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Abstract

Hashing is becoming increasingly popular for
efficient nearest neighbor search in massive
databases. However, learning short codes
that yield good search performance is still
a challenge. Moreover, in many cases real-
world data lives on a low-dimensional man-
ifold, which should be taken into account
to capture meaningful nearest neighbors. In
this paper, we propose a novel graph-based
hashing method which automatically discov-
ers the neighborhood structure inherent in
the data to learn appropriate compact codes.
To make such an approach computationally
feasible, we utilize Anchor Graphs to obtain
tractable low-rank adjacency matrices. Our
formulation allows constant time hashing of a
new data point by extrapolating graph Lapla-
cian eigenvectors to eigenfunctions. Finally,
we describe a hierarchical threshold learning
procedure in which each eigenfunction yields
multiple bits, leading to higher search ac-
curacy. Experimental comparison with the
other state-of-the-art methods on two large
datasets demonstrates the efficacy of the pro-
posed method.

1. Introduction

Nearest neighbor (NN) search is a fundamental prob-
lem that arises commonly in computer vision, machine
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learning, data mining, and information retrieval. Con-
ceptually, searching nearest neighbors of a query q re-
quires scanning all n items in a database X = {x; €
R4}" | which has a linear time complexity O(n). For
large n, e.g., millions, exhaustive linear search is ex-
tremely expensive. Therefore, many techniques have
been proposed in the past for fast approximate near-
est neighbor (ANN) search. One classical paradigm to
address this problem is based on trees, such as kd-tree
(Friedman et al., 1977), which provides logarithmic
query time O(logn). However, for high-dimensional
data, most tree-based methods suffer significantly with
their performance typically reducing to exhaustive lin-
ear search.

To overcome this issue, hashing-based methods have
attracted considerable attention recently. These meth-
ods convert each database item into a code and can
provide constant or sub-linear search time. In this pa-
per, we focus on Hamming embeddings of data points,
which map data to binary codes. The seminal work on
Locality-Sensitive Hashing (LSH) (Gionis et al., 1999)
uses simple random projections for such mapping. It
has been extended to a variety of similarity measures
including p-norm distances for p € (0,2] (Datar et al.,
2004), Mahalanobis distance (Kulis et al., 2009), and
kernel similarity (Kulis & Grauman, 2009). Another
related technique named Shift Invariant Kernel Hash-
ing (SIKH) was proposed in (Raginsky & Lazebnik,
2010). Although enjoying asymptotic theoretical prop-
erties, LSH-related methods require long binary codes
to achieve good precision. Nonetheless, long codes re-
sult in low recall when used for creating a hash lookup
table, as the collision probability decreases exponen-
tially with the code length. Hence, one usually needs
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to set up multiple hash tables to achieve reasonable
recall, which leads to longer query time as well as sig-
nificant increase in storage.

Unlike the data-independent hash generation in LSH-
based algorithms, more recent methods have focused
on learning data-dependent hash functions. They
try to learn compact binary codes for all database
items, leading to faster query time with much
less storage. Several methods such as Restricted
Boltzmann Machines (RBMs) (or semantic hash-
ing) (Salakhutdinov & Hinton, 2007), Spectral Hash-
ing (SH) (Weiss et al., 2009), Binary Reconstruction
Embedding (BRE) (Kulis & Darrell, 2010), and Semi-
Supervised Hashing (SSH) (Wang et al., 2010a) have
been proposed, but learning short codes that yield high
search accuracy, especially in an unsupervised setting,
is still an open question.

Perhaps the most critical shortcoming of the existing
unsupervised hashing methods is the need to specify
a global distance measure. On the contrary, in many
real-world applications data lives on a low-dimensional
manifold, which should be taken into account to cap-
ture meaningful nearest neighbors. For these, one can
only specify local distance measures, while the global
distances are automatically determined by the under-
lying manifold. In this work, we propose a graph-
based hashing method which automatically discovers
the neighborhood structure inherent in the data to
learn appropriate compact codes in an unsupervised
manner. Our basic idea is motivated by (Weiss et al.,
2009) in which the goal is to embed the data in a Ham-
ming space such that the neighbors in the original data
space remain neighbors in the Hamming space.

