout Controls
As with other format control characters, bidirectional ordering controls affect the layout of
the text in which they are contained but should be ignored for other text processes, such as
sorting or searching. However, text processes that modify text content must maintain these
characters correctly, because matching pairs of bidirectional ordering controls must be
coordinated, so as not to disrupt the layout and interpretation of bidirectional text. Each
instance of a lre, rle, lro, or rlo is normally paired with a corresponding pdf. Likewise,
each instance of an lri, rli, or fsi is normally paired with a corresponding pdi.

U+200E left-to-right mark, U+200F right-to-left mark, and U+061C arabic let-

ter mark have the semantics of an invisible character of zero width, except that these char-
acters have strong directionality. They are intended to be used to resolve cases of
ambiguous directionality in the context of bidirectional texts; they are not paired. Unlike
U+200B zero width space, these characters carry no word breaking semantics. (See Uni-
code Standard Annex #9, “Unicode Bidirectional Algorithm,” for more information.)

Stateful Format Controls
The Unicode Standard contains a small number of paired stateful controls. These charac-
ters are used in pairs, with an initiating character (or sequence) and a terminating charac-
ter. Even when these characters are not supported by a particular implementation,
complications can arise due to their paired nature. Whenever text is cut, copied, pasted, or
deleted, these characters can become unpaired. To avoid this problem, ideally both any
copied text and its context (site of a deletion, or target of an insertion) would be modified
so as to maintain all pairings that were in effect for each piece of text. This process can be
quite complicated, however, and is not often done—or is done incorrectly if attempted.

The paired stateful controls recommended for use are listed in Table 23-4.

The bidirectional overrides, embeddings, and isolates, as well as the annotation characters
are reasonably robust, because their behavior terminates at paragraph boundaries. Paired
format controls for representation of beams and slurs in music are recommended only for
specialized musical layout software, and also have limited scope.

Bidirectional overrides, embeddings, and isolates are default ignorable (that is,
Default_Ignorable_Code_Point=True); if they are not supported by an implementation,
they should not be rendered with a visible glyph. The paired stateful controls for musical
beams and slurs are likewise default ignorable.

The annotation characters, however, are different. When they are used and correctly inter-
preted by an implementation, they separate annotation text from the annotated text, and
the fully rendered text will typically distinguish the two parts quite clearly. Simply omitting

Table 23-4. Paired Stateful Controls
Characters Documentation
Bidi Overrides, Embeddings, and Isolates Section 23.2, Layout Controls; UAX #9
Annotation Characters Section 23.8, Specials
Musical Beams and Slurs Section 21.2, Western Musical Symbols

Special Areas and Format Characters 869 23.2 Layout Controls
any display of the annotation characters by an implementation which does not interpret
them would have the potential to cause significant misconstrual of text content. Hence, the
annotation characters are not default ignorable; an implementation which does not inter-
pret them should render them with visible glyphs, using one of the techniques discussed in
Section 5.3, Unknown and Missing Characters. See “Annotation Characters” in Section 23.8,
Specials for more discussion.

Other paired stateful controls in the standard are deprecated, and their use should be
avoided. They are listed in Table 23-5.

The tag characters, originally intended for the representation of language tags, are particu-
larly fragile under editorial operations that move spans of text around. See Section 5.10,
Language Information in Plain Text, for more information about language tagging.

Table 23-5. Paired Stateful Controls (Deprecated)
Characters Documentation
Deprecated Format Characters Section 23.3, Deprecated Format Charac-

ters
U+E0001 tag character Section 23.9, Tag Characters

Special Areas and Format Characters 870 23.3 Deprecated Format Characters
23.3 Deprecated Format Characters

Deprecated Format Characters: U+206A–U+206F
Three pairs of deprecated format characters are encoded in this block:

• Symmetric swapping format characters used to control the glyphs that depict
characters such as “(” (The default state is activated.)

• Character shaping selectors used to control the shaping behavior of the Arabic
compatibility characters (The default state is inhibited.)

• Numeric shape selectors used to override the normal shapes of the Western
digits (The default state is nominal.)

The use of these character shaping selectors and codes for digit shapes is strongly discour-
aged in the Unicode Standard. Instead, the appropriate character codes should be used
with the default state. For example, if contextual forms for Arabic characters are desired,
then the nominal characters should be used, not the presentation forms with the shaping
selectors. Similarly, if the Arabic digit forms are desired, then the explicit characters should
be used, such as U+0660 arabic-indic digit zero.

Symmetric Swapping. The symmetric swapping format characters are used in conjunction
with the class of left- and right-handed pairs of characters (symmetric characters), such as
parentheses. The characters thus affected are listed in Section 4.7, Bidi Mirrored. They indi-
cate whether the interpretation of the term left or right in the character names should be
interpreted as meaning opening or closing, respectively. They do not nest. The default state
of symmetric swapping may be set by a higher-level protocol or standard, such as ISO
6429. In the absence of such a protocol, the default state is activated.

From the point of encountering U+206A inhibit symmetric swapping format character
up to a subsequent U+206B activate symmetric swapping (if any), the symmetric char-
acters will be interpreted and rendered as left and right.

From the point of encountering U+206B activate symmetric swapping format character
up to a subsequent U+206A inhibit symmetric swapping (if any), the symmetric charac-
ters will be interpreted and rendered as opening and closing. This state (activated) is the
default state in the absence of any symmetric swapping code or a higher-level protocol.

Character Shaping Selectors. The character shaping selector format characters are used in
conjunction with Arabic presentation forms. During the presentation process, certain let-
terforms may be joined together in cursive connection or ligatures. The shaping selector
codes indicate that the character shape determination (glyph selection) process used to
achieve this presentation effect is to be either activated or inhibited. The shaping selector
codes do not nest.

From the point of encountering a U+206C inhibit arabic form shaping format charac-
ter up to a subsequent U+206D activate arabic form shaping (if any), the character
shaping determination process should be inhibited. If the backing store contains Arabic

Special Areas and Format Characters 871 23.3 Deprecated Format Characters
presentation forms (for example, U+FE80..U+FEFC), then these forms should be pre-
sented without shape modification. This state (inhibited) is the default state in the absence
of any character shaping selector or a higher-level protocol.

