Metabolic rate and breathing during sleep

J Appl Physiol (1985). 1985 Aug;59(2):384-91. doi: 10.1152/jappl.1985.59.2.384.

Abstract

Recent investigation suggests that both ventilation (VE) and the chemical sensitivity of the respiratory control system correlate closely with measures of metabolic rate [O2 consumption (VO2) and CO2 production (VCO2)]. However, these associations have not been carefully investigated during sleep, and what little information is available suggests a deterioration of the relationships. As a result we measured VE, ventilatory pattern, VO2, and VCO2 during sleep in 21 normal subjects (11 males and 10 females) between the ages of 21 and 77 yr. When compared with values for awake subjects, expired ventilation decreased 8.2 +/- 2.3% (SE) during sleep and was associated with a 8.5 +/- 1.6% decrement in VO2 and a 12.3 +/- 1.7% reduction in VCO2, all P less than 0.01. The decrease in ventilation was a product primarily of a significant decrease in tidal volume with little change in frequency. None of these findings were dependent on sleep stage with results in rapid-eye-movement (REM) and non-rapid-eye-movement sleep being similar. Through all sleep stages ventilation remained tightly correlated with VO2 and VCO2 both within a given individual and between subjects. Although respiratory rhythmicity was somewhat variable during REM sleep, minute ventilation continued to correlate with VO2 and VCO2. None of the parameters described above were influenced by age or gender, with male and female subjects demonstrating similar findings. Ten of the subjects demonstrated at least occasional apneas. These individuals, however, were not found to differ from those without apnea in any other measure of ventilation or metabolic rate.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Aged
  • Apnea / physiopathology
  • Carbon Dioxide / metabolism
  • Female
  • Humans
  • Male
  • Metabolism*
  • Middle Aged
  • Oxygen Consumption
  • Respiration*
  • Sex Factors
  • Sleep / physiology*

Substances

  • Carbon Dioxide