Solving the above problem requires three main steps:
(i) building a neighborhood graph using all n points
from the database (O(dn?)), (ii) computing r eigenvec-
tors of the graph Laplacian (O(rn)), and (iii) extend-
ing r eigenvectors to any unseen data point (O(rn)).
Unfortunately, step (i) is intractable for offline train-
ing while step (iii) is infeasible for online hashing given
very large n. To avoid these bottlenecks, (Weiss et al.,
2009) made a strong assumption that data is uniformly
distributed. This leads to a simple analytical eigen-
function solution of 1-D Laplacians, but the manifold
structure of the original data is almost ignored, sub-
stantially weakening the basic theme of that work.

On the contrary, in this paper, we propose a novel
unsupervised hashing approach named Anchor Graph
Hashing (AGH) to address both of the above bottle-
necks. We build an approximate neighborhood graph
using Anchor Graphs (Liu et al., 2010), in which the
similarity between a pair of data points is measured

with respect to a small number of anchors (typically
a few hundred). The resulting graph is built in O(n)
time and is sufficiently sparse with performance ap-
proaching to the true kNN graph as the number of
anchors increases. Because of the low-rank property
of an Anchor Graph’s adjacency matrix, our approach
can solve the graph Laplacian eigenvectors in linear
time. One critical requirement to make graph-based
hashing practical is the ability to generate hash codes
for unseen points. This is known as out-of-sample ex-
tension in the literature. In this work, we show that
the eigenvectors of the Anchor Graph Laplacian can be
extended to the generalized eigenfunctions in constant
time, thus leading to fast code generation.

One interesting characteristic of the proposed hash-
ing method AGH is that it tends to capture seman-
tic neighborhoods. In other words, data points that
are close in the Hamming space, produced by AGH,
tend to share similar semantic labels. This is because
for many real-world applications close-by points on a
manifold tend to share similar labels, and AGH is de-
rived using a neighborhood graph which reveals the
underlying manifold, especially at large scale. The
key characteristic of AGH is validated by extensive
experiments carried out on two datasets, where AGH
outperforms exhaustive linear scan in the input space
with the commonly used /5 distance. In the remainder
of this paper, we present AGH in Section 2, analyze it
in Section 3, show experimental results in Section 4,
and conclude the work in Section 5.

2. Anchor Graph Hashing (AGH)

2.1. Formulation

The goal in this paper is to learn binary codes such
that neighbors in the input space are mapped to sim-
ilar codes in the Hamming space. Suppose, A;; > 0
is the similarity between a data pair (x;,«;) in the
input space. Then, similar to Spectral Hashing (SH)
(Weiss et al., 2009), our method seeks an r-bit Ham-
ming embedding Y € {1,—1}"*" for n points in the
database by minimizing'

NS 2 T
min g 2 1% = YlPdy = (7 LY)
1,]=

st. Ye{l,-1}"" 1'Y =0, Y'Y =nl,, (1)

where Y; is the i*" row of Y representing the r-bit
code for point x;, A is the n X n similarity matrix, and

D = diag(A1) with 1 = [1,--- ,1]T € R™. The graph

!Converting -1/1 codes to 0/1 codes is a trivial shift
and scaling operation.
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Laplacian is defined as L = D — A. The constraint
1TY = 0 is imposed to maximize the information of
each bit, which occurs when each bit leads to balanced
partitioning of the data. Another constraint Y'Y =
nl,., forces r bits to be mutually uncorrelated in order
to minimize redundancy among bits.

The above problem is an integer program, equiva-
lent to balanced graph partitioning even for a sin-
gle bit. This is known to be NP-hard. To make
eq. (1) tractable, one can apply spectral relaxation
(Shi & Malik, 2000) to drop the integer constraint
and allow Y € R™*". With this, the solution Y is
given by r eigenvectors of length y/n corresponding to
r smallest eigenvalues (ignoring eigenvalue 0) of the
graph Laplacian L. Y thereby forms an r-dimensional
spectral embedding in analogy to Laplacian Eigenmap
(Belkin & Niyogi, 2003). Note that the excluded bot-
tom most eigenvector associated with eigenvalue 0 is
1 if the underlying graph is connected. Since all the
remaining eigenvectors are orthogonal to it, 1TY = 0
holds. An approximate solution given by sgn(Y") yields
the final desired hash codes, forming a Hamming em-
bedding from R? to {1,—1}".