From the point of encountering a U+206D activate arabic form shaping format char-
acter up to a subsequent U+206C inhibit arabic form shaping (if any), any Arabic
presentation forms that appear in the backing store should be presented with shape modi-
fication by means of the character shaping (glyph selection) process.

The shaping selectors have no effect on nominal Arabic characters (U+0660..U+06FF),
which are always subject to character shaping (glyph selection).

Numeric Shape Selectors. The numeric shape selector format characters allow the selec-
tion of the shapes in which the digits U+0030..U+0039 are to be rendered. These format
characters do not nest.

From the point of encountering a U+206E national digit shapes format character up to
a subsequent U+206F nominal digit shapes (if any), the European digits (U+0030..
U+0039) should be depicted using the appropriate national digit shapes as specified by
means of appropriate agreements. For example, they could be displayed with shapes such
as the arabic-indic digits (U+0660..U+0669). The actual character shapes (glyphs) used
to display national digit shapes are not specified by the Unicode Standard.

From the point of encountering a U+206F nominal digit shapes format character up to
a subsequent U+206E national digit shapes (if any), the European digits (U+0030..
U+0039) should be depicted using glyphs that represent the nominal digit shapes shown in
the code tables for these digits. This state (nominal) is the default state in the absence of
any numeric shape selector or a higher-level protocol.

Special Areas and Format Characters 872 23.4 Variation Selectors
23.4 Variation Selectors
Characters in the Unicode Standard can be represented by a wide variety of glyphs, as dis-
cussed in Chapter 2, General Structure. Occasionally the need arises in text processing to
restrict or change the set of glyphs that are to be used to represent a character. Normally
such changes are indicated by choice of font or style in rich text documents. In special cir-
cumstances, such a variation from the normal range of appearance needs to be expressed
side-by-side in the same document in plain text contexts, where it is impossible or inconve-
nient to exchange formatted text. For example, in languages employing the Mongolian
script, sometimes a specific variant range of glyphs is needed for a specific textual purpose
for which the range of “generic” glyphs is considered inappropriate.

Variation selectors provide a mechanism for specifying a restriction on the set of glyphs
that are used to represent a particular character. They also provide a mechanism for speci-
fying variants, such as for CJK ideographs and Mongolian letters, that have essentially the
same semantics but substantially different ranges of glyphs.

Variation Sequence. A variation sequence always consists of a base character or a spacing
mark (gc=Mc) followed by a single variation selector character. That two-element
sequence is referred to as a variant of the base character or spacing mark. For simplicity of
exposition, the following discussion only mentions base characters; variation sequences
involving spacing marks are uncommon, but otherwise behave similarly.

In a variation sequence the variation selector affects the appearance of the base character.
Such changes in appearance may, in turn, have a visual impact on subsequent characters,
particularly combining characters applied to that base character. For example, if the base
character changes shape, that should result in a corresponding change in shape or position
of applied combining marks. If the base character changes color, as can be the case for
emoji variation sequences, the color may also change for applied combining marks. If the
base character changes in advance width, that would also change the positioning of subse-
quent spacing characters.

In particular, the emoji variation sequences for digits, U+0023 “#” number sign, and
U+002A “*” asterisk are intended to affect the color, size, and positioning of U+20E3 0
combining enclosing keycap when applied to those base characters. For example, the
variation sequence <0023, FE0F> selects the emoji presentation variant for “#”. The
sequence <0023, FE0F, 20E3> should show the enclosing keycap with an appropriate emoji
style, matching the “#” in color, shape, and positioning. Shape changes for variation
sequences, with or without additional combining marks, may also result in an increase of
advance width; thus, each of the sequences <0023, FE0F>, <0023, 20E3>, and <0023,
FE0F, 20E3> may have a distinct advance width, differing from U+0023 alone.

The use of variation selectors is not intended as a general extension mechanism for the
character encoding. Combinations of particular base characters plus particular variation
selectors have no effect on display unless they occur in pre-defined lists maintained by the
Unicode Consortium. The three sanctioned lists are as follows:

Special Areas and Format Characters 873 23.4 Variation Selectors
Standardized variation sequences are defined in the file StandardizedVar-
iants.txt in the Unicode Character Database.

Emoji variation sequences are defined in the file emoji-variation-
sequences.txt, associated with Unicode Technical Standard #51, “Uni-
code Emoji.”

Ideographic variation sequences are defined by the registration process
defined in Unicode Technical Standard #37, “Unicode Ideographic Vari-
ation Database,” and are listed in the Ideographic Variation Database.

Only those three types of variation sequences are sanctioned for use by conformant imple-
mentations. In all other cases, use of a variation selector character does not change the
visual appearance of the preceding base character from what it would have had in the
absence of the variation selector.

The initial character in a variation sequence is never a nonspacing combining mark
(gc=Mn) or a canonical decomposable character. These restrictions on the initial character
of a variation sequence are necessary to prevent problems in the interpretation of such
sequences in normalized text.

The variation selectors themselves are combining marks of combining class 0 and are
default ignorable. Thus, if the variation sequence is not supported, the variation selector
should be invisible and ignored. This does not preclude modes or environments where the
variation selectors should be given visible appearance. For example, a “Show Hidden”
mode could reveal the presence of such characters with specialized glyphs, or a particular
environment could use or require a visual indication of a base character (such as a wavy
underline) to show that it is part of a standardized variation sequence that cannot be sup-
ported by the current font.

The standardization or support of a particular variation sequence does not limit the set of
glyphs that can be used to represent the base character alone. If a user requires a visual dis-
tinction between a character and a particular variant of that character, then fonts must be
used to make that distinction. The existence of a variation sequence does not preclude the
later encoding of a new character with distinct semantics and a similar or overlapping
range of glyphs.

CJK Compatibility Ideographs. There are 1,002 standardized variation sequences for CJK
compatibility ideographs. One sequence is defined for each CJK compatibility ideograph
in the Unicode Standard. These sequences are defined to address a normalization issue for
these ideographs.

Implementations or users sometimes need a CJK compatibility ideograph to be distinct
from its corresponding CJK unified ideograph. For example, a distinct glyphic form may be
expected for a particular text. However, CJK compatibility ideographs have canonical
equivalence mappings to their corresponding CJK unified ideograph, which means that
such distinctions are lost whenever Unicode normalization is applied. Using the variation
sequence preserves the distinction found in the original, non-normalized text, even when
normalization is later applied.

