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Abstract— In this work we apply mixed ensemble models in
order to build a classifier for the Ford Classification Challenge.
We build feature vectors from the data sequences in terms of
first order statistics, spectral density and autocorrelation. Our
model selection scheme is a mixture of cross-validation and
bagging. The outcome is an ensemble model, that consits of
several different models trained on random subsamples of the
entire data set.

I. INTRODUCTION

The Ford Classification Challenge [1] is part of the WCCI
2008 Competition Program [2] and was motivated by an
automotive application. The given task is the classification of
finite data sequences, which includes also data preprocessing
and generation and selection of feature vectors. Our method
consists of three steps:

• Data preprocessing
• Generating and selecting feature vectors
• Building ensemble based classification models

II. DATA PREPROCESSING

The Ford Classification Challenge [1] consists of two data
sets that include data samples from an automotive subsystem.
The data was collected in batches of N = 500 samples per
diagnostic session, splitted in a training, a validation and a
test set. The size of training, validation and test set is listed
in Table I. The training set provided also the classification

Name Training Validation Test
Ford A 3271 330 1320
Ford B 3306 330 810

TABLE I
THE SIZE OF TRAINING, VALIDATION AND TEST SET FOR THE FORD

CLASSIFICATION CHALLENGE.

labels, wherein +1 indicates that a specific symptom exists
and -1 indicates that the symptom does not exist. Later during
the competition, the validation labels were also published on
the competition website [1].
In order to generate proper feature vectors for the classifi-
cation task we had to scale the data. Let ~x = {xi}i=1,...,N

denote a sampled time series from a diagnostic session. We
assume, that the ~x sequence represents a set of uniformly-
spaced time-samples of some measured signal x(t), where t
represents time.
We removed the mean from the each series and scaled it:

~xs =
~x− x̂

sx
, (1)
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wherein sx is given by the sum of the absolute values

sx =
N∑

i=1

‖xi‖ (2)

and x̂ is the mean over time

x̂ =
N∑

i=1

xi . (3)

We further define the σ(~x) as the variance of ~x.

III. FEATURE SELECTION

Let spec(~xs) denote the the spectral density and acf(~xs)
denote the autocorrelation of the scaled time series (see [3]
for definitions). We build preliminary feature vectors ~y from
the time series in the following way

~y = (spec(~xs){1,...,40}, acf(~xs){1,...,60}, x̂, sx, σ(~x)), (4)

wherein we included the first 60 values of the autocorrelation
and the first 40 values of the spectral density.
We used a feature selection approach to decide which parts of
the spectral density and the autocorrelation should be taken
into the final feature vectors.
Our feature selection approach follows in principle the
method of variable importance as proposed by Breiman
[4]. The underlying idea is to select descriptors on the
basis of the decrease of classification accuracy after the
permutation of these descriptors. Briefly, an ensemble of
classification models is built, which uses all descriptors as
input variables and the classification accuracy on an hold
out data set is calculated. In a second step, the same is
done after the successive permutation of each descriptor. The
relative decrease of classification accuracy of the permutated
descriptor compared to the unchanged case is the variable
importance following the idea that the most discriminative
descriptors are the most important ones ((see Breiman [5]).
This is done several times and the mean variable importance
together with variance is calculated.
The spectral density for higher frequencies is almost zero, so
only the low frequency part is useful for classification and for
calculating the variable importance so we decided to use only
the first 40 values for the preliminary feature vectors. The
autocorrelation is not vanishing for higher values of the time
lag, so there is no natural cutoff. We had to make a choice
and we decided to use the first 60 values into the preliminary
feature vectors. In Figure 1 the variable importance is shown
for the preliminary feature vectors on both data sets (Ford A
and Ford B). It turned out, that in both cases the first values
of the autocorrelation are the most discriminative descriptors.
We decided to use only the most discriminative descriptors