Although conceptually simple, the main bottleneck
in the above formulation is computation. The cost
of building the underlying graph and the associated
Laplacian is O(dn?), which is intractable for large n.
To avoid the computational bottleneck, unlike the re-
strictive assumption of a separable uniform data dis-
tribution made by SH, in this work, we propose a more
general approach based on Anchor Graphs. The basic
idea is to directly approximate the sparse neighbor-
hood graph and the associated adjacency matrix as
described next.

2.2. Anchor Graphs

An Anchor Graph uses a small set of m points called
anchors to approximate the data neighborhood struc-
ture (Liu et al., 2010). Similarities of all n database
points are measured with respect to these m anchors,
and the true adjacency (or similarity) matrix A is ap-
proximated using these similarities. First, K-means
clustering is performed on n data points to obtain m
(m < n) cluster centers U = {u; € Rd}?‘:l that act
as anchor points. In practice, running K-means on a
small subsample of the database with very few itera-
tions (less than 10) is sufficient. This makes cluster-
ing very fast, thus speeding up training significantly?.
Next, the Anchor Graph defines the truncated simi-
larities Z;;’s between all n data points and m anchors

’Instead of K-means, one can alternatively use any
other efficient clustering methods.

exp(—=D* (x4, u;)/t)

Zij=1q e exp(=D*(mi, u;)/t)
0, otherwise

Vi € (i) @)

where (i) C [1 : m] denotes the indices of s (s < m)
nearest anchors of point x; in U according to a dis-
tance function D() such as ¢y distance, and ¢ de-
notes the bandwidth parameter. Note that the matrix
Z € R™ ™ ig highly sparse. Each row Z; contains only
s nonzero entries which sum to 1.

Derived from random walks across data points and an-
chors, the Anchor Graph provides a powerful approx-
imation to the adjacency matrix A as A=2zA1Z77
where A = diag(Z 1) € R™*™ (Liu et al., 2010). The
approximate adjacency matrix has three key proper-
ties: 1) A is nonnegative and sparse since Z is very
sparse; 2) A is low-rank (its rank is at most m), so an
Anchor Graph does not compute A explicitly but in-
stead keeps its low-rank form; 3) Aisa doubly stochas-
tic matrix, i.e., has unit row and column sums, so
the resulting graph Laplacian is L = [ — A. Proper-
ties 2) and 3) are critical, which allow efficient eigen-
function extensions of graph Laplacians, as shown in
the next subsection. The memory cost of an Anchor
Graph is O(sn) for storing Z, and the time cost is
O(dmnT + dmn) in which O(dmnT) originates from
K-means clustering with 7T iterations. Since m < n,
the cost for constructing an Anchor Graph is linear in
n, which is far more efficient than constructing a kNN
graph that has a quadratic cost O(dn?).

The graph Laplacian of the Anchor Graph is L =
I — A, so the required r graph Laplacian eigenvec-
tors are also eigenvectors of A but associated with the
r largest eigenvalues (ignoring eigenvalue 1 which cor-
responds to eigenvalue 0 of L). One can easily solve
the eigenvectors of A by utilizing its low-rank prop-
erty. Specifically, we solve the eigenvalue system of a
small m x m matrix M = A~Y2ZT ZA=1/2, resulting
in r (< m) eigenvector-eigenvalue pairs {(vg,on)}_;
where 1 > o1 > .-+ > o0, > 0. After expressing
V =lvi, - ,v,] € R (V is column-orthonormal)
and ¥ = diag(oy,--+,0,) € R™*" we obtain the de-
sired spectral embedding matrix Y as

