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Entropy in operator algebras 

b y Erling StOrmer 

1 Introduction 
While entropy has for a third of a century been a central concept in ergodic theory, 
its non-Abelian counterpart is still in its adolescent stage with only a few signs of 
mature strength. The signs, however, are promising and show a potential of a subject 
of importance in operator algebras, so much that I am glad to use this opportunity to 
take the reader on a guided tour of its ideas and their resulting definitions and theorems. 
I have also included some open problems with the hope that they may inspire further 
development of the subject into maturity. In addition to giving the necessary definitions 
I shall mainly be concerned with explicit formulas for entropy of automorphisms. I shall 
therefore not discuss entropy of endomorphisms and completely positive maps, nor will 
I say much about applications to physics. 

There is another very promising approach to non-Abelian entropy which we shall 
not discuss but is presently persued by Voiculescu [32,33]. The definitions are quite 
different from the ones we shall give, but the values of the entropies are closely related 
to ours in nice cases, but are essentially different in general, see section 5. 

2 Definitions and basic results 
Before we embark on the non-Abelian definition of entropy let us recall the classical 
definition. We are then given a probability space (X, 0 , fi) and a nonsingular measure 
preserving transformation T of X. If V = ( P i , . . . , Pn) is a measurable partit ion of X 
we shall often identify it with the finite dimensional Abelian algebra generated by the 
characteristic functions Xp{. The entropy of V is 

H(P) 
n 

t=l 
n(u(Pi)), 

where TJ is the real function on the unit interval, rj(t) = —tlogt for t G (0,1], and 
7/(0) = 0. If WQ is the partition generated by two partitions V and Q then H(WQ) < 
H(V) + H(Q), so we have convergence of the sequence 

1 
H 

kt=0 

T - i v 
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E. ST0RMER 

We denote by H(T, V) its limit, and define the entropy of T by 

H(T) = sup H(T,V), 
v 

(2.1) 

where the sup is taken over all finite measurable partitions. The crucial result for 
computing H(T) is the Kolmogoroff-Sinai Theorem [34, 4.17]. 

T h e o r e m 2 .2 . If V is a generator, i.e. the a-algebra generated by (T lV)iez equals 
oo 

B, written V T~'V = B, then H(T) = H(T,V). 
— C O 

There is another version of this theorem which will be of interest in the sequel [34, 
4.22]. 

C O 

T h e o r e m 2 .3 . If (Vn)ne^ is an increasing sequence of partitions of X with \¡ Vn — B 
n=l 

then 
H(T) = lim H(T,Vn). 

If one wants to extend the above definition of entropy to von Neumann algebras one 
is immediately confronted with a major obstacle. While there is a natural extension of 
the concept of finite partitions, namely finite dimensional von Neumann algebras, there 
is no natural candidate for the analogue of the partition V V Q generated by V and Q. 
Remember tha t the von Neumann algebra generated by two finite dimensional algebras 

can easily be infinite dimensional. However, if one considers the function H 
k 

t=l 
Pi 

with V{ finite partitions as a function H(Vi,..., Vk) of k-variables, one can try to 
generalize this function. This will now be done following [8] for a von Neumann algebra 
M with a faithful normal finite trace r such that r ( l ) = 1. In section 6 we shall see 
how this definition can be extended to general C*-algebras and states. 

For each A; £ N denote by Sk the set of multiple indexed finite partit ions of unity of 

M+, (^i1...tfc)t-€N? i-e- eacn xh...ik € zero except for a finite number of indices and 
satisfying 

i,...ik 
xi,...ik 1. 

For x e Sk,t € {! , . . . ,A;}, i¿ G N, we put 

xil 

t*i,...,t/_i,t/+i,...,tfc 
x*i—ik ' 

If N C M is a von Neumann subalgebra we denote by EN the unique r-invariant 

conditional expectation EN ' M —• N defined by the identity 

r(EN{x)y) = r (xy) , x e M, y e N. 
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ENTROPY IN OPERATOR ALGEBRAS 

Def in i t ion 2.4. Let N\,...,Nk be finite dimensional von Neumann subalgebras of 
M. Then 

H(Nu...,Nk) sup 
xesk i1,...,ik 

?(r(*.wJ) 
it 

¿=1 
T(V(ENt(x¡t))) 

Since the trivial partition x = (1) gives the value zero, if > 0. Also it is clear tha t if 
is symmetric in the JV's. Furthermore if satisfies the following nice requirements 

(A) H(NU ...,Nk)< H(Pit ...,Pk) when Nj C i > - , j = 1 , . . . , *. 

(B) # ( J V j , . . . , Nk) < H(NU...,Nj) + H(Nj+u..., Nk) for 1 < j < k. 

(C) Nlt..., N3 C N =• ( A r l f . . . , 7VJ5 i V i + 1 , . . . , JVfc) < H(N, N ] + 1 , N k ) . 

(D) For any family of minimal projections of AT, ( e a ) a G j such that ea = 1 one has 

H(N) 
iEI 

7 7 T ( e a ) . 

(E) If (Ni U • • • U Nk)ft is generated by pairwise commuting von Neumann subalgebras 
P4 of JV,- then 

H(Nu...,Nk) = H((N1\J...UNk)»). 

The crucial technical ingredient in the proof of the above properties, and in particu­
lar of (C), is the relative entropy of two states, or rather positive operators in our case, 
defined by 

S(x\y) = r ( x ( l o g x - l o g y ) ) , x ,y G M , x < Xy 

for some A > 0. For general normal states of von Neumann algebras the relative entropy 
is defined by Araki [1] via the relative modular operator of the two states, and by Pusz 
and Woronowicz [25] for states of C*-algebras. The main property of S is tha t it is a 
jointly convex function in x and y [16], see also [15] and [25]. 

Having H it is now an easy matter to extend the classical definition (2.1) of entropy. 
We look at the measure preserving transformation T on ( X , # , / / ) as an automorphism 
ar of the Abelian von Neumann algebra L°°(X, B,fi) defined by ar(f) = f o T " 1 , and 
partitions as finite dimensional algebras. 

