PAW Related \Work

Vladimir Kolovski and Lalana Kagal

/////////

Overview

» Frameworks
PCA [1]
Peerlrust [2]
Bonatti et al.[3]

» Policy Languages
WS-Paolicy [4]
SAML [5]
XACML [6]
KaosS [7]
WSPL [8]

8/23/2005

Proof-Carrying Authorization

» Access control on the web as a general distributed
authorization problem

» Builds on previous design tradition by uncoupling
authentication from authorization

» Motivated by the problem of lack of interoperability
between administrative domains (e.g., two
universities)

» PCA is a framework for defining security logics
based on higher-order logic.

8/23/2005

PCA Properties

» Interoperability and Expressivity.

8/23/2005

security policies in PCA do not have to be based
on the identity of the user

policies are completely general — the right to
ACCEesSS a page can be described by an arbitrary.
predicate

Example, a particular security policy grants
access only to people who are able to present
the proof of Fermat’s last theorem.

authentication servers are replaced with more
general fact servers

PCA Properties

» Web access control system based on a reasoning
framework by Appel and Felten, which is higher-order,
undecidable logic

» Isn’t this infeasible, since a server might not be able to
decide whether a set of credentials implies that access
should be granted?

» Proof of access on client side can be described using a
subset of higher-order logic that corresponds to a simple
and decidable application-specific logic

» The proof of access along with the definition of the
application-specific logic in terms of the higher-order logic,
IS sent to the server.

8/23/2005

PCA Architecture

» Types ofi players:

Webh browsers

» local proxy that intercepts a browser’s request for a protected
page and then executes the authorization protocol and
generates the proof needed for accessing the page

» the web browser sees only the result—either the page that the
user attempted to access or a failure message.
fact servers

» Fact servers hold the facts a client must gather before it can
construct a proof

» Each fact is a signed statement in the PCA logic.

8/23/2005

PCA Architecture

» Web Sernvers
Extended through the use of a servlet which intercepts
and handles all PCA-related requests.

Two tasks that occur on server’s side during an

authorization transaction
» generating the proposition that needs to be proved and

» verifying that the proof provided by the client is correct.

Each is performed by a separate component, the
proposition generator and the checker.

8/23/2005

Proofi generation/checking

» Itis the client’s responsibility to prove that access
should be granted

» All the server needs to do is verify that the client’s
proof is valid, which can be done efficiently even if
the proof is expressed in an undecidable logic.

» Client’s task Is feasible because it does not need
the full expressivity of the higher logic - only uses a
decidable subset.

8/23/2005

PCA Scenario

Alice wants to access
hettprfiserver fmidterm . _html

Alice knows it's after

Registrar
(fact server)
= The Registrar

knows that Alice is
taking C5101

E

Bob

fweb server)

Bob publishes
midterm.html on the
wiebh

He wants the page to be
visible only by students

in C5101 and only after
2 P.M.

Prool Generation, revisited

» Proofs are generated automatically by a logic
program

» The goal that must be proven is encoded as the
statement of a theorem.

» Facts that are likely to be helpful in proving the
theorem are added as assumptions.

» The logic program generates a derivation of the
theorem,; this is the “proof” that the proxy sends to
the server.

8/23/2005

Proofi generation, revisited

» Client’s job is to find all the assumptions that are
required by the proof.

» Assumptions might include

statements made by the server about who is
allowed to access a particular file,

guesses about time,

statements by which principals delegate
authority to other principals, etc.

» Some assumptions might not be known to the
client - need to be obtained from web pages
(Iterative proving)

8/23/2005

Proof Checking, revisited

» Proof checking reduced to type checking, where

The type of the term Is the statement of the
theorem that must be proven;

the body of the term is the proof itself.

» If the term Is well typed, the client has succeeded
In proving the proposition.

» Proofs have to be explicitly typed, which is

oractical only for small examples

» Preprocessing before submitted to the checker

8/23/2005

PCA Diagram

8/23/2005

Drawbacks of PCA

y Too much work for client?