Y = VnZAV2vsT2 = zw (3)

which satisfies 1TY = 0 and Y'Y = nl,y,. It is in-
teresting to find out that hashing with Anchor Graphs
can be interpreted as first nonlinearly transforming
each input point x; to Z; by computing its sparse sim-
ilarities to anchor points and second linearly project-
ing Z; onto the vectors in W = /nA~1/2VE-1/2 =
[wi,--- ,w,] € R™*" where wy, = \/n/op A~ ?vy.
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2.3. Eigenfunction Generalization

The procedure given in eq. (3) generates codes only
for those points that are available during training.
But, for the purpose of hashing, one needs to learn
a general hash function h : R? ~ {1, —1} which can
take any arbitrary point as input. For this, one needs
to generalize the eigenvectors of the Anchor Graph
Laplacian to the eigenfunctions {¢y : R? R},
such that the hash functions can be simply defined
as hi(x) = sgn(op(x)) (k=1,---,r). We create the
“out-of-sample” extension of the Anchor Graph Lapla-
cian eigenvectors Y to their corresponding eigenfunc-
tions using the Nystrom method (Williams & Seeger,
2001)(Bengio et al., 2004). Theorem 1 below gives an
analytical form to each eigenfunction ¢y.

m
j=1
and any sample , define a feature map z : R® — R™
as follows

Theorem 1. Given m anchor points U = {u;}

2 2 T
[61 exp(— 2@y 5 exp(— B@am))
z(x) =

t
m 2(z,u,
Zj:l 9; eXp(_D (:: uj))
(4)

where §; € {1,0} and 6; = 1 if and only if anchor u;
is one of s nearest anchors of sample x in U accord-
ing to the distance function D(). Then the Nystrém
eigenfunction extended from the Anchor Graph Lapla-
cian eigenvector yr = Zwy, is

(@) = wy z(). ()

Proof. First, we check that ¢; and yj; overlap on all
training samples. If x; is in the training set, then
Z! = z(x;) and thus ¢x(z;) = w) Z;' = Zywy, = Y.

The Anchor Graph’s adjacency matrix A = ZA=1ZT
is positive semidefinite, with each entry defined as
Az, ;) = 27 (x;)A "' 2(z;). For any unseen sample
@, the Nystrom method extends yj to ¢r(x) as the
weighted summation over n entries of yi: () =
> A(m, z;)Yie/op. Since wy = /njorA~12v,

and Mwvy, = o,v, we can show that

or(@) = — 2T (@A (@), 2y

o
1 1

= 2 (@A Z Ty, = =2 (2)AZT Zwy,
Ok Ok

1
—z2(x)A"'Z27Z EA_l/ka

Ok Ok

= 22T (@)A1 (A*UQZTZA*/%,G)
O

S L —1/2

=, /= A M
a,f’;z () (Mwy)

Ok

=27 () ( ”A—l/%k) = 2" (x)w, = w; z(x).
]

Following Theorem 1, the hash functions used in the
proposed Anchor Graph Hashing (AGH) are designed
as:

hi(@) = sgn(w] =(2), k=1, .. (6)

In addition to the time for Anchor Graph construc-
tion, AGH needs O(m?n + srn) time for solving r
graph Laplacian eigenvectors retained in the spectral
embedding matrix Y, and O(rn) time for compressing
Y into binary codes. Under the online search scenario,
AGH needs to save the binary codes sgn(Y") of n train-
ing samples, m anchors U, and the projection matrix
W in memory. Hashing any test sample x only costs
O(dm + sr) time which is dominated by the construc-
tion of a sparse vector z(x).

Remarks. 1) Though the graph Laplacian eigenvec-
tors of the Anchor Graph are not as accurate as those
of an exact neighborhood graph, e.g., kNN graph, they
provide good performance when used for hashing. Ex-
act neighborhood graph construction is infeasible at
large scale. Even if one could get r graph Laplacian
eigenvectors of the exact graph, the cost of calculating
their Nystrom extensions to a novel sample is O(rn),
which is still infeasible for online hashing requirement.
2) Free from any restrictive data distribution assump-
tion, AGH solves Anchor Graph Laplacian eigenvec-
tors in linear time and extends them to eigenfunctions
in constant time (depends only on constants m and s).