Fig. 1. The variable importance for the preliminary feature vectors on on
both data sets (Ford A at the top, Ford B at the bottom). The first 40 values
are the low frequency part of the spectral density, the next 60 values are the
first values of the autocorrelation. The last three values are x̂, sx, σ(~x) as
defined in Section II.

that had a mean variable importance above the variance. Only
31 descriptors were left for Ford A and 30 Ford B. In Figure
2 we plotted the mean autocorrelation function of the two
training data sets separately for the two classes ( +1 and -1
) with the variance as error bars. It is obvious, that the first
two zero-crossings and the values around the first minimum
are the most discriminative descriptors, as pointed out by the
feature selection method descried above.

IV. CLASSIFIER ENSEMBLES

The average output of several different models fi(x) is
called an ensemble model

f̂(x) =
K∑

i=1

ωifi(x), (5)

wherein we define that the model weights ωi sum to one∑K
i=1 ωi = 1. There are several ways to define the model

weights (see Perrone et al. [6] or Hashem et al. [7]), but we
decided to use uniform weights with ωi = 1/K for the sake
of simplicity and not to run into over-fitting problems.
The central feature of the ensemble approach is the general-
ization ability of the resulting model. In the case of regression

Fig. 2. The mean autocorrelation for both data sets (Ford A at the top, Ford
B at the bottom). The positive labeled data is plotted in blue, the negative
labeled data in red, together with the variance of the data shown as error
bars.

models (with continuous output values) it was shown, that
the generalization error of the ensemble is in the average
case lower than the mean of the generalization error of the
single ensemble members (see Krogh 1995 [8]).

A. Model Selection

Our model selection scheme is a mixture of bagging
[9] and cross-validation. Bagging or Bootstrap aggregating
was proposed by Breiman [9] in order to improve the
classification performance by combining classifiers trained
on randomly generated subsets of the entire training sets. We
extend this approach by applying a cross-validation scheme
for model selection on each subset and after that we combine
the selected models to an ensemble. In contrast to classical
cross-validation, we use random subsets as cross-validation
folds.
In K-fold cross-validation, the data set is partitioned into K
subsets. Of these K subsets, a single subset is retained as the
validation data for testing the model, and the remaining K
- 1 subsets are used for model training. The cross-validation
process is then repeated K times with each of the K subsets
used only once as the validation data. The K results from the
folds then can be averaged to produce a single estimation.



Fig. 3. For every partition of the cross-validation, the data is divided in
a training and a test set. The performance of each ensemble model was
assessed on validation set which was initially removed and never included
in model training.

If we lack relevant problem-specific knowledge, cross-
validation methods could be used to select a classification
method empirically [10]. This is a common approach because
it seems to be obvious that no classification method is uni-
formly superior, see for example Quinlan [11] for a detailed
study. It is also a common approach to select the model
parameters with cross-validation [12]. The idea to combine
the models from the K cross-validation folds (stacking) was
described by Wolpert [13].
We suggest to train several models on each CV-fold, to
select the best performing model on the validation set and to
combine the selected models from the K-folds. If we train
models of one type but with different initial conditions (for
example Neural Networks with different numbers of hidden
neurons) then we find proper values for the free parameters of
the model. We could extend that be combining models from
different classes in order to increase the model diversity. We
call this a heterogeneous ensemble or mixed ensemble and
applied this method effectively to several problems [14]–[17].
Our model selection scheme works as follows: For the K-
fold CV the data is divided K-times into a training set and
a test set, both sets containing randomly drawn subsets of
the data without replications. The size of each test set was
50% of the entire data set. In every CV-fold we train several
different models with a variety of model parameters (see
Section IV-C for an overview of the models). In each fold
we select only one model to become a member of the final
ensemble (namely the best model with respect to the test set).
This means, that all models have to compete with each other
in a fair tournament because they are trained and validated on
the same data set. The models with the lowest classification
error (the highest accuracy) in each CV-fold are taken out and

predicted class +1 predicted class -1
real class +1 true positive (tp) false negative (fn)
real class -1 false positive (fp) true negative (tn)

TABLE II
THE CONFUSION MATRIX FOR A BINARY CLASSIFICATION PROBLEM.

added to the final ensemble, receiving the weight ωi = 1
k .