Special Areas and Format Characters 874 23.4 Variation Selectors
Because variation sequences are not affected by Unicode normalization, an implementa-
tion which uses the corresponding standardized variation sequence can safely maintain the
intended distinction for that CJK compatibility ideograph, even in plain text.

It is important to distinguish standardized variation sequences for CJK compatibility ideo-
graphs from the variation sequences that are registered in the Ideographic Variation Data-
base (IVD). The former are normalization-stable representations of the CJK compatibility
ideographs; they are defined in StandardizedVariants.txt, and there is precisely one varia-
tion sequence for each CJK compatibility ideograph. The latter are also stable under nor-
malization, but correspond to implementation-specific glyphs in a registry entry.

Representative Glyphs for Variants. Representative glyphs for most of the standardized
variation sequences are included directly in the code charts. See “Standardized Variation
Sequences” in Section 24.1, Character Names List for an explanation of the conventions
used to identify such sequences in the code charts. Emoji variation sequences, which often
require large, colorful glyphs for their representation, can be found instead in the emoji
charts. See Appendix B.3, Other Unicode Online Resources.

Representative glyphs for ideographic variation sequences are located in the pertinent reg-
istrations associated with the Ideographic Variation Database.

Mongolian. For the behavior of older implementations of Mongolian using variation selec-
tors, see the discussion of Mongolian free variation selectors in Section 13.5, Mongolian.

Special Areas and Format Characters 875 23.5 Private-Use Characters
23.5 Private-Use Characters
Private-use characters are assigned Unicode code points whose interpretation is not speci-
fied by this standard and whose use may be determined by private agreement among coop-
erating users. These characters are designated for private use and do not have defined,
interpretable semantics except by private agreement.

Private-use characters are often used to implement end-user defined characters (EUDC),
which are common in East Asian computing environments.

No charts are provided for private-use characters, as any such characters are, by their very
nature, defined only outside the context of this standard.

Three distinct blocks of private-use characters are provided in the Unicode Standard: the
primary Private Use Area (PUA) in the BMP and two supplementary Private Use Areas in
the supplemental planes.

All code points in the blocks of private-use characters in the Unicode Standard are perma-
nently designated for private use. No assignment to a particular standard set of characters
will ever be endorsed or documented by the Unicode Consortium for any of these code
points.

Any prior use of a character as a private-use character has no direct bearing on any even-
tual encoding decisions regarding whether and how to encode that character. Standardiza-
tion of characters must always follow the normal process for encoding of new characters or
scripts.

Properties. No private agreement can change which character codes are reserved for pri-
vate use. However, many Unicode algorithms use the General_Category property or prop-
erties which are derived by reference to the General_Category property. Private
agreements may override the General_Category or derivations based on it, except where
overriding is expressly disallowed in the conformance statement for a specific algorithm. In
other words, private agreements may define which private-use characters should be treated
like spaces, digits, letters, punctuation, and so on, by all parties to those private agreements.
In particular, when a private agreement overrides the General_Category of a private-use
character from the default value of gc=Co to some other value such as gc=Lu or gc=Nd,
such a change does not change its inherent identity as a private-use character, but merely
specifies its intended behavior according to the private agreement.

For all other properties the Unicode Character Database also provides default values for
private-use characters. Except for normalization-related properties, these default property
values should be considered informative. They are intended to allow implementations to
treat private-use characters in a consistent way, even in the absence of a particular private
agreement, and to simplify the use of common types of private-use characters. Those
default values are based on typical use-cases for private-use characters. Implementations
may freely change or override the default values according to their requirements for private
use. For example, a private agreement might specify that two private-use characters are to

Special Areas and Format Characters 876 23.5 Private-Use Characters
be treated as a case mapping pair, or a private agreement could specify that a private-use
character is to be rendered and otherwise treated as a combining mark.

To exchange private-use characters in a semantically consistent way, users may also
exchange privately defined data which describes how each private-use character is to be
interpreted. The Unicode Standard provides no predefined format for such a data
exchange.

Normalization. The canonical and compatibility decompositions of any private-use char-
acter are equal to the character itself (for example, U+E000 decomposes to U+E000). The
Canonical_Combining_Class of private-use characters is defined as 0 (Not_Reordered).
These values are normatively defined by the Unicode Standard and cannot be changed by
private agreement. The treatment of all private-use characters for normalization forms
NFC, NFD, NFKD, and NFKC is also normatively defined by the Unicode Standard on the
basis of these decompositions. (See Unicode Standard Annex #15, “Unicode Normaliza-
tion Forms.”) No private agreement may change these forms—for example, by changing
the standard canonical or compatibility decompositions for private-use characters. The
implication is that all private-use characters, no matter what private agreements they are
subject to, always normalize to themselves and are never reordered in any Unicode nor-
malization form.

This does not preclude private agreements on other transformations. Thus one could
define a transformation “MyCompanyComposition” that was identical to NFC except that
it mapped U+E000 to “a”. The forms NFC, NFD, NFKD, and NFKC themselves, however,
cannot be changed by such agreements.

Private Use Area: U+E000–U+F8FF
The primary Private Use Area consists of code points in the range U+E000 to U+F8FF, for
a total of 6,400 private-use characters.

Encoding Structure. By convention, the primary Private Use Area is divided into a corpo-
rate use subarea for platform writers, starting at U+F8FF and extending downward in val-
ues, and an end-user subarea, starting at U+E000 and extending upward.

By following this convention, the likelihood of collision between private-use characters
defined by platform writers with private-use characters defined by end users can be
reduced. However, it should be noted that this is only a convention, not a normative spec-
ification. In principle, any user can define any interpretation of any private-use character.

Corporate Use Subarea. Systems vendors and/or software developers may need to reserve
some private-use characters for internal use by their software. The corporate use subarea is
the preferred area for such reservations. Assignments of character semantics in this subarea
may be completely internal, hidden from end users, and used only for vendor-specific
application support, or they may be published as vendor-specific character assignments
available to applications and end users. An example of the former case would be the assign-
ment of a character code to a system support operation such as <MOVE> or <COPY>; an

Special Areas and Format Characters 877 23.5 Private-Use Characters
example of the latter case would be the assignment of a character code to a vendor-specific
logo character such as Apple’s apple character.