2.4. Hierarchical Hashing

To generate r-bit codes, we use r graph Laplacian
eigenvectors, but not all eigenvectors are equally suit-
able for hashing especially when r increases. From
a geometric point of view, the intrinsic dimension of
data manifolds is usually low, so a low-dimensional
spectral embedding containing the lower graph Lapla-
cian eigenvectors is desirable. Moreover, (Shi & Malik,
2000) discussed that the error made in converting the
real-valued eigenvector yj to the optimal integer so-
lution y; € {1,—1}" accumulates rapidly as k in-
creases. In this subsection, we propose a simple hierar-
chical scheme that gives the priority to the lower graph
Laplacian eigenvectors by revisiting them to generate
multiple bits.

To illustrate the basic idea, let us look at a toy exam-
ple shown in Fig. 1. To generate the first bit, the graph
Laplacian eigenvector y partitions the graph by the red
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y thresholds
R(x)=sgn(y-t)  K(x)=sgn(-y+b)

X1 X3 X5 X7 X1 X3 X5 X7
y>0

Y5 y<0

x2 X4 X6 X8 |ye X2 X4 X6 X8

(a) The first-layer hashing ys8 (b) The second-layer hashing

Figure 1. Hierarchical hashing on a data graph. i, -+ ,x3
are data points and vy is a graph Laplacian eigenvector.
The data points of filled circles take ‘1’ hash bit and the
others take ‘-1’ hash bit. The entries with dark color in y
are positive and the others are negative. (a) The first-layer
hash function h' uses threshold 0 ; (b) the second-layer
hash functions h? use thresholds b and b~.

line using threshold zero. Due to thresholding, there
is always a possibility that neighboring points close to
the boundary (i.e., threshold) are hashed to different
bits (e.g., points x3 and x5). To address this issue,
we conduct hierarchical hashing of two layers in which
the second-layer hashing tries to correct the boundary
errors caused by the previous hashing. Intuitively, we
form the second layer by further dividing each par-
tition created by the first layer. In other words, the
positive and negative entries in y are thresholded at b
and b~ , respectively. Hence, the hash bits at the sec-
ond layer are generated by sgn(y; — b") when y; > 0
and sgn(—y; + b~) otherwise. Fig. 1(b) shows that
x3 and x5 are hashed to the same bit at the second
layer. Next we describe how one can learn the optimal
thresholds for the second-layer hashing.

We propose to optimize the two thresholds b and b~
from the perspective of balanced graph partitioning.
yt —bt1t
-y +b 17 ]
whose sign gives a hash bit for each training sample
during the second-layer hashing. Two vectors yT of
length n* and y~ of length n~ correspond to the pos-
itive and negative entries in y, respectively. Two con-
stant vectors 17 and 1~ contain n* and n™ 1 entries
accordingly (nt +n~ = n). Similar to the first layer,
we would like to find such thresholds that minimize
the cut value of the graph Laplacian with the target
thresholded vector while maintaining a balanced par-
titioning, i.e.,

Let us form a thresholded vector

+_pt1t 17 + _pt1t
. Ty yT—b"1 yt—-0b"1
brgllfl Pe™.07) = [ -y~ +0b717 ] L{ -y~ +b717
+ _pt1+
Ao AN A S
seat| V| =0 ™
Defining vector ¥ = [(y™)", —(y~)"]" and arrang-
. . L+. o L++ LJ’,, .
ing L into [ L ] = { L. L _ corresponding to

the positive and negative entries in y, we optimize b
and b~ by zeroing the derivatives of the objective in
eq. (7). After simple algebraic manipulation, one can
show that

aH'L.y
(TF)TLyq1t

bt +b = B. (8)

On the other hand, combining the fact that 1Ty = 0

with the constraint in eq. (7) leads to:

ntot — (=0T = (1) Tyt - (1) Ty =2(17) "yt
(9)

We use the Anchor Graph’s adjacency matrix A =
ZA~'ZT for the computations involving the graph
Laplacian L. Suppose, y is an eigenvector of A with
eigenvalue o such that Ay oy. Then, we have
Ayt + A,y =oyt. Thus, from eq. (8),

