The Unicode Standard, Version 1.1

Appendix F FSS-UTF

File System Safe UCS Transformation format

An informative annex to ISO10646-1 defines a UCS® Transformation Format called UTF-1.
This format protects control bytes; specifically the null byte. That is, no byte in a UTF-1 string
contains a null. This enables a UTF-1 string to be processed by operations that take special
action on a null byte.

However, UTF-1 does not protect the ASCII slash character (/). This character is used as a
special character in many file systems. Consequently the X/Open Company Ltd published a
transformation format called File System Safe UCS Transformation Format (FSS_UTF). The
format is published as an X/Open Preliminary Specification, Document Number:P316. The
details are reproduced below.

This appendix is for information only: it does not form part of the Unicode Standard Version
1.1

F.1 Criteria for the Transformation Format

The FSS-UTF meets the following criteria:

1. It is compatible with historical file systems (which disallow the null byte and the
ASCII slash character as a part of the file name).

2. It is compatible with existing programs. The existing model for multi-byte processing
is that ASCII values do not occur in a single byte of a multi-byte encoding. An FSS-
UTF representation of a non-ASCII character contains no ASCII code values. If the
Unicode value is in the range [0x00, 0x7F] the transformation is in this range; other-
wise, the transformed byte sequence does not contain any bytes in the range [0x00,
0x7F].

It is easy to convert from and to Unicode.
The first byte indicates the number of bytes to follow in a multi-byte sequence.
The FSS-UTF is not be extravagant in terms of number of bytes used for encoding.

S vk W

It is be possible to find the start of a character efficiently starting from an arbitrary
location in a byte stream.

F.2 Specification

The FSS-UTF encodes character values in the range [0, 0x7rFFrFFF]® using multi-byte charac-
ters of lengths 1, 2, 3, 4, 5, and 6 bytes. For all encodings of more than one byte, the initial
byte determines the number of bytes used by setting 1 in the equivalent number of high-order
bytes. The next most significant bit is always 0. For example a 2-byte sequence starts with 110
and a 6-byte sequence starts with 1111110

The following table shows the format of the first byte of a character; the free bits available for
coding the character are indicated by an x.

5 UCS is an abbreviation for the 10646 character set. Unicode is identical in code and repertoire with the 2 byte form,
UCS-2.

6. Unicode only requires values up to FFFF and so only uses multi-byte characters of lengths up to 3, but for com-
pleteness the full ranges of the format are described.

FSS-UTF 27

The Unicode Standard, Version 1.1

Byte Value Bits Free
First of 2 bytes 110xxxxx 5
First of 3 bytes 1110xxxx 4
First of 4 bytes 11110xxx 3
First of 5 bytes 111110xx 2
First of 6 bytes 1111110x 1
All subsequent bytes 10XXXXXX 6

Therefore any byte that does not start with 10 is the start of a FSS-UTF character sequence.
The figure below illustrates the FSS-UTF:

Bits Hex Min Hex Max e uence in Bi

7 00000000 0000007f Ovvvvvvv

11 00000080 000007FF 110vvvvv 10vvvvvy

16 00000800 0000FFFF 1110vvvv 10vvvvvv 10vvvvvv

21 00010000 001FFFFF 11110vvv 10vvvvvv 10vvvvvy 10vvvvvy

26 00200000 O3FFFFFF 111110vv 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvvy

31 04000000 7FFFFFFF 1111110v 10vvvvvv 10vvvvvv 10vvvvvv 10vvvvvy 10vvvvvy
The Unicode value is just the concatenation of the v bits in the multibyte encoding. When

there are multiple ways to encode a value, for example U+0000, only the shortest encoding is
legal.

F.3 Sample Implementations

Below are sample implementations of the C standard wctomb () and mbtowe () functions which
demonstrate the algorithms for converting from Unicode to the transformation format and
converting from the transformation format to Unicode. The sample implementations include
error checks, some of which may not be necessary for conformance:

typedef struct {

int cmask;
int cval;
int shift;
long lmask;
long lval;
} Tab;
static Tab tab[] = {
0x80, 0x00, 0*6, 0x7F, 0, /* 1 byte sequence */
0xEOQ, 0xCo, 1*6; 0x7FF, 0x80, /* 2 byte sequence */
0xFO0, 0xEOQ, 2*6, 0xFFFF, 0x800, /* 3 byte seguence */
OxF8, 0xFO, 3*6, Ox1FFFFF, 0x10000, /* 4 byte sequence */
OxFC, 0xF8, 4*6, Ox3FFFFFF, 0x200000, /* 5 byte sequence */
OXFE, OxFC, 5¥%6, Ox7FFFFFFF, 0x4000000, /* 6 byte sequence */
0, /* end of table */
};
int mbtowc (wchar_t *p, char *s, size_t n) {
long 1;
int ¢0, ¢, nc;
Tab *t;
if (s == 0) return 0;
nc = 0;
if (n <= nc) return -1;
c0 = *s & Oxff;
1l = cO0;
for (t = tab; t->cmask; t++) {
nc++;
if ((c0 & t->cmask) == t->cval) {

1 &= t->lmask;

if (1 < t->1lval) return -1;
po=1;

return nc;

28 FSS-UTF

The Unicode Standard, Version 1.1

}
if (n <= nc)
return -1;
S++;
c = (*s ~ 0x80) & OxFF;
if (¢ & 0xCO) return -1;
l=(1<<6) | c;

}

return -1;

}

int wctomb (char *s, wchar_t wc) {
long 1;
int ¢, nc;
Tab *t;

if (s == 0) return 0;
1 = wc;
nc = 0;
for (t=tab; t->cmask; t++) {
nc++;
if (1 <= t->lmask) {
c = t->shift;

*s = t->cval | (1 >>c);
while (¢ >0) {
c -= 6;
S++;
*s = 0x80 | ((1 > c) & Ox3F

}
return nc;
}
}

return -1;

FSS-UTF