8/23/2005

Each of the operators in client’'s decidable logic subset
should be given a definition in higher-order logic, and
each of the inference rules should be defined as a
lemma.

Has to define its own application-specific, decidable
logic, construct a proof ofi access in that legic and then
submit the proof together with a mapping ofi its terms to
higher order logic to the server

Proofs blowup in size (every term has to be typed)
Client’'s werk cannot be fully automated

Example client inference rule

» SPEAKSFOR-E is simple delegation

A says (B speaksfor A) B says goal(URL;nonce))

A says (goal(URL;nonce))

Semantics in Higher Order loegic

Figure 3_.6: Proof of the SPEAKSFOER-E theorem.

A savs (B speaksfor 4) premise

B savs (goal(L7,N)) premise
[+L7"% N B says (goal(L7.N)) — A4 says (goal(L7.N"))] assuwmption
B savs (goal(l7.N)) — 4 savs (goal(L7,\N)) wuwe3
(wLTN' B savs (goal(U7 . N")) — 4 savs (goal(L7" . N")))

— (B savs (goal(IU.N)) — A savs (goal(L7.N))
A says ((vL"¥N'.B says (goal(U”,N"))—4 says (goal (L N1}
— (B says (goal{L7,N)}—.4 says (goal (L7 2N1))) SAYS-I2 5
says (VLY N B says (goal(l7 . N")) — 4 says (goal(L7.N"))) = |
savs (B says (goalil7. N)) — 4 says (goal(l7,N))) SAYVS-I3 6, 7
says (B says (goalil7. N))) SAYS-I2 2
savs (4 says (goal(L7. N))) SAYVS-I3 B 9

savs (goal(L7,NV)) SAYS-TAUT 10

8/23/2005

PeerTrust Motivation

» Access controllin a p2p network that connects
commercial e-learning previders with learning
management systems

» Suppose E-Learn Associates manages a Spanish
course, and Alice wishes to access that course

» Access Policy: free of charge to all police officers
who live and work for the state of California.

» Alice Is reluctant to share her police badge and
driver’s license freely — she has her own policy for
sharing

8/23/2005

Trrust Negotiation

» Access control no lenger unilateral

» In the example, E-Learn will have to shew that
satisfies the access policies for Alice’s credential

» In deing so, E-LLearn might have to disclese
additional credentials ofi its own — but only after
Alice demonstrates she satisfies the policies for
each of them

» Peertrust uses automatic trust negotiation for this
purpose

8/23/2005

Trrust Negotiation

y trust Is established by exchange of Information
» trust establishment precess is bi-directional

» PeerTrust uses digital credentials (signed
assertions) to manage trust establishment

» Trust Is established incrementally throeugh an
iterative process which involves gradually
disclesing credentials and reguests for credentials

8/23/2005

Peerlrust Language

» Peertrust’s policy and negotiation language Is
pased on guarded distributed legic programs.

y Based on first order Horn rules
it<-lit_1, it 2, ..., it n
each lit_I is a positive literal

» closed-world semantics

» the literals in the clauses can represent external
procedure calls.

» can be used to call authentication libs and check
environmental conditions mentioned in a policy

8/23/2005

PeerTrust Language Example

» eOrng:
preferrred(X) <- student(X) @ UMD

» eOra:
student(X) @ UMD <- student(X) @ UMD @ X

» elearn:
freeEnroll(Course,Requester) $ Requester <-
policeOfficer(Requester) @ csp @ Reguester,
spanishCourse(Course)

8/23/2005

Peerlrust & PAW

» PeerTrust’'s poelicies are sensitive and not freely shared

» Most of thelr work about pelicy protection and bilateral
iterative disclosure of credentials

» PeerTrust’s trust negotiation Is analogous to PAW's proof
exchange

itSs negotiation protocol goes through a lot ofi stages
no guarantee that it will even terminate

PeerTrust’s policy language can only be used for
positive authoerization, delegation is simple

Similar to PAW in the aspect ofi decentralized proof
generation. But we are working with' unilateral trust

8/23/2005

Uniferm Framework for Regulating

Service Access

» closely related to PeerTrust

» provides a means for fermulating and’ reasoning
about both services access and Infermation
disclosure constraints