ALy DT (T=Ayt + A y)
A TL 1t~ (1H)T(I — A )1+
)Ty Ayt +A0’y+ —Ayh)

nt — (1F)T AL 1+
(c+ 1)) Tyt —201H)T Ayt
nt — (1+)TA++1+
o+ 1)) Tyt —2(Z{17)TAT (Z]y ")

8=

= 10
nt — (Z[1H)TA-Y(Z]1+) » (10)
+x . . Z+
where Z, € R™ *™ is the sub-matrix of Z = 7

corresponding to y ™. By putting eq. (8)-(10) together,
we solve the target thresholds as

b 20Ty + (= nt)p

_2(1+)Tyf+n+5 (11)

n

-

which requires O(mn™) time.

Now we give the two-layer hash functions for AGH
to yield an 7-bit code using the first /2 graph
Laplacian eigenvectors of the Anchor Graph. Con-
ditioned on the outputs of the first-layer hash func-
tions {h,(cl)(as) = sgn (w, z(x)) 2/:21, the second-layer
hash functions are generated dynamically as follows

fork=1,---,r/2,

, sgn (w) z(x) — bf) if h,(cl)(a:) =1
n ) =
sgn (—wj z(x) + by, ) if h,(cl)(a:) =-1
(12)
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in which (b, b,,) are calculated from each eigenvector
yr = Zwy. Compared to r one-layer hash functions
{hg)}z:l, the proposed two-layer hash functions for
r bits actually use the r/2 lower eigenvectors twice.
Hence, they avoid using the higher eigenvectors which
can potentially be of low quality for partitioning and
hashing. The experiments conducted in Section 4 re-
veal that with the same number of bits, AGH using
two-layer hash functions achieves comparable preci-
sion but much higher recall than using one-layer hash
functions alone (see Fig. 2(c)(d)). Of course, one can
extend hierarchical hashing to more than two layers.
However, the accuracy of the resulting hash functions
will depend on whether repeatedly partitioning the ex-
isting eigenvectors gives more informative bits than
those from picking new eigenvectors.

3. Analysis

For the same budget of r bits, we analyze two hashing
algorithms which are proposed in Section 2 and both
based on Anchor Graphs with the fixed construction
parameters m and s. For convenience, we name AGH
with r one-layer hash functions {hg)}gzl 1-AGH, and
AGH with r two-layer hash functions {h,(cl), hgf) 2/22 1
2-AGH, respectively.

Below we give space and time complexities of 1-AGH
and 2-AGH.

Space Complexity: O((d + s+ 7)n) in the training
phase and O(rn) (binary bits) in the test phase for
both of 1-AGH and 2-AGH.

Time Complexity: O(dmnT +dmn+m?n+(s+1)rn)
for 1-AGH and O(dmnT +dmn+m?n+ (s/2+m/2+
1)rn) for 2-AGH in the training phase; O(dm+ sr) for
both in the test phase.

To summarize, 1-AGH and 2-AGH both have linear
training time and constant query time.

4. Experimental Results
4.1. Methods and Evaluation Protocols

We evaluate the proposed graph-based unsupervised
hashing, both single-layer AGH (1-AGH) and two-
layer AGH (2-AGH), on two benchmark datasets:
MNIST (70K) and NUS-WIDE (270K). Their per-
formance is compared against other popular unsu-
pervised hashing methods including Locality-Sensitive
Hashing (LSH), PCA Hashing (PCAH), Unsupervised
Sequential Projection Learning for Hashing (USPLH)
(Wang et al., 2010a), Spectral Hashing (SH), Kernel-
ized Locality-Sensitive Hashing (KLSH), and Shift-