Def in i t ion 2.5 Let a be an automorphism of M such that r o a = r . I f N c M i s 
finite dimensional we let 

H(a,N) = lim j¡H(N,a(N),ak-\N)), 

where as in the classical case the sequence converges by the subadditivity of if, property 
(B). The entropy of a is 

H(a) = sup if (a , AT), 
N 

where the sup is taken over all finite dimensional subalgebras N C M. 
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R e m a r k 2.6. If P C M is a von Neumann subalgebra such that a(P) = P , it is 
immediate from the définition that the restriction a\P satisfies H(a\P) < H(a). 

R e m a r k 2.7. If a is periodic then H(a,N) = 0 for all AT, hence H(a) = 0. More 
generally, if a is contained in a compact subgroup of Aut (M) then Besson [2] has shown 
tha t we still have H(a) = 0. 

To compute H(a) it is as in the classical case necessary to reduce the choice of iV's. 
The following concept is helpful for this purpose. 

Def in i t ion 2 .8 . If N and P are finite dimensional von Neumann subalgebras of M 

their relative entropy is 

H(N\P) • SUp \(TTjEP(xi) - TT)EN(xi)). 

H(N\P) has the following nice properties: 

(F) H(Ni,... ,7V,) < H{PU...,Pk) + £ HiNAPj). 

(G) H{N\Q)<H(N\P) + H{P\Q). 

(H) H(N\P) is increasing in TV and decreasing in P. 

(I) If AT and P commute then 

H(N\P) = H((N U P ) " | P ) = H {H U P)" ) - H(P). 

Properties (F) , (G), (H) are easy to prove, while (I) is a consequence of the Lieb-Ruskai 
second strong subadditivity property [17]. The relative entropy is continuous in the 
following sense. 

T h e o r e m 2.9. For all n £ N and e > 0 there exists 6 > 0 such that for all pairs of 

von Neumann subalgebras N and P of M with dim AT = n, we have 

N CP=> H(N\P)<e. 

Here N C P means that for all x £ N, \\x\\ < 1, there exists y £ P with ||y|| < 1 such 

tha t \\x — y\\2 < 6, where | |z | | 2 = T ( Z * Z ) 1 / 2 . This result together with property (F) is 

very useful in restricting the choice of N in the definition of if ( a ) . An example is the 

proof of the generalization of the Kolmogoroff-Sinai Theorem (2.3). 

T h e o r e m 2 .10 . Suppose M is hyperfinite with an increasing sequence ( P n ) n e N of 

finite dimensional subalgebras with union weakly dense in M. Then if a £ Aut (M) 
and r o a — T we have 

# ( a ) = lim # ( a , P n ) . 
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Proof. Given N and e > 0 choose by Theorem 2.9 Pn such tha t 
H(N\Pn) < e. Then for k € N, by property (F), 

H(a,N) [ i m i f f ( t f , a ( t f ) , . . . , a t - 1 ( t f ) ) 

l i m i t f ^ X ^ n ) , . . . , ^ - 1 ^ ) ) lim 
A; 

1 
k-1 

3=0 

H(a>(N)\a>(Pn)) 

H{cx,Pn) + e, 

since H{aj(N)\aj(Pn)) = H(N\Pn). The theorem follows. 

3 Entropy of shifts 

The definition of entropy as given in section 2 had originally as its main model the 
n-shift. Therefore, to make the results of section 2 easier to understand let me describe 
the n-shift in some detail. 

Let n £ N and M% = Mn(C) for i £ Z. Let r t = ^Tr be the normalized trace on 
M \ Let 

R 
oo 

— oo 
(Mi,Ti 

be the von Neumann algebra tensor product of the M% with respect to the traces r t . 
Then R is the hyperfinite i 7 factor with trace r = ®r t . Even though it is not needed 
for the computation of the entropy of the shift let me as an illustration introduce a 
partition which will give the right value for H(Ni,..., Nk). 

Let ej be the minimal projection in the diagonal in Mn(C) with matrix which is 0 

except in the j ^ 1 row, where it is 1. Let k 6 N and 

xi1...,ik <8> 1 <8> e¿i ® et-2 (8) • ® e¿fc ® 1 ® • 

where e¿ E AP . Then (^n...¿ f c) G S'fcíand 

xe = ® 1 0 e ¿ / O 1 0 • • • 

Put 
Ni = • • • ® 1 <g> Mi ® 1 ® • • - c R, 

i.e. TV, is M l imbedded in /?. Let a be the n-shift on i?, i.e. cr is the shift automor­
phism on (&M% which maps each factor one factor to the right. Since n(e) = 0 for each 
projection e, we have 

H(Nu*lN1\...,o
k-HNl)) H{Nu...,Nk) 

nT(xi,...ik) 
l U 

rrjENl(x
£

i() 

nkrj(n k) 

e il 

Tv(eu) 

k log n — 0 , 
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so tha t H(cr,N\) > logn. 
Now (Ni U N2 U • • • U A^)" is a factor of type 7n*, hence we have by properties (D) 

and (E) 
±H(N1,...,Nk) f l o g n = l o g n , 

so the sup is indeed obtained for our choice ( # t l . . . ik) in Sk> To show tha t H(cr) = log n 
we put 

Pq= i M1 
- 9 

1 1 Ni 

q 
Then the sequence (Pq) satisfies the requirements of the Kolmogoroff-Sinai Theorem 
2.10. Since 

( P , U < r ( P , ) U - Uok-1 (Pq)) a+k-1 

- 9 
Ni 

we have by property (E) that 

\H{Pq,*(Pq\ '"'HP,)) ±logn 2 «+* 
2q + k 

k 
logn 

Therefore 
H(o) = lim #(<r, P,) = log n. 

It should be noted from the above computation that if D denotes the diagonal in 
Pq then we have 

H(pqMP,),---y-1(P,)) H(DMD),...,<Tk-1(D)) 
H(D U <r(D) U • • • U ak-l{D))"). 

Thus the shift a is not much different from the classical n-shift. This situation prevails 
for a large class of non-Abelian extensions of classical shift operators. Using the above 
notat ion we define them as follows. Let 

X 
oo 

—oo 
Xi X{ = { 1 , . . . , n) for all i. 