» same as In PeerTrust, this project gives the client
the ablility to present counter-reguests to servers
and put restrictions on infermation disclosure

» ldentification and authentication reguirements can
be expressed through the language Itself

8/23/2005

» Keeps some state information on all parties

» Assumption about semi-structured erganization: of
credentials that allows guerying for specific data
(name and address in a drivers license)

» Thelr work addresses two ISsues:

policy filtering — the process of selecting the
rules that should be sent to the client

Service renaming — used in cases Where Servers
Wish to hide the details of the services they
provide

8/23/2005

Client’s Policy Evaluation

» given the server's requirements (with filtered and
renamed policies), the client searnches its portfolio
for a set of credentials/declarations that satisfy.
them

» using XSB andi the server's requirements as input,
a top down proof Is constructed

» credential and declaration atoms are gathered as
needed

» description of system implementation bit unclear,
not finished yet

8/23/2005

Relation between PAW and Bonattl’'s
Work

» most of the PeerTrust differences apply here, teo

» this work targets different types ofi policies, where
clients are reluctant to share them freely,

» hence most of the work Is done In the area of
protecting| the policies

» also, they keep persistent and negotiation state

8/23/2005

WS-Policy

» Extremely simple

Assertion sets
» Arbitrary XML for domain knewledge
» Generic engines treat as atomic propositions

(Exclusive-)disjunctive normal form

» <wsp:All> == conjunction

» <wsp:ExactlyOne> == exclusive-disjunction
Two “operations”

» Merge (more conjunction)
» Intersection

8/23/2005

WS-Policy Example

<wsp:Policy>

<wsse:Security Token>

<wsse: TokenType>wsse:KerberosvsTGT</wsse: TokenType>
</wsse:SecurityToken>

<wsse:Security Token>
<wsse: TokenType>wsse:X509v3</wsse: TokenType>
</wsse:SecurityToken>

</wsp:Policy>

8/23/2005

Mapping tor OWL

» Extremely simple
Assertions == Class (atomic as first approx)
<Wwsp:All> == ewl:intersectionOf

<wsp:ExactlyOne> == owl:unienOf + oewl:complementOf
the owl:intersectionOf

» |Issue: OWL |s first order

S0 open world assumption
» Being ExactlyOne can be tricky
» Reasoner might return “unknoewn’”

No unigue name assumption
» Implementation
XSLT (with customization for assertion sets)

8/23/2005

Policy Processing

» Policy Analysis...

Confoermance == class membership

» Ifi x Is rdfitype SomePaolicy, then it conforms to
SomePolicy

containment (and equivalence)

» [fi x meets policy A, then it meets policy B
Incompatibility

» If X meets policy A, then it can’t meet policy B
Incoherence

» Nothing can meet policy A

» Debugging and Explanation of policies

8/23/2005

Update on WS-Policy

» Implemented XSLT that converts both
the WS-Paolicy constructs (ExactlyOne, All)

the assertions themselves

» Use OWL constructs to recover structure — they're not

treated atomic anymore
<wsse:Integrity>

<wsse:Algorithm Type="wsse:AlgEncryption”
URI="http://www.w3.0rg/2001/04/xmlenc#3des-chc" />

</wsse:Integrity>
» Also have a mapping for Merge operator

8/23/2005

SAML

y It's an XML-based framework for exechanging
security infermation

XML-encoded security assertions
XML-encoded reguest/response protocol

Rules on using assertions with standarad
transport and messaging frameworks

» Useful for Single Sign On, Distributed Transaction,
Authorization service

8/23/2005

SAML Intro

» SAML Is different from other security approaches
because ofi its expression of security In the form of
assertions about subjects

» Other approaches use a central certificate authority.
to ISsue certificates that guarantee secure
communication from one point te anether within a
network

» With SAML, any point in the network can assert
that it kmows the identity of a user or piece of data.
It IS up to the receiving application to accept If it
trusts the assertion.

8/23/2005

What SAML IS not

» SAML Is an authentication protocol that is used between
Servers.