Invariant Kernel Hashing (SIKH). These methods
cover both linear (LSH, PCAH and USPLH) and non-
linear (SH, KLSH and SIKH) hashing paradigms. Our
AGH methods are nonlinear. We also compare against
a supervised hashing method BRE which is trained by
sampling a few similar and dissimilar data pairs. We
sample 1,000 training points from each dataset, and
for each point use ¢ distance to find its top/bottom
2% NNs as similar/dissimilar pairs on MNIST and
its top/bottom 1% NNs as similar/dissimilar pairs on
NUS-WIDE, respectively. To run KLSH, we sample
300 training points to form the empirical kernel map
and use the same Gaussian kernel as for SIKH. To run
our methods 1-AGH and 2-AGH, we fix the graph con-
struction parameters to m = 300,s = 2 on MINIST
and m = 300,s = 5 on NUS-WIDE, respectively.
We adopt ¢ distance for the distance function D() in
defining the matrix Z. In addition, we run K-means
clustering with 7" = 5 iterations to find anchors on each
dataset. All our experiments are run on a workstation
with 2.53 GHz Intel Xeon CPU and 10GB RAM.

We follow two search procedures, i.e., hash lookup and
Hamming ranking, for consistent evaluations across
two datasets. Hash lookup emphasizes more on search
speed since it has constant query time. However, when
using many hash bits and a single hash table, hash
lookup often fails because the Hamming space becomes
increasingly sparse and very few samples fall in the
same hash bucket. Hence, similar to (Weiss et al.,
2009), we search within a Hamming radius 2 to retrieve
potential neighbors for each query. Hamming rank-
ing measures the search quality by ranking database
points according to their Hamming distances to the
query. Even though the complexity of Hamming rank-
ing is linear, it is usually very fast in practice.

4.2. Datasets

The well-known MNIST dataset® consists of 784-
dimensional 70,000 samples associated with digits from
‘0’ to ‘9. We split this dataset into two subsets: a
training set containing 69, 000 samples and a query set
of 1,000 samples. Because this dataset is fully anno-
tated, we define true neighbors as semantic neighbors
based on the associated digit labels.

The second dataset NUS-WIDE?* contains around
270,000 web images associated with 81 ground truth
concept tags. Each image is represented by an ¢ nor-
malized 1024-dimensional sparse-coding feature vector

(Wang et al., 2010b). Unlike MINIST, each image in

3http://yann.lecun.com/exdb/mnist/
“http://Ims.comp.nus.edu.sg/research/NUS-
WIDE.htm
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Table 1. Hamming ranking performance on MINIST and NUS-WIDE. r denotes the number of hash bits used in hashing
algorithms, and also the number of eigenfunctions used in SE /5 linear scan. The K-means execution time is 20.1 sec and
105.5 sec for training AGH on MINIST and NUS-WIDE, respectively. All training and test time is recorded in sec.

Method MNIST (70K) NUS-WIDE (270K)
MAP Train Time | Test Time MP Train Time | Test Time
7":24[ r =48 r =48 r =48 r:24[7":48 r =48 r =48
V5 Scan 0.4125 - 0.4523 —
SE 7; Scan | 0.5269 [ 0.3909 - [ - 0.4866 | 0.4775 - [ -

LSH 0.1613 | 0.2196 1.8 2.1x107° 0.3196 | 0.2844 8.5 1.0x107°
PCAH 0.2596 | 0.2242 4.5 2.2x107° 0.3643 | 0.3450 18.8 1.3x107°
USPLH 0.4699 | 0.4930 163.2 2.3x107° 0.4269 | 0.4322 834.7 1.3x107°
SH 0.2699 | 0.2453 4.9 4.9%x107° 0.3609 | 0.3420 25.1 4.1x107°
KLSH 0.2555 | 0.3049 2.9 5.3x107° 0.4232 | 0.4157 8.7 4.9%x107°
SIKH 0.1947 | 0.1972 0.4 1.3x107° 0.3270 | 0.3094 2.0 1.1x107°
1-AGH 0.4997 | 0.3971 22.9 5.3x107° | 0.4762 | 0.4761 115.2 4.4x107°
2-AGH 0.6738 | 0.6410 23.2 6.5x107° | 0.4699 | 0.4779 118.1 5.3x107°
BRE 0.2638 | 0.3090 57.9 6.7x107° 0.4100 | 0.4229 1247.4 8.3x107°
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Figure 2. Results on MNIST. (a) Precision within Hamming radius 2 using hash lookup and the varying number of
hash bits (r); (b) Hamming ranking precision of top-5000 ranked neighbors using the varying number of anchors (m); (c)
Hamming ranking precision curves; (d) Hamming ranking recall curves.