Let S be the shift on X given by = (xi+1 )and suppose \i is an invariant prob­
ability measure on X. If Dn denotes the diagonal in M n ( C ) we identify C(X0) with 

oo 
Z) n , and thus C(X) with the infinite tensor product D = ® Dl

n, where Dl

n = Dn. S 
— oo 

induces a shift <70 on D in the obvious way, and \i defines likewise a cr 0-invariant s ta te 
UJ on D. Let En denote the canonical trace invariant expectation of M n ( C ) on D n , and 

oo oo 
let E = ® Ex

n with E%

n : Mx Z); equal to En. Let ^ = ® M* be the C*-algebraic 
—oo —oo 

infinite tensor product. Then E is a conditional expectation of A on D. Extend a; to a 
s ta te p on A by p = woE. If ax denotes the shift on A then poai = and a0oE = Eoorlm 

Let (TT,£,H) be the GNS-representation of p, and put M = n(A)". Then <Ji extends to 
an ^ - i nva r i an t automorphism of M , hence restricts to an ^ - inva r i an t automorphism 
a of the centralizer Mp of in M . If the measure \L is sufficiently ergodic, M is a 
factor, and even Mp is often a factor with trace r = a;^. From its construction M p is the 
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hyperfinite II\-factor R, and a is an ergodic automorphism of R. In the cases which 
have been computed it turns out that the entropy H(cr) is equal to the classical entropy 
H(S) of S with respect to ft. 

The above construction was first performed by Connes and myself for Bernoulli 
shifts in [8], then by Besson [3] for Markov shifts, however both results were known to 
Krieger (unpublished). Later on these results were generalized by Quasthoff [26], who 
used a different, however equivalent construction to define shifts on R. He also showed 
such a result for an extension to flows of Markov shifts [27]. 

There is an interesting shift automorphism on R which arises from the theory of 
subfactors. For A £ (0,1] let {eo, ci, e2 , . . . } be a sequence of projections in R satisfying 
the axioms 

a) e t e t ± 1 e ¿ = Ae¿, 

b) aej = ejti for \i — j \ > 2 , 

c) r(w6i) = Xr(w) if w is a word on {1, e 0 , . . . , ^i-i}-

It was shown by Jones [14] that such a sequence exists and generates R if and only 

if A £ (0, | j U | ^ s e c 2 ^ : n > 3J. Furthermore, if R\ is the subfactor generated by 

{1, e i , e 2 , . . . } then the index [R : R\] = A - 1 . 

We now reindex the projections e t so the index set is Z, and we denote by 0\ the 
shift automorphism of R defined by 0\Ci = e t + 1 . It follows from the relations a ) -
c) tha t 0\ is mixing with respect to the trace, hence is ergodic. This automorphism 
was studied by Pimsner and Popa in [22]. They showed by explicit construction of 
a sequence (e t ) that if A < 1/4 then 0\ is a Bernoulli shift as described above, and 
H(6\) = rj(t) + 7/(1 — £), where t(l —t) = X. If A > 1/4 the situation is quite different 
and they showed H(0X) = - | l o g A . The same result was then showed by Choda [4] 
when A = 1/4. 

4 Inner automorphisms of the hyperfinite 
7/i-factor 

In the last section we saw how to extend many shifts to outer automorphisms of the 

hyperfinite II\-factor i?, and it was remarked that the entropy of the extended shift 

was the same as tha t of the original (classical) shift. One can also via crossed products 

extend ergodic transformations to inner automorphisms of R. Let ( X , S , fi) be a proba­

bility space and T a nonsingular ergodic measure preserving transformation of X. Then 

T defines an automorphism aT on L°°(X,fi) by (aTf)(x) = f{T~lx) for / £ X°°(X,//) , 

x £ X. The crossed product L°°(X,//) xaT Z equals /?, and aj extends in a natural 

way to an inner automorphism Ad UT on R. 

Since the restriction Ad UT\L°°(X,//) = a^, and H{aj) = H(T), it follows from 

Remark 2.6 tha t 

H(AdUT)>H(T), (4.1) 

where Ad UT is considered as an automorphism of R. 
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P r o b l e m 4 .2 . Do we have equality in (4.1)? 
The first result on this problem is due to Besson [2], who showed that if the unitary 

operator VT on L2(X,fi) defined by (VTf)(x) = / ( T _ 1 x ) , / € L2{X,fi), x £ X, has 
pure point spectrum then H(A<1UT) = 0. 

Let T be as above and let A denote the Abelian von Neumann algebra generated by 
oo 

Uj. Using the Fourier expansion Y, Q>nUj with an £ L°°(X,fi) of an element x £ A'DR 
—oo 

it follows easily from the ergodicity of T that each an is a scalar, hence x £ A. Thus A 
is a maximal Abelian subalgebra of R. It turns out that the entropy H(Ad UT) depends 
essentially on the size of the normalizer of A in R, i.e. the set of unitaries u £ R such 
tha t uAu* = A. If the normalizer of A generates R as a von Neumann algebra, A is 
called a Cartan (or regular) subalgebra. The next result [30] shows tha t if H(T) > 0 
then A is not a Cartan subalgebra. 

T h e o r e m 4 .3 . Let u be a unitary operator contained in a Cartan subalgebra of R. 
Then the entropy H(Adu) = 0. 

In the proof of this result one uses the Connes-Feldman-Weiss Theorem [6], [24] on 
oo oo 

the uniqueness of Cartan subalgebras, so we may assume R — ® ( M 1 , r t ) and it £ (g) D\ 
i=i i=i 

/ 9 
and use the subalgebras Pq = Ml) 0 1 0 • • • in the application of the Kolmogoroff-
Sinai Theorem 2.10. One can show that the function H(Pq, Ad u(Pq),..., Ad ix f c _ 1 (P g ) ) 
grows as logfc, hence H(Adu,Pq) = 0, and therefore H(Adu) = 0. 