» You still need something that actually performs the login for
yOou.

» For example, when an LDAP server authenticates a user,
the authentication authority Is the LDAP server even though
the LDAP server may be using SAML te.communicate the
authorization.

» Tightly integrated, but different than XACMIL

SAML addresses authentication and provides a
mechanism for transferring authentication and
authorization decisions, XACML focuses on the
mechanism for arriving at those authorization decisions.

8/23/2005

Assertions & Statements

» Assertions are declarations of facts about a subject
according to the Issuer

E.g. John says the sky Is blue
» An SAML assertion may contain multiple statements
» Three kinds of statements

Authentication

Attribute

Authorization decision

» You can extend SAML to make your own Kinds of
assertions and statements

» Assertions can be digitally signed

8/23/2005

Content of Assertions

» Issuer ID and issuance timestamp
» Assertion ID
» Subject
Name plus the security domain
Optional subject confirmation, e.g. public key.
» Conditions under which assertion is valid

SAML clients must reject assertions containing
Uunsupported conditions

E.g. NotBefore, NotOnOrAfter, OneTimeUse,
Audience

8/23/2005

Example Assertion

<saml :
xmins:saml = “urn:oasis:names:tc:SAML:2.0:assertion”
Version=2.0"
AssertionID="example-123-0"
Issuer="w3c.prg”
Issuerinstant=“2005-08-23T14.57:472">

<saml:Conditions
NotBefore=“2005-08-23T14:57:472"
NotAfter="2005-08-24T12:00:00Z2"/>

<saml:Subject>
<saml:Nameldentifier
SecurityDomain="w3.0rg”
Name="“uberuser” />
</saml:Subject>

s4saml: >

Authentication Statements

y Structure
subject S
Wwas authentication by means M
at time T

» Does not actually check credentials

» Just shows that subject was authenticated
sometime in the past by the sender

» Useful for Single Sign On

8/23/2005

Authentication Example

<saml:Assertion
xmins:saml="urn:oasis:names:tc:SAML:2.0:assertion" Version="2.0"
AssertionID=" example-123-1">
<saml:Issuer>http://w3.org/issuer</saml:lssuer>
<saml:Subject>
<saml:Nameldentifier

Format="urn:oasis:names:...format:emailAddress">
uberuser@w3.org
</saml:Nameldentifier>

</saml:Subject>
<saml: Authninstant = "2005-08-23T14:57:47Z7">
<saml:AuthnContent>

<saml:AuthnContextClassRef>
urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport

</saml:AuthnContextClassRef>
</saml:AuthnContext>
</[saml: >
<saml:Conditions
NotBefore="2005-08-23T14:57:47Z2"
NotAfter=“2005-08-24T12:00:00Z2"/>
sreigmval: Assertion>

Attribute Statement

y Structure
subject S
has attributes A, B, ...
with value “a”, “b”, “c”, ...

y Useful for distributed transactions and
authorization services

8/23/2005

Attribute Example

<saml:Assertion AssertionID=" example-123-2">

<saml; >
<saml:Subject>
<saml:Nameldentifier

SecurityDomain="*
Name="* " [>

</saml:Subject>
<saml:Attribute
AttributeName="* .
AttributeNamespace="* ">
<saml:AttributeValue>

</saml:AttributeValue>
</saml:Attribute>
</saml; >

</saml:Assertion>
8/23/2005

Authorization Decision Statement

» An ISSuUIng authority decides whether to grant the
reguest

Py subject S
for access type A
o resource R (web page or a service)

given evidence E (one ofi more assertions used
to make decision)

8/23/2005

Authorization Decision Example

<saml:Assertion Assertion|D=" example-123-1">

<saml:Subject>
<saml:Nameldentifier

Format="urn:oasis:names:...format:emailAddress">
uberuser@w3.org
</saml:Nameldentifier>

</saml:Subject>

<saml:
Resource="http://w3.org/secret.ntml"
Decision=" ">
<saml:Action
Namespace="urn:oasis:names:tc:SAML:2.0:action:ghpp">

</saml:Action>
</saml: >

8/23/2005 .
</saml:Assertion>

SAML Requests

» YOou can query for specific kinds of assertion
Authentication guery.
Attribute query
Authorization decision guery.