Note, however, that systems vendors may need to support full end-user definability for all
private-use characters, for such purposes as gaiji support or for transient cross-mapping
tables. The use of noncharacters (see Section 23.7, Noncharacters, and Definition D14 in
Section 3.4, Characters and Encoding) is the preferred way to make use of non-interchange-
able internal system sentinels of various sorts.

End-User Subarea. The end-user subarea is intended for private-use character definitions
by end users or for scratch allocations of character space by end-user applications.

Allocation of Subareas. Vendors may choose to reserve ranges of private-use characters in
the corporate use subarea and make some defined portion of the end-user subarea avail-
able for completely free end-user definition. The convention of separating the two subareas
is merely a suggestion for the convenience of system vendors and software developers. No
firm dividing line between the two subareas is defined in this standard, as different users
may have different requirements. No provision is made in the Unicode Standard for avoid-
ing a “stack-heap collision” between the two subareas; in other words, there is no guaran-
tee that end users will not define a private-use character at a code point that overlaps and
conflicts with a particular corporate private-use definition at the same code point. Avoid-
ing such overlaps in definition is up to implementations and users.

Supplementary Private Use Areas
Encoding Structure. The entire Plane 15, with the exception of the noncharacters
U+FFFFE and U+FFFFF, is defined to be the Supplementary Private Use Area-A. The
entire Plane 16, with the exception of the noncharacters U+10FFFE and U+10FFFF, is
defined to be the Supplementary Private Use Area-B. Together these areas make an addi-
tional 131,068 code points available for private use.

The supplementary PUAs provide additional undifferentiated space for private-use charac-
ters for implementations for which the 6,400 private-use characters in the primary PUA
prove to be insufficient.

Special Areas and Format Characters 878 23.6 Surrogates Area
23.6 Surrogates Area

Surrogates Area: U+D800–U+DFFF
When using UTF-16 to represent supplementary characters, pairs of 16-bit code units are
used for each character. These units are called surrogates. To distinguish them from ordi-
nary characters, they are allocated in a separate area. The Surrogates Area consists of 1,024
low-half surrogate code points and 1,024 high-half surrogate code points. For the formal
definition of a surrogate pair and the role of surrogate pairs in the Unicode Conformance
Clause, see Section 3.8, Surrogates, and Section 5.4, Handling Surrogate Pairs in UTF-16.

The use of surrogate pairs in the Unicode Standard is formally equivalent to the Universal
Transformation Format-16 (UTF-16) defined in ISO/IEC 10646. For more information,
see Appendix C, Relationship to ISO/IEC 10646. For a complete statement of UTF-16, see
Section 3.9, Unicode Encoding Forms.

High-Surrogate. The high-surrogate code points are assigned to the range U+D800..
U+DBFF. The high-surrogate code point is always the first element of a surrogate pair.

Low-Surrogate. The low-surrogate code points are assigned to the range U+DC00..
U+DFFF. The low-surrogate code point is always the second element of a surrogate pair.

Private-Use High-Surrogates. The high-surrogate code points from U+DB80..U+DBFF
are private-use high-surrogate code points (a total of 128 code points). Characters repre-
sented by means of a surrogate pair, where the high-surrogate code point is a private-use
high-surrogate, are private-use characters from the supplementary private use areas. For
more information on private-use characters, see Section 23.5, Private-Use Characters.

The code tables do not have charts or name list entries for the range U+D800..U+DFFF
because individual, unpaired surrogates merely have code points.

Special Areas and Format Characters 879 23.7 Noncharacters
23.7 Noncharacters

Noncharacters: U+FFFE, U+FFFF, and Others
Noncharacters are code points that are permanently reserved in the Unicode Standard for
internal use. They are not recommended for use in open interchange of Unicode text data.
See Section 3.2, Conformance Requirements and Section 3.4, Characters and Encoding, for
the formal definition of noncharacters and conformance requirements related to their use.

The Unicode Standard sets aside 66 noncharacter code points. The last two code points of
each plane are noncharacters: U+FFFE and U+FFFF on the BMP, U+1FFFE and
U+1FFFF on Plane 1, and so on, up to U+10FFFE and U+10FFFF on Plane 16, for a total
of 34 code points. In addition, there is a contiguous range of another 32 noncharacter code
points in the BMP: U+FDD0..U+FDEF. For historical reasons, the range
U+FDD0..U+FDEF is contained within the Arabic Presentation Forms-A block, but those
noncharacters are not “Arabic noncharacters” or “right-to-left noncharacters,” and are not
distinguished in any other way from the other noncharacters, except in their code point
values.

Applications are free to use any of these noncharacter code points internally. They have no
standard interpretation when exchanged outside the context of internal use. However, they
are not illegal in interchange, nor does their presence cause Unicode text to be ill-formed.
The intent of noncharacters is that they are permanently prohibited from being assigned
interchangeable meanings by the Unicode Standard. They are not prohibited from occur-
ring in valid Unicode strings which happen to be interchanged. This distinction, which
might be seen as too finely drawn, ensures that noncharacters are correctly preserved when
“interchanged” internally, as when used in strings in APIs, in other interprocess protocols,
or when stored.

If a noncharacter is received in open interchange, an application is not required to inter-
pret it in any way. It is good practice, however, to recognize it as a noncharacter and to take
appropriate action, such as replacing it with U+FFFD replacement character, to indi-
cate the problem in the text. It is not recommended to simply delete noncharacter code
points from such text, because of the potential security issues caused by deleting uninter-
preted characters. (See conformance clause C7 in Section 3.2, Conformance Requirements,
and Unicode Technical Report #36, “Unicode Security Considerations.”)

In effect, noncharacters can be thought of as application-internal private-use code points.
Unlike the private-use characters discussed in Section 23.5, Private-Use Characters, which
are assigned characters and which are intended for use in open interchange, subject to
interpretation by private agreement, noncharacters are permanently reserved (unassigned)
and have no interpretation whatsoever outside of their possible application-internal pri-
vate uses.