In particular if T = TQ is the irrational rotation by an angle 6 on the circle T, and 
Vtp denotes the multiplication operator on L2(T) by e*v, then in the crossed product 
L°°(T) X^ZUTV^ = tIBV^\]T. In particular V^AV'1 = A with A as before the Abelian 
von Neumann subalgebra generated by UT- Since and UT generate i?, A is a Car tan 
subalgebra of i?, hence by Theorem 4.3 we have if (Ad UT) = 0. In particular we have a 
positive solution to Problem 4.2 in this case. It should be remarked that this argument 
can be generalized greatly. It would be interesting to see what kind of maximal Abelian 
subalgebra UT generates when H(T) is large, as it is for example for Bernoulli shifts. 

5 The free shift 
So far we have only looked at the hyperfinite case, in which the KolmogorofF-Sinai 
Theorem is applicable. I'll now discuss a completely different case, tha t of the IIi-
factor L ( F o o ) obtained from the left regular representation of the free group in 
infinite number of generators. Let G denote the set of generators of FQQ. Then each 
bijection of G gives rise to an automorphism of FQO and hence of L ( F o o ) . We say a 
bijection a is free if each orbit {an(x) : x £ G} is infinite, or equivalently the map 
n I — • an(x) of Z into G is injective for all x £ G. An example is the free shift, which 
is defined by indexing G by Z and letting a correspond to the shift n \—• n + 1 of Z. 
The free shift is an extremely ergodic automorphism; indeed Popa [22] showed tha t the 
only globally invariant injective subalgebra of L ( F o o ) is the scalars, and recently Gaure 
[12] showed tha t each nontrivial globally invariant von Neumann subalgebra is a full 
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Hi-factor. It is therefore rather surprising that we have, see [29]. 

T h e o r e m 5 .1 . Let a be an automorphism of Z ^ F ^ ) defined by a free bijection of the 
set of generators G on itself. Then its entropy H(a) = 0. 

This result makes my comment at the beginning of section 3, that the definition of 
entropy was modelled on the n-shift, more profound. The theorem shows tha t entropy 
is a function of independence with respect to commutativity of the translates by the 
automorphism, rather than the degree of ergodicity. 

Since each bijection of G on itself is a combination of free and periodic maps, and 
each periodic automorphism has entropy zero (Remark 2.7), I would expect that all 
automorphisms of L(¥oo) arising from bijections of G have entropy zero. Even more 
may be true. 

P r o b l e m 5.2. Suppose a is an automorphism of Z/(Foo) arising from an automorphism 
of F«,. IsH(a) = 0? 

Note that Z ( F o o ) has lots of inner automorphisms with positive entropy. This follows 
from Remark 2.6 since the hyperfinite II\-factor R is a subfactor of L ( F o o ) , and R has, 
as we saw in section 4, many inner automorphisms with positive entropy. 

The proof of Theorem 5.1 is quite different from the other proofs we have seen. Since 
we don't have a Kolmogoroff-Sinai Theorem at our disposal we must use Definition 2.4 
of the entropy function H(Ni,..., Nk) directly, hence we have to study the behaviour 
of partitions of unity in L ( F o o ) . Given a finite dimensional subalgebra N C L(¥00) we 
may use freeness of the automorphism a together with approximation results to assume 
that for some p £ N, N,ap(N),a2p(N),.. ..a^'^N) belong to subfactors L(¥St) cor­
responding to the free subgroups of FQO obtained from disjoint subsets 5 o , . . . , Sk-i of 
G. Then we show a uniform estimate on the set Sk of all partitions of unity, namely, 

L e m m a 5 .3 . Given e > 0 there exists r = r (e , N) £ N such that for all partitions 
(xh...ik) £ Sk and all k there is a set J C N with card J <r such that 

\ENl(X

e

it)-r(xe

it)l <E for £ <£ J, 

where Nt = a^-l\N). 

Thus the projection of x\t on Ni is almost a scalar for all £ £ J , and this happens for £ 
outside a set of cardinality less than r independently of the partition. This is the crucial 
idea in the proof of Theorem 5.1, because if we assume EN((x£

ie) = r(x\t) = Ec(xil =£) 
for all %i in Definition 2.4, we get 

NT(xi,...ik 
l H 

Tr)ENt{x\t) 

NT(x1,...ik 
l il 

TnEC (xlil) 

tf(C,...,C) H(C) = 0. 

219 



E. ST0RMER 

As mentioned in the introduction Voiculescu [32, 33] has introduced another concept 
of entropy, called the perturbation theoretic entropy. In the nicer cases like the classical 
case and Bernoulli shifts this entropy gives values close to ours. However, for L(¥QO) 
it is quite different; indeed he showed [33] that the perturbation theoretic entropy of 
the free shift is +oo . Thus it is plausible that the perturbation theoretic entropy is 
a bet ter concept of entropy for studying automorphisms of highly non-Abelian factors 
like L(Foo). 

6 Entropy in C*-algebras 
A natural problem that arose after the introduction of entropy in finite von Neumann 
algebras, was its extension to general von Neumann algebras and even C*-algebras. 
Using the quantum mechanical entropy of states —S(p) = Tr(rj(Qlp)) if p is a normal 
s ta te on B(H) defined by a trace class operator fip - and the delicacy of the relative 
entropy, an a t tempt was made in [9]. But all we could do was to show tha t the definition 
we came up with, gave the classical entropy in the Abelian case. Then Evans [10] 
modified Definition 2.4 to AF-algebras and defined the topological entropy by taking 
the sup over all tracial states. By taking the shift on an AF-algebra defined by an 
aperiodic n x n matr ix A with entries 0 or 1, he could show that the topological 
ent ropy= of the shift was the logarithm of the spectral radius of A. For more recent 
work on topological entropy see the thesis of Hudetz [13]. 

Connes [5] was the first who succeeded in giving a general definition for normal 
states of von Neumann algebras. Essentially what he did was to replace the trace in 
Definition 2.4 by a given normal state <p, and instead of considering partit ions (x,-x...ifc) € 
Sk to consider finite sets of positive linear functionals <pi with = ip. After this 
breakthrough Connes together with Narnhofer and Thirring [7] succeeded in extending 
the definition to general C*-algebras. This was done as follows. 