» You can alse ask for an assertion with a particular
ID

By providing an ID reference
By providing a SAML “artifact”

8/23/2005

Authentication Request

y Structure
Please provide
authentication information
for subject S

» A successful response Is in the form of an assertion
containing an authentication statement

» It Is assumed that the reguester and responder have a trust
relationship

They are talking about the same subject

The response with the assertion Is a “letter of
Introduction” for the subject

8/23/2005

Attribute Request

y Structure
Please provide infermation
on attributes A or all
for subject S

» lIfithe requester Is denied access to some ofi the
attributes either a partial list Is returned, or noe
attributes at all

8/23/2005

Authoerization Decision Reguest

y Structure
IS subject S
allowed to perform action A
0N acceess resource R
given this evidence E

» This s Is a yes-or-no guestion

8/23/2005

Reguest Example

<samlp:
ID="example-123-4"
Version="2.0"
Issuerlnstant=“2005-08-23T14:57:47Z"
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML.:2.0:protocol”
Resource="http:w3c.org/secret.html’>
<saml:Subject>
<saml:Nameldentifier

Format="urn:oasis:names....format;:emailAddress">

uberuser@wa3.org
</saml:Nameldentifier>

</saml:Subject>

<saml:Action Namespace="urn:oasis:names:tc:SAML:1.0:action:ghpp">
GET

</saml:Action>

</samlp: >
8/23/2005

SAML Response

» Assertions

y Status codes
SuUccess
\ersionMismatch
Recelver
Sender

» Responses can be signed

8/23/2005

SAML Summary.

y It's an XML-based framework for exehanging
Security Information

» Useiul for Single Sign On, Distributed Transaction,
Authorization service

» Could be used in PAW to exchange authentication
and authorization infermation while proof checking

E.g. Within John’s proof for why he can access
W3.0rg/secret.ntml he says that Steve says that
he is a W3C member. PAW can use SAML to
reguest authentication info frem Steve.

8/23/2005

XACML

» OASIS eXtensible Access Control Markup Language
» Includes policy language and request/respoense language

policy language Is used to describe general access
control

» SAML standard provides interfaces that allow: third parties
to sendi their requests for authentication and autherization.

» XACML not only processes the authorization requests, but
it defines the mechanism for creating the complete
Infrastructure of rules, policies, and policy sets to arrive at
the autherization decisions

8/23/2005

1. Access Request

8 Obligations—| Obligation service

Palicy Enforcement Point

o

m

0
-

2. Reguest 7. Response

oOp 4. Attribute query - pIp
Policy Decision Point Folicy Information Foint
_ 6. Attribute ——

A
ha Subiect 5o Environment
— attributes attributes =
3. Policy 5b. Resource
attributes

Palicy Aososs Point Subject Resource Environment

XACMIL Policy Language

» Policy Sets made of Policies and Rules

» Policies have targets to check the suitability of a
policy for a given reguest

simplified conditions for the Subject, Resource,
and Action

<Subjects/>
<Resources>
<ResourceMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#string">SampleServer</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.0rg/2001/XMLSchema#string"
Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>
</ResourceMatch>
</Resources>
<Actions><AnyAction/></Actions>

8/23/2005

XACMIL Policy Language

» Rules associate boolean conditions with an effect (deny,
permit...)

Any user with an e-mail name in the “med.example.com*
namespace Is allowed to perform any action on any.
resource.