All other models in this CV-fold are deleted.

B. Error Measures

We used the accuracy as defined in Eq. 6 in order to
train and to compare the different classification models.
Therefore we have to define the four possible outcomes of
a classification that can be formulated in a 2 × 2 confusion
matrix, as shown in Table II. The accuracy is defined as the
ratio of the correct classified samples:

Accuracy =
tp + tn

tp + tn + fp + fn
. (6)

Another error measure is the false positive rate (FP-Rate),
which is defined as the proportion of negative instances that
were erroneously reported as being positive:

FP-Rate =
fp

tn + fp
.

C. Classification Models

In this section we give a short list of the model classes
that we used for ensemble building. All models belong to
the standard collection of machine learning algorithms for
classification and regression tasks so details can be found
in the textbooks like for instance Hastie et al. [18]. The
implementation of these models in an open source MATLAB
toolbox is available on-line [19] and allows the integration of
user defined classification algorithms. A detailed description
of our model classes was given recently [20]. The models
that we use in our model selection scheme were:

• Linear Discriminant Analysis (LDA)
• Penalized Discriminant Analysis (PDA)
• Multi Layer Perceptron (MLP) with one or two hidden

layers and randomly drawn number of neurons
• Support Vector Machines with RBF-kernels
• Classification and regression trees (CART)

V. RESULTS

We applied our ensemble building approach to build a
classification model for the two data sets from the Ford
Classification Challenge [1]. The initial training set was
used to train the model as described above. During the
development phase (before the validation set labels were
revealed) we tried different feature vectors and made our
choice as described in Eq. 4. We further decided to use 101
cross-validation folds1 in order to train the ensemble for the
final submission, where the ratio of training/test samples

1A smaller number of cross-validation folds is possible, but a larger
number cannot degrade the result.



Name Accuracy FP-Rate
Ford A (CV) 0.953 ± 0.002 0.041 ± 0.001
Ford B (CV) 0.946 ± 0.004 0.047 ± 0.001
Ford B (Orig.) 0.794 0.172

TABLE III
THE VALIDATION RESULTS FROM A 10-FOLD CROSS-VALIDATION RUN

FOR THE TWO DATA SETS. WE FURTHER SHOWED THE RESULT OF THE

ORIGINAL VALIDATION SET FOR THE FORD B DATA.

was 50/50 (see Section IV-A). After the disclosure of the
validation labels, the validation set was combined with the
training set in order to enlarge the set of labeled training
samples for the final training.
From this enlarged training set, we generated small labeled
validation sets of 20% size, that were use for a 10-fold
cross-validation to estimate the expected classification
error of our final model. It is worth to mention, that the
cross-validation for the Ford B data set leads to relative
good results while the accuracy for the original validation
set is below average. The results of the cross-validation runs
are reported in Table III.
Following the description on the challenge website [1]
the data samples of hidden classification were collected
under noisy conditions, while the data samples of known
classification were collected in typical operating conditions.
So training and operation conditions are different, which
leads to a significant reduction of classification accuracy.
In a final step, the validation set was combined with the
training set and the model was trained for the submission.
The ensembles for the final submission were build with
101 cross-validation folds, so each ensemble consits of
101 different models. For the Ford A data set the resulting
ensemble consists of 41 SVMs with RBF-Kernels and 60
MLPs and for the Ford B data set we have 61 SVMs with
RBF-Kernels and 40 MLPs.

VI. CONCLUSIONS

We successfully generated descriptors to describe the times
series and applied a feature selection scheme in order to
shrink the feature vectors. Our model selection approach
selected and combined mostly MLPs and SVMs and the
resulting ensemble models performed quite well on a 10-fold
cross validation.
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