We are given a C*-algebra A with a state ip and want to define the analogue of 
H(N\,..., Nk) as in Definition 2.4. Since A need not have any nontrivial finite di­
mensional subalgebras we replace the TV's by finite dimensional C*-algebras C i , . . . , Ck 
which are not necessarily subalgebras of A, but have unital completely positive maps 
7j Cj —> A. As we have seen in the previous sections the entropy considered, has a 
built in Abelianness in it. This is made more explicit in the new definition. We let 
B be a finite dimensional Abelian C*-algebra and P : A —• B a unital positive linear 
map such tha t there is a state \i on B with \L O P = <p. We now define a concept called 
entropy defect for P , which will later on be used for some maps from the C / s and not 
for P. 

Let p i , . . . be the minimal projections in B. Then there are states <^ i , . . . , <pr on 
A such tha t 

P(x) 
r 

i=l 
ai (x) pi, 

and 

a = 
T 

i = 1 
u (pi) ai 
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is ip written as a convex sum of states, cf. Connes' von Neumann algebra definition, 
where he considered families with <p = We now introduce the important 
relative entropy of states, and use a general definition of Pusz and Woronwicz [28],so 
[15]. Pu t 

eÁP) 
r 

t=l 
p(pi)S(<pmu 

and let the entropy defect be 

s,(P) = S(»)-eß(P), 

where S(fi) = Y, liKPi)) 18 ^ n e entropy of //. 
In order to come back to the original finite dimensional algebras Cj and completely 

positive maps 7 j we let B\,... ,Bk be C*-subalgebras of B, and Ej : B —> Bj the \i-

invariant conditional expectation. Then the quadruple (B, Ej, P, fi) is called an Abelian 

model for (A, < p , 7 i , . . . , 7 n ) and its entropy is defined to be 

S 
k 

7=1 

Bj 
k 

j=l 
S^Pj), (6.1) 

where Pj = Ej o P o jj : Cj —* Bj, and the definitionof s^(Pj) is the same as for P 

above, where we replace fi by [J>\Bj, P by Pj, and <p by <̂> o jj. 

We can now define the entropy function H in analogy with Definition 2.4 as 

H^di,..., 7/t) = sup of (6.1) over all Abelian models. 

Then we can show similar properties as (A)-(E) in section 2. From here on we continue 
as before. If a £ Aut(A) is (^-invariant and C is a finite dimensional C*-algebra with a 
unital completely positive map 7 : C —• A we denote by 

A V , A ( 7 ) lim 
K—•oo 

1 ffv(7»a°7,-}a* 1 0 7 ) , 

and define the entropy of a to be 

ftv(a) = sup AVlcr(7)> 
7 

where the sup is taken over all pairs (C, 7 ) . The interested reader will see from [7, 
Remark III.5.3] how the definition of ^ ( 7 1 , . . . ,7*) extends the definition in [5], and 
thus the original definition (2.4). 

While in the finite von Neumann algebra case the Kolmogoroff-Sinai Theorem was 
t rue for hyperfinite algebras, in the C*-algebra case it holds true for nuclear (7*-algebras 
[7, V.2]. 

T h e o r e m 6.2. Let A,(p,a be as above. Suppose there exists a sequence (0n)n^N 
of unital completely positive maps 0n : A —• A such that for each n there are finite 
dimensional C*-algebras An and unital completely positive maps an : A —> An, r n : 
An —> A for which 
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On — Tno c r n , a n d for all x € A 

lim\\On(x)-x\\=0. 

Then 
l i m / ^ a ( r n ) = h^o). 

oo 
In particular for an AF-algebra A = |J An with 1 G Ai C A2 C • • •, finite dimen-

n - l 
sional, if we let ^yn : An ^ Abe the inclusion map, so we write An instead of 7 n , we 
have 

h^(a) = lim h ^ a ( A n ) . 

This result has been extended to the setting of quasi local algebras in quantum statistical 
mechanics by Park and Shin [20]. 

If M is a von Neumann algebra and (p a normal state of M we can do the same as 
above assuming all functionals and maps to be normal. For states on a C*-algebra A 
we get the same entropy as before if we use this approach to the GNS-representation of 
the state . This is often useful, since it is in many cases easier to compute entropy in the 
von Neumann algebra setting. The following result is analogous to those we discussed 
for shifts in section 3, see [7, VIII.8]. 

T h e o r e m 6 .3 . Let M be a von Neumann algebra with a faithful normal state <p. 
Let My denote the centralizer of tp in M. Suppose Ni,..., Nk are finite dimensional 
subalgebras of M which contain Abelian subalgebras Aj C Nj fl which are pairwise 

k 

commuting and generate a maximal Abelian subalgebra A — V Aj in the von Neumann 

algebra N = (Nx U • • • U Nk)". Then 
Htp{N1,...,Nk) = S{<p\N). 

This result tells us in particular that the modular automorphism cr* comes into play, 
because = {x G M : a*(x) = x for all t G R } . 

One might believe tha t we need a large centralizer in order to have positive entropy. 
This is not so. Connes [5] has exhibited an example of a factor M of type III\ with a 
s ta te <p with Mv = C, and h^{a) > 0 for a (^-invariant automorphism a. 

In some cases one does not have the nice situation of Theorem 6.3 but only an 
approximation to it. The following is a result on such a situation [7, IX. l ] . It is 
applicable to shift invariant states which are not necessarily product states, but almost 
so. 

C O 

T h e o r e m 6.4 . Let Mx = Mq(C) for i G Z . Let A be the C*-algebra A = <g> M% 

i——oo 
and o the shift o : Mx —> M , + 1 . Let ip be a state with <p o a = (p. For I C Z let 
A(I) = ® Mx and ipi — ip\A(I).= Assume that for all n G N and e > 0 there exists 

N G N such that with I = [-A r , n + N] then 

222 



ENTROPY IN OPERATOR ALGEBRAS 

(1) K 2 ( * 3 / 2 ( * ) ) - * l l ; e = II for x e A([0,n]), 

(2) lim £ = O . 
n—>-oo 7 1 

Then fe^(cr) equals the mean entropy 5(<p), where per definition 

S{f) lim ±-S(<p\A(I)). 
|/|—OO | i | 

Here | J | = 2N + n + 1 is the length of I. 