<Rule Ruleld= "urn:oasis:names:tc:xacml:2.0:example:SimpleRulel1" Effect=" ">
<Target>

<SubjectMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match">

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">med.example.com
</AttributeValue>

<SubjectAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name"/>
</SubjectMatch>

</Target>
</Rule>

y Conditions are boolean combinations of attribute-value
8/23/2p'airs

XACMIL Policy Language

» Supports several datatypes like date, time,
pDoolean, string, Integer

» Combining algerithms for conflict resolution

Deny-overrides, ordered-deny-overrides, permit-
overrides, ordered-permit-overrides, first-
applicable, only-one-applicable

<Policy Policyld="SamplePolicy"

RuleCombiningAlgld="urn:oasis:names:tc:xacml:1.0:rule-
II>

» A policy can include an ehbligation

When policy Is evaluated, the obligation Is
passed to the enforcing mechanism

8/23/2005

Attributes

» Conditions are made up of attributes

» Attributes are characteristics of the Subject, Resource,
Action, or Environment in which the access reguest Is made

» A Policy resolves attribute values either in the reguest
document or elsewhere through two mechanisms

Attribute Designator
» Lets the policy specify an attribute withia given name and type,
and optionally an issuer as well

» There Is one for each of the types of attributes in a reguest:
Subject, Resource, Action, and Environment

<Actions>
<ActionMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:string-equal">

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#string">read</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.0rg/2001/XMLSchema#string"
Attributeld="RequestedAction"/>
</ActionMatch>

</Actions>
8/23/2005

Attributes

AttributeSelector

» Allow a policy to loek fer attribute values through an
XPath guery.

» A data type and an XPath expression are provided

» Both AttributeDesignator and AttributeSelector
return multiple values

8/23/2005

XACML Eunctions

» Functions are used to compare multiple values that
AttributeDesignators and AttributeSelectors return

8/23/2005

Functions woerk en any combination of attribute
values, and can return any kind of attribute value
supported in the system

Arithmetie, string, numeric converters, logical
operators, date and time, bag, set, xpath

Functions can also be nested
Custom functions can also be written

XACMILL Function Example

<Condition Functionld="urn:oasis:names:tc:xacml:1.0:function:and">
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function:
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function: ">
<EnvironmentAttributeSelector DataType="http://www.w3.0rg/2001/XMLSchema#time"
Attributeld="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>

</Apply>

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#time">09:00:00</AttributeValue>
</Apply>
<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function: y,

<Apply Functionld="urn:oasis:names:tc:xacml:1.0:function: ">

<EnvironmentAttributeSelector DataType="http://www.w3.0rg/2001/XMLSchema#time"
Attributeld="urn:oasis:names:tc:xacml:1.0:environment:current-time"/>
</Apply>
<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#time">17:00:00</AttributeValue>
</Apply>
</Condition>

8/23/2005

XACML Reqguest

y Reguest
(subject, resource, action)

< >
<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml:1.0:data-type:ric822Name">
<AttributeValue> bs@simpsons.com</AttributeVValue>

</Attribute>
</ >
< >

<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:resource:resource859
DataType="http://mwww.w3.0rg/2001/XMLSchema#anyURI">
<AttributeValue> file://example/med/record/patient/BartSimpson </AttributeValue>
</Attribute>
</ >
< >
<Attribute Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchema#string">
<AttributeValue> read </AttributeValue>
</Attribute>
</ >
</ >

8/23/2005

XACML Response

» Response
Permit
Deny

ndeterminate (an error occurred or some
required value was missing, so a decision
cannot be made)

Not Applicable (the reguest can't be answered
Py this service).

8/23/2005

XACML Summary

» Policy language in XML
» Can be used with SAMIL’s request/response protocol

» Comparison to Rei(n)
Non rule based
Using combining algorithms for confilict reselution

Priorities cannot be set for policies or rules for conflict
riesolution

LLots of syntax
No delegation
Sun has an XACML implementation

8/23/2005

KAOS

» Is an ontology-based policy language
Relies on the features of OWL to express policies
» Uses JTP to reason ever policies

» A KAoeS policy Is an instance ofi the appropriate policy type
that defines the associated values for Its properties

» The context for the action Is defined through various
property restrictions in the action type

» Provides static policy conflict detection
Uses subsumption reasoning between classes
» Confiict resoelution
By ordering policies according to their precedence

8/23/2005

KA0S Example

<owl:Class rdf:ID="ExampleAction">
<rdfs:subClassOf rdf.resource="#EncryptedCommunicationAction" />
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#performedBy" />
<owl:toClass rdf:resource="#MembersOfDomainA" />
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf.resource="#hasDestination" />
<owl:toClass rdf:resource="#MembersOfDomainA " />
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