U+FFFF and U+10FFFF. These two noncharacter code points have the attribute of being
associated with the largest code unit values for particular Unicode encoding forms. In
UTF-16, U+FFFF is associated with the largest 16-bit code unit value, FFFF16. U+10FFFF

Special Areas and Format Characters 880 23.7 Noncharacters
is associated with the largest legal UTF-32 32-bit code unit value, 10FFFF16. This attribute
renders these two noncharacter code points useful for internal purposes as sentinels. For
example, they might be used to indicate the end of a list, to represent a value in an index
guaranteed to be higher than any valid character value, and so on.

U+FFFE. This noncharacter has the intended peculiarity that, when represented in UTF-
16 and then serialized, it has the opposite byte sequence of U+FEFF, the byte order mark.
This means that applications should reserve U+FFFE as an internal signal that a UTF-16
text stream is in a reversed byte format. Detection of U+FFFE at the start of an input
stream should be taken as a strong indication that the input stream should be byte-
swapped before interpretation. For more on the use of the byte order mark and its interac-
tion with the noncharacter U+FFFE, see Section 23.8, Specials.

Special Areas and Format Characters 881 23.8 Specials
23.8 Specials
The Specials block contains code points that are interpreted as neither control nor graphic
characters but that are provided to facilitate current software practices.

For information about the noncharacter code points U+FFFE and U+FFFF, see
Section 23.7, Noncharacters.

Byte Order Mark (BOM): U+FEFF
For historical reasons, the character U+FEFF used for the byte order mark is named zero

width no-break space. Except for compatibility with versions of Unicode prior to Ver-
sion 3.2, U+FEFF is not used with the semantics of zero width no-break space (see
Section 23.2, Layout Controls). Instead, its most common and most important usage is in
the following two circumstances:

1. Unmarked Byte Order. Some machine architectures use the so-called big-
endian byte order, while others use the little-endian byte order. When Unicode
text is serialized into bytes, the bytes can go in either order, depending on the
architecture. Sometimes this byte order is not externally marked, which causes
problems in interchange between different systems.

2. Unmarked Character Set. In some circumstances, the character set information
for a stream of coded characters (such as a file) is not available. The only infor-
mation available is that the stream contains text, but the precise character set is
not known.

In these two cases, the character U+FEFF is used as a signature to indicate the byte order
and the character set by using the byte serializations described in Section 3.10, Unicode
Encoding Schemes. Because the byte-swapped version U+FFFE is a noncharacter, when an
interpreting process finds U+FFFE as the first character, it signals either that the process
has encountered text that is of the incorrect byte order or that the file is not valid Unicode
text.

In the UTF-16 encoding scheme, U+FEFF at the very beginning of a file or stream explic-
itly signals the byte order.

The byte sequences <FE16 FF16> or <FF16 FE16> may also serve as a signature to identify a
file as containing UTF-16 text. Either sequence is exceedingly rare at the outset of text files
using other character encodings, whether single- or multiple-byte, and therefore not
likely to be confused with real text data. For example, in systems that employ ISO Latin-1
(ISO/IEC 8859-1) or the Microsoft Windows ANSI Code Page 1252, the byte sequence
<FE16 FF16> constitutes the string <thorn, y diaeresis> “þÿ”; in systems that employ the
Apple Macintosh Roman character set or the Adobe Standard Encoding, this sequence rep-
resents the sequence <ogonek, hacek> “”; in systems that employ other common IBM
PC code pages (for example, CP 437, 850), this sequence represents <black square, no-
break space> “ ”.

Special Areas and Format Characters 882 23.8 Specials
In UTF-8, the BOM corresponds to the byte sequence <EF16 BB16 BF16>. Although there
are never any questions of byte order with UTF-8 text, this sequence can serve as signature
for UTF-8 encoded text where the character set is unmarked. As with a BOM in UTF-16,
this sequence of bytes will be extremely rare at the beginning of text files in other character
encodings. For example, in systems that employ Microsoft Windows ANSI Code Page
1252, <EF16 BB16 BF16> corresponds to the sequence <i diaeresis, guillemet, inverted ques-
tion mark> “ï » ¿”.

For compatibility with versions of the Unicode Standard prior to Version 3.2, the code
point U+FEFF has the word-joining semantics of zero width no-break space when it is not
used as a BOM. In new text, these semantics should be encoded by U+2060 word joiner.
See “Line and Word Breaking” in Section 23.2, Layout Controls, for more information.

Where the byte order is explicitly specified, such as in UTF-16BE or UTF-16LE, then all
U+FEFF characters—even at the very beginning of the text—are to be interpreted as zero
width no-break spaces. Similarly, where Unicode text has known byte order, initial U+FEFF
characters are not required, but for backward compatibility are to be interpreted as zero
width no-break spaces. For example, for strings in an API, the memory architecture of the
processor provides the explicit byte order. For databases and similar structures, it is much
more efficient and robust to use a uniform byte order for the same field (if not the entire
database), thereby avoiding use of the byte order mark.

Systems that use the byte order mark must recognize when an initial U+FEFF signals the
byte order. In those cases, it is not part of the textual content and should be removed before
processing, because otherwise it may be mistaken for a legitimate zero width no-break
space. To represent an initial U+FEFF zero width no-break space in a UTF-16 file, use
U+FEFF twice in a row. The first one is a byte order mark; the second one is the initial zero
width no-break space. See Table 23-6 for a summary of encoding scheme signatures.

If U+FEFF had only the semantics of a signature code point, it could be freely deleted from
text without affecting the interpretation of the rest of the text. Carelessly appending files
together, for example, can result in a signature code point in the middle of text. Unfortu-
nately, U+FEFF also has significance as a character. As a zero width no-break space, it indi-
cates that line breaks are not allowed between the adjoining characters. Thus U+FEFF
affects the interpretation of text and cannot be freely deleted. The overloading of semantics
for this code point has caused problems for programs and protocols. The new character
U+2060 word joiner has the same semantics in all cases as U+FEFF, except that it cannot

Table 23-6. Unicode Encoding Scheme Signatures
Encoding Scheme Signature
UTF-8 EF BB BF
UTF-16 Big-endian FE FF
UTF-16 Little-endian FF FE
UTF-32 Big-endian 00 00 FE FF
UTF-32 Little-endian FF FE 00 00

Special Areas and Format Characters 883 23.8 Specials
be used as a signature. Implementers are strongly encouraged to use word joiner in those
circumstances whenever word joining semantics are intended.