At this point it is appropriate to mention that not everything seems to go smoothly 
with entropy. In the classical case if T t is a nonsingular measure preserving transfor­
mation on a probability space (Xt-, //.:), i = 1,2, then the entropy of Tì x T2 on 
(Xi x X2,B\ x B2,\i\ x fi2) satisfies 

H{T\ x T 2 ) = H(Tt) + ff(Ta) 

Transformed into the language of C*-algebras this says that if a t is an automorphism 

of an Abelian C*-algebra A, with an invariant state i = 1,2, then 

( a j ® a 2 ) = Ä ^ ( a i ) + Ä ^ ( a 2 ) . (6.5) 

P r o b l e m 6.6. Does (6.5) hold if A\ and A 2 are non-Abelian? 

The inequality 

KiQxnfa ® a 2 ) > Ä v i ( « i ) + ^ 2 ( a 2 ) 

is easy [31, Lem. 3.4], because we have many more choices of Abelian models to estimate 
the left side than the right, where we have to use tensor products of Abelian models 
in Ai and A2. The technical reason why (6.5) holds for Abelian algebras is tha t each 
pure state of A\ ® A2 is a product state pi 0 p2 with pi pure. This is also t rue if one 
of the ACs is Abelian, but not in general. I thus incline to the view that the answer to 
Problem 6.6 is negative when both Ai and A2 are non-Abelian. 

7 The anti-commutation relations 

The main example for which the C*-algebra entropy has been computed, is tha t of 

quasifree states of the CAR-algebra and invariant Bogoliubov (or quasifree) automor­

phisms. Let us recall the definitions. 

Let H be a complex Hilbert space. The CAR-algebra A(H) over H is a C*-algebra 

with the property tha t there is a linear map / —» a(f) of H into A(H) whose range 

generates A(H) as a C*-algebra and satisfies the canonical anticommutation relations 

a(f)a(9y + a(g)'a(f) = (f,g)l, f,g € H, 

a(f)a(g) + a(g)a(f) = 0, 

223 



E. ST0RMER 

where (•, •) is the inner product on H and 1 the unit of A(H). If 0 < A < 1 is an operator 
on H, then the quasifree state LOA on A(H) is defined by its values on products of the 
form a(fny • • • a(/i)*a(5f!) • • • a(gm) given by 

wA (a(fn)*...... a(f1)* a(g1) ... a(gm))= det((A&-,/,•))• 

If U is a unitary operator on H then /7 defines an automorphism au on A(H), called 
a Bogoliubov automorphism, determined by 

au(a(f)) = a(Uf). 

If U and A commute it is an easy consequence of the above definition of U>A tha t au is 
LOA- invariant. 

P r o b l e m 7 .1 . Compute hWA(au) when [U,A] = 0. 
Connes suggested to me that if LOA is the trace r the answer should be 

hT(au) 
log2 

2tt 

/•27T 

/0 
m{U){0)de, (7.1) 

where m(U) is the multiplicity function of the absolutely continuous part Ua of U. 
Then Voiculescu and I [31] showed this and more by solving the problem when A has 
pure point spectrum. Later on Narnhofer and Thirring [19] and Park and Shin [21] 
independently extended the result to more general A. Before I state the results let us 
look more closely at the concepts and ideas in question. 

If A has pure point spectrum there is an orthonormal basis (/n) of H such tha t 
Afn = An/n, n 6 N, 0 < An < 1. Define recursively operators 

Vo = h Vn = 
n 

i=l 
(l-2a(/0*a(/0), (n) a(fn)a(fny 

(n) 
e12 a(/n)K-i , 

(n) 
e21 V„.ia( /n) ' (n) 

e22 
a(fn)a(fny 

Then the e\j\ i,j — 1,2 form a complete set of 2 x 2 matrix units generating a 72-factor 

M2(C)„, and for distinct n and m e j ^ and commute. Thus A(H) ~ ® M 2 ( C ) n , 

and a;^ is a product state u;^ = ® ^ a „ w^n respect to this factorization, where toA is 

the s ta te on M2(C) given by 

Woy a h 
c a 

(l-\)a + \d. 

In case A = Al we write o>a for to A- Then is wa-invariant for all U. We first consider 
the entropy hux(ctu). 

Each unitary U is a direct sum U = Ua ® Us, where C/a has spectral measure 
absolutely continuous with respect to Lebesgue measure d9 on the circle, while Us has 
spectral measure singular with respect to dO. We shall as above denote by m(U) the 
multiplicity function of Ua. The idea is now to approximate the case when 

u = us © Ui 0 • • • e un, 
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where each U{ acts on a Hilbert space Hi, i — 1 , . . . , n, and U% is unitarily equivalent to 
VPi, where V is a bilateral shift. Let us for simplicity ignore the complications due to 
the grading of A(H) as a direct sum of its even and odd parts. Then 

ctu = <*ua <8> ctUx ® * * • <8> ctUn 

and 

ux = u>x\A(H.) ® LJX\A{HX) ® • • • ® w A | .4(ff„) . 

Thus we could hope that 

KX{OLU) = Kx\A{Ha)(o¿ua) 
n 

1=1 
| ^ ( H j ) ( a ^ ) ' (7.2) 

and thus restrict attention to the case when U is singular or a power of a bilateral 

shift. We do have problems because of Problem 6.6, but life turns out nicely because 

we can as with the shift in section 3 restrict attention to the diagonal, and the diagonal 

is contained in the even CAR-algebra, where the tensor product formulas above hold. 

First we take care of the singular part Us. 

L e m m a 7.3 . If U has spectral measure singular with respect to the Lebesgue measure, 

and ctjj is ip-invariant for a state <p, then h^ictu) = 0. 