8/23/2005

KAoS Example (Cont)

<policy:PosAuthorizationPolicy rdf:ID="Example">

<policy:.controls rdf.resource="#ExampleAction" />
<policy:hasSiteOfEnforcement rdf.resource="#ActorSite" />
<policy:hasPriority>10</policy:hasPriority>
<policy:hasUpdateTimeStamp>4237445645589</policy:hasUpdateTimeStamp>
</policy:PosAuthorizationPolicy>

8/23/2005

KAOS Summary.

» Is an OWL based policy language

y Comparison with Rei(n)

8/23/2005

Non rule-based so less expressive
Simple delegation mechanism
Static conflict detection

GUI for developing policies

IHas an enforcement framework

Why higher order legic?

» Many security logics have higher-order features
like relations that range over formulas :

A says (B speaksfor A) B says (goal(URL;nonce))

A says (goal(URL;nonce))

8/23/2005

References

PCA Ritp://WIWW.CS. PrHNCEION.EdU/fESEarch/iechreps/IIR=677=03
Peerlirust http://Mwn:Ss: de/YrEoImedilia/pul/irustVIE DB 04 pdi
Bonatti’s work
nitpr/seciabdilUnimii/IPapErS/[CSECHed. 9S

4. \WS-Policy nttp://Aanin-
1281 119m. com/developenVorks/iWeRSENICES/lran/SPECICALIN/WS:
poliramn/
SAMIL Qttp://Xxml.cCovepATES, Ona/saml.ntml

XACMIL hittp://WAN.0aSIS-
OpeEn.org/commitiees/ic. home.php?2wa abhiev=xacm|

7. KaOS
ntups/Aa:coginst.uwii.edu/Papers/KAoS: Policy, Senvice 2003 pdi

8. WSPL
ntipe//research.stun.com/projects/xacmi/Policy2004. pdf

8/23/2005

http://www.cs.princeton.edu/research/techreps/TR-677-03
http://www.l3s.de/%7Eolmedilla/pub/trustVLDB04.pdf
http://seclab.dti.unimi.it/Papers/jcs-cred.ps
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-polfram/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-polfram/
http://xml.coverpages.org/saml.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://www.coginst.uwf.edu/Papers/KAoS_Policy_Service_2003.pdf
http://research.sun.com/projects/xacml/Policy2004.pdf

	PAW Related Work
	Overview
	Proof-Carrying Authorization
	PCA Properties
	PCA Properties
	PCA Architecture
	PCA Architecture
	Proof generation/checking
	PCA Scenario
	Proof Generation, revisited
	Proof generation, revisited
	Proof Checking, revisited
	PCA Diagram
	Drawbacks of PCA
	Example client inference rule
	Semantics in Higher Order logic
	PeerTrust Motivation
	Trust Negotiation
	Trust Negotiation
	PeerTrust Language
	PeerTrust Language Example
	PeerTrust & PAW
	Uniform Framework for Regulating Service Access
	
	Client’s Policy Evaluation
	Relation between PAW and Bonatti’s Work
	WS-Policy
	WS-Policy Example
	Mapping to OWL
	Policy Processing
	Update on WS-Policy
	SAML
	SAML Intro
	What SAML is not
	Assertions & Statements
	Content of Assertions
	Example Assertion
	Authentication Statements
	Authentication Example
	Attribute Statement
	Attribute Example
	Authorization Decision Statement
	Authorization Decision Example
	SAML Requests
	Authentication Request
	Attribute Request
	Authorization Decision Request
	Request Example
	SAML Response
	SAML Summary
	XACML
	
	XACML Policy Language
	XACML Policy Language
	XACML Policy Language
	Attributes
	Attributes
	XACML Functions
	XACML Function Example
	XACML Request
	XACML Response
	XACML Summary
	KAoS
	KAoS Example
	KAoS Example (Cont)
	KAoS Summary
	Why higher order logic?
	References