An initial U+FEFF also takes a characteristic form in other charsets designed for Unicode
text. (The term “charset” refers to a wide range of text encodings, including encoding
schemes as well as compression schemes and text-specific transformation formats.) The
characteristic sequences of bytes associated with an initial U+FEFF can serve as signatures
in those cases, as shown in Table 23-7.

Most signatures can be deleted either before or after conversion of an input stream into a
Unicode encoding form. However, in the case of BOCU-1 and UTF-7, the input byte
sequence must be converted before the initial U+FEFF can be deleted, because stripping
the signature byte sequence without conversion destroys context necessary for the correct
interpretation of subsequent bytes in the input sequence.

Specials: U+FFF0–U+FFF8
The nine unassigned Unicode code points in the range U+FFF0..U+FFF8 are reserved for
special character definitions.

Annotation Characters: U+FFF9–U+FFFB
An interlinear annotation consists of annotating text that is related to a sequence of anno-
tated characters. For all regular editing and text-processing algorithms, the annotated char-
acters are treated as part of the text stream. The annotating text is also part of the content,
but for all or some text processing, it does not form part of the main text stream. However,
within the annotating text, characters are accessible to the same kind of layout, text-pro-
cessing, and editing algorithms as the base text. The annotation characters delimit the
annotating and the annotated text, and identify them as part of an annotation. See
Figure 23-4.

The annotation characters are used in internal processing when out-of-band information
is associated with a character stream, very similarly to the usage of U+FFFC object

replacement character. However, unlike the opaque objects hidden by the latter char-
acter, the annotation itself is textual.

Table 23-7. U+FEFF Signature in Other Charsets
Charset Signature
SCSU 0E FE FF
BOCU-1 FB EE 28
UTF-7 2B 2F 76 38 or

2B 2F 76 39 or
2B 2F 76 2B or
2B 2F 76 2F

UTF-EBCDIC DD 73 66 73

Special Areas and Format Characters 884 23.8 Specials
Conformance. A conformant implementation that supports annotation characters inter-
prets the base text as if it were part of an unannotated text stream. Within the annotating
text, it interprets the annotating characters with their regular Unicode semantics.

U+FFF9 interlinear annotation anchor is an anchor character, preceding the inter-
linear annotation. The exact nature and formatting of the annotation depend on additional
information that is not part of the plain text stream. This situation is analogous to that for
U+FFFC object replacement character.

U+FFFA interlinear annotation separator separates the base characters in the text
stream from the annotation characters that follow. The exact interpretation of this charac-
ter depends on the nature of the annotation. More than one separator may be present.
Additional separators delimit parts of a multipart annotating text.

U+FFFB interlinear annotation terminator terminates the annotation object (and
returns to the regular text stream).

Use in Plain Text. Usage of the annotation characters in plain text interchange is strongly
discouraged without prior agreement between the sender and the receiver, because the
content may be misinterpreted otherwise. Simply filtering out the annotation characters on
input will produce an unreadable result or, even worse, an opposite meaning. On input, a
plain text receiver should either preserve all characters or remove the interlinear annota-
tion characters as well as the annotating text included between the interlinear annota-

tion separator and the interlinear annotation terminator.

When an output for plain text usage is desired but the receiver is unknown to the sender,
these interlinear annotation characters should be removed as well as the annotating text
included between the interlinear annotation separator and the interlinear anno-

tation terminator.

This restriction does not preclude the use of annotation characters in plain text inter-
change, but it requires a prior agreement between the sender and the receiver for correct
interpretation of the annotations.

Lexical Restrictions. If an implementation encounters a paragraph break between an
anchor and its corresponding terminator, it shall terminate any open annotations at this

Figure 23-4. Annotation Characters

Felix
Text display

Text stream

Annotated
text

Annotating
text

Annotation
characters

Annotated
text

Annotating
text

Annotation
characters

Special Areas and Format Characters 885 23.8 Specials
point. Anchor characters must precede their corresponding terminator characters.
Unpaired anchors or terminators shall be ignored. A separator occurring outside a pair of
delimiters, shall be ignored. Annotations may be nested.

Formatting. All formatting information for an annotation is provided by higher-level pro-
tocols. The details of the layout of the annotation are implementation-defined. Correct for-
matting may require additional information that is not present in the character stream, but
rather is maintained out-of-band. Therefore, annotation markers serve as placeholders for
an implementation that has access to that information from another source. The format-
ting of annotations and other special line layout features of Japanese is discussed in JIS X
4051.

Input. Annotation characters are not normally input or edited directly by end users. Their
insertion and management in text are typically handled by an application, which will pres-
ent a user interface for selecting and annotating text.

Collation. With the exception of the special case where the annotation is intended to be
used as a sort key, annotations are typically ignored for collation or optionally prepro-
cessed to act as tie breakers only. Importantly, annotation base characters are not ignored,
but rather are treated like regular text.

Bidirectional Text. Bidirectional processing of text containing interlinear annotations
requires special care. This follows from the fact that interlinear annotations are fundamen-
tally nonlinear—the annotations are not part of the main text flow, whereas bidirectional
text processing assumes that it is applied to a single, linear text flow. For best results, the
Bidirectional Algorithm should be applied to the main text, in which any interlinear anno-
tations are replaced by their annotated text, in each case bracketed by bidirectional format
control characters to ensure that the annotated text remains visually contiguous, and then
should be separately applied to each extracted segment of annotating text. (See Unicode
Standard Annex #9, “Unicode Bidirectional Algorithm,” for more information.)

Replacement Characters: U+FFFC–U+FFFD
U+FFFC. The U+FFFC object replacement character is used as an insertion point for
objects located within a stream of text. All other information about the object is kept out-
side the character data stream. Internally it is a dummy character that acts as an anchor
point for the object’s formatting information. In addition to assuring correct placement of
an object in a data stream, the object replacement character allows the use of general
stream-based algorithms for any textual aspects of embedded objects.