Thus in (7.2) we can forget about Us. If U = Vp with V a bilateral shift and p G Z, 
then 

KX{OLU) = KX{{OLV)
v) = \p\hux(otv). 

If we write A(H) 
7 l = — OO 

A f a ( C ) n , then on the diagonal ay is the shift, so like in 

section 3 we get 

hwx(av) = r¡(X) + rl(l-X). 

Now |p| is the multiplicity m(U) of [/, and since ^dO is the normalized Haar measure 
on the circle, it is not surprising that we have 

T h e o r e m 7.4. Let U be a unitary operator on H and A E [0,1]. Then 

KMu) - UnW + *?(! - A)) Cm(U)(0)dO. 

Note that if A = 1/2, w\ = r , so we get formula (7.1). For more general A we use 
direct integral theory with respect to the von Neumann algebra generated by Ua. If A 

commutes with [/, A = Aa © As, where Aa = f ®A(Q)dO, where H = HodO, and 
o 

HE — 0 if m(U)(0) = 0, and A(0) £ B(HE). If A has pure point spectrum, A = £ ^jej 

with J finite or count ably infinite, and (ej) is an orthogonal family of projections with 
sum 1, Xj G [0,1]. Denote by Uj = U\ej(H), and let Tr be the usual trace on B(HQ). 

Writing ej = f® ej(0)d0 we get 

Tr(T,(A(0)) + r,(l-A(0))) 

j 

(n(lj) + n(1 æ lj)) Tr (ej (O)) 

j 

( ( /(A J) + , ( l - A ) ) ) m ( i / j ) ( « ) 
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Integrating and using Theorem 7.4 we have 

iEJ 

hwl, (aUj) = J _ 
2TT 

2TT 

0 

Tr(V(A(e)) + T,(l-A(0)))d6. 

Some extra work shows that the left side equals hUA(otu)^ thus we have 

T h e o r e m 7.5. Let 0 < A < 1 have pure point spectrum and U a unitary commuting 
with A. Then 

KA{<*u) JL 
2TT 

2TT 

0 
Tr{n{A{e)) + n{l-A{6)))d9. 

A natural problem is to extend this result to general A. This is nontrivial and 
was studied already by Narnhofer and Thirring in [18], where they showed, with some 
gaps in the proof, that the formula is true for a bilateral shift. There are recently two 
independent papers on the problem, by Narnhofer and Thirring [19] and Park and Shin 
[21]. They both concentrate attention to the case when U is absolutely continuous. 
Imposing technical assumptions on A they prove formulas like the one in the theorem. 
In [21] this was also done for the canonical commutation relations. The mathematics 
in [21] is quite involved. They use the definition of entropy directly and go through 
hard analysis to estimate the entropy defects. A perhaps easier approach would be to 
apply Theorem 6.4 directly. I believe this is done in [19], but I must admit , I have 
not understood the proof. Narnhofer and Thirring claim [19, Remark 3.4] tha t the 
assumptions they impose on A are so weak that they consider Problem 7.1 as settled. 

In the above papers it is shown that when au is space translation on A(H) then 
hUA(c*u) is the mean entropy in the sense of Theorem 6.4. It should, however, be noted 
tha t Fannes [11] showed a formula like Theorem 7.5 for this mean entropy. 

8 An alternative definition of entropy 

Sauvageot and Thouvenot [28] have given an alternative definition of entropy which is 
very close to tha t of Connes, Narnhofer, and Thirring [7}, but which is closer in spirit 
and notat ion to the classical definition. 

Let A be a C*-algebra together with a state p. A coupling of (A, p) with an Abelian 
C*-algebra is a pair (A,B), where B is an Abelian C*-algebra, and À is a s tate on the 
C*-algebra A ® B whose restriction to A (identified with A 0 1) is p. We denote by 
p, the probability measure on B obtained from the restriction of A to B. If B is finite 
dimensional then B = C(X) with X a finite set, and for each x € X the characteristic 
function Xx(= X{x}) is a minimal projection in B. We then get a s ta te px on A defined 
by 

pg(a) = p({x}) l\(a®Xx), 

which gives p as a convex sum of states, 

P = 
x£X 

u({x})px. 
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In analogy with e^{P) from section 6 we put 

sx(A,B) 

xEX 
p({x})S(p\px) S{p®p\\) 

It follows that 6\(A,B) measures how far A is from being a product s tate by using 
the distance function relative entropy. The entropy defect sM now takes the form of a 
conditional entropy when we define it as before as 

HX(B\A) Hß{B)-ex{A,B) 

xex 
S(p\Kix})px) 

Here H^(B) is the entropy of p as a probability measure on X. If we identify each finite 
dimensional subalgebra of B with the partition consisting of its minimal projections we 
find for V and Q partitions of X, that 

HX(V V Q\A) = HX(V\A) + HX(Q\A®-P) 

In the special case when A = C this identity reduces to the classical identity for condi­
tional entropy 

H{VVQ) = H(V) + H(Q\V). 

Let now a be a /o-invariant automorphism of A, and (A, B) a coupling with an Abelian 
C*-algebra which is not necessarily finite dimensional. Suppose further tha t a G Aut(B) 

and that a ® a is A-invariant. For a finite partition V of B denote its past by 

P-
CO 

¿=1 
r - > . 

In the classical case we have 

h(o,P)= l i m ± # „ 
n n f 

n - 1 

(V 
t=0 

a~\V)) = Hß(V\V-). 

Analogously we define two expressions 

h(\,V) = Hß(V\V-)-Hx(V\A®V-) 

h\\,V) = Hß(V\P-)-Hx(V\A). 

Then h(\,V) > 0 and h(\,V) > h'(\,V). 
Sauvageot and Thouvenot now define the entropy of the dynamical system (A, a, p) 

to be 

# , ( a ) = supfc(A,P), 

where the sup is taken over all couplings (A, B), partitions V and automorphisms a as 
above. Then they show that we get the same by using h', i.e. 

# p ( a ) = sup/*'(A,T>). 

Furthermore they show 
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T h e o r e m 8 .1 . If A is nuclear the entropy Hp(a) is the same as the entropy hp(ct) 
defined in section 6. 