NUS-WIDE contains multiple semantic labels (tags).
The true neighbors are defined based on whether two
images share at least one common tag. For evaluation,
we consider 21 most frequent tags, such as ‘animal’,
‘buildings’, ‘person’, etc., each of which has abundant
relevant images ranging from 5,000 to 30,000. We sam-
ple uniformly 100 images from each of the selected 21
tags to form a query set of 2,100 images with the rest
serving as the training set.

4.3. Results

Table 1 shows the Hamming ranking performance mea-
sured by Mean Average Precision (MAP), training
time, and test time for different hashing methods on
MNIST. We also report MAP for /5 linear scan in
the original input space and ¢, linear scan in the spec-
tral embedding (SE) space, namely SE /5 linear scan
whose binary version is 1-AGH. From this table it is
clear that SE /5 scan gives better precision than /o
scan for r = 24. This shows that spectral embedding
is capturing the semantic neighborhoods by learning
the intrinsic manifold structure of the data. Increas-
ing r leads to poorer MAP performance, indicating the
intrinsic manifold dimension to be around 24. 2-AGH
performs significantly better than the other hashing

methods and even better than #5 linear scan and SE
{5 linear scan. Note that the results from both ¢5 and
SE /5 linear scans are provided to show the advantage
of taking the manifold view in AGH. Such linear scans
are not scalable NN search methods.

In terms of training time, while 1-AGH and 2-AGH
need more time than the most hashing methods, they
are faster than USPLH and BRE. Most of the training
time in AGH is spent on the K-means step. By using
a subsampled dataset, instead of the whole database,
one can further speed up K-means significantly. The
test time of AGH methods is comparable to the other
nonlinear hashing methods. Table 1 shows a similar
trend on the NUS-WIDE dataset. As computing
MAP is slow on this larger dataset, we show Mean
Precision (MP) of top-5000 returned neighbors.

Fig. 2(a) and Fig. 3(a) show the precision curves us-
ing hash lookup within Hamming radius 2. Due to
increased sparsity of the Hamming space with more
bits, precision for the most hashing methods drops
significantly when longer codes are used. However,
both 1-AGH and 2-AGH do not suffer from this com-
mon drawback and provide higher precision when us-
ing more than 24 bits for both datasets. We also
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Figure 3. Results on NUS-WIDE. (a) Hash lookup precision within Hamming radius 2 using the varying number of
hash bits (r); (b) Hamming ranking precision of top-5000 ranked neighbors using the varying number of anchors (m); (c)
Hamming ranking precision curves; (d) Hamming ranking recall curves.

plot the Hamming ranking precision of top-5000 re-
turned neighbors with an increasing number of anchors
(100 < m < 600) in Fig. 2(b) and Fig. 3(b) (except
these two, all the results are reported under m = 300),
from which one can observe that 2-AGH consistently
provides superior precision performance compared to
£ linear scan, SE /5 linear scan, and 1-AGH. The gains
are more significant on MINIST.

Finally, overall better performance of 2-AGH over 1-
AGH implies that the higher eigenfunctions of the An-
chor Graph Laplacian are not as good as the lower
ones when used to create hash bits. 2-AGH reuses the

lower eigenfunctions and gives higher search accuracy
(see Fig. 2(c)(d) and Fig. 3(c)(d)).

5. Conclusion

We have proposed a scalable graph-based unsupervised
hashing approach which respects the underlying man-
ifold structure of the data to return meaningful near-
est neighbors. We further showed that Anchor Graphs
can overcome the computationally prohibitive step of
building graph Laplacians by approximating the adja-
cency matrix with a low-rank matrix. The hash func-
tions are learned by thresholding the lower eigenfunc-
tions of the Anchor Graph Laplacian in a hierarchi-
cal fashion. Experimental comparison showed signifi-
cant performance gains over the state-of-the-art hash-
ing methods in retrieving semantically similar neigh-
bors. In the future, we would like to investigate if any
theoretical guarantees could be provided on retrieval
accuracy of our approach.
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