U+FFFD. The U+FFFD replacement character is the general substitute character in
the Unicode Standard. It can be substituted for any “unknown” character in another
encoding that cannot be mapped in terms of known Unicode characters. It can also be used
as one means of indicating a conversion error, when encountering an ill-formed sequence
in a conversion between Unicode encoding forms. See Section 3.9, Unicode Encoding Forms
for detailed recommendations on the use of U+FFFD as replacement for ill-formed
sequences. See also Section 5.3, Unknown and Missing Characters for related topics.

Special Areas and Format Characters 886 23.9 Tag Characters
23.9 Tag Characters

Tag Characters: U+E0000–U+E007F
This block encodes a set of 95 special-use tag characters to enable the spelling out of
ASCII-based string tags using characters that can be strictly separated from ordinary text
content characters in Unicode. These tag characters can be embedded by protocols into
plain text. They can be identified and/or ignored by implementations with trivial algo-
rithms because there is no overloading of usage for these tag characters—they can express
only tag values and never textual content itself.

In addition to these 95 characters, two other characters are encoded: one language tag
identification character and one cancel tag character.

Deprecated Use for Language Tagging
The language tag identification character identifies a tag string as a language tag; the lan-
guage tag itself makes use of BCP 47 language tag strings spelled out using the tag charac-
ters from this block. This character and the associated mechanism for language tagging are
deprecated, and should not be used—particularly with any protocols that provide alternate
means of language tagging. The Unicode Standard recommends the use of higher-level
protocols, such as HTML or XML, which provide for language tagging via markup. See the
W3C specification, “Unicode in XML and Other Markup Languages.” The requirement for
language information embedded in plain text data is often overstated, and markup or other
rich text mechanisms constitute best current practice. See Section 5.10, Language Informa-
tion in Plain Text for further discussion.

Syntax for Embedding Tags
To embed any ASCII-derived tag in Unicode plain text, the tag is spelled out with corre-
sponding tag characters, prefixed with the relevant tag identification character. The resul-
tant string is embedded directly in the text.

Tag Identification. The tag identification character is used as a mechanism for identifying
tags of different types. In the future, this could enable multiple types of tags embedded in
plain text to coexist.

Tag Termination. No termination character is required for the tag itself, because all char-
acters that make up the tag are numerically distinct from any non-tag character. A tag ter-
minates either at the first non-tag character (that is, any other normal Unicode character)
or at next tag identification character. A detailed BNF syntax for tags is listed in “Formal
Tag Syntax” later in this section.

Language Tags. A string of tag characters prefixed by U+E0001 language tag is specified
to constitute a language tag. Furthermore, the tag values for the language tag are to be
spelled out as specified in BCP 47, making use only of registered tag values or of user-
defined language tags starting with the characters “x-”.

Special Areas and Format Characters 887 23.9 Tag Characters
For example, consider the task of embedding a language tag for Japanese. The Japanese tag
from BCP 47 is “ja” (composed of ISO 639 language id) or, alternatively, “ja-JP” (composed
of ISO 639 language id plus ISO 3166 country id). Because BCP 47 specifies that language
tags are not case significant, it is recommended that for language tags, the entire tag be low-
ercased before conversion to tag characters.

Thus the entire language tag “ja-JP” would be converted to the tag characters as follows:

<U+E0001, U+E006A, U+E0061, U+E002D, U+E006A, U+E0070>

The language tag, in its shorter, “ja” form, would be expressed as follows:

<U+E0001, U+E006A, U+E0061>

Tag Scope and Nesting. The value of an established tag continues from the point at which
the tag is embedded in text until either

A. The text itself goes out of scope, as defined by the application, for
example, for line-oriented protocols, when reaching the end-of-line or
end-of-string; for text streams, when reaching the end-of-stream; and so
on),

or

B. The tag is explicitly canceled by the U+E007F cancel tag character.

Tags of the same type cannot be nested in any way. For example, if a new embedded lan-
guage tag occurs following text that was already language tagged, the tagged value for sub-
sequent text simply changes to that specified in the new tag.

Tags of different types can have interdigitating scope, but not hierarchical scope. In effect,
tags of different types completely ignore each other, so that the use of language tags can be
completely asynchronous with the use of future tag types. These relationships are illus-
trated in Figure 23-5.

Canceling Tag Values. The main function of cancel tag is to make possible operations
such as blind concatenation of strings in a tagged context without the propagation of inap-
propriate tag values across the string boundaries. There are two uses of cancel tag. To
cancel a tag value of a particular type, prefix the cancel tag character with the tag identi-
fication character of the appropriate type. For example, the complete string to cancel a lan-
guage tag is <U+E0001, U+E007F>. The value of the relevant tag type returns to the default
state for that tag type—namely, no tag value specified, the same as untagged text. To cancel
any tag values of any type that may be in effect, use cancel tag without a prefixed tag iden-
tification character.

Currently there is no observable difference in the two uses of cancel tag, because only
one tag identification character (and therefore one tag type) is defined. Inserting a bare
cancel tag in places where only the language tag needs to be canceled could lead to unan-
ticipated side effects if this text were to be inserted in the future into a text that supports
more than one tag type.

Special Areas and Format Characters 888 23.9 Tag Characters
Working with Language Tags
Avoiding Language Tags. Because of the extra implementation burden, language tags
should be avoided in plain text unless language information is required and the receivers of
the text are certain to properly recognize and maintain the tags. However, where language
tags must be used, implementers should consider the following implementation issues
involved in supporting language information with tags and decide how to handle tags
where they are not fully supported. This discussion applies to any mechanism for provid-
ing language tags in a plain text environment.

Higher-Level Protocols. Language tags should be avoided wherever higher-level protocols,
such as a rich text format, HTML, or MIME, provide language attributes. This practice
prevents cases where the higher-level protocol and the language tags disagree. See the W3C
specification, “Unicode in XML and Other Markup Languages.”

Effect of Tags on Interpretation of Text. Implementations that support language tags may
need to take them into account for special processing, such as hyphenation or choice of
font. However, the tag characters themselves have no display and do not affect line break-
ing, character shaping or joining, or any other format or layout properties. Processes inter-
preting the tag may choose to impose such behavior based on the tag value that it
represents.