In addition to its resemblance to the classical case the above definition has another 
nice feature. Let A and p be as before and (TT,H,£) the GNS-representation of p. If 
oc £ Aut(A) is /9-invariant it is implemented in the GNS-representation by the unitary 
Up defined by Up7r(x)£ = 7r(a(x))£. The following result is analogous to Lemma 7.3. 

T h e o r e m 8.2 . If the spectral measure of Up is singular with respect to the Lebesgue 
measure on the circle then Hp(a) = 0. 

References 
[1] Araki, H., Relative entropy of states of von Neumann algebras I, II, Publ . RIMS, 

Kyoto Univ. 11 (1976), 809-833, and 13 (1977), 173-192. 

[2] Besson, 0 . , On the entropy in II\ von Neumann algebras, Ergod. Th. & Dynam. 
Sys. 1 (1981), 419-429. 

[3] Besson, O., On the entropy of quantum Markov states, Lecture Notes in Math. 
1136, pp. 81-89. Springer-Verlag 1985. 

[4] Choda, M., Entropy for *-endomorphisms and relative entropy for subalgebras, J. 
Operator Theory, 25 (1991), 125-140. 

[5] Connes, A., Entropie de Kolmogoroff Sinai et mechanique statistique quantique, 
C. R. Acad. Sei. Paris 301 (1985), 1-6. 

[6] Connes, A., Feldman, J., and Weiss, B., An amenable equivalence relation is gen­
erated by a single transformation, Ergod. Th. h Dynam. Sys. 1(1981), 4 3 1 -
450. 

[7] Connes, A., Narnhofer, H., and Thirring W., Dynamical entropy of C*-algebras 
and von Neumann algebras, Commun. Math. Physt 112 (1987), 691-719. 

[8] Connes, A., and St0rmer, E., Entropy of automorphisms of Hi von Neumann 
algebras, Acta math . 134 (1975), 289-306. 

[9] Connes, A., and St0rmer, E., A connection between the classical and the quantum 
mechanical entropies, Operator Algebras and Group Representations, Monographs 
and Studies in Math. 17. Pi tman 1984, 113-123. 

[10] Evans, D. E., Entropy of automorphisms of AF-algebras, Publ. RIMS Kyoto 
Univ. 18 (1982), 1045-1051. 

[11] Fannes, M., The entropy density of quasi free states, Commun. Math. Phys. 
31 (1973), 279-290. 

[12] Gaure, S., Free shifts of factors, Thesis, Univ. of Oslo, To appear. 

228 



ENTROPY IN OPERATOR ALGEBRAS 

[13] Hudetz, T., Quantenmechanische topologische Entropie, Thesis, Univ. Wien, 
1992. 

[14] Jones, V. F. R., Index for subfactors, Invent. Math. 72 (1983), 1-25. 

[15] Kosaki, H., Relative entropy of states: a variational expression, J. Operator The­
ory 16 (1986), 335-348. 

[16] Lieb, E. H., Convex trace functions and the Wigner-Yanase-Dyson conjecture, 
Advances in Math. 11 (1973), 267-288. 

[17] Lieb, E. H., and Ruskai, M. B., Proof of the strong subadditivity of quantum 
mechanical entropy, J. Math. Phys. 14 (1973), 1938-1941. 

[18] Narnhofer, N., and Thirring, W., Dynamical entropy of quasifree automorphisms, 
Letters Math. Phys. 14 (1987), 89-96. 

[19] Narnhofer, H., and Thirring, W., Dynamical entropy of quantum systems and their 
Abelian counterpart, To appear. 

[20] Park, Y. M., and Shin, H. H., Dynamical entropy of quasi-local algebras in quantum 
statistical mechanics, Commun. Math., Phys. 

[21] Park, Y. M., and Shin, H. H., Dynamical entropy of space translations of CAR 
and CCR algebras with respect to quasi-free states, To appear. 

[22] Pimsner, M., and Popa, S., Entropy and index for subfactors, Ann. Sci. Ecole 
Norm. Sup. Ser. 4, 19 (1986), 57-106. 

[23] Popa, S., Maximal injective subalgebras in type Hi factors, Advances in Math. 
50 (1983), 27-48. 

[24] Popa, S., Notes on Cartan subalgebras in type II\ factors, Math. Scand. 57 
(1985), 171-188. 

[25] Pusz, W., and Woronowicz, S., Form convex functions and the WYDL and other 
inequalities, Letters Math. Phys. 2 (1978), 505-512. 

[26] Quasthoff, U., Shift automorphisms of the hyperfinite factor, Math. Nachtrichten 
131 (1987), 101-106. 

[27] Quasthoff, U., Continuous outer actions of the hyperfinite factor, Proc. conf. on 
ergodic th. II, Georgenthal 1986, pp. 166-170, Teuler-Texte Math. 94, Teulner, 
Leipzig 1987. 

[28] Sauvageot, J-L., and Thouvenot, J-P., Une nouvelle définition de l'entropie dy­
namique des systèmes non commutatifs, To appear. 

[29] St0rmer, E., Entropy of some automorphisms of the /^ - fac to r of the free group in 
infinite number of generators, Invent. Math. 110 (1992), 63-73. 

229 



E. ST0RMER 

[30] St0rmer, E., Entropy of some inner automorphisms of the hyperfinite 7/x-factor, 
International J. Math. , To appear. 

[31] St0rmer, E., and Voiculescu, D., Entropy of Bogoliubov automorphisms of the 
canonical anticommutation relations, Commun. Math. Phys. 133 (1990), 5 2 1 -
542. 

[32] Voiculescu, D., Entropy of dynamical systems and perturbations of operators, Er-
god. Th . k Dynam. Sys. 11 (1991), 779-786. 

[33] Voiculescu, D., Entropy of dynamical systems and perturbations of operators, II. 
To appear. 

[34] Walters, P., An introduction to ergodic theory, Graduate Texts in Math . 79, 
Springer- Verlag. 

Erling St0rmer 
Department of Mathematics, 
University of Oslo, 
0316 Oslo, Norway 

230 