Display. Characters in the tag character block have no visible rendering in normal text and
the language tags themselves are not displayed. This choice may not require modification
of the displaying program, if the fonts on that platform have the language tag characters
mapped to zero-width, invisible glyphs. For debugging or other operations that must render

Figure 23-5. Tag Characters

Tags go out of scope:
at the end of the text

when the tag type is canceled

at the next tag of the same type

when all tags are canceled

Tags of different types can nest:

Tag types Tag values Cancel tag

Special Areas and Format Characters 889 23.9 Tag Characters
the tags themselves visible, it is advisable that the tag characters be rendered using the corre-
sponding ASCII character glyphs (perhaps modified systematically to differentiate them
from normal ASCII characters). The tag character values have been chosen, however, so that
the tag characters will be interpretable in most debuggers even without display support.

Processing. Sequential access to the text is generally straightforward. If language codes are
not relevant to the particular processing operation, then they should be ignored. Random
access to stateful tags is more problematic. Because the current state of the text depends on
tags that appeared previous to it, the text must be searched backward, sometimes all the
way to the start. With these exceptions, tags pose no particular difficulties as long as no
modifications are made to the text.

Range Checking for Tag Characters. Tag characters are encoded in Plane 14 to support
easy range checking. The following C/C++ source code snippets show efficient implemen-
tations of range checks for characters U+E0000..U+E007F expressed in each of the three
significant Unicode encoding forms. Range checks allow implementations that do not
want to support these tag characters to efficiently filter for them.

Range check expressed in UTF-32:
if (((unsigned) *s) - 0xE0000 <= 0x7F)
Range check expressed in UTF-16:
if ((*s == 0xDB40) && (((unsigned)*(s+1)) - 0xDC00 <= 0x7F))
Range check expressed in UTF-8:
if ((*s == 0xF3) && (*(s+1) == 0xA0) &&

((*(s+2) & 0xFE) == 0x80))
Alternatively, the range checks for UTF-32 and UTF-16 can be coded with bit masks. Both
versions should be equally efficient.

Range check expressed in UTF-32:
if (((*s) & 0xFFFFFF80) == 0xE0000)
Range check expressed in UTF-16:
if ((*s == 0xDB40) && (*(s+1) & 0xDC80) == 0xDC00)
Editing and Modification. Inline tags present particular problems for text changes,
because they are stateful. Any modifications of the text are more complicated, as those
modifications need to be aware of the current language status and the <start>...<end> tags
must be properly maintained. If an editing program is unaware that certain tags are stateful
and cannot process them correctly, then it is very easy for the user to modify text in ways
that corrupt it. For example, a user might delete part of a tag or paste text including a tag
into the wrong context.

Dangers of Incomplete Support. Even programs that do not interpret the tags should not
allow editing operations to break initial tags or leave tags unpaired. Unpaired tags should
be discarded upon a save or send operation.

Special Areas and Format Characters 890 23.9 Tag Characters
Nonetheless, malformed text may be produced and transmitted by a tag-unaware editor.
Therefore, implementations that do not ignore language tags must be prepared to receive
malformed tags. On reception of a malformed or unpaired tag, language tag-aware imple-
mentations should reset the language to NONE and then ignore the tag.

Unicode Conformance Issues
The rules for Unicode conformance for the tag characters are exactly the same as those for
any other Unicode characters. A conformant process is not required to interpret the tag
characters. If it does interpret them, it should interpret them according to the standard—
that is, as spelled-out tags. However, there is no requirement to provide a particular inter-
pretation of the text because it is tagged with a given language. If an application does not
interpret tag characters, it should leave their values undisturbed and do whatever it does
with any other uninterpreted characters.

The presence of a well-formed tag is no guarantee that the data are correctly tagged. For
example, an application could erroneously label French data with a Spanish tag.

Implementations of Unicode that already make use of out-of-band mechanisms for lan-
guage tagging or “heavy-weight” in-band mechanisms such as XML or HTML will con-
tinue to do exactly what they are doing and will ignore the tag characters completely. They
may even prohibit their use to prevent conflicts with the equivalent markup.

Formal Tag Syntax
An extended BNF description of the tags specified in this section is given here.
tag := language-tag | cancel-all-tag
language-tag := language-tag-introducer (language-tag-arg
 | tag-cancel)
language-tag-arg := tag-argument

In this rule, tag-argument is constrained to be a valid language identi-
fier according to BCP 47, with the assumption that the appropriate con-
versions from tag character values to ASCII are performed before
checking for syntactic correctness against BCP 47. For example,
U+E0041 tag latin capital letter a is mapped to U+0041 latin cap-

ital letter a, and so on.
cancel-all-tag := tag-cancel
tag-argument := tag-character+
tag-character := [U+E0020 - U+E007E]
language-tag-introducer := U+E0001
tag-cancel := U+E007F

	23 Special Areas and Format Characters
	23.1 Control Codes
	Representing Control Sequences
	Specification of Control Code Semantics
	Table 23-1. Control Codes Specified in the Unicode Standard

	23.2 Layout Controls
	Line and Word Breaking
	Table 23-2. Letter Spacing

	Cursive Connection and Ligatures
	Figure 23-1. Prevention of Joining
	Figure 23-2. Exhibition of Joining Glyphs in Isolation
	Figure 23-3. Effect of Intervening Joiners

	Combining Grapheme Joiner
	Bidirectional Ordering Controls
	Table 23-3. Bidirectional Ordering Controls

	Stateful Format Controls
	Table 23-4. Paired Stateful Controls
	Table 23-5. Paired Stateful Controls (Deprecated)

	23.3 Deprecated Format Characters
	23.4 Variation Selectors
	23.5 Private-Use Characters
	Private Use Area: U+E000–U+F8FF
	Supplementary Private Use Areas

	23.6 Surrogates Area
	23.7 Noncharacters
	23.8 Specials
	Byte Order Mark (BOM): U+FEFF
	Table 23-6. Unicode Encoding Scheme Signatures
	Table 23-7. U+FEFF Signature in Other Charsets

	Specials: U+FFF0–U+FFF8
	Annotation Characters: U+FFF9–U+FFFB
	Figure 23-4. Annotation Characters

	Replacement Characters: U+FFFC–U+FFFD

	23.9 Tag Characters
	Tag Characters: U+E0000–U+E007F
	Deprecated Use for Language Tagging
	Syntax for Embedding Tags
	Figure 23-5. Tag Characters

	Working with Language Tags
	Unicode Conformance Issues
	Formal Tag Syntax

